next up previous
Next: About this document Up: Using GRÖBNER as a Previous: Examples

References

1
B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In N.K. Bose, editor, Multidimensional Systems Theory, pages 184-232. D. Reidel Publishing Company, Dordrecht-Boston-Lancaster, 1985.

2
B. Buchberger. Applications of Gröbner bases in Non-Linear Computational Geometry. In Proc. Workshop on Scientific Software, IMA, Minneapolis, USA, 1987. Springer.

3
B. Buchberger, G. E. Collins, M. J. Encarnacion, H. Hong, Johnson J. R., W. Krandick, R. Loos, A. M. Mandache, A. Neubacher, and H. Vielhaber. SACLIB User's Guide. Technical Report RISC-Linz Series 93-19, Univ. Linz, RISC, Linz, Austria, 1993.

4
W. Windsteiger. Gröbner Bases: A Characterization by Syzygy Completeness and an Implementation. Master's thesis, RISC-Linz, University of Linz, Austria, 1992.

5
W. Windsteiger and B. Buchberger. GRÖBNER: A Library for Computing Gröbner Bases based on SACLIB. Technical Report 72, RISC-Linz, University of Linz, 1993.


windsteiger wolfgang
Wed Sep 2 09:42:51 MDT 1998