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ABSTRACT 
We present a toolkit for developing and visualizing distributed 
algorithms in Java. This toolkit consists of a Java class library 
with a simple programming interface that allows to develop 
distributed algorithms in a message passing model. The resulting 
programs may be executed in standalone mode using a Java 
interpreter or embedded as applets into HTML documents and 
executed by a Web browser. The toolkit has been applied in 
various university courses and is freely available. 


Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computer uses in Education 
– Computer-assisted instruction (CAI), K.3.2 [Computers and 
Education]: Computer and Information Science Education – 
Computer science education. 


General Terms 
Algorithms, Design, Experimentation. 


Keywords 
Distributed computing, message passing, Java, applets, 
visualization, assertions. 


1. INTRODUCTION 
This paper describes a toolkit for developing and visualizing 
distributed algorithms in Java [1]. This toolkit was originally 
named DAJ (Distributed Algorithms in Java), not to be confused 
with another system with the same name and similar goals which 
was independently developed at about the same time[2]; to avoid 
further confusion, we will not refer to this name any more and 
ultimately chose a different name. The core of our toolkit is a Java 
application class library with a deliberately simple programming 
interface which allows to develop distributed algorithms in a 
message passing model. The resulting programs may be executed 
in standalone mode or embedded as applets into HTML 
documents and executed by Web browsers.  


Our motivation for this work stemmed from some uneasiness with 
how to teach distributed algorithms and programming: there are 
various excellent textbooks on this topic [8,3], but they describe 
distributed algorithms in an abstract notation rather far away from 
real programs. Furthermore, there is a lack of an easy to use and 
universally accessible platform for implementing the algorithms 
taught in class and investigating their dynamic behavior. 
Distributed message passing libraries like PVM [5] or systems 
based on the MPI standard [4] are too "heavy-weight" for use in 
education; they force to deal with a number of low-level technical 
details, and they do not allow the easy observation of the 
"internals" of the execution.  


We therefore have designed and implemented a toolkit that 
provides an easy way of programming distributed algorithms and 
visualizing their dynamic behavior; the toolkit is based on a 
programming model that is intuitive but still close to "real" 
systems. Our toolkit has been implemented using Sun's Java 
Development Kit. Despite of a few problems related to Java's 
Abstract Window Toolkit (AWT), the resulting programs should 
run in any Java environment and can be embedded as applets into 
HTML pages; this gives the possibility to develop documents that 
integrate text and executable code in a single framework.  


An application developed with the toolkit may run in one of three 
modes:  


• standalone, without visualization,  


• standalone, with visualization,  


• as an applet embedded in a Web page.  


The programming model has been deliberately kept simple with 
minimum conceptual overhead:  


• The execution model consists of a network of nodes that are 
partially linked by channels and that operate asynchronously 
and independently of each other.  


• The basic communication mechanism are point-to-point 
messages between those nodes that are linked by channels.  


• Furthermore, a node may send messages via sets of channels 
and receive (non-deterministically) messages from sets of 
channels.  


• A timeout value may be specified to limit the time that a 
node is blocked listening on an empty channel (respectively 
on a set of channels).  
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• Each node has a local time that is implicitly advanced by 
each communication operation and that may be accessed by 
the programmer.  


The visualization is based on the following elements:  


• a screen of user-defined size displays the network as laid out 
by the user;  


• the states of nodes and channels are indicated by colors as 
well as by messages in a foot line;  


• the current local time of each node is displayed;  


• the internal states of nodes and channels (i.e., the messages it 
contains) are exhibited by pop-up windows as defined by the 
programmer;  


• network execution may be slowed down, interrupted, 
performed step by step, and restarted.  


Program execution may be customized by  


• user-defined node schedulers that determine the next ready 
node for execution, and by  


• user-defined message selectors that determine the next 
message to be delivered from a channel,  


which allows to implement various execution models 
(synchronous network execution, asynchronous execution) and 
failure models (lost messages, duplicated messages).  


