
SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Combining computer algebra systems
with the Symbolic Computation Software

Composability Protocol

Alexander Konovalov

Centre for Interdisciplinary Research in Computational Algebra
University of St Andrews, Scotland

Fourth RISC/SCIEnce Training School in Symbolic Computation, Linz, June 29–July 10, 2009

Supported by the EU FP6 project "SCIEnce – Symbolic Computation Infrastructure for Europe"

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Talk outline

Infrastructure for distributed symbolic computation:
I Underlying protocol: SCSCP
I Encoding for mathematical objects: OpenMath
I OpenMath and SCSCP implementation in GAP

(but expect similar in any SCSCP-compliant system)
I Parallel computations in GAP with SCSCP

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Symbolic computation community needs

Research problems may require combinations of two or
more instances of:

I computer algebra systems (e.g. GAP, KANT,
Magma, Maple, Singular ...)

I constraint solvers (e.g. ECLiPSe, Minion ...)
I numerical tools (e.g. MatLab, Octave ...)
I statistical (e.g. R ...)
I etc.

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Most common restrictions
(from our GAP experience)

I interfaces do not support remote communication
I transmission of large or complex objects may be

difficult
I Support of new system requires new I/O convertor. It

relies upon the I/O format, may be subject to parsing
errors and needs update if I/O format of the linked
system changes

I not enough deeply (syntax, cd) and widely (other
CAS) supported data encoding format (OpenMath)

I not interactive, just database access (Web services)
I not enough robust (ParGAP)
I less efficient for irregular parallel computing

(ParGAP)
I shaped to deal with the particular problem (dc)
I may not work in some operating systems
I may be not easily customisable by the end-user

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Composability goals
The SCIEnce project involves GAP, KANT, Maple,
MuPAD:

I to deliver robust, usable and flexible extensions to
our systems allowing any system to be easily used
as a server or a client for both general and
problem-specific services.

I to be open to connections to other clients and
servers, both other powerful mathematical systems
and special purpose programs

We want to offer an extendable framework for combining
systems, which:

I allows both local and remote communication
I not relies on the input/output format of a particular

system
I optimises average efforts needed from other systems

to join

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Common protocol for communication

We designed the Symbolic Computation Software
Composibility Protocol (SCSCP) by which a computer
algebra system (CAS) may offer services for the following
clients:

I Another instance of the same CAS (in a parallel
computing context or on different architectures)

I Another CAS running on the same computer or
remotely

I A Web server which passes on the same services as
Web services using SOAP/HTTP protocols to
another clients

I Grid middleware

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Features of composability model

I SCSCP is in fact a lightweight sockets based RPC
protocol

I it uses OpenMath standard for data encoding
I its implementation stays mainly within systems,

rather than in wrappers
I it can be used for direct communication between

systems
I SCSCP servers and clients can be “translated” into

standard Web services servers and clients using
Java SCSCP API

I Grid middleware (SymGrid-Par) also uses SCSCP to
talk to CAS

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Current vision of SCSCP usage

CAS 3

SCSCP
server

OpenMath
functionality

CAS 1

Web
service
client

Web
services
server

Server
backend

=
SCSCP
client

CAS 2

SCSCP
client

Grid
middle-
ware

Web
service
client

Grid
middle-
ware

SCSCP
client

SCSCP messages

SCSCP messages

SCSCP
messages

Interrupt signal

Interrupt signal

HTTP/SOAP
requests

HTTP/SOAP
requests

Interrupt
signal

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

What is OpenMath?

I XML-based standard for representing mathematical
objects with their semantics

I the current OpenMath Standard 2.0 is dated June
2004

I the worldwide OpenMath activities are coordinated
within the OpenMath Society, based in Helsinki

I the idea is to allow their exchange between various
programs, storing in databases, publishing on web,
etc.

I two encodings: XML and binary format

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

What is OpenMath?
I basic objects: integers, floats, strings, byte arrays,

variables, symbols
I symbols consist of a name and a reference to a

definition in an external document called a content
dictionary (CD)

I OpenMath objects can be combined recursively in a
number of ways using standard OpenMath
constructors: application, attribution, binding, error

I let us look at some examples in GAP
I support of various symbols may be different in

various CASs, for each symbol it may be two-sided
(both encoding and decoding) or only in one of these
ways

I see http://www.openmath.org for further details
I if you need support of existing symbols or interested

in creating new CD - please contact us!

http://www.openmath.org

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

SCSCP: OpenMath inside

I The feature of SCSCP is that protocol messages are
also represented as OpenMath objects using
OpenMath content dictionaries scscp1 and scscp2
developed for this purpose

I SCSCP specification defines semantical and
technical descriptions and allowed sequences of
OpenMath-encoded messages to and from CAS:

I remote procedure call
I returning result of successfully completed procedure
I returning a signal about procedure termination

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Flexible enough?

