International School on Rewriting (ISR 2012) in the Alan Turing Year

MUG: Matching, Unification, Generalizations Part 2

Temur Kutsia Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria

Overview

Part 1

Syntactic unification and matching

Part 2

Equational unification and matching

Overview

Part 1

Syntactic unification and matching

Part 2

Equational unification and matching

Motivation

- Equational matching and unification algorithms are used in
 - · rewriting and completion modulo equalities,
 - automated reasoning,
 - logic programming with equalities,
 - ...

Motivation

- Equational unification is a dual problem for the word problem.
- E: A given set of equalities.
- Word problem:

Does $\forall \overline{x}. s \doteq t$ hold in all models of E?

• Equational unification:

Does $\exists \overline{x}. s \doteq t$ hold in all nonempty models of *E*?

Motivation

- Equational unification generalizes syntactic unification.
- f(x,y) ≐? f(a,b) has only one mgu {x ↦ a, y ↦ b}, if it is a syntactic unification problem.
- If f is commutative, then $\{x\mapsto b, y\mapsto a\}$ is another unifier.

Equational Theories, Reformulations of Notions Unification Type Decidability

Notation

- First-order language.
- \mathcal{F} : Set of function symbols.
- \mathcal{V} : Set of variables.
- x, y, z: Variables.
- *a*,*b*,*c*: Constants.
- f, g, h: Arbitrary function symbols.
- *s*,*t*,*r*: Terms.
- $\mathcal{T}(\mathcal{F}, \mathcal{V})$: Set of terms over \mathcal{F} and \mathcal{V} .

Equational Theories, Reformulations of Notions Unification Type Decidability

Notation

- Equation: a pair of terms, written $s \doteq t$.
- *vars*(*t*): The set of variables in *t*. This notation will be used also for sets of terms, equations, and sets of equations.
- σ , ϑ , η , ρ : Substitutions.
- ε : The identity substitution.

Equational Theories, Reformulations of Notions Unification Type Decidability

Equational Theory

Equational Theory

- E: a set of equations over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, called identities.
- Equational theory \doteq_E defined by E: The least congruence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ stable under substitution application and containing E.
- That means, \doteq_E is the least binary relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ such that:
 - $E \subseteq \doteq_E$.
 - Reflexivity: $s \doteq_E s$ for all s.
 - Symmetry: If $s \doteq_E t$ then $t \doteq_E s$ for all s, t.
 - Transitivity: If $s \doteq_E t$ and $t \doteq_E r$ then $s \doteq_E r$ for all s, t, r.
 - Congruence: If $s_1 \doteq_E t_1, \ldots, s_n \doteq_E t_n$ then $f(s_1, \ldots, s_n) \doteq_E f(t_1, \ldots, t_n)$ for all s, t, n and n-ary f.
 - Stability: If $s \doteq_E t$ then $s\sigma \doteq_E t\sigma$ for all s, t, σ .

Equational Theories, Reformulations of Notions Unification Type Decidability

Notation, Terminology

- $s \doteq_E t$:
 - The pair (s,t) belongs to the equational theory \doteq_E .
 - The term s is equal modulo E to the term t.
- *s* ≈ *t*: Identities.
- sig(E): The set of function symbols that occur in E.
- Sometimes E is called an equational theory as well.

Equational Theories, Reformulations of Notions Unification Type Decidability

Notation, Terminology

Example

Equational Theories, Reformulations of Notions Unification Type Decidability

Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

- E: a given set of identities.
- E-Unification problem over \mathcal{F} : a finite set of equations

$$\Gamma = \{ s_1 \doteq_E^? t_1, \dots, s_n \doteq_E^? t_n \},\$$

where $s_i, t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$.

• E-Unifier of Γ : a substitution σ such that

 $s_1\sigma \doteq_E t_1\sigma,\ldots,s_n\sigma \doteq_E t_n\sigma.$

- $u_E(\Gamma)$: the set of *E*-unifiers of Γ .
- Γ is *E*-unifiable iff $u_E(\Gamma) \neq \emptyset$.

