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Motivation

• Equational matching and unification algorithms are used in
• rewriting and completion modulo equalities,
• automated reasoning,
• logic programming with equalities,
• ...
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Motivation

• Equational unification is a dual problem for the word problem.

• E: A given set of equalities.

• Word problem:
Does ∀x. s ≐ t hold in all models of E?

• Equational unification:
Does ∃x. s ≐ t hold in all nonempty models of E?
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Motivation

• Equational unification generalizes syntactic unification.

• f(x, y) ≐? f(a, b) has only one mgu {x↦ a, y ↦ b}, if it is a syntactic
unification problem.

• If f is commutative, then {x↦ b, y ↦ a} is another unifier.
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Notation

• First-order language.

• F : Set of function symbols.

• V: Set of variables.

• x, y, z: Variables.

• a, b, c: Constants.

• f, g, h: Arbitrary function symbols.

• s, t, r: Terms.

• T (F ,V): Set of terms over F and V.
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Notation

• Equation: a pair of terms, written s ≐ t.
• vars(t): The set of variables in t. This notation will be used also for

sets of terms, equations, and sets of equations.

• σ, ϑ, η, ρ: Substitutions.

• ε: The identity substitution.
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Equational Theory

Equational Theory

• E: a set of equations over T (F ,V), called identities.

• Equational theory ≐E defined by E: The least congruence relation on
T (F ,V) stable under substitution application and containing E.

• That means, ≐E is the least binary relation on T (F ,V) such that:
• E ⊆ ≐E .
• Reflexivity: s ≐E s for all s.
• Symmetry: If s ≐E t then t ≐E s for all s, t.
• Transitivity: If s ≐E t and t ≐E r then s ≐E r for all s, t, r.
• Congruence: If s1 ≐E t1, . . . , sn ≐E tn then
f(s1, . . . , sn) ≐E f(t1, . . . , tn) for all s, t, n and n-ary f .

• Stability: If s ≐E t then sσ ≐E tσ for all s, t, σ.
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Notation, Terminology

• s ≐E t:
• The pair (s, t) belongs to the equational theory ≐E .
• The term s is equal modulo E to the term t.

• s ≈ t: Identities.

• sig(E): The set of function symbols that occur in E.

• Sometimes E is called an equational theory as well.
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Notation, Terminology

Example

• C ∶= {f(x, y) ≈ f(y, x)}: f is commutative.

sig(C) = f .

f(f(a, b), c) ≐C f(c, f(b, a)).

• AU ∶= {f(f(x, y), z) ≈ f(x, f(y, z)), f(x, e) ≈ x, f(e, x) ≈ x}:

f is associative, e is unit.

sig(AU) = {f, e}
f(a, f(x, f(e, a))) ≐AU f(f(a, x), a).
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Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

• E: a given set of identities.

• E-Unification problem over F : a finite set of equations

Γ = {s1 ≐?E t1, . . . , sn ≐?E tn},

where si, ti ∈ T (F ,V).

• E-Unifier of Γ: a substitution σ such that

s1σ ≐E t1σ, . . . , snσ ≐E tnσ.

• uE(Γ): the set of E-unifiers of Γ.

• Γ is E-unifiable iff uE(Γ) ≠ ∅.
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E-Unification vs Syntactic Unification

• Syntactic unification: a special case of E-unification with E = ∅.

• Any syntactic unifier of an E-unification problem Γ is also an
E-unifier of Γ.

• For E ≠ ∅, uE(Γ) may contain a unifier that is not a syntactic unifier.
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E-Unification vs Syntactic Unification

Example

• Terms f(a, x) and f(b, y):
• Not syntactically unifiable.
• Unifiable module commutativity of f .
• C-unifier: {x↦ b, y ↦ a}

• Terms f(a, x) and f(y, b):
• Have the most general syntactic unifier {x↦ b, y ↦ a}.
• If f is associative, then there are additional unifiers, e.g.,

{x↦ f(z, b), y ↦ f(a, z)}.
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Notions Adapted

Instantiation Quasi-Ordering (Modified)

• E: equational theory. X : set of variables.

• A substitution σ is more general than ϑ modulo E on X , written
σ ≤⋅XE ϑ, if there exists η such that xση ≐E xϑ for all x ∈ X .

• ϑ is called an E-instance of σ modulo E on X .

• The relation ≤⋅XE is quasi-ordering, called instantiation quasi-ordering.

• =⋅ XE is the equivalence relation corresponding to ≤⋅XE .
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No MGU

• When comparing unifiers of Γ, the set X is vars(Γ).

• Unifiable E-unification problems might not have an mgu.

Example

• f is commutative.

• Γ = {f(x, y) ≐?C f(a, b)} has two C-unifiers:

σ1 = {x↦ a, y ↦ b}
σ2 = {x↦ b, y ↦ a}.

• On vars(Γ) = {x, y}, any unifier is equal to either σ1 or σ2.

• σ1 and σ2 are not comparable wrt ≤⋅{x,y}C .