Furthermore, the programmer may state assertions about the 
global state of the network (nodes and channels), which gives the 
possibility to check the validity of invariance conditions which 
may be formally proved in class.  


2.  VISUALIZING A PROGRAM 
Through the rest of the paper, we will demonstrate the usage of 
the toolkit by a trivial example; in the last section, we will discuss 
how the system was received in classroom and list some of the 
algorithms developed with it. In our demonstration, we are going 
to implement a distributed program that runs on a ring of three 
nodes bi-directionally linked to each other. One node emits two 
messages into both directions; every node iteratively listen for 
messages from both directions and forwards every received 
message into the other direction.  


The figure on the top of this page illustrates the applet that results 
from the visualization of this program. The applet window 
displays three network nodes linked by three pairs of channels; 
the receiver side of each channel is denoted by a small bullet 
where the channel touches the node. The nodes contain labels "0", 
"1", and "2"; the small numerical subscript of each label denotes 
the current local time of this node; the small number in the left 
upper corner of the window denotes the global network time.  


Pressing the "Run" button starts execution. After the program has 
terminated, pressing "Reset" initializes the visualization again. 
"Walk" lets the program run in slow mode, "Interrupt" suspends 
the program, "Step" allows the program advance one step (i.e., 
one communication operation). "Redraw" redraws the screen, 
"Quit" lets the visualization terminate (if the network is currently 
executing, one has to interrupt it before).  


During execution, the current state of each node is represented by 
the color of its boundary:  


Green  
the node is ready for execution.  


Red  
the node is blocked (i.e., it waits for a message on some input 
channel).  


Blue  
the node has terminated execution.  


Likewise, channel states are denoted by boundary colors:  


Gray  
the channel is empty.  


Green  
the channel holds at least one message.  


Red  
the channel is empty and the receiver node waits for a 
message.  


Textual explanations of the different states are given in the bottom 
line of the window when one moves the mouse cursor over the 
node respectively channel. Simultaneously, a window pops up 
that exhibits the internal state of the node respectively channel (in 
the case of the later, about the queue of messages contained in the 
channel). A node can be dragged to a different location by 
clicking on it and moving the mouse while keeping the mouse 
button pressed.  


Selecting in menu "Help" one of the items "About Algorithm" or 
"About Toolkit" lets some informative panels pop up. Selecting 
"Home", "Copying", or "Help" loads the corresponding Web page 
into a window of the Web browser.  


3.  DEVELOPING THE PROGRAM 
The program described in the previous section has been 
implemented by the following pieces of source code compiled 
with the classes of the toolkit.  







public class Main extends Application
{


public static void main(String[] args)
{


new Main().run();
}


public Main()
{


super("A Trivial Program",
400, 300);


}


public void construct()
{


Node node0 = node(new Prog(0),
"0", 100, 100);


Node node1 = node(new Prog(1),
"1", 150, 200);


Node node2 = node(new Prog(2),
"2", 300, 150);


link(node0, node1);
link(node1, node2);
...


}
}


An application is represented by an object of a subclass of class 
Application. The programmer provides in this class a method 
construct that creates the nodes of the network and defines the 
corresponding channel connections. Each network node is created 
by a call of the function node that takes as its arguments the 
program executed by the node, the node label shown by the 
visualizer and the coordinates of the node in the visualization 
(measured in pixels from the left upper corner of the visualization 
area). The default constructor of the class determines the 
appearance of the visualizer by the title displayed in its frame and 
by the size of the visualization area. If the program shall be also 
executable in standalone mode, the class must also contain a 
method main() that creates the application object and starts its 
execution by invoking the method run.  


