E. Bierstone and P. Milman.
A simple constructive proof of canonical resolution of singularities.
In T. Mora and C. Traverso, editors, Effective methods in
algebraic geometry, pages 11-30. Birkhäuser, Boston, 1991.
[BM97]
E. Bierstone and P. Milman.
Canonical desingularization in characteristic zero by blowing up the
maximum strata of a local invariant.
Invent. math., 128(2):207-302, 1997.
[Bod00]
G. Bodnár.
Algorithmic Resolution of Singularities.
PhD thesis, Johannes Kepler University, RISC-Linz, 2000.
[BS00a]
G. Bodnár and J. Schicho.
Automated resolution of singularities for hypersurfaces.
Journal of Symbolic Computation, 30(4):401-428, 2000.
[BS00b]
G. Bodnár and J. Schicho.
A computer program for the resolution of singularities.
In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar
Zariski, volume 181 of Progress in Mathematics, pages 231-238.
Birkhäuser, Boston, 2000.
[BS00c]
G. Bodnár and J. Schicho.
An improved algorithm for the resolution of singularities.
In C. Traverso, editor, Proceedings of ISSAC 2000, pages
29-36, New York, 2000. Association for Computing Machinery.
[BS01]
G. Bodnár and J. Schicho.
Two computational techniques for singularity resolution.
Journal of Symbolic Computation, 32(1-2):39-54, 2001.
[Buc65]
B. Buchberger.
An Algorithm for Finding a Basis for the Residue Class Ring of a
Zero-Dimensional Polynomial Ideal.
PhD thesis, Universität Innsbruck, Institut für Mathematik,
1965.
German.
[Buc85]
B. Buchberger.
Gröbner Bases: An Algorithmic Method in Polynomial Ideal
Theory.
In N. K. Bose, editor, Recent Trends in Multidimensional Systems
Theory, chapter 6. D. Riedel Publ. Comp., 1985.
[BW93]
T. Becker and V. Weispfenning.
Gröbner bases - a computational approach to commutative
algebra.
Graduate Texts in Mathematics. Springer, New York, 1993.
[EV98]
S. Encinas and O. Villamayor.
Good points and constructive resolution of singularities.
Acta Math., 181:109-158, 1998.
[EV00]
S. Encinas and O. Villamayor.
A course on constructive desingularization and equivariance.
In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of Singularities, A research textbook in tribute to Oscar
Zariski, volume 181 of Progress in Mathematics, Boston, 2000.
Birkhäuser.
[EV01]
S. Encinas and O. Villamayor.
A new theorem of desingularization over fields of characteristic
zero.
Preprint, 2001.
[Hir64]
H. Hironaka.
Resolution of singularities of an algebraic variety over a field of
characteristic zero I-II.
Ann. Math., 79:109-326, 1964.
[Sch98]
W. Schreiner.
Distributed maple - user and reference manual.
Technical Report 98-05, RISC-Linz, Univ. Linz, A-4040 Linz, 1998.
[Vil89]
O. Villamayor.
Constructiveness of Hironaka's resolution.
Ann. Scient. Ecole Norm. Sup. 4, 22:1-32, 1989.
[Vil96]
O. Villamayor.
Introduction to the algorithm of resolution.
In Algebraic geometry and singularities, La Rabida 1991, pages
123-154. Birkhäuser, 1996.
[Win88]
F. Winkler.
A p-adic approach to the computation of gröbner bases.
J. Symb. Comp., 6:287-304, 1988.