I May be limited to functionality/data types for which
CDs exist

I Avoid this by allowing transient CDs, which contain
symbols specific to that service, obtainable from the
server on request

I Encoding may be unreasonably bulky, or encoding
costs may be too high for some applications

I Perfectly OK for services which pass real data in
some private format encoded in an OMSTRING,
OMBYTES or OMFOREIGN element, if that suits the
application.

I Both transmission of actual mathematical objects
and references to them are supported

I Also working on new CDs for efficient representation
of some common cases (eg matrices over finite
fields)

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

scscp1 CD defines:

I three main kinds of messages: procedure_call,
procedure_completed,
procedure_terminated

I RPC identifier: call_id
I options that may be added to the procedure_call

message: option_runtime,
option_debuglevel, option_min_memory,
option_max_memory, option_return_object,
option_return_cookie,
option_return_nothing

I information that may be supplied with the result:
info_runtime, info_memory, info_message

I standard errors: error_runtime, error_memory,
error_system_specific

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

scscp2 CD defines:

I procedures for remote objects: store_session,
store_persistent, retrieve, unbind

I special procedures: get_allowed_heads,
is_allowed_head, get_transient_cd,
get_signature, get_service_description

I special symbols: signature,
service_description, symbol_set,
symbol_set_all, no_such_transient_cd

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

GAP implementation of the SCSCP

I GAP Package SCSCP by AK & Steve Linton:
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

I Allows GAP to work as an SCSCP server and client
over the TCP/IP protocol

I Uses GAP packages IO, GAPDoc and OpenMath
I Client’s version for GAP 4.4.12 works in Linux,

Windows and Mac OS X
I The server works in GAP 4.4.12, and only needs

functionality for the exception and error handling in
GAP.dev added by Steve Linton (will appear in GAP
4.5) to be able to pass errors to the client

I Extends the OpenMath package:
I new symbols from scscp1 and scscp2 OM CDs
I support of OM attributes (OMATTR, OMATP)
I support of OM references (OMR)

http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

User-level functionality:
I The service provider installs procedures available as

SCSCP services and starts the SCSCP server
I The client sends request to the server and gets back

result
I The underlying technology is well-hidden: the

end-user may know nothing about OpenMath and
SCSCP !!!

I Store/Retrieve procedures allowing to work with
remote objects

I InputOutputTCPStreams, compatible with other
kinds of streams in GAP

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Configuring SCSCP GAP server

1. Specify in gap4r4/pkg/scscp/config.g:
I default InfoLevel, host name, port number etc.

2. Put all what you need in the configuration file (see
gap4r4/pkg/scscp/example/myserver.g):

I loading all necessary packages
I other required GAP code or its reading from other

file(s)
I installation of SCSCP procedures using

InstallSCSCPprocedure("NameForClient",

InternalName);

I starting the server with the command
RunSCSCPserver(<>);

3. Start GAP with gap myserver.g or as a daemon
(output may go on screen or be redirected to a file or to
/dev/null)

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Configuring SCSCP GAP server

I Why do we need to export GAP functions which will
be available as SCSCP procedures, e.g.:
InstallSCSCPprocedure("WS_IdGroup",
IdGroup);

I Because this allows to control which functions the
client may call

I we may offer a specialised service with one or
several specific functions available

I or some generic service e.g. to evaluate arbitrary
OpenMath code or expression in CAS syntax etc.

I We are running an SCSCP server in St Andrews on
chrystal.mcs.st-andrews.ac.uk, port 26133

chrystal.mcs.st-andrews.ac.uk

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Examples of simple calls

myserver.g

...
InstallSCSCPprocedure("WS_Factorial", Factorial);
InstallSCSCPprocedure("WS_Phi", Phi, "see ?Phi in GAP", 1, 1);
...

