previous up next
Go backward to Procedures
Go up to Top

References

 [BM91]
E. Bierstone and P. Milman. A simple constructive proof of canonical resolution of singularities. In T. Mora and C. Traverso, editors, Effective methods in algebraic geometry, pages 11-30. Birkhäuser, Boston, 1991.
 [BM97]
E. Bierstone and P. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. math., 128(2):207-302, 1997.
 [Bod00]
G. Bodnár. Algorithmic Resolution of Singularities. PhD thesis, Johannes Kepler University, RISC-Linz, 2000.
 [BS00a]
G. Bodnár and J. Schicho. Automated resolution of singularities for hypersurfaces. Journal of Symbolic Computation, 30(4):401-428, 2000.
 [BS00b]
G. Bodnár and J. Schicho. A computer program for the resolution of singularities. In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar Zariski, volume 181 of Progress in Mathematics, pages 231-238. Birkhäuser, Boston, 2000.
 [BS00c]
G. Bodnár and J. Schicho. An improved algorithm for the resolution of singularities. In C. Traverso, editor, Proceedings of ISSAC 2000, pages 29-36, New York, 2000. Association for Computing Machinery.
 [BS01]
G. Bodnár and J. Schicho. Two computational techniques for singularity resolution. Journal of Symbolic Computation, 32(1-2):39-54, 2001.
 [Buc65]
B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal. PhD thesis, Universität Innsbruck, Institut für Mathematik, 1965. German.
 [Buc85]
B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In N. K. Bose, editor, Recent Trends in Multidimensional Systems Theory, chapter 6. D. Riedel Publ. Comp., 1985.
 [BW93]
T. Becker and V. Weispfenning. Gröbner bases - a computational approach to commutative algebra. Graduate Texts in Mathematics. Springer, New York, 1993.
 [EV98]
S. Encinas and O. Villamayor. Good points and constructive resolution of singularities. Acta Math., 181:109-158, 1998.
 [EV00]
S. Encinas and O. Villamayor. A course on constructive desingularization and equivariance. In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar Zariski, volume 181 of Progress in Mathematics, Boston, 2000. Birkhäuser.
 [EV01]
S. Encinas and O. Villamayor. A new theorem of desingularization over fields of characteristic zero. Preprint, 2001.
 [Hir64]
H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero I-II. Ann. Math., 79:109-326, 1964.
 [Sch98]
W. Schreiner. Distributed maple - user and reference manual. Technical Report 98-05, RISC-Linz, Univ. Linz, A-4040 Linz, 1998.
 [Vil89]
O. Villamayor. Constructiveness of Hironaka's resolution. Ann. Scient. Ecole Norm. Sup. 4, 22:1-32, 1989.
 [Vil96]
O. Villamayor. Introduction to the algorithm of resolution. In Algebraic geometry and singularities, La Rabida 1991, pages 123-154. Birkhäuser, 1996.
 [Win88]
F. Winkler. A p-adic approach to the computation of gröbner bases. J. Symb. Comp., 6:287-304, 1988.

 


previous up next