S. S. Abhyankar and B. Bajaj. Automatic parametrization of curves and surfaces III. Computer Aided Geometric Design, 5-4:309-323, 1987.
S. S. Abhyankar. Local uniformization of algebraic surfaces over ground fields of characteristic p not =0. Ann. Math., 63:491-526, 1956.
S. S. Abhyankar. On the valuations centered in a local domain. American Journal of Mathematics, 78:321-348, 1956.
S. S. Abhyankar. Reduction to multiplicity less than p in a p-cyclic extension of a two dimenstional local ring. Math. Ann., 154:28-55, 1964.
S. S. Abhyankar. Resolution of singularities of arithmetical surfaces. In Arithmetical Algebraic Geometry, pages 111-152. Harper and Row, 1965.
S. S. Abhyankar. Resolution of singularities of embedded algebraic surfaces. Academic Press, New York and London, 1966.
S. S. Abhyankar. On the problem of resolution of singularities of algebraic varieties. In Proceedings of International Congress of Mathematics, pages 469-481, Moscow, 1968.
S. S. Abhyankar. Resolution of singularities of algebraic surfaces. In Algebraic Geometry, pages 1-11. Oxford Univ. Press, 1969.
S. S. Abhyankar. Weighted expansions for canonical desingularization. Springer, 1982.
S. S. Abhyankar. Desingularization of plane curves. In Algebraic Geometry, Arcata 1981, Proc. Symp. Pure Appl. Math. 40. Amer. Math. Soc., 1983.
S. S. Abhyankar. Good points of a hypersurface. Adv. in Math., 68:87-256, 1988.
D. Abramovich and A. J. de Jong. Smoothness, semi-stability and toroidal geometry. Journal of Algebraic Geometry, 6:789-801, 1997.
J. M. Aroca, H. Hironaka, and J. L. Vicente. Theory of maximal contact. Memo Math. del Inst. Jorge Juan, 29, 1975.
J. M. Aroca, H. Hironaka, and J. L. Vicente. Desingularization theorems. Memo Math. del Inst. Jorge Juan, 30, 1977.
William W. Adams and Philippe Loustaunau. An Introduction to Gröbner Bases. Number 3 in Graduate Studies in Math. Amer. Math. Soc., New York, 1994.
G. Albanese. Transformazione birazionale di una superficie algebrica qualunque in un altra priva di punti multipli. Rend. Circ. Mat. Palermo, 48, 1924.
M. E. Alonso, I. Luengo, and M. Raimondo. An algorithm on quasi-ordinary polynomials. Applicable Algebra in Engineering, Communication and Computing, 6:59-73, 1988.
S. S. Abhyankar and T. T. Moh. Newton-Puiseux expansion and generalized Tschirnhausen transformation I. Crelle Journal, 260:47-83, 1973.
S. S. Abhyankar and T. T. Moh. Newton-Puiseux expansion and generalized Tschirnhausen transformation II. Crelle Journal, 261:29-54, 1973.
M. Artin. Algebriac approximation of structures over complete local ring. Publ. Math. IHES, 36:31-58, 1969.
D. Abramovich and J. Wang. Equivariant resolution of singularities in characteristic zero. Math. Res. Lett., 4:427-433, 1997.
B. Buchberger, G. E. Collins, and B. Kutzler. Algebraic methods for geometrical reasoning. Annual Review of Comp. Sci., 3:85-119, 1988.
B. M. Benett. On the characteristic function of a local ring. Ann. Math., 91:25-87, 1970.
P. Berthelot. Altérations de variétés algébriques (d'après A. J. de Jong). Sém. Bourbaki, exp. 815, 1995/96.
E. Bierstone and P. Milman. Relations among analytic functions I. Ann. Inst. Fourier, 37(1):187-239, 1987.
E. Bierstone and P. Milman. Relations among analytic functions II. Ann. Inst. Fourier, 37(2):49-77, 1987.
E. Bierstone and P. Milman. Semianalytic and subanalytic sets. Publ. Math. IHES, 67:5-42, 1988.
E. Bierstone and P. Milman. Uniformization of analytic spaces. J. Amer. Math. Soc., 2:801-836, 1989.
E. Bierstone and P. Milman. A simple constructive proof of canonical resolution of singularities. In T. Mora and C. Traverso, editors, Effective methods in algebraic geometry, pages 11-30. Birkhäuser, 1991.
