Third training school — RISC 2008

KANT/KASH tutorial
http://www.math.tu-berlin.de/ kant

LESSENI SYLLA
TU Berlin - Fakul&t Il
Institut fur Mathematik Stra. des
17. Juni 136 D-10623 Berlin, Germany
|esseni (at)math.tu-berlin.de

Third trainina school = RISC 2008p. 1/

roduction to KANT/KASH

roduction to KANT/KASH

st steps in KASH3

roduction to KANT/KASH
st steps in KASH3

plications

Plan

» Introduction to KANT/KASH
m First steps in KASH3
= Applications

= Programming Language

Third trainina school = RISC 2008 . 2/

amming Language

amming Language

ction

amming Language

ction

amming Language

ction

e

amming Language

ction

e
peat

amming Language

ction

e
peat

amming Language

ction

e
peat

amples

KASHS3 uses the GAP3 shell as a user interface. The
orogramming language of GAP3 Is an impreative
anguage with some functional and some objects orien
features. In KASH3 additional features like Methods,
Maps, and Extendable Objects are available.

Third trainina school = RISC 2008p. 4/

on

AX
on(|< arg —ident > , < arg — ident >|)

loc — ident > , < loc — ident >]
ements >

Purpose:

A function is In fact a statement; so it can be assighed
a variable or to a list element or a record component.
Because for each of the formal arguments <arg-ident>
and for each of the formal locals <loc-ident> a new
variable Is allocated when the function is called, it is
possible that a function calls itself. This is usually calle
recursion. When a function <funl1> definition is
evaluated inside another function <fun2>, KASH binds
all the identifiers inside the function <funl> that are
identifiers of an argument or a local of <fun2> to the
corresponding variable. This set of bindings is called tt
environment of the function <fun1>. When <funl>is
called, its body Is executed In this environment.

Third trainina school — RISC 2008 . 6/

kash% addi t1 on: = function(argl, arg2)
#this function returns the sum of

%
%
%
%
%
%
%

#t he both argunents

| ocal a;

a. = argl+argz,
Print("The sumis:\n");
return a;

end,

Third trainina school —= RISC 2008p. 7/

A comfortable way to define a "simple" function is to
used the maps-to operator:
Examples:

cube(3) ?cube(6.9) ?cube(l)?
M=Matrix(3,[2,8,9,5,4,0,1, 3, 2]);
cube(M ?

addi t1 onby5(0) ?addi t1 onby5(-76) ?

Third trainina school = RISC 2008Dp. 8/

Synthax
< variable > < l1st > < statements >

Purpose:

Thetor loop executes the <statements> for every elem
of <list>. The statement sequence <variable> is first
executed with <variable> bound to the first element of
<list>, then with <variable> bound to the second eleme
of <list> and so on. <variable> must be a simple
variable, it must not be a list element selection or a
record component selection.

Third trainina school = RISC 2008 . 9/

kash% changel 1 st: = function(L)

%
%
%
%
%
%
%
%
%
%

#this function takes a |i1st as
#ar gunent and changes 1ts entries
ocal 1, K;
=11 K1J:= L[1];
[1]:= K[1]-2*«L[Length(L)];
for 1 In [2..Length(L)] do
KIt]:= L[1]; L[1]:=K[I1]-2«K[1-1];
od;
return L;
end,

Third trainina school — RISC 2008n. 10/

AX
't — alg boo > then < statementsl >;
elt — alg"boo > then < statements2 >}

statements3 >

Thelil statement allows one to execute statements
depending on the value of some boolean expression.
First the boolean expression following tles evaluated.
If it evaluates tdruethe statement sequence
<statementsl1> after the firstenis executed, and the
execution of thel statement is complete. Otherwise the
boolean expressions followirgit are evaluated in turn.
There may be any number ofif parts, possibly none at
all. If the it expression and all, if any|if expressions
evaluate tc and there is arlsepart, which is
optional, its statement sequence <statements3> is
executed and the execution of thestatement Is
complete. Thel statement terminates byiiakeyword.

