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Abstract. A minimal and complete unification procedure for a theory
with individual and sequence variables, free constants and free fixed and
flexible arity function symbols is described and a brief overview of an
extension with pattern-terms is given.

1 Introduction

We design a unification procedure for a theory with individual and sequence
variables, free constants and free fixed and flexible arity function symbols. The
subject of this research was proposed by B. Buchberger in [4] and in a couple
of personal discussions [5]. The research described in this paper is a part of the
author’s PhD thesis.

We refer to unification in a theory with individual and sequence variables, free
constants and free fixed and flexible arity function symbols shortly as unification
with sequence variables and flexible arity symbols, underlining the importance of
these two constructs. Sequence variables are variables which can be instantiated
by an arbitrary finite (possibly empty) sequence of terms. Flexible arity function
symbols can take arbitrary finite (possibly empty) number of arguments. In the
literature the symbols with similar property are also referred to as ”variable
arity”, "variadic” or "multiple arity” symbols. Languages with sequence variables
and variable arity symbols have been used in various areas. Here we enumerate
some of them:

— Knowledge management - Knowledge Interchange Format KIF ([10]) and its
version SKIF (]23]) are extensions of first order language with (among other
constructs) individual and sequence variables and variable arity function
symbols. KIF is used to interchange knowledge among disparate computer
systems. Another example of using sequence variables and variable arity
symbols in knowledge systems is Ontolingua ([8]) - a tool which provides a
distributed collaborative environment to browse, create, edit, modify, and
use ontologies.
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— Databases - sequences and sequence variables provide flexibility in data rep-
resentation and manipulation for genome or text databases, where much of
the data has an inherently sequential structure. Numerous formalisms involv-
ing sequences and sequence variables, like Sequence Logic ([11]), Alignment
Logic ([12]), Sequence Datalog (]20]), String Calculus ([13],[3]), have been
developed for this field.

— Rewriting - variable arity symbols used in rewriting usually come from flat-
tening terms with associative top function symbol. Sequences and sequence
variables (sometimes called also patterns), which are used together with
variable arity symbols, make the syntax more flexible and expressive, and
increase the performance of a rewriting system (see [29], [14]).

— Programming languages - variable arity symbols are supported by many of
them. The programming language of Mathematica ([30]) is one of such ex-
amples, which uses the full expressive power of sequence variables as well. A
relation of Mathematica programming language and rewrite rule languages,
and the role of sequence variables in this relation is discussed in [4].

— Theorem proving - the Epilog package ([9]) can be used in programs that
manipulate information encoded in Standard Information Format (SIF) - a
subset of KIF ([10]) language, containing sequence variables and variable
arity symbols. Among the other routines, Epilog includes pattern matchers
of various sorts, and an inference procedure based on model elimination.

These applications involve (and in some cases, essentially depend on) solv-
ing equations with sequence variables and variable arity symbols. The most used
solving technique is matching. However, for some applications, like theorem prov-
ing or completion, more powerful solving techniques (unification, for instance)
are needed.

The problem whether Knuth-Bendix completion procedure ([16]) can be ex-
tended to handle term rewriting systems with function symbols of variable arity,
sequences and sequence variables (patterns) is stated as an open problem in [29].
The primary reason why it is an open problem is the absence of appropriate uni-
fication algorithm.

In this paper, we make the first step towards solving this problem, providing
a unification procedure with individual and sequence variables, fixed and flexible
arity function symbols and its extension with pattern-terms. Sequence variables
and pattern-terms can be seen as particular examples of the pattern construct
of [29]. The term ”flexible arity” was suggested by Buchberger ([5]) instead of
”variable arity”, mainly because of the following reason: variable arity symbols,
as they are understood in theorem proving or rewriting, are flattened associative
symbols, i.e. flat symbols which take at least two arguments, while flexible arity
symbols can have zero or one argument as well and are not necessarily flat. Non-
flatness is one of main differences between unification with sequence variables
and flexible arity symbols and associative unification: the unification problem

flx, f(y, z))lf(f(a, b), ¢), with the variables z,y, z and constants a, b, ¢, has no
unifier, if f has a flexible arity, but admits a unifier {z <« a,y « b,z < ¢} for
associative f. Even when f is a flat flexible arity symbol the problem would not



be equivalent to A-unification: the substitution {z «— f(a),y — f(b,¢),z — f()}
is a unifier for a flat f, but not for an associative f.

