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A detailed study of the degree setting for Gosper’s algorithm for indefinite hypergeomet-
ric summation is presented. In particular, we discriminate between rational and proper
hypergeometric input. As a result, the critical degree bound can be improved in the
former case.

1. Introduction

Gosper’s algorithm for indefinite hypergeometric summation (see Gosper (1978), La-
fon (1983) or Graham, Knuth and Patashnik (1989)) belongs to the standard methods
implemented in most computer algebra systems. Current interest in this algorithm is
mainly due to the fact that it can also be used for definite hypergeometric summation
(e.g. verifying binomial identities “automatically”, finding recurrence operators annihilat-
ing hypergeometric sums) in a non-obvious and non-trivial way (see Zeilberger (1990a),
(1990b), Wilf and Zeilberger (1992) and the references given in the latter).

One of the steps in Gosper’s algorithm, crucial for its running time and memory re-
quirement, is the determination of a degree bound for a possible polynomial solution of
a certain difference equation - the so-called “key equation”, see (GE) in section 4. In this
paper a detailed analysis of this degree setting is given. It turns out that the situation
for rational sequences is different from that for proper, i.e. non-rational hypergeometric
input. Besides several theoretical results one practical implication of our discussion is an
improvement for the degree setting in Gosper’s algorithm in the rational case. At first
glance, this improvement might seem to be of minor interest since Gosper’s algorithm is
not primarily intended for the special case of rational summation. But we have to stress
that in many computer algebra systems it is the only summation algorithm available.
(The only exception from this situation is probably Maple providing a variety of summa-
tion algorithms and choosing the appropriate one depending on the particular form of the
input.) This motivates a study of the behavior of Gosper’s algorithm for different classes
of inputs in order to make it input-sensitive as a balance to having more algorithms at
hand.

After the basic definitions, in sections 2 and 3 algebraic relations between rational
and hypergeometric sequences are discussed. Two representations (Gosper form and
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Petkovšek’s normal form) of rational functions are introduced which are crucial for our
investigation. In section 4 a brief outline of Gosper’s algorithm is given, including infor-
mation on the solution space of the key equation (GE). Section 5 presents the careful
analysis of the degree setting for polynomial solutions of (GE). The difference between
rational and hypergeometric input sequences is made explicit. For example, if an indefi-
nite sum over a regular rational sequence again is rational then there exist at least two
polynomial solutions of the key equation with different degrees. The one with the higher
degree corresponds to the “K0-case” in Gosper’s original degree setting. This is different
from the situation for proper hypergeometric input. Based on the degree setting analysis,
a suggestion for a corresponding improvement in Gosper’s algorithm is made.

In section 6 two examples illustrating the difference between rational and proper hy-
pergeometric situation are given. One of them is related to the famous Apéry recurrence.

In section 7 we conclude by a brief comment on other methods for rational sequence
summation.

2. Rational and Hypergeometric Sequences

Let N denote the set of nonnegative integers. Let Q be a field of characteristic 0.
A sequence (ak)k≥0 in Q is called

rational , if there exist relatively prime polynomials s, t ∈ Q[x] such that

ak =
s(k)
t(k)

(k ∈ N) (2.1)

(in particular: t(k) 6= 0 for all k ∈ N)

hypergeometric, if there exist relatively prime polynomials σ, τ ∈ Q[x] such that

ak =
σ(k)
τ(k)

· ak−1 (k ≥ 1) (2.2)

where τ(k) 6= 0 for all k ≥ 1.

A rational sequence (ak)k≥0 is called regular rational iff deg(s) < deg(t) in equation
(2.1) holds.

Note that once a term an of some hypergeometric sequence vanishes, all the subsequent
terms an+k (k ≥ 0) will automatically vanish too, i.e. (ak)k≥0 has only a finite number
of nonzero terms in this case. This degenerate situation is obviously not of much interest
as far as indefinite hypergeometric summation is concerned. On the other hand, rational
sequences can only have a finite number of vanishing terms, hence rational sequences with
at least one vanishing term cannot be hypergeometric. Again, since we are interested in
indefinite summation, we can always dispense with a finite initial segment of a sequence
to be summed by shifting indices.

Hence, for the remainder of this article rational sequence will always mean “ratio-
nal sequence without vanishing terms” and hypergeometric sequence will always mean
“hypergeometric sequence without vanishing terms”.

Under this convention, every rational sequence is a hypergeometric one, since

ak =
s(k)
t(k)

· t(k − 1)
s(k − 1)

· ak−1 =
σ(k)
τ(k)

· ak−1
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with

σ(x) = s(x) · t(x− 1)/d(x)
τ(x) = t(x) · s(x− 1)/d(x)

where d(x) = gcd(s(x) · t(x − 1), t(x) · s(x − 1)). Thus it makes sense to introduce the
concept of proper hypergeometric sequence which means hypergeometric sequence that is
not a rational one.

