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Abstract

In this paper we investigate the possibility of using the first anthor’s
Grobner bases algorithm for speeding up the CAD-based quantifier elimi-
nation algorithm (QE) which was discovered by Collins and improved by
the second author. In particular, we use the Grébner bases algorithm to
preprocess input formulas of QE into equivalent, but often “triangulari-
zed”, formulas. Then the improved QE algorithm utilizes such structure
to complete quantifier elimination with partially built CAD’s. Prelimi-
nary experiments show that this method often gives a significant speed-
up, though sometimes it results in a slow-down. Further study is needed
for explaining when and why the use of Grobner bases is not helpful.
Then based on the resulting understanding, we could be able to adapt the
Gobner bases algorithm to our use. 4

1 Introduction

In this paper we investigate the possibility of using the first author’s Grobner
bases algorithm [3] for speeding up the CAD-based quantifier elimination algo-
rithm (QE) which was discovered by Collins [7] and improved by the second
author [8, 5].

In particular, we use the Grobner bases algorithm to preprocess input for-
mulas of QE into equivalent, but often “triangularized”, formulas. Then Hong’s
improved QE algorithm utilizes such structure to complete quantifier elimina-
tion with partially built CAD’s.

*Sponsored by the Grdébner Bases Project of the Austrian Ministry for Science and
Research. o




Preliminary experiments show that this method often gives significant a
speed-up, though sometimes it results in a slow-down. Further study is needed
for explaining when and why the use of Grébner bases is not helpful. Then
based on the resulting understanding, we could be able to adapt the Goébner

bases algorithm to our use. :

We assume that the reader is familiar with Buchberger’s Grobner bases me-
thod, Collins’ QE method, and Hong’s improved QE method. For detailed
expositions of these methods, see [4], [7, 2], and [8, 5] respectively.

The plan of the paper is as following: In Section 2 we elaborate the idea of
using the Grobner bases algorithm for preprocessing input formulas of quantifier
elimination. In Section 3 we describe the hardware and the programs used in
our experiments. In Section 4 we present preliminary experimental results.

2 Ideia

As mentioned in the introduction, for a certain type of QE problems, we can
use the Grobner bases algorithm to preprocess the input formulas into forms
more suitable to the QE algorithm.

Specifically consider an input formula containing a conjunction of equations:

Fi=0A-- ANF,=0.

Let G = {G1,...,Gn} be a Grdbner basis of ' = {F}, ..., F,}. Then the poly-
nomials in G have the same common complex roots, and thus the same common
real roots, as the polynomials in F since by definition the ideal generated by G
is the same as the ideal generated by F. Therefore the conjunction above is
equivalent to, and thus can be replaced by, the conjunction

Gi=0A---ANGp, =0.

Now if G has been produced from F' using pure lexicographical ordering of
power products, then it is “triangularized” (see Lemma 6.8 of [4]). Using the
triangularized polynomials has two benefits:

e The number of projection polynomials may be reduced. For example, if
we have two polynomial equations and the Grébner basis contains only
one polynomial of positive degree in the main variable, then the projection
will not contain the resultant of two polynomials. This reduction in the
number of projection polynomials would in itself reduce the time required
for stack constructions.

e The equations of the polynomials of zero degree in the main variable may
function as “constraints” which Hong’s improved QE algorithm can utilize
to complete quantifier elimination with a partially built CAD.




Offsetting these potential savings is the extra cost of Grobner basis com
tation. Also sometimes GrSbner bases have more polynomials, and often w
much higher degrees or larger coefficients or more terms than the original p
nomials. Our experiments in the next section show that in spite of these extr
costs the use of Grobner bases often gives a significant overall speed-up, thoug

sometimes it does result in a slow-down.

3 Test Environment

In this section we describe the programs and the hardware used in our experi-

ments. .
Both GB algorithm and QE algorithm have been implemented on top of the
computer algebra system SAC-2 developed by Collins [6]. Specifically

GB Program: We used the implementation by Gebauer. Gebauer implemen-
ted four versions of programs with different features. We used the version
with the following features:

o selection of S-polynomials by ordering,

partial reduction of S-polynomials,

*

application of the deletion rule, and

application of the product criterion.

In all the experiments, we used pure lexicographic ordering of power pro-
ducts.