The type of unification with sequence variables and flexible arity symbols
in the Siekmann unification hierarchy ([28]) is infinitary: for any unification
problem there exists the minimal complete set of unifiers which is infinite for
some problems.

It should be mentioned that in the theorem proving context quantification
over sequence variables naturally introduces flexible arity symbols and constructs
that we call patterns. For instance, Skolemizing the expression VZ3IyP[z,y],
where T is a sequence variable, y is an individual variable and @[%,y] is a for-
mula which depends on = and y, introduces a flexible arity Skolem function f:
VZP[Z, f(T)]. On the other hand, Skolemizing the expression Va3y®[z,y] intro-
duces a pattern hlyn(x)(x), which can be seen as an abbreviation of a sequence
of terms hy(z), ..., hn(y)(z) of unknown length, where hy, ..., hy, ;) are Skolem
functions.

The procedure we describe can be used in the theorem proving context in the
way similar to [24]: building in equational theories. Although unification with
sequence variables and flexible arity symbols is infinitary, special cases can be
identified when the procedure terminates.

It is shown in [17] that unification with sequence variables and flexible arity
symbols is decidable. Based on the decision procedure, a constraint-based ap-
proach to theorem proving with sequence variables and flexible arity symbols
can be developed (compare [22], [25]).

Particular instances of unification with sequence variables and flexible arity
symbols are word equations ([1],[15], [26]), equations over free semigroups ([19]),
equations over lists of atoms with concatenation ([7]), pattern matching.

We have implemented the unification procedure (without decision algorithm)
as a Mathematica package and incorporated it into the Theorema system [6],
which aims at extending computer algebra systems by facilities for supporting
mathematical proving. Currently the package is used in the Theorema Equa-
tional Prover. It makes Theorema probably the only system being able to han-
dle equations which involve sequence variables and flexible arity symbols. The
package also enhances Mathematica solving capabilities, considering unification
as a solving method. We used the package, for instance, to find matches for
S-polynomials in non-commutative Grobner Bases algorithm [21].

The results in this paper are given without proofs. They can be found in [17].

2 Preliminaries

We consider an alphabet consisting of the following pairwise disjoint sets of
symbols: the set of individual variables ZV, the set of sequence variables SV, the
set of object constants CON'ST, the set of fixed arity function symbols FFIX,
the set of flexible arity function symbols FFLEX and a singleton consisting of
a binary predicate symbol = (equality).



Let now V stand for (ZV, SV) (variables), C - for (CONST, FFIX, FFLEX,
=) (a domain of constants) and P - for {(,),,} ("parentheses and comma”). We
define terms and equations over (V,C,P).

Definition 1 (Term). The set of terms (over (V,C,P)) is the smallest set of
strings over (V,C,P) that satisfies the following conditions:

— Ifte IVUSVUCONST then t is a term.

—If f e FFIX, f isn-ary, n > 0 and ty,...,t, are terms such that for all
1<i<n,t; ¢SV, then f(t1,...,t,) is a term.

— If f € FFLEX and ty,...,t, (n > 0) are terms, then so is f(t1,...,tn).

f s called the head of f(t1,...,tn).

Definition 2 (Equation). The set of equations (over the alphabet (V,C,P)) is
the smallest set of strings over (V,C,P) that satisfies the following condition:

— If t1 and t2 are terms over (V,C,P) such that t1 ¢ SV and t2 ¢ SV, then
= (t1,t2) is an equation over (V,C,P). = is called the head of = (t1,t2).

