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The greatest factorial factorization (GFF) of a polynomial provides an analogue to
square-free factorization but with respect to integer shifts instead to multiplicities. We
illustrate the fundamental role of that concept in the context of symbolic summation.
Besides a detailed discussion of the basic GFF notions we present a new approach to
the indefinite rational summation problem as well as to Gosper’s algorithm for summing
hypergeometric sequences.

1. Introduction

At present the most general algebraic and algorithmic frame for discussing the problem of
indefinite summation is provided by the work of Karr (1981, 1985). His method, working
over II1X-fields which are certain difference field extensions of a constant field K, can be
viewed as a summation analogue to Risch’s integration method. A difference field simply
is a field F together with an automorphism o of F.

Given a, f from a II¥-field F, Karr’s method constructively decides the existence of
a solution g € E of 0g —a-g = f where E is a fixed IIX-extension field of F; f is
called summable (with respect to E) if the equation can be solved in the case a = 1. We
distinguish two cases: The “telescoping problem”, i.e., given f € F find g € F such that
og— g = f, and the “general problem”, i.e., given f € F determine a II¥-extension field
E of F such that og — g = f for some g € E.

Despite the fact that Karr’s method algorithmically decides whether a proposed ex-
tension E is a II¥-extension, the problem with applying Karr’s method for the general
case consists in finding an appropriate candidate for E. But in view of his analogue to
Liouville’s theorem on elementary integrals (Karr, 1985, RESULT p. 314) one has the
following: If f € F is summable in E, then the “interesting” part of it already is summa-
ble in F, and the remainder consists of formal sums that have been adjoined to F in the
construction of E. This justifies to consider the telescoping problem separately.

Pointing to rational and hypergeometric summation techniques which do not require
complete factorization, Karr (1981, sect. 4.2) raises the question whether similar techni-
ques can be “profitably applied” in his ITX-field theory. Despite the fact that the present
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paper focuses on rational and hypergeometric summation only, it can be seen as a first
step in this direction. This is made more explicit as follows.

As a basic tool for a unified treatment of rational and hypergeometric summation,
“greatest factorial factorization” (GFF) of a polynomial in analogy to square-free facto-
rization is introduced. Instead of collecting irreducibles according to their multiplicities,
the GFF is obtained by extracting divisors of factorial type p(z)p(x —1)...p(x —k +1)
of greatest length. As with square-free factorization the computation of the GFF-form of
a polynomial does not require complete factorization. With Karr’s theory as a guiding
principle in the background, here the following problems are treated:

(i) rational telescoping (Section 4), i.e., F = K(z) with oc = ¢ for all ¢ € K and
ocxr=ux+1;
(ii) hypergeometric telescoping (Section 5), i.e., F = K(z, f) with o acting on K(z) as
before and o f = rf for some fixed r € K(z);
(iii) general rational summation (Section 6), i.e., where F as in (i) and E has to be
determined.

In all of these applications a certain type of polynomial gcd plays a basic role, namely
ged(p, op) for p € K[z]. From the GFF-form of a polynomial p the GFF-form of ged(p, op)
can be read off directly (Section 2, Fundamental Lemma), just as the square-free facto-
rization of ged(p, Dp), D the derivation operator, from the square-free factorization of p.
This fundamental property is used throughout the paper. For treating rational telesco-
ping a new canonical “S-form” representation of rational functions is introduced (Section
3), i.e., a representation as a quotient of two polynomials where the denominator has an
especially nice GFF-form. Gosper’s algorithm for hypergeometric telescoping finds a new
explanation using only basic GFF notions from Section 2, in particular the Fundamen-
tal Lemma. It is well known (see Abramov, 1975) that the general rational summation
problem can be solved in full generality (in the sense of Karr); in our approach both the
GFF and the S-form play a crucial role.

Concerning “profitable applications” in II¥-field theory, the GFF approach is flexible
enough to carry over to the “g-case” as well; see Paule & Strehl (1995). This corresponds
to g-rational and g-hypergeometric summation which is treated in Karr’s theory by choo-
sing F = K(z) with oc = ¢ for all ¢ € K and oz = gz for a fixed ¢ € K, and F = K(z, f)
with o acting on K(z) as before and of = rf for some fixed r € K(z), respectively.
From this fact one might expect that GFF or some suitable generalization could be of
some use also for more general aspects of Karr’s theory.

This paper is self-contained, no difference field knowledge but only basic facts from
algebra are required. In the following we briefly review its sections. Section 2 presents
the basic GFF notions, in particular the Fundamental Lemma and an algorithm for com-
puting the GFF-form of a polynomial. In Section 3 we investigate the relation to the
dispersion function (Abramov, 1971) and discuss “shift-saturated” polynomials which
are polynomials with sufficiently nice GFF-form. Due to lattice properties of K[x] with
respect to ged, a minimal shift-saturated polynomial sat(p) can be assigned to each
p € KJz]. The canonical S-form of a rational function is introduced as the quotient
of two polynomials with denominator of type sat(p). In Section 4 rational telescoping
is treated; based on S-form representation, Theorem 4.1 explains why factorials rather
than powers play the essential role in summation. Section 5 presents a new and alge-
braically motivated approach to Gosper’s algorithm; together with the basic notions of
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Section 2 this section can be read independently from the rest of the paper. In Section 6
we consider the general rational summation problem from GFF point of view. Two new
algorithms are given. The first one works iteratively similar to the approach sketched
by Moenck (1977). His approach is implemented in the computer algebra system Maple
to sum rational functions, but due to several gaps in Moenck’s original description the
Maple algorithm fails on certain rational function inputs as observed by the author of
this paper; see Example 6.6. The second algorithm provides an analogue to what is called
“Horowitz’ Method” or “Hermite-Ostrogradsky Formula” for rational function integra-
tion. In addition, discussing minimal-degree answers to the general rational summation
problem we present a new Theorem 6.3 which explicitly tells in which way two “minimal
solutions” differ.

2. Greatest Factorial Factorization

In this section “greatest factorial factorization” (GFF) of a polynomial is introduced.
It is a new canonical form representation which can be viewed as an analogue to square-
free factorization. One of the crucial features of GFF is that, analogous to square-free
factorization, it can be computed in an iterative manner essentially involving only ged
computations.

2.1. BAsSIC DEFINITIONS

By N we understand the set of all nonnegative integers. We assume all rings or fields to
be of characteristic zero. It will be convenient to assume K to be a field, especially in the
context of indefinite rational or hypergeometric summation. But for a large part of the
theory it would suffice to take for K a suitable ring such that the polynomial ring K[z] is
a unique factorization domain. As usual we shall assume the result of any ged (greatest
common divisor) computation in K[z] as being normalized to a monic polynomial.

By FE we denote the shift operator on K[z], i.e., (Ep)(z) = p(z + 1) for any p € K|[z].
The extension of this shift operator to the rational function field K(z), the quotient field
of K[xz], will be also denoted by FE.

The polynomial degree of any p € K[z], p # 0, is denoted by deg(p). We define
deg(0) := —o0.

DEFINITION. For any monic polynomial p € K[z] and k € N the k-th falling factorial
[p]E of p is defined as

k—1
p* =] E7'p.
=0

Note that by the null convention [];.ypi = 1 we have [p]® = 1.

This factorial notion, introduced by Moenck (1977), is crucial in the context of a certain
polynomial factorization, in the following called greatest factorial factorization. It can be
viewed as a polynomial extension of the falling factorial notion, introduced usually in the
form (2)& = z(x —1)...(x — k + 1); for the notation see, e.g., (Graham et al., 1989).

In the following we often make use of the elementary fact that an integer-shift E™ ¢ of
an irreducible polynomial ¢ € K[z] again is irreducible over K. This fact corresponds to
the multiplicative property of the shift operator, i.e., E™ (p-q) = (E™p) - (E™q).



4 Peter Paule

Let n be a positive integer and p € K[z]. Then ged(p, E™p) # 1 is equivalent to the
existence of an irreducible polynomial ¢ € K[z] such that ¢t (E~"¢) | p. Also equivalent to
that is the existence of two roots of p in the splitting field of p over K at integer distance
n.

Similarly, ged(p, Ep, ..., E™p) # 1 is equivalent to the existence of an irreducible po-
lynomial ¢ € K[z] such that [t|2L | p. In this case there exist n + 1 roots of p in the
splitting field of p forming a sequence (o, + 1,...,a + n), ie., p(a +1i) = 0 for all
i€{0,1,...,n}

If a polynomial has many roots at integer distance, there are many possibilities to
rewrite it using factorials.

EXAMPLE 2.1. Consider p(z) = 2% +22* — 2% — 222 = (v + 2) erl) (;Ufl) € Q[z],
Q the rational number field, then p(x) = [z]*[(z + 2)z]2 = [z(z — D)2 [z + 22 = [(z +
)tz + 12 = [2)2 [z + 22 = [z]2 [z + 2]3, ete. O

From all these possibilities the last one which takes care of maximal chains is of particular
importance. Intuitively, it can be obtained as follows: One selects irreducible factors of p in
such a way that their product, say ¢i () ¢1(z—1)... ¢ (z—k+1), forms a falling factorial
[¢1]% of maximal length k. For the remaining irreducible factors of p this procedure is
iterated in order to find all k-th falling factorial divisors [q1]%, [¢2]%, etc., of that type.
Then [q1 - g2 - ...JE forms the factorial factor of p of maximal length k. Iterating this
procedure one gets a factorization of p in terms of “greatest” factorials factors.

DEFINITION. We say that (p1,...,pr), pi € K|z], is a GFF-form of a monic polynomial
p € K[z] if the following conditions hold:

(GFF1) p = [pi]t- - [p]E,

(GFF2) each p; is monic, and k > 0 implies deg(py) > 0,

(GFF3) i < j = ged([pi]*, Ep;) = 1 = ged([p:]*, E77p;).

Note that, due to the null convention, () is the GFF-form of 1 € K]z]. Condition (GFF3)
intuitively can be understood as prohibiting “overlaps” of chains that violate length
maximality.

The following theorem explicitly states the fact that the GFF-form provides a canonical
form. For instance, (z,1,1, 2+ 2) is the GFF-form of the polynomial p from the example
above.

THEOREM 2.1. If (p1,...,pk) and {q1,...,q) are GFF-forms of a monic p € K[z] then
k=1andp;,=q; forallie{l,...,k}.

