
Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Combining computer algebra systems
with Symbolic Computation Software

Composability Protocol

Alexander Konovalov

Centre for Interdisciplinary Research in Computational Algebra
University of St Andrews, Scotland

Third RISC/SCIEnce Training School in Symbolic Computation, Linz, 18 July 2008

Supported by the EU FP6 project "SCIEnce – Symbolic Computation Infrastructure for Europe"

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Outline of the talk
Modern needs of symbolic computation
Limitations we want to overcome
Our main directions of work

Acknowledgements

Thanks to:
SCIEnce and SCIEncetists, and especially to Temur Kutsia
and John McDermott

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Outline of the talk
Modern needs of symbolic computation
Limitations we want to overcome
Our main directions of work

The subject of the talk

Infrastructure for distributed symbolic computation:
Underlying protocol: SCSCP
Encoding for mathematical objects: OpenMath standard
SCSCP implementation in GAP
You should expect similar things to appear in any
SCSCP-compliant system
I will speak more about providing SCSCP services (a kind
of web services), and small-scale parallelization, while the
subsequent talks by Abyd Al Zain will introduce
middleware for symbolic grids

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Outline of the talk
Modern needs of symbolic computation
Limitations we want to overcome
Our main directions of work

Modern needs of symbolic computation community

Efficient tools for combining different computational
algebra systems to solve complex problems that require
capabilities not available in any single system
Web services client and server interfaces allowing
deployment of computer algebra systems as Web services
and local/remote calls of facilities of another system in
easy and efficient way
This may be used to combine several copies of the same
system in a parallel computing context of various scales
from multicore to grids

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Outline of the talk
Modern needs of symbolic computation
Limitations we want to overcome
Our main directions of work

Most common restrictions from our GAP experience

interfaces do not support remote communication
transmission of large or complex objects may be difficult
Support of new system requires new I/O convertor. It relies
upon the I/O format, may be subject to parsing errors and
needs update if I/O format of the linked system changes
not enough deeply (syntax, cd) and widely (other CAS)
supported data encoding format (OpenMath)
not interactive, just database access (Web services)
not enough robust (ParGAP)
less efficient for irregular parallel computing (ParGAP)
shaped to deal with the particular problem (dc)
may not work in some operating systems
may be not easy customisable by the end-user

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Outline of the talk
Modern needs of symbolic computation
Limitations we want to overcome
Our main directions of work

Our main directions of work

Software composability:
A programme of standards developments and
implementations for symbolic computation software to use
Web services and OpenMath technologies, allowing them
to be efficiently composed to solve complex problems

Symbolic computing on the Grid:
developing common standards and middleware to allow the
production of Grid-enabled symbolic computation systems
constructing research prototypes supporting appropriate
security, scheduling, and resource broking for complex
symbolic computing applications on computational Grids

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

Common protocol for communication

In the direction of the software composability, on the first step
we designed the Symbolic Computation Software Composibility
Protocol (SCSCP) by which a computer algebra system (CAS)
may offer services for the following clients:

Another instance of the same CAS (in a parallel computing
context or on different architectures)
Another CAS running on the same computer or remotely
A Web server which passes on the same services as Web
services using SOAP/HTTP protocols to another clients
Grid middleware

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

Current vision of SCSCP usage

CAS 3

SCSCP
server

OpenMath
functionality

CAS 1

Web
service
client

Web
services
server

Server
backend

=
SCSCP
client

CAS 2

SCSCP
client

Grid
middle-
ware

Web
service
client

Grid
middle-
ware

SCSCP
client

SCSCP messages

SCSCP messages

SCSCP
messages

Interrupt signal

Interrupt signal

HTTP/SOAP
requests

HTTP/SOAP
requests

Interrupt
signal

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

What is OpenMath?

standard for representing mathematical objects with their
semantics
the current OpenMath Standard 2.0 is dated June 2004
the worldwide OpenMath activities are coordinated within
the OpenMath Society, based in Helsinki
the idea is to allow their exchange between various
programs, storing in databases, publishing on web . . .

two encodings: XML and binary format

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

What is OpenMath?

basic objects: integers, floats, strings, byte arrays,
variables, symbols
symbols consist of a name and a reference to a definition
in an external document called content dictionary (CD)
OpenMath objects can be combined recursively in a
number of ways: application, attribution, binding, error
support of various symbols may be different in various
CASs, it may be complete (encoding and decoding) or only
in one of these ways
let us look at some examples in GAP
see http://www.openmath.org for further details
if you need support of existing symbols or interested in
creating new CD - please contact us!