If not otherwise stated, the following symbols, with or without indices, are
used as metavariables: x, y and z - over individual variables, T, 77 and Z - over
sequence variables, v and u - over (individual or sequence) variables, ¢ - over
object constants, f, g and h - over (fixed or flexible arity) function symbols, s
and ¢ - over terms. We generalize standard notions of unification theory ([2]) for
a theory with sequence variables and flexible arity symbols.

Definition 3 (Substitution). A substitution is a finite set {x1 — s1,...,
Ty Sp,T1 — t1,.. .,t,lcl, oy Ty L ) where

—n>0,m>0and foralll1 <i<m,k; >0,

— x1,...,T, are distinct individual variables,

— T1,..., Ty are distinct sequence variables,

— for all1 <i<mn,s; is a term, s; ¢ SV and s; # x;,

— foralll <i<m,t,... ’ﬁw is a sequence of terms and if k;=1 then t};i #+ T;.

Greek letters are used to denote substitutions. The empty substitution is
denoted by ¢.

Definition 4 (Instance). Given a substitution 0, we define an instance of a
term or equation with respect to 6 recursively as follows:

_xez{sifoSEH,

x otherwise

w0 — S1y.ees S U T —81,...,8m €0, m >0,
W=z otherwise

— f(s1,--,80)0 = f(510,...,5,0)

— (81 = 82)0 = 819 = 829.

We extend the notion of instance to sequences in a straightforward way -
instance of a sequence is a sequence of instances.



Definition 5 (Composition of Substitutions). Let = {x] « s1,..., 2, <«

SpyTT 4= sty e T — 10 Y and A = {y1 — di,.,yn
di,Ji —e1,...,€0 .. U — €f,..., el } be two substitutions. Then the compo-

sition of 0 and X is the substitution, denoted by 0 o X, obtained from the set

{@1 =810, @y = ST = EA L Ay Ty = ETN A,
ylHdla"'ayl(*dlaylHela"'aeqla"'ayTHe{a"'aegr}

by deleting

— all the elements x; — s;A (1 <1< n) for which x; = s;A,

— all the elements T; «— ti\,...,tp, A (1 < i < m) for which k; = 1 and
T =t

— all the elements y; — d; (1 <i<1) such that y; € {x1,...,2,},

— all the elements J; < €, .. .,efh (1 <i<r) such that y; € {T1,...,Tm}-

Ezample 1. Let 0 = {z — f(y), T~ 4, T, §— 4,2} and A = {y < g(c¢,¢), T «—
¢, Z+—}. Then o X = {x — f(g9(c,¢)), y < g(c,c), T —T,e, Z}.

These versions of the notions of substitution, composition, and instance have
the same important properties as the standard versions of the same notions:

Theorem 1. For a term t and substitutions 6 and X\ t0 o A = tO\.

Theorem 2. For any substitutions 0, A\ and o, (o X) oo =600 (Aoo).

3 Equational Theory with Sequence Variables and
Flexible Arity Symbols

A set of equations F (called representation) defines an equational theory, i.e. the
equality of terms induced by E. We use the term FE-theory for the equational
theory defined by E. We will write s =g t for s = ¢t modulo E. Solving equations
in an E-theory is called E-unification. The fact that the equation s =g t has to

? ? ?
be solved is written as s=gt. A finite system of equations (s1=gt1,...,sp=pgty)
is called an E-unification problem. Some examples of E-theories are:

. Free theory (0): E = 0;
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E = {f(fa f(myma%)az) = f(fay_ltxvy_QaE)af(fvwvyyyyz) = f(fayvﬂaxag)}

Definition 6 (Unifier). A substitution 0 is called an E-unifier of an E-unifi-
cation problem <31;Et1, cen, sniEtn) iff 5,0 =g ;0 for all 1 < i < n.



