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Abstract

In this paper we discuss closed form representations of filter coefficients
of wavelets on the real line, half real line and on compact intervals. We
show that computer algebra can be applied to achieve this task. More-
over, we present a matrix analytical approach that unifies constructions
of wavelets on the interval.

1 Introduction

Wavelets are one of the most popular tools in signal– and image processing.
These functions are widely used in many practical applications such as data
compression [1, 21, 14], or for the solution of partial differential equations (see
e.g. [16]). Wavelets are special functions which often have a fractal character.
This makes it relatively difficult to work with them explicitly; for example point
evaluation of a wavelet function may already be a computational expensive task.
To work with wavelets one uses the nice feature that they are defined by a small
number of parameters, the so called filter coefficients. In general, any algorithm
relying on wavelets only use the filter coefficients and not the wavelet function
itself.

In this paper we review the basic equations for the filter coefficients. We show
that these equations can be solved using computer algebra. In particular we
can construct closed form representations of the wavelet coefficients; see section
3. The most popular (Daubechies [12]) wavelets form an orthonormal basis of
the space of square integrable functions on R. In many practical applications
one requires a basis on the half-line or on a compact interval. In section 4
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we review several constructions of wavelets on the interval. We construct the
filter coefficients of wavelets on the interval using a matrix analytical approach.
This approach has the advantage to unify several constructions in the literature
[18, 8, 9]. Moreover, our construction reveals that there exists a closed form
representation of the filter coefficients of wavelets on the interval. Another
advantage of using computer algebra is that one can avoid instabilities which
occur in numerical calculations of filter coefficients.

In sections 4.5 and 5 we summarize the algorithms for calculating closed form
coefficients of wavelets on the real line and on compact intervals and present
some results.

2 Orthogonal Wavelets on R

The construction of compactly supported orthogonal wavelet bases for L2(R) is
well understood (see e.g. [11, 12, 5, 13]) but is summarized here for the readers
convenience.

The construction of wavelets is related with the construction of a scaling function
φ, which satisfies that for fixed m ∈ Z the functions φm,k := 2−m/2φ(2−mx−k),
k ∈ Z are orthonormal with respect to L2(R). Moreover, the spaces Vm :=
span{φm,k, k ∈ Z} constitute a multiresolution analysis for L2(R), i.e.

Vm ⊂ Vm−1 , for m ∈ Z,

with
⋂

m∈Z
Vm = {0} and

⋃

m∈Z
Vm = L2(R) .

The wavelet spaces Wm are the orthogonal complements of Vm in Vm−1, i.e.

Wm := V ⊥
m ∩ Vm−1 .

One defines the wavelet ψ such that the functions ψm,k := 2−m/2ψ(2−mx− k),
k ∈ Z form a an orthonormal basis for Wm. Since both, Vm and Wm are
contained in Vm−1 the scaling function φ must satisfy the dilation equation

φ(x) =
∑

k∈Z
hkφ(2x− k) ,(1)

and the wavelet ψ satisfies

ψ(x) =
∑

k∈Z
gkφ(2x− k) ,(2)

where gk = (−1)kh1−k.

Daubechies [11] established conditions on the filter sequence {hk} in order to
ensure that the dilation equation (1) has a solution φ ∈ L2(R), with supp φ =
[−N+1 , N ], that for fixed m the functions φm,k are orthogonal, and polynomials
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up to degree N − 1 can be represented as linear combinations of φm,k. A
requirement for the existence of a solution of (1) is

∑

k

hk = 2 ,(3a)

which is equivalent to
∫

φ(x) dx = 1. Compact support of φ in [−N + 1 , N ] is
ensured by

hk = 0 if k < −N + 1 or k > N .(3b)

Orthonormality of the translates of φ, i.e.
∫

φ(x)φ(x − k) dx = δ0,l, can be
translated into

∑

k

hk hk−2l = 2 δ0,l ,(3c)

and the requirement that polynomials are representable by the φm,k leads to∫
xl ψ(x) dx = 0 for l = 0, . . . , N − 1, and thus

∑

k

(−1)kh1−k kl = 0 , (l = 0, . . . , N − 1) .(3d)

3 Closed Form Representation of Filter Coeffi-
cients

In this section we consider the calculation of the filter coefficients hk from equa-
tions (3a)-(3d) using methods of computer algebra. In order to do so it is
convenient to state explicitly the dependence of the filter coefficients hk on N
(the number of vanishing moments of the wavelet), i.e.

hN,k := hk .

Below we give a very brief and informal account on Gröbner bases, along with
the calculation of the filter coefficients for the special case N = 2. Afterward
we pass on to the cases N > 2 and present more computational details.

3.1 Gröbner Bases

First of all note that due to the conditions imposed explicitly on the summation
bounds in the equations (3a), (3c) and (3d), we can restrict our attention to
the task of solving only those; the conditions (3b) can be satisfied separately
by mere definition. But instead of solving, for fixed N , the equations (3a),
(3c) and (3d) numerically, we try to find closed forms for the coefficients hN,k,
i.e., to approach the problem from the symbolic computation point-of-view.
For solving systems of polynomial equations symbolically, the obvious tools to
use are Gröbner bases; this is their most natural domain of application, and
they were originally invented by B. Buchberger [3], [2] for that. For further
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introductory information see, e.g., [25] or [23]; an excellent source for additional
references and for the state of art is [4].

The case N = 1 is trivial; h1,0 = h1,1 = 1 is the only solution. Hence we
illustrate the Gröbner bases method for N = 2. In this case we are interested
in all common roots of the polynomials:

−2 + x1 + x2 + x3 + x4, −2 + x2
1 + x2

2 + x2
3 + x2

4,

x1x3 + x2x4, x1 − x2 + x3 − x4, 2 x1 − x2 + x4;(4)

for the sake of simplicity we introduced the following renaming of variables:

x1 = h2,−1, x2 = h2,0, x3 = h2,1, and x4 = h2,2.