PRrOOF. The proof proceeds by induction on deg(p). The case for 0 is obvious. Assume
deg(p) > 0. Let ¢ € K[z] be an irreducible factor of py, which exists by (GFF2), then
t|[g:)¢ for some i by (GFF1). Equivalently, t|E~"q; with 0 < h < i, and choose i and
h so that ¢ — h is maximal. All what we need is to show that h + k& < 4, because
then £k < h+ k < i <1 < k, the last inequality by symmetry. This implies h = 0,
k =i =1, t|qk, and the proof is completed by using induction hypothesis on {p1, ..., pr/t)
and {(qi,...,qx/t), each with tailing ones removed, which are GFF-forms of p/[t]£. Now,
assume h+k > i. Since [t]2|p we have E"~'t|[¢;) for some j, or equivalently, E"~%|E~9¢;
with 0 < g < j. If i > j then E"~ zt|gcd([q]} E~g;), violating (GFF3). If i < j and
0> g—i+ 1, then EM 9+ ged(B9~ “rlqz,EqJ), violating the other part of (GFF3)
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because of E9~"1q;|[g;]t. Finally, if i < j and 0 < g — 4 + 1, then t|E""97"¢; with
i—h<j+i—g—h, acontradiction to the maximal choice of i — h. O

If (p1,...,px) is the GFF-form of a monic p € K[z] we sometimes express this fact for
short by GFF(p) = (p1,...,Dk)-

2.2. THE FUNDAMENTAL LEMMA

As pointed out in the introduction the “gcd-shift”, i.e., the ged of a polynomial p and its
shift E'p, plays a basic role in rational and hypergeometric summation. The GFF-concept
takes special care of that observation, as made explicit by the following simple but crucial
lemma which is a perfect analogue to what one has for square-free factorization.

LEMMA 2.1. (“Fundamental Lemma”) Given a monic polynomial p € Kx] with GFF-
form (p1,...,pr). Then

ged(p, Ep) = [p1]%- - [pr]E=1
PROOF. Proceeding by induction on k the case k = 0 is trivial. For & > 0,

ged(p, Ep) =
)it - ged([pr]t- - - [pr—1 22 E7F i Bt - [pr—1 B2 i) =

(=L - ged([pa ]t - -1 =5 E([pa)t- - [pe—1152).

The first equality is obvious, the second is a consequence of (GFF3) because for i < k we
have ged([pi]t, Epr) = ged(E~**ipy, E[p;]t) = E(ged(E~*py, [pi]%)) = 1 together with
ged(E~*py, Epy)| ged([pr]®, Epr) = 1. The rest follows from applying the induction
hypothesis. O

In other words, from the GFF-form of p, i.e., GFF(p) = (p1,...,pr) one directly can
extract the GFF-form of its “gcd-shift”, i.e., GFF(ged(p, Ep)) = (p2, ..., Dk)-

EXAMPLE 2.2. From GFF(p) = (x,1,1,x + 2) one immediately gets by Lemma 2.1 that
ged(p, Ep) = [z + 2] and GFF(ged(p, Ep)) = (1,1, 2 + 2). 0

It will be convenient to introduce the following abbreviation for the “gcd-shift”:
DEFINITION. Given a monic polynomial p € K[z]: gcdE(p) := ged(p, Ep).

For various applications that will follow it is useful to keep in mind that dividing p
with GFF(p) = (p1,...,pr) by E~!gedE(p) or gcdE(p) results in separating the product
of the first, respectively last, falling factorial entries:

p _ p _ -1 —k+1
S S d ——— =p(E ... (E .
FTgedB() PP and s pL(E" p2) ... ( Pr)

REMARK. The analogous lemma used in standard square-free factorization algorithms
reads as follows. Let ¢ = ¢} ¢5... q’,j be the square-free factorization of ¢ € Klz], i.e.,
each irreducible factor of ¢; arises exactly with multiplicity ¢ in the complete factorization
of ¢ in K[z]. Then for the derivation operator D on K]z]:

ged(q,Dg) = a3 -7 "
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The analogy to the proposition above is made fully transparent by the elementary fact
that

ged(p, Ep) = ged(p, Ap).

One is tempted to view these two different types of representations, related by the opera-
tor analogue above, as somewhat “orthogonal” to each other. In a concrete example this
statement becomes more transparent. Let p = z'% — 228 + 4212 — 2211 — 2210 4+ 1029 —
16284227 + 525 — 1625 +202* 4823 — 1222 € Q[z] with p = (22 —22+3) (23 +22)% (22 -1)3
as its square-free factorization. The representation of p according to its GFF-form is

p =" +2)(=* - D} [o* + 22 [(@ + ).

Comparing both representations, one observes that the constituents ¢; of the square-free
factorization violate several GFF-properties, for instance, (GFF3) by ged(22—1, E~2(2?—
1)) = & — 1. Vice versa, the constituents of the GFF-form need not be relatively prime
nor square-free. More information on square-free factorization, for instance, can be found

in the book (Geddes et al., 1992). a

2.3. CoOMPUTING THE GFF-FOrRM

One crucial feature of greatest factorial factorization is that, analogous to square-free
factorization, it can be obtained without any factorization by an iterative procedure
essentially involving only gcd computations. As with square-free factorization this goal
can be achieved in several ways. Nevertheless, most of these algorithms rely on the
Fundamental Lemma. That one we give below uses Lemma 2.1 together with the trivial
fact p = p/ gedE(p) - gedE(p). It is especially simple in structure and also verified easily.

Algorithm GFF INPUT: a monic polynomial p € KJz]; OUTPUT: the GFF-form
GFF(p) of p.

If p = 1 then GFF(p) := ().
Otherwise, let (pa,...,pi) := GFF(gcdE(p)). Then:

GFF(p) := (p/(gcdE(p)(E"p2) -+ (B~ pi)), 2 - -, pi)-

REMARK. (i) To present this method for computing the GFF-form was suggested by one
of the referees; another variant, “Algorithm 2” proposed in Paule (1993), requires one
more ged-operation, but only O(k) polynomial operations in comparison to O(k?) as in
Algorithm GFF. Nevertheless empirical tests suggest that still Algorithm GFF is more
efficient. As the referee points out, the heuristic explanation is that it is often better to
have more operations on smaller polynomials than to have fewer operations on larger
ones.

(ii) Another alternative to compute the GFF-form can be derived from the fact that
the algorithm of Petkovsek (1992) for computing the Gosper-Petkovsek representation
(“GP-form”) for rational functions, a normalized version of the G-form representation
also described in Section 5, contains the GFF-form computation as a special case; see
Lemma 5.2. This also was briefly described in Paule & Strehl (1995). a

3. Shift-Equivalence Classes and Saturation

In this section we first investigate how Abramov’s dispersion function is related to
GFF. Then we discuss “saturated” polynomials; these are polynomials with sufficiently
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nice GFF-form. Due to lattice properties one can assign to any monic polynomial p the
minimal saturated multiple sat(p), called “shift-saturation” of p. This gives rise to a new
canonical “S-form” representation of rational functions, i.e., as a quotient of polynomials
where the denominator is of type sat(p). As worked out in the following sections, the
advantage of using S-forms for rational summation is due to the simple GFF-structure
of their denominators. We would like to mention that Strehl (1992) was the first who
pointed out the lattice aspects of the GFF.

3.1. DISPERSION

As a basic notion for the algorithmic treatment of the rational summation problem,
Abramov (1971) defined the dispersion dis(p) of a polynomial p € K[z] with deg(p) > 1 as
dis(p) := max{k € N : gcd(p, E¥p) # 1}. We find it convenient to extend this definition
to nonzero constant polynomials by defining dis(p) := 0 for p € K[x] with deg(p) = 0.

Thus dis(p) = n is equivalent to saying that the maximal integer root-distance |a — 3],
« and (3 being roots of p in its splitting field over K, is equal to n. For instance, dis([z]%) =
n—1, or dis((x 4+ 2)xz(z—1)(x —2)) = 4 where GFF((z 4 2)x(z—1)(x —2)) = (x+2,1, x).
More precisely, dispersion and greatest factorial factorization are related as follows: Let
p € Klz] be monic with GFF-form (p1,...,px). Suppose that dis(p) = n, then there
exists an irreducible polynomial ¢ € K[z] such that ¢|[p;]t and E~"#|[p;]2 for some i and
j. From the maximality property of n it follows that ¢|p; and E~"t|E~7*1p,. Thus only
the factor

p1(z) p2(x) p2(z — 1) ps3(x) ps(z —2) ... pe(x) pr(z —k +1) (3.1)

of p contributes to dis(p).

As a by-product we also obtain that multiplying p by

(04 1) pale 4 1) pula +1) (= o) (32)
p1(z pa(z coopr(z = — .
' ’ gedE(p)

increases the dis-function exactly by one. Since the least common multiple lem(p, Ep) =
p(Ep)/ gcdE(p), this means that dis(lem(p, Ep)) = dis(p) + 1.

At this place we introduce an obvious but useful lemma.

LEMMA 3.1. Let p € Klz] be a monic polynomial with GFF-form (p1,...,px) then
lem(p, Ep) has GFF-form (1, Epy,..., Epg).

PROOF. From (3.2) it is immediate that lem(p, Ep) = [Ep1)2. .. [Epp]iEL. The easy check
of (GFF2) and (GFF3) completes the proof. O

As with gedE, it will be convenient to introduce the corresponding abbreviation with
respect to the “lem-shift”:

DEFINITION. Given a monic p € K|z]: lemE(p) := lem(p, Ep).

The dispersion statistics can be extended to rational functions as follows. For relatively
prime polynomials a,b € K[z]: dis(a/b) := dis(b).

This extension, only depending on the denominator b, is justified by the following
proposition which is due to Abramov (1971):
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PROPOSITION 3.1. For relatively prime polynomials a,b € K[z] with deg(b) > 1:
dis(A %) - dis(%) +1.

PrOOF. We give a proof, different from Abramov’s original one, using the GFF concept.
In view of A(a/b) = ((Ea)-b—a- (Eb))/(b- (Eb)) we define B := gedE(b). Then
ged((Ea) -b—a- (ED),b- (ED)) =
B-gcd((Ea) -b/B —a- (Eb)/B,lemE(b)) = (3.3)
B -gcd((Fa)-b/B —a- (Eb)/B,gcdE(D)),
where the last line follows from ged(a,b) = 1. Denote the ged on the right hand side of
(3.3) by By, then
a b Eb b Eb B
is( b) 1S(B0 B) 1S(B B B
where the equation before last follows from the observations related to (3.1) and (3.2).
O

) = dis(lemE(d)) = 1 + dis(b)

We want to note that the dis-function on rational functions works “opposite” to the
deg-function on polynomials in connection with the A operator. The same applies if
deg is extended to rational functions as, for instance, in (Karr, 1981): For a,b € K|z],
b # 0, define deg(a/b) := deg(a) — deg(b). Evidently deg is well-defined on K(z), i.e., if
a/b=c/d for a,b,c,d € K[x] then deg(a/b) = deg(c/d).

PROPOSITION 3.2. For nonzero a,b € K[x] with deg(a/b) # 0:
a

a
deg(A7) = deg(;

. )— 1.

PrOOF. In A(a/b)-b(Eb) = (Ea)b— a(Eb) rewrite the right hand side as (Aa)b— a(Ab).
For any nonzero p € K[z] we have lcf(Ap) = deg(p) - lef(p), thus the leading coefficients
lcf((Aa)b) and lef(a(Ab)) are equal iff deg(a) = deg(b). Hence, if deg(a/b) # 0 then
deg((Aa)b—a(Ab)) = deg(a)+deg(b) —1, and comparison to the degree of A(a/b)-b(Eb)
completes the proof. [

Proposition 3.1, for instance, gives a simple criterion, due to Abramov (1971), whether
a given rational function is rational summable:

PROPOSITION 3.3. Let a,b € K[z] be relatively prime with deg(b) > 1 and dis(b) = 0.
Then there exists no rational function solution s € K(x) of the equation As = a/b.