Conversely, if (ak)k≥0 is a hypergeometric sequence as in (2.2) such that the rational
function σ(x)/τ(x) can be written as

σ(x)
τ(x)

=
p1(x)

p1(x− 1)
· p2(x− 1)

p2(x)

for (relatively prime, w.l.o.g.) polynomials p1, p2 ∈ Q[x], then (ak)k≥0 is rational because

ak =
∏k

i=1 σ(i)∏k
j=1 τ(j)

· a0 =
p1(k) · p2(0)
p1(0) · p2(k)

· a0

i.e. we have (2.1) with s(x) = a0 · p2(0) · p1(x) and t(x) = p1(0) · p2(x).
We may summarize this discussion in

Proposition 2.1. Let (ak)k≥0 be a hypergeometric sequence with rational function cer-
tificate λ(x) = σ(x)/τ(x) ∈ Q(x), i.e.

ak = λ(k) · ak−1 for all k ≥ 1.

The sequence (ak)k≥0 is rational if and only if there exist polynomials p1, p2 ∈ Q[x]
such that

λ(x) =
p1(x)

p1(x− 1)
· p2(x− 1)

p2(x)
.

3. Gosper- and Petkovšek Representations of Rational Functions

Gosper’s algorithm makes essential use of the following fact about rational functions:

Proposition 3.1. (Gosper) Every nonzero rational function λ(x) ∈ Q(x) can be written
as

λ(x) =
p(x)

p(x− 1)
· q(x)
r(x)

, (G1)

where p, q, r ∈ Q[x] are polynomials such that

gcd(q(x), r(x + j)) = 1 for all j ∈ N. (G2)

A triple (p, q, r) satisfying (G1) and (G2) will be called a G-form of λ(x). Gosper
(1978) outlines an algorithm for the computation of a G-form. Note that such a form is
not unique. As a simple example: in

λ(x) =
(x + 1)2

x
=

x + 1
x

· x + 1
1

=
(x + 1)2

x2
· x

1
both the third and the fourth term are G-forms with

p(x) = x + 1, q(x) = x + 1, r(x) = 1
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and

p(x) = (x + 1)2, q(x) = x, r(x) = 1,

respectively.
It has been shown recently by Petkovšek (1992) that uniqueness for this kind of form

can be enforced by imposing two more conditions.

Proposition 3.2. (Petkovšek) Every nonzero rational function λ(x) ∈ Q(x) can be
written uniquely as

λ(x) = c · p(x)
p(x− 1)

· q(x)
r(x)

, (P1)

where 0 6= c ∈ Q and where p, q, r ∈ Q[x] are monic polynomials such that

gcd(q(x), r(x + j)) = 1 for all j ∈ N, (P2)

gcd(p(x), r(x)) = 1, (P3a)

gcd(p(x− 1), q(x)) = 1. (P3b)

Petkovšek also gives an algorithm for computing what we will call the P-form (p, q, r)
of a rational function.

As an immediate simple consequence of Petkovšek’s representation we note

Proposition 3.3. Let α, β ∈ Q[x]. If the equation

β(x) · y(x)− α(x) · y(x− 1) = 0 (3.1)

admits a nontrivial polynomial solution y ∈ Q[x], then all polynomial solutions of (3.1)
are precisely given by the scalar multiples c · y(x), c ∈ Q, of y(x).

Proof. If y(x) is any monic solution of the equation, then view the r.h.s. of

α(x)
β(x)

=
y(x)

y(x− 1)

as the P-form (p(x) = y(x), q(x) = r(x) = 1) of the l.h.s. By the uniqueness assertion of
proposition 3.2 any polynomial solution of (3.1) must be a scalar multiple of y(x). 2

As a further consequence of Petkovšek’s result we get information about the possi-
ble G-forms of rational sequence certificates. (Cf. proposition 2.1 for the notion of the
certificate.)

Proposition 3.4. Let ρ(x) = σ(x)/τ(x) ∈ Q(x) be a rational function with gcd(σ(x),
τ(x)) = 1, and let (p(x), q(x), r(x)) be any G-form of ρ(x)/ρ(x− 1). Then

1 if q(x) = r(x) = 1, then ρ(x) is a polynomial, i.e. τ(x) = 1 ;
2 if p(x) = 1, then ρ(x) is the reciprocal of a polynomial, i.e. σ(x) = 1 ;
3 in the general situation: σ(x) | p(x).
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Proof. 1. For q = r = 1
σ(x)

σ(x− 1)
=

(τ · p)(x)
(τ · p)(x− 1)

.