Definition 7 (More General Substitution). A substitution 0 is more gen-
eral than a substitution o on a finite set of variables Var modulo a theory E
(denoted 0 <97 o ) iff there exists a substitution \ such that

— for allT € Var,

« T ¢\
e there exist terms t1,...,tn,S1,...,8n, N > 0 such that To = t1,...,t,,
TOo A =s1,...,8, and for each 1 < i < n, eithert; and s; are the same

sequence variables ort; =g s;;
— forallx € Var, xo =g xf o \.

Ezample 2. {T — 7} <<éz’y} {ZT « a,z, § < a,z}, but not {T «— 7} <<(‘Z{)w’y}
{Z =7}

Definition 8 (The Minimal Complete Set of Unifiers). The minimal com-
plete set of E-unifiers of I, denoted MCUg(I"), is an E-minimal set of substi-
tutions with respect to the set of variables Var of I', satisfying the following
conditions:

E-Correctness - for all @ € MCUg(I"), 0 is an E-unifier of I
E-Completeness - for any E-unifier o of I there exists § € MCUg(I") such
that 0 <<E‘" o

E-minimality - for all 0, 0 € MCUg(T"), § <% o implies 0 = o.

Ezample 3. Compute the minimal complete set of unifiers in the (), F and RF
theories (f and g are free flexible arity symbols, h is flat, rh - restricted flat):

={{z <}, {T < a}, {T—a,a},...}.
(u 9(b, v)))) = {{u < 9(a,7), 7 « b, v —

L. MCU(f (7. )0 (0.7

7))
2. MCUy((f(g(a,g(7. ), T)=y

b, {7 <7 — (o), 7
et {7y m—gla), 7 <

3. MCUr({z=rh(z))) = {{z < (fﬁ)}}-

4. MCUr((h(Z)=Fh(a))) = {{T <« a}, {T « h(a)}, {T < a,h()}, {T <
ha), hQO}, {7 < h(),at, {7 = h(), h(a)}, {7 < (), a, 0}, ...}

5. MCURrp((rh(Z)=pgrprh(a))) = {{T < a}, T < rh(a)}.

Below in this paper we consider only the @-theory, although the results that
are valid for arbitrary E-theories are formulated in a general setting.

4 General Unification Procedure in the Free Theory with
Sequence Variables and Flexible Arity Symbols

In this section we des1gn a unification procedure to solve general unification

problem of the form tl—(z)tg , built over the alphabet which consists of sequence

! In the case of (-theory it is enough to consider single equations instead of systems
. . . . ? ?
of equations in unification problems, because (s1=gt1, ..., Sn=¢tn) has the same set

of unifiers as f(s1,..., sn);@f(tl, ..., tn), where f is a free flexible arity symbol.



and individual variables, free flexible arity function symbols, free constants and
free fixed arity function symbols. We denote it as GU Py. The unification pro-
cedure is a tree generation process based on two basic steps: projection and
transformation.

4.1 Projection

The idea of projection ([1]) is to eliminate some sequence variables from the
given unification problem UP. Let II(U P) be the following set of substitutions:
{{z < |7 € S} | S C wars(UP) NSV}, where vars(UP) is a set of variables
of UP. II(UP) is called the set of projecting substitutions for UP. Each 7 €
IT replaces some sequence variables from UP with the empty sequence. The
projection rule is shown in Figure 1.

? ? ?
Projection: s=gt ~> ((smi=gtm1, T1), ..., where {m1,...,m} = II(s=¢t).

)
2
(Sﬂ'ki@tﬂ'k, 7Tk>>

Fig. 1. Projection rule.

4.2 Transformation

Each of the transformation rules for unification have one of the following forms:
UP ~ L or UP ~ ((SUC4,01),...,{(SUCy,0y,)) where each of the successors
SUC; is either T or a new unification problem.

The full set of transformation rules are given on Figure 2. It consists of four
family of rules: Success, Failure, Elimination and Splitting. Note the usage of
widening techniques (similar to [18],[24],[27],[28]) in the elimination rules for
sequence variables.