To contact the server, the client need to know: the name
of the remote procedure, the name of the server and the
number of the port

GAP session

gap> EvaluateBySCSCP("WS_Factorial", [12], "localhost", 26133);
rec(attributes := [["call_id", "localhost:26133:12325:GxjuLOvp"]],
object := 479001600)

gap> EvaluateBySCSCP("WS_Phi", [12], "localhost", 26133);
rec(attributes := [["call_id", "localhost:26133:12325:YtlnsRwb"]],
object := 4)

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Group identification: three possible
approaches

group → group id

I client: GAP (slow machine? no small groups library?)
I server: fast and complete GAP installation

list of permutations → group id

I client: CAS which "understands" permutations
I server: complete GAP installation

pcgs code (integer that encodes the group) → group
id

I client: GAP in Windows - ANUPQ package is not
working :(

I server: GAP in UNIX environment - ANUPQ works :)

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Three approaches (continued)
group → group id

InstallSCSCPprocedure("WS_IdGroup", IdGroup);

list of permutations → group id

IdGroupByGenerators := function(permlist)
return IdGroup(Group(permlist));
end;

InstallSCSCPprocedure("GroupIdentificationService", IdGroupByGenerators);

pcgs code (integer encoding the group) → group id

IdGroup512ByCode:=function(code)
local G, H;
G := PcGroupCode(code, 512); # recreate the group from code
H := PcGroupFpGroup(PqStandardPresentation(G));
return IdStandardPresented512Group(H);
end;

InstallSCSCPprocedure("IdGroup512ByCode", IdGroup512ByCode);

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

How it works

Before, we need an auxiliary function ...

Client’s counterpart for the 3rd example

IdGroup512:=function(G)
local code, result;
if Size(G) <> 512 then
Error("G must be a group of order 512 !!!\n");

fi;
code := CodePcGroup(G);
result := EvaluateBySCSCP("IdGroup512ByCode",

[code],
"chrystal.mcs.st-and.ac.uk",
26133);

return result.object;
end;

Now we can see the demo!

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Example: remote objects

I Objects may "live" on the server while the client has
only a reference (cookie) pointing to them

I There is no need to transmit objects repeatedly over
the network

I The client may be a CAS which does not have
objects of that type at all

I The client may retrieve object in its default OpenMath
representation (be careful about its subobjects!)

I Also, the actual object may be deleted from the
server

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Example: stateful SCSCP service

Let G = 〈σ1, σ2, . . . , σn〉 be a permutation group. For the
orbit computation, we need a service that takes an
integer k and returns a set of all distinct images of k
under σ1, σ2, . . . , σn

Code for the server

PointImages := function(G, n)
local g;
return Set(List(GeneratorsOfGroup(G), g -> n^g));
end;

InstallSCSCPprocedure("PointImages", PointImages);

Now we can create the group G on the server as a
remote object and next time pass only the reference to it!

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Parallel computing in GAP

There are several possible approaches:
I ParGAP package (requires UNIX/Linux environment)
I dc (external coordinating software for specific

research problem)
I Job submission systems like Condor, Grid

middleware like Globus toolkit etc.
I SymGrid-Par (middleware developed in the JRA1

activity of the SCIEnce project)
Only the last one is SCSCP- compliant
But what can we do in GAP only, avoiding external
binaries as much as possible?

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Parallel tools in the SCSCP packages
I We present new parallel computing framework in the

SCSCP package implemented purely in GAP,
capable of:

I creating multiple processes
I synchronising processes
I waiting for the first available result

I Easy to study and modify existing code for the
end-user

I Big parallel Master-Worker skeleton –
ParListWithSCSCP

I Can be easily modified to have parallel versions of
other list arithmetic like ForAll, ForAny, First, Number,
Filtered

I Also can be modified to extend the input list, e.g. as
needed in orbit computation

I May orchestrate other SCSCP-compliant systems

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Processes
I EvaluateBySCSCP uses a combination of
NewProcess and CompleteProcess

I These works with new objects - processes
I Process is associated with corresponding

InputOutputTCPStream
I You may start process, send a request and collect

the result later, doing something else in the
meantime

I There are functions for:
I processes synchronization
I waiting until the first available result and abandoning

remaining processes
I We can terminate process locally (working on remote

termination)
I See example of Karatsuba multiplication for

polynomials in the SCSCP package manual

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Example

gap> ParListWithSCSCP(List([2..6],n->SymmetricGroup(n)),"WS_IdGroup");
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 2])
#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 3])
#I ["localhost", 26133] --> master : [2, 1]
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 4])
#I ["localhost", 26134] --> master : [6, 1]
#I master -> ["localhost", 26134] : SymmetricGroup([1 .. 5])
#I ["localhost", 26133] --> master : [24, 12]
#I master -> ["localhost", 26133] : SymmetricGroup([1 .. 6])
#I ["localhost", 26133] --> master : [720, 763]
#I ["localhost", 26134] --> master : [120, 34]
[[2, 1], [6, 1], [24, 12], [120, 34], [720, 763]]