Both sides are in P-form, thus σ = τ · p, which implies τ = 1 by gcd(σ, τ) = 1.
2. Representing τ(x− 1)/τ(x) as

τ(x− 1)
τ(x)

=
u(x)

u(x− 1)
· v(x)
w(x)

implies v(x) | τ(x− 1) and w(x) | τ(x) by considering

τ(x− 1) · u(x− 1) · w(x) = τ(x) · u(x) · v(x)

together with the Petkovšek conditions. But then both sides of

(σ · u)(x)
(σ · u)(x− 1)

· v(x)
w(x)

=
q(x)
r(x)

are in P-form. E.g., gcd(w, σ · u) = 1, the Petkovšek condition (P3a), holds because of
w | τ , gcd(σ, τ) = 1, and gcd(u,w) = 1. Analogously the other “diagonal” Petkovšek
condition (P3b) is verified using v(x) | τ(x− 1).
Thus we have v = q, w = r, σ · u = 1, and thus u = σ = 1.

3. For ρ̃ = σ/(p · τ) the G-form of ρ̃(x)/ρ̃(x− 1) is

ρ̃(x)
ρ̃(x− 1)

=
q(x)
r(x)

.

It follows from 2. that ρ̃(x) is the reciprocal of a polynomial. This, together with
gcd(σ, τ) = 1, implies σ | p. 2

We use this assertion in the following result which is crucial for discussing the behavior
of Gosper’s algorithm on rational sequences.

Proposition 3.5. Let λ(x) ∈ Q(x) be a rational function, and let (p, q, r) be any G-form
of λ(x). Then the following assertions are equivalent:

1 We have

λ(x) =
ρ(x)

ρ(x− 1)

for some rational function ρ(x) ∈ Q(x).
2 The equation

q(x + 1) y(x)− r(x) y(x− 1) = 0

admits a nontrivial polynomial solution y ∈ Q[x].

Proof. Let ρ(x) = σ(x)/τ(x) ∈ Q(x) with gcd(σ(x), τ(x)) = 1. Then σ(x) | p(x) by the
general part of the previous proposition. We may thus rewrite the G-form of

λ(x) =
ρ(x)

ρ(x− 1)
=

σ(x)
σ(x− 1)

· τ(x− 1)
τ(x)

as
τ(x− 1)

τ(x)
=

(p/σ)(x)
(p/σ)(x− 1)

· q(x)
r(x)
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or

q(x) ·
(p · τ

σ

)
(x)− r(x) ·

(p · τ
σ

)
(x− 1) = 0. (3.2)

Now gcd(q(x), r(x)) = 1 by property (G2), hence q(x) | (p · τ/σ)(x− 1), i.e.
(p · τ

σ

)
σ(x) = q(x + 1) · y(x)

for some nonzero polynomial y ∈ Q[x]. Dividing both sides of (3.2) by q(x) then gives

q(x + 1) y(x)− r(x) y(x− 1) = 0.

For the other direction, let y(x) be a nontrivial solution of this previous equation, then

q(x)
r(x)

=
q(x)

q(x + 1)
· y(x− 1)

y(x)
,

and

λ(x) =
p(x)

p(x− 1)
· q(x)
q(x + 1)

· y(x− 1)
y(x)

,

i.e. we have λ(x) = ρ(x)/ρ(x− 1) with

ρ(x) =
p(x)

q(x + 1) · y(x)
.

2

4. Gosper’s Algorithm: Uniqueness of Solutions

The essence of Gosper’s algorithm (see Gosper (1978) or Graham, Knuth and Patashnik
(1989)) can be shortly described as follows:

Given a hypergeometric sequence (ak)k≥0 with values from the field Q. Let us assume
that the sequence (sn)n≥0 defined as

sn =
n∑

k=0

ak,

for all nonnegative integers n, again is hypergeometric. Then to solve the summation
problem is equivalent to find the hypergeometric solution (sk)k≥0 of the difference equa-
tion

sk − sk−1 = ak k ≥ 1 (DE)

with the initial condition s0 = a0. If exists, this solution can be expressed as

sn =
q(n + 1)

p(n)
f(n) an,

where f(x) is a polynomial satisfying the key equation

p(x) = q(x + 1) f(x)− r(x) f(x− 1) (GE)

and where (p, q, r) is a G-form of the rational function certificate determined by ak/ak−1

(k ≥ 1). In order to discuss the set of all possible polynomial solutions f ∈ Q[x] of the
key equation (GE) we make use of the following proposition which is evident:
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Proposition 4.1. Given polynomials α, β, γ ∈ Q[x] with γ 6= 0, then the set of all
polynomial solutions of