• Hence, no mgu for Γ.
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MCSU vs MGU

In E-unification, the role of mgu is taken on by a complete set of
E-unifiers.

Complete and Minimal Complete Sets of E-Unifiers

• Γ: E-unification problem over F .

• X = vars(Γ).

• C is a complete set of E-unifiers of Γ iff

1. C ⊆ uE(Γ): C’s elements are E-unifiers of Γ, and
2. For each ϑ ∈ uE(Γ) there exists σ ∈ C such that σ ≤⋅XE ϑ.

• C is a minimal complete set of E-unifiers (mcsuE) of Γ if it is a
complete set of E-unifiers of Γ and

3. Two distinct elements of C are not comparable wrt ≤⋅XE .

• σ is an mgu of Γ iff mcsuE(Γ) = {σ}.
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MCSU’s

• mcsuE(Γ) = ∅ if Γ is not E-unifiable.

• Minimal complete sets of unifiers do not always exist.

• When they exist, they may be infinite.

• When they exist, they are unique up to =⋅ XE .
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Unification Type

Unification Type of a Problem, Theory.

• E: equational theory.

• Γ: E-unification problem over F .

• Γ has unification type
• unitary, if mcsu(Γ) has cardinality at most one,
• finitary, if mcsu(Γ) has finite cardinality,
• infinitary, if mcsu(Γ) has infinite cardinality,
• zero, if mcsu(Γ) does not exist.

• Abbreviation: type unitary - 1, finitary - ω, infinitary - ∞, zero - 0.

• Ordering: 1 < ω < ∞ < 0.

• Unification type of E wrt F : the maximal type of an E-unification
problem over F .
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Unification Type

The unification type of an E-equational problem over F depends both

• on E, and

• on F (which function symbols are permitted in unification problems).
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Unification Type

Example (Type Unitary)

Syntactic unification.

• The empty equational theory ∅: Syntactic unification.

• Unitary wrt any F because any unifiable syntactic unification problem
has an mgu.
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Unification Type

Example (Type Finitary)

Commutative unification: {f(x, y) ≈ f(y, x)}
• Not unitary.

• {f(x, y) ≐?C f(a, b)} has two unifiers {x↦ a, y ↦ b} and
{x↦ b, y ↦ a}.

• No mgu.

• C unification is finitary.
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Unification Type

Example (Type Finitary)

C unification is finitary for any F :

• Let Γ = {s1 ≐?C t1, . . . , sn ≐
?
C tn} be a C-unification problem.

• Consider all possible syntactic unification problems
Γ′ = {s′1 ≐? t′1, . . . , s′n ≐? t′n}, where s′i ≐C si and t′i ≐C ti for each
1 ≤ i ≤ n.

• There are only finitely many such Γ′s, because the C-equivalence class
for a given term t is finite.

• It can be shown that collection of all mgu’s of Γ′s is a complete set of
C-unifiers of Γ. This set if finite.

• If this set is not minimal (often the case), it can be minimized by
removing redundant C-unifiers.
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Unification Type

Example (Type Infinitary)

Associative unification: {f(f(x, y), z) ≈ f(x, f(y, z))}.

• {f(x, a) ≐?A f(a, x)} has an infinite mcsu:
{{x↦ a},{x↦ f(a, a)},{x↦ f(a, f(a, a))}, . . .}

• Hence, A-unification can not be unitary or finitary.

• It is not of type zero because any A-unification problem has an mcsu
that can be enumerated by the procedure from

G. Plotkin.
Building in equational theories.
In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 7, pages 73–90. Edinburgh University Press, 1972.

• A-unification is infinitary for any F .
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Unification Type

Example (Type Zero)

Associative-Idempotent unification:
{f(f(x, y), z) ≈ f(x, f(y, z)), f(x,x) ≈ x}.

• {f(x, f(y, x)) ≐?AI f(x, f(z, x))} does not have a minimal complete
set of unifiers, see

F. Baader.
Unification in idempotent semigroups is of type zero.
J. Automated Reasoning, 2(3):283–286, 1986.

• AI-unification is of type zero.
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Unification Type. Signature Matters

Unification Type depends on F .

Example

Associative-commutative unification with unit (ACU):

• {f(f(x, y), z) ≈ f(x, f(y, z)), f(x, y) ≈ f(y, x), f(x, e) ≈ x}.

• Any ACU problem built using only f and variables is unitary.

• There are ACU problems containing function symbols other than f
and e, which are finitary, not unitary.

• For instance, mcsu({f(x, y) ≐?ACU f(a, b)}) consists of four unifiers
(which ones?).

Kinds of E-unification.
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Kinds of E-Unification

One may distinguish three kinds of E-unification problems, depending on
the function symbols that are allowed to occur in them.

E-Unification Problems: Elementary, with Constants, General.

• E: an equational Theory.
Γ: an E-unification problem over F .

• Γ is an elementary E-unification problem iff F = sig(E).

• Γ is an E-unification problem with constants iff F ∖ sig(E) consists
of constants.