4.3 Unification Procedure - Tree Generation

In [15] and [26] tree generation construction is used for solving word equations.
We use the similar idea for unification procedure with sequence variables and
flexible arity symbols. Projection and transformation can be seen as single steps
in a tree generation process. Each node of the tree is labeled either with a
unification problem, T or L. The edges of the tree are labeled by substitutions.
The nodes labeled with T or L are terminal nodes. The nodes labeled with
unification problems are non-terminal nodes. The children of a non-terminal
node are constructed in the following way:

Given a nonterminal node, let UP be a unification problem attached to it.
First, we decide whether U P is unifiable. If the answer is negative, we replace U P



Success: t;@t ~ (T, e)).
adot ~ (T, {& — t})), if = ¢ vars(t).
2oz ~ (T, {z — t})), if 7 ¢ vars(t).

Failure: 01;002 ~ L, if ¢1 # co.
x;@t ~ L if t # x and x € vars(t).
t;@x ~ if t 2 x and x € vars(t).
fidZofa(3) ~ L, if f1 # fo.
F0Los (b, B ~ L.
ft,H)=of() ~ L.
f@ t)=¢pf(s1,8) ~ L, if s1 #7 and T € vars(s1).
f(s1,3)=f(Z,1) ~ L, if s1 # T and T € vars(sy).
f(tl,f)i@f(51,§) ~ L if tlimsl ~s L

Eliminate: f(t1. 7)o f(s1,3) ~ ((g(io)Log(30), o), if tizgss ~ (T, o).

F@ DL (@, 3) ~ (gD E09(5), &)

f(fz E);@f(slﬂ g’z ~
({g(to1)=0g(501), o1),

(9@, i2)%0g(303), 02)),

Fls1,8) %01 (3, 0~
{(g(301)=gg(tor), o1),

(9(302) 209 (T, F02), 02)),

F@ D% £, ),
(g(For)Eog(50n), o),

if s1 ¢ SV and T ¢ vars(sy),
where o1 = {T + s1},
o2 = {f — 81,5}.

if s1 ¢ SV and T ¢ vars(s1),
where 01 = {T < s1},
o2 = {T < s1,T}.

where

o1 = {EHg}v

o2 = {T « 7,7},

o3 ={y — 7,7}

(9(7, 2?Urz?)lmg(&fz), o2),
(9(tos)=0g(¥, 03), o3)),

Split: £t D20 (s1,5) ”;
((f(r1,fo1)?i@f(ql,§01), O1)y v ey
(f(rr, tow)=0 f (qx. S0k), ok))

if t1, S1 ¢ ZV U SV and
? ?
t1i051 ~ <<T1i@q17 Ul>7 RN
(rk=0aK, Ok))-

Fig. 2. Transformation rules. ¢ and § are possibly empty sequences of terms. f, f1, f2 €
FFIX UFFLEX. g € FFLEX is a new symbol, if in the same rule f € FFIX.
Otherwise g = f.



with the new label L. If UP is unifiable, we apply projection or transformation
on UP and get ((SUCY,01),...,{SUCy,0p)). Then the node U P has n children,
labeled respectively with SUC4,...,SUC,, and the edge to the SUC; node is
labeled with o; (1 <i < n). The set {o1,...,0,} is denoted by SUB(UP).

We design the general unification procedure as a breadth first (level by level)
tree generation process. Let GU Py be a unification problem. We label the root
of the tree with GUPy (zero level). First level nodes (the children of the root)
of the tree are obtained from the original problem by projection. Starting from
the second level, we apply only a transformation step to a unification problem
of each node, thus getting new successor nodes. The branch which ends with a
node labeled by T is called a successful branch. The branch which ends with a
node labeled by L is a failed branch. For each node in the tree, we compose sub-
stitutions (top-down) displayed on the edges of the branch which leads to this
node and attach the obtained substitution to the node together with the unifi-
cation problem the node was labeled with. The empty substitution is attached
to the root. For a node IV, the substitution attached to IV in such a way is called
the associated substitution of N. Let X(GU Py) be the set of all substitutions
associated with the T nodes. We call the tree a unification tree for GU Py and
denote it UT(GU Fy).