PROOF. For any rational function s € K(x) we have dis(As) = 1 + dis(s) > 1, by
Proposition 3.1. This contradicts dis(a/b) = dis(b) = 0. O

EXAMPLE 3.1. It is well-known that the sequence of harmonic numbers of order a,
H = Y opeq 1/k*, a € N\{0}, is not rational. By Proposition 3.3 this can be seen quic-
kly as follows. Suppose H\™ = r(n) for somer € K(z). Thus, r(n+1)—r(n) =1/(n+1)“
for all integers n > 1, and hence, as an identity in K(z): r(z + 1) —r(x) = 1/(z + 1)*.
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But dis(1/(z 4+ 1)*) = 0, a contradiction to r € K(x). - Note that (H,(Ll))nzl = (Hp)n>1-
O

3.2. SATURATED POLYNOMIALS

A certain type of polynomials which play a basic role in rational summation has a
sufficiently nice GFF-form, i.e, the GFF-constituents are relatively prime and their factors
do not differ by any integer-shift. For studying these polynomials, which will be called
“saturated”, the following equivalence relation on K|xz] plays a fundamental role. In fact,
it is a special case of definition 13 of (Karr, 1981) for monic polynomials.

DEFINITION. Two polynomials py, ps € K[z] are said to be shift-equivalent if there exists
an integer k such that ps(x) = p1(x + k).

It is easily checked that this indeed defines an equivalence relation on Klz].

EXAMPLE 3.2. For p(x) = 22(z — 1/3)(z — 1/2)(z — 1)(z — 7/3)3(z — 3)% € Qlx] the
set of monic irreducible factors splits into three equivalence classes, namely Fy = {x —
1/2}, Fy ={x—1/3,2 —7/3}, F3 = {z,z — 1,2 — 3}. O

Let p1,p2 be shift-equivalent irreducible factors of p, i.e., pa(x) = p1(x — k) for some
integer k. Defining

pL>p = k>0

imposes a total order, which we shall call the shift-order, on the elements of each shift-
equivalence class.

EXAMPLE 3.3. In the example above, according to shift-order for the elements of F3 we
have: x >z —1>x — 3. O

We introduce a canonical choice of representatives ShiftEq(p) of the shift-equivalence
classes of the monic irreducible factors of p by choosing from each class the mazimal
element with respect to the shift-order.

For monic p € K[z] let ShiftEq(p) = {p1,p2,.-.,pn} be this uniquely determined set
of representatives. For each p;-class let g; denote the minimal element. Filling up “shift-
gaps” by multiplying extra irreducibles ¢t € K[z] with ¢; <t < p;, i € {1,...,n}, amounts
to gluing together factorial chains.

ExAMPLE 3.4. The GFF-form of p from Example 3.2 is
(w(z = 1/3)(z — 1/2)(x = 7/3)*(z - 3)*,2)

Let py(z) := p(x)- (x—4/3)(x —2) and pz(x) :=p1(z) - (x—1/3)*(x —4/3)*(x —1)(z - 2),
then for the GFF-forms we have,

GFF(p1) = (x(z — 1/2)(z — 7/3)*(z — 3), 1,2 — 1/3, x),
GFF(p2) = (x — 1/2,1, (x — 1/3)3 2?).

O
In the example above the constituents of GFF(p) and GFF(p;) neither are relatively



10 Peter Paule

prime nor belong their factors to different shift-equivalence classes. By multiplication of
further extra factors this property, being crucial for rational summation, is achieved for
GFF(p2). This gives rise to the following definition:

DEFINITION. Let p € K[z] be monic with GFF-form (p1,...,px). Then p is called shift-
saturated (for short: saturated) if ged(p;, E"p;) # 1 implies i = j and h = 0.

EXAMPLE 3.5. The polynomial pa(x) from FExample 3.4 is saturated. It is a divisor of
p3(z) := [(z(z — 1/3)(x — 1/2))%]* which is also saturated. ad

Saturatedness is invariant under the ged operation:
PRrROPOSITION 3.4. The ged of two saturated polynomials is saturated.
PRrROOF. Immediate consequence of Lemma 3.2 below. [

There are several proofs of Proposition 3.4. For instance, it is an immediate consequence
of the following lemma, which we shall also use later, describing minimal reduction steps.

LEMMA 3.2. Given non-constant, monic and saturated polynomials p,q € K[z] with
GFF-forms (p1,...,pr) and {qi1,...,q), respectively, where k < I. If k = | assume
v # qr and deg(pr) < deg(qr). Then there exists a monic and saturated ¢’ € K][z]
such that

ged(p, ¢') = ged(p,q) and  deg(q') < deg(q). (3.4)

In addition, there exists a monic divisor r of q; with deg(r) > 0 which determines ¢’ in
one of the following ways:

(a) ¢ =qf[r]\,

(b) ged(r,qi/r) =1 and ¢’ = q/r,

(c) ged(r,qi/r) =1 and ¢’ = q/E~'*1r.

ProoF. If ged([pi]d, [i])t) = 1 for all i € {1,...,k}, then ¢’ := q/[q]* with GFF-form
(q1,--.,q—1) is monic and saturated, and also (3.4) holds.

Suppose ged([p;]%, [@i]t) # 1. This is equivalent to d := gcd(E~p;,q1) # 1 where
—Il < a < i. Choose r as the maximal divisor of ¢; containing only irreducible factors ¢
of d, a choice implying ged(r,q;/r) = 1. (i) if o € {=l +1,...,—1} these irreducibles ¢
cannot be in ged(p, q), because then t|E~%p; and t|E~Pp; for some 3 > 0 and some j
violates saturatedness of p. In this case ¢’ := ¢/r with GFF-form (¢1,...,q—1- Er,q/r),
with trailing 1’s dropped, is monic, saturated and satisfies (3.4). (i) If o € {0,...,i —
1} the irreducibles E~!*1¢ cannot be in gcd(p, q), because then E~!*+1¢|E=2~*1p, and
E‘l+1t|E_ﬂpj with 0 < 8 < j < k. Assuming k < [, this violates saturatedness of p, since
then 1 < (a+1—1)—f. In this case ¢’ := ¢/E~"*r with GFF-form (q1,...,q_1-7,q/7),
with trailing 1’s dropped, is monic, saturated and satisfies (3.4).

As we have seen, argument (i) works only if we assume k < [. If k = [ this argument
only would fail if 8 = k — 1, which means j = k and thus t|p; and ¢|ged(E~%p;, qk)-
Because of saturatedness of p this implies & = 0 and ¢ = k, and therefore ¢| ged(py, qx)-
Consequently, if &k = [ we assume that sg := ged(pk, qr) # 1, otherwise we are done as in
(i) or (ii) above. Let s be the maximal divisor of ¢ containing only irreducibles of py. (i’)
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If s = g then for r := qx/so we have deg(r) > 0 because of the degree assumption on py
and gx. In this case ¢’ := ¢/r with GFF-form {(q1,...,q—1- Er, q;/r) is monic, saturated
and satisfies (3.4). (ii’) In the case s # g two possibilities arise. If ged([p;]%, qx/s) = 1
for all i € {1,...,k — 1} then 7 := qi/s and ¢ := q/[r]%, etc. If ged([pi]t, qr/s) # 1 for
some i € {1,...,k—1} then compute r as the maximal divisor of g/s as in the cases (i)
and (ii) above. O

3.3. SHIFT-SATURATION

Evidently, the subset of monic and saturated multiples of p of the lattice of polynomials
from K[z], ordered by divisibility, has exactly one minimal element. This allows to assign
to any monic polynomial a unique multiple which is saturated and thus equipped with
“nice” GFF-form:

DEFINITION. Given monic p € K[x] then the shift-saturation sat(p) of p is defined as the
monic, saturated polynomial from KJz] of lowest degree that is divisible by p.

Using maximal and minimal elements of shift-equivalence classes allows a more explicit
description of sat(p). Let ShiftEq(p) = {p1,...,pn} with ¢; the minimal elements of the
p;-classes, as above. Then p;(z) = ¢;(x + k;) for some k; € N. For each i € {1,...,n}
we define the length of the p;-class as I(p;) := k; + 1. Let mult(p;) be the maximum of
the multiplicities of all irreducibles contained in the p;-class. Now it is easily checked, for
instance, using Lemma 3.2 that the shift-saturation of p is the polynomial

sat(p) = [py" "KL et e, (3.5)

From this representation the GFF-form of sat(p) almost directly can be read off. One
just has to merge factorials according to
1t(pi)7l It(pj)yl 1t(ps) 1t(pj)11
[P T = [
in case I = I(p;) = l(p;) for i # j, to reorder the factorials involved, and to insert 1’s

corresponding to trivial factorials of the form [1]t.

EXAMPLE 3.6. Again we take the polynomial p from Example 3.2, then:
ShiftEq(p) = {r—1/2,2—1/3,z}, mult(x —1/2) = 1, mult(z —1/3) = 3, mult(z) = 2,
and l(x —1/2) =1, i(x — 1/3) =3, l(x) = 4. Therefore,

sat(p) = [o ~ /2% [(z - 13 2} = po.
with GFF-form (x — 1/2,1, (z — 1/3)3, 2?). _

Besides the maximal and minimal elements, the multiplicity element m; of a shift-equi-
valence class plays a distinguished role, a fact which was pointed out by Pirastu (1992).
It is defined as the smallest, with respect to shift-order, irreducible m; in the p;-class
such that m ™" @ |p.

As a lemma we state a ged property used in connection with Theorem 4.1, Section 4.

LEMMA 3.3. Let p € K|x] be monic and m the multiplicity element from some shift-
equivalence class of p, then ged(m,p/ gedE(p)) # 1.
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PrOOF. Assume m#|gedE(p) with u = mult(p;) if m belongs to the p;-shift-equivalence
class of p. Then E~1m#|p, a contradiction to the definition of m. O

The proof of the following lemma is left to the reader:

LEMMA 3.4. Given monic p,t € K[z] such that t|p and t does not cancel the mazimal,
minimal or multiplicity element in any shift-equivalence class of p. Then sat(p/t) =

sat(p).
PROOF. Obvious from description (3.5). OJ
From description (3.5) also the following is obvious:

LEMMA 3.5. Letp € K[z] be monic with deg(p) > 1 and let (s1,...,s) be the GFF-form
of sat(p), then:

(a) dis(p) =0 =k =1 and s; = p = sat(p),

(b) dis(p) > 1 = deg(sy -+ si) < deg(p).

PROOF. Obvious from description (3.5). O
Shift-saturation commutes with the shift operator:
LEMMA 3.6. For all monic p € K[z]: sat(Ep) = E sat(p).

