

A Java Toolkit for Teaching Distributed Algorithms
Wolfgang Schreiner

Degree Programme on “Engineering for Computer-based Learning”
 Hagenberg University of Applied Sciences

Hauptstraße 117, A-4232 Hagenberg, Austria
+43 7236 3888 2600

Wolfgang.Schreiner@fh-hagenberg.at

ABSTRACT
We present a toolkit for developing and visualizing distributed
algorithms in Java. This toolkit consists of a Java class library
with a simple programming interface that allows to develop
distributed algorithms in a message passing model. The resulting
programs may be executed in standalone mode using a Java
interpreter or embedded as applets into HTML documents and
executed by a Web browser. The toolkit has been applied in
various university courses and is freely available.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer uses in Education
– Computer-assisted instruction (CAI), K.3.2 [Computers and
Education]: Computer and Information Science Education –
Computer science education.

General Terms
Algorithms, Design, Experimentation.

Keywords
Distributed computing, message passing, Java, applets,
visualization, assertions.

1. INTRODUCTION
This paper describes a toolkit for developing and visualizing
distributed algorithms in Java [1]. This toolkit was originally
named DAJ (Distributed Algorithms in Java), not to be confused
with another system with the same name and similar goals which
was independently developed at about the same time[2]; to avoid
further confusion, we will not refer to this name any more and
ultimately chose a different name. The core of our toolkit is a Java
application class library with a deliberately simple programming
interface which allows to develop distributed algorithms in a
message passing model. The resulting programs may be executed
in standalone mode or embedded as applets into HTML
documents and executed by Web browsers.

Our motivation for this work stemmed from some uneasiness with
how to teach distributed algorithms and programming: there are
various excellent textbooks on this topic [8,3], but they describe
distributed algorithms in an abstract notation rather far away from
real programs. Furthermore, there is a lack of an easy to use and
universally accessible platform for implementing the algorithms
taught in class and investigating their dynamic behavior.
Distributed message passing libraries like PVM [5] or systems
based on the MPI standard [4] are too "heavy-weight" for use in
education; they force to deal with a number of low-level technical
details, and they do not allow the easy observation of the
"internals" of the execution.

We therefore have designed and implemented a toolkit that
provides an easy way of programming distributed algorithms and
visualizing their dynamic behavior; the toolkit is based on a
programming model that is intuitive but still close to "real"
systems. Our toolkit has been implemented using Sun's Java
Development Kit. Despite of a few problems related to Java's
Abstract Window Toolkit (AWT), the resulting programs should
run in any Java environment and can be embedded as applets into
HTML pages; this gives the possibility to develop documents that
integrate text and executable code in a single framework.

An application developed with the toolkit may run in one of three
modes:

• standalone, without visualization,

• standalone, with visualization,

• as an applet embedded in a Web page.

The programming model has been deliberately kept simple with
minimum conceptual overhead:

• The execution model consists of a network of nodes that are
partially linked by channels and that operate asynchronously
and independently of each other.

• The basic communication mechanism are point-to-point
messages between those nodes that are linked by channels.

• Furthermore, a node may send messages via sets of channels
and receive (non-deterministically) messages from sets of
channels.

• A timeout value may be specified to limit the time that a
node is blocked listening on an empty channel (respectively
on a set of channels).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00.

Preprint (for personal use only); the revised and final version is to appear in the ITiCSE'02 proceedings.

• Each node has a local time that is implicitly advanced by
each communication operation and that may be accessed by
the programmer.

The visualization is based on the following elements:

• a screen of user-defined size displays the network as laid out
by the user;

• the states of nodes and channels are indicated by colors as
well as by messages in a foot line;

• the current local time of each node is displayed;

• the internal states of nodes and channels (i.e., the messages it
contains) are exhibited by pop-up windows as defined by the
programmer;

• network execution may be slowed down, interrupted,
performed step by step, and restarted.

Program execution may be customized by

• user-defined node schedulers that determine the next ready
node for execution, and by

• user-defined message selectors that determine the next
message to be delivered from a channel,

which allows to implement various execution models
(synchronous network execution, asynchronous execution) and
failure models (lost messages, duplicated messages).

Furthermore, the programmer may state assertions about the
global state of the network (nodes and channels), which gives the
possibility to check the validity of invariance conditions which
may be formally proved in class.