Alexander Konovalov Combining computer algebra systems with SCSCP

http://www.openmath.org

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

SCSCP: OpenMath inside

Protocol messages represented as OpenMath objects
Content Dictionaries scscp1, scscp2 developed for this
purpose
SCSCP specification defines semantical and technical
descriptions and allowed sequences of
OpenMath-encoded messages to and from CAS:

remote procedure call
returning result of successfully completed procedure
returning a signal about procedure termination

Both transmission of actual mathematical objects and
references to them are supported
Flexibility: service designer can choose the data to be
OMSTR, OMB, OMFOREIGN, containing information in
some other format, even including MathML encoding

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

scscp1 CD defines:

three main kinds of messages: procedure_call,
procedure_completed, procedure_terminated
options that may be added to the procedure_call
message: option_runtime, option_debuglevel,
option_min_memory, option_max_memory,
option_return_object, option_return_cookie
information that may be supplied with the result:
info_runtime, info_memory
standard errors: error_runtime, error_memory,
error_system_specific

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Common protocol for communication
OpenMath inside
SCSCP on top
Content dictionaries for SCSCP

scscp2 CD defines:

procedures for remote objects: store, retrieve,
unbind

special procedures: get_allowed_heads,
get_transient_cd, get_signature,
get_service_description,
special symbols: signature, service_description,
symbol_set, symbol_set_all,
no_such_transient_cd

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

GAP implementation of the SCSCP

GAP Package SCSCP (in development):
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

Allows GAP to work as an SCSCP server and client
Uses GAP packages IO, GAPDoc and OpenMath.dev
Needs functionality for the exception and error handling in
GAP.dev added by Steve Linton (will appear in GAP 4.5)
We may provide on demand a client’s version for GAP
4.4.10, which works in Linux, Windows and Mac OS
Communication goes via TCP/IP protocol
Handling OpenMath encoding, including:

new symbols from scscp1 and scscp2 OM CDs
support of OM attributes (OMATTR, OMATP)
support of OM references (OMR)

Alexander Konovalov Combining computer algebra systems with SCSCP

http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

User-level functionality:
Installing procedures available as SCSCP services
Running the SCSCP server
Sending request to the server and getting result
Store/Retrieve procedures allowing to work with remote
objects
InputOutputTCPStreams, compatible with other kinds of
streams in GAP
The underlying technology is well-hidden: we allow the end
user to know nothing about OpenMath and SCSCP !!!

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Configuring SCSCP GAP server

1. Specify in gap4r4/pkg/scscp/config.g:
default InfoLevel, host name and port number

2. Put all what you need in the configuration file (see example
in gap4r4/pkg/scscp/tst/myserver.g), including:

loading all necessary packages
other required GAP code or its reading from other file(s)
installation of SCSCP procedures using
InstallSCSCPprocedure("NameForClient",

InternalName);

starting the server with the command
RunSCSCPserver(SCSCPserverAddress,

SCSCPserverPort);

3. Start GAP with gap myserver.g

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Examples of simple calls

myserver.g

...
FactorialAsString := x -> String(Factorial(x));
...
InstallSCSCPprocedure("Factorial", Factorial);
InstallSCSCPprocedure("WS_factorial", FactorialAsString);
...

GAP session
gap> EvaluateBySCSCP("Factorial", [10], "localhost", 26133);
rec(object := 3628800,

attributes := [["call_ID", "localhost:26133:27096"]])

gap> EvaluateBySCSCP("WS_factorial", [10], "localhost", 26133);
rec(object := "3628800",

attributes := [["call_ID", "localhost:26133:27096"]])

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Group identification: three possible approaches

group → group id

client: GAP (slow machine? no small groups library?)
server: fast and complete GAP installation

list of permutations → group id

client: CAS which "understands" permutations
server: complete GAP installation

pcgs code (integer that encodes the group) → group id

client: GAP in Windows - ANUPQ package is not working :(
server: GAP in UNIX environment - ANUPQ works :)

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Three approaches (continued)

group → group id
InstallSCSCPprocedure("WS_IdGroup", IdGroup);

list of permutations → group id
IdGroupByGenerators := function(permlist)
return IdGroup(Group(permlist));
end;

InstallSCSCPprocedure("GroupIdentificationService", IdGroupByGenerators);

pcgs code (integer that encodes the group) → group id
IdGroup512ByCode:=function(code)
local G, H;
G := PcGroupCode(code, 512); # recreate the group from code
H := PcGroupFpGroup(PqStandardPresentation(G));
return IdStandardPresented512Group(H);
end;

InstallSCSCPprocedure("IdGroup512ByCode", IdGroup512ByCode);

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

How it works

Before, we need an auxiliary function ...

Client’s counterpart for the 3rd example
IdGroup512:=function(G)
local code, result;
if Size(G) <> 512 then
Error("G must be a group of order 512 !!!\n");

fi;
code := CodePcGroup(G);
result := EvaluateBySCSCP("IdGroup512ByCode",

[code],
"chrystal.mcs.st-and.ac.uk",
26133);

return result.object;
end;

Now we can see the demo!

