Next: List of Figures
Up: No Title
Previous: No Title
- List of Figures
- List of Tables
- User's Guide
- Reference Manual
- DIVISION
- EMPTY
- GB_criteria( PS F)
- GB_crude( PS F)
- GB_reduce_all( PS F)
- GB_small_pair_set( PS F)
- GROEBNER_VERSION_NUMBER
- NOGB
- REST( Word w)
- SACLIB_MEMORY
- S_polynomial_lp( LP lp1, LP lp2)
- S_polynomial_poly( Poly p1, Poly p2)
- ZERODIVISION
- absolute_ff( FF ff)
- absolute_rn( RN rn)
- all_reduced( PS reducibles, PS reducers, PS basis, PaS pairs)
- applied( UF uf, Word l)
- applied_iter( UF uf, Word l)
- applied_rec( UF uf, Word l)
- basis_module_syz( PS gb)
- canceled_multiples_pl( PL pl)
- canceled_multiples_ps( PS ps)
- chain_criterion( Pa pa, PS basis, Pa pair)
- coefficient( Mon m)
- coefficient_domain
- cofactors_pc( PC pc)
- combine_dpl( DPL dpl1, DPL dpl2)
- combine_pc( PC pc1, PC pc2)
- combine_ppoly( PPoly p1, PPoly p2)
- combine_poly( Poly p1, Poly p2)
- complete_normal_form_poly( Poly p, PS ps)
- completely_reduced_lpl( PL pl)
- completely_reduced_lps( PS ps)
- completely_reduced_pl( PL pl)
- completely_reduced_ps( PS ps)
- component_wise( BF bf, Word l1, Word l2)
- component_wise_iter( BF bf, Word l1, Word l2)
- component_wise_rec( BF bf, Word l1, Word l2)
- contains_pa( Pa pa, PS ps)
- contains_pas( PaS pas, Pa pa)
- criteria( LP lp1, LP lp2, PS G, PaS B)
- denominator_rf( RF rf)
- denominator_rn( RN rn)
- difference_coef( Coef c1, Coef c2)
- difference_dpl( DPL p1, DPL p2)
- difference_ff( FF ff1, FF ff2)
- difference_mon( Mon m1, Mon m2)
- difference_pc( PC pc1, PC pc2)
- difference_ppoly( PPoly p1, PPoly p2)
- difference_poly( Poly p1, Poly p2)
- difference_rf( RF rf1, RF rf2)
- difference_rn( RN r1, RN r2)
- difference_syz( Syz s1, Syz s2)
- empty_pl
- empty_ps
- error_in_groebner_
- expanded( Word element, Word list, BP comp)
- expanded_iter( Word element, Word list, BP comp)
- expanded_rec( Word element, Word list, BP comp)
- explicit_chain_criterion( LP lp1, LP lp2, PS G, PaS B)
- extension_syz( Syz s, PS gb)
- extract_info4groebner(int argc, char *argv[])
- first_pair_pas( PaS p)
- first_polynomial_pa( Pa p)
- head_reduced_lp( LP lp, PS ps)
- head_reduced_poly( Poly p, PS ps)
- init_groebner_globals()
- initial_pairs( PS ps)
- initial_pairs_with_criteria( PS ps)
- initial_pairs_with_product_criterion( PS ps)
- initialized_dpl( DPL p, int pos, int total)
- initialized_pc( PPoly p, int pos, int total)
- initialized_ppoly( PPoly p, int pos, int total)
- initialized_pl( PL pl)
- initialized_poly( PPoly p, int pos, int total)
- initialized_ps( PS ps)
- insert_lpl( LP lp, PL pl)
- insert_lps( LP lp, PS ps)
- insert_ppoly_pl( PPoly p, PL pl)
- insert_ppoly_ps( PPoly p, PS ps)
- insert_pl( Poly p, PL pl)
- insert_ps( Poly p, PS ps)
- inter_reduced_ps( PS ps)