Let I be the ideal in the polynomial ring C[x1, x2, x3, x4] generated by the poly-
nomials from (4). Applying Buchberger’s algorithm with respect to a certain
order (here: “lexicographic”) imposed on the monomials of C[x1, x2, x3, x4],
delivers an alternative description of the ideal I, namely by the generators:

−1− 4 x1 + 8 x2
1, −1− 2 x1 + 2 x2, −1 + x1 + x3, −1 + 2 x1 + 2 x4.(5)

The polynomials (5) again generate the ideal I, but additionally form a Gröbner
basis of I. This means, besides having exactly the same variety of common
roots as the generators from (4), they also possess the so-called “elimination
property”. Informally this means, the first polynomial in the Gröbner basis
is a univariate polynomial (here in x1), the second one a bivariate polynomial
that involves only one further variable (here in x1 and x2), and so on. In other
words, the role of the Gröbner basis algorithm in solving systems of algebraic
equations is the same as that of Gaussian elimination in solving systems of linear
equations, namely to triangularize the system or to carry out the elimination,
respectively.

Remarkably, in our situation of solving filter coefficient equations an even nicer
patter emerges. Namely, given the first univariate Gröbner basis polynomial
p1(x1) in x1 only, the second Gröbner basis polynomial is the sum of a univari-
ate polynomial in x1 and a linear polynomial in x2; the third Gröbner basis
polynomial is the sum of a univariate polynomial in x1 and a linear polynomial
in x3, and so on. This means, all other filter coefficients xi, for i > 1 find a
representation of the form

xi = pi(x1)(6)

where each pi(x1) is a polynomial from C[x1], i.e., depending on x1 only. Con-
sequently, there are as many different solutions of a system of filter coefficient
equations as there are different roots of the first univariate Gröbner basis poly-
nomial p1(x1). So far we have strong computational evidence that this observa-
tion holds also for arbitrary N . For readers interested in ideal theory we state
this in form of the following conjecture. (For more ideal theoretic background
information see, for instance, the ”shape lemma” in [25].)

Conjecture 1. Polynomial ideals corresponding to Daubechies filter coefficient
equations are 0-dimensional and radical.
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We conclude our informal discussion of the Gröbner bases approach by stating
the solution of the case N = 2 explicitly. Since (1 +

√
3)/4 and (1−√3)/4 are

the roots of the first Gröbner basis polynomial −1 − 4x1 + 8x2
1, we obtain two

solutions for the filter coefficients:

(x1, x2, x3, x4) =

(
1 +

√
3

4
,
3 +

√
3

4
,
3−√3

4
,
1−√3

4

)
(7)

and

(x1, x2, x3, x4) =

(
1−√3

4
,
3−√3

4
,
3 +

√
3

4
,
1 +

√
3

4

)
(8)

3.2 Reduction and Transformation of Filter Coefficient
Equations

For fixed N , the system (3a), (3c), (3d) consists of 2N + 1 equations in 2N
unknowns, 2N also being the number of Gröbner basis polynomials we finally
have to solve explicitly. In this section, as an important preprocessing step to
Gröbner bases computation, we transform the system (3a), (3c), (3d) into a more
economic form. More precisely, this system will consist of only N equations in N
unknowns; the corresponding Gröbner bases will then consist of N polynomials
for which one again observes the nice shape-pattern that was described above
(see the discussion preceding Conjecture 1).

In a first step we introduce a normalization via multiplication by a binomial co-
efficient; namely, for any fixed positive integer N we define aN,k by the equation

hN,k =
(

2N − 1
N − k

)
· aN,N−k, (k = −N + 1, . . . , N).(9)

This implicitly installs conditions (3b) and thus enables to relax the explicit
statement of the summation bounds in (3a), (3c), (3d).

More important, it turns out that for fixed positive integer N we can restrict
ourselves to consider aN,k as a polynomial in k of degree at most N − 1. This
means, we can write

aN,k =
N−1∑

j=0

PN,j

(
k

j

)
(10)

where the PN,j are the new unknowns we have to solve for. Note that we have
in total N of those — instead of 2N in the original setting (3a), (3c), (3d). In
addition, we shall see below why it is convenient to work with basis elements(
k
j

)
instead of kj .

With ansatz (9) and (10), respectively, in hand, we return to equations (3a) to
(3d). It is not difficult to see that only two of those remain: (3b) is guaranteed
due to the properties of the of the binomial coefficient we inserted in (9); also,
equation (3d) is satisfied for arbitrary l = 0, . . . , N − 1 because of the following
lemma which is taken from elementary combinatorics.
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Lemma 1. For any nonnegative integer n and complex numbers αi:
∑

k

(−1)k

(
n

k

)
(α0 + α1k + · · ·+ αnkn) = (−1)nn!αn .

Proof. See, for instance, [15, (5.42)].

Now, with ansatz (9) and (10), respectively, equation (3d) is rewritten as
∑

k

(−1)k−N+1

(
2N − 1

k

)
aN,k(k −N + 1)l = 0 ,

and both, aN,k and (k −N + 1)l are polynomials in k with degree less or equal
to N − 1. Hence by Lemma 1 equation (3d) is satisfied for all l in question.
Finally we state the new versions of the remaining equations (3a) and (3c) in
form of propositions.

Proposition 1. With ansatz (9) and (10), equation (3a) can be rewritten as:

N−1∑

j=0

(
2N − 1

j

)
PN,j

2j
= 2−2N+2.(11)

Proof. Substiting (9) and (10), and using the elementary fact
(
2N−1

k

)(
k
j

)
=(

2N−1
j

)(
2N−j−1

k−j

)
, equation (3a) is rewritten as

2 =
N−1∑

j=0

(
2N − 1

j

)
PN,j

∑

k

(
2N − j − 1

k − j

)
.

But
∑

k

(
2N−j−1

k−j

)
= 22N−j−1 is a special instance of the binomial theorem, and

the proposition follows.