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Example: remote objects

Objects may "live" on the server while the client has only a
reference (cookie) pointing to them
There is no need to transmit objects repeatedly over the
network
The client may be a CAS which does not have objects of
that type at all
The client may retrieve object in its default OpenMath
representation (be careful about its subobjects!)
Also, the actual object may be deleted from the server

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Example: stateful SCSCP service

Let G = 〈σ1, σ2, . . . , σn〉 be a permutation group. For the orbit
computation, we need a service that takes an integer k and
returns a set of all distinct images of k under σ1, σ2, . . . , σn

Code for the server
PointImages := function(G, n)
local g;
return Set(List(GeneratorsOfGroup(G), g -> n^g));
end;

InstallSCSCPprocedure("PointImages", PointImages);

Now we can see the demo, in which the first argument will be a
remote object!

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Example: remote objects

EvaluateBySCSCP uses a combination of NewProcess
and CompleteProcess

These works with new objects - processes
Process is associated with corresponding
InputOutputTCPStream
You may start process, send a request and collect the
result later, doing something else in the meantime
There are functions for:

processes synchronization
waiting until the first available result and abandoning
remaining processes

We can terminate process locally (working on remote
termination)

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Configuring the package
Designing SCSCP services
Remote objects
Parallelizing your code

Parallelizing existing code with SCSCP is easy

See example of Karatsuba multiplication for polynomials in
the SCSCP package manual
We have master-slave version of the orbit computation
algorithm
This provides a way of using several version of GAP on
multi-core machines
Nevertheless, minimizing overhead might require some
more tricks (optimizing data format, better scheduling, etc.)

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Extending SCSCP framework: OEIS lookup
Work in progress
Long-term goals
References

Example: communicating with other software

A Java program by Dan Roozemond searches in the On-Line
Encyclopedia of Integer Sequences
(http://www.research.att.com/~njas/sequences/)

What is the meaning of the following sequence:

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14 ?

Alexander Konovalov Combining computer algebra systems with SCSCP

http://www.research.att.com/~njas/sequences/

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Extending SCSCP framework: OEIS lookup
Work in progress
Long-term goals
References

Example: communicating with other software

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14

This is the number of groups of orders 1, 2, . . . , 16

Here we obtain a record with the search result:
gap> EvaluateBySCSCP("OnLineEncyclopediaOfIntegerSequences",
> [[1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14]],
> "localhost", 26133);
rec(object := [1, "A000001: Number of groups of order n."],
attributes := [["call_ID", "0"]])

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Extending SCSCP framework: OEIS lookup
Work in progress
Long-term goals
References

SCIEncetific work in progress

Next goals:
Public releases of basic SCSCP implementations
Extending OpenMath content dictionaries with more
efficient encodings
Adding support of selected OpenMath CDs to all
participating systems
Implementing higher level interfaces in all participating
systems

Please let us know about computational services in which you
might be interested !!!

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Extending SCSCP framework: OEIS lookup
Work in progress
Long-term goals
References

What should we have in the result

low-overhead (compensated by easy-to-use), robust,
cross-platforming, light-weight and reliable protocol
possibility of communication not only between CASs but
also between CAS and other software, including Web and
Grid services
besides the four participating systems (GAP, KANT, Maple
and MuPAD), we expect more systems joining SCSCP
framework later

Alexander Konovalov Combining computer algebra systems with SCSCP

Introduction
SCSCP and OpenMath

SCSCP in GAP
Final remarks

Extending SCSCP framework: OEIS lookup
Work in progress
Long-term goals
References

References

SCIEnce — Symbolic Computation Infrastructure for Europe, project homepage
http://www.symbolic-computation.org/

S. Freundt, P. Horn, A. Konovalov, S. Linton, D. Roozemond. Symbolic Computation Software Composability
Protocol (SCSCP) specification, Version 1.1, 2008
http://www.symbolic-computation.org/scscp

A. Konovalov, S. Linton. SCSCP — Symbolic Computation Software Composability Protocol,
GAP package, in development
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

D. Roozemond. OpenMath Content Dictionary scscp1
http://www.win.tue.nl/SCIEnce/cds/scscp1.html

D. Roozemond. OpenMath Content Dictionary scscp2
http://www.win.tue.nl/SCIEnce/cds/scscp2.html

Alexander Konovalov Combining computer algebra systems with SCSCP

http://www.symbolic-computation.org/
http://www.symbolic-computation.org/scscp
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html

	Introduction
	Outline of the talk
	Modern needs of symbolic computation
	Limitations we want to overcome
	Our main directions of work

	SCSCP and OpenMath
	Common protocol for communication
	OpenMath inside
	SCSCP on top
	Content dictionaries for SCSCP

	SCSCP in GAP
	Configuring the package
	Designing SCSCP services
	Remote objects
	Parallelizing your code

	Final remarks
	Extending SCSCP framework: OEIS lookup
	Work in progress
	Long-term goals
	References