Ezample 4. Figure 3 shows development of successful branches of the unification

tree for GUPy = f(x,b,7, () %0/ (a, 7, f(b,7)). D(GUR) = {{z — a,7 —
bT, 7 Th{r — a,T b7 —}}.

F(2,0,7, f(@)%£(a, 7, £(b,7))

€ {7 <}
F, 0,9, f@) 2,7 f0,7)  flab, £(@)Zf(a,7, £(b))
{.r — a} l {x — a}
F0.7, F@)2F @, £ (b, 7)) £, F@)Ef (@, (b))
{T < b, T} {zT < b}
£@, F6,7) 2 (@, £(5,) FUFB)ZF(F ()
{7 — 7} l €
FUEBE)EF(F (b)) SUCCESS
l )
SUCCESS

Fig. 3. Successful branches of UT(f(x,b,7, f(f));@f(a,f,f(b,y))).



A stronger notion than minimality - disjointness - is used to prove Theorem 3
below. Formally, disjointness is defined as follows:

Definition 9. A set of substitutions X is called disjoint modulo E with respect
to a set of variables Var iff for all 0, o € X, if there exist substitutions A1, g
such that

— for all sequence variables T € Var,

hd f<_¢)\17

e f(i%AQf

e there exist termsty,...,tn,S1,...,8n, n > 0 such that TOoXy = t1,...,t,,
To oAy = S1,...,8, and for all 1 < i < n, eithert; and s; are the same

sequence variables or t; =g s; and
— for all individual variables x € Var,
e 0o\ =g 00 A3,

then 6 = o.

The main result of this paper says that X (GU Py) is a minimal complete set
of free unifiers of GU Py:

Theorem 3. Y(GUPy) = MCUy(GU Py).

Proof. Here we briefly sketch the idea. Details can be found in [17].
Completeness follows from the fact that for every unifier ¢ of GU Py there

exists a branch 3 in UT(GU Py) such that for every substitution € associated

with a unification problem in 3 we have 6 <<gars(GUP”) 0.

Minimality is implied by disjointness of X(GU Py), which itself follows from
the facts that for each non-terminal node UP in UT(GU Py) the set SUB(UP) is
a disjoint set of substitutions and every projecting or transforming substitution
preserves disjointness. a

It is clear that the unification procedure terminates if GU Py contains no sequence
variables (in this case the problem can be considered as a Robinson unification).
Another terminating case is when one of the terms to be unified is ground. It
yields to the following result:

Theorem 4. Matching in a theory with individual and sequence variables, free
constants, free fized and flexible arity function symbols is finitary.

We can add a cycle-checking method to the procedure: stop with failure if
a unification problem attached to a node of unification tree coincides with a
unification problem in the same branch of the tree. Then the following theorem
holds:

Theorem 5. The unification procedure with cycle-checking for GU Py termi-
nates if no individual and sequence variables occur more than twice in GU Py.

0
If GUPy = t1=t; has the property that sequence variables occur only as
arguments of ¢; or t3, then we can weaken the condition of the previous theorem:



2
Theorem 6. The unification procedure with cycle-checking for GU Py = t1=t3,
where sequence variables occur only as arguments of t1 or ta, terminates if no
sequence variable occurs more than twice in GU Py.

The following termination condition does not require cycle-checking and does
not depend on the number of occurrences of sequence variables. Instead, it re-

quires for a unification problem of the form f(T)l@f(tl, ..o tn), m > 1, to check
whether T occurs in f(ty,...,t,). We call it the sequence variable occurrence
checking. We can tailor this checking into the unification tree generation pro-
cess as follows: if in the tree a successor of the unification problem of the form

>
f(@)=¢f(t1,...,tn), n > 1, has to be generated, perform the sequence variable
occurrence checking. If T occurs in f(t1,...,t,), label the node with L, otherwise
proceed in the usual way (projection or transformation).