- inverse_coef( Coef c)
- inverse_ff( FF ff)
- inverse_rf( RF rf)
- inverse_rn( RN r)
- is_disjoint_el( EL el1, EL el2)
- is_disjoint_pp( PP pp1, PP pp2)
- is_empty_pas( PaS pas)
- is_empty_pl( PL pl)
- is_empty_ps( PS ps)
- is_equal_coef( Coef c1, Coef c2)
- is_equal_dpl( DPL p1, DPL p2)
- is_equal_el( EL el1, EL el2)
- is_equal_ff( FF ff1, FF ff2)
- is_equal_int( Int i1, Int i2)
- is_equal_lp( LP lp1, LP lp2)
- is_equal_pa( Pa pa1, Pa pa2)
- is_equal_pc( PC pc1, PC pc2)
- is_equal_poly( Poly p1, Poly p2)
- is_equal_pp( PP pp1, PP pp2)
- is_equal_ppoly( PPoly p1, PPoly p2)
- is_equal_rf( RF rf1, RF rf2)
- is_equal_rn( RN r1, RN r2)
- is_equal_syz( Syz s1, Syz s2)
- is_greater_mon( Mon m1, Mon m2)
- is_greater_mon_pair_order( Mon m1, Mon m2)
- is_greater_rn( RN r1, RN r2)
- is_labeled_lcm_greater( Pa p1, Pa p2)
- is_labeled_pa_greater( Pa p1, Pa p2)
- is_lcm_greater( Pa p1, Pa p2)
- is_leading_monomial_greater_dpl( DPL p1, DPL p2)
- is_leading_monomial_greater_lp( LP lp1, LP lp2)
- is_leading_monomial_greater_pc( PC pc1, PC pc2)
- is_leading_monomial_greater_poly( Poly p1, Poly p2)
- is_leading_monomial_greater_ppoly( PPoly p1, PPoly p2)
- is_leading_monomial_multiple_dpl( DPL p1, DPL p2)
- is_leading_monomial_multiple_lp( LP lp1, LP lp2)
- is_leading_monomial_multiple_pc( PC pc1, PC pc2)
- is_leading_monomial_multiple_poly( Poly p1, Poly p2)
- is_leading_monomial_multiple_ppoly( PPoly p1, PPoly p2)
- is_lexical_greater_el( EL el1, EL el2)
- is_lexical_greater_mon( Mon m1, Mon m2)
- is_lexical_greater_pp( PP pp1, PP pp2)
- is_matrix_greater_el( EL el1, EL el2)
- is_matrix_greater_mon( Mon m1, Mon m2)
- is_matrix_greater_pp( PP pp1, PP pp2)
- is_multiple_el( EL el1, EL el2)
- is_multiple_mon( Mon m1, Mon m2)
- is_multiple_pp( PP pp1, PP pp2)
- is_negative_coef( Coef c)
- is_negative_ff( FF ff)
- is_negative_int( Int i)
- is_negative_mon( Mon m)
- is_negative_rf( RF rf)
- is_negative_rn( RN r)
- is_one_coef( Coef c)
- is_one_el( EL el)
- is_one_ff( FF ff)
- is_one_int( Int i)
- is_one_pp( PP pp)
- is_one_rf( RF rf)
- is_one_rn( RN r)
- is_pa_greater( Pa p1, Pa p2)
- is_positive_coef( Coef c)
- is_positive_ff( FF ff)
- is_positive_rf( RF rf)
- is_positive_rn( RN r)
- is_total_degree_inverse_lexical_ greater_el( EL el1, EL el2)
- is_total_degree_inverse_lexical_ greater_mon( Mon m1, Mon m2)
- is_total_degree_inverse_lexical_ greater_pp( PP pp1, PP pp2)
- is_total_degree_lexical_greater_el( EL el1, EL el2)
- is_total_degree_lexical_greater_mon( Mon m1, Mon m2)
- is_total_degree_lexical_greater_pp( PP pp1, PP pp2)
- is_zero_coef( Coef c)
- is_zero_ff( FF ff)
- is_zero_int( Int i)
- is_zero_lp( LP lp)
- is_zero_mon( Mon m)
- is_zero_pc( PC pc)
- is_zero_poly( Poly p)
- is_zero_ppoly( PPoly p)
- is_zero_rf( RF rf)
