Note

A Note on Bailey's Lemma

PETER PAULE*

Lehrstuhl II für Mathematik, Universität Bayreuth, Postfach 3008, D-8580 Bayreuth, Federal Republic of Germany

Communicated by Gian-Carlo Rota

Received May 8, 1986

Combining the q-binomial theorem in the version of J. Cigler (Monatsh. Math. 88, 87-105 (1979)) with the ε -technique of L. J. Rogers (G. E. Andrews, *Math. Chronicle*, 11, 1-15, 1982) a short operator proof of a significant special case of Bailey's Lemma is given. © 1987 Academic Press, Inc.

1. Introduction

We consider the following highly instructive special case of Bailey's Lemma

$$\sum_{k=0}^{n} \frac{a_k x^k}{(qx)_{n+k}(q)_{n-k}} = \sum_{j=0}^{n} \frac{q^{j^2} x^j}{(q)_{n-j}} \sum_{k=0}^{j} \frac{a_k q^{-k^2}}{(qx)_{j+k}(q)_{j-k}},$$
 (1)

using the standard notation [1]: $(a)_m = (a;q)_m = (1-a)(1-qa)\cdots (1-q^{m-1}a)$, $(a)_{\infty} = (a;q)_{\infty} = (1-a)(1-qa)(1-q^2a)\cdots = \lim_{m\to\infty} (a)_m$ and for an integer n: $(a)_n = (a;q)_n = (a)_{\infty}/(q^na)_{\infty}$, where q is a real number with $q \neq 0$ and |q| < 1.

To obtain (1) from Bailey's Lemma [4; (3.1)] take $\rho_1 = q^{-s}$, $\rho_2 = q^{-t}$, simplify and send t to infinity. Substituting $\alpha_k = q^{-k^2} a_k$ yields (1).

Besides its special importance within the scope of the theory of basic hypergeometric functions transform (1) is extremely useful in handling identities of the Rogers-Ramanujan type.

Namely, the power of (1) lies in the fact that the second sum of the right-hand side of (1) is of the same form as the sum on its left-hand side. Thus we may iterate (1) substituting the whole formula (modified by taking $a_k q^{-k^2}$ instead of $a_k x^k$) in the place of the second sum of the right-hand

* Supported by the Alexander von Humboldt-Foundation.

164

0097-3165/87 \$3.00

Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. side as often as we want, in order to reduce the initial sum on the left to a well-known one, as in many cases to one of the finite forms of the q-binomial theorem, e.g.,

$$\sum_{k=-\infty}^{\infty} \frac{(-1)^k x^k q^{(1/2)k^2}}{(q)_{j+k} (q)_{j-k}} = \frac{(x^{-1} q^{1/2})_j (x q^{1/2})_j}{(q)_{2j}}.$$
 (2)

Many applications of this principle can be found in [7], where the following representations of (1)—notice that all sums are finite—

$$\sum_{k=-\infty}^{\infty} \frac{c_k}{(q)_{n+k}(q)_{n-k}} = \sum_{j=0}^{\infty} \frac{q^{j^2}}{(q)_{n-j}} \sum_{k=-\infty}^{\infty} \frac{c_k q^{-k^2}}{(q)_{j+k}(q)_{j-k}}$$
(3)

 $(x = 1, a_0 = c_0 \text{ and } a_k = c_k + c_{-k} \text{ for } k \ge 1 \text{ in (1)}; \text{ the special case } c_k = x^k q^{ck^2}$ was first stated by Bressoud in [5]) and

$$\sum_{k=-\infty}^{\infty} \frac{c_k}{(q)_{n+k}(q)_{n+1-k}} = \sum_{j=0}^{\infty} \frac{q^{j^2+j}}{(q)_{n-j}} \sum_{k=-\infty}^{\infty} \frac{c_k q^{-k^2+k}}{(q)_{j+k}(q)_{j+1-k}}$$
(4)

 $(x=q, a_k=(q^{-k}/1-q)(c_{k+1}+c_{-k})$ for $k\geqslant 0$ in (1)) are used, in combination with their limiting forms $n\to\infty$, to give simple "iteration-proofs" of partition identities like the Rogers-Ramanujan identities, the Rogers-Selberg identities (mod 7), the Göllnitz-Gordon identities (mod 8) and some of their multiple-series generalizations (cf. [1]).

Remark. In [3] G. Andrews has brought this idea to its full generality, using the form of Bailey's Lemma from Section 4 of [4] and introducing the notion of Bailey chains.

In the following section we present a new proof of transform (1), in order to give some insight into its structure from the operator-point of view.