PROOF. Let (p1,...,pr) be the GFF-form of sat(p). Then (Epy,..., Epy) ist the GFF-
form of Esat(p) which evidently is monic and saturated. By definition, sat(p) is the
saturated polynomial of lowest degree divisible by p, thus Esat(p) is the saturated po-
lynomial of lowest degree divisible by Ep. Hence, E sat(p) = sat(Ep). O

Shift-Saturation also commutes with the “lem-shift”:
LEMMA 3.7. For all monic p € K[z]: sat(lemE(p)) = lemE(sat(p)).

PRrROOF. Clearly sat(p) and sat(Ep) divide sat(lemE(p)), thus by Lemma 3.6 we have
lemE(sat(p)) = lem(sat(p), sat(Ep))|sat(lemE(p)). On the other hand, let (p1,...,px)
be the GFF-form of sat(p), then (1, Epy,..., Epk) by Lemma 3.1 is the GFF-form of
lemE(sat(p)) which is monic, saturated and divisible by p and Ep. Hence, sat(lemE(p))
divides lemE(sat(p)). O

It is important to note that sat(p), like the GFF-form, can be computed using only
ged computations, i.e., a procedure for a complete factorization of p is not required. Such
an algorithm is given in (Pirastu, 1992) or in (Paule, 1993). The first algorithm is more
efficient because the latter unnecessarily uses square-free factorization.

3.4. S-FORMS OF RATIONAL FUNCTIONS

A typical feature of symbolic summation is that for different purposes different repre-
sentations of rational functions are more appropriate. In order to avoid the repetition
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of lengthy specifications we define different types of representations as certain forms.
First we consider the usual canonical form, i.e., the quotient of two relatively prime
polynomials.

DEFINITION. The pair (¢, d), ¢,d € K|z], is called the reduced form of s € K(z) if s = ¢/d,
d monic, and ged(c, d) = 1.

Shift-saturation gives rise to another type of rational function representation.

DEFINITION. The pair (7, 6), 7,6 € K]z], is called a saturated representation for s € K(z)
if s =+/4 and § is monic and saturated.

DEFINITION. A saturated representation (v,d) for s € K(z) is called a saturated form
(for short: S-form) for s if 6 has minimal degree among all saturated representations of
s.

The next proposition states that S-forms are canonical forms for rational functions.
Because of the nice properties of the GFF-constituents of the denominators, S-form
representation is tailored for rational summation application.

PROPOSITION 3.5. For any s € K(z) with reduced form {(c,d) there exists a unique S-
form which is {c-sat(d)/d, sat(d)).

PROOF. {(c-sat(d)/d,sat(d)) certainly is a saturated representation for s. Let (v,d) be
another saturated representation for s with deg(d) < deg(sat(d)). From c¢-§ = v - d we
have d|d, hence sat(d)|d by the definition of shift-saturation, and therefore § = sat(d). O

The following proposition, which we shall use later, implicitly tells how a saturated
representation can be reduced to S-form.

PROPOSITION 3.6. Let (v,9), 7,9 € Klz], be a saturated representation (for v/5) with
GFF(6) = (p1,...,pk). Then (7, 0) isin S-form if and only if there exist no i and r € K[z]
with deg(r) > 0 such that (i) r|p;, and one of the following:

fiia) [rli]y,

(#ib) ged(r,p;/r) =1 and r|y,

(iic) ged(r,p;/r) = 1 and E=F1r|y.

PROOF. If ¢ is not minimal, then from v/ = (c-sat(d)/d)/sat(d) as in the proof above
we have sat(d) = ged(sat(d), d) with deg(sat(d)) < deg(d). Thus 6 can be reduced by one
of the factors listed in Lemma 3.2, and also v must be divisible by the same factor. O

4. Rational Telescoping
In this section we discuss the difference equation
s(z+1) —s(x) =r(x) (4.1)

over the rational function field K(z). We call (4.1) the telescoping equation for r € K(x).
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EXAMPLE 4.1. Ifr =1/(a? —x — 3/4) then s = (—x + 1) /(2% — 22 + 3/4) is a solution
of (4.1) and due to telescoping:
n n n
k=1 k=1
O

It is well-known that the telescoping equation for any p € KJz| finds a polynomial
solution. Thus, by splitting off the polynomial part, one can restrict solving (4.1) to
given r € K(x) with deg(r) < 0. Such rational functions usually are called proper.

Assume that for proper r € K(z) there exists a rational solution s € K(z) of As =r.
Such an r will be called rational summable. If deg(s) # 0 then, by Proposition 3.2,
deg(s) = deg(r) + 1 < 0. If deg(s) = 0 then s = 5+ ¢ where § € K(x) is proper and
¢ € K\ {0}. In this case r = As = AS. This implies the well-known fact that given
a proper rational summable r € K(x) the telescoping equation As = r always has a
proper solution s € K(x). It is obvious that two rational solutions must differ by adding
a constant, thus all other rational solutions are improper of degree 0.

In this context several questions naturally arise, for example:

(a) Are there simple criteria to decide whether a given proper rational function is rational
summable?

(b) How to treat situations, as r(x) = 1/z, where no rational solution of As = r exists.

(c) How to compute s € K(z) such that As = r for a given rational summable r € K(z)?

Concerning question (a), certainly all algorithms treating rational summation give a
practical answer to this question. We especially point to the difference field approach by
Karr (1981) which provides the most general theoretic and algorithmic setting. A very
elementary, well-known and useful criterion follows directly from the degree reasoning
above:

LEMMA 4.1. If r € K(z) is proper with deg(r) = —1, then r is not rational summable.

Another practical criterion, for instance, is Proposition 3.3 due to Abramov. In the
following we shall add some more criteria, one (Proposition 4.2) includes Abramov’s
result as a special case.

To our knowledge the first answer to question (b) has been given by Abramov (1975) in
an algorithmic way. The general machinery of Karr (1981) in principle can deal with the
problem but, as explained in the introduction, before running the algorithm one has to
supply appropriate information about the difference field extension in which the solution
is expected. Moenck (1977) sketched an algorithm working analogously to that called
Hermite-iteration for rational function integration. His approach is taken by the computer
algebra system Maple to sum rational functions. Due to several gaps in Moenck’s paper,
observed by the author of this article, the Maple algorithm is unable to treat arbitrary
rational function input. An example for that is given below in Example 6.6. The entire
problem, viewed in the light of shift-saturation, will be discussed in Section 6. That
section also contains two new algorithms solving As = r in general, i.e., also for given
non-rational summable r € K(x). One of those can be considered as an analogue to what
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is called Horowitz’ method for rational function integration. Pirastu (1992) closes the
gaps in Moenck’s paper and discusses the relation of the above mentioned algorithms
according to implementations carried out by himself in Maple.

All algorithms mentioned above include an answer to question (c) as a special case.
Due to the fact that any rational sequence is hypergeometric, also Gosper’s algorithm
could be applied in order to answer (c); see Section 5. In this section we present a new
approach (Theorem 4.1) which provides an algorithmic solution as well as an algebraic
explanation along the concept of shift-saturation. In Section 5 we briefly discuss its
relation to Gosper’s algorithm working on rational function inputs from GFF point of
view.

4.1. TELESCOPING VIA S-FORMS

One of the crucial observations is a simple explicit connection between the S-form of
a rational function s € K(x) and the S-form of its difference As. Before making this
explicit in Proposition 4.1, we first state a lemma for technical reasons.

LEMMA 4.2. Given a,b,c,p € K[z] such that a - Ep+b-p = c. Let t € Klz]| be an
irreducible divisor of Ep, then for k > 1:

[t1Ec and ged([t]E,a) =1 = [t]E|Ep.

PRroOF. Using induction on k the case k = 1 is trivial. Thus assume that [t}X*Y|c and
ged([t]EE, a) = 1, then [t]E|c and ged([t]%, a) = 1, hence [t]%|Ep by the induction hypo-
thesis. From E~*t|c, E~%t|p, and gcd(E~%t,a) = 1 we have E~*t|Ep which completes
the proof of [t}**L|Ep. O

Now we are ready for the proposition relating the S-form of s to that of As.

PROPOSITION 4.1. Forv,d € K[z] let (v,d) be in S-form, then the S-form of A(v/d) is
(a, B) where

o 1 Ey— E$
~ gcdE(6) i gedE(9)

-y and [ =lecmE(9).

PROOF. It will be convenient to define §; := (E§)/ gedE() fori € {0,1}. Let (p1,...,px)
be the GFF-form of § then, by Lemma 3.1, (1, Epy,..., Epg) is the GFF-form of
which is monic and saturated. Thus we have A(v/d) = a/8 where (a, ) is a saturated
representation. Assume that (a, 8) is not in S-form. Then there exist ¢ and irreducible r €
K|[z] such that r|Ep; and satisfying one of the possibilities of Proposition 3.6. (i) Assume
[rJ&L|a. Clearly, [r)¢|a and ged([r]E, 6) = 1 because of [r]¢|[Ep;]¢ and saturatedness of
0. From r|a and r|d1 we have r|(E7¥) - §p and thus r|E~v. Applying Lemma 4.2 implies
[E~17)¢|y, together with E~1r|p; according to Proposition 3.6 a contradiction to (v, d)
in S-form. (ii) Assume ged(r, Ep;/r) = 1 and r|a. As in (i) we have E~1r|y which
together with E~1r|p; and ged(E~'r,p;/E~1r) = 1 contradicts the S-form of (v, §). (iii)
Assume ged(r, Ep;/r) = 1 and E~r|a. Because of E~ir|E~1p;|6¢ and ged(E~'r, §;) =
1 we have E~*TY(E~1r)|y which together with E~!r|p; and ged(E~tr,p;/E~1r) = 1
contradicts the S-form of (v,d). O
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For the proof of the main result of this section, Theorem 4.1, we need the following
inverse relation lemma:

LEMMA 4.3. (a) For monic p € K[z] with GFF-form (1,pa,...,pn):
q = E~! gcdE(p) = p = lemE(q).

(b) For monic q € K|x]:
p =lemE(q) = ¢ = E~! gedE(p).

PRrOOF. (a) By the Fundamental Lemma ¢ = [E~'po]t [E~ps]2... [E~'p,]2=L which
gives, by Lemma 3.1, lemE(q) = [p2]? [p3)2. .. [pn]® = p.

(b) Let ¢ = [g1]* [g2)2 - - - [gm]™ be the GFF-form of ¢. By Lemma 3.1 and the Fundamen-
tal Lemma, p = [Eq:]2 [Eg]2. .. [Eq,|™* and thus B~ gedE(p) = [qi]* [g2]2 - - [gm]™
which is g. O

Now we are ready for the announced theorem which in the context of shift-saturation
describes the solution of the difference equation As = r over K(z) in terms of a solution
of a difference equation over K[z]. In addition, it provides an algorithm for deciding the
existence of a rational solution s as well as for the computation of s if the answer is
positive. How the theorem is related to the rational instance of Gosper’s algorithm will
be discussed in the next section.