QE Program: We used the implementation by Hong [8]. This program allows
the user to choose a projection operator and a cell-choice strategy. In
all the experiments, we chose Lazard’s projection operator [10] and the
cell-choice strategy (TC,LD,HL) which stands for Trivial Conversion of
sample points, Least Degree of minimal polynomial, and Highest Level.
For the details, see [8].

The computer algebra system SAC-2 and both implementations of GB and
QE algorithms were originally written in the programming language ALDES de-
veloped by Loos [11]. Since a compiler for ALDES is not available, we translated
all the programs into C language.

All the experiments were carried out on a DEC station 5000 with 32 me-
gabytes main memory running ULTRIX operating system. Out of 32 mega-
bytes, 6 megabytes were used for list processing. The timings were obtained
by using ULTRIX operating system’s 60 Hz cpu-clock which is accurate up to
100/60 ~ 17 milliseconds. Therefore when the clock reported 0 milliseconds, we
took it as 8 milliseconds.




Problem QI alone GB and QE Speedup
Intersect A 351200 1150 = 350 + 800 305.4
Intersect B 2065550 1183 = 583 -+ 600 1746.1
Random A - 14583 1167 = 50 + 1117 12.5
Random B 170533 1283 = 83 + 1200 132.9
Ellipse A 171616 | 69658 = 8 4+ 69650 2.5
Ellipse B ? ?7 = 100 + 7 ?
Solotar A 11500 834 = 717+ 117 13.7
Solotar B 51900 | 555720 = 554720 -+ 1000 0.1
Collision A 47817 7 = 984 + 7 ?
Collision B | ? ?7 = 6134 + ? ?

Table 1: Summary of Experiments

4 Preliminary Experimental Results

In this section we present the results of our preliminary experiments. We tested
five QE problems with two different orderings of variables for each problem,
obtaining ten sets of statistics. In the following ten sub-sections, we describe
each experimental result in detail. But first we give in Table 1 a summary
of the ten experiments with respect to the total times. All the timings are in
milliseconds. Several experiments were aborted after 40 minutes of computation,
and are indicated by the symbol ‘?’. For the experiments with the combined
method (the column for GB and QE), we give three timings as:

T= Tgb ‘l‘qu,

where T} is the time taken for Grébner basis computation, Ty, is the time taken
for quantifier elimination of the preprocessed input formula, and T is the total
time: Typ + Tye.

From the table we see that the use of GB was helpful for the following
problems: Intersect A, Intersect B, Random A, Random B, Ellipse A, and
Solotareff A.

For Solotareff B, the QE with the preprocessed input ran about 50 times
faster than the QE with the original input, but the GB took very long, resulting
in net slowdown.

For Collision A, the GB produced large polynomials which immediately blow
up the projection phase of QE. For Collision B, the GB produced very large
polynomials which make QE hopeless.

For Ellipse B, the GB produced a triangularized system, but its univariate
polynomial is of degree 6, which makes stack construction over the cells defined
by the roots of the polynomial very expensive.




Note that the ordering of variables makes significant difference for the com-
puting time of QE. For Solotareff’s problem, the ordering of variables also,
makes significant difference for the computing time of GB.

In the following ten sub-sections, we give the exact descriptions of the mput
formulas; the Grobner bases, the output formulas, and the tables containing the:
statistics. In all the following tables, Tiotq1 is the total time in milliseconds, Tpro; ¢
is the time taken for the projection phase of quantifier elimination, Tszqck is the
time taken for the stack construction phase of quantifier elimination, Tyimp is the
time taken for the formula simplification phase of quantifier elimination, Nppo;
is the number of projection polynomials produced, and Njsqcr is the number of
stacks constructed.

4.1 Intersection A: z <y <z

QE alone GB and QE Ratio
Tiotal 351200 | 1150 = 350 + 800 | 305.4
Nproj | - 18 8 2.3
Toroj 984 300 3.3
Nsiack 531 7 75.9
Tstack 320613 283 | 1132.9
Tyimp 6967 8| 870.9

Table 2: Intersection: z < y < z

4.1.1 Input formula for QE

Order of variables: x,y,z.

(Ez) [ x"2-1/2y°2-1/2z"2=
Nxz+zy-2x=0
/Nz2-y=0]

The three polynomials define three surfaces: the first is a cone spreading to
both directions on the z-axis, the second is a plane twisted around the z-axis,
and the third is a parabolic surface extended on the z-axis. Thus in this problem,
we are interested in finding a condition for a point (z, y) above/on/below which
the three surfaces intersect.