- is_zero_rn( RN r)
- is_zero_syz( Syz s)
- label( LP lp)
- label_
- labeled_pl( PL pl)
- labeled_poly( Poly p)
- labeled_ps( PS ps)
- lcm_coef( Coef c1, Coef c2)
- lcm_denominator_rf( RF rf1, RF rf2)
- lcm_el( EL el1, EL el2)
- lcm_ff( FF ff1, FF ff2)
- lcm_mon( Mon m1, Mon m2)
- lcm_pp( PP pp1, PP pp2)
- lcm_rf( RF rf1, RF rf2)
- lcm_rn( RN r1, RN r2)
- leading_coefficient( Poly p)
- leading_coefficient_dpl( DPL dpl)
- leading_coefficient_lp( LP lp)
- leading_coefficient_pc( PC pc)
- leading_coefficient_ppoly( PPoly p)
- leading_monomial( Poly p)
- leading_monomial_dpl( DPL dpl)
- leading_monomial_lp( LP lp)
- leading_monomial_pc( PC pc)
- leading_monomial_ppoly( PPoly p)
- leading_power_product( Poly p)
- leading_power_product_dpl( DPL dpl)
- leading_power_product_lp( LP lp)
- leading_power_product_pc( PC pc)
- leading_power_product_ppoly( PPoly p)
- merged( Word l1, Word l2, BP comp, BF f, UP cancel)
- merged_disjunct( Word l1, Word l2, BP comp)
- merged_disjunct_iter( Word l1, Word l2, BP comp)
- merged_disjunct_rec( Word l1, Word l2, BP comp)
- merged_iter( Word l1, Word l2, BP comp, BF f, UP cancel)
- merged_rec( Word l1, Word l2, BP comp, BF f, UP cancel)
- modulus_
- negative_coef( Coef c)
- negative_dpl( DPL p)
- negative_ff( FF ff)
- negative_int( i)
- negative_mon( Mon m)
- negative_pc( PC pc)
- negative_poly( Poly p)
- negative_ppoly( PPoly p)
- negative_rf( RF rf)
- negative_rn( RN r)
- negative_syz( Syz s)
- new_pair( LP lp1, LP lp2)
- new_pairs( Poly p, PS ps)
- normal_form_algorithm
- normal_form_lp( LP lp, PS ps)
- normal_form_poly( Poly p, PS ps)
- normalized_dpl( DPL p)
- normalized_pc( PC pc)
- PL normalized_pl( PL pl)
- normalized_poly( Poly p)
- normalized_ppoly( PPoly p)
- normalized_ps( PS ps)
- normalized_rf( RF rf)
- normalizer_coef( Coef c)
- normalizer_ff( FF ff)
- normalizer_rf( RF rf)
- normalizer_rn( RN r)
- number_of_field_variables_
- numerator_rf( RF rf)
- numerator_rn( RN r)
- one_coef( Coef c)
- one_dpl( DPL p)
- one_el( EL el)
- one_ff( FF ff)
- one_int( Int i)
- one_mon( Mon m)
- one_ppoly( PPoly p)
- one_pp( PP pp)
- one_rf( RF rf)
- one_rn( RN r)
- order_matrix_
- pair_ordering
- pair_set( PS ps)
- pair_strategy
- partial_normal_form_poly( Poly p, PS ps)
- poly_extracted_pl( PL pl)
- poly_extracted_ps( PS ps)
- poly_structure
- polynomial_dpl( DPL p)
- polynomial_lp( LP lp)
- polynomial_pc( PC pc)
- polynomial_ppoly( PPoly p)
- polynomial_poly( Poly p)
- prepend_monomial( Mon m, Poly p)
- prepend_monomial_dpl( Mon m, DPL p)
- prepend_monomial_pc( Mon m, PC pc)
- prepend_monomial_ppoly( Mon m, PPoly p)
- product_coef( Coef c1, Coef c2)
- product_coef_dpl( Coef c, DPL p)
- product_coef_mon( Coef c, Mon m)
- product_coef_pc( Coef c, PC pc)
- product_coef_poly( Coef c, Poly p)