THEOREM 4.1. Letr,s € K(z) both be proper and with S-forms («, 8) and (v, ), respec-
tively. If As = r, then

§ = B! gcdE(B). (4.2)
and v is a polynomial solution of

BB
scdE(B) T B lgedB(B)

In addition, among all polynomial solutions of (4.3) v is uniquely determined by the
degree condition

(4.3)

deg(y) = deg(a) — deg(B) + deg(d) + 1. (4.4)

PROOF. The essential part follows directly from Proposition 4.1. In order to express
the solution denominator ¢ in terms of §, i.e., to get (4.2) apply Lemma 4.3 (b). The
first equation of Proposition 4.1 is equivalent to (4.3) because gedE(IemE(6)) = Eé by
Lemma 4.3 (b). The degree estimate (4.4) for + is immediate from Proposition 3.2 applied
to proper 7/d. Any other polynomial solution 7 of (4.3) gives rise to another telescoping
solution, i.e., A(3/d) = a/f. Hence deg(y/d) = 0, which means deg(y) = deg(d) >
deg(a) — deg(3) + deg(d) + 1 where the inequality holds by Lemma 4.1. O

One basic application is the practical computation of a rational function solution s
of As = r. If such a solution exists, then its S-form (7, d) can be determined first by
computing § = E~1 gcdE(3) and then by solving the polynomial difference equation (4.3)
for v using the degree estimate (4.4). A concrete elementary example is given below.
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EXAMPLE 4.2. Given r € Q(x) as in Example 4.1. Then the S-form («, 8) of r is con-
stituted by a(z) = x — 1/2 and B(x) = [z + 1/2]2. If As = r for proper s € Q(z)
with S-form (7y,8), then by Theorem 4.1: §(x) = ged(B(x),B(x — 1)) = [x — 1/2)2
(Fundamental Lemma) and v € Q[z] is the solution with deg(y) = 1 (eq. (4.4)) of
x—=1/2=(x=3/2)-y(x+1)—(x+1/2) -v(x). It is easy to determine v asy = —z + 1.
Hence s(z) = (—x +1)/[x — 1/2]2. a

As a by-product we get another necessary condition for r being rational summable.
We will also use this proposition later, in Section 6, discussing the problem of rational
summation in full generality.

PROPOSITION 4.2. Let the rational function r € K(x) be proper with S-form {«, ) and
GFF(3) = (p1,--.,px), then:

p1 # 1 =1 is not rational summable.

PROOF. By Lemma 4.3, (4.2) is equivalent to 3 = lemE(8) = [Eq1)2- - - [Eq,])*L where
(q1,---,qn) is the GFF-form of ¢ as in Theorem 4.1. Uniqueness of GFF-form implies
pr=110

REMARK. This contains Abramov’s criterion, Proposition 3.3, as a special case because
dis(b) = 0 by Lemma 3.5 implies b = sat(b) = § with GFF-form (b). O

We give an application where r € Q(x) is a rational function with dis(r) = 2:

EXAMPLE 4.3. By Proposition 4.2, r(z) = 1/((x+1/2)x(x—3/2)) € Q(z) is not rational
summable because its S-form (a, ) = (x —1/2,z [z +1/2]2) and GFF(3) = (z,1,2+1/2)
with x # 1. - According to Theorem 4.1 the crucial difference equation (4.3) in this case
(cf. Example 4.2) reads as
1 3 1
Tm5 =2 (x—§)~fy(x+1)—x (9U+§)"Y($),

and the non-existence of a rational function solution is explained by the non-existence of
a polynomial solution v which is clear by observing x being a factor of the right and not
of the left hand side.

4.2. S-FORM VERSUS REDUCED FORM

In order to work out more explicitly what one gains in this context by changing from
the usual representation of a rational function in reduced form to S-form representation,
we give an alternative proof of the essence of Theorem 4.1, i.e., of Proposition 4.1. In this
proof we will not use Proposition 3.6, but only fundamental properties of shift-saturation.

ALTERNATIVE PROOF OF PROPOSITION 4.1. Let r, s € K(x) be both proper with
reduced forms (a,b) and (c,d), and with S-forms (a, §) and (v, d), respectively. Assume
r = As. The first equation of Proposition 4.1 is obvious from «/8 = A(v/d). For the
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S-form of r we have (a, 3) = (a-sat(b)/b,sat(b)) by Proposition 3.5. If d; := E'd/ gcdE(p)
then r = As is equivalent to

o= d()'EC—dl - C and b= lcmE(d)
t t
where
t:=ged(do - Ec —dy - ¢,1emE(d)) = ged(do - Ec — dy - ¢, gedE(d)). (4.5)
The last equality is by the same reason as (3.3). If we could prove that
lemE(d
sat(%()) = sat(lemE(d)), (4.6)

then by Lemma 3.7, § = sat(b) = sat(lemE(d)/t) = sat(lemE(d)) = lemE(sat(d)) =
lemE(d), and the proof of Proposition 4.1 would be completed.

Equation (4.6) immediately follows from Lemma 3.4 if we can guarantee that ¢ does
not cancel maximal, minimal, or multiplicity elements of any shift-equivalence class of

p = lemE(d).
The first two cases are obvious from (4.5), i.e., t| gcdE(d), together with

:CIEEEZ; = (Eq)q1 - (Bg2) (B~ q2) ... - (Bqp) (B~ q)

where (q1,...,qx) is the GFF-form of d.

Finally, assume gecd(t,m) # 1 for some multiplicity element m, i.e., an irreducible
from some p;-shift-equivalence class of p such that m™®)|p. Hence ged(t,m) # 1 is
equivalent to m|t. We have m|p/ gcdE(p) by Lemma 3.3 and p/ gcdE(p) = dp by Lemma
4.3. On the other hand, m|dy - Ec —d; - c¢. Hence m|d; - ¢ which reduces to m|d; because
of ged(e,d) = 1. Thus m|dy and m|d;, a contradiction to ged(dg,d;) = 1. a

5. Hypergeometric Telescoping

In this section we consider hypergeometric telescoping. Equipped with the GFF con-
cept we present a new and algebraically motivated approach to the problem. It leads to
essentially the same algorithm Gosper came up with in 1978, but in a new setting where
its underlying mechanism finds a more transparent explanation than in the descriptions
given so far. Of course, to a certain extent this judgement is subjective, so we invite the
interested reader to form his/her own by comparison to Gosper’s original argumentation
as described, for instance, in Gosper (1978) or in the book (Graham et al., 1989). In a
subsection we briefly relate rational telescoping, as a special case of Gosper’s algorithm,
to Theorem 4.1.

A sequence (fi)r>0 is called hypergeometric over K if there exists a rational function
p € K(z) such that fry1/fix = p(k) for all & € N. Given hypergeometric (fx)r>0, the
problem of hypergeometric telescoping is to find a hypergeometric solution (gx)r>o of

Gk+1 = gk = fk- (5.1)

Rational telescoping, Section 4, is a special case, because for any r € K(x) the sequence
(f&)k>1, where fi, := r(k) and [ a sufficiently large integer, evidently is hypergeometric.
For the sake of simplicity we will restrict to consider (5.1) for k > 0.
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5.1. GOSPER’S ALGORITHM REVISITED

Assume that a hypergeometric solution (gi)r>o of (5.1) exists. Let 0 € K(x) be such
that gr11/g9x = o(k) for all k € N, then evidently

gk = T(k}) . fk (52)
where 7(z) = 1/(o(z) — 1) € K(z). By this relation, eq. (5.1) is equivalent to
a-ET—b-7=0, (5.3)

where (a, b) is the reduced form of p. Vice versa, any rational solution 7 € K(z) of (5.3)
gives rise to a hypergeometric solution g := 7(k)- fi of (5.1). This means, hypergeometric
telescoping is equivalent to finding a rational solution 7 of (5.3).

In case such a solution 7 € K(x) with reduced form (u,v) exists, assume we know v
or a multiple V € K[z] of v. Then by clearing denominators in a- EU/EV —b-U/V =b
the problem reduces further to finding a polynomial solution U € K[xz] of the resulting
difference equation with polynomial coefficients,

a-V-EU—b-(EV)-U=b-V-EV. (5.4)

(Note that at least one polynomial solution, namely U = u - V/v, exists.) Furthermore,
equations of that type simplify by canceling gcdE’s. For instance, in order to get more
information about the denominator v, let v; := E‘v/gedE(v), i € {0,1}. Then (5.3) is
equivalent to

a-vo-Bu—b-vi-u=>b-vg-v;-gedE(v). (5.5)

Now, if (p1,...,pm), m > 0, is the GFF-form of v, it follows from ged(u,v) = 1 =
ged(vg, v1) and the Fundamental Lemma that

vo = (E%1)--- (E"™p,)|b and vy = (Ep1)--- (Epm)]a. (5.6)

This observation gives rise to a simple and straightforward algorithm for computing a
multiple V := [Pi]L...[P,]% of v. For instance, if P; := gcd(E~'a,b) then obviously
p1|Py1. Indeed, we shall see below that by exploiting GFF-properties one can extract
iteratively p;-multiples P; such that EP;|a and E~t1 P;|b:

Algorithm VMULT INPUT: the reduced form (a,b) of p € K(x); OUTPUT: polyno-
mials (P, ..., P,) such that V := [P]}- - - [P,]% is a multiple of the reduced denominator
vof 7 € K(z).

(i) Compute n = min{j € N|gcd(E~ta, E¥~1b) = 1 for all integers k > j}.

(ii) Set ap = a, by = b, and compute for i from 1 to n:

P = gcd(BE ta; 1, B ), (5.7)
a; = ai—l/EPia (5-8)
by = b_1/ET"TR,. (5.9)

The lemma tells that the polynomials P; indeed are multiples of the p;’s:

LEMMA 5.1. Let (u,v) withu,v € K[x] be the reduced form of a rational function solution
T of eq. (5.3) and GFF(v) = (p1,...,pm). Let n and (Py,...,P,) be computed as in
Algorithm VMULT. Then:

n >m and p;|P; for alli e {1,...,m}.
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PROOF. The first part, n > m, is obvious from (5.6). For n = 0 the lemma is trivial,
hence we assume n > 1. In view of (5.6) define oy, B9 € K[z] such that

a=(Ep1)---(Epm) - ag and b= (E%1)--- (E~™1p,.) - Bo.
For ¢ from 1 to n define
gi = ged(E~ a1, B ' ;)
and
;= 1/Bg; and f; == ;1 /B~ g,

Note that a;,3; € K[z] such that o;a;_; and £;|8;_1, and ged(E~tay,, E*=16,) = 1
for all k¥ € N. Besides using the null convention [] jenq = 1,1t will be convenient to

define p; :=1for i € {m+1,...,n}. In order to prove p;|P;, we prove more generally by
induction on ¢ that for i € {1,...,n}:
P = pi g, (5.10)
a; = (Epit1) - (Epm) - ai, (5.11)
bi = (B 7'pig1) - (E7"py) - B (5.12)
The induction relies on the following facts: For any ¢ € {0,...,m — 2},

(DVl,j€{i+2,...,m}: ged(p,, E77 T lp;) =1,
(I V1€ {i+2,...,m}: ged(p, E'3;) = 1,
(II)Yj € {i+2,...,m}: ged(E~I i Hp, F~la;) =1.