4.1.2 Grobner basis

X"b + 18 x74 - 21 x"3 + 4 x72-2x
vy + 5/19 x~4 + 88/19 x"3 - 144/19 x"2 + 32/19 x

G1
G2




z x - 7/38 x~4 - 127/38 x°3 + 59/19 x°2 - 11/19 x
z"2 + 5/19 x4 + 88/19 x°3 - 144/19 x°2 + 32/19 x

G3
G4

Note that the Grébner basis is triangularized in the sense that G1 € Q[z],
G2 € Q[z,y], and G3,G4 € Q[z,y,z]. Note also that we have the leading
monomials ¢°, y, and z?, and thus the Grébner basis has only finitely many
(possibly no) common real zeros. We can also compute those common zeros
by successively eliminating variables starting from z. Therefore we could have
solved this problem without using the QE algorithm, but by simply reasoning
with the common real zeros.

4.1.3 Output formulas

For the original input the QE algorithm produces the following quantifier free
formula:

y2+y-2x2=0/\Ny3+2xy2+x2y-4x"2=0

For the preprocessed input, the QE algorithm produces the following quan-
tifier free formula:

19 y + 5 x"4 + 88 x"3 - 144 x"2 + 32 x = 0
/AN[x3+19x"2-2x+2=0\/x-1=0\/x=0]7]

Both formulas are equivalent. In fact we proved the equivalence by entering
the following sentence to our QE system:

(Va)(Vy) Fy <= F>

where F is the output formula from the original input, and F3 is the output
formula from the preprocessed input. The QE program proved the sentence in
8 seconds. TFor each of the other problems following, we carried out the same
test to check the equivalence of its two output formulas.

Note that we can easily simplify the second output formula by evaluating its
first polynomial on = 1 and @ = 0, obtaining:

1]

[x =0 /\ y=0]
\/ [x=1 /\ y=1]
\/ [x"3+19 x"2-2x+2 =0 /\
19 y + 5 x"4 + 88 x°3 - 144 x°2 + 32 x = 0]

We can still make further simplification by computing a Gébner basis of the last
two polynomials, obtaining:

(x=0 /\ vy
\/ [x=1 /\ y
N/ [x"3 + 19 x"2

i

0]
1]
2x+2=0/\19y - x"2+ 8 x + 14 = 0]




QE alone GB and QE Ratio
Tiotal 2065550 | 1183 = 583 + 600 | 1746.1
Nproj 16 7 2.3
Toroj 1167 200 5.8
Nstack 389 7 55.6
Tstack 1930058 217 | 8894.3
Tsimp 3683 8| 4604

Table 3: Intersection: y < z < z
4.2 Intersection B:y <z <z

4.2.1 Input formula for QE

Order of variables: y,x,z.

(Ez) [ x2-1/2y2-1/22"2=0
ANxz+zy-2x=0
/N 22 -y =01

This is the same problem as the last one, except that we switched the order
of two free variables. This does not change the geometric or logical meaning of
the formula, but it does affect the computation carried out by the QE and the
GB algorithms.

4.2.2 Grobner basis

Gl = y°5 - 26 y"4 - 15 y°3 + 24 y"2 + 16 y
G2 = x ~ 3/64 y"4 + 41/32 y~3 - 59/64 y"2 - 21/16 y
G3=2zy~-1/8y°4 + 27/8 y"3~-5/4y2-3y

G4 =2z"2 -7y -

4.2.3 Owutput formulas

For the original input, the QE algorithm produces the following quantifier free
formula:

2x2-y2-y=0/\Nyx"2-4%x"2+2y2x+y'3=0

For the preprocessed input, the QE algorithm produces the following quan-
tifier free formula:

64 x -3y 4+82y3-59y2-87y=0
/NLy3-26y2-40y~-16=0\/y-1=0\/y=0]




We can simplify this output formula further by evaluating the first polyno-
mial on y = 1 and y = 0, obtaining:

[
it

[x =0 /\ y=0]
\/ [x=1 /\ y=1]
\/ [y"3-25y"2-40y-16 =0 /\
64 x -3 y'4+82y°3-59y2~284y=0]

We can still make further simplification by computing a Gobner basis of the last
two polynomials, obtaining:

[x=0 /\ vy

\/ Ix=1 /\ y
\/ [y"3 - 25 y-2

01
1]
40 y - 16 = 0 /\ 18 x — y"2 + 37 y + 28 = 0]

fl

4.3 Random A: ez <y <z

QE alone GB and QE Ratio
Tiotar 14583 | 1167 = 50 + 1117 12.5
Nyroj 19 5| 38
Tproj 2050 17| 175
Nstack 55 4 13.8
Tstack 11666 684 17.1
Tsi771.;: 8 8 1.0

Table 4: Random: z < y < z

4.3.1 Input formula for QE

Order of variables: x,y,z

(Ex)(4a y)(E z) [ 4 x"2+xy2-2+1/4=0
/N2x+y2z+1/2=0
/Nx2z~-1/2x-y°2=01]

The three polynomials are from Buchberger’s survey paper on Grébner ba-
ses [4]. We formed the sentence arbitrary using the polynomials.

4.3.2 Grobner basis

Gl = x77 + 29/4 x"6 ~ 17/16 x"4 - 11/8 x°3 + 1/32 x~2
+ 15/16 x + 1/4
G2 = yo2 + 112/2745 x"6 - 84/305 x"5 - 1264/305 x4




- 13/649 x"3 + 84/305 x~2 + 1772/2745 x + 2/2745
G3 = z - 1568/2745 x°6 - 1264/305 x°5 + 6/305 x4 + 182/549 x"3
- 2047/610 x~2 - 103/2745 x - 2857/10980

Note that the Gobner basis has the leading monomials z7, y?, and z, and
thus it has only finitely many common real zeros. Therefore we could have
concluded already, without using the QE algorithm, that the input formula is
false since the variable y is universally quantified.

4.3.3 Output formulas

For both the original and the preprocessed input sentences, the QE algorithm
reports that the sentences are false.

4.4 Random B: z <y <z

QE alone GB and QE Ratio
Tiotal 170533 | 1283 = 83 + 1200 | 132.9
jvproj 30 5 6.0
Tprof 9416 117 | 805
Nstack 107 4 26.8
Tstack 149498 783 | 190.9
Tsimp 8 8 1.0

Table 5: Random: z < y < z

4.4.1 Input formula for QE

Order of variables: z,y,x

Ez2)AyE=x L 4 x"2+xy2-2z+1/4=0
/N2x+y2z+1/2=0
/Nx2z-1/2x-y"2=01]

This is the same sentence as the last one, except that we reversed the order
of the variables.

4.4.2 Grobner basis

Gl = 2z°7 - 1/2 2°6 + 1/16 z°5 + 13/4 z~4 + 75/16 z~3

- 171/8 z°2 + 133/8 z - 15/4

y©2 - 19188/497 z°6 + 318/497 z"5 - 4197/1988 z"4
.=.251555/1988 z"3 - 481837/1988 z"2 + 1407741/1988 z-- - vv.

G2




- 207833/994

G3 = x + 4638/497 z"6 - 75/497 z"5 + 2111/3976 z"4
+ 61031/1988 z~3 + 232833/3976 z"2 - 85042/497 z
+ 144407/1988

4.4.3 Output formulas

For both the original and the preprocessed input sentences, the QE algorithm
reports that the sentences are false.

4.5 Ellipse Ata<b<c<z<y

QE alone GB and QE Ratio
Tiotal 171616 | 69658 = 8 + 69650 2.5
Nproj 40 37 1.1
71proj 5700 2417 2.4
Nstack 1814 365 5.0
Tstack 146700 56300 2.6
Tsimp 5983 17 | 351.9

Table 6: Ellipse: a<b<c<z<y

4.5.1 Input formula for QE

Order of variables: a,b,c,x,y

(EX)(E WL x2+y2-1=0

/N b2 (x - ¢)"2 + a~2 y°2 - a2 b2 =20
/\N'a>0

/\ a< 1

/ANb>0

/\ b < 1

/\ ¢ >= 0

/Ne<1 ]

The first two polynomial equations respectively define a unit circle centered
at the origin and an ellipse of semi-axes a and b centered at (c,0). The problem
is to find a condition for @, b, and ¢ such that the circle and the ellipse intersect.
In order to reduce the complexity of the problem, we also restricted a, b, and ¢
to the ranges as defined by the six inequalities in the formula. This problem was
motivated by a similar problem proposed by Kahan [9], where one is interested
in a condition that the ellipse is inside the circle.

10




4.5.2 Grobner basis

X"2 b2 - x"2a°2 - 2xcb2+ c2b°2 - b2 a2+ a2
y°2 + x°2 - 1

G1
G2

i

In this case, the Grobner basis computation is trivial rewriting: eliminating
y? from the second polynomial equation of the input formula by using the first
polynomial equation.

4.5.3 Owutput formulas

For both the original and the preprocessed input formulas, the QE algorithm
produces the following quantifier free formula:

[ c+a-1>0
N/ [P2-a>0/\b2c2+b"4-2a"2b"2-Db"2+a2>01]
ANa>0/Na-1<0/\Ab>0/\b~-1<0/\

c> 0/\Nc-1<0

4.6 EllipseB:a<b<c<y<z

QE alone GB and QE Ratio
Tiotal 77T o= 100 + 7 ?
Noroj 117 ? ?
Toros 156817 ? ?
Nstack 7 ? ?
Tstack 7 ? ?
Tiwfm.p i ? ?

Table 7: Ellipse: a <b<c<y<cz

4.6.1 Input formula for QE

Order of variables: a,b,c,y,x

EWWEXNL x2+y2-1=0

/N b2 (x - ¢)"2 + a"2 y°2 -a’2b’2=0
/\ a>0o0

/N a< 1

/\'b>0

/\ b <1

/\ ¢c >= 0

/Ne<1 ]

11




This is the same formula as the last one, except that we switched the order
of two bound variables.

4.6.2 Grobner basis
Gl = y"4Db"4-2y74b°2a"2+y4a"4+2y°2c"2b4
+2y72c¢72Db72a"2+2y2b74a"2~-2y"2b4
- 2y2b72a"4+2y"2b"2a"2+c¢c"4b"4-2¢c¢c"2b74 a2
- 2c¢c"2Db"4+b4a’4d-2b"42a"2+ b4
G2 =xy2ca’2+1/2y°4b"2~-1/2y°4a"2+ y°2c 2 b2
+1/2y72c¢"2a"2+y°2b2a"2-y"2b"2-1/2 372 a4
+1/2y°2 a2+ 1/2 ¢4 b°2-¢"2b"2 a2 - ¢"2 b2
+1/2 "2 2”4 - b"2 a”2 + 1/2 b"2
G3=xy"2b"2-xy2a"2+xb’2a"2-xDb"2=-3/2y"2cb"2
- 1/2y°2ca’2-1/2¢"3 b2+ 1/2c b2 a2+ 3/2 c b2
G4 =x cb2+1/2y72b°2-1/2y"2a"2~-1/2 c¢c"2b"2
+ 1/2 b"2 a"2 - 1/2 b2
G5 = x +y"2 -1

4.6.3 Output formulas

For both the original and the preprocessed input formulas, the QE algorithm

was aborted after 40 minutes computation.

4.7 Solotareff At a<b<z<y

QE alone GB and QE Ratio
Tiotal 11500 | 834 = 717 + 117 13.7
jvproj 28 35 0.8
Tproj 367 283 1.2
]Vstack. 86 4 21.5
Tstack 7033 250 28.1
Toimp 3783 17 | 2225

Table 8: Solotareff: a < b<z <y

4.7.1 Input formula for QE

Order of variables:

(E x)E L

/N

a,b,x,y

3 x"2-2x-a 0

X3 - x"2~-ax-2b+a-2-=

12

0




2-2y-a=0
-y2-ay-a+2=0

~
~
B W
3
pA W

/\ =4 a
/\ <=7
/\ =3 <=4 b
/N 4 b <=3
/\ -1 <= x
/\ x <=0
/\ 0 <=y
/Ny <=1 1]

This formula arises as a subcase of Solotareff’s first problem for cubic po-
lynomials [1]. In general, Solotareff’s first problem is to find a polynomial of
degree n — 2 which best “approximates” a given polynomial of degree n within
a given range,

4.7.2 Grobner basis

Gl =a"3 - 11 a"2 + 35 a - 25
G2 = b"2 - 2/3ba+ 56/27 b~ 1/3 a~2 + 16/27 a + 4/27
G3 = x + 81/1024 b a~2 - 459/512 b a + 3141/1024 b
+ 93/1024 a2 ~ 527/512 a + 2241/1024
G4 =y - 3/32 a”2 + 17/16 a - 63/32

4.7.3 Output formulas

For the original input, the QI algorithm produces the following quantifier free
formula:

a-1=0/\27b"2~18ab +568b-a"3+2a"2-19 a + 29 =0
/N4d4a-1>0/\N4a-7<=0/\4b+3>0/\4b-3<=0

For the preprocessed input, the QE algorithm produces the following quan-
tifier free formula:

4a-1>0/\N4a-7<=0/\N4b+3>0/\4b-3<=0
/NlTa-1=0\a-58=0]
/NL[2Tb+9a+2=0\/b-a+2=01]

Both formulas can be easily simplified to

a=1A270+11=0.

4.8 Solotareff B:b<a<a<y

13




QE alone GB and QE Ratio
Tiotar 51900 | 555720 = 554720 + 1000 0.1
Np7'oj 42 21 2.0
Tyros 500 600 0.8
Nstack 164 4 41.0
Tistack 14151 200 70.8
Tsimp 36100 8 | 4512.5

4.8.1 Input formula for QE

Order of variables: b,a,x,y

(E x)(E yl

This is the same formula as the last one, except that we switched the order

/N
/\
/\
/N
/\
/\
/\
/\
/\
/\
/N

Table 9: Solotarefl: b<a<z <y

[
L

[\S]

|
NN NN
o<

3 x”
x"3
3 y°
y~3
1 <=
4
-3 <=

-1 <=x
x <=0
0 <=y
y <=1

of two free variables.

4.8.2

Grobner basis

i
< opXK P

fl
(o)

-2b+a-2=90

0]
o

-—a+2=20

Gi = b6 ~ 10/9 b~5 - 2915/243 b~4 - 6724/19683 b~3

+
G2 = a
+
G3 = x
+
G4 =y

+

830093/19683 b2 + 286982/6561 b + 24299/2187
- 537286851/1733427200 b~5 + 1274021541/1733427200 b 4

2556627057/866713600 b~3 ~ 3694037643/866713600 b2

3091197667/346685440 b - 6499394527/1733427200
+ 1227687759/27734835200 b5 - 897078969/27734835200 b~4
8587423413/13867417600 b3 - 1285658313/13867417600 b~2

16457320943/5546967040 b + 42073006043/27734835200

+ 2835001539/13867417600 b5 — 7132522149/13867417600 b~4
12643778673/6933708800 b~3 + 19121535627/6933708800 b~2

15435163363/2773483520 b + 9745294303/13867417600

-
I




4.8.3 Output formulas

For the original input, the QE algorithm produces the following quantifier free
formula:

a-1=0/\a3-2a2+18ba+19a-27b"2~-568b -28 =0
/N4a-1>0/N4a-7<=0/\4b+3>0/\4b-3<=0
For the preprocessed input, the QE algorithm produces the following quan-

tifler free formula:

4a-1>0/\N4a-7<=0/\4b+3>0/\4b-23<=0/\
[27b +11=0\/b+1=0\/b=-3=0\/27b+ 47 =017 /\
1733427200 a - 537286851 b~5 + 1274021541 b4 + 5113254114 b~3
- 7388075286 b2 - 15455988335 b -~ 6499394527 = 0

Both formulas can be easily simplified to

a=1A270+11=0.

4.9 Collision Ara<t<z<y

QE alone GB and QE Ratio
Tiotal 47817 | 7 = 984 + 7 ?
Nproj 37 ? ?
Toroj 4800 ? ?
Nstack 671 ? ?
Tstack 40249 ? ?
Tsimp 17 ? ?

Table 10: Collision: a <t < 2 <y

4.9.1 Input formula for QE

Order of variables: a,t,x,y

EDEXNDENL 1/4 (x-t)2+ (y-10)"2 -1=0
/AN1/4 (x-at) 2+ (y-at)2-1 =0
/Nt >0
/N a>01]

In this formula, the variable ¢ stands for time. The first polynomial equation
defines an ellipse of semi-axes 2 and 1, initially centered at (0, 10), and moving
horizontally with speed 1. The second polynomial equation defines another
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ellipse of the same size, initially centered at the origin, and moving with the
velocity (a,a). Thus the problem is to find a condition on a such that the two
ellipses collide or at least touch.

4.9.2 Grobner basis

"2 t72 a2 -2/5x"2t"2a+1/6x"2t72-16x"2t a
+ 80 x"2-xt"3a"3-3/5xt3a"2+1/5xt"3a
-1/ xt"3+ 18 x t°2a"2+ 16 xt°2a-8xta
- 80 xt +5/4t°4 a”4 + 3/10 t74 a~2 + 1/20 t-4
- 40 t73 a3 - 8 £t73 a + 2584/5 t°2 a"2 + 40 t~2
- 3136 t a + 7680
yxa-yx+1/2yt-5ya-1/8x"2t a2
+ 1/20 x"2 t a - 1/40 x"2 t + x"2 a + 1/8 x t~2 a"3
+ 3/40 x t72 a”2 - 1/40 x t°2 a + 1/40 x t°2
- 11/8xt a2-5/8xta-5xa+b5x-5/321t"3a"4
-~ 3/80 t73 a2 - 1/160 t°3 + B5/16 t°2 a"3 + 5/16 t"2 a
- 271/10 t a~2 5/2 t + 121 a
G3=yxt-10yx-1/2yt°2+50y+5/4x"2¢ta

- 1/4 x"2 t ~ 10 x"2 - 5/4 x t°2 a”2 - 11/8 x t°2 a

+ 1/8 x t72 + B5/4 x t a + 25/4 x t + 50 x

+ 25/16 t°3 a”3 + 11/16 t°3 a - 275/8 t°2 a~2
25/8 t72 + 271 t a - 1210

G1

i
»

G2 =

!

Gd=yta-10y +1/4xta-1/4x1t - 5/8 t72 a~2
+ 1/8 £72 + 50
GE = y°2-20y + 1/4x°2 - 1/2 x t + 1/4 t°2 + 99

4.9.3 Output formulas

For the original input formula, the QE algorithm produces the following quan-
tifier free formula:

5a2~12a+6<=0/\a>0

From this we obtain the range of a:
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For the preprocessed input formula, the QE algorithm was aborted after 40
minutes of computation.

4.10 Collision Bra<y<a <t




4.10.1

QE alone GB and QE Ratio

Tiotal T = 6134 + 7 ?
Nprog ? ? ?
. ? ? ?
proj . ! H
Nstack ? ? ?
Tstack ? ? ?
Tsim.p ? ? ?

Table 11: Collision: a<y<z <1t

Input formula for QE

Order of variables: a,y,x,t

EWEELL 1/4 x-t)"2+(y-10)"2 -1=0

/N1/4 (x~at)2+(y-at)’2-1 =0
/Nt >0
/N a> 0]

This is the same formula as the last one, except that we reversed the order
of the bound variables.

4.10.2

Gl = x~

+

I+ 4+ +

+

ot 4+ +

+ o+ o+

Grobner basis

4 a"4 - 4/5 x"4 a3 + 14/25 x"4 a"2 - 4/25 x4 a

1/25 x"4 - 16/56 x"3 y a"3 + 32/26 x"3 y a"2

16/26 x"3 y a + 8 x"2 y°2 a4 - 16/5 x"2 y~°2 a"3

16/5 x"2 y~2 a”2 - 16/25 x"2 y"2 a + 8/25 x"2 y~2

160 x"2 y a4 + 64 x"2 y a3 + 96/56 x"2 y a~2

792 x72 a"4 -~ 1584/5 x72 a”3 - 2416/25 x"2 a2

16/25 x"2 a - 8/25 x"2 - 64/5 x y°3 a"3

128/25 x y°3 a2 - 64/25 x y°3 a + 256 x y~2 a”3

512/6 x y°2 a”2 ~ 6338/5 x y a”3 + 12672/256 x y a"2
64/25 x y a + 16 y~4 a”4 + 96/25 y°4 a"2 + 16/25 y~4
640 y"3 a4 - 384/5 y"3 a"2 + 9568 y~2 a“4

9664/25 y"2 a”2 - 32/25 y*2 - 63360 y a"4 - 128 y a"2
166816 a~4 + 3168/5 a"2 + 16/25

y72 a8 - 2/6t y"2 a4 +2/25t y2 a2 - 1/25t y°2 a
20t ya’ 8 +8tya4-4/5tya3+99t ab

198/5 t a"4 + 104/26 t a3 - 2/25 t a”2 + 1/1256 t a

1/8 x"3 a”6 - 1/8 x"3 a"4 + 9/100 x°3 a"3 - 17/500 x"3 a"2
9/1000 x"3 a - 1/1000 x"3 -~ 3/10 x"2 y a~4

4/25 x"2 y a”3 - 7/125 x"2 y a”2 + 1/250 x"2 y

1/2 x y°2 a”6 - 1/2 x y°2 a4 + 9/25 x y~2 a"3
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4.10.3

17/125 x y~2 a2 + 9/250 x y°2 a - 1/250 x y©2

10 x ya’8+10 xya"4-6/6xya"3-2/25xy a2

99/2 x a5 - 99/2 x a”4 + 141/25 x a”3 + 67/125 x a"2
9/260 x a + 1/250 x - 6/5 y°3 a“4 + 16/25 y 3 a”3

28/125 y°3 a”2 + 2/125 y°3 + 24 y°2 a”4 - 64/5 y°2 a"3
72/25 y°2 a”2 - 594/5 y a4 + 1584/25 y a~3

1772/125 y a~2 - 2/125 y

Xxya-125/4t y"2 a4 +25/4ty"2a"3+5/4t y°2a"2
9/4 t y72 a + 625ty a"4 - 125 t y a3 - 12375/4 t a"4
2475/4 t a”3 - 25/4 t a”2 + B/4 t a - 125/32 x"3 a"4

25/8 x"3 a"3 -~ 35/16 x"3 a”2 + 5/8 x°3 a - 5/32 x°3

75/8 X2y a”3 - 25/8 x"2 y a"2 + 5/8 x"2 y a + 1/8 x"2
125/8 x y~2 a"4 + 25/2 x y"2 a3 - 35/4 x y°2 a"2

5/2 x y°2 a - 5/8 x y°2 + 625/2 x y a"4 - 250 x y a"3
25/2 x y a”2 - 12375/8 x a"4 + 2475/2 x a~3 + 285/4 x a"2
5/2 x a + 5/8 x + 75/2 y°3 a3 - 25/2 y"3 a"2 + 5/2 y"3 a
1/2 y°3 = 750 y°2 a"3 + 250 y°2 a™2 + 7425/2 y a"3

2475/2 y a”2 - 5/2ya=~-1/2y

Xx"2 - 376/2 t y°2 a”4 + 25/2 t y*2 a"3 - 25/2 t y°2 a2
25/2t y°2a+ 4ty 2+ 3750ty ad- 250ty a3

400 t y a"2 - 37125/2 t a4 + 2475/2 t a"3 - 4035/2 t a2
B/2t a- 4t - 375/16 x"3 a"4 + 125/8 x°3 a"3

B5/4 x"3 a”2 + 31/8 x°3 a - 37/16 x°3 + 225/4 x~2 y a’3
45/4 x"2 y a"2 + 47/4 x"2 y a + 5/4 x"2 y

375/4 x y°2 a”4 + 125/2 x y°2 a3 - 66 x y°2 a"2

31/2 x y°2 a - 37/4 x y"2 + 1875 x y a”4 - 1250 x y a3
26 x y a”2 - 160 x y a - 37125/4 x a"4 + 12375/2 x a"3
180 x a”2 + 1569/2 x a + 37/4 x + 225 y°3 a"3

45 y°3 a2 + 47 y°3 a + 5 y°3 - 4500 y°2 a~3

900 y"2 a"2 - 640 y°2 a + 22275 y a3 - 4455 y a"2

3163 y a - b vy

xa’2-1/5txa-4/5tya-1/2 x"2 a2 + 1/10 x°2

2 y°2 a2+ 2/5y°2 + 40y a2 - 198 a"2 - 2/5

2 -2t x+x2+4y2-80y+ 306

QOutput formulas

For both the original and the preprocessed input formulas, the QE algorithm
was aborted after 40 minutes of computation.

5 Conclusion

In this paper we investigated the possibility of using the Grobner bases algorithm
for speeding up the CAD-based quantifier elimination algorithm. In particular,
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we used the Grobner bases algorithm to preprocess input formulas of quantifier
elimination. Preliminary experiments showed that this method often gives a
significant speed-up (ranging 2 through 1700 times), though sometimes it results
in a slow-down (about 10 times).

We plan to carry out further research in order to explain when and why

Grobuner bases computation does not help quantifier elimination. Based on
the resulting understanding, we could be able to specialize the Grébner bases
algorithm for the use as a preprocessor to quantifier elimination algorithm.
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