• Γ is a general E-unification problem iff F ∖ sig(E) may contain
arbitrary function symbols.
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Unification Types of Theories wrt Kinds

Unification Types Depending on Signature

• Unification type of E wrt elementary unification:
Maximal unification type of E wrt all F such that F = sig(E).

• Unification type of E wrt unification with constants:
Maximal unification type of E wrt all F such that F ∖ sig(E)
is a set of constants.

• Unification type of E wrt general unification:
Maximal unification type of E wrt all F such that F ∖ sig(E)
is a set of arbitrary function symbols.
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Unification Types of Theories wrt Kinds

The same equational theory can have different unification types for
different kinds. Examples:

• ACU (Abelian monoids): Unitary wrt elementary unification, finitary
wrt unification with constants and general unification.

• AG (Abelian groups): Unitary wrt elementary unification and
unification with constants, finitary wrt general unification.
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Single Equation vs Systems of Equations

• In syntactic unification, solving systems of equations can be reduced
to solving a single equation.

• For equational unification, the same holds only for general unification.

• For elementary unification and for unification with constants it is not
the case.
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Unification Types wrt of Cardinality of Problems

There exists an equational theory E such that

• all elementary E-unification problems of cardinality 1 (single
equations) have minimal complete sets of E-unifiers, but

• E is of type zero wrt to elementary unification: There exists an
elementary E-unification problem of cardinality 2 that does not have
a minimal complete set of unifiers.

H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß.
On equational theories, unification, and decidability.
J. Symbolic Computation 8(3,4), 3–49. 1989.
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Decision and Unification Procedures

• Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F) returns
success if Γ is E-unifiable, and failure otherwise.

• E is decidable if it admits a decision procedure.

• (Minimal) E-unification algorithm (wrt F): An algorithm that
computes a (minimal) finite complete set of E-unifiers for all
E-unification problems over F .

• E-unification algorithm yields a decision procedure for E.

• (Minimal) E-unification procedure: A procedure that enumerates a
possible infinite (minimal) complete set of E-unifiers.

• E-unification procedure does not yield a decision procedure for E.
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Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of
E-unification.

• There exists an equational theory for which elementary unification is
decidable, but unification with constants is undecidable:

H.-J. Bürckert.
Some relationships between unification, restricted unification, and
matching.
In J. Siekmann, editor, Proc. 8th Int. Conference on Automated
Deduction, volume 230 of LNCS. Springer, 1986.
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Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of
E-unification.

• There exists an equational theory for which unification with constants
is decidable, but general unification is undecidable:

J. Otop.
E-unification with constants vs. general E-unification.
Journal of Automated Reasoning, 48(3):363–390, 2012.
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Decidability wrt Problem Cardinality

There exists an equational theory E such that

• unifiability of elementary E-unification problems of cardinality 1
(single equations) is decidable, but

• for elementary problems of larger cardinality it is undecidable.

P. Narendran and H. Otto.
Some results on equational unification.
In M. E. Stickel, editor, Proc. 10th Int. Conference on Automated
Deduction, volume 449 of LNAI. Springer, 1990.
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Summary

• Unification type depends on
• equational theory,
• signature (kinds),
• cardinality of unification problems.

• Decidability depends on
• equational theory,
• signature (kinds),
• cardinality of unification problems.
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Three Main Questions in Unification Theory

Decidability: Is it decidable whether an E-unification problem is solvable?
If yes, what is the complexity of this decision problem?

Unification type: What is the unification type of the theory E?

Unification algorithm: How can we obtain an (efficient) E-unification
algorithm, or a (preferably minimal) E-unification procedure?
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Summary of Results for Specific Theories

General unification:

Theory Decidability Type Algorithm/Procedure
∅, BR Yes 1 Yes
A, AU Yes ∞ Yes
C, AC, ACU Yes ω Yes
I, CI, ACI Yes ω Yes
AI Yes 0 ?
D{f,g}Ag No ∞ ?
AG Yes ω Yes
CRU No ? (∞ or 0) ?

BR - Boolean ring, D - distributivity, CRU - commutative ring with unit.
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Commutative Unification and Matching

• C-unification inference system UC can be obtained from the U by
adding the C-Decomposition rule:

C-Decomposition: {f(s1, s2) ≐?C f(t1, t2)} ⊎ P
′;S Ô⇒

{s1 ≐?C t2, s2 ≐
?
C t1} ∪ P

′;S,

if f is commutative.

• C-Decomposition and Decomposition transform the same system
in different ways.

• C-matching algorithm MC is obtained analogously from M.
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C-Unification

In order to C-unify s and t:

1 Create an initial system {s ≐?C t};∅.

2 Apply successively rules from UC, building a complete tree of
derivations. C-Decomposition and Decomposition rules have to be
applied concurrently and form branching points in the derivation tree.
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Example. C-Unification

C-unify g(f(x, y), z) and g(f(f(a, b), f(b, a)), c), commutative f .