Proposition 2. With ansatz (9) and (10), equation (3c) can be rewritten as
follows. For l = 0, . . . , N − 1:

N−1∑

i,j=0

(
2N − 1

i

)(
2N − 1

j

)(
4N − i− j − 2
2N + 2l − i− 1

)
PN,i PN,j = 2 · δ0,l.(12)

Proof. Substiting (9) and (10), and using the elementary facts
(
2N−1

k

)(
k
j

)
=(

2N−1
j

)(
2N−j−1

k−j

)
and

(
2N−1
k+2l

)(
k+2l

i

)
=

(
2N−1

i

)(
2N−i−1
k+2l−i

)
, the summation in (3c) is

rewritten as
N−1∑

j=0

(
2N − 1

i

)(
2N − 1

j

)
PN,i PN,j

∑

k

(
2N − j − 1

k − j

)(
2N − i− 1
k + 2l − i

)
.

The inner sum can be evaluated as follows: after applying binomial symmetry(
n
m

)
=

(
n

n−m

)
, it becomes

∑

k

(
2N − j − 1
2N − k − 1

)(
2N − i− 1
k + 2l − i

)
=

(
4N − i− j − 2
2N + 2l − i− 1

)
,

where the last line is a variant of standard Vandermonde summation (e.g, [15,
(5.22)]).
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But there is still another reduction in the number of equations possible. For
proving this, we need another elementary result.

Lemma 2. For positive integers m and n:

∑

l

(
m + n

m + 2l

)
= 2m+n−1

Proof. Let f(x) =
∑

l flx
l be a Laurent polynomial over the complex numbers.

By ”summing the even part” one gets (f(x) + f(−x)) /2 =
∑

l f2lx
2l. We apply

this to

f(x) :=
∑

l

(
m + n

m + l

)
xl =

∑

l

(
m + n

l

)
xl−m =

(1 + x)m+n

xm

where the last equality follows from the binomial theorem. Consequently,

∑

l

(
m + n

m + 2l

)
=

f(1) + f(−1)
2

= 2m+n−1.

Remark 1. We would like to mention that due to Zeilberger’s summation ma-
chinery [20], today proofs of binomial summations like Vandermonde’s formula
or Lemma 2 can be carried out in a purely automatic fashion; see, for instance,
the Mathematica package [19].

Now we are ready to carry out the last reduction step.

Proposition 3. The case l = 0 of Proposition 2 is a consequence of Proposition
1 together with the cases l = 1, . . . , N − 1 of Proposition 2.

Proof. By L(i, j; l) we denote the double sum on the left hand side of (12). First
we note that due to symmetry, L(i, j; l) = L(i, j;−l) for l = 0, . . . , N − 1. Next
we sum L(i, j; l) over all l = −N +1, . . . , N − 1. Because of Lemma 2 this gives

N−1∑

l=−N+1

L(i, j; l) = 24N−3




N−1∑

j=0

(
2N − 1

j

)
PN,j

2j




2

= 2

where the last equality is by Proposition 1. On the other hand, because of the
symmetry property L(i, j; l) = L(i, j;−l), we have

N−1∑

l=−N+1

L(i, j; l) = L(i, j; 0) + 2
N−1∑

l=1

L(i, j; l).

Combining things and applying Proposition 2 for the cases l = 1, . . . , N − 1,
results in the desired L(i, j; 0) = 2.

Finally we summarize what we need in order to solve the 2N + 1 Daubechies
equations in 2N unknows hN,k.
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Theorem 1. Any solution of the N algebraic equations

N−1∑

j=0

QN,j

2j
=

1
22N−2

,(13)

and

N−1∑

i,j=0

(
4N − i− j − 2
2N + 2l − i− 1

)
QN,i QN,j = 0, (l = 1, . . . , N − 1)(14)

gives rise to a solution of the Daubechies filter coefficient equations (3a) to (3d)
via

hN,k =
(

2N − 1
N − k

) N−1∑

j=0

QN,j

(
N−k

j

)
(
2N−1

j

)(15)

where k = −N + 1, . . . , N .

We conclude this section with a few comments on various computational aspects
of our approach.

First of all the reduction of the original system to N equations in N unknowns
enables the computation of the corresponding Gröbner bases up to N = 6. We
used the computer algebra system MATHEMATICA and the built-in procedure
GroebnerBasis. The case N = 6 takes about 20 seconds on a computing
platform equipped with a Pentium II processor and with 125.42 MB memory.

Another important aspect concerns the observation that the Gröbner bases com-
puted with respect to the N equations from Theorem 1 have the same nice
triangulation property as those computed with respect to (3a), (3c), (3d). But
even more seems to be true; namely, in all instances the first univariate Gröbner
basis polynomial turns out to be the same in both cases. This leads us to the
following conjecture.

Conjecture 2. Both systems of algebraic equations, (3a), (3c), (3d) and that
one from Theorem 1, have only finitely many solutions, and the total number of
different solutions in both cases is the same.

Since the Gröbner bases for both systems seem to be of the same “triangular”
shape with a common univariate polynomial p1, the degree of this polynomial
is a bound on the number of solutions. In all the cases N = 1, . . . , 6 it turns .
out to be of degree 2N−1.

Conjecture 3. Both systems of algebraic equations, (3a), (3c), (3d) and that
one from Theorem 1, have at most 2N−1 different solutions.