2. VISUALIZING A PROGRAM
Through the rest of the paper, we will demonstrate the usage of
the toolkit by a trivial example; in the last section, we will discuss
how the system was received in classroom and list some of the
algorithms developed with it. In our demonstration, we are going
to implement a distributed program that runs on a ring of three
nodes bi-directionally linked to each other. One node emits two
messages into both directions; every node iteratively listen for
messages from both directions and forwards every received
message into the other direction.

The figure on the top of this page illustrates the applet that results
from the visualization of this program. The applet window
displays three network nodes linked by three pairs of channels;
the receiver side of each channel is denoted by a small bullet
where the channel touches the node. The nodes contain labels "0",
"1", and "2"; the small numerical subscript of each label denotes
the current local time of this node; the small number in the left
upper corner of the window denotes the global network time.

Pressing the "Run" button starts execution. After the program has
terminated, pressing "Reset" initializes the visualization again.
"Walk" lets the program run in slow mode, "Interrupt" suspends
the program, "Step" allows the program advance one step (i.e.,
one communication operation). "Redraw" redraws the screen,
"Quit" lets the visualization terminate (if the network is currently
executing, one has to interrupt it before).

During execution, the current state of each node is represented by
the color of its boundary:

Green
the node is ready for execution.

Red
the node is blocked (i.e., it waits for a message on some input
channel).

Blue
the node has terminated execution.

Likewise, channel states are denoted by boundary colors:

Gray
the channel is empty.

Green
the channel holds at least one message.

Red
the channel is empty and the receiver node waits for a
message.

Textual explanations of the different states are given in the bottom
line of the window when one moves the mouse cursor over the
node respectively channel. Simultaneously, a window pops up
that exhibits the internal state of the node respectively channel (in
the case of the later, about the queue of messages contained in the
channel). A node can be dragged to a different location by
clicking on it and moving the mouse while keeping the mouse
button pressed.

Selecting in menu "Help" one of the items "About Algorithm" or
"About Toolkit" lets some informative panels pop up. Selecting
"Home", "Copying", or "Help" loads the corresponding Web page
into a window of the Web browser.

3. DEVELOPING THE PROGRAM
The program described in the previous section has been
implemented by the following pieces of source code compiled
with the classes of the toolkit.

public class Main extends Application
{

public static void main(String[] args)
{

new Main().run();
}

public Main()
{

super("A Trivial Program",
400, 300);

}

public void construct()
{

Node node0 = node(new Prog(0),
"0", 100, 100);

Node node1 = node(new Prog(1),
"1", 150, 200);

Node node2 = node(new Prog(2),
"2", 300, 150);

link(node0, node1);
link(node1, node2);
...

}
}

An application is represented by an object of a subclass of class
Application. The programmer provides in this class a method
construct that creates the nodes of the network and defines the
corresponding channel connections. Each network node is created
by a call of the function node that takes as its arguments the
program executed by the node, the node label shown by the
visualizer and the coordinates of the node in the visualization
(measured in pixels from the left upper corner of the visualization
area). The default constructor of the class determines the
appearance of the visualizer by the title displayed in its frame and
by the size of the visualization area. If the program shall be also
executable in standalone mode, the class must also contain a
method main() that creates the application object and starts its
execution by invoking the method run.

Having defined the network, we now are going to implement the
program executed by each network node:

class Prog extends Program
{

int number;

public Prog(int i)
{

number = i;
}

public String getText()
{

String msgString;
if (msg == null)

msgString = "(null)";
else

msgString = msg.getText();
return

"sent: " +
String.valueOf(sent) +
"\nmsg: " + msgString;

}

public void main()
{
if (number == 0)
{
out(0).send(new Msg(0));
out(1).send(new Msg(1));

}
for (int i = 0; i < 5; i++)

{
int index = in().select();
Message msg =
in(index).receive();

out(index).send(msg);
}

}
}

A node program is an object inheriting from the toolkit class
Program. In above example, we define a constructor that
initializes the program with its index (in order to let the program
exhibit different behaviors on different nodes). The method main
represents the code actually executed by the network node. In our
example, node 0 sends two messages to its output channels with
predefined names out(0) and out(1). Each node runs through
three iterations in which it

1. determines which of its input channels is not empty
index = in().select()

2. receives the message contained in this channel
msg = in(index).receive()

3. and sends it to the opposite output channel.
out(index).send(msg)

A node type should override the method getText to exhibit the
internal state of each node; the visualizer calls this method when
displaying the node state in a pop-up window.