{g(f(x, y), z) ≐?C g(f(f(a, b), f(b, a))), c)};∅

{f(x, y) ≐?C f(f(a, b), f(b, a)), z ≐?C c};∅

{x ≐?C f(a, b), y ≐?C f(b, a), z ≐?C c};∅ {x ≐?C f(b, a), y ≐?C f(a, b), z ≐?C c};∅

{y ≐?C f(b, a), z ≐?C c};{x ≐ f(a, b)}

{z ≐?C c};{x ≐ f(a, b), y ≐ f(b, a)}

∅;{x ≐ f(a, b), y ≐ f(b, a), z ≐ c}

{y ≐?C f(a, b), z ≐?C c};{x ≐ f(b, a)}

{z ≐?C c};{x ≐ f(b, a), y ≐ f(a, b)}

∅;{x ≐ f(b, a), y ≐ f(a, b), z ≐ c}

Not minimal.
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Properties of the C-Unification Algorithm

Theorem

Applied to a C-unification problem P , the C-unification algorithm
terminates and computes a complete set of C-unifiers of P .

Proof.
• Termination is proved using the same measure as for syntactic

unification.

• Completeness is based on the following two facts:
• If Γ is transformed by only one rule of UC into Γ′, then uC(Γ) = uC(Γ′).
• If Γ is transformed by two rules of UC into Γ1 and Γ2, then
uC(Γ) = uC(Γ1) ∪ uC(Γ2).
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MCSU for C-Unification/Matching Problems Can Be Large

Example

• Problem: f(f(x1, x2), f(x3, x4)) ≐?C f(f(a, b), f(c, d)).

• mcsu contains 4! substitutions.
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Properties of the C-Unification Algorithm

• The algorithm, in general, does not return a minimal complete set of
C-unifiers.

• The obtained complete set can be further minimized, removing
redundant unifiers.

• Not clear how to design a C-unification algorithm that computes a
minimal complete set of unifiers directly.
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45

Motivation
Preliminaries

C- and ACU-Theories
General Results

C-Unification and Matching
ACU-Unification and Matching

Properties of the C-Unification Algorithm

Theorem

The decision problem of C-matching and unification is NP-complete.

Proof.

Exercise.
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ACU-Unification

ACU = {f(f(x, y), z) ≈ f(x, f(y, z)), f(x, y) ≈ f(y, x), f(x, e) ≈ x}

1 Associativity, commutativity, unit element.

2 f is associative and commutative, e is the unit element.
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Example: Elementary ACU-Unification

Elementary ACU-unification problem:

Γ = {f(x, f(x, y)) ≐?ACU f(z, f(z, z))}

Solving idea:

1. Associate with the equation in Γ a homogeneous linear Diophantine
equation 2x + y = 3z.

2. The equation states that the number of new variables introduced by a
unifier σ in both sides of Γσ must be the same.

(Continues on the next slide.)
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Example. Elementary ACU-Unification (Cont.)

3. Solve 2x + y = 3z over nonnegative integers. Three minimal solutions:

x = 1, y = 1, z = 1

x = 0, y = 3, z = 1

x = 3, y = 0, z = 2

Any other solution of the equation can be obtained as a nonnegative
linear combination of these three solutions.

(Continues on the next slide.)
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Example. Elementary ACU-Unification (Cont.)

4. Introduce new variables v1, v2, v3 for each solution of the
Diophantine equation:

x y z

v1 1 1 1
v2 0 3 1
v3 3 0 2

5. Each row corresponds to a unifier of Γ:

σ1 ={x↦ v1, y ↦ v1, z ↦ v1}
σ2 ={x↦ e, y ↦ f(v2, f(v2, v2)), z ↦ v2}
σ3 ={x↦ f(v3, f(v3, v3)), y ↦ e, z ↦ f(v3, v3)}

However, none of them is an mgu.
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Example. Elementary ACU-Unification (Cont.)

6. To obtain an mgu, we should combine all three solutions:

x y z

v1 1 1 1
v2 0 3 1
v3 3 0 2

The columns indicate that the mgu we are looking for should have
• in the binding for x one v1, zero v2, and three v3’s,
• in the binding for y one v1, three v2’s, and zero v3,
• in the binding for z one v1, one v2, and two v3’s

7. Hence, we can construct an mgu:

σ = {x↦ f(v1, f(v3, f(v3, v3))), y ↦ f(v1, f(v2, f(v2, v2))),
z ↦ f(v1, f(v2, f(v3, v3)))}
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Example: ACU-Unification with constants

• ACU-unification problem with constants

Γ = {f(x, f(x, y)) ≐?ACU f(a, f(z, f(z, z)))}

reduces to inhomogeneous linear Diophantine equation

S = {2x + y = 3z + 1}.

• The minimal nontrivial natural solutions of S are (0,1,0) and
(2,0,1).
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Example: ACU-Unification with constants

• ACU-unification problem with constants

Γ = {f(x, f(x, y)) ≐?ACU f(a, f(z, f(z, z)))}

reduces to inhomogeneous linear Diophantine equation

S = {2x + y = 3z + 1}.

• Every natural solution of S is obtained by as the sum of one of the
minimal solution and a solution of the corresponding homogeneous
LDE 2x + y = 3z.