Theorem 7. If GUPy is a unification problem such that all sequence variables
occurring in GU Py are only the last arguments of the term they occur, then the
unification procedure with the sequence variable occurrence checking terminates.

The fact that in most of the applications sequence variables occur precisely
only at the last position in terms, underlines the importance of Theorem 7. The
theorem provides an efficient method to terminate unification procedure in many
practical applications.

5 Extension with Pattern-Terms

In this section we give a brief informal overview of an extension of the the-
ory with patterns. Detailed exposition can be found in [17]. Pattern is an ex-
tended construct of the form A, i (t1,...,t,), where h is a fixed or flexible ar-
ity function symbol, m and k are linear polynomials with integer coefficients
with the special types of variables - called index variables, which are disjoint
from sequence and individual variables. Instances of patterns are: hl,vn+3(f, Y),
fom,uk(a), etc., where vn, vm and vk are index variables. The intuition behind
patterns is that they abbreviate term sequences of unknown length: Ay k(%)
abbreviates hym(t), ..., hyi(t). Patterns can occur as arguments in terms with
flexible arity heads only. Such terms are called pattern-terms (P-terms). A min-
imal and complete unification procedure with patterns, individual and sequence
variables, free constants, fixed and flexible arity function symbols is described in
[17]. The procedure enumerates substitution/constraint pairs which constitute
the minimal complete set of solutions of the problem.

o
Ezxample 5. Let I' = f(Z,7)=¢ f (hymvk(2)). Then the unification procedure re-
turns the set of substitution/constraint pairs

{{{Z «, 7 hom(2)}, 1 <vm A vm < vk},
{Z — homok(2), 7 — }, 1 <vm A vm < vk},
{{Z < homon(2), T hunt1,06(2)}, L <om A vm <wvn A vn+1<k}},



with the property that each integer solution of a constraint, applied to the cor-
responding substitution, generates an element of the minimal complete set of so-
lutions. For instance, the solution vm = 1, vn = 3, vk = 4 of the constraint 1 <
vm A vm < vn A vn+ 1 < vk applied on the substitution {Z <« hym on(2),7
hon+1,06(2)} gives a substitution {Z «— hq3(2),7 «— haa(2),vm — 1,on «
3,vk <« 4} which belongs to the minimal complete set of solutions of I'. In
the expanded form the substitution looks like {Z «— hy(2), ha(z), h3(2),7 <
hy(z),vm < 1,vn « 3,vk «— 4}.

As we have already mentioned in the Introduction, patterns naturally appear
in the proving context, when one wants to Skolemize, for instance, the expres-
sion Vz3y (9(x) = ¢(y)). Here 7 should be replaced with a sequence of terms
fi(x), ..., fu@)(x), where fi,..., fn(z) are Skolem functions. The problem is
that we can not know in advance the length of such a sequence. Note that in the
unification we use an index variable vn instead of n(z). This is because, given a
unification problem UP in which n(z) occurs, we can do a variable abstraction
on n(z) with a fresh index variable vn and instead of UP consider UP’ together
with the constraint vn = n(z), where UP’ is obtained from UP by replacing
each occurrence of n(z) with vn. One of the tasks for unification with patterns
is to find a proper value for vn, if possible.

6 Applications

We have implemented the unification procedure (without the decision algorithm)
as a Mathematica package and incorporated it into the Theorema system, where
it is used by the equational prover. Besides using it in the proving context, the
package can be used to enhance Mathematica solving capabilities, in particular,
the Solve function of Mathematica. Solve has a rich arsenal of methods to solve
polynomial and radical equations, equations involving trigonometric or hyper-
bolic functions, exponentials and logarithms. The following example shows, for
instance, how a radical equation is solved:

In[1]:= Solve[x"/® + \/x == 1,x]
1/3

2 11 2 3 44
out[l]—{{XHS\g(W) +3 (L (01415 v69)) 1)