γ(x) = α(x) y(x)− β(x) y(x− 1) (4.1)

consists precisely of all expressions of the form

y + z,

where y ∈ Q[x] is a solution of (4.1) and z ∈ Q[x] runs through all polynomial solutions
of the homogeneous equation

0 = α(x) z(x)− β(x) z(x− 1). (4.2)

Just before finishing our paper, we learned that a similar statement is proven as Lemma
3.7 in Koornwinder (1992). However, no further investigations appear there. On the
contrary, here we proceed by showing that there is an intimate connection between the
situation described in the previous proposition and the two principal classes of input
sequences:

Let us assume that a polynomial solution f ∈ Q[x] of (GE) exists. Then, by proposition
4.1 above we have to consider two different cases, (A) and (B), induced by the structure
of the corresponding homogeneous equation

0 = q(x + 1) y(x)− r(x) y(x− 1). (4.3)

(A) If (4.3) admits no nontrivial solution, then f(x) is the only solution of the key
equation (GE).

(B) If there exists a nontrivial solution h of (4.3), then due to propositions 4.1 and 3.3
the polynomial solution set of the key equation (GE) consists precisely of all polynomials
of the form

f(x) + c · h(x),

where c is running through all the elements of Q.
We show that the cases (A) and (B) correspond to (ak)k≥0 being either a proper

hypergeometric sequence (i.e. not a rational one), or being a rational sequence:

Proposition 4.2. Let (ak)k≥0 be a hypergeometric sequence with rational function cer-
tificate λ(x) ∈ Q(x), i.e. ak = λ(k) · ak−1 for all k ≥ 1, and let (p, q, r) be a G-form of
λ. Then the key equation

p(x) = q(x + 1) f(x)− r(x) f(x− 1)

arising in Gosper’s algorithm admits

1 at most one polynomial solution, if (ak)k≥0 is a proper hypergeometric sequence;

2 none or a one-parameter family of polynomial solutions, if (ak)k≥0 is a rational
sequence.

Proof. By proposition 3.5 the homogeneous form of the key equation

0 = q(x + 1) f(x)− r(x) f(x− 1)

admits a nontrivial solution if and only if λ(x) = ρ(x)/ρ(x− 1) for some rational function
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ρ ∈ Q(x). By proposition 2.1 this representation of λ is possible if and only if (ak)k≥0 is
rational. The rest of the proposition is implied by the analysis of the cases (A) and (B)
above. 2

We conclude this section by a proposition describing how, in the rational input case,
a polynomial solution of the homogeneous form of the key equation (GE) can be com-
puted from the corresponding G-form. The special form of this solution implies a degree
relation which turns out to be fundamental for the analysis of the degree setting (see
subsection 5.2.2).

We define the degree of a rational function F (x) = f1(x)/f2(x) as Deg(F (x)) :=
deg(f1(x))− deg(f2(x)).

Proposition 4.3. Let (F (k))k≥0 be a rational sequence where F (x) = f1(x)/f2(x) with
f1, f2 ∈ Q[x] and gcd(f1, f2) = 1, and let (p, q, r) be a G-form of F (x)/F (x−1). Suppose
that the key equation (GE) admits a one-parameter family of polynomial solutions (cf.
4.2.2). Then the following holds:

1 We have that P (x) := p(x)/f1(x) and z(x) := f2(x)P (x)/q(x + 1) are polynomials
in Q[x].

2 The polynomial z ∈ Q[x] is a solution of the homogeneous form of the key equation
(GE), i.e.

0 = q(x + 1) z(x)− r(x) z(x− 1) (4.4)

holds.
3 For Deg(F (x)) = deg(f1(x))− deg(f2(x)) we have

deg(p(x))− deg(q(x))−Deg(F (x)) = deg(z(x)).

Proof. By proposition 3.4.3 we know that f1(x) | p(x), hence from the G-form repre-
sentation

f2(x− 1)
f2(x)

=
P (x)

P (x− 1)
· q(x)
r(x)

.

¿From proposition 3.5 we know there must exist a non-trivial solution of (4.4). Suppose
Z ∈ Q[x] is such a solution. Then by rewriting (4.4) as

q(x)
r(x)

=
Z(x− 1)

Z(x)
· q(x)
q(x + 1)

and corresponding replacement of q(x)/r(x) in the equation above, after some rearrange-
ments we obtain

f2(x)P (x)
Z(x)q(x + 1)

=
f2(x− 1)P (x− 1)

Z(x− 1)q(x)
.

This equation implies that for some non-zero constant c ∈ Q

f2(x) P (x) = c Z(x) q(x + 1).

Consequently z(x) := f2(x)P (x)/q(x + 1) must be a polynomial and a solution of (4.4),
too.