12

Equational Theories, Reformulations of Notions Unification Type Decidability

E-Unification vs Syntactic Unification

- Syntactic unification: a special case of E-unification with $E = \emptyset$.
- Any syntactic unifier of an E-unification problem Γ is also an E-unifier of $\Gamma.$
- For $E \neq \emptyset$, $u_E(\Gamma)$ may contain a unifier that is not a syntactic unifier.

Equational Theories, Reformulations of Notions Unification Type Decidability

E-Unification vs Syntactic Unification

Example

- Terms f(a, x) and f(b, y):
 - Not syntactically unifiable.
 - Unifiable module commutativity of f.
 - C-unifier: $\{x \mapsto b, y \mapsto a\}$
- Terms f(a, x) and f(y, b):
 - Have the most general syntactic unifier $\{x \mapsto b, y \mapsto a\}$.
 - If f is associative, then there are additional unifiers, e.g., $\{x \mapsto f(z,b), y \mapsto f(a,z)\}.$

Equational Theories, Reformulations of Notions Unification Type Decidability

Notions Adapted

Instantiation Quasi-Ordering (Modified)

- E: equational theory. \mathcal{X} : set of variables.
- A substitution σ is more general than ϑ modulo E on \mathcal{X} , written $\sigma \leq_E^{\mathcal{X}} \vartheta$, if there exists η such that $x\sigma\eta \doteq_E x\vartheta$ for all $x \in \mathcal{X}$.
- ϑ is called an *E*-instance of σ modulo *E* on \mathcal{X} .
- The relation $\leq_E^{\mathcal{X}}$ is quasi-ordering, called *instantiation quasi-ordering*.
- $= \frac{\chi}{E}$ is the equivalence relation corresponding to \leq_{E}^{χ} .

Equational Theories, Reformulations of Notions Unification Type Decidability

No MGU

- When comparing unifiers of Γ , the set \mathcal{X} is $vars(\Gamma)$.
- Unifiable *E*-unification problems might not have an mgu.

Example

• f is commutative.

•
$$\Gamma = \{f(x,y) \doteq^{?}_{\mathsf{C}} f(a,b)\}$$
 has two C-unifiers:

$$\sigma_1 = \{ x \mapsto a, y \mapsto b \}$$

$$\sigma_2 = \{ x \mapsto b, y \mapsto a \}.$$

- On $vars(\Gamma) = \{x, y\}$, any unifier is equal to either σ_1 or σ_2 .
- σ_1 and σ_2 are not comparable wrt $\leq_{\mathsf{C}}^{\{x,y\}}$.
- Hence, no mgu for Γ .

Equational Theories, Reformulations of Notions Unification Type Decidability

MCSU vs MGU

In $E\mbox{-unification},$ the role of mgu is taken on by a complete set of $E\mbox{-unifiers}.$

Complete and Minimal Complete Sets of *E*-Unifiers

- Γ : *E*-unification problem over \mathcal{F} .
- $\mathcal{X} = vars(\Gamma)$.
- \mathcal{C} is a *complete set of* E*-unifiers* of Γ iff
 - **1**. $\mathcal{C} \subseteq u_E(\Gamma)$: \mathcal{C} 's elements are *E*-unifiers of Γ , and
 - 2. For each $\vartheta \in u_E(\Gamma)$ there exists $\sigma \in \mathcal{C}$ such that $\sigma \leq_E^{\mathcal{X}} \vartheta$.
- C is a minimal complete set of E-unifiers (mcsu_E) of Γ if it is a complete set of E-unifiers of Γ and
 - 3. Two distinct elements of C are not comparable wrt $\leq_E^{\mathcal{X}}$.
- σ is an mgu of Γ iff $mcsu_E(\Gamma) = \{\sigma\}$.

Equational Theories, Reformulations of Notions Unification Type Decidability

MCSU's

- $mcsu_E(\Gamma) = \emptyset$ if Γ is not *E*-unifiable.
- Minimal complete sets of unifiers do not always exist.
- When they exist, they may be infinite.
- When they exist, they are unique up to $= \frac{\chi}{E}$.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Unification Type of a Problem, Theory.