What now remains to be defined is the type of messages sent
respectively received via the channels of the network:

class Msg extends Message
{
int val;
public Msg(int i)
{
val = i;

}
public int value()
{
return val;

}
public String getText()
{
return "content = " +

String.valueOf(val);
}

}

A message type extends the class Message and should provide a
method getText that returns the content of the message in a
single line. This method is invoked by the visualizer when it
displays the contents of a channel in a pop-up window.

4. MAKING THE APPLET
An application developed with the toolkit can be embedded as an
applet into a Web page using the APPLET tag. The applet can be
customized by the parameters specified below:

<APPLET code="C.class" width=w height=h>
<param name=buttonLabel value=string>
<param name=fontName value=string>
<param name=fontStyle value=string>
<param name=fontSize value=int>

</APPLET>

The applet loads class C.class; it appears as a button of width
w and height h. The default label on the button is the title
specified in the constructor of the corresponding Application
object; this label may be overridden by the applet parameter
buttonLabel. The font used for the button label may be
customized using the optional applet parameters fontName,
fontStyle, and fontSize which determine the
corresponding Java font.

5. ASSERTING CONDITIONS
While only the code explained above is required to let the
program run, we also would like to make explicit that the program
fulfils certain properties. The most important technique for
reasoning about distributed algorithms is to find invariance
conditions that describe the state of the system in every step in
every possible execution [9]. Our toolkit allows to formulate such
a condition as an assertion that is checked by the simulator in the
actually performed execution.

In above example, a central property is that there are exactly two
messages contained in the network. We can state this as an
assertion by rewriting class Prog as follows:

class Prog extends Program
{

private int number;
public int index;
public Message msg = null;
public boolean sent = false;

public Prog(int i)
{

number = i;
}

public void main()
{

if (number == 0)
{

out(0).send(new Msg(0));
out(1).send(new Msg(1));
sent = true;

}

GlobalAssertion assertion =
new NumberOfMessages();

for (int i = 0; i < 5; i++)
{

assert(assertion);

index = in().select();
msg = in(index).receive();
out(index).send(msg);
msg = null;

}
}

}

This code differs from the previous one by making index and
msg public instance variables of class Prog and by introducing
an boolean instance variable sent which is set by the program on
node 0 to true when it has initialized the network. Furthermore,
we reset the received message msg to null after it has been
submitted again into the network.

When assert is called with an assertion a as its argument, it
invokes the method a.assert(p) on the array of node
programs p. The assertion may examine the published state of
each program object (in our example, the contents of the public
instance variables index, message, and sent). It may also
investigate the contents of the attached channels (in, out) by
calling the method getMessages which returns the array of
messages contained in a channel (in the order in which they were
sent). If the method returns false, execution is aborted with the
error message returned by a.getText() (which is displayed in
the foot line of the visualization window).

The assertion type NumberOfMessages is defined as a subtype
of the type GlobalAssertion as shown below:

class NumberOfMessages extends
GlobalAssertion

{
int count;

public String getText()
{
return "invalid no of msgs: " +
String.valueOf(count);

}

public boolean assert(Program prog[])
{
if (!((Prog)prog[0]).sent)
return true;

count = 0;
for (int j = 0; j<prog.length; j++)
{
Prog program = (Prog)prog[j];
count += getMessages(
program.out(0)).length;

count += getMessages(
program.out(1)).length;

if (program.msg != null)count++;
}

return count == 2;
}

}

The assertion says that, as soon as node 0 has signaled by its
variable sent the initialization of the network, there must be
exactly two messages in the network. A message may be either
contained in some channel out(j), or, in a program's local
variable msg.

6. CLASSROOM APPLICATION
Since 1997 we have applied the toolkit in four graduate classes on
distributed algorithms. After a short introduction to the use of the
toolkit by the example demonstrated above, the students (most of
which had some previous experience with Java) could use the
toolkit without much further help.

We have mainly used the toolkit in two modes of operation:

1. Exercise work: we present in class an algorithm in a formal
model such as I/O automata [8] and let the students
implement the algorithm with the help of the toolkit as a
standalone application.