Fact (I) is immediate from the definition of GFF-form; see especially (GFF3) in section
2. The other facts are consequences of the Fundamental Lemma and eq. (5.5) rewritten
in the form

ag - Bu— fy-u="b-gedE(v). (5.13)

To prove fact (II) assume that t|ged(p;, E'3;) for a monic ¢t € K[z]. This means,
E~t|E~'p; and E~%|3; which, by the Fundamental Lemma and 3;|3y, is equivalent to
E~t| gcdE(v) and E~%%|3y. Thus E~‘t|ag - Eu by (5.13), hence E~t =t = 1.

To prove fact (IIT) assume that ¢|ged(E~7""*'p;, E~'a;) for monic ¢ € Klz]. This
means, Bt|E~972p; and Et|a; which, by the Fundamental Lemma and «;|ao, is equi-
valent to Et|gedE(v) and Et|ag. Thus Et|Gy - u by (5.13), hence Et =t = 1.

Now the base case i = 1 is shown as follows:

Pl = ng(Eilao,b())
= ged(pr---pm - B ag, (E%1) - (E7"*py) - fo)
= pr-ged(pz-- pm - B ag, (B™'pa) -+ (E7" pn) - Bo)
= D191,
where the last equality follows by the facts (I),(II), and (III). In addition,
ao Qo

a; = EP; = (EPQ) Ce (Epm) . Eigl = (Ep2) - (Epm) ca,
and
b
b= 2 = (B pa) (B ) - 2 = (B (B,
1 9

The induction step i — ¢ + 1 works analogously, and is left to the reader. [
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Summarizing, hypergeometric telescoping can be decided constructively as follows: Gi-
ven the reduced form (a,b) of p € K(x) for which fxy1/fr = p(k), compute polynomials
(Py,...,P,) by Algorithm VMULT and take V := [Py]}...[P,]%; if eq. (5.4) can be sol-
ved for U € K[z] then gy := fi.-U(k)/V (k) solves (5.1), if eq. (5.4) admits no polynomial
solution then no hypergeometric solution of (5.1) exists.

How this approach relates to Gosper’s original one, and to work of Petkovsek, is de-
scribed in the next subsection. We also want to remark that in practice, before solving
for U € K[z], equation (5.4) is simplified; see also the next subsection.

5.2. GOSPER’S ORIGINAL APPROACH

Also in this section, let (a,b) with a,b, € K[z] be the reduced form of p € K(z) for
which p(k) = fri1/ f-

In Gosper’s original approach the following type of rational function representation
plays a crucial role:

DEFINITION. The triple (p, g, ) with polynomials p, ¢, r € K[x] is called a G-form for the
rational function a/b € K(x), if
@ _EP 9 hd ged(g BFr) = 1 for all k > 0.
b p T

In the previous section we used Algorithm VMULT to compute multiples P; of the
GFF-constituents p; of the rational solution denominator v. Petkovsek (1992) used ex-
actly the same algorithm in order to compute a canonical G-form representation. That
canonical form, called GP-form, serves as a key ingredient for his algorithm “Hyper”; it
is defined as the unique G-form where additionally p and r are supposed to be monic,
and ged(p, q) = ged(Ep, 1) = 1.

Lemma 5.1 focuses on the p;|P; property; the following lemma lists additional facts
about Algorithm VMULT which can be proved in a similar fashion:

LEMMA 5.2. Let n,an,b, and (Py,..., P,) be computed as in Algorithm VMULT, then:
(i) a=(EPy)---(EP,) - an,

(i) b= (Eopl) e (E_"'HPn) ~bp,

(iii) Yk € N: ged(an, E¥b,) = 1,

(iv) Vi € {1,...,n}: ged([Pi)%, an) = 1,

(v) Vi e {1,...,n}: ged([P)E, E~1b,) = 1,
(vi) GFF([P)r- - [P]%) = (P, ..., Py).

PROOF. For statements (i)-(v) cf. Petkovsek (1992); the verification of (vi) is left to the
reader. UJ

As a by-product of Lemma 5.2 we obtain that VMULT can be used as an alternative
to Algorithm GFF to compute GFF(P) = (P,..., P,) for given monic P € K|z]: simply
set a = EP/gcdE(P) and b = P/ gcdE(P); cf. Remark (ii) of Section 2.3.

In the previous section the essential part of hypergeometric telescoping was solved by
Algorithm VMULT which computes from the reduced form (a,b) a multiple V of the
“a priori” unknown denominator v of the reduced solution 7 € K(x) of eq. (5.3). In the
light of Lemma 5.2, the multiple V = [P;]L- - [P,]2 is nothing but the first part of the
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GP-form for a/b; this is true because evidently
(V,an, by) is the GP-form for a/b.

We want to note that this fact was conjectured independently by Schorn (1995).

The algorithmic elegance of Gosper’s original approach, which attacked the problem
from a different point of view, relies on the crucial observation that not only one specific
G-form, but any G-form for a/b provides a suitable multiple of v. This is made explicit
as follows.

First we state an elementary lemma.

LEMMA 5.3. If (V,q,7) with V,q,r € K[z] is a G-form for a/b, then for U € K[z]:

EU U
a.ﬁfbovfb@cpEU—r'Ufr'V. (5.14)

PROOF. [The easy verification is left to the reader.] T

In case that V arises from a G-form for a/b, this lemma rewrites the corresponding
difference equation (5.4) for U in more convenient form. For the sake of abbreviation we
define

GWU,V,q,r):=q-EU —r-U—1r-V.

The following crucial lemma of Gosper finds a simple GFF proof.

LEMMA 5.4. Given a G-form (V,q,r) for a/b with V,q,r € K[z], then:
GU,V,q,r) =0 for U e K(z) = U € Kl[z].

PrROOF. Assume U = C/D, i.e., (C, D) is the reduced form of the rational function U.
Then G(U,V,q,r) =0 is equivalent to ¢- EC/ED —r-C/D =r -V, and for GFF(D) =
[d1]L- - - [d;]2 we obtain analogously as in the situation of eq. (5.5): (Edy) - -- (Ed,)|q and
(E%y) -+ (E=7%1d;)|r. Hence Fd;|ged(q, E’r) and D =1. O

Now we are in the position to prove the crucial fact the general mechanism of Gosper’s
original approach is based on:

PROPOSITION 5.1. If there exist a G-form (V,q,r) for a/b with V,q,r € K[z] and U €
Klx] such that

G(U7 ‘/a q, T) = 07
then for any G-form (V,q,7) for a/b with V,q,7 € K[z] there exists U € K[z] such that
GWU,V,q,7) = 0.

PrOOF. By the assumption and Lemma 5.3 we have a - EU/EV —b-U/V = b. Define
U:=V.-U/V € K(z), then

— - _ EU - U .
@ EV E
= 7 V(g 14 U_g_l)_o’



GFF and Symbolic Summation 23

hence U € K|[z] by Lemma 5.4. O

We want to add that in practice the polynomial solution U € K[xz] of G(U,V,q,7) =0
is computed from the following straight-forward variation of the problem:

LEMMA 5.5. Let (V,q,r) be a G-form for a/b where G(U,V,q,r) =0 for U € K[z] then
U= (E~Yr) W, where W € K[z] solves

q-EW —(E7'r) - W=V. (5.15)

PRrROOF. Because of ged(g,7) = 1 we have r|EU. Hence there exists W € K|[z] such that
U= (E~'r)-W for which G(U,V,q,r) = 0 reduces to (5.15). O

It is the form (5.15) in which the difference equation associated to a G-form is to find in
Gosper (1978) or in the book (Graham et al., 1989).

Consider the problem of deciding constructively over K(z) the general, first-order
linear difference equation a - ET — b - 7 = ¢ with nonzero polynomials a,b,c € K[z]. We
conclude this section by the remark that following the derivation above, one can easily
see how each step of this approach can be modified for solving also this more general
problem. We present the result of this modification in form of a proposition. Its proof is
entirely analogous to what we did above and is left to the reader. For alternative methods
and the general n-th order case see, for instance, Abramov (1995).

PROPOSITION 5.2. Given nonzero a,b,c € Klz], the problem of solving
a-ErT—b-1=c¢ (5.16)

for 7 € K(x) can be decided constructively as follows:
(i) Compute a G-form (V,q,r) for a/b with V, q,r € K[z]| such that b|(r- V).
(ii) If
b-q-EU-b-r-U=c-r-V (5.17)

has a solution U € Kz] then 7 = U/V solves (5.16), otherwise (5.16) has no rational
solution 7 € K(z).

PROOF. [Left to the reader.] O

We want to note that a,b € K[z] need not be relatively prime; furthermore it is easy
to see how any G-form for a/b can be modified to achieve b|r - V in step (i).

EXAMPLE 5.1. Equation (5.16) with a = z(z — 1)%, b = (z — 1)? and ¢ = = has no
rational solution 7 € Q(x); ¢f. Example 20 from Karr (1981). Evidently, (V,q,r) =
{(x—1)% (z—1)2,2) is a G-form for a/b such that blr-V, and (x —1)* - EU —z-U = x?
has no solution U € Q[z]. The latter can be seen most easily by the observation z|EU., i.e.,
U= (z—1)-W for W € K[z], which reduces the equation to (x—1)*-EW —(x—1)-W = z.
O
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5.3. RATIONAL TELESCOPING AS A SPECIAL CASE

In this section we briefly relate rational telescoping, as a special case of Gosper’s
algorithm, to Theorem 4.1.

Assume for the telescoping problem (5.1) that (fx)rx>0 is a rational sequence, i.e.,
fr = a(k)/B(k) for some «, 8 € K[z]. As above let (a, b) be the reduced form of p € K(z)
for which fi11/fx = p(k). Then

a Foa f FEa fy

b o EB  a B
where 3; := E'3/ gcdE(S) for i € {0,1}.

PROPOSITION 5.3. Let {a,b), (o, 3) and b; be as above, then:

B is saturated = {(«, Bo, £1) a G-form for a/b.

PROOF. It remains to show that ged(By, E¥B1) = 1 for all k € N. If (py,...,p,) is the
GFF-form of 3 then we have 3y = (E%py) - (E~""!p,) and 81 = (Ep1) - - - (Epy), hence
the ged condition is obvious from the saturatedness of 5. O

According to Gosper’s algorithm the denominator of 7 is V' = a and the numerator
U= (E"1p) W, where W € K|[z] solves

Bo-EW — (E7'B31) - W = a, (5.18)
the associated equation in simplified form (5.15). Thus,

_ Bilk— 1) W)
a(k)

because of (E~13)/3 = 1/E~! gedE().

Summarized, given the rational input {fx)r>0 by a saturated representation (e, §) then
(a, Bo, 1) is an appropriate G-form for which Gosper’s algorithm outputs a saturated
representation of the rational solution (gi)r>0 of (5.1), in case it exists, in the same form
as spelled out by Theorem 4.1. This means, the denominator ged(3(k — 1), 5(k)) of gi is
determined as in (4.2), the numerator of g, as a polynomial solution of (5.18) which is
equivalent to (4.3). In the special case where (fx)r>0 is given in S-form representation
(a, 8), Theorem 4.1 says that Gosper’s algorithm delivers the proper rational output
(9r) k>0 also in S-form if («, By, B1) is used as G-form.