Also here more seems to be true. For instance, up to N = 6 the common
univariate Gröbner basis polynomial always has 2N−1 different solutions. In
particular, we have two real solutions in the cases N = 2, 3; four real solutions
in the cases N = 4, 5; and eight real solutions if N = 6. In the Appendix we
give the MATHEMATICA procedure we have used together with same Gröbner
bases output.
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Finally, at the end of this section, we display two of the four solutions corre-
sponding to case N = 3. In order to obtain those, first one has to find all
solutions of the univariate Gröbner basis polynomial, which is:

p1(x1) = 9− 96x1 − 1536x2
1 − 4096x3

1 + 16384x4
1.(16)

¿From this, one computes the two real solutions as described above:

(h3,−2, h3,−1, h3,0, h3,1, h3,2, h3,3) =(
1+
√

10+
√

5+2
√

10
16 , 5+

√
10+3

√
5+2

√
10

16 , 5−√10+
√

5+2
√

10
8 ,

5−√10−
√

5+2
√

10
8 , 5+

√
10−3

√
5+2

√
10

16 , 1+
√

10−
√

5+2
√

10
16

)

and

(17) (h3,−2, h3,−1, h3,0, h3,1, h3,2, h3,3) =(
1+
√

10−
√

5+2
√

10
16 , 5+

√
10−3

√
5+2

√
10

16 , 5−√10−
√

5+2
√

10
8 ,

5−√10+
√

5+2
√

10
8 , 5+

√
10+3

√
5+2

√
10

16 , 1+
√

10+
√

5+2
√

10
16

)
.

4 Wavelets on the interval

4.1 Meyer’s Construction

To our knowledge the first construction of orthogonal wavelets on the interval
was proposed by Yves Meyer [18]. His construction restricts compactly sup-
ported orthonormal wavelets on R (as considered in §2) to the interval I := [0 , 1]
and manipulates the restricted functions in such a way that they form an or-
thonormal basis on I.

To avoid notational difficulties we restrict our attention to the construction of
wavelets on R+ := [0 ,∞). ¿From our presentation it becomes evident how the
construction can be generalized to obtain a wavelet basis for L2(I).

We introduce the family of scaling functions restricted to R+

φhalf
m,k(x) :=

{
0 if x < 0
φm,k(x) if x ≥ 0

and the according spaces

V half
m := span

{
φhalf

m,k, k ∈ Z
}

.

The spaces V half
m form a multiresolution analysis for L2(R+). The according

wavelets spaces W half
m are given by

W half
m :=

(
V half

m

)⊥ ∩ V half
m−1 .(18)
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We denote by PWhalf
m

and PV half
m

the orthogonal projection operators onto the
spaces W half

m and V half
m , respectively.

Since the scaling function φ has support in [−N + 1 , N ], φhalf
m,k = 0 for k ≤ −N

and φhalf
m,k = φm,k for k ≥ N − 1.

Wavelets on R+ can be constructed in the following way:

1. Orthonormalize the set of functions
{

φhalf
m,k, k ≥ −N + 1

}
. The orthonor-

mal basis of V half
m is denoted by

{
φedge

m,k , k ≥ −N + 1
}

.

2. Compute PWhalf
m

φedge
m−1,k and orthonormalize them to obtain an orthonor-

mal basis ψedge
m,k of W half

m .

The functions φhalf
m,k can be orthonormalized by making a basis transformation

φedge
m = Aφhalf

m(19)

where

φedge
m :=




φedge
m,−N+1

φedge
m,−N+2

...


 and φhalf

m :=




φhalf
m,−N+1

φhalf
m,−N+2

...


 .

Using the notation

φedge
m φedge

m

t
:=

(〈
φedge

m,k , φedge
m,l

〉)
k,l≥−N+1

,

we see that the orthonormality of the functions φedge
m is equivalent to the matrix

equation

φedge
m φedge

m

t
= I .

¿From (19) it follows that

I = Aφhalf
m φhalf

m

t
At .

If

Λ := φhalf
m φhalf

m

t
,(20)

the matrix of inner products of the truncated scaling functions φhalf
m,k, is known,

then the matrix A in (19) can be obtained by the Cholesky factorization

Λ =
(
A−1

) (
A−1

)t
,(21)

where A−1 is regular and of lower triangular form. Therefore the matrix A
is also lower triangular. This in particular ensures staggered support of the
functions φedge

m,k , i.e. supp φedge
m,k ⊆ [0 , 2m(N + k)].

In the following we derive the refinement equations (similar to (1) and (2)) for
φedge

m and the according wavelets ψedge
m . These equations are the basis for the

10



implementation of multiresolution cascade algorithms [17], as they are used e.g.
in data compression (see e.g. [24]).

The truncated scaling functions φhalf
m,k satisfy the dilation equation

φhalf
m,k =

1√
2

∑

r∈Z
hr−2kφhalf

m−1,r .

Writing this equation in matrix form yields

φhalf
m = H φhalf

m−1 ,(22)

where the dilation matrix H is a 1× 2 block Toeplitz matrix:

Hk,l =

{
hl−2k√

2
if −N + 1 ≤ l − 2k ≤ N ,

0 otherwise.

¿From (19) and (22) it follows that

φedge
m = Aφhalf

m = AH φhalf
m−1 = AHA−1φedge

m−1 .(23)

Thus the refinement matrix Hedge for the dilation equation of the edge scaling
functions φedge

m is

Hedge = AHA−1 .(24)

Note that Hedge is no longer a 1 × 2 block Toeplitz matrix (which is the case
for wavelets on R). This reflects the fact that the edge scaling functions cannot
be obtained as shifts of a single function.

Now we construct the edge wavelets and derive their refinement matrix. The
projections of φedge

m−1,k onto W half
m as defined by (18) are given by

ψhalf
m,k := PWhalf

m
φedge

m−1,k = φedge
m−1,k −

∑

l

〈
φedge

m−1,k , φedge
m,l

〉
φedge

m,l ,

or equivalently

ψhalf
m = φedge

m−1 −
(
φedge

m−1φ
edge
m

t
)

φedge
m .(25)

¿From (23) and (24) it follows that

ψhalf
m =

(
I −Hedget

Hedge
)

φedge
m−1 =: Ghalf φedge

m−1 .(26)

The matrix Ghalf does not have 1×2 lower block triangular form, i.e. it does not
fulfill Ghalf

k,l = 0 for l > N + 2k. Consequently the functions ψhalf
m,k do not have

staggered support. In [8] it is established that there exists a basis transformation
U such that

ψstag
m := U ψhalf

m(27)

has staggered support. In §4.5 we give a simple constructive algorithm for
calculating U . The functions ψstag

m,k are orthonormalized to get the edge wavelets

ψedge
m = B ψstag

m .(28)

11



In the following we outline the orthonormalization procedure, i.e. the calculation
of the matrix B. Let Λw be the matrix of inner products of the functions ˜̃

ψhalf
m,k.