2. Project work: at the end of the course, we hand out textbook
material and let the students (in groups of 2 or 3 members)
study algorithms on their own in order to prepare a
classroom presentation for their colleagues. The students set
up a Web page which explains the algorithm, cites the
relevant literature, embeds the applet and contains a link to
the source code of the implementation.

In our experience, the integration of theoretical studies with
exercises on the development of executable code has been very
successful. In particular, it has increased the motivation of
students to study algorithmic details which are necessary for an
actual implementation.

Mainly from the results of the project work, we have gathered a
small library of approximately 15 algorithms implemented with
the toolkit (see the URL in [1]), e.g.

• Distributed Snapshots
• Parallel Convex Hull Construction
• Termination Detection
• Breadth First Search
• Invitation Algorithm
• Maekawa's Mutual Exclusion Algorithm
• LyHudak Mutual Exclusion
• RicartAgrawala Mutual Exclusion
• Dijkstra Scholten Termination Detection
• Total Order Broadcasting

This collection can be used in subsequent courses to demonstrate
various aspects of the algorithms by classroom demonstrations.

7. RELATED WORK
The work closest in spirit to our own developments is the DAJ
software described in [2]. Here a distributed system is simulated
by a collection of Java applets that are embedded in the same
HTML document. Each applet implements by a state machine one
node of the system; initially the applets use the standard Java API
to learn about each other (getAppletContext()). After that,
an applet A may send a message to some applet B by invoking a
method receive() in B. While the user-interface is
application-dependent, the algorithm-independent part of the
simulation is provided by the DAJ class DistAlg. The system has
been used for the implementation of several fundamental
distributed algorithms.

While this software and our toolkit share goals (and accidentally
also the name), we have chosen a different implementation

strategy: a distributed system is simulated by a multi-threaded
application that relies on a central scheduler. Each system node is
represented by a separate thread which returns control to the
scheduler each time that a message passing operation is
performed. The program executed by each node is a conventional
program written in an imperative message passing style (not as a
state machine) such that the programming experience is close to
that of writing a PVM or MPI program. Furthermore, our toolkit
provides a graphical user interface which allows to investigate the
states of nodes and channels by point-and-click operation.

A more recent development is the Distributed Algorithm Platform
(DAP) which is currently being developed on the basis of the
LEDA library [10]. DAP will have a GUI through which the user
will be able to control the simulation of his/her algorithm. The
users should be able to use the GUI to define the network
topology, enter initial condition, generate events for the
simulation, etc.

8. ACKNOWLEDGEMENT
I thank Prof. Mordechai Ben-Ari who became aware of my toolkit
and encouraged its publication. The toolkit was developed at the
Research Institute for Symbolic Computation (RISC-Linz) of the
Johannes Kepler University in Linz, Austria.

9. REFERENCES
[1] Wolfgang Schreiner. DAJ -- A Toolkit for the Simulation of

Distributed Algorithms in Java. Technical Report 97-36,
Research Institute for Symbolic Computation (RISC-Linz),
Johannes Kepler University, Linz, Austria, November 1997.
http://www.risc.uni-linz.ac.at/software/daj.

[2] Mordechai Ben-Ari. Distributed Algorithms in Java. 2nd
SIGCSE/SIGCUE Conference on Integrating Technology
into Computer Science Education, Uppsala, Sweden, 1997,
pp. 62-64.

[3] Chandy Chow and Theodore Johnson. Distributed Operating
Systems & Algorithms. Addison-Wesley, Reading,
Massachusetts, 1997.

[4] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard (Version 1.2), 1995. http://www.mpi-
forum.org/docs/docs.html.

[5] Al Geist et al. PVM: Parallel Virtual Machine -- A Users'
Guide and Tutorial for Networked Parallel Computing, 1994.
http://www.epm.ornl.gov/pvm/pvm_home.html.

[6] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Sun Microsystems, 1.0 ed., 1996.
http://www.javasoft.com/docs/books/jls/html/.

[7] JavaSoft. Java Development Kit -- Version 1.1.4, 1997.
http://www.javasoft.com/products/jdk/1.1/.

[8] Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann, San Francisco, CA, 1996.

[9] Zohar Manna and Amir Pnueli. Temporal Verification of
Reactive Systems : Safety. Springer, Berlin, Germany, 1995.

[10] LEDA Extension Package: Distributed Algorithms Platform
(DAP). http://faethon.cti.gr/lep-dap.