E. Bierstone and P. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. math., 128:207-302, 1997.
F. Bogomolov and T. Pantev. Weak Hironaka theorem. Math. Res. Letters, 3(3):299-309, 1996.
G. Bodnár. Algorithmic Resolution of Singularities. PhD thesis, Johannes Kepler University, RISC-Linz, 2000.
G. Bodnár and J. Schicho. Automated resolution of singularities for hypersurfaces. Journal of Symbolic Computation, 30(4):401-428, 2000.
G. Bodnár and J. Schicho. A computer program for the resolution of singularities. In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar Zariski, volume 181 of Progress in Mathematics, pages 231-238. Birkhäuser, 2000.
G. Bodnár and J. Schicho. An improved algorithm for the resolution of singularities. In C. Traverso, editor, Proceedings of ISSAC 2000, pages 29-36. Association for Computing Machinery, 2000.
G. Bodnár and J. Schicho. Two computational techniques for singularity resolution. Journal of Symbolic Computation, 32(1-2):39-54, 2001.
D. Bayer, M. Stillman, and M. Stillman. Macaulay User Manual. Harvard University, 1993.
B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal. PhD thesis, Universität Innsbruck, Institut für Mathematik, 1965. German.
B. Buchberger. Some properties of Gröbner-bases for polynomial ideals. SIGSAM Bulletin, pages 19-24, November 1976.
B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In Proceedings of the EUROSAM 79 Symposium on Symbolic and Algebraic Manipulation. Springer, 1979.
B. Buchberger. Miscellaneous results on Gröbner-bases for polynomial ideals II. Technical Report 83-1, Univ. of Delaware: Dept. of Computer Information Sciences, Newark, Delaware 19711, 1983.
B. Buchberger. A note on the complexity of constructing Gröbner-bases. In Lecture Notes in Computer Science - Proc. EUROCAL '83. Springer, 1983.
B. Buchberger. Gr"obner Bases: An Algorithmic Method in Polynomial Ideal Theory. In N. K. Bose, editor, Recent Trends in Multidimensional Systems Theory, chapter 6. D. Riedel Publ. Comp., 1985.
T. Becker and V. Weispfenning. Gröbner bases - a computational approach to commutative algebra. Graduate Texts in Mathematics. Springer, 1993.
A. Castellanos, J. Castellanos, I. Luengo, and A. Melle. Computing resolution invariants of a cyclic surface singularity with Maple. In R. Sendra, editor, EACA-98. Encuentro de Algebra Computacional y Aplicaciones, 1998.
V. Cossart, J. Giraud, and U. Orbanz. Resolution of surface singularities. Lecture Notes in Math. 1101. Springer-Verlag, Berlin-New York, 1984.
O. Chisini. La risoluzione delle singolarità di una superficie mediante transformazioni birazionali dello spazio. Mem. Accad. Sci. Bologna VII, 8, 1891.
D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer Verlag, 1992.
V. Cossart. Desingularization of embedded excellent surfaces. Tôhoku Math. J., 33:25-33, 1981.
V. Cossart. Uniformisation et désingularisation des surfaces d'après Zariski. Progress in Mathematics, 181:239-258, 2000.
F. Cano and R. Piedra. Characteristic polygon of surface singularities. In J. M. Aroca, T. Sanchez-Giralda, and J. L. Vicente, editors, Géométrie algébrique et applications II. Hermann, 1987. Proceedings of Conference on Singularities, La Rábida 1984.
A. J. de Jong. Smoothness, semi-stability and alterations. Publ. Math. IHES, 83:189-228, 1996.
S. Encinas and H. Hauser. Strong resolution of singularities in characteristic zero. Preprint Univ. Innsbruck, 2000.
D. Eisenbud. Open problems in computational algebraic geometry. In Cortona 1991, volume 34 of Proc. Symp. Math., pages 49-70, 1993.