2. Proof of (1)

Let R denote the set of all power series in the variable x over the reals. On R we define the following linear operators: the multiplication operator $(\mathbf{x}f)(x) = xf(x)$, the ε -operator $(\varepsilon f)(x) = f(qx)$ and its inverse $(\varepsilon^{-1}f)(x) = f(q^{-1}x)$. The following properties are easy to check:

$$\varepsilon(fg) = (\varepsilon f)(\varepsilon g),$$
 (5)

$$(\varepsilon^{-1} + \mathbf{x})(qx)_{\infty} = (qx)_{\infty} \tag{6}$$

and

$$\mathbf{x}\varepsilon^{-1}f(x) = q\varepsilon^{-1}\mathbf{x}f(x) \tag{7}$$

for all f(x), $g(x) \in R$.

We shall use the following version of the q-binomial theorem (cf., Cigler [6]): For linear operators A, B on R with BA = qAB the following formula holds (n = 0, 1, 2,...)

$$(A+B)^{n} = \sum_{k=0}^{n} {n \brack k} A^{k} B^{n-k}, \tag{8}$$

where $\begin{bmatrix} n \\ k \end{bmatrix}$, the Gaussian polynomial, is defined to be zero for k < 0 or k > n and $\begin{bmatrix} n \\ k \end{bmatrix} = (q)_n/(q)_k(q)_{n-k}$ for $0 \le k \le n$.

Its proof is an easy induction exercise using the recurrence formula $\binom{n+1}{k} = q^k \binom{n}{k} + \binom{n}{k-1}$.

Now we are ready to prove Bailey's transform (1): Using the ε -operator the left-hand side of (1) can be rewritten as

$$\sum_{k=0}^{n} \frac{a_k x^k}{(qx)_{n+k}(q)_{n-k}} = \frac{1}{(qx)_{\infty}} \left(\sum_{k=0}^{n} \frac{a_k x^k}{(q)_{n-k}} \varepsilon^{n+k} (qx)_{\infty} \right)$$

$$= \frac{1}{(qx)_{\infty}} \left(\sum_{k=0}^{n} \frac{a_k x^k}{(q)_{n-k}} \varepsilon^{n+k} (\varepsilon^{-1} + \mathbf{x})^{n-k} (qx)_{\infty} \right)$$
(by the fixpoint-property (6))
$$= \frac{1}{(qx)_{\infty}} \left(\sum_{k=0}^{n} \frac{a_k x^k}{(q)_{n-k}} \varepsilon^{n+k} \sum_{j=0}^{n-k} {n-k \choose j} (\varepsilon^{-1})^{n-k-j} \mathbf{x}^j (qx)_{\infty} \right)$$
(using (7) together with the q-binomial theorem (8))
$$= \frac{1}{(qx)_{\infty}} \sum_{k=0}^{n} \frac{a_k x^k}{(q)_{n-k}} \sum_{j=0}^{n-k} {n-k \choose j} q^{j(j+2k)} x^j (q^{j+2k+1} x)_{\infty}$$
(by (5))
$$= \sum_{k=0}^{n} \frac{a_k x^k}{(q)_{n-k}} \sum_{j=k}^{n} {n-k \choose j-k} q^{j^2-k^2} \frac{x^{j-k}}{(qx)_{j+k}}$$

$$= \sum_{j=0}^{n} \frac{q^{j^2} x^j}{(q)_{n-j}} \sum_{k=0}^{j} \frac{a_k q^{-k^2}}{(qx)_{j+k} (q)_{j-k}},$$

as desired.

REFERENCES

- G. E. Andrews, "The Theory of Partitions" (Gian-Carlo Rota, Ed.), Encyclopedia of Mathematics, Vol. 2, Addison-Wesley, Reading, Mass. 1976.
- G. E. Andrews, L. J. Rogers and the Rogers-Ramanujan identities, Math. Chronicle 11 (1982), Part 2, 1-15.

- 3. G. E. Andrews, Multiple series Rogers-Ramanujan type identities, *Pacific J. Math.* 114 (1984), 267-283.
- 4. W. N. BAILEY, Identities of the Rogers-Ramanujan type, *Proc. London Math. Soc. (2)* 50 (1949), 1-10.
- 5. D. M. Bressoud, An easy proof of the Rogers-Ramanujan identities, J. Number Theory 16 (1983), 235-241.
- 6. J. Cigler, Operatorenmethoden für q-Identitäten, Monatsh. Math. 88 (1979), 87-105.
- 7. P. PAULE, On Identities of the Rogers-Ramanujan Type, J. Math. Anal. Appl. 107 (1985), 255-284.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium