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Abstract

An important application of solving parameterized linear difference equa-
tions in ΠΣ-fields, a very general class of difference fields, is simplifying
and proving of nested multisum expressions and identities. Together with
other reduction techniques described elsewhere, the algorithms considered
in this article can be used to search for all solutions of such difference equa-
tions. More precisely, within a typical reduction step one often is faced
with subproblems to find all solutions of linear difference equations where
the solutions live in a polynomial ring. The algorithms under considera-
tion deliver degree bounds for these polynomial solutions.

1. Introduction

M. Karr defined in [Kar81, Kar85] a very general class of difference fields, so
called ΠΣ-fields, under two aspects. First ΠΣ-fields allow to describe indefinite
nested multisums in a formal way, and second one is capable of solving first or-
der linear difference equations in this ΠΣ-field setting; this amounts to simplify
indefinite nested multisums by elimination of sum quantifiers. In [Sch01, Sch02b]
I streamlined Karr’s ideas based on [Bro00] to a compact algorithm and general-
ized the underlying reduction techniques which enables to search for all solutions
of parameterized linear difference equations with arbitrary order in ΠΣ-fields.
By this general algorithm one is not only able to deal with indefinite summation,
but also can prove a huge class of definite multisum identities by applying Zeil-
berger’s creative telescoping trick [Zei90] in the setting of ΠΣ-fields. Moreover
by using our general algorithm one can solve recurrences, obtained by creative
telescoping, in the ΠΣ-field setting and hence one even can discover definite
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multisum identities. These algorithms are available in form of a package called
Sigma [Sch00, Sch01] in the computer algebra system Mathematica.

In order to solve parameterized linear difference equations in ΠΣ-fields, one
generates a reduction process that is introduced in [Sch02b]. In this reduction
one is faced with subproblems to find all solutions of parameterized linear differ-
ence equations where the solutions live in a polynomial ring. Then one can apply
further reduction techniques given in [Sch02b] to solve this difference equation,
if one knows a degree bound of the solutions in that polynomial ring. As illus-
trated in Section 2 these reduction techniques are well known in one of the most
simplest cases of ΠΣ-fields. In particular in [Abr89a, Pet92, SAA95, PWZ96]
one computes these degree bounds for the polynomial solutions of a given differ-
ence equation with rational coefficients. In this work we try to develop further
degree bounds of a given difference equation in the much more general setting of
ΠΣ-fields. Based on the work of [Kar81] I develop algorithms to compute degree
bounds for first order linear difference equations in ΠΣ-fields. Whereas in Karr’s
work theoretical and computational aspects are mixed, I try to separate his re-
sults in several parts to achieve more transparency. Furthermore all prove steps
are carefully carried out, whereas in Karr’s work the essential proves are omitted.
Combining this result with [Sch02b, Sch02a] gives a complete algorithm to solve
first order linear difference equations in ΠΣ-fields. Similarly to the first order
case one needs degree bounds for linear difference equations of higher order. As
it turns out, it is much harder to find such degree bounds in the general setting
of ΠΣ-fields. In this work I generalized Karr’s degree bounds to the higher or-
der case which enables to treat at least some special cases of linear difference
equations. In this sense the degree bounds under consideration contribute to
important developments to solve linear difference equations in ΠΣ-fields.

First the degree bound problem is introduced in the general context of solv-
ing linear difference equations. After defining ΠΣ-fields in Section 3, some basic
strategies for the degree bound problem are specified in Section 4. Finally in
Sections 5 and 6 methods are developed that find several degree bounds in ΠΣ-
fields. Especially in Section 7 this leads to an algorithm that solves the degree
bound problem for first order linear difference equations in ΠΣ-fields. In particu-
lar we analyze some important properties of that algorithm which are needed for
further development in the theory of ΠΣ-fields and indefinite summation. More-
over in Section 8 results from [Sch01] are introduced that enable to find degree
bounds for linear difference equations in an important subclass of ΠΣ-fields.

2. The Degree Bound Problem

In [Abr89b, Abr89a, Abr95] S. Abromov is concerned in finding all solutions
g(t) in the field of rational functions K(t) with characteristic 0 that fulfill linear
difference equations of the type

am(t) g(t + m) + · · ·+ a0(t) g(t) = f(t) (1)
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where ai(t) and f(t) are polynomials in K[t]. Looking closer at this problem, one
immediately sees that this problem can be formalized in difference fields.

Definition 2.1. A difference field (resp. ring) is a field (resp. ring) F together
with a field (resp. ring) automorphism σ : F→ F. In the sequel a difference field
(resp. ring) given by the field (resp. ring) F and automorphism σ is denoted by
(F, σ). Moreover the subset K := {k ∈ F |σ(k) = k} is called the constant field
of the difference field (F, σ).

It is easy to see that the constant field K of a difference field (F, σ) is a subfield
of F. In the sequel we will assume that all fields are of characteristic 0. Then it
is immediate that for any field automorphism σ : F→ F we have σ(q) = q for
q ∈ Q. Hence in any difference field, Q is a subfield of its constant field.
Problem 1 can be described by difference equations in (K(t), σ):

Example 2.1. Let K(t) be the field of rational function over the field K, this
means K(t) is the quotient field of the polynomial ring K[t]. Then we can de-
fine uniquely the difference field (K(t), σ) with constant field K where the field
automorphism σ : K(t) → K(t) is canonically defined by σ(t) = t + 1.

As illustrated in [Sch01, Sch02b] one is able to discover and prove a huge class of
indefinite and definite multisum identities by solving parameterized linear differ-
ence equations in ΠΣ-fields; in particular one can carry out indefinite summation,
Zeilberger’s creative telescoping idea and solving recurrences.

Solving Parameterized Linear Difference Equations

• Given a difference field (F, σ) with constant field K, a1, . . . , am ∈ F with m ≥ 1 and
(a1 . . . am) 6= (0, . . . , 0) =: 0 and f1, . . . , fn ∈ F with n ≥ 1.

• Find all g ∈ F and all c1, . . . , cn ∈ K with a1 σm−1(g) + · · ·+ am g = c1 f1 + · · ·+ cn fn.

By the above remarks one can immediately see that problem (1) is contained
in our general problem by choosing the difference field (K(t), σ) as defined in
Example 2.1. Furthermore note that in any difference field (F, σ) with constant
field K, the field F can be interpreted as a vector space over K. Hence the above
problem can be described by the following set called solution space.

Definition 2.2. Let (F, σ) be a difference field with constant fieldK and consider
a subspace V of F as a vector space over K. Let 0 6= a = (a1, . . . , am) ∈ Fm and
f = (f1, . . . , fn) ∈ Fn. We define the solution space for a, f in V by

V(a, f ,V) = {(c1, . . . , cn, g) ∈ Kn ×V : a1 σm−1(g) + · · ·+ am g = c1 f1 + · · ·+ cn fn}.

It follows immediately that V(a,f ,V) is a vector space over K. Moreover in
[Sch02b] based on [Coh65] it is proven that this vector space has finite dimension.

Proposition 2.1. Let (F, σ) be a difference field with constant field K and as-
sume f ∈ Fn and 0 6= a ∈ Fm. Let V be a subspace of F as a vector space over
K. Then V(a,f ,V) is a vector space over K with maximal dimension m+n−1.
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Finally some notations are introduced. Let F be a field and f = (f1, . . . , fn) ∈ Fn.
For h ∈ F we write hf = (h f1, . . . , h fn) ∈ Fn and f∧h = (f1, . . . , fm, h) ∈ Fn+1.
If c ∈ Fn, we define the vector product c f =

∑n
i=1 ci fi. Moreover for a function

σ : F→ F, a ∈ Fm and g ∈ F, we introduce σag := a1 σm−1(g) + · · ·+ am g ∈ F.
This leads to the compact description of

V(a,f ,V) = {c∧g ∈ Kn × V | σag = c f}.

In [Sch02b] several reduction techniques are introduced in order to compute a
basis of the solution space V(a,f ,F) in ΠΣ-fields. An important step is the so
called denominator bound method which popped up the first time in [Abr89b,
Abr95] for the rational case (1). Here one is concerned to find a basis of the
solution space V(a,f ,K(t)) for some 0 6= a ∈ K[t]m and f ∈ K[t]1 in the
difference field (K(t), σ) given in Example 2.1 by the following strategy.

The Denominator Elimination Strategy

1. Compute a denominator bound d ∈ K[t]∗ such that for all elements in the solution space
c∧g ∈ V(a, f ,K(t)) we have d g ∈ K[t].

2. Compute a basis of V(a′,f ,K[t]) for a′ := ( a1
σm−1(d)

,...,
am−1
σ(d) , am

d ) ∈ K(t)m.

3. Reconstruct a basis {c1∧ g1
d , . . . , cl∧ gl

d } of V(a, f ,K(t)).

Hence it remains to find a basis of the solution space V(a′,f ,K[t]). Here an es-
sential step is to restrict the solution range K[t] by b ∈ N0 to a finite dimensional
subspace

K[t]b := {f ∈ K[t] | deg(f) ≤ b}
of K[t] over K. This means we have to find a degree bound b such that

V(a′,f ,K[t]) = V(a′, f ,K[t]b).

Then it is a matter of solving a linear system of equations to compute a ba-
sis of V(a′, f ,K[t]b). In [Abr89a, Pet92, SAA95, PWZ96] several algorithms
are introduced that allow to determine this degree bound of the solution space
V(a,f ,K[t]); as it turns out in [PW00], all these algorithms are equivalent and
compute exactly the same degree bound of a specific solution space.

As will be introduced in the next section, a ΠΣ-field (K(t1) . . . (te−1)(te), σ)
with constant field K is constructed by a tower of transcendental extensions ti;
for further considerations we set F := K(t1) . . . (te−1) for such a ΠΣ-field. In
[Sch02b] several reduction techniques are introduced that allow to search for a
basis of V(a,f ,F(te))) with 0 6= a ∈ F[te]

m and f ∈ F[te]
n. Similarly to the

rational case K(t), one first bounds the denominator of the solutions in F(te)
and reduces the problem to find a basis of V(a′,f ,F[te]) for specific a′ ∈ F[te]

m

and f ′ ∈ F[t]n. This strategy is intensively analyzed in [Sch02a] for ΠΣ-fields
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which combines results from [Kar81, Bro00]. Then in a second reduction step
one has to solve the degree bound problem.

The Degree Bound Problem

• Given a ΠΣ-field (F(te), σ), 0 6= a′ ∈ F[te]m and f ′ ∈ F[te]n.

• Find a degree bound b ∈ N0 such that V(a′,f ′,F[te]) = V(a′, f ′,F[te]b) where F[te]b :=
{f ∈ F[te] | deg(f) ≤ b}.

Finally by further reduction techniques carefully considered in [Sch02b] one tries
to find a basis of the solution space V(a′,f ′,F[te]b).

This article will explain how one can find such a degree bound b in the general
setting of ΠΣ-fields for the first order case, i.e. 0 6= a′ ∈ F[te]

2. Starting from
results of [Kar81], these bounds are developed step by step from theoretical and
computational point of views. Moreover these ideas are then generalized to the
higher order case for some special cases.

3. ΠΣ-Fields and Some Important Properties

As already described in previous sections, this work restricts to so called ΠΣ-
fields that are introduced in [Kar81, Kar85] and further analyzed in [Bro00,
Sch01, Sch02a]. In the following the basic definition and properties are introduced
that are needed in the sequel.

3.1. The Definition of ΠΣ-Extensions

In order to define ΠΣ-fields, the notion of difference field extensions is needed.

Definition 3.1. Let (E, σE), (F, σF) be difference fields. (E, σE) is called a dif-
ference field extension of (F, σF), if F ⊆ E and σF(f) = σE(f) for all f ∈ F.

Example 3.1. Let (K(t), σ) be the difference field defined in Example 2.1, re-
fined by K := Q, and consider the the field extension Q(t)(z) of Q(t) where z is
transcendental over Q(t). Then one can define uniquely the field automorphism
σ′ : Q(t)(z) → Q(t)(z) where the following holds: σ′(f) = σ(f) for all f ∈ Q(t)
and σ(z) = α z + β for some α ∈ Q(t)∗ and β ∈ Q(t). Clearly, (Q(t)(z), σ′) is a
difference field extension of (Q(t), σ).

If (E, σ̃) is a difference field extension of (F, σ), we will not distinguish anymore
that σ : F→ F and σ̃ : E→ E are actually different automorphisms.

Definition 3.2. (F(t), σ) is a Π-extension of (F, σ) if σ(t) = α t with α ∈ F∗, t
is transcendental over F and constσF(t) = constσF.

According to [Kar81] we introduce the notion of the homogeneous group which
plays an essential role in the theory of ΠΣ-fields.

Definition 3.3. The homogeneous group of (F, σ) is H(F,σ) := {σ(g)
g
| g ∈ F∗}.
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One can easily check that H(F,σ) forms a multiplicative group. With this notion
one obtains an equivalent description of a Π-extension. This result and its proof
can be found in [Kar85, Theorem 2.2] or [Sch01, Theorem 2.2.2].

Theorem 3.1. (F(t), σ) be a difference field extension of (F, σ) with σ(t) = α t
where α ∈ F∗. Then (F(t), σ) is a Π-extension of (F, σ) if and only if there does
not exist an n > 0 such that αn ∈ H(F,σ).

Next we define Σ-extensions according to Karr’s notions.

Definition 3.4. (F(t), σ) is a Σ-extension of (F, σ) if

1. σ(t) = α t + β with α, β ∈ F∗ and t /∈ F,

2. there does not exist a g ∈ F(t) \ F with σ(g)
g
∈ F, and

3. for all n ∈ Z∗ we have that αn ∈ H(F,σ) ⇒ α ∈ H(F,σ).

In particular we have two special cases that are of interest in this article.

Definition 3.5. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β. It
is called a simple Σ-extension, if for all n > 0 we have αn /∈ H(F,σ). If we have
α = 1, it is called a proper sum extension.

Example 3.2. In Example 2.1 (K(t), σ) is a proper sum extension of (K, σ).

Actually we are basically interested in extensions, similarly to Π-extensions,
where σ(t) = α t + β, (α, β ∈ F∗), t transcendental and constσF(t) = constσF.
Under these considerations property (1.) with t /∈ F fits to the desired goal.
Unfortunately condition (3.) seems to be quite technical, and indeed is needed for
computational aspects for instance in Theorem 3.4. In particular if we deal with
simple Σ-extensions, we have even stronger properties which gives more flexibility
to compute degree bounds of a solution space as can be seen in Section 5.1. On the
other side in many cases one is interested in proper sum extensions, this means
α = 1, and hence condition (3.) is obsolete since 1 ∈ H(F,σ). Moreover the next
result states that in a Σ-extension t is transcendental and constσF(t) = constσF.
This statement is a direct consequence of [Sch01, Theorem 2.2.3] which is a
corrected version of [Kar81, Theorem 3] or [Kar85, Theorem 2.3].

Theorem 3.2. Let (F(t), σ) be a Σ-extension of (F, σ). Then (F(t), σ) is canon-
ically defined by σ(t) = α t + β for some α, β ∈ F∗, t is transcendental over F
and constσF(t) = constσF.

Similarly to Π-extensions an alternative description of Σ-extensions can be given.
This result follows from [Kar81, Theorem 1] or [Kar85, Theorem 3] and is essen-
tially the same as [Sch01, Corollary 2.2.3].

Theorem 3.3. Let (F(t), σ) be a difference field extension of (F, σ) with σ(t) =
α t + β where α, β ∈ F∗. Then (F(t), σ) is a Σ-extension of (F, σ) if and only
if there does not exist a g ∈ F with σ(g) − α g = β, and property (3.) from
Definition 3.4 holds.
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Now we are ready to define ΠΣ-extension.

Definition 3.6. (F(t), σ) is called a ΠΣ-extension of (F, σ), if (F(t), σ) is a Π-
or a Σ-extension of (F, σ).

Clearly if (F, σ) is a difference field, also (F, σk) is a difference field for any k ∈ Z.
Moreover if (F(t), σ) is a ΠΣ-extension of (F, σ), also (F(t), σk) is a difference field
extension of (F, σk). More precisely automorphisms of such difference extensions
are defined in the following way.

Example 3.3. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with σ(t) = α t + β,
α ∈ F∗ and β ∈ F. Furthermore assume k ∈ Z. Then for k ≥ 0 we have
σk(t) = t

∏k−1
i=0 σi(α) + γ for some γ ∈ F; whereas for k < 0 we have σk(t) =

t
∏−k

i=1 σ−i(1/α) + γ for some γ ∈ F. If β = 0, γ = 0 for all k ∈ Z.

This motivates us to the following definition.

Definition 3.7. Let (F, σ) be a difference field, f ∈ F∗ and k ∈ Z. The σ-
factorial (f)k is defined by

∏k−1
i=0 σi(f), if k ≥ 0, and by

∏−k
i=1 σ−i(1/f), if k < 0.

Example 3.4. Continuing the previous example we have σk(t) = (α)k t + γ
with γ ∈ F for all k ∈ Z. In particular if β = 0, we have σk(t) = (α)k t.

3.2. ΠΣ-Extensions and the Field of Rational Functions

The next lemma will be used over and over again; it gives the link between ΠΣ-
extensions and its domain of rational functions. The proof is straightforward.

Lemma 3.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ). Then F(t) is a field of
rational functions over F. Furthermore, σ is an automorphism of the polynomial
ring F[t], i.e. (F[t], σ) is a difference ring extension of (F, σ). Additionally, for
all f, g ∈ F[t] we have deg(σ(f)) = deg(f) and gcd(σ(f), σ(g)) = σ(gcd(f, g)).

Some notions are needed for such a polynomial ring F[t] and its quotient field
F(t). By convention the zero-polynomial 0 has degree −∞. Furthermore, if f =∑n

i=0 fi t
i ∈ F[t], the i-th coefficient fi of f will be denoted by [f ]i, i.e. [f ]i = fi.

If i > n, we have [f ]i = 0. Moreover we define the rank function || || of F[t] by

||f || :=
{ −1 if f = 0

deg(f) otherwise.

Now we will generalize these notions from F[t] to its quotient field F(t). For this

we consider the subspace F(t)(frac) of F[t] over K defined by

F(t)(frac) :=

{
p

q
∈ F(t) | p ∈ F[t], q ∈ F[t]∗ and deg(p) < deg(q)

}
.

Then by polynomial division with remainder the next statement holds.
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Lemma 3.2. Let F(t) be a field of rational functions and consider F[t] and

F(t)(frac) as subspaces of F(t) over K. Then we have F(t) = F[t]⊕ F(t)(frac).

Decompose f ∈ F(t) by f = fp + fr ∈ F[t] ⊕ F(t)(frac). Then we generalize
the coefficient of f by [f ]i := [fp]i and the rank of f by ||f || := ||fp||. For f =
(f1, . . . , fn) ∈ F(t)n we define [f ]i := ([f1]i , . . . , [fn]i) ∈ Fn and ||f || := maxi ||fi||.
The next two lemmas will be used over and over again; the proof is straightfor-
ward by using Lemma 3.2 and properties of the degree function.

Lemma 3.3. Let f, g ∈ F(t). Then ||f + g|| ≤ max(||f ||, ||g||). Furthermore if
||f ||, ||g|| 6= −1, we have ||f g|| = ||f ||+ ||g||. Moreover, we have ||c f || ≤ ||f || for any
f ∈ Fn and c ∈ F.
Lemma 3.4. Let F(t) be a field of rational functions and f, g ∈ F(t). Then
[f + g]d = [f ]d + [g]d for any d ∈ N0. If d := ||f || ≥ 0 and e := ||g|| ≥ 0
then [f g]r =

∑
i+j=r [f ]i [g]j for any r with max(d, e) ≤ r. Furthermore, if

σ : F(t) → F(t) is a field automorphism with σ(t) = α t + β, α, β ∈ F, then
[σi(f)]r = 0 for any r ≥ d and i ≥ 0.

With this notations one can formulate a simple fact that is needed later. In
particular we take into account the following property of a that will be important
for later considerations.

Situatation 3.1. Assume 0 6= a = (a1, . . . , am) ∈ F[t]m with ||ar|| = ||a|| for
some r ∈ {1, . . . , m} and ||ai|| < ||a|| for all i with i 6= r

Lemma 3.5. Let (F(t), σ) be a ΠΣ-extension of (F, σ), 0 6= a ∈ F[t]m and
f, g ∈ F[t] such that σag = f . Then ||f || ≤ ||a|| + ||g||. Furthermore, if a is as in
Situation 3.1 and g ∈ F[t]∗ then ||f || = ||a||+ ||g||.
Proof: If g = 0, we have f = σag = 0 and hence −1 = ||f || ≤ ||a||+ ||g|| holds by
||g|| = −1 and ||a|| ≥ 0. Otherwise assume that g 6= 0, i.e. ||g|| ≥ 0. By Lemma 3.3
it follows that

||f || = ||σag|| = ||a1 σm−1(g) + · · ·+ am g|| ≤ max(||a1 σm−1(g)||, . . . , ||am g||).

Please note that we have ||ai σ
m−i(g)|| ≤ ||ai|| + ||σm−i(g)||, if ai = 0; otherwise,

if ai 6= 0, we even have equality. Moreover if ai = 0 and aj 6= 0 then ||ai|| +
||σm−i(g)|| < ||aj||+ ||σm−j(g)||. Since there exists an j with aj 6= 0, it follows that

max(||a1 σm−1(g)||, . . . , ||am g||) = max(||a1||+ ||σm−1(g)||, . . . , ||am||+ ||g||).

By Lemma 3.1 we have ||σi(g)|| = ||g|| for all i ∈ Z and thus

max(||a1||+ ||σm−1(g)||, . . . , ||am||+ ||g||) = max(||a1||, . . . , ||am||) + ||g|| = ||a||+ ||g||



C. Schneider: Degree Bounds for ΠΣ-Fields 9

which proves the first statement of the lemma. If there exists additionally an r
as in Situation 3.1, we have

||a1 σm−1(g) + · · ·+ am g|| = ||ar σm−r(g)|| = max(||a1 σm−1(g)||, . . . , ||am g||)

and by the same argumentations as for the first statement the second result
follows immediately.

3.3. ΠΣ-Fields and Some Properties

For the definition of ΠΣ-fields properties on the constant field are required.

Definition 3.8. A field K is called computable, if

• for any k ∈ K one is able to decide, if k ∈ Z,

• polynomials in the polynomial ring K[t1, . . . , tn] can be factored over K and

• one knows how to compute a basis of
{
(n1, . . . , nk) ∈ Zk | cn1

1 · · · cnk
k = 1

}
which is a submodule of Zk over Z for any (c1, . . . , cn) ∈ Kn.

Lemma 3.6. Any field of rational functions Q(n1, . . . , nr) is computable.

Finally ΠΣ-fields are essentially defined by ΠΣ-extensions. Unlike Karr’s defini-
tion in this work we force additionally that the constant field is computable.

Definition 3.9. Let (F, σ) be a difference field with constant field K. (F, σ) is
called a ΠΣ-field over K, if K is computable, F := K(t1) . . . (tn) for n ≥ 0 and
(F(t1, . . . , ti−1)(ti), σ) is a ΠΣ-extension† of (F(t1, . . . , ti−1), σ) for all 1 ≤ i ≤ n.

Example 3.5. Note that the difference field (Q(t), σ), defined in Example 2.1
with K := Q, is a ΠΣ-field over Q. Now consider the difference field extension
(Q(t)(z), σ) of (Q(t), σ) as it is constructed in Example 3.1 with σ(z) = α z + β
for some α ∈ Q(t)∗ and β ∈ Q(t). Then one can show that (Q(t)(z), σ) is a
ΠΣ-extension of (Q(t), σ), if one chooses (α, β) = (t + 1, 0) or (α, β) =

(
1, 1

t+1

)
.

Hence in both instances (Q(t)(z), σ) are ΠΣ-fields over Q.

ΠΣ-fields are designed in such a way that the following problem, stated in form
of a theorem, can be solved. Its proof follows from [Kar81, Theorem 9].

Theorem 3.4. Let (F(t), σ) be a ΠΣ-field and assume (f1, . . . , fn) ∈ F(t)n.
Then there exists an algorithm that computes a finite basis of the submodule{
(z1, . . . , zn) ∈ Zn | f z1

1 . . . f zn
n ∈ H(F,σ)

}
of Zn.

The next theorem is taken from [Kar85, Theorem 4]. This result allows to gener-
alize the denominator bound for first order linear difference equations to higher
order linear difference equations for some specific cases in Subsection 5.2.

†For the case i = 0 this means that (F(t1), σ) is a ΠΣ-extension of (F, σ).
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Theorem 3.5. If (F, σ) is a ΠΣ-field, (F, σk) is a ΠΣ-field for all k ∈ Z∗.
In particular this theorem can be refined by the following result.

Corollary 3.1. Let (F(t), σ) be a ΠΣ-field and k ∈ Z∗. Then (F(t), σ) is a Π-
extension (resp. Σ-extension) of (F, σ) if and only if (F(t), σk) is a Π-extension
(resp. Σ-extension) of (F, σ). Moreover, (F(t), σ) is a simple Σ-extension of
(F, σ) if and only if (F(t), σk) is a simple Σ-extension of (F, σk).

Proof: Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t and α ∈ F∗.
Then by Theorem 3.5 (F(t), σk) is a Π-extension of (F, σk) with σk(t) = (α)k t.
Conversely, if (F(t), σk) is a Π-extension of (F, σ) with σk(t) = α′ t and α′ ∈ F∗,
by Theorem 3.5 (F(t), σ) is a Π-extension of (F, σ) with σ(t) = (α′)−k t. Hence
Π-extensions are in both directions transformed to Π-extension. But then the
same must be valid for Σ-extensions by Theorem 3.5. Now let (F(t), σ) be a
simple Σ-extension of (F, σ) with σ(t) = α t + β. Then by the first statement
of this corollary (F(t), σk) is a Σ-extension of (F, σ) with σk(t) = (α)k t + γ
for some γ ∈ F∗. What remains to show is that there does not exist an n > 0
with (α)n

k ∈ H(F,σ). For this let x be transcendental over F and consider the
difference field extension (F(x), σ) of (F, σ) canonically defined by σ(x) = α x.
Since (F(t), σ) is a simple Σ-extension of (F, σ), there does not exist an n > 0 such
that αn ∈ H(F,σ) and hence (F(x), σ) is a Π-extension of (F, σ) by Theorem 3.1.
Therefore by the first statement of this corollary (F(x), σk) is a Π-extension of
σ(x) = (α)k x. But this means that there does not exist an n > 0 such that
(α)n

k ∈ H(F,σ) by Theorem 3.1. The reverse direction is analogous.

3.4. Permutation Isomorphisms in ΠΣ-Fields

In Section 7 we provide an algorithm that solves the degree bound problem
for parameterized first order linear difference equations in a given ΠΣ-field. In
particular some properties of this algorithm will be shown that are needed for
further investigations in the theory of ΠΣ-fields and indefinite summation. These
properties are based on isomorphisms that are introduced in the following.

Definition 3.10. The difference fields (F, σ), (F̃, σ̃) are isomorph if there is a
field isomorphism τ : F→ F̃ with τ σ = σ̃ τ . τ is called difference field isomor-
phism.

The following lemma follows immediately by the commutativity of τ σ = σ̃ τ .

Lemma 3.7. Let (F, σ), (F̃, σ̃) be difference fields, τ : F→ F̃ be a difference
field isomorphism, 0 6= a ∈ Fm and f ∈ F. Then σag = f if and only if
σ̃τ(a)τ(g) = τ(g) for any g ∈ F. Moreover for all g ∈ F∗ we have g ∈ H(F,σ) if
and only if τ(g) ∈ H(F̃,σ̃).

In this work we consider the following almost trivial difference field isomorphism
of ΠΣ-fields which basically permutates the extensions in the tower of extensions.
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Definition 3.11. Let (F(s1) . . . (se), σ) and (F(t1) . . . (te), σ) be ΠΣ-fields and
τ : F(s1) . . . (se) → F(t1) . . . (te) be a difference field isomorphism. If for all f ∈ F
we have τ(f) = f and if there is a bijective map φ : X → X with X := {1, . . . , e}
such that τ(si) = tφ(i) for all 1 ≤ i ≤ e, we say that (F(s1, . . . , se), σ) and
(F(t1, . . . , te), σ) are isomorph by a permutation.

If we assume that (G, σ) and (H, σ) are ΠΣ-fields which are isomorph by a
permutation, we can write G and H as fields of rational functions, say G =
F(s1, . . . , se) and H = F(t1, . . . , te) for some e ≥ 0. Moreover there is a difference
field isomorphism τ : G→ H defined in the following way: τ(f) = f for all
f ∈ F and τ(si) = tφ(i) for some permutation φ. This means that we can reorder
the extensions in G by the permutation φ which yields to the ΠΣ-field (H, σ).
Since for any f ∈ G we have f = τ(f) ∈ H, we will ignore the difference field
automorphism τ and interpret any f in H also as an element in G and vice versa.

4. The Degree Bound Problem in ΠΣ-fields

As pointed out in the introduction, the main goal is to find a basis of the solution
space V(a,f ,F(t)) in a ΠΣ-field (F(t), σ) over K with 0 6= a ∈ F[t]m and
f ∈ F[t]n. In [Sch02b] several reduction techniques are introduced that enables
to search for such a basis. In particular in [Bro00, Sch02a], as sketched for the
rational case (Q(t), σ) in Section 2, the denominator elimination strategy allows
to reduce –at least partially– the problem from finding a basis of V(a,f ,F(t))
to computing a basis of V(a′,f ′,F[t]) for some a′ ∈ F[t]m and f ′ ∈ F[t]n. Then
having a basis of V(a′,f ′,F[t]) one easily can reconstruct a basis of V(a,f ,F(t))
as it is shown in details in [Sch02b, Sch02a]. So from now on we focus on finding
a basis of V(a, f ,F[t]). For this subproblem an essential step is to determine
a degree bound b ∈ N0 ∪ {−1} such that for all c∧g ∈ V(a,f ,F[t]) one has
deg(g) ≤ b. Of course,

F[t]d := {f ∈ F[t] | deg(f) ≤ d} = {f ∈ F[t] | ||f || ≤ d}
is a finite subspace of F(t) over K for any d ∈ N0 ∪ {−1}. In particular we have
F[t]−1 = {0}. In other words, we try to find a b ∈ N0 ∪ {−1} such that

V(a,f ,F[t]) = V(a, f ,F[t]b) (2)

which is exactly the degree bound problem specified in Section 2. Now assume
that we can find such a b for V(a,f ,F[t]), and moreover suppose that

b ≥ max(−1, ||f || − ||a||). (3)

This basically guarantees that f ∈ F[t]||a||+b by Lemma 3.5. If one adapts this
bound b with property (2) such that it also by fulfills property (3), one can apply
further reduction techniques in order to search for a basis of V(a,f ,F[t]b). These
reductions are carefully analyzed in [Sch02b].
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Motivated by this remarks we focus on determining a bound b of V(a,f ,F[t])
with (2), which finally allows to search for a basis of V(a,f ,F[t]b) and hence
of V(a,f ,F[t]). We consider a slightly more general situation in order to allow
more flexibility to different reduction techniques as they are applied in [Kar81].

Definition 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field
K and W be subspace of F(t) over K. By Wd we denote {f ∈W | ||f || ≤ d}
which clearly is a subspace of F(t) over K. Let 0 6= a ∈ F[t]m and f ∈ F[t]n.
b ∈ N0 ∪ {−1} is called degree bound of V(a, f ,W) if V(a,f ,W) = V(a,f ,Wb).

More precisely we are concerned in the more general problem to find degree
bounds of V(a,f ,W) for several special cases 0 6= a ∈ F[t]m. Please note that our
original problem (2) is included in the problem under consideration by choosing
W := F[t] which is a subspace of F(t) overK. In particular we will solve the degree
bound problem for the first order case, i.e. for any 0 6= a ∈ F[t]2. These bounds
under consideration allow to design a complete algorithm to solve parameterized
first order linear difference equations in ΠΣ-fields in [Sch01, Sch02b]. Moreover
for the higher order case we are able to deal with the Situations 3.1, 5.2 and 6.3
in the corresponding settings of Π-, simple Σ- and Σ-extensions.

4.1. A Key Property to Determine Degree Bounds in ΠΣ-Fields

The following lemma gives the key idea to find degree bounds of parameterized
first order linear difference equation in ΠΣ-fields. In particular it is applied in
Lemma 6.1, Proposition 4.1 and Theorems 5.1 and 6.1.

Lemma 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with σ(t) = α t + β
where α ∈ F∗ and β ∈ F. Let 0 6= a ∈ F[t]m with l := ||a||, f ∈ F[t]n, and
b :=

(
[a1]l (α)d

m−1 , . . . , [am]l (α)d
0

) ∈ Fm for some d ∈ N0. If there exists a g =
w td + r ∈ F(t) with w ∈ F∗, ||r|| < d and ||σag|| < ||a||+ d then σbw = 0.

Proof: Let g = w td + r with w ∈ F∗, ||r|| < d, l := ||a|| and ||σag|| < l + d. Then
by Lemma 3.4 it follows that

0 = [σag]l+d

=
[
a1 σm−1(w td + r) + · · ·+ am (w td + r)

]
l+d

=
[
a1 σm−1(w td) + · · ·+ am w td

]
l+d

+
[
a1 σm−1(r) + · · ·+ am r

]
l+d︸ ︷︷ ︸

=0

=
[
a1 σm−1(w) (α)d

m−1 td + · · ·+ am w (α)d
0 td

]
d+l

= [a1 ]l (α)d
m−1 σm−1(w) + · · ·+ [am]l (α)d

0 w = 0

and therefore σbw = 0.
The following proposition is a direct consequence of Lemma 4.1.
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Proposition 4.1. Let (F(t), σ) be a proper sum extension of (F, σ) with constant
field K and W be subspace of F(t) over K. Let f ∈ F[t]n and 0 6= a ∈ F[t]m and
define b := [a]||a|| . If there does not exist a w ∈ F∗ such that σbw = 0 then
max(||f || − ||a||,−1) is a degree bound of V(b,f ,W).

Proof: Suppose there are a g ∈ F[t] and a c ∈ Kn with d := ||g|| > max(||f || −
||a||,−1) and σag = c f . Take such a g with w := [g]d ∈ F∗. Since ||a|| ≥ 0, we
have ||σag|| = c f ≤ ||f || < ||g||+||a||. Hence by Lemma 4.1 it follows σbw = 0.
Let (F, σ) be a difference field, 0 6= a ∈ F[t]m and f ∈ F[t]n. Then this propo-
sition states that there cannot exist a proper sum extension (F(t), σ) of (F, σ)
with V(a,f ,F) ( V(a,f ,F[t]), if there does not exist already a w ∈ F∗ with
σaw = 0. This criterium plays an important role in the theory of proper sum
solutions, a subclass of d’Alembertian solutions and Liouvillian solutions, that
is considered in details in the ΠΣ-field setting in [Sch02a].

4.2. A Bound Criterion and a Special Case of the Degree Bound Problem

Next we introduce a bound criterion, namely Corollary 4.1, which gives a proof
strategy to decide if a b is a degree bound of a given solution space. First we
state a lemma that follows immediately by the definition of degree bounds.

Lemma 4.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K and
W be subspace of F(t) over K. Let 0 6= a ∈ F[t]m, b ∈ N0∪{−1} and f ∈ F[t]. If
b is a degree bound of V(a, (f) ,W), for all g ∈W with σag = f we have ||g|| ≤ b.

Then we obtain the following result.

Theorem 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K,
W be subspace of F(t) over K, 0 6= a ∈ F[t]m and b ∈ N0 ∪ {−1}. If for all
f ∈ F[t] with ||f || ≤ ||f || it follows that b is a degree bound of V(a, (f) ,W) then
b is a degree bound of V(a,f ,W).

Proof: Assume b is a degree bound of V(a, (f) ,W) for all f ∈ F[t] with ||f || ≤ ||f ||.
Let c∧g ∈ V(a,f ,W), i.e.

σag = c f . (4)

Take f := c f . By ||f || = ||c f || ≤ ||f || and (4) we may conclude that b is a degree
bound of V(a, (f) ,W) and it follows that ||g|| ≤ b by Lemma 4.2. Consequently
for all c∧g ∈ V(a,f ,W) we have ||g|| ≤ b and thus V(a,f ,W) = V(a,f ,Wb)
which proves the theorem.
In the next sections the following Corollary 4.1 will be heavily used in proofs
for checking if a particular b is a degree bound of a given solution space. The
corollary follows immediately by Lemma 4.2 and Theorem 4.1.

Corollary 4.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K,
W be subspace of F(t) over K and let 0 6= a ∈ F[t]m. Let b ∈ N0 ∪ {−1} be such
that for all f ∈ F[t] and g ∈ W with ||f || ≤ ||f || and σag = f we have ||g|| ≤ b.
Then b is a degree bound of V(a, f ,W).
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We apply this corollary and obtain the following result which gives a degree
bound for linear difference equations that are specified in Situation 3.1.

Theorem 4.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K
and W be subspace of F(t) over K. Let 0 6= a ∈ F[t]m as in Situation 3.1 and
f ∈ F[t]n. Then max(||f || − ||a||,−1) is a degree bound of V(a, f ,W).

Proof: We will proof the theorem by Corollary 4.1. Let f ∈ F[t] and g ∈ W
be arbitrary but fixed with σag = f and ||f || ≤ ||f ||. We will show by case
distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that ||g|| ≤ b which
will prove that b for the particular case is a degree bound of V(a, f ,W). If
g 6= 0 then by Lemma 3.5 it follows that ||f || ≥ ||f || = ||σag|| = ||a|| + ||g|| and
therefore ||g|| ≤ ||f || − ||a||. Otherwise, if g = 0 then ||g|| = −1. Altogether we
have ||g|| ≤ max(||f || − ||a||,−1) and hence by Corollary 4.1 max(||f || − ||a||,−1)
is a degree bound of V(a,f ,W).

5. Degree Bounds for Π- and Simple Σ-Extensions

Based on the work of [Kar81] we solve the degree bound problem for first order
linear difference equations in the Π-extension setting. Here we noticed that these
degree bound techniques cannot only be applied to Π-extension but also to simple
Σ-extensions. Finally we extend these techniques from the first order to the
higher order case which enables to solve the degree bound problem for a special
class of linear difference equations.

In this section let (F(t), σ) be a ΠΣ-field where (F(t), σ) is a Π- or a simple
Σ-extension of (F, σ) with constant field K and σ(t) = α t + β. Hence for all
n > 0 we have αn /∈ H(F,σ). Furthermore let W be a subspace of F(t) over K.

5.1. Degree Bounds of First Order Linear Difference Equations

In the sequel we solve the degree bound problem for V(a,f ,W) where 0 6= a =
(a1, a2) ∈ F[t]2 and f ∈ F[t]n. If ||a1|| 6= ||a2||, Theorem 4.2 provides a degree
bound of V(a, f ,W). Hence what remains is ||a1|| = ||a2|| ≥ 0. More precisely we
deal with the following case.

Situatation 5.1. Assume (a1, a2) ∈ F[t]2 with a1 = tp+r1 and a2 = −c tp+r2

for c ∈ F∗, p ≥ 0 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p.

As will be seen later, we must be able to decide, if there exists a d ≥ 0 for any
c, α ∈ F∗ such that c αd ∈ H(F,σ). Furthermore, we must be able to compute such
a d, if there exists one. By Theorem 3.4 all these problems can be solved.

The main idea of the following section is taken from Theorem 15 of [Kar81].
Whereas in Karr’s version theoretical and computational aspects are mixed, I
tried to separate his theorem in several parts to achieve more transparency.
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Theorem 5.1. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t+β where
α ∈ F∗ and β ∈ F. Let a1, a2 ∈ F[t] as in Situation 5.1. If there exists a g ∈ F(t)
with ||g|| ≥ 0 such that

||a1 σ(g) + a2 g|| < ||g||+ p (5)

then c
α||g|| ∈ H(F,σ).

Proof: Let g = w td + r ∈ F(t) with w ∈ F∗ and ||r|| < d := ||g||. By Lemma 4.1

we have σ(w) αd − cw = 0, hence c
αd = σ(w)

w
and consequently c

αd ∈ H(F,σ).

Example 5.1. Take the ΠΣ-field (Q(t)(z), σ) canonically defined by σ(t) = t+1
and σ(z) = (t + 1) z as in Example 3.5 and consider

z σ(g)− (t1 + 1)4︸ ︷︷ ︸
c

z g = −t1 (2 + t1) z (2 + z2 + 2 t1 (1 + z2) + t21 (1 + z2)).

There is the solution g = z4 + z2 + 1; therefore inequality (5) is satisfied and it

follows by Theorem 5.1 that c
α4 = (t1+1)4

(t1+1)4
= 1 ∈ H(Q(t1),σ).

In the proof of the previous theorem we just required that in the difference field
extension (F(t), σ) of (F, σ) we have σ(t) = α t + β for some α, β ∈ F where t
is transcendental over F. Only in the next lemma all properties of the supposed
extensions are really exploited. This result finally enables to solve the degree
bound problem for Situation 5.1.

Lemma 5.1. Let (F(t), σ) be a Π- or a simple Σ-extension of (F, σ) with σ(t) =
α t + β, α ∈ F∗ and β ∈ F. Assume there exists a d ∈ Z for c ∈ F∗ such that
c αd ∈ H(F,σ). Then d is uniquely determined.

Proof: Assume there are d1, d2 ∈ Z with d1 < d2 and c αd1 ∈ H(F,σ), c αd2 ∈
H(F,σ) i.e. there are g1, g2 ∈ F∗ such that σ(g1)

g1
= c αd1 and σ(g2)

g2
= c αd2 . Since

d2 − d1 > 0, it follows that αd2−d1 = σ(g2)/g2

σ(g1)/g1
= σ(g2/g1)

g2/g1
and thus αd2−d1 ∈ H(F,σ).

By Theorem 3.1 (F(t), σ) is not a Π-extension of (F, σ), a contradiction.
Combining the previous results leads to a recipe how to compute the desired
degree bound b.

Theorem 5.2. Let (F(t), σ) be a Π- or a simple Σ-extension of (F, σ) with
constant field K and σ(t) = α t + β with α ∈ F∗ and β ∈ F. Let W be subspace
of F(t) over K, let f ∈ F[t]n and assume a1, a2 ∈ F[t] as in Situation 5.1.
If there exists a d ∈ N0 such that c

αd ∈ H(F,σ), d is uniquely determined and
max(||f || − p, d) is a degree bound of V(a,f ,W). If there does not exist such a d
then max(||f || − p,−1) is a degree bound of V(a, f ,W).

Proof: We will proof the theorem by Corollary 4.1. Let f ∈ F[t] and g ∈ W be
arbitrary but fixed such that a1 σ(g) + a2 g = f and ||f || ≤ ||f ||. We will show by
case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that ||g|| ≤ b
which will prove that b for the particular case is a degree bound of V(a,f ,W).
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1. Assume there exists a d ≥ 0 such that c
αd ∈ H(F,σ). Then d is uniquely

determined by Lemma 5.1. If ||g|| + p > ||f || and ||g|| ≥ 0, it follows by
Theorem 5.1 that ||g|| = d and consequently ||g|| = d = max(||f || − p, d) ≤
max(||f || − p, d). Otherwise, if ||g|| + p ≤ ||f || or ||g|| = −1, we have ||g|| ≤
max(||f || − p, d) ≤ max(||f || − p, d). Thus for both cases we may apply
Corollary 4.1 and hence max(||f || − p, d) is a degree bound of V(a, f ,W).

2. Assume there does not exist such a d. Then by Theorem 5.1 it follows that
||g||+p = ||f || ≤ ||f || or ||g|| = −1 and thus by Corollary 4.1 max(||f ||−p,−1)
is a degree bound of V(a,f ,W).

Looking closer at the previous theorem, one immediately obtains a degree bound
for the case a = (1,−1) and f ∈ F[t]n which amounts to indefinite summation.

Corollary 5.1. Let (F(t), σ) be a Π-extension of (F, σ) with constant field K,
let W be a subspace of F(t) over K and f ∈ F[t]n. Then max(||f ||, 0) is a degree
bound of V((1,−1),f ,W).

Proof: Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, α ∈ F∗. Since 1
α0 =

1 ∈ H(F,σ), by Theorem 5.2 max(0, ||f ||) is a degree bound of V((1,−1),f ,W).

5.2. A Generalization for Higher Order Linear Difference Equations

Finally we solve the degree bound problem of V(a,f ,W) with a ∈ F[t]m and
f ∈ F[t]n for the more general Situation 5.2 that contains Situation 5.1.

Situatation 5.2. Assume 0 6= a = (a1, . . . , aλ, . . . , aµ . . . , am) ∈ F[t]m with
λ < µ, ||aλ|| = ||aµ|| = p and

||ai|| < p ∀i 6= λ, µ.

In particular suppose that aλ = tp + r1 and aµ = −c tp + r2 for c ∈ F∗, p ≥ 0
and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p.

First we generalize Theorem 5.1.

Theorem 5.3. Let (F(t), σ) be difference field extension of (F, σ) with t transcen-
dental over F and σ(t) = α t + β where α ∈ F∗ and β ∈ F. Assume a ∈ F[t]m as
in Situation 5.2. If there exists a g ∈ F(t) with ||g|| ≥ 0 such that ||σag|| < ||g||+p

then σµ−m(c)

(α)
||g||
µ−λ

∈ H(F,σµ−λ).

Proof: Let d := ||g|| ≥ 0. It follows by Lemma 3.3 and Situation 5.2 that
||aλ σm−λ(g)|| = ||aµ σm−µ(g)|| = p + d with λ 6= µ and ||ai σ

m−i(g)|| < p + d
for all i 6= µ, λ. Hence we have

0 = [σag]p+d =

[
m∑

i=1

ai σ
m−i(g)

]

p+d

=
[
aλ σm−λ(g) + aµ σm−µ(g)

]
p+d
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and thus
[
σµ−m(aλ) σµ−λ(g) + σµ−m(aµ) g

]
p+d

= 0 by Lemma 3.4. By

σµ−m(aλ) = (α)p
µ−m tp + σµ−m(r1), σµ−m(aµ) = −σµ−m(c) (α)p

µ−m tp + σµ−m(r2)

it follows that
[
b1 σµ−λ(g) + b2 g

]
p+d

= 0 for

b1 := tp + σµ−m(r1)/ (α)p
µ−m , b2 := −σµ−m(c) tp + σµ−m(r2)/ (α)p

µ−m .

Since ||b1 σµ−λ(g) + b2 g|| ≤ p+d, we have even ||b1 σµ−λ(g) + b2 g|| < p+d. Hence

we may apply Theorem 5.1 and thus we obtain σµ−m(c)

(α)d
µ−λ

∈ H(F,σµ−λ).

Finally we obtain a degree bound method for the Situation 5.2.

Theorem 5.4. Let (F(t), σ) be a Π- or a simple Σ-extension of (F, σ) with
constant field K and σ(t) = α t+β with α ∈ F∗ and β ∈ F. Let W be subspace of
F(t) over K, f ∈ F[t]n and assume a ∈ F[t]m as in Situation 5.2. Furthermore
suppose that (F(t), σµ−λ) is a Π- or simple Σ-extension of (F, σµ−λ). If there

exists a d ∈ N0 such that σµ−m(c)

(α)d
µ−λ

∈ H(F,σµ−λ) then d is uniquely determined and

max(||f || − p, d) is a degree bound of V(a,f ,W). If there does not exist such a d
then max(||f || − p,−1) is a degree bound of V(a, f ,W).

Proof: We will proof the theorem by Corollary 4.1. Let f ∈ F[t] and g ∈ F[t]
be arbitrary but fixed such that σag = f and ||f || ≤ ||f ||. We will show by case
distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that ||g|| ≤ b which
will prove that b for the particular case is a degree bound of V(a,f ,F).

1. Assume there exists a d ≥ 0 such that σµ−m(c)

(α)d
µ−λ

∈ H(F,σµ−λ). Then by

Lemma 5.1 d is uniquely determined. If ||g|| + p > ||f || and ||g|| ≥ 0, by
Theorem 5.3 it follows that ||g|| = d and therefore ||g|| = d = max(||f ||, d) ≤
max(||f ||, d). Otherwise, if ||g|| + p ≤ ||f || or ||g|| = −1, we have ||g|| ≤
max(||f ||, d) ≤ max(||f ||, d). Consequently in both cases we may apply
Corollary 4.1 and max(||f ||, d) is a degree bound of V(a, f ,W).

2. Assume there does not exist such a d. Then by Theorem 5.3 it follows that
||g||+p = ||f || ≤ ||f || or ||g|| = −1 and thus by Corollary 4.1 max(||f ||−p,−1)
is a degree bound of V(a,f ,W).

By Theorem 3.5 and Corollary 3.1 (F, σk) is a ΠΣ-field and (F(t), σ) is a Π- or

a simple Σ-extension of (F, σ) for any k ∈ Z∗. Hence one can decide if σµ−m(c)

(α)d
µ−λ

∈
H(F,σµ−λ) for some d and find such a d in case of existence by Theorem 3.4.
Therefore we can apply Theorem 5.4 to compute a degree bound for the special
case described in Situation 5.2.
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6. Degree Bounds for Σ-Extensions

In this section we deliver degree bounds of parameterized linear difference equa-
tions for Σ-extensions. Similarly to the previous section we solve the degree
bound problem for first order linear difference equations in Σ-extensions. By
gathering together results from this and the previous section, we are capable
of designing an algorithm in Section 7 that solves the degree bound problem
for any first order linear difference equation in a given ΠΣ-field. Moreover we
extend these degree bound techniques introduced in [Kar81] from the first order
to the higher order case which allows to solve the degree bound problem for a
special class of linear difference equations. Since for simple Σ-extensions this and
the previous section deliver degree bounds for equivalent situations, one obtains
further flexibility to choose the appropriate degree bound method.

In this section let (F(t), σ) be a ΠΣ-field where (F(t), σ) is a Σ-extension of
(F, σ) with constant field K and let W be a subspace of F(t) over K.

6.1. Degree Bounds of First Order Linear Difference Equations

We will solve degree bound problem for the solution space V(a, f ,W) with
0 6= a = (a1, a2) ∈ F[t]2 and f ∈ F[t]n. If ||a1|| 6= ||a2||, Theorem 4.2 provides a
degree bound of V(a,f ,W). What remains is the case ||a1|| = ||a2|| ≥ 0.
Similarly to the Π-extension case the main idea is taken from Theorem 14 of
[Kar81]. In the sequel we separate this result into theoretical and algorithmic
aspects and give detailed proofs. First we will consider the following case.

Situatation 6.1. Assume a = (a1, a2) ∈ F2 with a1 6= 0 6= a2.

Lemma 6.1. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β,
(α, β ∈ F∗) and a ∈ (F[t]∗)2. If there exists a g ∈ F(t) such that ||g|| > 0
and ||a1 σ(g)− a2 g|| < ||g||+ ||a|| − 1 then ||a1|| = ||a2|| > 0.

Proof: Let g ∈ F(t) with ||g|| = d > 0 as stated above. Due to Theorem 4.2 it
follows that ||a1|| = ||a2||. Now assume ||a1|| = ||a2|| = 0, i.e. a1, a2 ∈ F. Thus there
is a u ∈ F with

||σ(g)− u g|| < ||g|| − 1. (6)

Write g = w td + r with w ∈ F∗ and ||r|| < d. By Lemma 4.1 and (6) it follows

that σ(w td)− uw td = 0 and thus σ(w td)
w td

= u ∈ F. By Definition 3.4 (F(t), σ) is
not a Σ-extension of (F, σ), a contradiction.

Corollary 6.1. Let (F(t), σ) be a Σ-extension of (F, σ) with constant field K
and σ(t) = α t+β with α, β ∈ F∗. Let W be a subspace of F(t) over K, f ∈ F[t]n

and a ∈ (F∗)2 as in Situation 6.1. Then ||f ||+1 is a degree bound of V(a,f ,W).

For the case ||a1|| = ||a2|| = 0 Corollary 6.1 delivers a degree bound. What remains
is the case ||a1|| = ||a2|| > 0. More precisely we deal with Situation 6.2.
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Situatation 6.2. Assume (a1, a2) ∈ F[t]2 with

a1 = (tp + u1 tp−1 + r1) and a2 = c (tp + u2 tp−1 + r2)

for some c ∈ F∗, u1, u2 ∈ F, p ≥ 1 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p− 1.

The following considerations lead to an algorithm that allows to compute a
degree bound of the solution space V(a,f ,W), if one can compute a basis of
the solution space V(b,v,F) for any 0 6= b ∈ F2 and v ∈ F2. Together with the
results from Subsection 5.1 and results from [Sch02b, Sch02a], in Section 7 we
finally will be able to develop an algorithm that solves the degree bound problem
for first order linear difference equation in a given ΠΣ-field.

Theorem 6.1. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β,
α, β ∈ F∗. Assume a1, a2 ∈ F[t] as in Situation 6.2. If there is a g ∈ F(t) with
||g|| > 0 and

||a1σ(g)− a2 g|| < ||g||+ p− 1 (7)

then there exists a w ∈ F such that σ(w)−α w = α (u2−u1)−||g|| β and u1 6= u2.

Proof: Let g ∈ F(t) with d = ||g|| > 0 as stated above. By (7) it follows that

[a1 σ(g) + a2 g]p+d = 0 and [a1 σ(g) + a2 g]p+d−1 = 0.

Now write g =
∑d

i=0 gi t
i + r where gi ∈ F, gd 6= 0 and r ∈ F(t) with ||r|| = −1.

Applying Lemma 4.1 it follows that σ(gd) αd + c gd = 0 and therefore

c = −σ(gd)

gd

αd. (8)

By σ(g) =
∑d

i=0 σ(gi) (α t + β)i + σ(r) and Lemma 3.4 we obtain

[a2 g]p+d−1 = [a2]p [g]d−1 + [a2]p−1 [g]d = c gd−1 + c u2 gd = c (gd−1 + u2 gd),

[a1 σ(g)]p+d−1 = [a1]p−1 [σ(g)]d + [a1]p [σ(g)]d−1

=u1 αd σ(gd) +
[
σ(gd) (α t + β)d + σ(gd−1) (α t + β)d−1

]
d−1

=u1 αd σ(gd) + dαd−1 β σ(gd) + αd−1 σ(gd−1).

Hence by Lemma 3.4 it follows that 0 = [a1 σ(g) + a2 g]p+d−1 = [a1 σ(g)]p+d−1 +
[a2 g]p+d−1 and therefore

u1 αd σ(gd) + dαd−1 β σ(gd) + αd−1 σ(gd−1) + c (gd−1 + u2 gd) = 0.

Using (8) we may write

u1 αd σ(gd) + dαd−1 β σ(gd) + αd−1 σ(gd−1)− σ(gd)

gd

αd (gd−1 + u2 gd) = 0

⇔ σ(gd) (u1 α + d β − α
gd−1

gd

− α u2) = −σ(gd−1)

⇔ σ(
gd−1

gd

)− α
gd−1

gd

= (u2 − u1) α− d β
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and thus for w := gd−1

gd
the first part is proven. Now assume that u1 = u2. Then

σ(w) − α w = −||g|| β, thus σ( w
−||g||) − α w

−||g|| = β and therefore by Theorem 3.3

(F(t), σ) is not a Σ-extension of (F, σ), a contradiction.

Example 6.1. Consider the ΠΣ-field (Q(t)(z), σ) defined by σ(t) = t + 1 and
σ(z) = z + 1

z+1
as in Example 3.5 and take

a = (a1, a2) =
(
z− 2

1 + t︸ ︷︷ ︸
=:u1

,− (1 + t)4

t4︸ ︷︷ ︸
=:c

(z +
1

t + 1︸ ︷︷ ︸
=:u2

)
)

and f = −(1 + (1 + t) z) (8 + 6 t + 3 (1 + t) (2 + t) z). There is the solution
g = t4 z2 (3 + z) for σag = f . Since inequality (7) is satisfied and 3 = ||g|| > 0,
it follows by Theorem 6.1 that u1 6= u2. Moreover there must exist a w ∈ Q(t)
such that σ(w)− w = (u2 − u1)− ||g|| 1

t+1
holds. In deed w = 1 does the job.

The next lemma delivers the basic idea to find a degree bound of a first order
linear difference equation described Situation 6.2.

Lemma 6.2. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t+β, α, β ∈
F∗. Assume there exist a d ∈ Z, a w ∈ F and a u ∈ F such that the difference
equation σ(w)− α w = uα + d β holds. Then d is uniquely determined.

Proof: Assume there are w1, w2 ∈ F and d1, d2 ∈ Z with d1 < d2, σ(w1)−α w1 =
uα + d1 β and σ(w2)− α w2 = u α + d2 β. Then it follows that

σ(w2 − w1)− α (w2 − w1) = (d2 − d1) β,

consequently σ(w2−w1

d2−d1
)−α w2−w1

d2−d1
= β, and hence by Theorem 3.3 (F(t), σ) is not

a Σ-extension of (F, σ), a contradiction.
As for the case of Π-extensions in Theorem 5.2 one can derive a method that
solves the degree bound problem for Σ-extensions.

Theorem 6.2. Let (F(t), σ) be a Σ-extension of (F, σ) with constant field K and
σ(t) = α t + β, (α, β ∈ F∗). Let W be a subspace of F(t) over K, let f ∈ F[t]n

and assume a1, a2 ∈ F[t] as in Situation 6.2. If u1 = u2 then max(||f || − p + 1, 0)
is a degree bound of V(a, f ,W). Otherwise, if there exist a d ∈ N0 and a w ∈ F
such that

σ(w)− α w = (u2 − u1) α− d β, (9)

d is uniquely determined and max(||f ||−p+1, d) is a degree bound of V(a,f ,W).
If there is not such a d, max(||f || − p + 1, 0) is a degree bound of V(a, f ,W).

Proof: We will proof the theorem by Corollary 4.1. Let f ∈ F[t] and g ∈ W be
arbitrary but fixed such that a1 σ(g) + a2 g = f and ||f || ≤ ||f ||. We will show by
case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that ||g|| ≤ b
which will prove that b for the particular case is a degree bound of V(a,f ,W).
If u1 = u2 then by Theorem 6.1 it follows either that ||g|| ≤ 0 or that the
inequality ||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1 holds. Hence by Corollary 4.1
max(||f ||−p+1, 0) is a degree bound of V(a, f ,W). Otherwise, assume u1 6= u2.
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1. Assume there exist a d ≥ 0 and a w ∈ F such that (9) holds. Then by
Lemma 6.2 d is uniquely determined.

If ||g|| + p − 1 > ||f || and ||g|| > 0, by Theorem 6.1 it follows that the
inequality ||g|| = d = max(||f || − p + 1, d) ≤ max(||f || − p + 1, d) holds.
Otherwise, if ||g|| + p − 1 ≤ ||f || or ||g|| ≤ 0 then clearly we obtain the
inequality ||g|| ≤ max(||f || − p + 1, d) ≤ max(||f || − p + 1, d). Thus in both
cases, by Corollary 4.1, max(||f ||−p+1, d) is a degree bound of V(a,f ,W).

2. Assume there do not exist such a d and a w. Then by Theorem 6.1 it follows
that ||g|| ≤ ||f ||−p+1 ≤ ||f ||−p+1 or ||g|| ≤ 0 and thus max(||f ||−p+1, 0)
is a degree bound of V(a,f ,W) by Corollary 4.1.

6.2. A Generalization for Higher Order Linear Difference Equations

In the end we solve the degree bound problem of V(a,f ,W) with a ∈ F[t]m and
f ∈ F[t]n for Situation 6.3 that contains Situation 6.2.

Situatation 6.3. Assume 0 6= a = (a1, . . . , aλ, . . . , aµ . . . , am) ∈ F[t]m with
λ < µ, ||aλ|| = ||aµ|| = p and

||ai|| < p− 1 ∀i 6= λ, µ.

In particular suppose that

aλ = (tp + u1 tp−1 + r1) and aµ = c (tp + u2 tp−1 + r2)

for some c ∈ F∗, u1, u2 ∈ F, p > 0 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p− 1.

In order to achieve this, we first generalize Theorem 6.1 by Theorem 6.3. For
this theorem we first show the following lemma.

Lemma 6.3. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β and
set βk := σk(t) − (α)k t for k ∈ Z∗. Assume a ∈ F[t]m as in Situation 6.3 and
suppose that (F(t), σµ−λ) is a Σ-extension of (F, σµ−λ). If there exists a g ∈ F(t)
with ||g|| ≥ 0 and ||σag|| < ||g||+ p− 1 then we have

||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1

where

b1 : = tp + tp−1 (p βµ−m + σµ−m(u1))/ (α)µ−m ∈ F[t]∗,

b2 : = σµ−m(c) tp + tp−1 (p βµ−m σµ−m(c) + σµ−m(u2))/ (α)µ−m ∈ F[t]∗.
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Proof: Let d := ||g|| ≥ 0. It follows by Lemma 3.3 and Situation 6.3 that
||aλ σm−λ(g)|| = ||aµ σm−µ(g)|| = p + d with λ 6= µ and ||ai σ

m−i(g)|| < p + d − 1
for all i 6= µ, λ. Hence for i ∈ {0, 1} we have

0 = [σag]p+d−i =

[
m∑

i=1

ai σ
m−i(g)

]

p+d−i

=
[
aλ σm−λ(g) + aµ σm−µ(g)

]
p+d−i

and thus 0 =
[
σµ−m(aλ) σµ−λ(g) + σµ−m(aµ) g

]
p+d−i

by Lemma 3.4. By

σµ−m(aλ) =((α)µ−m t + βµ−m)p + σµ−m(u1) ((α)µ−m t + βµ−m)p−1 + σµ−m(r1)

= (α)p
µ−m tp + tp−1 (p (α)p−1

µ−m βµ−m + σµ−m(u1) (α)p−1
µ−m) + r̃1,

σµ−m(aµ) =σµ−m(c) ((α)µ−m t + βµ−m)p+

σµ−m(u2) ((α)µ−m t + βµ−m)p−1 + σµ−m(r1)

=σµ−m(c) (α)p
µ−m tp+

tp−1 (p (α)p−1
µ−m βµ−m σµ−m(c) + σµ−m(u2) (α)p−1

µ−m) + r̃2

for some r̃1, r̃2 ∈ F[t] with ||r̃1||, ||r̃2|| < p− 2 it follows that
[
b1 σµ−λ(g) + b2 g

]
p+d−i

= 0

for i ∈ {0, 1} with b1, b2 ∈ F[t]∗ as above. Hence by ||b1 σµ−λ(g) + b2 g|| ≤ ||g||+ p,
it follows that ||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1.

Theorem 6.3. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β and
set βk := σk(t) − (α)k t for k ∈ Z∗. Assume a ∈ F[t]m as in Situation 6.3 and
suppose that (F(t), σµ−λ) is a Σ-extension of (F, σµ−λ). Define

v1 : = (p βµ−m + σµ−m(u1))/ (α)m−µ ∈ F,

v2 : = (p βµ−m σµ−m(c) + σµ−m(u2))/ (α)µ−m ∈ F.
(10)

If there exists a g ∈ F(t) with ||g|| > 0 and ||σag|| < ||g|| + p − 1, there exists a
w ∈ F with σµ−λ(w)− (α)µ−λ w = (α)µ−λ (v2−v1)−||g|| βµ−λ. Moreover v1 6= v2.

Proof: Assume there exists a g ∈ F(t) with ||σag|| < ||g|| + p − 1. Then by
Lemma 6.3 there are b1 := tp + v1 tp−1 and b2 := σµ−m(c) tp + v2 tp−1 such that

||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1.

As (F(t), σµ−λ) is a Σ-extension, in particular (α)µ−λ , βµ−λ ∈ F∗, we may apply
Theorem 6.1 and obtain

σµ−λ(w)− (α)µ−λ w = (α)µ−λ (v2 − v1)− ||g|| βµ−λ

for some w ∈ F. Now assume that v1 = v2. Then σµ−λ(w)−(α)µ−λ w = −||g|| βµ−λ

and therefore σµ−λ( w
−||g||) − (α)µ−λ

w
−||g|| = βµ−λ. By Theorem 3.3 (F(t), σµ−λ) is

not a Σ-extension of (F, σµ−λ), a contradiction.
Finally one obtains a degree bound method for Situation 6.3.
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Theorem 6.4. Let (F(t), σ) be a Σ-extension of (F, σ) with constant field, σ(t) =
α t+β and set βk := σk(t)−(α)k t for k ∈ Z∗. LetW be a subspace of F(t) over K.
Let f ∈ F[t]n, assume a ∈ F[t]m as in Situation 6.3 and suppose that (F(t), σµ−λ)
is a Σ-extension of (F, σµ−λ), in particular βµ−λ ∈ F∗. Define v1, v2 ∈ F as in
(10). If v1 = v2 then max(||f || − p + 1, 0) is a degree bound of V(a,f ,W).
Otherwise, if there exist a d ∈ N0 and a w ∈ F such that

σµ−λ(w)− (α)µ−λ w = (v2 − v1) (α)µ−λ − d βµ−λ, (11)

d is uniquely determined and max(||f ||−p+1, d) is a degree bound of V(a,f ,W).
If there is not such a d then max(||f ||−p+1, 0) is a degree bound of V(a,f ,W).

Proof: We will proof the theorem by Corollary 4.1. Let f ∈ F[t] and g ∈ W be
arbitrary but fixed such that a1 σ(g) + a2 g = f and ||f || ≤ ||f ||. We will show by
case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that ||g|| ≤ b
which will prove that b for the particular case is a degree bound of V(a,f ,W).
If v1 = v2 then by Theorem 6.3 it follows that ||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1
or ||g|| ≤ 0 and thus by Corollary 4.1 max(||f || − p + 1, 0) is a degree bound of
V(a,f ,W). Otherwise, assume v1 6= v2.

1. Assume there exist a d ≥ 0 and a w ∈ F such that (11) holds. Then by
Lemma 6.2 d is uniquely determined. If ||g|| + p − 1 > ||f || and ||g|| > 0,
it follows that ||g|| = d = max(||f || − p + 1, d) ≤ max(||f || − p + 1, d) by
Theorem 6.3. Otherwise, if ||g|| + p − 1 ≤ ||f || or ||g|| ≤ 0 then clearly we
have ||g|| ≤ max(||f ||−p+1, d) ≤ max(||f ||−p+1, d). Thus by Corollary 4.1
max(||f || − p + 1, d) is a degree bound of V(a, f ,W).

2. Assume there do not exist such a d and a w. Then by Theorem 6.3 it follows
that ||g|| ≤ 0 or ||g|| ≤ ||f ||−p+1 ≤ ||f ||−p+1 and therefore by Corollary 4.1
max(||f || − p + 1, 0) is a degree bound of V(a, f ,W).

By Theorem 3.5 and Corollary 3.1 (F, σk) is a ΠΣ-field and (F(t), σ) is a Σ-
extension of (F, σ) for any k ∈ Z∗. Using results from Section 7 especially from
Theorem 7.2 it follows that one can compute a basis of parameterized first order
linear difference equations in ΠΣ-fields. Hence we can decide if there exists a
d ∈ N0 and a w ∈ F such that (11) holds. And in case of existence we can
determine them. Therefore we can apply Theorem 5.4 to compute a degree bound
for the special case described in Situation 6.3.

7. A Degree Bound Algorithm for the First Order Case

Combining results from Subsections 4.2, 5.1 and 6.1 one can design an algorithm
that solves the degree bound problem for first order linear difference equations
in a ΠΣ-field (F(t), σ), if one is able to solve parameterized first order linear
difference equations in the ΠΣ-field (F, σ).
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Algorithm 7.1. Compute a degree bound.

b=DegreeBound((F(t), σ), a, f)

Input: A ΠΣ-field (F(t), σ) over K with σ(t) = α t + β, 0 6= a = (a1, a2) ∈ F[t]2 and
f ∈ F[t]n.

Output: A degree bound of the solution space V(a, f ,W) for any subspace W of F(t) over K.

(1) IF ||a1|| 6= ||a2|| THEN RETURN max(||f || − ||a||,−1).
(2) Set p := ||a||; If β = 0 {
(3) Set c := − [a2]p

[a1]p
.

(4) IF there exists a d ∈ N0 with c
αd ∈ H(F,σ) take it and RETURN max(||f || − p, d).

(5) OTHERWISE RETURN max(||f || − p,−1).
(6) } ELSE {
(7) IF p = 0 THEN RETURN ||f ||+ 1.

(8) Set u1 :=
[a1]p−1
[a1]p

, u2 :=
[a2]p−1
[a2]p

.

(9) IF u1 = u2 THEN RETURN max(||f || − p + 1, 0).
(10) IF there are d ∈ N0 and w ∈ F with (9) take d and RETURN max(||f || − p + 1, d).
(11) OTHERWISE RETURN max(||f || − p + 1, 0).
(12) }

Theorem 7.1. Let (F(t), σ) be a ΠΣ-field over K, 0 6= a ∈ F2 and f ∈ Fn.
Assume that one can solve parameterized first order linear difference equations
in the ΠΣ-field (F, σ). Then there exists an algorithm that computes a degree
bound of V(a,f ,W) for any subspace W of F(t) over K.

Proof: We will collect all the results of the previous sections and show that
Algorithm 7.1 allows to compute the degree bound as claimed above. Let (F(t), σ)
be a ΠΣ-field over K with σ(t) = α t + β, 0 6= a = (a1, a2) ∈ F2 and f ∈ Fn.
Furthermore suppose that W is a subspace of F(t) over K. If ||a1|| 6= ||a2||, we
may apply Theorem 4.2 and max(||f ||−||a||,−1) is a degree bound of V(a,f ,W)
in line (1). Otherwise we make a case distinction for Π- and Σ-extensions. If
β = 0, we are dealing with a Π-extension. Then we compute a c ∈ F∗ and obtain

a
[a1]p

= (tp + r1,−c tp + r2) as it is assumed in Situation 5.1. By Theorem 3.4

there exists an algorithm that decides, if there exists a d ∈ N0 with c
αd ∈ H(F,σ),

and that computes such a d if it exists. Then Theorem 5.2 guarantees that any
result in the Π-extension case is a degree bound of V( a

[a1]p
, f

[a1]p
,W). But then it

follows immediately that the result is also a degree bound of V(a,f ,W). Finally
we consider the Σ-extension case. If p = ||a1|| = ||a2|| = 0 then a ∈ (F∗)2 and
hence ||f || + 1 is a degree bound of V(a,f ,W) by Corollary 6.1. Otherwise we

compute u1, u2 ∈ F and obtain a
[a1]p

= ( tp+u1 tp−1+r1,
[a2]p
[a1]p

(tp+u2 tp−1+r2) ) as it is

assumed in Situation 6.2. By assumption one can solve parameterized first order
linear difference equations in the ΠΣ-field (F, σ). Hence one can decide, if there
exist a w ∈ F and d ∈ N0 such that σ(w)−α w = (u2−u1) α−d β. Moreover one
can compute them in case of existence. Then Theorem 6.2 guarantees that any
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result for the Σ-extension case is a degree bound of V( a
[a1]p

, f
[a1]p

,W). But then

it follows immediately that the result is also a degree bound of V(a,f ,W).
In order to prove Theorem 7.1 one uses the fact that one can decide in a ΠΣ-
field (F, σ), if there exists a d ∈ N0 with c

αd ∈ H(F,σ) for some c, α ∈ F∗ and that
one can compute such a d in case of existence. In [Kar81] M. Karr developed
an algorithm that solves this problem which is reflected in Theorem 3.4. Note
that this algorithm is completely independent of solving parameterized linear
difference equation. Hence only in line (10) of Algorithm 7.1 one needs the ability
to solve parameterized first order liner difference equations in the ΠΣ-field (F, σ).

