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Abstract

The Extended Engel Expansion is an algorithm that leads to unique series expansions of
g-series. Various examples related to classical partition theorems, including the Rogers-
Ramanujan identities, have been given recently. The object of this paper is to show that
the new and elegant Rogers-Ramanujan generalization found by Garrett, Ismail, and
Stanton also fits into this framework. This not only reveals the existence of an infinite,
parameterized family of extended Engel expansions, but also provides an alternative
proof of the Garrett, Ismail, and Stanton result. A finite version of it, which finds an
elementary proof, is derived as a by-product of the Engel approach.
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1 Introduction

Let C((q)) denote the field of formal Laurent series over the complex numbers. If

A=Y en” €Clla)),

we call v = v(A) the order of A and define the norm of A to be
Al = 21,

Note that this norm induces the standard notion of convergence for sequences, infinite series
and products of formal Laurent series. In addition, we define the integral part [A] € Clg~1]
of A by

(4] = Z cng”.

v<n<0

As described by Perron [9, sect. 34], Engel originally defined a series expansion for real
numbers. In [7], this concept was extended to formal Laurent series in the following way:

Definition 1 (“Engel sequence”). Given A € C((q)). Set Ag = A and ag = [A] and
recursively define for n > 0:

An+1 = anAn —1

where

w=[1] 2o

We call ((I,n)nzo the Engel sequence associated to A.
In [7], the following two theorems are proved.

Theorem 1 (“Extended Engel Expansion (EEE)”). (i) Given A € C((q)) with asso-
ciated Engel sequence (an)n>o. Then

= 1
A:(10+27a1 a (])
— L.y

holds in C((q)) where the series converges with respect to the above norm. This expansion is
finite if and only if A € C(q).
(ii) For n > 0:

v(an) < —n and v(any1) < v(a,) —1. (2)
The extended Engel expansion turns out to be unique in the following sense:

Theorem 2 (Uniqueness of EEE). Given A € C((q)). Let (an)n>0 be a sequence of Lau-
rent polynomials from Clg~'] with ag = [A]. If (an)n>0o satisfies (1) and (2) then it is the
Engel sequence associated to A.



In [3] and [4] various classical g-series identities are shown to be examples of extended
Engel expansions. For instance, in [3] one finds a detailed proof that the celebrated Rogers-
Ramanujan identities [2] fit exactly into this pattern. In the present article we show that
they form the basis of an infinite collection of extended Engel expansions.

Only recently, T. Garrett, M. Ismail, and D. Stanton have found a new and elegant
generalization [5, (3.5)]. Tt involves an extra parameter — the parameter m in identity (8)
from the next section — which ranges over the nonnegative integers. In particular, the choices
m = 0 and m = 1 result in the classic Rogers-Ramanujan case.

It is the object of this paper to show that this infinite family of Rogers-Ramanujan type
identities fits into the EEE pattern. In other words, in the next section we prove that for
arbitrary choice of the parameter m, the resulting identity is an extended Engel expansion.
For doing so, we need a few facts from g-series.

First recall the standard definition of the ¢-shifted factorials:

(1—a)(1 —aq)--- (1 —ag"~1), if k>0,
(a;q)s =< 1, if k=0,
(1 =ag=")(1 —ag™?) .- (1 —ag")), ifk <0,

and
(@;9)0 = H(l — aqk).
k=0

The Gaussian polynomials are defined as usual as

(6D n :
[n] = { (()q;q)kq(g;q)n—k , H0<k<n,

k , otherwise.

It is well-known that I. Schur [10] independently rediscovered the Rogers-Ramanujan identi-
ties for which he gave two different proofs. In one of these proofs certain polynomial families
(dm)m>0 and (em)m>o play a fundamental role. Schur [10, (29.)] gave a presentation in
terms of Gaussian polynomials as follows: For m > 1,

A = S (= 1)k gt GR=D2| M o
Zki q [l%’ﬂ]
and
em = _\k k(BE+1)/2| T~ 1
S La | (@)

where the initial values are defined as dg = 1 and e = 0.
In particular, Schur [10, (20.)] made use of the following fundamental properties: Both
polynomial sequences (dp,) and (em) satisfy the recurrence

Cm42 = Cmg1 + q"Cm (m > 0); (5)

wn addition, in the limit m — oo one has

1
doo — ’ ;ol _1 k k(5k—3)/2 — 6
(4:9) zk:( )'e (9% 4%) 00 (4% ¢%) oo (©)




and

1
oy = 1 k k (Bk+1)/2 _ . 7
zk: (2:0%) 00 (4% %) 0 0

We remark that the proof of the crucial property (5) nowadays can be done automatically with
the computer [8]. Also, note that the convertion of the series into the product representation
is by Jacobi’s triple product identity. (See, e.g., [2, p. 21, eq. (2.2.10)].)