The assertion on degrees follows immediately from 1. 2
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Later (in proposition 5.1) we shall see that the critical value of K0 is just the degree
of the non-zero homogeneous solution z ∈ Q[x].

5. Gosper’s Algorithm: The Degree Setting

We resume the discussion of Gosper’s algorithm at the point where a G-form has been
computed. Then the remaining task in Gosper’s algorithm is to solve the key equation
(GE).

To be specific, let (ak)k≥0 be a hypergeometric sequence with rational function certifi-
cate λ(x) ∈ Q(x), i.e. ak = λ(k) · ak−1 for all k ≥ 1, and let (p, q, r) be a G-form of λ.
One possibility to compute a polynomial solution f(x) of Gosper’s key equation (GE) is
by coefficient comparison. This can be carried out algorithmically once an upper bound
K for the degree of f(x) is known. As Gosper (1978) showed, K can be derived from an
analysis of the following equation, which is equivalent to (GE):

p(x) = (q(x + 1)− r(x))
f(x) + f(x− 1)

2
+ (q(x + 1) + r(x))

f(x)− f(x− 1)
2

.

The following two cases may arise:
Case 1: If deg(q(x + 1) + r(x)) ≤ deg(q(x + 1) − r(x)) =: M , then K is uniquely

determined as K := deg(p)−M .
Case 2: deg(q(x + 1) − r(x)) < deg(q(x + 1) + r(x)) =: m. This case appears exactly

if deg(q) = deg(r) and, moreover, the leading coefficients of q and r are equal. Thus by
the Gosper-type representation (G1) we may assume that these leading coefficients are
equal to 1. Let f(x) = fKxK + O(xK−1), fK ∈ Q \ {0}, be a polynomial solution f of
(GE). Then the rest of the degree analysis can be read off the observation that

p(x) = fK L(K) xK+m−1 + O(xK+m−2), (5.1)

with L(K) being a linear polynomial of the form L(K) = K −K0, where K0, the root
of L(K), is determined as the coefficient of xm−1 in r(x)− q(x + 1), in usual notation

K0 := 〈xm−1 〉 (r(x)− q(x + 1)). (5.2)

According to the degree comparison of both sides of (5.1) the set of polynomial solutions
f of (GE) splits into two classes: those solutions f with deg(f) = K0, which is just
possible for K0 being an integer greater than deg(p)−m + 1, and those solutions f with
deg(f) 6= K0, which corresponds to K := deg(p) − m + 1. Recalling that m = deg(q),
one has

Case 2a: if K0 is not an integer, then K is uniquely determined as K := deg(p) −
deg(q) + 1,

Case 2b: if K0 is an integer, take K := max(K0, deg(p)− deg(q) + 1).
It may happen that K is determined to be a negative integer. This means that no hy-

pergeometric sequence (sn)n≥0 solving the difference equation (DE) exists and Gosper’s
algorithm terminates.

5.1. K0-cases

In his survey on indefinite summation algorithms, Lafon (1983) writes about Gosper’s
algorithm: “We have never observed that (the degree) ... was set to K0; here some im-
provements may be possible.”
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This remark is a bit confusing. Actually such a “K0-example” is provided by Lafon
himself on the same page (Lafon, 1983, p. 75): For the (regular rational) input an =
1/(n(n + 2)), K := K0 (= 2) is set by Gosper’s algorithm as the degree for the polynomial
f(n).

Moreover, there are prominent proper hypergeometric sequences in which exactly the
K0-setting yields a solution. One of such sequences arises from the famous Apéry recur-
rence, see section 6.3.

5.2. rational sequence summation

Suppose we run Gosper’s algorithm on the rational sequence input (F (n))n≥0 of the
form F (x) = f1(x)/f2(x), f1, f2 ∈ Q[x].

Let (5.3) be Gosper’s representation of the quotient F (x)/F (x− 1):

f1(x)f2(x− 1)
f2(x)f1(x− 1)

=
p(x)

p(x− 1)
· q(x)
r(x)

. (5.3)

¿From (5.3) we have

f1(x)f2(x− 1)p(x− 1)r(x) = f2(x)f1(x− 1)p(x)q(x). (5.4)

We see that deg(q(x)) = deg(r(x)) =: m and 〈xm 〉 q(x) = 〈xm 〉 r(x). Thus Case 2 of
Gosper’s degree analysis applies. We have to look for the value of K0:

Proposition 5.1. For each nonzero rational function F (x) we have

K0 = deg(p(x))− deg(q(x))−Deg(F (x)), (5.5)

where K0 is the value computed by Gosper’s algorithm in the Case 2 and p(x), q(x), r(x)
are the polynomials arising in Gosper’s representation (5.3).