As already indicated in Section 4, solving the degree bound problem –besides
other reduction techniques described in [Sch02b, Sch02a]– is an essential step to
deal with parameterized linear difference equations. In particular Theorem 7.1
plays a key role to obtain the following result from [Sch02b, Theorem 7.4].

Theorem 7.2. There exists an algorithm that solves parameterized first order
linear difference equations in ΠΣ-fields. More precisely, one can compute a basis
of V(a, f ,F) for a ΠΣ-field (F, σ) with 0 6= a ∈ F2 and f ∈ Fn.

This result is proven in [Sch02b] by induction on the number of extensions e in
the ΠΣ-field (F, σ) over K with F := K(t1, . . . , te). Inside of the induction step,
Theorem 7.1 is needed that enables to apply further reduction techniques as it
is indicated in the beginning of Section 4. Now it is obvious that this result of
[Sch02b] combined with Theorem 7.1 gives the argument that one can solve the
degree bound problem for the first order case in any ΠΣ-field.

Corollary 7.1. Let (F(t), σ) be a ΠΣ-field over K, W be a subspace of F(t) over
K, 0 6= a ∈ F2 and f ∈ Fn. Then Algorithm 7.1 enables to compute a degree
bound of V(a,f ,W).

As already motivated in the introduction, one can describe nested sum and
products in a natural way in the ΠΣ-setting. By transforming nested multisums
into ΠΣ-fields, in many cases one can reduce sum-quantifiers, this means one is
capable of reducing the nested level of the recursively defined sums and products.
In [Sch01, Section 1.2.4] it turns out that one has to construct a ΠΣ-field in a very
subtle way such that the nested level of a given multisum can be really reduced.
In work under development these aspects are carefully analyzed and algorithms
are developed that enable to reduce the nested level of a given multisum. The
following properties of Algorithm 7.1 are essential for these developments.

Proposition 7.1. Let (F(t), σ) and (G(t), σ) be ΠΣ-fields which are isomorph
by a permutation. Then for any 0 6= a ∈ F[t]2 and f ∈ F[t]n we have

DegreeBound((F(t), σ),a,f) = DegreeBound((G(t), σ),a,f).

Proof: Looking closer at Algorithm 7.1, for DegreeBound((F(t), σ), a,f) and
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DegreeBound((G(t), σ),a,f) there can be only two situations where the com-
putation steps differ, namely in lines (4) and (10). First let us look at line (4). By
Lemma 3.7 we have that c

αd ∈ H(F,σ) if and only if c
αd ∈ H(G,σ). Hence there does

not exist a d ∈ N0 with c
αd ∈ H(F,σ) if and only if c

αd ∈ H(G,σ). Furthermore, if
there exists such a d, it is unique by Lemma 5.1 and hence we obtain the same d
in both cases. Thus in line (4) the computations are exactly the same. Similarly
one can proof that in line (10) one finds the same d in both situations, or one
fails to find such a d in both circumstances by using Lemmas 3.7 and 6.2.
Moreover Theorem 7.3 is of important interest; the proof needs following lemmas.

Lemma 7.1. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β, let
a ∈ (F[t]∗)2 be as in Situation 6.2 and suppose that there exists an h ∈ F[t]∗ with
σah = 0. If u1 6= u2 then there exist a g ∈ F∗ and a d ∈ N0 with (9).

Proof: Let a as in Situation 6.2, in particular p := ||a|| > 0, and let h ∈ F[t]∗ with
σah = 0. Furthermore assume that u1 6= u2 and suppose that there do not exist
a g ∈ F∗ and a d ∈ N0 with (9). Hence by Theorem 6.2 max(||0|| − p + 1, 0) = 0
is a degree bound of V(a, (0) ,F[t]) and thus h ∈ F∗. Consequently

c (tp + u2 tp−1 + r2) = a2 = −σ(h)

h
a1 = −σ(h)

h
(tp + u1 tp−1 + r1)

and therefore c = −σ(h)
h

and u1 = u2, a contradiction.

Lemma 7.2. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t and a ∈ F[t]
as in Situation 5.1. If there exists an h ∈ F[t]∗ with σah = 0 then there exists a
d ∈ N0 such that c

αd ∈ H(F,σ).

Proof: Let a ∈ F[t] as in Situation 5.1, in particular p := ||a|| ≥ 0, and assume
that there does not exist a d ∈ N0 such that c

αd ∈ H(F,σ). Then by Theorem 5.2
it follows that max(||0||−p,−1) = −1 is a degree bound of V(a, (0) ,F[t]). Hence
there does not exist an h ∈ F[t]∗ such that σah = 0.

Theorem 7.3. Let (F(x1, . . . , xe)(t)(s), σ) and (F(s)(x1, . . . , xe)(t), σ) be ΠΣ-
fields which are isomorph by a permutation and let 0 6= a ∈ F(x1, . . . , xe)[t]

2 such
that there exists an h ∈ F(x1, . . . , xe)

∗ with σah = 0; let f ∈ F(x1, . . . , xe)[t]
n.

Then we have

DegreeBound((F(x1, . . . , xe)(t), σ), a, f) = DegreeBound((F(s)(x1, . . . , xe)(t), σ), a, f).

Proof: In the following we will consider the computation steps for both ΠΣ-fields
(F(x1, . . . , xe)(t)(s), σ) and (F(s)(x1, . . . , xe)(t), σ) and will prove that the output
will be always the same. Assume that σ(t) = α t + β. If we have ||a1|| 6= ||a2||,
in both cases the output will be the same in line (1). Now assume that β = 0.
Then by Lemma 7.2 we find a d ∈ N0 such that c

αd ∈ H(F(x1,...,xe),σ). For this d we
also have c

αd ∈ H(F(s)(x1,...,xe),σ). Since d is unique by Lemma 5.1, it follows that in
both cases we find the same d and consequently the output in line (4) is in both
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cases the same. Now assume that β 6= 0. If u1 = u2, in both cases we compute
the same output in line (9). Now assume that u1 6= u2. Then by Lemma 7.1 it
follows that one can find a g ∈ F(x1, . . . , xe)

∗ and a d ∈ N0 with (9). But then
we find also a g ∈ F(s)(x1, . . . , xe)

∗ for the same d with (9). Since d is unique by
Lemma 6.2, it follows that in both cases we find the same d and consequently
the output in line (10) is in both cases the same. Hence in each situation the
output is the same which proves the theorem.

8. Some Further Results

In [Sch01] there are various investigations to find degree bounds. In particular
in [Sch01, Corollary 3.4.12] the following result pops up.

Theorem 8.1. Let (F, σ) be a ΠΣ-field over K and let (F(t), σ) be a proper
sum extension of (F, σ); let 0 6= a ∈ Fm and f ∈ F[t] with l := ||f ||. If there
is a g ∈ F[t]∗ with σag = f and n := deg(g) then there are gi ∈ F[t] with
0 ≤ i ≤ n− l − 1 such that σagi = 0 and deg(gi) = i.

For a ΠΣ-field (F(t), σ) where(F(t), σ) is a proper sum extension of (F, σ) this
result delivers a degree bound of V(a,f ,F[t]), if 0 6= a ∈ Fm and f ∈ F[t]n.

Corollary 8.1. Let (F(t), σ) be a ΠΣ-field over K and where (F(t), σ) is a proper
sum extension of (F, σ). Let 0 6= a ∈ Fm, f ∈ F[t]n and assume there are k ≥ 0
linearly independent g ∈ F over K with σag = 0. Then m + ||f || −max(k, 1) is a
degree bound of V(a,f ,F[t]).

Proof: Assume b := m+||f ||−max(k, 1) is not a degree bound of V(a,f ,F[t]), i.e.
there exists a c∧g ∈ V(a,f ,F[t])\V(a,f ,F[t]b). This means that d := deg(g) > b
and σag = c f =: f . Clearly we have l := ||f || ≤ ||f ||. By Theorem 8.1 there are
d− l+max(k, 1)−1 linearly independent solutions g over K with σag = 0. Thus
by d− l+max(k, 1)−1 ≥ m+ ||f ||−max(k, 1)+1+max(k, 1)−1 ≥ m it follows
that there is a subspace of V(a, (0) ,F[t]) which is generated by a basis of the
form B := {(0, g1) , . . . , (0, gm)}. Since (1, 0) ∈ V(a, (0) ,F[t]), B ∪{(1, 0)} forms
a basis of a subspace of V(a, (0) ,F[t]) over K. Hence V(a, (0) ,F(t)) has at least
dimension m + 1, a contradiction to Proposition 2.1.
Note that this degree bound contains Corollary 6.1, if one restricts to proper
sum extensions and sets k = 0, i.e. m + ||f || is a degree bound of V(a,f ,F[t]).
In many cases, the dimension k of the subspace V := {g ∈ F |σag = 0} of F over
K is not zero, but contrary respectably high. As already pointed out in [Sch01,
Section 3.4.9], one anyway has to compute that vector space V, if one wants
to find a basis of the solution space V(a,f ,F[t]) according to the reduction
techniques given in [Sch02b]. Hence one obtains the number k for free which
allows to reduce tremendously the degree bound in many situations.
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