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

SCSCP vs ParGAP

Master-slave in ParGAP Master-worker in SCSCP
uses MPI uses SCSCP
needs UNIX environment client works in Windows as well
works only with GAP worker: anything SCSCP-compliant
broken if one slave is lost retries on another worker
no adding new slaves in allows to add new workers
the middle of computation from a previously declared range
no automatic marshaling automatic marshaling if
of complex objects object “supports” OpenMath

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Other benefits of SCSCP

I Be nice to other users – you may shut down some
services without breaking the whole computation

I If your jobs will run out of memory competing for it
with other jobs (yours or other users, esp. in
multi-core environment), the computation will be
continued with a smaller number of servers without
break (a compatibility feature in GAP 4.4.12 which
happened to be a benefit!)

I Ability to dynamically add services and resist to
failures is useful when you work in a guest
environment and do not administer computers where
SCSCP services are running

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Speedup

Calculation of the Quillen invariant for the first 100 groups
of order 512 from the GAP Small Groups Library with one
master and two workers (average on 2 runs on MacBook
Intel Core 2 Duo 2 GHZ):

I GAP: 397 sec
I ParGAP: 251 sec (speedup 1.58)
I SCSCP: 205 sec (speedup 1.94)

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

EdenTV

I To analyse the performance of parallel SCSCP;
framework, we make use of the EdenTV; program
developed initially to visualize the performance of
parallel programs written in functional programming
language Eden, and now distributed under the GNU
Public License and available from
http://www.mathematik.uni-marburg.de/
~eden/?content=EdenTV

I See Jost Berthold and Rita Loogen, Visualizing
Parallel Functional Program Runs - Case Studies
with the Eden Trace Viewer, in Parallel Computing:
Architectures, Algorithms and Applications.
Proceedings of the International Conference ParCo
2007, Advances in Parallel Computing 15(2007) for
the description of EdenTV

http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV
http://www.mathematik.uni-marburg.de/~eden/?content=EdenTV

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Quillen 100 : master + 2 workers
MacBook Intel Core 2 Duo 2 GHZ

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Quillen 100 : master and 8 workers
8-core Dell Poweredge 2950:
two quad-core Intel Xeon 5355 @ 2.66 Ghz;

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Euler 1000 : master and 2 workers
MacBook Intel Core 2 Duo 2 GHZ

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

Conclusions

We would be very interested:
I in connecting other systems or stand-alone programs
I in test problems and use cases:

I for cooperating systems
I for parallel computation
I for CA-based Web services

SCSCP

Alexander
Konovalov

Introduction
What do we want to achieve

What do we want to avoid

Setup

SCSCP
RPC framework

OpenMath inside

SCSCP on top

SCSCP CDs

SCSCP in GAP
Configuring the package

Designing SCSCP services

Remote objects

Parallel SCSCP
Processes

Advantages

Profiling

Conclusions
References

References

SCIEnce — Symbolic Computation Infrastructure for Europe, project homepage
http://www.symbolic-computation.org/

S. Freundt, P. Horn, A. Konovalov, S. Linton, D. Roozemond.
Symbolic Computation Software Composability Protocol (SCSCP), Version 1.3, 2009
http://www.symbolic-computation.org/scscp

A. Konovalov, S. Linton.
GAP package SCSCP — Symbolic Computation Software Composability Protocol
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

M. Costantini, A. Konovalov and A. Solomon. GAP package OpenMath.
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm.

S. Freundt, P. Horn, A. Konovalov, S. Lesseni, S. Linton, D. Roozemond.
OpenMath Content Dictionary scscp1
http://www.win.tue.nl/SCIEnce/cds/scscp1.html

S. Freundt, P. Horn, A. Konovalov, S. Lesseni, S. Linton, D. Roozemond.
OpenMath Content Dictionary scscp2
http://www.win.tue.nl/SCIEnce/cds/scscp2.html

http://www.symbolic-computation.org/
http://www.symbolic-computation.org/scscp
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html

	Introduction
	What do we want to achieve
	What do we want to avoid
	Setup

	SCSCP
	RPC framework
	OpenMath inside
	SCSCP on top
	SCSCP CDs

	SCSCP in GAP
	Configuring the package
	Designing SCSCP services
	Remote objects

	Parallel SCSCP
	Processes
	Advantages
	Profiling

	Conclusions
	References