D. Eisenbud. Commutative Algebra with a View towards Algebraic Geometry. Springer, 1994.
S. Encinas and O. Villamayor. Good points and constructive resolution of singularities. Acta Math., 181:109-158, 1998.
S. Encinas and O. Villamayor. A course on constructive desingularization and equivariance. In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar Zariski, volume 181 of Progress in Mathematics. Birkhäuser, 2000.
S. Encinas and O. Villamayor. A new theorem of desingularization over fields of characteristic zero. Preprint, 2001.
A. Grothendieck and J. A. Dieudonné. Eléments de géométrie algébrique I. Springer, Berlin, Heidelberg, New-York, 1971.
J. Giraud. Etude locale des singularités. Publ. Math., 1972.
J. Giraud. Sur la theorie du contact maximal. Math. Zeit., 137:285-310, 1974.
J. Giraud. Contact maximal en charactéristique positive. Ann. Scient. E.N.S., 8(2):201-234, 1975.
J. Giraud. Remarks on desingularization problems. Nova acta Leopoldina, 52(240 (?)):103-107, 1981.
G.-M. Greuel, G. Pfister, and H. Schoenemann. SINGULAR. zca/Singular/, 1998.
R. Goldin and B. Teissier. Resolving singularities of plane analytic branches with one toric morphism. Preprint ENS Paris, 1995.
R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1977.
H. Hauser. Sur la déformation semi-universelle d'une singularité isolée. PhD thesis, Université Paris-Sud, Orsay, 1980. Thèse de Troisième Cycle.
H. Hauser and T. Gaffney. Characterizing singularities of varieties and of mappings. Invent. math., 79:427-447, 1985.
H. Hauser and G. Müller. Harmonic and dissonant singularities. In Kurke et al., editor, Proc. Conf. Algebraic Geometry, Berlin 1985, pages 123-134. Teubner-Texte Bd. 92 Leipzig, 1986.
H. Hauser and G. Müller. Algebraic singularities have maximal reductive automorphism groups. Nagoya Math. J., 113:181-186, 1989.
H. Hauser. Gauss-Bruhat decomposition, flag varieties and blowing up. Preprint Univ. Innsbruck, 1996.
H. Hauser. Maximal and minimal initial ideals in resolution processes. Preprint Univ. Innsbruck, 1996.
H. Hauser. Monomial rotation orders. Preprint Univ. Innsbruck, 1996.
H. Hauser. Triangles, prismas and tetrahedra as resolution invariants. Preprint Univ. Innsbruck, 1996.
H. Hauser. Seventeen obstacles for resolution of singularities. In V. I. Arnold, G.-M. Greuel, and J. Steenbrink, editors, Singularities. The Brieskorn Anniversary Volume. Birkhäuser, 1998.
H. Hauser. Excellent surfaces and their taut resolution. Progress in Mathematics, 181, 2000.
M. Herrmann, S. Ikeda, and U. Orbanz. Equimultiplicity and blowing up. Springer, 1988.
H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero I-II. Ann. Math., 79:109-326, 1964.
H. Hironaka. Characteristic polyhedra of singularities. J. of Math. Kyoto Univ., 7:251-293, 1967.
H. Hironaka. Additive groups associated with points of a projective space. Ann. Math., 91:327-334, 1970.
H. Hironaka. Certain numerical characters of singularities. J. of Math. Kyoto Univ., 10:151-187, 1970.
H. Hironaka. Desingularization of complex analytic varieties. Actes Congrès Intern. Math., T.2:627-631, 1970.
H. Hironaka. Gardening of infinitely near singularities. In F. Oort, editor, Proceedings of Nordic Summer School in Mathematics, pages 315-332, Oslo, 1970.
H. Hironaka. Introduction to the theory of infinitely near singular points. Memo Math. del Inst. Jorge Juan, 28, 1974.
H. Hironaka. Idealistic exponents of singularity. In Algebraic Geometry. The Johns Hopkins centennial lectures, pages 52-125. Johns Hopkins University Press, Baltimore, 1977.