- E: equational theory.
- Γ : *E*-unification problem over \mathcal{F} .
- Γ has unification type
 - unitary, if $mcsu(\Gamma)$ has cardinality at most one,
 - finitary, if $mcsu(\Gamma)$ has finite cardinality,
 - *infinitary*, if $mcsu(\Gamma)$ has infinite cardinality,
 - zero, if $mcsu(\Gamma)$ does not exist.
- Abbreviation: type unitary 1, finitary ω , infinitary ∞ , zero 0.
- Ordering: $1 < \omega < \infty < 0$.
- Unification type of E wrt \mathcal{F} : the maximal type of an E-unification problem over \mathcal{F} .

19

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

The unification type of an E-equational problem over ${\mathcal F}$ depends both

- on E, and
- on $\mathcal F$ (which function symbols are permitted in unification problems).

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Example (Type Unitary)

Syntactic unification.

- The empty equational theory Ø: Syntactic unification.
- Unitary wrt any ${\mathcal F}$ because any unifiable syntactic unification problem has an mgu.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Example (Type Finitary)

Commutative unification: $\{f(x,y) \approx f(y,x)\}$

- Not unitary.
- $\{f(x,y) \doteq_{\mathsf{C}}^{?} f(a,b)\}$ has two unifiers $\{x \mapsto a, y \mapsto b\}$ and $\{x \mapsto b, y \mapsto a\}$.
- No mgu.
- C unification is finitary.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Example (Type Finitary)

- C unification is finitary for any \mathcal{F} :
 - Let $\Gamma = \{s_1 \doteq_{\mathsf{C}}^? t_1, \dots, s_n \doteq_{\mathsf{C}}^? t_n\}$ be a C-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \doteq^? t'_1, \dots, s'_n \doteq^? t'_n\}$, where $s'_i \doteq_{\mathsf{C}} s_i$ and $t'_i \doteq_{\mathsf{C}} t_i$ for each $1 \le i \le n$.
 - There are only finitely many such Γ 's, because the C-equivalence class for a given term t is finite.
 - It can be shown that collection of all mgu's of Γ 's is a complete set of C-unifiers of Γ . This set if finite.
 - If this set is not minimal (often the case), it can be minimized by removing redundant C-unifiers.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Example (Type Infinitary)

Associative unification: $\{f(f(x,y),z) \approx f(x,f(y,z))\}$.

- $\{f(x,a) \doteq^{?}_{\mathsf{A}} f(a,x)\}$ has an infinite mcsu: $\{\{x \mapsto a\}, \{x \mapsto f(a,a)\}, \{x \mapsto f(a,f(a,a))\}, \ldots\}$
- Hence, A-unification can not be unitary or finitary.
- It is not of type zero because any A-unification problem has an mcsu that can be enumerated by the procedure from

G. Plotkin.

Building in equational theories.

In B. Meltzer and D. Michie, editors, *Machine Intelligence*, volume 7, pages 73–90. Edinburgh University Press, 1972.

• A-unification is infinitary for any $\mathcal{F}.$

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type

Example (Type Zero)

Associative-Idempotent unification:

$$\{f(f(x,y),z) \approx f(x,f(y,z)), f(x,x) \approx x\}.$$

{f(x, f(y, x)) ≐[?]_{Al} f(x, f(z, x))} does not have a minimal complete set of unifiers, see

F. Baader.

Unification in idempotent semigroups is of type zero.

- J. Automated Reasoning, 2(3):283–286, 1986.
- Al-unification is of type zero.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Type. Signature Matters

Unification Type depends on \mathcal{F} .

Example

Associative-commutative unification with unit (ACU):

- $\{f(f(x,y),z) \approx f(x,f(y,z)), f(x,y) \approx f(y,x), f(x,e) \approx x\}.$
- Any ACU problem built using only f and variables is unitary.
- There are ACU problems containing function symbols other than f and e, which are finitary, not unitary.
- For instance, $mcsu(\{f(x,y) \doteq^{?}_{ACU} f(a,b)\})$ consists of four unifiers (which ones?).

Kinds of *E*-unification.