• One element of the minimal complete set of unifiers of Γ is obtained
from the combination of one minimal solution of S with the set of all
minimal solutions of 2x + y = 3z.
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Example: ACU-Unification with constants

• ACU-unification problem with constants

Γ = {f(x, f(x, y)) ≐?ACU f(a, f(z, f(z, z)))}
reduces to inhomogeneous linear Diophantine equation

S = {2x + y = 3z + 1}.
• The minimal complete set of unifiers of Γ is {σ1, σ2}, where

σ1 = {x↦ f(v1, f(v3, f(v3, v3))),
y ↦ f(a, f(v1, f(v2, f(v2, v2))),
z ↦ f(v1, f(v2, f(v3, v3)))}

σ2 = {x↦ f(a, f(a, f(v1, f(v3, f(v3, v3))))),
y ↦ f(v1, f(v2, f(v2, v2)),
z ↦ f(a, f(v1, f(v2, f(v3, v3))))}
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ACU-Unification with constants

• If an ACU-unification problem contains more than one constant, solve
the corresponding inhomogeneous LDE for each constant.

• The unifiers in the minimal complete set correspond to all possible
combinations of the minimal solutions of these inhomogeneous
equations.
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ACU-Unification with constants

Example

xxy ≐?ACU aabbb:

• Equation for a: 2x + y = 2. Minimal solutions: (1,0) and (0,2).

• Corresponding unifiers: {x↦ a, y ↦ e}, {x↦ e, y ↦ aa}
• Equation for b: 2x + y = 3. Minimal solutions: (0,3) and (1,1).

• Corresponding unifiers: {x↦ e, y ↦ bbb}, {x↦ b, y ↦ b}
• Unifiers in the minimal complete set: {x↦ a, y ↦ bbb},

{x↦ ab, y ↦ b}, {x↦ e, y ↦ aabbb}, {x↦ b, y ↦ aab}.
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From ACU to AC

Example

• How to solve Γ1 = {f(x, f(x, y)) ≐?AC f(z, f(z, z))}?

• We “know” how to solve Γ2 = {f(x, f(x, y)) ≐?ACU f(z, f(z, z))}, but
its mgu is not an mgu for Γ1.

• Mgu of Γ2:

σ = {x↦ f(v1, f(v3, f(v3, v3))), y ↦ f(v1, f(v2, f(v2, v2))),
z ↦ f(v1, f(v2, f(v3, v3)))}

• Unifier of Γ1: ϑ = {x↦ v1, y ↦ v1, z ↦ v1}.

• σ is not more general modulo AC than ϑ.
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From ACU to AC

Example

• Idea: Take the mgu of Γ2.

• Compose it with all possible erasing substitutions that map a subset
of {v1, v2, v3} to the unit element.

• Restriction: The result of the composition should not map x, y, and z
to the unit element.
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From ACU to AC

Example

Minimal complete set of unifiers for Γ1:

σ1 = {x↦ f(v1, f(v3, f(v3, v3))), y ↦ f(v1, f(v2, f(v2, v2))),
z ↦ f(v1, f(v2, f(v3, v3)))}

σ2 = {x↦ f(v3, f(v3, v3)), y ↦ f(v2, f(v2, v2)),
z ↦ f(v2, f(v3, v3))}

σ3 = {x↦ f(v1, f(v3, f(v3, v3))), y ↦ v1, z ↦ f(v1, f(v3, v3))}
σ4 = {x↦ v1, y ↦ f(v1, f(v2, f(v2, v2))), z ↦ f(v1, v2)}
σ5 = {x↦ v1, y ↦ v1, z ↦ v1}

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012
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How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear
Diophantine Equations.
Information and Computation 113(1): 143–172 (1994).

Generalizes Fortenbacher’s Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201–216 (1989).
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Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a11x1 +⋯+ a1nxn = 0
⋮ ⋮ ⋮

am1x1 +⋯+ amnxn = 0

• aij ’s are integers.

• Looking for nontrivial natural solutions.
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Homogeneous Case

Example

{ − x1 + x2 + 2x3 − 3x4 = 0
− x1 + 3x2 − 2x3 − x4 = 0

Nontrivial solutions:

• s1 = (0,1,1,1)

• s2 = (4,2,1,0)

• s3 = (0,2,2,2) = 2s1

• s4 = (8,4,2,0) = 2s2

• s5 = (4,3,2,1) = s1 + s2
• s6 = (8,5,3,1) = s1 + 2s2

• . . .
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Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a11x1 +⋯+ a1nxn = 0
⋮ ⋮ ⋮

am1x1 +⋯+ amnxn = 0

• aij ’s are integers.

• Looking for a basis in the set of nontrivial natural solutions.

• Does it exist?
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Homogeneous Case

The basis in the set S of nontrivial natural solutions of a homogeneous
LDS is the set of ≫-minimal elements S.