H. Hironaka. Desingularization of excellent surfaces. In Vincent Cossart, Jean Giraud, and Ulrich Orbanz, editors, Resolution of surface singularities, pages 99-132. Springer, 1984. Lecture notes by B. Bennett at the Advanced Science Seminar in Algebraic Geometry, Bowdoin College, 1967.
H. Jung. Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlicher x, y in der Umgebung einer Stelle x=a, y=b. J. Reine Angew. Math., 133:289-314, 1908.
G. Kempf, F. Knudson, D. Mumford, and B. Saint-Donat. Toroidal embeddings I. Lect. Notes Math., 339, 1973.
H. Laufer. Normal two-dimensional singularities. Ann. Math. Studies 71, 1971.
B. Levi. Risoluzione delle singolarità puntuali delle superficie algebriche. Atti Acad. Sci. Torino, 33:66-86, 1897.
B. Levi. Risoluzione delle singolarità puntuali delle superficie algebriche dello spazio ordinario per transformazioni quadratiche. Ann. Mat. Pura Appl. II, 26, 1897.
J. Lipman. Rational singuarities with applications to algebraic surfaces and unique factorization. Publ. IHES, 36:195-279, 1969.
J. Lipman. Introduction to the resolution of singularities. In Arcata 1974, volume 29 of Proc. Symp. Pure Math, pages 187-229, 1975.
J. Lipman. Desingularization of two-dimensional schemes. Ann. Math., 107:151-207, 1978.
J. Lipman. On complete ideals in regular local rings. In Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, pages 203-231. Kinokuiya, Tokyo, 1988.
M. Lejeune-Jalabert. Linear systems with infinitely near base conditions and complete ideals in dimension two. In Lê, Saito, and Teissier, editors, Singularity theory. World Scientific, 1995.
D. T. Lê and M. Oka. On resolution complexity of plane curves. Kodai Math. J., 18:1-36, 1995.
H. Matsumura. Commutative Algebra. W. A. Benjamin Co., New York, 1970.
H. Matsumura. Commutative Ring Theory. Cambridge University Press, Londres, 1986.
H. Mizutani. Hironaka's additive group schemes. Nagoya J. Math., 52:85-95, 1973.
T. T. Moh. Canonical uniformization of hypersurface singularities of characteristic zero. Comm. Alg., 20:3207-3249, 1992.
T. T. Moh. On a Newton polygon approach to the uniformization of singularities of characteristic p. In A. Campillo and L. Narváez, editors, Algebraic Geometry and Singularities. Birkhäuser, 1996. Proceedings of Conference on Singularities La Rábida.
M. Nagata. Local rings. John Wiley & Sons, New York, 1962.
M. Noether and A. Brill. Die Entwicklung der Theorie der algebrischen Funktionen in älterer und neuer Zeit. Jahresber. Dt. Math. Verein III, pages 107-566, 1892/93.
T. Oda. Hironaka's additive group scheme. In Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, pages 181-219. Kinokuniya Publ., Tokyo, 1973.
T. Oda. Hironaka group schemes and resolution of singularities. Lecture Notes in Math., 1016:295-312, 1983. Proceedings of Conference on Algebraic Geometry, Tokyo and Kyoto 1982.
T. Oda. Infinitely very near singular points. Adv. Studies Pure Math., 8:363-404, 1986.
M. Oka. Geometry of plane curves via toroidal resolution. In A. Campillo and L. Narváez, editors, Algebraic Geometry and Singularities. Birkhäuser, 1996. Proceedings of Conference on Singularities La Rábida.
U. Orbanz. Embedded resolution of algebraic surfaces after Abhyankar. In V. Gossart, J. Giraud, and U. Orbanz, editors, Resolution of surface singularities, pages 1-98. Springer, 1984.
P. Orlik and P. Wagreich. Equivariant resolution of singularities with C* action. In Proceedings of the 2nd Conference on Compact Transformation Groups, Amherst, 1971.
J. Schicho. On the choice of pencils in the parametrization of curves. Journal of Symbolic Computation, 14(6):557-576, 1992.