Finally we want to remark that a careful analysis of the possible degrees of solutions
W e K|x] of (5.18) is given in (Lisonek et al., 1993), or in Paule (1993) using the GFF
concept.

o W (k)
"7 ged(B(k — 1), B(k))

9k

6. Rational Summation

In this section we apply the GFF concept to the situation where for given r € K(z)
the telescoping equation As = r finds no rational solution s € K(z).

Considering indefinite rational integration the analogous problem for given r € K(x)
consists in finding the rational part s € K(z) and the transcendental part t € K(x) of
the decomposition [r = s+ [¢. It is well-known, for instance, (Davenport et al., 1988)
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or (Geddes et al., 1992) that the non-rational part ¢ is determined uniquely under slight
side-conditions.

EXAMPLE 6.1. A summation analogue of

1 1
/x-i- :x+/—:x+log(a¢),
x x

k1 1
Z%:nJr %:nthn,
k=1 k=1

for instance, is

n

i.e., the harmonic number sequence (H,) is taking the part of the logarithm function. O
Discussing the indefinite summation analogue, > r = s + >_.t, we shall treat this

question, referred to as the decomposition problem, in the equivalent form
r=As+t. (6.1)

For obvious reasons throughout this section we restrict to proper rational functions.

EXAMPLE 6.2. As we have seen in Example 4.1, the pair
(=D -1
t) =
S = )@ )
solves the decomposition problem for r = 1/((x +1/2)(x — 3/2)). The pairs

(=1/3)(4z = 5) (=1/3)(4z — 1) >
(x —1/2)(x —3/2) (x4 1/2)x(z — 1/2)

70>

(s1,t1) = (

and
(=2/3)(z — 1) —2/3 >
(@~ 1/2)(w —3/2) a(a +1/2)

solve the decomposition problem for r = 1/((x + 1/2)x(z — 3/2)); ¢f. Example 4.3. O

(s2,t2) = (

Concerning uniqueness of the non-rational part the situation for rational summation
is a little bit more subtle than for rational integration. Analogous to integration what
one intuitively expects is uniqueness with respect to degree:

DEFINITION. The pair (s,t) of proper s,t € K(z) is called a minimal decomposition of
proper r € K(z) if r = As + ¢ such that deg(f) is minimal where (e, f) is the reduced
form of ¢.

But the following lemma shows that a minimal decomposition is not uniquely deter-
mined.

LEMMA 6.1. Given p,q € K|x] with ¢ monic and g = q7"* - - - g™ the complete factoriza-
tion of q¢ over K[x]. Then for any tupel (k1, ..., k,) over the integers there exist s € K(x)
and p € K|z| such that

p p
—r = Qs+ :
ql 1., qn n (Ekl ql)ml N (Ekqu)mn
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PROOF. Because of partial fraction decomposition it is sufficient to show the statement
for the case n =1, i.e., ¢ = ¢7**. The case k1 = 0 is trivial. Assume k; > 0, then

Ek I-EM
PoE _qoplo Al
q FEhg q I-F q
hence s = —Z?;Bl E’(p/q) and p = E*p. By exchanging the roles of p and p the

statement is proved also for k; < 0. O

This lemma explains the existence of arbitrary integer-shift variations of a decomposition
keeping the denominator degree of the non-rational part invariant.

EXAMPLE 6.3. The pairs

T+ 2 1
z(r—2) z+1

(s1,41) = <%, é> and (sa,t2) = {

)

are decompositions of r = (x® — 11z + 2)/[x]3. We have
deg(z) = deg(z + 1) =1 and dis(t1) = dis(t2) =0,

hence both decompositions are minimal because otherwise there exists a decomposition of
r of the form (s,0), i.e., 1 = As = Asy +t1 = Asg + to, hence A(s — s1) = t1 and
A(s — s2) = to violating Proposition 3.3. O

A general criterion for deciding whether (s,t) is a minimal decomposition was deri-
ved by Abramov (1975) who was the first to observe that minimality is guaranteed by
requiring the dispersion of ¢ to be zero.

THEOREM 6.1. Given proper r,s,t € K(z) such that r = As+t. Then (s,t) is a minimal
decomposition of r if and only if dis(t) = 0.

PROOF. See Section 6.3. O

Using GFF and shift-saturation, in Section 6.3 we give a proof of this theorem together
with an explicit description in which manner two minimal decompositions differ.

As already pointed out, Abramov (1975) was the first who computed minimal decom-
positions in an algorithmic way. Viewing the problem in the light of GFF and shift-
saturation we present two new algorithms. The first one, as described in Section 6.1,
works iteratively similar to the approach sketched by Moenck (1977). The second one,
Theorem 6.2 of Section 6.2, provides an analogue to what is called “Horowitz’ Method”
for rational function integration described, for instance, in (Davenport et al., 1988) or
(Geddes et al., 1992). Some authors, for instance, Subramaniam & Malm (1992) refer to
that method as the “Hermite-Ostrogradsky Formula”.

Based on implementations in Maple a detailed comparison of Abramov’s algorithm
to the “Horowitz analogue” given in Theorem 6.2 can be found in Pirastu (1995a).
Pirastu & Siegl (1995b) discuss various aspects of these algorithms according a parallel
implementation in ||MAPLE| on a workstation network.
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6.1. MINIMAL DECOMPOSITION BY ITERATION

In order to compute a minimal decomposition (s,t) of 7, in view of Proposition 4.2
and Theorem 4.1, a natural first step is to take the S-form («, 8) of r and to split off the
nontrivial first GFF-constituent of § which possibly exists. Before doing so, for sake of
abbreviation we introduce a definition.

DEFINITION. A saturated representation (v,d) is called proper if deg(v) < deg(9).

Now we are ready for the first basic decomposition step.

PROPOSITION 6.1. Given a proper S-form (o, T) with polynomials o,7 € K[x] such that
GFF(7) = (p1,-..,Pn). Then there exist unique proper S-forms {(«, ) and (v,d) with
polynomials from K[z] such that

g
R +
T

SRS

(6.2)

= e

where

GFF(B) = (1,p2,...,pn) and GFF(d) = (p1). (6.3)

PROOF. Let 8 := [p2]2...[py])% and & := p; = 7/B. Because of ged(3,6) = 1 there
exist unique polynomials «,v € K[z], which can be computed by Extended Euclidean
Algorithm (e.g., Geddes et al., 1992), such that deg(a) < deg(f), deg(y) < deg(d), and
o = -0+ v- [ which is equivalent to (6.2). Clearly (6.3) holds and both {(a,3) and
(v,d) are proper saturated representations. Assume that (v,d) is not in S-form, then
according to Proposition 3.6 there exists r with r|p; = ¢, deg(r) > 0, and r|y. Hence
r|o, by Proposition 3.6 a violation of the S-form of (o, 7). Analogously it is proved that
(o, B) is in S-form. U

REMARK. The proof of Proposition 6.1 shows how the numerators « and ~ can be ob-
tained constructively. |

Now the second basic decomposition step is as follows:

PROPOSITION 6.2. Given a proper S-form {(a, 3) with polynomials v, 3 € K[z] such that
GFF(8) = (1,pa,...,pn). Then there exist proper saturated representations (&, ) and
(y, &) with polynomials from K[z] such that

(07

_AY L@
5=0%5+3 (6.4)
where
GFF(B) = (p2,...,pn) and GFF(6) = (E"'ps,...,E"'pn). (6.5)

PrROOF. If a/3 is rational summable then, by Theorem 4.1, § = E~!gcdE(3), and v a
polynomial solution of (4.3). In this case we take (&, 3) := (0, Ed). If a/3 is not rational
summable then also define § := E~!gedE(S) and (3 := gedE(B) = E§. In this case we
modify the inhomogeneous part a of (4.3) by adding a polynomial such that the resulting
equation admits a polynomial solution. Because of ged(5/Ed, 3/d) = 1, for instance, by
Extended Euclidean Algorithm one can find v,% € K]z] such that « = 8/Ed6 -5 — 3/ -y
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with deg(y) < deg(8/E6) < deg(d). Defining & € Klz] by ¥ = Ev + & this equation
is equivalent to (6.4). In any case (y,0) and (@, 3) are proper saturated representations

and also (6.5) holds by definition of 8 and §. O

REMARK. The proof of Proposition 6.2 shows how the numerators @ and « can be ob-
tained constructively. m|

One should note that generally the numerators & and v in Proposition 6.2 are not
uniquely determined. In addition, neither (@, 3) nor (v,d) need to be in S-form. Both
facts are made explicit by the following example.

EXAMPLE 6.4. Different decompositions of type as in Proposition 6.2 of the same ratio-
nal function r(z) = (22 — 11x + 2)/[z]3:
-z + 10 z —10 8xr — 8 z—1

e e 1 A e (e} s T P

O

Despite this lack of uniqueness, Proposition 6.2 together with Proposition 6.1 provide

the basic reduction steps to solve the decomposition problem in an iterative manner. The

algorithm works by iterated reduction of shift-saturated representations until one arrives

at a non-rational part with dispersion zero. The mechanism of the algorithm will be clear
from the example below.

REMARK. For a discussion how this method relates to Moenk (1977) see the diploma
thesis of Pirastu (1992), and also Pirastu (1995a). a

EXAMPLE 6.5. (“Minimal Decomposition by Iteration”) Consider r € Q(z) from
Example 4.3 with S-form (c/7) = (x — 1/2,7 = [z]* [1]2 [# + 1/2]2). For the first GFF-
constituent of T we have x # 1, hence by Proposition 6.1 r decomposes as

o 4/3 43z -1/2)(x 1)

S G TRV
Now, according to Proposition 6.2 one computes the decomposition
4/3(x —1/2)(z — 1) A(—4/3)5E+5/3 4/3(x — 1)

Y O VN TS VP
(0=[z-1/2% 7=-1, y=—(4/3)z +5/3, and a =7 — Ey = (4/3)(z — 1)).
Again applying Proposition 6.2, which is possible because &/ (EJ) is in S-form with first
GFF-constituent of the denominator equal to 1, yields

A3 —1) 23 . 4/3

[+1/22 “x-1/2 24+1/2

Collecting all parts together one obtains a minimal decomposition

r:ngs—Ft
T

with
_ (~4/3)z+5/3 2/3  2/3(z—1)
S (w—-1/2)(x—-3/2) x-1/2  (v-1/2)(z—3/2)
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as the rational and
_ﬁ 4/3 _ 2/3

r  r+1/2 z(z+1/2)

as the non-rational part for which dis(t) = 0. Equivalently, splitting off the harmonic
number expression by partial fraction decomposition we get for n > 1:

t:

3 1 LRI AR S
= (k+1/2)k(k - 3/2) o 3@n+1)@2n-1) 37" 3 —k+1/2
According to Theorem 6.1 no further essential simplification is possible. m|

6.2. MINIMAL DECOMPOSITION BY HOROWITZ ANALOGUE

For indefinite integration [ r of a rational function, besides others there is a method
usually called Horowitz’ method since it was studied in detail by Horowitz (1971). The
method relies on the following fact:

Given proper 7 € K(z) with reduced form (a,b) where b = b} b3...b7" is the square-
free factorization of b. Then there exist uniquely determined polynomials ¢, e € K][z] such
that

C e
2 =D +
b Tbi 2. bt biba..by

(6.6)

and

deg(c) < deg(d), deg(e) < deg(%)

where d = ged(b, Db) = b3 b3...b7 1. (D is the derivation operator.)

Observing that by by ...b, = b/d, Horowitz’ method reduces the problem of finding
c and e to solving a system of linear equations. This reduction is done by rewriting eq.
(6.6) as a polynomial differential equation

b Dd)b
a:E-(Dc)— ( d2)
(Note that (Dd)b/d* indeed is a polynomial.) Coefficient comparison after replacing ¢
and e by sums 3 cpa® and Y epz¥ with undetermined coefficients leads to the linear
system to solve.

As we shall see, in the case of indefinite rational summation there is an analogue to
Horowitz’ method in which GFF plays the part of square-free factorization. Another
substantial difference consists in the fact that one has to take the S-form of the rational
function r instead of the usual reduced form. This analogue of the Horowitz decomposi-
tion solves the decomposition problem and reads as follows:

c+d-e. (6.7)

THEOREM 6.2. Given a proper S-form {(«, 3), «, 0 € K[z], with GFF(8) = (p1,...,Pn)-
Then there exist unique proper saturated representations (o, Bo) and {7y, d) with polyno-
mials from Klz| such that

X _ AT X
5=05+% (6.8)

where

GFF(Bo) = (p1--pn) and GFF(0) = (E 'pa,...,E "py). (6.9)
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Moreover, the polynomials oy and v can be obtained constructively as the uniquely deter-
mined solutions of the polynomial difference equation

p p

= gean(s) P B e

-1
gcdE(B) v+ E7 gedE(S) - ao. (6.10)

PrOOF. The existence part is an easy induction exercise. The case n = 0 is trivial.
Assuming n > 1 one distinguishes the cases p; # 1 and p; = 1, and uses Propositions
6.1 and 6.2. The details are left to the reader. Concerning uniqueness, by (6.9) we have
Bo = B/E~tgedE(B) and § = E~1gedE(B), thus (6.10) is equivalent to (6.8), and it
remains to show that ag and - are the uniquely determined polynomial solutions of
(6.10). Let I := deg(d), k := deg(By) = deg(8/9) = deg(B/EJ) and «p := Zf;ol a;x’,
= Zé;t g;x’ where a;, g; are undetermined coefficients over K. Then for the left hand
side of (6.10): deg(a) < deg(f) = deg(d - 8/6) =1+ k, and deg(B/ES - Ey — 3/ -v) <
deg(8/0) + deg(y) implies for the right hand side: deg(8/Ed - Ey — /6 - v+ 0 - ap) =
deg(d) + deg(ap) < k + 1 — 1. Hence by coefficient comparison of the left and right hand
sides, solving (6.10) for o,y € K]z] is equivalent to solving k+1 linear equations in k+!
unknowns. [

Since dis(ao/fBo) = dis(py -+ pn) = 0, Theorem 6.2 delivers a minimal decomposi-
tion because of Theorem 6.1. Thus the algorithm essentially consists of two parts only:
computing the S-form of the input function r and finding polynomial solutions ag,~y of
(6.10). The efficiency of this algorithm is discussed in (Pirastu, 1995a) and (Pirastu &
Siegl, 1995b). Below we illustrate the algorithm along elementary Maple steps, a careful
implementation in Maple was done by Pirastu (1995a).

EXAMPLE 6.6. (“Minimal Decomposition by Horowitz Analogue”)
In MAPLE V.3 its not possible to evaluate

> sum((k+2)/( kx(k"2+2)"2 * (k"2-1)"2 ), k);

But using MAPLE in connection with Theorem 6.2 needs only a few lines to decompose
the summand. Note that in simple cases, like this one, the S-form is computed easily by
imspection.

> alpha:=(x+2)*x;
alpha := (x + 2) x

> beta:=(x"2+2)"2 * ((x+1)*x*x(x-1))"2;
2 2 2 2 2
beta := (x +2) (x+1) x (x-1)
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> delta:=factor(gcd(beta,subs(x=x-1,beta)));
2 2
delta := x (x - 1)

> gam:=sum(g[i]*x~i,i=0..3);
2 3
gam := g[0] + gl[1] x + g[2] x + g[3] x

> alphaz:=sum(al[i]*x~i,i=0..5);
2 3 4 5
alphaz := a[0] + a[1] x + a[2] x + al3] x + a[4] x + a[5] x

> match(alpha=beta/subs(x=x+1,delta)*subs(x=x+1,gam) -
> (beta/delta)*gam + deltaxalphaz, x, ’coeffs’);
true

> factor(subs(coeffs,gam));
2
- 1/12 - 1/12 x + 1/12 x

> factor(subs(coeffs,alphaz));
bytes used=400056, alloc=196572, time=2.916
2 3
1+2/3x+1/3x + 1/6 x

Hence we get the minimal decomposition

T+ 2 122—2z-1 1a3+222+42+6

w(22+2)22—-1)2 T 1222(z—1)2 * 6 (224 2)%(zx +1)2

or, equivalently, for n > 2:

n

i k+2 1 (n42Pn-1) 1Zk3+2k2+4k+6
— k(k* + (k2 +2)2(k+1)2°

22 —1)2 48 (n+1)2PZ 6

k=2 k=2

The sum expression on the right hand side constitutes the non-rational part of the original
sum. O

REMARK. According to Theorem 6.1 no further essential reduction is possible. But in ge-
neral the non-rational part by partial-fraction decomposition over K can be decomposed
into smaller subparts, for instance, in the example above over Q as

I 1 T 1 I GTh—4 1 k-1

TSZ (k+1)2 T2 E 1 s 2 7§Z(k2+2)2'

k=2 k=2 k=2 k=2

One should note that the denominators already have been delivered by the Horowitz
analogue. Extending the ground field Q to the splitting field of the irreducible deno-
minator x2 4 2 further refinement is possible. This raises the following question: How
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would an analogue to what is called Rothstein/Trager-method for rational integration
(see Rothstein, 1976, or Trager, 1976, or Geddes et al., 1992) look like in the case of
rational summation? a

6.3. UNIQUENESS OF MINIMAL DECOMPOSITION

In this section we give a proof of Abramov’s dis(¢) = 0 criterion, Theorem 6.1, for
minimal decompositions (s,t) of r. A key ingredient of this proof is the following theo-
rem which tells how two minimal decompositions differ. Together with Theorem 6.1 its
essential message is:

e A minimal decomposition (s,t) is unique up to variations induced by arbitrary
integer-shifts of the irreducibles of the reduced denominator of ¢.

THEOREM 6.3. Given proper s,5,t,t € K(z) such that
As+t= A5+t (6.11)
let (e, f) and (&, f) be the reduced forms for t and t, respectively, with
f=pitop and f=ql gl
the complete factorization of f and f over K|x]. If
dis(t) = dis(t) = 0

then m =n and for alli € {1,...,n}: a; = B; and q; = E¥ip; for some integer k;.

ProOF. Let g := ged(f, f), ¢ == f/g, ¢ == [/g, d :==ged(€-p—e€-p,9-¢- ), and
¢ := g/d which is in K[z], then ((€-¢—e-@)/d, - ¢- @) is the reduced form of t —¢ which
is rational summable by (6.11). Hence by Proposition 4.2 any shift-equivalence class of
irreducibles of 1 - ¢ - ¢ has at least two elements, i.e.,

t irreducible and t[¢) - ¢ - @ = Jk # 0 such that E¥t[¢)- ¢ - @. (6.12)

The crucial observation is that ¢ = 1, because if an irreducible t1) then E¥t|¢) - ¢ -
for some k # 0, which causes a contradiction: E*t cannot divide 1, ¢, or @, otherwise
one of the dis conditions dis(¢)) = dis(¢) = dis(p) = 0 would be violated. Because of
(6.12), ¢ = 1, and dis(p) = dis(@) = 0 each shift-equivalence class of irreducible factors
of ¢ - ¢ contains exactly two elements: one belonging to ¢ and one to @. Thus m = n
and ¢; = E¥p; with integer k; for all i € {1,...,n}. It remains to show that o; = 3;.
By Lemma 6.1 there exist § € K(z) and é € K|[z] such that &/f = A3 + é/(pfl coepln,
hence A(s —5—3) = ¢&/(p2 - pPr) —e/(p¥ -~ p). Let (a,b) be the reduced form of
the right hand side of the last equation, then evidently dis(b) = 0, a contradiction to
Proposition 3.3. Thus a/b must be 0 which implies o; = ; for alli € {1,...,n}. O

Now we are ready for the

PROOF OF THEOREM 6.1. Let (e, f) be the reduced form of ¢. Assume that (s,?) is a
minimal decomposition of r with dis(¢) > 0. If («, ) is the S-form of ¢ with GFF(8) =
(p1,---,Dn), then also dis(8) > 0. By Theorem 6.2 there exist 5 € K(z), ap € K[x] such
that t = A5+ ag/(p1 - - - pn)- Lemma 3.5 implies deg(p; - - - pn) < deg(f), a contradiction
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to minimality of (s,?) because of r = A(s + 5) + ao/(p1 - - pn). For the other direction,
assume dis(¢) = 0. For any minimal decomposition (3, %) of » with reduced form (e, f) of
t by the part proved above we also have dis(¢) = 0. Now Theorem 6.3 implies deg( f)

deg(f), hence (s,t) must be minimal. O

7. Conclusion

Besides the applications discussed in this paper, the GFF concept can be used, for
instance, also for dealing with g-hypergeometric summation. In this context, instead of
the shift operator (Ep)(x) := p(x + 1) the g-shift operator (ep)(x) := p(gx) plays the
fundamental role. A brief description of using ¢ GFF for deriving a g-analogue of Gosper’s
algorithm is given in (Paule & Strehl, 1995). Both types of shift operators are special
cases of difference field extensions considered in Karr’s general summation theory (Karr,
1981 and 1985). Thus, as pointed out in the introduction, one might expect that GFF or
a suitable generalization could also play some role there; cf. the question raised in section
4.2 of (Karr, 1981).

Concerning rational summation we want to point out that Malm and Subramaniam
(1995) came up with another Horowitz analogue. A definite answer concerning the que-
stion of optimality of such analogues has been given by Pirastu & Strehl (1994) in the
following sense: given the proper rational function r with a generic numerator they are
able to solve the decomposition problem r = As + ¢ optimally in the sense that also the
degree of the reduced denominator of s is minimal.

With respect to computer algebra software, for the Maple system it is planned to
replace the implementation of Moenck’s algorithm, which was used so far for rational
summation, by Pirastu’s optimization (Pirastu, 1995a) of Abramov’s algorithm. — C.
Mallinger implemented most of the forms and algorithms presented in this paper in
Mathematica; the programs are available via email request to the author.
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