Third trainina school — RISC 2008n. 12/

kash% checkpr i nenunber: = function(a)
% #this function checks If the given
% #nunber 1s prinme or not!

% i1f IsPrine(a) then

% Print(a);

% Print(" is a prinme nunber \n");
% el se

% Print("Not, bye big |oser!\n");
% f1;

% end,;

Third trainina school — RISC 2008n. 13/

while < elt — alg”boo > do < statements > od;

Purpose

The loop executes the <statements> while the
condition evaluates toue. First the boolean expression
IS evaluated. If it evaluates talseexecution of the

loop terminates and the statement immediately followir
the loop Is executed next. Otherwise If it evaluate
to the <statements> are executed and the whole
process begins again.

Third trainina school — RISC 2008n. 14/

repeat < statements > until < elt — alg boo >;

Purpose:

The loop executes the statement sequence
<statements> until the condition evaluate$ta. First
<statements> are executed. Then the boolean express
IS evaluated. If it evaluates touethe loop
terminates and the statement immediately following the
loop Is executed next. Otherwise If it evaluates tc

the whole process begins again with the executiol

of the <statements>.

Third trainina school — RISC 2008n. 15/

kash% Mul _and I nv:= function(argl)
% #this function returns a map t hat
% #nmul tiplies by "argl"

% | ocal phi, psi;

% phi : = function(arg2)

% return arg2+~argl; end,

% psi .= function(arg3)

% return arg3/argl; end,

% return Map(Q Q phi, psi);

% end;

Third trainina school — RISC 2008n. 16/

kash% gcd | cm: = function(argl, arg2)
#this function returns the GCD
#and the LCM of the both argunents

%
%
%
%
%
%
%

| ocal a, b;
a. = OCD(argl,
b: = LCM argl,
return [a, Db];
end,

arg2) ;
ar g2) ;

Third trainina school — RISC 2008n. 17/

kash% gcd int:= function(arq)

% #this function returns the GCD
% #of the given Integers.

% local ¢, r, how I;

% 1f Length(arg)=1 then return arg| 1];
% elif Length(arg) <> 1 then

% how.= function(a, Db)

% while b <> 0 do

% r.-=Db; b:=anod b; a:=r; od;
% return a;

% end;

% c:= howarg[l], arg[?2]);

% for 1 Iin [3..Length(arg)] do

Third trainina school — RISC 2008n. 18/

kash% GCD i nt:= function(arg)

% #this function returns the GCD

% #of the given Integers.

% local ¢, r, how I;

% 1f Length(arg)=1 then return arg| 1];
% elif Length(arg) <> 1 then

% how.= function(a, Db)

% repeat r:=a nod b; a:=b; b:=r;
% unti | b=0;

% return a;

% end;

% c:= howarg[l], arg[?2]);

% for 1 Iin [3..Length(arg)] do

Third trainina school — RISC 2008 n. 20/

The program file prog.k

| nverseMatri x: = function(M

#this function returns the Inverse

#of a matrix over Z if 1t Is

#l nverti ble using the fornula:

#lnv(M = Adjoint(M=*(1/Det(M)

| ocal A

A= Determ nant (M ;

| f BaseRing(M <> Z then

return "The coeff are not 1 n Z bye!"

elif A=-1or A=1then
Print("The inverse is: \n");
Print(Adjoint(M+(1/ A, "\n");

el se

Third trainina school — RISC 2008 n. 22/

Print (" The determnant is: ");
Print(Determ nant(M, "\n");
Print("Not invertible over Z!' \n");
fi;

end;

kash% Read("prog. k");

Third trainina school — RISC 2008 n. 23/

1) Create a function nameatul t _i nv with domainR
and codomairC which returns a map that multiplies by
"1 xargl" and also compute the preimages (ref.
example 1).

2) Create a function namegt i mes which returns the
list of prime numbers less or equal to the given argume

Third trainina school — RISC 2008 n. 24/

	Plan
	Plan
	Plan
	Plan
	Plan

	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language

	Programming Language
	function
	function
	function:
	function
	for
	for
	if
	if
	if
	while
	repeat
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