Proof. Denote f1(x) =
∑s

i=0 aix
i, f2(x) =

∑t
i=0 bix

i, p(x) =
∑d

i=0 pix
i, q(x) =∑m

i=0 qix
i, r(x) =

∑m
i=0 rix

i with as bt pd qm rm 6= 0. Note that qm = rm.
By coefficients comparison at xs+t+d+m−1 in (5.4) we obtain (remember that qm = rm)

as−1btpdrm + as(−tbt + bt−1)pdrm + asbt(−dpd + pd−1)rm + asbtpdrm−1 =
bt−1aspdrm + bt(−sas + as−1)pdrm + btaspd−1rm + btaspdqm−1,

hence

(s− t− d)as bt pd rm = as bt pd (qm−1 − rm−1)

and

(−d + m− t + s)rm = mrm + qm−1 − rm−1.

Thus

d−m + t− s = −mrm + qm−1 − rm−1

rm
,

which together with qm = rm yields

deg(p(x))− deg(q(x))−Deg(F (x)) = −2
mqm + qm−1 − rm−1

qm + rm
.
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On the r.h.s. of the last equation we have the value

− 2
〈xm−1 〉 (q(x + 1)− r(x))
〈xm 〉 (q(x) + r(x))

. (5.6)

W.l.o.g. we can assume q and r to be monic. Then (5.6) is precisely equal to the value
K0 (cf. (5.2)) in Gosper’s degree analysis. Thus we have proved that (5.5) holds for each
rational input sequence. 2

5.2.1. description of the K0-case in rational summation

With respect to our result, the “K ← K0”-case in rational summation occurs if and
only if

deg(p(x))− deg(q(x))−Deg(F (x)) ≥ deg(p(x))− deg(q(x)) + 1 (5.7)

iff
Deg(F (x)) ≤ −1

iff the summation input (F (k))k≥0 is a regular rational sequence.
If this is the case, the solution to the summation problem is given by

R(x) =
q(x + 1)f(x)

p(x)
F (x)

with deg(f(x)) := K0 = deg(p(x)) − deg(q(x)) − Deg(F (x)). (It follows from Gosper’s
precise analysis that this degree bound is accurate.) Thus

Deg(R(x)) = deg(q(x)) +
(
deg(p(x))− deg(q(x))−Deg(F (x))

)

− deg(p(x)) + Deg(F (x)).

Hence, Deg(R(x)) = 0.

5.2.2. a better degree setting for regular rational input

We learned that for regular rational function inputs F (x), the solution function R(x) of
(DE) computed by Gosper’s algorithm arises from the K0-case and, moreover, Deg(R(x))
= 0 holds. Let R(x) = r1(x)/r2(x), deg(r1(x)) = deg(r2(x)) and thus r1(x)/r2(x) =
c + r3(x)/r2(x), c ∈ Q \ {0} with r3 = 0 or deg(r3(x)) < deg(r2(x)). ¿From this we get
another solution of the difference equation (DE), namely

r3(x)
r2(x)

− r3(x− 1)
r2(x− 1)

= F (x). (5.8)

Since Deg(r3(x)/r2(x)) < 0, we see that this solution cannot correspond to the K0-
case. Moreover, (5.8) implies Deg(r3(x)/r2(x)) = Deg(F (x)) + 1 for the regular rational
solution of (DE) from which we calculate the degree of the respective polynomial f(x)
to be

Deg(F (x)) + 1−Deg(F (x)) + deg(p(x))− deg(q(x))

which is the second alternative of Case 2b of Gosper’s algorithm.
For the practical applications we note that the degree of f(x) (and so the order of the

linear system for coefficients of f(x)) decreases by the same value as the rational function
degree of the resulting sum does, i.e. by −Deg(F (x))− 1.
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5.2.3. non-regular rational input

The last class of inputs that was not treated yet is the set of non-regular rational
sequences. We show that no improvement of degree setting is possible here:

¿From proposition 4.3.3 we have that

Deg(F (x)) ≥ 0 ⇐⇒ deg(z(x)) < deg(p(x))− deg(q(x)) + 1

for any non-zero solution z(x) ∈ Q[x] of the homogeneous form of the key equation (GE).
Due to Gosper’s degree analysis this also implies

deg(z(x)) < deg(y(x))

where y ∈ Q[x] solves (GE). This means that in the case of the non-regular rational
input, all solutions of (GE) are of the same degree. In particular, we see that this degree
is deg(p(x))− deg(q(x)) + 1 since proposition 4.3.3 and proposition 5.1 yield together

K0 = deg(z(x))

and so K0 is less than deg(p(x))− deg(q(x)) + 1 here.