We conclude this section by listing the first sequence entries explicitly. Namely,

dO:ladlzoad2:1ad3:];d4:]+q2ad5:]+q2+q3;d6:]+q2+q3+q4+q6;
and
co=0,e1=lea=1les=1+qes=1+q+q> es=1+q+¢"+¢*+¢*,
e =14+q+q>+¢>+2¢* +¢°+¢°.
2 Engel Expansion

First we recall the elegant Rogers-Ramanujan generalization found by T. Garrett, M. Ismail,
and D. Stanton [5, (3.5)]: For m > 0,

S DN 7 G S ) T E ®)
(G (3P)x0%0%)0  (0767)e (0% ¢%) s

The authors of [5] proved this identity by evaluating an integral involving g-Hermite poly-
nomials in two different ways and equating the results. In this section we will show that given
the right hand side of (8), the left hand side of (8) is nothing but the corresponding extended
Engel expansion. Qur proof will only use elementary properties of the Schur polynomials d,
and e,,, and thus provides an alternative verification of (8).

More precisely, we will prove the following statement:

Theorem 3. Let m be a nonnegative integer and A be the right hand side of (8). Then the
sequence (an)n>o defined as

[ ifn=0,
In = gCndm=1) _g=(ntm=1) " jrp >

1s the Engel sequence associated to A.

This proves identity (8) since (1) then implies

—110+Z —1+qu+

n>1 ’ n>1 q q)n

1) +(m+2)+-+(m+2n-1)

qn -|-mn

n>1 754

The proof of Theorem 3 for the cases m = 0 and m = 1 can be found in [3]. Also for
m > 2 we essentially follow the same steps; however for doing so, we need information about
the expressions dmemykr — dmykem for k> 1.



2.1 A finite version of the MacMahon-Schur identity

The extra ingredients we need for the proof of Theorem 3 are listed below. For instance, the
asymptotic estimate (11) will be used in order to extract the integral part.

Lemma 1. For integers m > 0 and k > 1:

dmem-i-l - dm+1em = (_1)mq(7:)a (9)
dmem+2 - dm+26m = (_l)mq(g)a (10)

and
dmem-l—k - dm+kem = (_l)mq(';) (1 + O(qm+1)>' (11)

The statements of Lemma 1 are easy induction exercises using (5). However, it is more
illuminating to prove Lemma 1 as a corollary of the following proposition which is a g-analog
of an identity for Fibonacci numbers

et Fonke — Fonoe1 oy = (—1)™ F. (12)
In fact, (12) is a specialization of Euler’s generalization of Cassini’s identity.(E.g., eq. (6.134)
in[6]withk—>m—-2 m—k,n—om-—1and all z; - 1.)
Proposition 1. For integers m > 0 and k > 1:

dm3m+k - dm-l—kem = (—1)mq(2) Z [k a ] - J:| qj2+mj (13)
>0 J

Proof. Let us denote the left side of (13) by f,, » and the right side of (13) by gy, r. Clearly,

gm1 = gma = (-1)"q(%). (14)
Furthermore for k£ > 2,
m k — 11— k’ — 92— .2 .
gm,k_gm,k—lz(—l)mq(2)2<|: . ‘7:| _ [ ) J:|>qJ +mj
>0 J J
m k=2 -7l 2 .
= (—1)mq(3) § gk-1-2 §*+mj
(=1)™q Zq i1 q
20
m k—3—3] s20ms
s [ e
ot Y
=" ks, (15)
To complete the proof we need only show that f, ; satisfies the initial conditions in (14) and

the recurrence in (15).
We note



f p = dm, dm,+k‘ — dm, dm,+k‘—1 + qm+k_2dm+k:—2
™ €m Em+k €m Em4k—1 + qm+k_26m+k:—2
= fm,k—1+qm+k‘_2fm,k—25 (16)
which replicates the recurrence in (15).
Furthermore it is obvious that f,, o = 0, and
f | = dm dm+1 — dm dm + qm_ldm—l — m—1 dm—l dm
m, €m Em+1 €m €m + qm_lem—l €m—1 €m
= _qm_lfm—lal' (17)

From (17) we may deduce by induction on m that

Fux = (=1)"q(5), (18)

and by (16) with k = 2, we see that

Frnz = (~1)7q(3) (19)

as well.
Consequently f, & and g, & fulfill the same two initial values and second order recurrence.
So fm,k = gm k as desired. O
For the sake of completeness we state:
Proof of Lemma 1. Equations (9) and (10) are simply the cases k = 1 and k& = 2 of Proposition
1; also (11) is a direct consequence of the sum representation in (13). O

Remark. (i) One of us had wondered for decades whether there were g-analogs of effectively
bi-linear expressions like (12). It was only when we were forced to estimate the left side of
(13) that this g-analog emerged. Note that while the right side of (13) is, indeed, a g-analog
of (—=1)™ Fy, it mixes the variables m and k in such a way that (—1)"™ is the only trace of m
left when ¢ = 1.