J. Schicho. On algorithmic parametrization methods in algebraic geometry. In J. Pfalzgraf and D. Wang, editors, Automated practical reasoning, pages 81-90. Springer, 1995.
J. Schicho. Rational parametrization of surfaces. PhD thesis, RISC Linz, 1995.
B. Singh. Effect of permissible blowing up on the local Hilbert function. Invent. Math., 26:201-212, 1974.
M. Spivakovsky. A counterexample to Hironaka's `hard' polyhedra game. Publ. RIMS, 18:1009-1012, 1983.
M. Spivakovsky. A solution to Hironaka's polyhedral game. In M. Artin and J. Tate, editors, Arithmetic and Geometry, pages 419-432. Birkhäuser, 1983. Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday.
M. Spivakovsky. A counterexample to the theorem of Beppo Levi in three dimensions. Invent. Math., 96:181-183, 1989.
M. Spivakovsky. Valuations in function fields of surfaces. American Journal of Mathematics, 112:107-156, 1990.
M. Spivakovsky. Resolution of singularities. In Journées singuliéres et jacobiennes. Institute Fourier, Grenoble, 1996.
J.R. Sendra and F. Winkler. Symbolic parametrization of curves. Journal of Symbolic Computation, 12(6):607-632, 1991.
J.R. Sendra and F. Winkler. Parametrization of algebraic curves over optimal field extensions. Journal of Symbolic Computation, 23(2/3):191-208, 1997.
Quoc-Nam Tran and F. Winkler. CASA Reference Manual., 1997.
O. Villamayor. Constructiveness of Hironaka's resolution. Ann. Scient. Ecole Norm. Sup. 4, 22:1-32, 1989.
O. Villamayor. Patching local uniformizations. Ann. Scient. Ecole Norm. Sup. 4, 25:629-677, 1992.
O. Villamayor. Introduction to the algorithm of resolution. In Algebraic geometry and singularities, La Rabida 1991, pages 123-154. Birkhäuser, 1996.
R. J. Walker. Reduction of the singularities of an algebraic surface. Ann. Math., 36:336-365, 1935.
R. J. Walker. Algebraic Curves. Princeton University Press, Princeton, 1950.
F. Winkler. A p-adic approach to the computation of gröbner bases. J. Symb. Comp., 6:287-304, 1988.
B. Youssin. Newton polyhedra of ideals. Mem. AMS, 433:75-99, 1990.
B. Youssin. Newton polyhedra without coordinates. Mem. AMS, 433:1-74, 1990.
O. Zariski. The reduction of singularities of an algebraic surface. Ann. Math., 40:639-689, 1939.
O. Zariski. Local uniformization theorem on algebraic varieties. Ann. Math., 41:852-896, 1940.
O. Zariski. A simplified proof for resulution of singualrities of an algebraic surface. Ann. Math., 43:583-593, 1942.
O. Zariski. Reduction of the singularities of algebraic three-dimensional varieties. Ann. Math., 45:472-542, 1944.
O. Zariski. The concept of a simple point of an abstract algebraic variety. Trans. Math. Soc., 52:1-52, 1947.
O. Zariski. Studies in equisingularity I. Equivalent singularities of plane algebraic curves. American Journal of Mathematics, 87:507-536, 1965.
O. Zariski. Studies in equisingularity II. Equisingularity in co-dimension 1 (and characteristic zero). American Journal of Mathematics, 87(4):972-1006, 1965.
O. Zariski. Exceptional singularities of an algebraic surface and their reduction. Atti accad. Naz. Linzei Rend., Cl. Sci. Fis. Math. Natur. serie VIII, 43:135-146, 1967.
O. Zariski. Studies in equisingularity III. Saturation of local rings and equisingularity. American Journal of Mathematics, 90:961-1023, 1968.
O. Zariski. Algebraic surfaces. Springer, 2 edition, 1971.
O. Zariski. On equimultiple subvarieties of algebroid hypersurfaces. Proc. Nat. Acad. Sci., USA, 72(4):1425-1426, 1975.
O. Zariski. A new proof of the total embedded resoltuion theorem for algebraic surfaces. American Journal of Mathematics, 100:411-442, 1978.