5.3. “plain” and “hidden” rational sequences

We should be aware of the fact that the input sequence actually might be a rational
one but in a disguised form. For example,

ak = k!/(k + 6)! (5.9)

is a rational sequence.
Such cases are recognized easily when processed by humans but need more care when

we implement summation in a computer algebra system. Success with the rationality test
allows us to reduce computation time by taking the better degree setting instead of the
maximum in Case 2b.

Here we meet central issues of symbolic computation - simplification and canonical
forms.

However, even if we do not simplify the input completely, there is a guideline that can
help us:

Proposition 5.2. Let m be the value computed in Case 2 of Gosper’s algorithm (cf. sec-
tion 5). If we get into Case 2b with m = 1 (q and r are linear polynomials), then the
input sequence is rational.

Proof. We can make q and r monic. Suppose q(x) = x + q0, r(x) = x + r0. Then
K0 = r0−q0−1 must be a nonnegative integer. Denote the summation input by (ak)k≥0.
Then the G-representation is

ak

ak−1
=

p(k)
p(k − 1)

· k + q0

k + r0

for some p(x) ∈ Q[x]. Now the result follows directly from proposition 2.1 applied with
p1(x) := p(x) and p2(x) :=

∏r0
i=q0+1(x + i). 2

Based on our results given up to now, we suggest the following improvement of the
degree setting in Gosper’s algorithm by regrouping the two subcases of Case 2:
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If K0 is not an integer or the input sequence is rational or m = 1
then K := deg(p(n))−m + 1 {Case 2a}
else K := max(K0 , deg(p(n))−m + 1) {Case 2b}

6. Other K0-Examples

We have shown how to improve the degree reasoning for rational inputs. In this section
we present some proper hypergeometric K0-cases documenting that no general improve-
ment can be made here.

6.1. a “simple” proper hypergeometric K0-case

It is hard to find a “nice” example with binomials or even with (integer) factorials
and not to fall into the rational case at the same time. This is the reason why we use
somewhat cumbersome fractions and raising factorials here:

Let xn = x(x + 1) . . . (x + n − 1) be the raising factorial and let p̃(n) = 1
36 (−35n2 −

20n + 65). We want to sum

an = p̃(n)
(−5/2)n+1

2

(−1/3)n+1(−2/3)n+1
.

The Gosper’s representation here is p(n) = p̃(n), q(n) = (n−5/2)2, r(n) = (n−1/3)(n−
2/3), so deg(q(n)) = deg(r(n)) and leading coefficient of q is equal to the leading coeffi-
cient of r. We have that m = 2 and the degree bounds for polynomial f(n) are

deg(p)−m + 1 = 2− 2 + 1 = 1

and
K0 = 2.

Thus we are in the K0-case with a balanced linear system for unknown coefficients c2,
c1, c0 of polynomial f(n). The system has exactly one solution because its determinant
is different from zero (namely 1225/46656). The solution is (c2, c1, c0) = (1, 0, 1), thus we
are in the proper hypergeometric K0-case with f(n) = n2 + 1. The sum is

sn = (n− 3/2)2(n2 + 1)
(−5/2)n+1

2

(−1/3)n+1(−2/3)n+1
.

Remark: We note that for m = 1 and K = K0, the linear system for coefficients
of f(x) = cK0x

K0 + . . . + c0 is underdetermined. It has got K0 equations and K0 + 1
unknowns. This fact just supports the claim of proposition 4.2.2.

Generally, in the “K = K0” case the linear system for coefficients of f(x) arises from
coefficient comparisons at deg(q(x + 1)) + deg(f(x)) + 1− 1 = K0 + m different powers
of x in (GE). (The +1 counts the absolute term whereas −1 discounts the vanishing
leading term, cf. Gosper’s degree analysis!). Hence, the system has K0 + m equations
and K0 + 1 unknowns. Thus it is the value of m that influences whether the system
is underdetermined, balanced or overdetermined (m = 1, m = 2, m > 2). The value
m = 1 means rational input, hence the value m = 2 from previous example is minimal
for presentation of a proper hypergeometric K0-case.
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6.2. the apéry recurrence

Finally we present a “nice” proper hypergeometric K0-example. The value of m is
equal to 4 here.

For nonnegative integers n, k let

Fn,k =
(

n

k

)2(
n + k

k

)2

. (6.1)

Let us recall the famous Apéry recurrence

∀n ∈ N c0(n) Sn + c1(n) Sn+1 + c2(n) Sn+2 = 0, (6.2)

where

c0(n) = (n + 1)3, c1(n) = −(2n + 3)(17n2 + 51n + 39),
c2(n) = (n + 2)3, (6.3)

and

Sn =
n∑

k=0

Fn,k. (6.4)

Remark: For an excellent account on how this recurrence is used to prove the irra-
tionality of ζ(3) see (van der Poorten, 1979).