- product_coef_ppoly( Coef c, PPoly p)
- product_criterion( LP lp1, LP lp2)
- product_dpl( DPL p1, DPL p2)
- product_el( EL el1, EL el2)
- product_ff( FF ff1, FF ff2)
- product_mon( Mon m1, Mon m2)
- product_mon_dpl( Mon m, DPL p)
- product_mon_pc( Mon m, PC pc)
- product_mon_ppoly( Mon m, PPoly p)
- product_mon_poly( Mon m, Poly p)
- product_monic_mon( Mon m1, Mon m2)
- product_monic_mon_dpl( Mon m, DPL p)
- product_monic_mon_pc( Mon m, PC pc)
- product_monic_mon_ppoly( Mon m, PPoly p)
- product_monic_mon_poly( Mon m, Poly p)
- product_neg_monic_mon( Mon m1, Mon m2)
- product_neg_monic_mon_dpl( Mon m, DPL p)
- product_neg_monic_mon_pc( Mon m, PC pc)
- product_neg_monic_mon_ppoly( Mon m, PPoly p)
- product_neg_monic_mon_poly( Mon m, Poly p)
- product_ppoly( PPoly p1, PPoly p2)
- product_pp( PP pp1, PP pp2)
- product_rf( RF rf1, RF rf2)
- product_rn( RN r1, RN r2)
- pure_poly_representation
- quotient_coef( Coef c1, Coef c2)
- quotient_dpl( DPL p1, DPL p2)
- quotient_el( EL el1, EL el2)
- quotient_ff( FF ff1, FF ff2)
- quotient_monic_mon( Mon m1, Mon m2)
- quotient_ppoly( PPoly p1, PPoly p2)
- quotient_pp( PP pp1, PP pp2)
- quotient_rf( RF rf1, RF rf2)
- quotient_rn( RN r1, RN r2)
- rational_function( Word n, Word d)
- remaining_pairs_pas( PaS pas)
- remaining_polynomial( Poly p)
- remaining_polynomial_dpl( DPL p)
- remaining_polynomial_lp( LP lp)
- remaining_polynomial_pc( PC pc)
- remaining_polynomial_ppoly( PPoly p)
- singleton( Word w)
- split( Word element, Word list, BP rel)
- split_iter( Word element, Word list, BP rel)
- split_rec( Word element, Word list, BP rel)
- start_groebner()
- step( BF bf, Word o, Word l)
- step_iter( BF bf, Word o, Word l)
- step_rec( BF bf, Word o, Word l)
- sum_coef( Coef c1, Coef c2)
- sum_dpl( DPL p1, DPL p2)
- sum_ff( FF ff1, FF ff2)
- sum_mon( Mon m1, Mon m2)
- sum_pc( PC pc1, PC pc2)
- sum_ppoly( PPoly p1, PPoly p2)
- sum_poly( Poly p1, Poly p2)
- sum_rf( RF rf1, RF rf2)
- sum_rn( RN r1, RN r2)
- sum_syz( Syz s1, Syz s2)
- thinned_by_chain_criterion( PaS pair_set, PS basis, Pa pair)
- thinned( Word element, Word list, BP rel)
- thinned_iter( Word element, Word list, BP rel)
- thinned_pairs( PS ps, PaS pairs)
- thinned_rec( Word element, Word list, BP rel)
- triangle_criterion( Pa pa, LP lp, Pa pair)
- trivial_pair( )
- unlabeled_lp( LP lp)
- unlabeled_pl( PL pl)
- unlabeled_ps( PS ps)
- updated_pairs( PaS pairs, PS ps, LP lp)
- updated_pairs_with_product_criterion( PaS pairs, PS ps, LP lp)
- zero_coef( Coef c)
- zero_dpl( DPL p)
- zero_ff( FF ff)
- zero_pc( PC pc)
- zero_ppoly( PPoly p)
- zero_poly( Poly p)
- zero_rf( RF rf)
- zero_rn( RN r)
- zero_syz( Syz s)
- References
- Index
- About this document ...
windsteiger wolfgang
Thu Sep 3 14:50:07 MDT 1998