Then from (27) and (26) it follows that

Λw := ψstag
m ψstag

m
t = U GhalfGhalftU t .(29)

¿From (28) and the orthonormality of the functions ψedge
m we get

Λw =
(
B−1

) (
B−1

)t
.

Thus the matrix B can be calculated from Λw by a Cholesky factorization and
inversion. From (28), (27) and (26) it follows that

ψedge
m = B U Ghalf φedge

m−1 .

Thus the matrix Gedge for the refinement equation of the edge wavelets is given
by

Gedge = BUGhalf .(30)

To make the calculations complete we have to determine the matrix Λ in (20).
The matrix Λ is independent of the scale m as one can see from the following
argument. Since

φhalf
m,k(2x) =

√
2φhalf

m−1,k(x)

it follows that
〈
φhalf

m−1,k , φhalf
m−1,l

〉
= 2

〈
φhalf

m,k(2 ·) , φhalf
m,l (2 ·)

〉
=

〈
φhalf

m,k , φhalf
m,l

〉
.(31)

¿From (31) and (22) it follows that

Λ = φhalf
m φhalf

m

t
= H ΛHt .(32)

Since Λk,l =
〈
φhalf

m,k , φhalf
m,l

〉
= δk,l if k or l ≥ N − 1, equation (32) above can be

reduced to

Λ = HΛextHt ,(33)

where Λ ∈ R(2N−2)×(2N−2), H ∈ R(2N−2)×(4N−4) with Hk,l = hl−2k/
√

2, for
−N + 1 ≤ k ≤ N − 2 and −N + 1 ≤ l ≤ 3N − 4, and

Λext =
(
Λ 0
0 I

)
∈ R(4N−4)×(4N−4) .

Equation (33) is a non-homogeneous linear system for as many unknowns as
equations which can be solved symbolically. We have strong evidence that
there exists a solution Λ of (33) but so far we have no proof: the existence of a
solution is closely related to the eigenvalues of the matrix H1 ∈ R(2N−2)×(2N−2)

which is the restriction of H to the first 2N − 2 columns. If the absolute values
of the eigenvalues of H1 are less than 1, then from (33) it follows that

Λ =
∞∑

n=0

Hn
1 H2H

t
2

(
Ht

1

)n
,

12



where H2 are the last 2N − 2 columns of H.

We mention a result in [22], which shows that N eigenvalues of H1 are given by

2−k−1/2 , with k = 0, . . . , N − 1.

Since there is no estimate for the other N − 1 eigenvalues available, this result
does not give existence of a solution. However, in all our considered examples
the largest eigenvalue turned out to be 1/

√
2.

4.2 The construction of Cohen, Daubechies and Vial

The starting point is again a compactly supported orthogonal wavelet family on
R. As in Meyer’s approach the construction of Cohen, Daubechies and Vial [8]
retains the interior scaling functions and adds adapted edge scaling functions.

In [8, 7] the family of transformed scaling functions restricted to R+ is introduced
as follows:

φmod
m,k =

{∑
l

(
N−1−l
N−1−k

)
φhalf

m,l if 0 ≤ k ≤ N − 1,
φhalf

m,k if k ≥ N .

The functions φmod
m,k can generate all polynomials up to degree N − 1 [8, Propo-

sition 4.1.]. In contrast to Meyer’s construction this approach requires less edge
scaling functions to fulfill this task. While in Meyer’s construction the spaces
V half

m are just the projections of Vm onto L2(R+), here the space

V half
m := span

{
φmod

m,k , k ∈ N0

}
= T (Vm) ,

where T = (Tk,l) is a matrix with indices 0 ≤ k and −N + 1 ≤ l which satisfies

Tk,l =

{(
N−1−l
N−1−k

)
if 0 ≤ k ≤ N − 1,

δk,l if k ≥ N .

Since Tk,l = 0 if l > k the family

φmod
m = Tφhalf

m(34)

has staggered support. The spaces V half
m define a multiresolution analysis on

L2(R+) and the according wavelet spaces are given by

W half
m :=

(
V half

m

)⊥ ∩ V half
m−1 .

The functions φmod
m,k can be orthonormalized by a basis transformation

φedge
m = Aφmod

m .(35)

Again the orthonormalization matrix A is determined by the Cholesky decom-
position of

Λ̃ := φmod
m φmod

m

t
= T Λ T t ,(36a)

13



where Λ is as in (32), i.e.

Λ̃ =
(
A−1

) (
A−1

)t
.(36b)

In the following we determine the filter matrix Hedge; once the filter matrix
Hedge is constructed, the refinement matrix Gedge of the edge wavelets can be
calculated analogously to the construction presented in §4.1.

The filter matrix for the dilation equation satisfies

φedge
m = Hedge φedge

m−1 .(37)

¿From (34) and (22) we get

φmod
m = T φhalf

m = THφhalf
m−1 .(38)

Suppose that there exists a dilation equation for φmod
m , i.e.

φmod
m = Hmod φmod

m−1 ,(39)

then from (38) and (39) it follows that

TH = Hmod T .

Multiplication of this equation by a right inverse T † of T from the right gives

Hmod = TH T † .(40)

This yields the following condition on T and H T †:

TH T †T = TH ,

which is equivalent to

N (T ) ⊂ N (TH) ,(41)

where N denotes the nullspace. In particular this shows that the condition (41)
is independent on the choice of the right inverse T †.

¿From (40) and (37) it follows that

Hedge = ATH T †A−1 .(42)

Now the further procedure to construct Gedge is analogous as in §4.1. For
the readers convenience we have summarized the calculation of the refinement
matrices in §4.5.