Note that the double-indexed sequence (Fn,k)n≥0,k≥0 is hypergeometric in both vari-
ables. Under slight side-conditions (see e.g. Zeilberger (1990a), (1990b) or Wilf and
Zeilberger (1992)) for such sequences there exist a nonnegative integer d, polynomials
c0(n), . . . , cd(n) being independent of k, and a double-indexed sequence (Gn,k)n≥0,k≥0,
again hypergeometric in both variables, such that

c0(n) Fn,k + c1(n) Fn+1,k + . . . + cd(n) Fn+d,k

= Gn,k −Gn,k−1. (6.5)

Due to the fact that the left-hand-side of the equation above can be rewritten as
Fn,k times a rational function in the two variables n, k, i.e. the resulting expression is
hypergeometric in k (actually it is hypergeometric in both variables), it is possible to
compute Gn,k and the coefficient polynomials ci(n) by executing Gosper’s algorithm once
the order d is known.

Now running this procedure in the Apéry situation, i.e. with choosing Fn,k as defined
in (6.1) and setting d = 2, produces exactly the situation of Case 2b described above. In
the following we give the details of that computation.

The left-hand-side of equation (6.5) can be rewritten as the following rational function
multiple of Fn,k:

p0(n, k) c0(n) + p1(n, k) c1(n) + p2(n, k) c2(n)
(n− k + 1)2(n− k + 2)2

Fn,k = ak, (6.6)

where

p0(n, k) = (n− k + 2)2(n− k + 1)2,
p1(n, k) = (n− k + 2)2(n + k + 1)2,
p2(n, k) = (n + k + 2)2(n + k + 1)2.
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The polynomials corresponding to a G-form of the quotient ak/ak−1 are computed as

p(x) = c0(n)p0(n, x) + c1(n)p1(n, x) + c2(n)p2(n, x)
q(x) = (n + x)2(x− n− 3)2,
r(x) = x4.

In addition, we find that

deg(p(x)) = 4, deg(q(x + 1)− r(x)) = 3, and deg(q(x + 1) + r(x)) = 4.

One can observe that

K0 = 2 and deg(p(x))−m + 1 = 1.

Thus we are in Case 2b, where now the degree setting K for f(x) has to be set to K0,
i.e. K := 2.

Following that pattern, i.e. that of the polynomials p, q, r, it is easy to construct further
examples where exactly the same instance of Case 2b occurs.

Remark: For the sake of completeness we want to remark that running through Gosper’s
algorithm one gets for the coefficient polynomials ci(n), i = 0, 1, 2, the same values (6.3)
as in the Apéry recurrence, f(x) = 4(2n + 3)(2x2 + x− (2n + 3)2) and thus

Gn,k =
q(k + 1)

p(k)
f(k)ak =

(n + k + 1)2

(n− k + 1)2
f(k)Fn,k.

With these substitutions Apéry’s recurrence (6.2) follows from (6.5) by “telescoping”,
i.e. summation w.r.t. k. (If n is fixed then Gn,k as a function in k has finite support, as
it is a rational function multiple of Fn,k.)

7. Conclusion

To conclude this article we briefly comment on other methods for rational function
summation.

The (probably) first method for rational sequence summation was designed by Abramow
(1971). Nowadays it can be viewed as a special version of Gosper’s algorithm adjusted
for rational sequences. Abramow solves an equation which is similar to Gosper’s equation
(GE), however, he considers only Case 2a in degree setting since, in his approach, it leads
to the solution if there is any. It follows from (5.7) that Case 2a delivers a better setting
than Case 2b if and only if the degree of the numerator of the input sequence is less
than the degree of the denominator. This can be always done by putting the polynomial
part of the input aside. There are considerably easier methods for summing polynomials.
(E. g., transformation into the falling factorial base.)

On the other hand, Gosper stuck to the higher degree setting because he wanted
to ensure that no solution is lost. Sometimes we pay for this comfort by unnecessary
computations.

As far as we know, neither of them considered or discussed the approach of the other
one.

Summation analogs of Hermite integration of rational functions have been provided
by Abramow (1975) and Moenck (1977). Since both methods are iterative and based on
gcd-computations, they cannot be compared to the two mentioned above.

Recently Paule (1992), in an effort to close gaps in Moenck’s work, introduced the
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concept of greatest-factorial factorization. In that paper a new approach to rational
sequence summation is given including a summation analog of Horowitz’s method for
rational function integration.

For a detailed comparison of the last three approaches mentioned see Pirastu (1992).

The first named author was supported by the Austrian Federal Ministry of Science
and Research. The work of the second author was partially sponsored by Austrian FWF
P7220 and by the Austrian Federal Ministry of Science and Research in the frame of
ESPRIT basic research action 3125 “MEDLAR”.
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