(i1) In fact, Proposition 1 is a natural generalization of the polynomial versions of the Rogers-
Ramanujan identities given in [1]. (A computer proof can be found in [8, Theorem 2].)
Proposition 1 itself is a polynomial version of the Garrett, Ismail and Stanton result; namely,
sending k to infinity in (13) immediately results in (8).

Now we are ready for the proof of Theorem 3.

2.2 Proof of Theorem 3
Proof of Theorem 3. Define A to be the right hand side of (8) and set Ag = A. For n > 1 set

A = (=))7qm (B =001 S i (de; — djepn). (20)
j=m+1

Given (an)n>0 as in the statement of Theorem 3, the proof according to Definition 1 and
Theorem 1 splits into two parts: (i) verifying the relation

anAn =14 Ang1  (n>0) (21)



and (ii) showing that

ao = [A] and a, = [A—] (n>1). (22)

Part (i): First we treat the case n = 0. Applying (5) we observe that for any integer N
(=2 m+1),

N N N N
do Y dej—em Y Pdi=dn Y (ejr2—cip1) —em Y (dj2— djy)
j=m+1 j=m+1 j=m+1 j=m+1

=dm(ent2 — emt2) —em(dNto — dmyz) = dmenyas — dNyoem — (dmemyo — dmyoem)
= dm€N+2 — dN+2€m — (—1)mq(73)’

where the last line is by (10). In the limit N — oo, and after multiplication by (—l)mq_(f),
this turns into

Alz(—l)mq_(ys) (dm Z quj—Bm Z qjdj)

j=mt1 j=m+1
= (=) Ddpews — (=1)"g (Fepde — 1
)" Pd (=)= ey,
(4:0%)00 (4% 0%) 0 (4%10%) 00 (4% 4°) oo

since Ag = A and ag = 1.

—1:(10A0—1,

For n > 1 we compute
anAn — (q—(Zn-l—m—l) _ q—(n-l-m—l)) An

= (_1)mq—(';)—(m+1)n Z an(dmej - djem) -

jzm+1
(—l)mq_(g)_mn Z an(dmej —djem)
i>mt1
= (_l)mq_(r)_mn Z P (dmejp1 — djp1em) —
jzm
(=1)mq= G S g (de; = djem)
j>m+1

= (_l)mq_(z) (dm6m+1 - dm+13m) +
(g Emmn 3T I (e = ) = (djgr = dy)em)
j>m+1
=1+ (‘Um‘]_(g)_mn Z ¢ N (dpej1 — dj_1em)
Ji>m+l
(by (9) and (5), respectively)
=1+ (_l)mq—(’;‘)—(m—l)n Z qj(n+1) (dmej - djem)
j>m



Part (11): Again we treat the case n = 0 first. Applying (11) we obtain

] = (=10 Odeas = (-1)"g D]

m

= {(—l)mq_(z) ((—l)mq(y’:)(l + O(qm+1))} =1=ayg.

In order to prove the case n > 1, i.e., before extracting the integral part of A,, we first
derive a suitable asymptotic representation of A,,. To this end we introduce a positive integer
parameter a as follows:

A = (1) (B)=0n=D0=D S gin (g e; — dje,)
i>m+l

= (=1)mg~ () =(m=nn-) D g (dmemik — dmyrem)
k>1

= (=)= (3)=(m=1)(n-1)

<q(m+1)n (dmem+1 _ dm+1em) + q(m+2)n (dm6m+2 - dm+26m) +

S (demgr — dmgiem) + (—1)"g(F O I))
k=3

(by (11))

— q—(m—l)(n—l) (q(m+1)n +q(m+2)n+

(10

)
2n+m 1( qkn+ZO kn+m+1)+0( om))
=0

and , respectlvely)

Q

q2n+m 1 ( - q +O( 2n+m+1) +0( om))

— q2n+m—1 1 + O(q2n+m+1) + O(qom)
1 —qn )

Note that this estimate for A, indeed holds for any positive integer a and m > 0.
Consequently,

=)

| s (1 O+ + 00|

2n+m—1

1
= | (1= 07 0l 0™

— |:q—2n—m+] _ q—n—m+1 +O(q2) + O(q(a—Z)n—m+]):|



. m—1
— q—2n—m,+1 _ q—n—m+] if n Z

a— 2

Therefore, if we choose, for instance,
a=m+1,if m>2 and a=3,if m=0o0orm=1,

we have proven that

This completes the proof of Theorem 3. O

We conclude by recalling the classic Rogers-Ramanujan identities, namely the instances
m = 0 and m = 1 of (8). As already mentioned, in [3] these identities are shown to be
extended Engel expansions. If one specializes m to 0 or to 1 in the derivation given above,
one essentially recovers the proofs presented there.
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