This matrix analytical approach clearly reveals the similarity between the con-
structions proposed by Meyer and Cohen, Daubechies & Vial. In fact the only
difference in both constructions is that the construction of the filter matrix
Hedge incorporates the matrix T . Any right-invertible matrix T satisfying (41)
can be used to construct wavelets on R+ with different properties. The special
form of the matrix T proposed in [8] guarantees that the scaling functions have
staggered support and that any polynomial up to degree N − 1 can be repre-
sented as a linear combination of the scaling functions. Setting T = I gives the
construction proposed by Meyer.

14



4.3 The biorthogonal case – the constructions of Dahmen
et al.

In this section we show that the our matrix approach for the construction of
wavelets on the interval can be generalized in a natural way to the construction of
biorthogonal wavelets on the interval. This outlines the constructions proposed
by Dahmen et al. [9, 10].

In the biorthogonal case one requires two scaling functions φ and φ̃ satisfying
dilation equations

φ(x) =
N∑

k=−N+1

hkφ(2x− k) and φ̃(x) =
Ñ∑

k=−Ñ+1

h̃kφ̃(2x− k) .(43)

Both scaling functions satisfy (3a), (3d) and are biorthogonal, i.e.
∑

k

hkh̃k+2l = δ0,l .(44)

The corresponding multiresolution analyses are given by

Vm := span
{
φm,k, k ∈ Z}

, Ṽm := span
{
φ̃m,k, k ∈ Z}

.

The wavelet spaces Wm and W̃m are then defined by

Wm = Vm−1 ∩ Ṽ ⊥
m , and W̃m = Ṽm−1 ∩ V ⊥

m .

For more background on biorthogonal wavelets we refer to [6].

Following the notation of the previous chapters we define the modified scaling
functions on R+ by

φmod
m = T φhalf

m and φ̃mod
m = T̃ φ̃half

m ,(45)

where again φhalf
m and φ̃half

m are the restrictions to the positive real line.

The two families φmod
m and φ̃mod

m are biorthogonalized by two basis transforms
A and Ã, i.e.

φedge
m := Aφmod

m and φ̃edge
m := Ã φ̃mod

m(46)

satisfy

φedge
m φ̃edge

m

t
= I .

Analogously to (36) the last equation is equivalent to
(
A−1

)(
Ã−1

)t = TΛT̃ t ,(47)

where Λ := φhalf
m φ̃half

m

t
.

For a given matrix TΛT̃ t the factorization into the matrices A−1 and Ã−1 can be
computed in several ways: one could use e.g. a factorization by means of a SVD,
as suggested by Dahmen et al. [9], a LU -decomposition, or simply set A = I

15



and Ã = (TΛT̃ t)−1. Each possible factorization results in different biorthogo-
nal bases for the same multiresolution spaces V half

m and Ṽ half
m . For orthogonal

wavelets we calculated the factorization by a Cholesky decomposition.
The matrix Λ can be calculated similarly to the orthogonal case (cf. (32)) as
the solution of the following linear inhomogeneous system:

Λ = H Λ H̃t .

The dilation matrices Hedge and H̃edge are given by

Hedge = ATHT †A−1 and H̃edge = ÃT̃ H̃T̃ †Ã−1 ,

where T † and T̃ † denote the right inverses of T and T̃ satisfying

N (T ) ⊂ N (TH) and N (T̃ ) ⊂ N (T̃ H̃) .(48)

Note the similarity of the constructions of Hedge in the orthogonal and biorthog-
onal case!
The construction of the biorthogonal wavelet bases can be carried over from the
orthogonal case. Since

Vm ⊕Wm = Vm−1 and Ṽm ⊕ W̃m = Ṽm−1

we can write the projections of φedge
m−1 and φ̃edge

m−1 onto Wm and W̃m as

ψhalf
m := PWm φedge

m−1 = φedge
m−1 − PVm φedge

m−1 ,

ψ̃half
m := PW̃m

φ̃edge
m−1 = φ̃edge

m−1 − PṼm
φ̃edge

m−1 ,

and consequently

ψhalf
m = Ghalf φedge

m−1 and ψ̃half
m = G̃half φ̃edge

m−1 ,

where

Ghalf = I − H̃edge t
Hedge and G̃half = I − Hedge t

H̃edge .

In order to biorthogonalize the families of functions ψhalf
m and ψ̃half

m we set

ψedge
m := Bψhalf

m and ψ̃edge
m := B̃ψ̃half

m ,(49)

where the matrices B and B̃ satisfy
(
B−1

)(
B̃−1

)t = Λw ,

where

Λw := ψhalf
m ψ̃half

m

t
= Ghalf G̃half t

.

The construction presented above reveals that there is more freedom in gener-
ating biorthogonal wavelets on R+ than for the the construction of orthogonal
wavelets. The choice of the matrices T and T̃ determines the properties of the
multiresolution analyses. As in the orthogonal case, any T and T̃ , compatible
with H and H̃ in the sense of (48) can be used to construct biorthogonal wavelets
on the interval. The choices of the biorthogonalizations (46) and (49) affect the
scaling functions and wavelets, but not the multiresolution and wavelet spaces.
Dahmen et al. [9] suggested transformations T and T̃ for the construction of
biorthogonal wavelet bases with certain polynomial exactness.
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4.4 (Bi-)orthogonal wavelets with staggered support

The matrix analytical point of view of constructing wavelets on the half line
clearly indicates how to impose additional properties on the wavelets and scaling
functions. In the construction above we have not paid any attention to preserve
staggered support of the scaling functions and wavelets. In the following we show
how to construct (bi-)orthogonal wavelets and scaling functions with staggered
support. To our knowledge biorthogonal wavelets on the interval with staggered
support have not been considered in the literature so far.

The following lemma guarantees existence of a basis φstag
m of V half

m with staggered
support.

Lemma 3. Let T ∈ RK×(2N−1), K ≤ 2N−1 and let T 1 be the K×K submatrix
consisting of the last K columns of T . If T 1 is invertible, then there exists a
invertible matrix S ∈ RK×K such that ST is of lower triangular form.