Having defined the network, we now are going to implement the 
program executed by each network node:  


class Prog extends Program
{


int number;


public Prog(int i)
{


number = i;
}


public String getText()
{


String msgString;
if (msg == null)


msgString = "(null)";
else


msgString = msg.getText();
return


"sent: " +
String.valueOf(sent) +
"\nmsg: " + msgString;


}


public void main()
{
if (number == 0)
{
out(0).send(new Msg(0));
out(1).send(new Msg(1));


}
for (int i = 0; i < 5; i++)


{
int index = in().select();
Message msg =
in(index).receive();


out(index).send(msg);
}


}
}


A node program is an object inheriting from the toolkit class 
Program. In above example, we define a constructor that 
initializes the program with its index (in order to let the program 
exhibit different behaviors on different nodes). The method main 
represents the code actually executed by the network node. In our 
example, node 0 sends two messages to its output channels with 
predefined names out(0) and out(1). Each node runs through 
three iterations in which it  


1. determines which of its input channels is not empty  
index = in().select()


2. receives the message contained in this channel  
msg = in(index).receive()


3. and sends it to the opposite output channel.  
out(index).send(msg)


A node type should override the method getText to exhibit the 
internal state of each node; the visualizer calls this method when 
displaying the node state in a pop-up window.  


What now remains to be defined is the type of messages sent 
respectively received via the channels of the network:  


class Msg extends Message
{
int val;
public Msg(int i)
{
val = i;


}
public int value()
{
return val;


}
public String getText()
{
return "content = " +


String.valueOf(val);
}


}


A message type extends the class Message and should provide a 
method getText that returns the content of the message in a 
single line. This method is invoked by the visualizer when it 
displays the contents of a channel in a pop-up window.  







4. MAKING THE APPLET 
An application developed with the toolkit can be embedded as an 
applet into a Web page using the APPLET tag. The applet can be 
customized by the parameters specified below:  


<APPLET code="C.class" width=w height=h>
<param name=buttonLabel value=string>
<param name=fontName value=string>
<param name=fontStyle value=string>
<param name=fontSize value=int>


</APPLET>


The applet loads class C.class; it appears as a button of width 
w and height h. The default label on the button is the title 
specified in the constructor of the corresponding Application 
object; this label may be overridden by the applet parameter 
buttonLabel. The font used for the button label may be 
customized using the optional applet parameters fontName, 
fontStyle, and fontSize which determine the 
corresponding Java font.  


5. ASSERTING CONDITIONS 
While only the code explained above is required to let the 
program run, we also would like to make explicit that the program 
fulfils certain properties. The most important technique for 
reasoning about distributed algorithms is to find  invariance 
conditions that describe the state of the system in every step in 
every possible execution [9]. Our toolkit allows to formulate such 
a condition as an assertion that is checked by the simulator in the 
actually performed execution.  


In above example, a central property is that there are exactly two 
messages contained in the network. We can state this as an 
assertion by rewriting class Prog as follows:  


class Prog extends Program
{


private int number;
public int index;
public Message msg = null;
public boolean sent = false;


public Prog(int i)
{


number = i;
}


public void main()
{


if (number == 0)
{


out(0).send(new Msg(0));
out(1).send(new Msg(1));
sent = true;


}


GlobalAssertion assertion =
new NumberOfMessages();


for (int i = 0; i < 5; i++)
{


assert(assertion);


index = in().select();
msg = in(index).receive();
out(index).send(msg);
msg = null;


}
}


}


This code differs from the previous one by making index and 
msg public instance variables of class Prog and by introducing 
an boolean instance variable sent which is set by the program on 
node 0 to true when it has initialized the network. Furthermore, 
we reset the received message msg to null after it has been 
submitted again into the network.  


When assert is called with an assertion a as its argument, it 
invokes the method a.assert(p) on the array of node 
programs p. The assertion may examine the published state of 
each program object (in our example, the contents of the public 
instance variables index, message, and sent). It may also 
investigate the contents of the attached channels (in, out) by 
calling the method getMessages which returns the array of 
messages contained in a channel (in the order in which they were 
sent). If the method returns false, execution is aborted with the 
error message returned by a.getText() (which is displayed in 
the foot line of the visualization window).  