However, it is unable to solve a symbolic equation like f(x,y) = f(a,b):

In[2]:= Solve[f[x,y] == f[a, b], {x,y}]

Solve::”dinv”: The expression f[x,y| involves unknowns in more than one argu-
ment, So inverse functions cannot be used

Out[2]= Solve[f[x, y] == £[a, b], {x,y}]

Also, Solve can not deal with equations involving sequence variables.
On the basis of the unification package, we implemented a function called
SolveExtended, which has all the power of Solve and, in addition, deals with



symbolic equations which can be solved using unification methods. An equation
like f(x,y) = f(a,b) becomes a trivial problem for SolveExtended:

In[3]:= SolveExtended[f[x,y] == f[a,b], {{x,y},{}}]
Answer 1
{x —a,y — b}
The procedure terminated
Out[3]= {{x — a,y — b}}

The function is able to solve (a system of) equations involving sequence
variables as well. In the following example z is an individual variable and X and
Y are sequence variables:

In[4]:= SolveExtended[f[x, b, Y, f[X]] == f[a, X, f[b, Y]], {{x}, {X,Y}}]
Answer 1
{x — a,X — b,Y — Sequence||}
Answer 2
{x — a,X — Sequence[b,X],Y — X}
The procedure terminated

Out[4]= {{x — a,X — b,Y — Sequence|]}, {x — a,X — Sequence[b,X],Y — X}}
All the problems Solve deals with can also be solved by SolveExtended, e.g.:

In[5]:= SolveExtended [x1/3 +vx==1, x]
1/3

1/3
Out[5]z{{x—>—§—£( & ) +%(% (101 +15V69)) }}

3 \101+ 1569

Options allow SolveExtended to switch on/off cycle-detecting and last se-
quence variable checking modes. Printing answers as they are generated is use-
ful when the problem has infinitely many solutions and the procedure does not
terminate, but this facility can also be switched off, if the user wishes so. It is
possible to terminate execution after generating a certain number of solutions.

We found another application of the unification package in computing mini-
mal matches for non-commutative Grobner basis procedure. We show it on the
following example: let p and ¢ be non-commutative polynomials a*xa*b*xa+a*b
and a *x b*a*xa+ bxa. In order to find S-polynomials of p and ¢ one needs to
compute all minimal matches between the leading monomials a * a * b * a and
axbx*ax*a, which, in fact, is a problem of solving equations (for instance, of the
form axaxbxa* Rl = L2%axbxaxa for the variables R1 and L2) in a free semi-
group. Solving equations in a free semigroup is a particular case of unification
with sequence variables and flexible arity symbols. Even more, the equations we
need to solve to find the matches, belong to a case when the unification procedure
terminates. The example below demonstrates how the function MinimalMatches,
based on the unification package, computes matches for axa*bxa and a*xbxax*a:



In[6]:= MinimalMatches[a* a* b a, a*b*ax*a]
Out[6]={{a*axbxa*Rl,L2+xa*xb*axa,{L2 —a,Rl — a}},

{axaxbsaxRl,L2%xaxb*axa,{L2 >axa*xbRl —bxaxal},
{Lixaxaxbxa,axbxaxaxR2,{L1 - a*xb,R2 > bxa}},
{Lixaxas*bxa,asbxaxa+xR2,{L1 —>a*xb*xa,R2—axbxa}}}

7 Conclusion

We considered a unification problem for the equational theory with sequence
and individual variables, free fixed and free flexible arity function symbols and
gave a unification procedure which enumerates the minimal complete set of uni-
fiers. Several sufficient termination conditions have been established. We gave a
brief overview of a theory extended with constructs called patterns, which are
used to abbreviate sequences of unknown lengths of terms matching a certain
"pattern”. Unification procedure for the extended theory enumerates substitu-
tion/constraint pairs which constitute the minimal complete set of solutions of
the problem. Computer algebra related applications have been discussed.
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