≫ is the ordering on tuples of natural numbers:

(x1, . . . , xn) ≫ (y1, . . . , yn)

if and only if

• xi ≥ yi for all 1 ≤ i ≤ n and

• xi > yi for some 1 ≤ i ≤ n.
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Matrix Form

Homogeneous linear Diophantine system with m equations and n variables:

Ax↓ = 0↓,

where

A ∶=
⎛
⎜
⎝

a11 ⋯ a1n
⋮ ⋮

am1 ⋯ amn

⎞
⎟
⎠

x↓ ∶=
⎛
⎜
⎝

x1
⋮
xn

⎞
⎟
⎠

0↓ ∶=
⎛
⎜
⎝

0
⋮
0

⎞
⎟
⎠
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Matrix Form

• Canonical basis in Nn: (e1↓, . . . , en↓).

• ej↓ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
⋮
1
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, with 1 in j’s row.

• Then Ax↓ = x1Ae1↓ +⋯ + xnAen↓.
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Matrix Form

• a: The linear mapping associated to A.

a(x↓) =
⎛
⎜
⎝

a11x1 +⋯+ a1nxn
⋮ ⋮

am1x1 +⋯+ amnxn

⎞
⎟
⎠
= x1a(e1↓) +⋯ + xna(en↓).
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Single Equation: Idea

Case m = 1: Single homogeneous LDE a1x1 +⋯ + anxn = 0.
Fortenbacher’s idea:

• Search minimal solutions starting from the elements in the canonical
basis of Nn.

• Suppose the current vector v↓ is not a solution.

• It can be nondeterministically increased, component by component,
until it becomes a solution or greater than a solution.

• To decrease the search space, the following restrictions can be
imposed:

• If a(v↓) > 0, then increase by one some vj with aj < 0.
• If a(v↓) < 0, then increase by one some vj with aj > 0.
• (If a(v↓)a(ej↓) < 0 for some j, increase vj by one.)
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Single Equation: Geometric Interpretation of the Idea

• Fortenbacher’s condition
If a(v↓)a(ej↓) < 0 for some j, increase vj by one.

• Increasing vj by one: a(v↓ + ej↓) = a(v↓) + a(ej↓).

• Going to the “right direction”, towards the origin.

O Forbidden

direction

a(v↓)
a(ej↓)
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Single Equation: Algorithm

Case m = 1: Single homogeneous LDE a1x1 +⋯ + anxn = 0.
Fortenbacher’s algorithm:

• Start with the pair P,M of the set of potential solutions
P = {e1↓, . . . , en↓} and the set of minimal nontrivial solutions M = ∅.

• Apply repeatedly the rules:

1 {v↓} ∪ P ′,M Ô⇒ P ′,M ,
if v↓ ≫ u↓ for some u↓ ∈M .

2 {v↓} ∪ P ′,M Ô⇒ P ′,{v↓} ∪M,
if a(v↓) = 0 and rule 1 is not applicable.

3 P,M Ô⇒ {v↓ + ej↓ ∣ v↓ ∈ P, a(v↓)a(ej↓) < 0, j ∈ 1..n},M ,
if rules 1 and 2 are not applicable.

• If ∅,M is reached, return M .
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System of Equations: Idea

• General case: System of homogeneous LDEs.

• a(x↓) = 0↓.
• Generalizing Fortenbacher’s idea:

• Search minimal solutions starting from the elements in the canonical
basis of Nn.

• Suppose the current vector v↓ is not a solution.
• It can be nondeterministically increased, component by component,

until it becomes a solution or greater than a solution.
• To decrease the search space, increase only those components that lead

to the “right direction”.
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System of Equations: How to Restrict

• “Right direction”: Towards the origin.
• If a(v↓) ≠ 0↓, then do a(v↓ + ej↓) = a(v↓) + a(ej↓).
• a(v↓) + a(ej↓) should lie in the half-space containing O.
• Contejean-Devie condition: If a(v↓) ⋅ a(ej↓) < 0 for some j, increase
vj by one. (⋅ is the scalar product.)

O

Forbidden

half-space

a(v↓)

a(ej↓)
a(v↓ + ej↓)
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How to Restrict: Comparison

• Fortenbacher’s condition
If a(v↓)a(ej↓) < 0 for some j, increase vj by one.

• Contejean-Devie condition
If a(v↓) ⋅ a(ej↓) < 0 for some j, increase vj by one.
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How to Restrict: Comparison

Fortenbacher’s condition

O Forbidden

direction

a(v↓)
a(ej↓)

Contejean-Devie condition

O

Forbidden

half-space

a(v↓)

a(ej↓)
a(v↓ + ej↓)
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System of Equations: Algorithm

System of homogeneous LDEs: a(x↓) = 0↓.
Contejean-Devie algorithm:

• Start with the pair P,M where
• P = {e1↓, . . . , en↓} is the set of potential solutions,
• M = ∅ is the set of minimal nontrivial solutions.

• Apply repeatedly the rules:

1 {v↓} ∪ P ′,M Ô⇒ P ′,M ,
if v↓ ≫ u↓ for some u↓ ∈M .

2 {v↓} ∪ P ′,M Ô⇒ P ′,{v↓} ∪M,
if a(v↓) = 0↓ and rule 1 is not applicable.