Proof. Since T 1 is invertible,
(
T−1

1

)t
exists and can be decomposed by a LU -

factorization into

P
(
T−1

1

)t
= LU ,

where L and U are lower and upper triangular matrices, respectively, and P is
a permutation matrix. Thus

LtP tT 1 =
(
U−1

)t

is a lower triangular matrix (note that U t is lower triangular and thus also(
U−1

)t and LtP t is invertible. Let T = (T 0, T 1), then as a consequence

LtP tT = LtP t(T 0,T 1) =
(
LtP tT 0, (U−1)t

)

is lower triangular. Thus the assertion is proved with S := LtP t.

T in (34) is of the form

T =
(

T 0
0 I

)
.

Let S be defined as in the lemma above, then

T stag :=
(

S 0
0 I

)(
T 0
0 I

)
=

(
ST 0
0 I

)

is of lower triangular form and thus φstag
m := T stagφhalf

m has staggered support.

Proposition 4.3 in [8] guarantees the existence of wavelets with staggered sup-
port.

The above considerations can be easily carried over to biorthogonal wavelets. In
order to get biorthogonal wavelets and scaling functions with staggered support
an LU -factorization of (47) has to be performed, since only this factorization
guarantees that the staggered support is preserved during the biorthogonaliza-
tion procedure.
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4.5 An Algorithm for the Calculation of the Refinement
matrices

For the readers convenience we summarize the computational steps for calculat-
ing the refinement matrices Hedge and Gedge in the orthogonal case. The modifi-
cations of this algorithm to calculate the refinement matrices in the biorthogonal
case are obvious.

Each step of the proposed algorithm can either be performed numerically or
symbolically.

Given the filter sequence hk of a compactly supported orthonormal wavelet
family on R with hk = 0 if k ≤ −N or k ≥ N +1 and the matrix T ∈ RK×(2N−1)

(T = I ∈ R(2N−1)×(2N−1) for Meyer’s construction and (Tk,l) =
(

N−l−1
N−k−1

) ∈
RN×(2N−1) for the construction of Cohen et al.)

1. Define the filter matrix H := (Hk,l) ∈ R(2N−1)×(4N−2), with

Hk,l = hl−2k/
√

2

for −N + 1 ≤ k ≤ N − 1 and −N + 1 ≤ l ≤ 3N − 2.

2. Solve

Λ = HΛextHt

with Λ ∈ R(2N−1)×(2N−1) and

Λext =
(

Λ 0
0 I

)
∈ R(4N−2)×(4N−2) .

3. Compute the matrix of inner products

Λ̃ = T ΛT t ∈ RK×K .

4. Compute A ∈ RK×K from the Cholesky decomposition

Λ̃ =
(
A−1

) (
A−1

)t
.

5. The dilation matrix for the edge scaling functions is then given by

Hedge = ATH
(
T ext

)† (
Aext

)−1 ∈ RK×(K+2N−1) ,

where

Aext =
(

A 0
0 I

)
∈ R(K+2N−1)×(K+2N−1) .

and

T ext =
(

T 0
0 I

)
∈ R(K+2N−1)×4N−2 ,

and (T ext)† is a right inverse of T ext.
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6. Compute

C =
(
I −Hedget

Hedge
)
∈ R(K+2N−1)×(K+2N−1) ,

and define Ghalf ∈ RN×(K+2N−1) as

Ghalf = (Ck,l) 0≤k≤N−1
N−K≤l≤2N−2

7. Compute an upper triangular matrix U ∈ R(N−1)×(N−1) such that UGhalf

is a lower triangular block matrix in the sense that (UGhalf)k,l = 0 for
l > N + 2k. This can be done using the following algorithm:

(a) Define the matrix C̃ ∈ RN×N by

C̃k,l = Ghalf
k,N+2l 0 ≤ k, l ≤ N − 1 .

(b) Compute U by the unpivoted LU -decomposition

C̃−1 = LU .

8. Compute the matrix of inner products

Λw = UGhalfGhalftU t ∈ RN×N .

9. Compute the Cholesky decomposition

Λw =
(
B−1

) (
B−1

)t
.

10. The filter matrix Gedge is then given by

Gedge = BUGhalf .

The entries of Hedge and Gedge for k ≥ N are given by Hedge
k,l = hl−2k/

√
2 and

Gedge
k,l = gl−2k/

√
2, respectively.

5 Results

In this section we present some closed form representations of the filter coeffi-
cients for the Daubechies wavelets (§5.1) and of the refinement matrices for the
construction proposed by Cohen, Daubechies & Vial where N = 2 (§5.2).

5.1 Mathematica Program and Output

The following MATHEMATICA program calculates the filter coefficients of the
Daubechies wavelets.
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(* The Mathematica program : *)

Polys1[N_]:={Sum[Q[N,j]/2^j,{j,0, N-1}] - 1/2^(2N-2)};
Polys2[N_]:=Table[Sum[Binomial[4N-i-j-2,2N+2l-i-1]*

Q[N,i]*Q[N,j],{i,0,N-1},{j,0,N-1}],
{l,1,N-1}];

AllPolys[N_]:=Join[Polys1[N],Polys2[N]];
Eqns[N_]:=Map[#==0&,AllPolys[N]];
Unknowns[N_]:=Table[Q[N,j],{j,0,N-1}];
CFSols[N_]:=Solve[Eqns[N],Unknowns[N]]
GB[N_]:=GroebnerBasis[AllPolys[N],Reverse[Unknowns[N]]];

cc[N_,k_]:= Binomial[2N-1,N-k] *
Sum[Q[N,j] Binomial[N-k,j]/Binomial[2N-1,j],

{j,0,N-1}]

CoefficientTable[N_,rules_]:=
Table[h[N,k]->Simplify[ cc[N,k] /.rules],{k,-N+1,N}]

(* The Groebner basis in the case N=3: *)
GB[3]