The assertion type NumberOfMessages is defined as a subtype 
of the type GlobalAssertion as shown below:  


class NumberOfMessages extends
GlobalAssertion


{
int count;


public String getText()
{
return "invalid no of msgs: " +
String.valueOf(count);


}


public boolean assert(Program prog[])
{
if (!((Prog)prog[0]).sent)
return true;


count = 0;
for (int j = 0; j<prog.length; j++)
{
Prog program = (Prog)prog[j];
count += getMessages(
program.out(0)).length;


count += getMessages(
program.out(1)).length;


if (program.msg != null)count++;
}


return count == 2;
}


}


The assertion says that, as soon as node 0 has signaled by its 
variable sent the initialization of the network, there must be 
exactly two messages in the network. A message may be either 
contained in some channel out(j), or, in a program's local 
variable msg. 







6. CLASSROOM APPLICATION 
Since 1997 we have applied the toolkit in four graduate classes on 
distributed algorithms. After a short introduction to the use of the 
toolkit by the example demonstrated above, the students (most of 
which had some previous experience with Java) could use the 
toolkit without much further help.  


We have mainly used the toolkit in two modes of operation: 


1. Exercise work: we present in class an algorithm in a formal 
model such as I/O automata [8] and let the students 
implement the algorithm with the help of the toolkit as a 
standalone application. 


2. Project work: at the end of the course, we hand out textbook 
material and let the students (in groups of 2 or 3 members) 
study algorithms on their own in order to prepare a 
classroom presentation for their colleagues. The students set 
up a Web page which explains the algorithm, cites the 
relevant literature, embeds the applet and contains a link to 
the source code of the implementation. 


In our experience, the integration of theoretical studies with 
exercises on the development of executable code has been very 
successful. In particular, it has increased the motivation of 
students to study algorithmic details which are necessary for an 
actual implementation.  


Mainly from the results of the project work, we have gathered a 
small library of approximately 15 algorithms implemented with 
the toolkit (see the URL in [1]), e.g. 


• Distributed Snapshots  
• Parallel Convex Hull Construction  
• Termination Detection  
• Breadth First Search  
• Invitation Algorithm  
• Maekawa's Mutual Exclusion Algorithm  
• LyHudak Mutual Exclusion  
• RicartAgrawala Mutual Exclusion  
• Dijkstra Scholten Termination Detection  
• Total Order Broadcasting 


This collection can be used in subsequent courses to demonstrate 
various aspects of the algorithms by classroom demonstrations. 


7. RELATED WORK 
The work closest in spirit to our own developments is the DAJ 
software described in [2]. Here a distributed system is simulated 
by a collection of Java applets that are embedded in the same 
HTML document. Each applet implements by a state machine one 
node of the system; initially the applets use the standard Java API 
to learn about each other (getAppletContext()). After that, 
an applet A may send a message to some applet B by invoking a 
method receive() in  B. While the user-interface is 
application-dependent, the algorithm-independent part of the 
simulation is provided by the DAJ class DistAlg. The system has 
been used for the implementation of several fundamental 
distributed algorithms. 


While this software and our toolkit share goals (and accidentally 
also the name), we have chosen a different implementation 


strategy: a distributed system is simulated by a multi-threaded 
application that relies on a central scheduler. Each system node is 
represented by a separate thread which returns control to the 
scheduler each time that a message passing operation is 
performed. The program executed by each node is a conventional 
program written in an imperative message passing style (not as a 
state machine) such that the programming experience is close to 
that of writing a PVM or MPI program. Furthermore, our toolkit 
provides a graphical user interface which allows to investigate the 
states of  nodes and channels by point-and-click operation. 


A more recent development is the Distributed Algorithm Platform 
(DAP)  which is currently being developed on the basis of the 
LEDA library [10]. DAP will have a GUI through which the user 
will be able to control the simulation of his/her algorithm. The 
users should be able to use the GUI to define the network 
topology, enter initial condition, generate events for the 
simulation, etc.  
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