3 P,M Ô⇒ {v↓ + ej↓ ∣ v↓ ∈ P, a(v↓) ⋅ a(ej↓) < 0, j ∈ 1..n},M ,
if rules 1 and 2 are not applicable.

• If ∅,M is reached, return M .
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Contejean-Devie Algorithm on an Example

{
−x1 + x2 + 2x3 − 3x4 = 0
−x1 + 3x2 − 2x3 − x4 = 0

e1↓ = (1,0,0,0)
T e2↓ = (0,1,0,0)

T

e3↓ = (0,0,1,0)
T e4↓ = (0,0,0,1)

T

Start:{e1↓, . . . , e4↓},∅.

1 {v↓} ∪ P ′,M Ô⇒ P ′,M ,
if v↓ ≫ u↓ for some u↓ ∈M .

2 {v↓} ∪ P ′,M Ô⇒ P ′,{v↓} ∪M,
if a(v↓) = 0↓ and rule 1 is not applicable.

3 P,M Ô⇒ {v↓ + ej↓ ∣ v↓ ∈ P,
a(v↓) ⋅ a(ej↓) < 0, j ∈ 1..n},M ,
if rules 1 and 2 are not applicable.

-1
-1

1000
1
3

0100
2

-2
0010

-3
-1

0001

0
2

1100
3
1

0110
-2
2

0101
-1
-3

0011

-1
1

2100
2
0

1110
-3
1

1101 0111

s1

1
-1

2110 1111
≫ s1

2
2

2210 2111
≫ s1

1
1

3210 2211
≫ s1

4210 3211
≫ s1s2
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Contejean-Devie Algorithm on an Example

-1
-1

1000
1
3

0100
2

-2
0010

-3
-1

0001

0
2

1100
3
1

0110
-2
2

0101
-1
-3

0011

-1
1

2100
2
0

1110
-3
1

1101 0111

s1

1
-1

2110 1111
≫ s1

2
2

2210 2111
≫ s1

1
1

3210 2211
≫ s1

4210 3211
≫ s1s2
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Properties of the Algorithm

a(x↓) = 0↓: An n-variate system of homogeneous LDEs.

(e1↓, . . . , en↓): The canonical basis of Nn.

B(a(x↓) = 0↓): Basis in the set of nontrivial natural solutions of
a(x↓) = 0↓.

Theorem
• The Contejean-Devie algorithm terminates on any input.

• Let (e1↓, . . . , en↓),∅Ô⇒∗ ∅,M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x↓) = 0↓. Then

B(a(x↓) = 0↓) =M.
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Notation

• ∥x↓∥ =
√
x21 +⋯ + x2n.

• ∣(s1, . . . , sn)∣ = s1 +⋯ + sn.
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Completeness

Theorem

Let P0,M0 Ô⇒∗ ∅,M be the sequence of transformations performed by
the Contejean-Devie algorithm for a(x↓) = 0↓ with P0 = (e1↓, . . . , en↓) and
M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof.

Assume s↓ ∈ B(a(x↓) = 0↓) and show that there exists a sequence of
vectors

v1↓ = ej0↓ ≪ ⋯ ≪ vk↓ ≪ vk+1↓ = vk↓ + ejk↓ ≪ ⋯ ≪ v∣s↓∣↓ = s↓

such that vi↓ ∈ Pli , where Pli is from the given sequence of
transformations and li < lj for i < j.
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Completeness

Theorem

Let P0,M0 Ô⇒∗ ∅,M be the sequence of transformations performed by
the Contejean-Devie algorithm for a(x↓) = 0↓ with P0 = (e1↓, . . . , en↓) and
M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof (cont.)

For ej0↓, any basic vector ≪ s↓ can be chosen. Such basic vectors do exist
(since s↓ ≠ 0↓) and are in P0. Assume now we have v1↓ ≪ ⋯ ≪ vk↓ ≪ s↓
with vk↓ ∈ Plk . Then there exists sk↓ with s↓ = vk↓ + sk↓ and
0 = ∥a(s↓)∥2 = ∥a(vk↓)∥2 + ∥a(sk↓)∥2 + 2a(vk↓) ⋅ a(sk↓), which implies
a(vk↓) ⋅ a(sk↓) < 0.
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Completeness

Theorem

Let P0,M0 Ô⇒∗ ∅,M be the sequence of transformations performed by
the Contejean-Devie algorithm for a(x↓) = 0↓ with P0 = (e1↓, . . . , en↓) and
M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof (cont.)

Hence, there exists ejk↓ with sk↓ ≫ ejk↓ such that a(vk↓) ⋅ a(ejk↓) < 0.
We take vk+1↓ = vk↓ + ejk↓. Then s↓ ≫ vk+1↓ and by rule 3, vk+1↓ ∈ Plk+1 .
After ∣s↓∣ steps, we reach s. Hence, s↓ ∈ Pl∣s∣ . Since a(s↓) = 0, application
of rule 2 moves s↓ to M .
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Soundness

Theorem

Let P0,M0 Ô⇒∗ ∅,M be the sequence of transformations performed by
the Contejean-Devie algorithm for a(x↓) = 0↓ with P0 = (e1↓, . . . , en↓) and
M0 = ∅. Then M ⊆ B(a(x↓) = 0↓).