{9− 96 Q(3, 0)− 1536 Q(3, 0)2 − 4096 Q(3, 0)3 + 16384 Q(3, 0)4,

21 Q(3, 0) + 32 Q(3, 0)2 − 128 Q(3, 0)3 + 3 Q(3, 1),

−3− 120 Q(3, 0)− 256 Q(3, 0)2 + 1024 Q(3, 0)3 + 12 Q(3, 2)}

(* A real solution for N=3: *)
rules = Simplify[CFSols[3][[3]]];
CoefficientTable[3, rules]

{h(3,−2) → 1 +
√

10 +
p

5 + 2
√

10

16
, h(3,−1) → 5 +

√
10 + 3

p
5 + 2

√
10

16
,

h(3, 0) → 5−√10 +
p

5 + 2
√

10

8
, h(3, 1) → 5−√10−

p
5 + 2

√
10

8
,

h(3, 2) → 5 +
√

10− 3
p

5 + 2
√

10

16
, h(3, 3) → 1 +

√
10−

p
5 + 2

√
10

16
}

(* The Groebner basis in case N=4: *)
GB[4]

{625 + 16000 Q(4, 0)− 1433600 Q(4, 0)2 + 22937600 Q(4, 0)3 + 220200960 Q(4, 0)4−
4697620480 Q(4, 0)5 − 60129542144 Q(4, 0)6 −
137438953472 Q(4, 0)7 + 1099511627776 Q(4, 0)8,
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125 + 389200 Q(4, 0)− 1469440 Q(4, 0)2 − 29245440 Q(4, 0)3 + 124780544 Q(4, 0)4+

2936012800 Q(4, 0)5 + 7516192768 Q(4, 0)6 −
51539607552 Q(4, 0)7 + 39200 Q(4, 1),

−1875− 6661200 Q(4, 0) + 57164800 Q(4, 0)2 + 775864320 Q(4, 0)3−
9064939520 Q(4, 0)4 − 136113553408 Q(4, 0)5 − 323196289024 Q(4, 0)6 +

2456721293312 Q(4, 0)7 + 196000 Q(4, 2),

−11625 + 3553200 Q(4, 0)− 42470400 Q(4, 0)2 − 483409920 Q(4, 0)3+

7817134080 Q(4, 0)4 + 106753425408 Q(4, 0)5 + 248034361344 Q(4, 0)6 −
1941325217792 Q(4, 0)7 + 98000 Q(4, 3)}

(* The univariate Groebner basis polynomial in case N=5: *)
GB[5][[1]]

2251875390625− 131766880000000 Q(5, 0)− 57826836480000000 Q(5, 0)2−
4000515620864000000 Q(5, 0)3 + 92455465857843200000 Q(5, 0)4 +

15136683834621296640000 Q(5, 0)5 − 321980633234202951680000 Q(5, 0)6 −
26004063471614140874752000 Q(5, 0)7

+1518069903629532971139072000 Q(5, 0)8

−24345747195367204805253529600 Q(5, 0)9

−282223732589035180835156787200 Q(5, 0)10

+12421567725441961014604993658880 Q(5, 0)11

+71032999454195120173711747973120 Q(5, 0)12

−2877566862518080741397516276203520 Q(5, 0)13

−38942226439011207213978722469150720 Q(5, 0)14

−83076749736557242056487941267521536 Q(5, 0)15

+1329227995784915872903807060280344576 Q(5, 0)16

(* The univariate Groebner basis polynomial in case N=6: *)
Timing[ GB[6][[1]] ]

{19.98 Second,

61581291280182164914327485441 + 8007522828051623729812234297344 Q(6, 0)

−16139098708169571027248226383167488 Q(6, 0)2 + · · ·+ 2288Q(6, 0)32}

5.2 Refinement matrices for construction proposed by Co-
hen, Daubechies & Vial

The filter coefficients hk of the Daubechies wavelets for the case N = 2 are given
by

h−1 =
1 +

√
3

4
, h0 =

3 +
√

3
4

, h1 =
3−√3

4
, h2 =

1−√3
4

.
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The entries of the refinement matrices Hedge and Gedge are the following:

Hedge
0,0 =

√
2 (1137−119

√
3)

2182

Hedge
0,1 =

q
2 (3969−2184

√
3) (242883−140092

√
3) (16589+9619

√
3)

14283372

Hedge
0,2 = −

q
2 (3969−2184

√
3) (123+85

√
3)

13092

Hedge
1,0 =

q
2 (3969−2184

√
3) (242883−140092

√
3) (32238331+17965009

√
3)

501189240108

Hedge
1,1 =

√
2 (999+238

√
3)

4364

Hedge
1,2 =

q
2 (242883−140092

√
3) (2963297+1744500

√
3)

153128396

Hedge
1,4 =

√
3
q

2 (242883−140092
√

3) (897+445
√

3)
280712

Hedge
1,4 = −

q
2 (242883−140092

√
3) (897+445

√
3)

280712

Gedge
0,0 =

q
(2826138238+1021826769

√
3) (3969−2184

√
3) (6136686+2872499

√
3)

12905163547593

Gedge
0,1 = −

q
(2826138238+1021826769

√
3) (242883−140092

√
3) (2102042+1389397

√
3)

8603442365062

Gedge
0,2 =

√
2826138238+1021826769

√
3 (80542−29121

√
3)

7885831682

Gedge
1,0 =

q
35089 (80542+29121

√
3) (3969−2184

√
3) (605486−295683

√
3)

8603442365062

Gedge
1,1 =

q
35089 (80542+29121

√
3) (3969−2184

√
3) (1147827+503061

√
3)

17206884730124

Gedge
1,2 = −

q
35089 (80542+29121

√
3) (147657−115797

√
3)

15771663364

Gedge
1,3 = −

√
3
q

35089 (80542+29121
√

3)
140356

Gedge
1,4 =

q
35089 (80542+29121

√
3)

140356

For k ≥ N the entries are given by Hedge
k,l = hl−2k/

√
2 and Gedge

k,l = gl−2k/
√

2.
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