Proof.

Any s↓ ∈M is a solution. Show that it is minimal. Assume it is not:
s↓ = s1↓ + s2↓, where s1↓ and s2↓ are non-null solutions smaller than s.
Assume s↓ was obtained during the transformations as s↓ = vi↓ + eji↓,
where vi↓ ∈ Pi. But then vi↓ ≫ s1↓ or vi↓ = s1↓ or vi↓ ≫ s2↓ or vi↓ = s1↓
and vi↓ is greater than an already computed minimal solution. Therefore,
it should have been removed from Pi. A contradiction.
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Termination

Theorem

Let v1↓, v2↓, . . . be an infinite sequence satisfying the Contejean-Devie
condition for a(x↓) = 0↓:

• u1 is a basic vector and for each i ≥ 1 there exists 1 ≤ j ≤ n such that
a(vi↓) ⋅ a(ej↓) < 0 and vi+1↓ = vi↓ + ej↓.

Then there exist v↓ and k such that

• v↓ is a solution of a(x↓) = 0↓, and

• v↓ ≪ vk↓.
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Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations and n
variables:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a11x1 +⋯+ a1nxn = b1
⋮ ⋮ ⋮

am1x1 +⋯+ amnxn = bm

• a’s and b’s are integers.

• Matrix form: a(x↓) = b↓.
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Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S0:

{ −b1x0 + a11x1 + ⋯ + a1nxn = 0
⋮ ⋮ ⋮ ⋮

−bmx0 + am1x1 + ⋯ + amnxn = 0

• Solve S0 and keep only the solutions with x0 ≤ 1.

• x0 = 1: a minimal solution for a(x↓) = b↓.
• x0 = 0: a minimal solution for a(x↓) = 0↓.
• Any solution of the non-homogeneous system a(x↓) = b↓ has the form
x↓ + y↓ where:

• x↓ is a minimal solution of a(x↓) = b↓.
• y↓ is a linear combination (with natural coefficients) of minimal

solutions of a(x↓) = 0↓.
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Back to ACU-Unification

Theorem

The decision problem for ACU-Matching and ACU-unification is
NP-complete.
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Specific vs General Results

For each specific equational theory separately studying

• decidability,

• unification type,

• unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?
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General Results

In general, unification modulo equational theories

• is undecidable,

• unification type of a given theory is undecidable,

• admits a complete unification procedure
(Gallier & Snyder, called an universal E-unification procedure).
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General Results

Universal E-unification procedure UE .

Rules:

• Trivial, Orient, Decomposition, Variable Elimination from U , plus

• Lazy Paramodulation:

{e[u]} ∪ P ′;S Ô⇒ {l ≐? u, e[r]} ∪ P ′;S,

for a fresh variant of the identity l ≈ r from E ∪E−1, where
• e[u] is an equation where the term u occurs,
• u is not a variable,
• if l is not a variable, then the top symbol of l and u are the same.
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General Results

Universal E-unification procedure. Control.

In order to solve a unification problem Γ modulo a given E:

• Create an initial system Γ;∅.

• Apply successively rules from UE , building a complete tree of
derivations.

• No other inference rule may be applied to the equation l ≐? u that is
generated by the Lazy Paramodulation rule before it is subjected to a
Decomposition step.
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General Results

Example

E = {f(a, b) ≈ a, a ≈ b}.

Unification problem: {f(x,x) ≐?E x}.

Computing a unifier {x↦ a} by the universal procedure:

{f(x,x) ≐?E x};∅Ô⇒LP {f(a, b) ≐?E f(x,x), a ≐?E x};∅
Ô⇒D {a ≐?E x, b ≐?E x, a ≐?E x};∅
Ô⇒O {x ≐?E a, b ≐?E x, a ≐?E x};∅
Ô⇒S {b ≐?E a, a ≐?E a};{x ≐ a}
Ô⇒LP {a ≐?E a, b ≐?E b, a ≐?E a};{x ≐ a}
Ô⇒+

T ∅;{x ≐ a}
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92

Motivation
Preliminaries

C- and ACU-Theories
General Results

General Results

Pros and cons of the universal procedure:

• Pros: Is sound and complete. Can be used for any E.

• Cons: Very inefficient. Usually does not yield a decision procedure or
a (minimal) E-unification algorithm even for unitary or finitary
theories with decidable unification.
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General Results

More useful results can be obtained by imposing additional restrictions on
equational theories:

• Syntactic approaches: Restricting syntactic form of the identities
defining equational theories.

• Semantic approaches: Depend on properties of the free algebras
defined by the equational theory.
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Summary

• Syntactic unification and matching.
• Unification and matching algorithms.
• Unification on term graphs, algorithms with improved complexity.

• Equational unification and matching
• Classification with respect to unification type.
• Algorithms for commutative and ACU-unification, including solving

systems of linear Diophantine equations.
• Universal E-unification procedure.
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