Equational Theories, Reformulations of Notions Unification Type Decidability

Kinds of E-Unification

One may distinguish three kinds of E-unification problems, depending on the function symbols that are allowed to occur in them.

E-Unification Problems: Elementary, with Constants, General.

- E: an equational Theory.
 - $\Gamma: \text{ an } E\text{-unification problem over } \mathcal{F}.$
- Γ is an elementary *E*-unification problem iff $\mathcal{F} = sig(E)$.
- Γ is an *E*-unification problem with constants iff $\mathcal{F} \smallsetminus sig(E)$ consists of constants.
- Γ is a general *E*-unification problem iff $\mathcal{F} \smallsetminus sig(E)$ may contain arbitrary function symbols.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Types of Theories wrt Kinds

Unification Types Depending on Signature

- Unification type of E wrt elementary unification: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} = sig(E)$.
- Unification type of E wrt unification with constants: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} \smallsetminus sig(E)$ is a set of constants.
- Unification type of E wrt general unification: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} \smallsetminus sig(E)$ is a set of arbitrary function symbols.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Types of Theories wrt Kinds

The same equational theory can have different unification types for different kinds. Examples:

- ACU (Abelian monoids): Unitary wrt elementary unification, finitary wrt unification with constants and general unification.
- AG (Abelian groups): Unitary wrt elementary unification and unification with constants, finitary wrt general unification.

Equational Theories, Reformulations of Notions Unification Type Decidability

Single Equation vs Systems of Equations

- In syntactic unification, solving systems of equations can be reduced to solving a single equation.
- For equational unification, the same holds only for general unification.
- For elementary unification and for unification with constants it is not the case.

Equational Theories, Reformulations of Notions Unification Type Decidability

Unification Types wrt of Cardinality of Problems

There exists an equational theory E such that

- all elementary *E*-unification problems of cardinality 1 (single equations) have minimal complete sets of *E*-unifiers, but
- *E* is of type zero wrt to elementary unification: There exists an elementary *E*-unification problem of cardinality 2 that does not have a minimal complete set of unifiers.

H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß. On equational theories, unification, and decidability. *J. Symbolic Computation* **8**(3,4), 3–49. 1989.

Equational Theories, Reformulations of Notions Unification Type Decidability

Decision and Unification Procedures

- Decision procedure for an equational theory E (wrt \mathcal{F}): An algorithm that for each E-unification problem Γ (wrt \mathcal{F}) returns success if Γ is E-unifiable, and *failure* otherwise.
- E is decidable if it admits a decision procedure.
- (Minimal) *E*-unification algorithm (wrt *F*): An algorithm that computes a (minimal) finite complete set of *E*-unifiers for all *E*-unification problems over *F*.
- *E*-unification algorithm yields a decision procedure for *E*.
- (Minimal) *E*-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of *E*-unifiers.
- E-unification procedure does not yield a decision procedure for <u>E</u>.

Equational Theories, Reformulations of Notions Unification Type Decidability

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of E-unification.

- There exists an equational theory for which elementary unification is decidable, but unification with constants is undecidable:
 - H.-J. Bürckert.

Some relationships between unification, restricted unification, and matching.

In J. Siekmann, editor, *Proc. 8th Int. Conference on Automated Deduction*, volume 230 of *LNCS*. Springer, 1986.

Equational Theories, Reformulations of Notions Unification Type Decidability

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of E-unification.

- There exists an equational theory for which unification with constants is decidable, but general unification is undecidable:
 - J. Otop.

E-unification with constants vs. general E-unification. Journal of Automated Reasoning, 48(3):363–390, 2012.

Equational Theories, Reformulations of Notions Unification Type Decidability

Decidability wrt Problem Cardinality

There exists an equational theory E such that

- unifiability of elementary *E*-unification problems of cardinality 1 (single equations) is decidable, but
- for elementary problems of larger cardinality it is undecidable.
- P. Narendran and H. Otto.

Some results on equational unification.

In M. E. Stickel, editor, *Proc. 10th Int. Conference on Automated Deduction*, volume 449 of *LNAI*. Springer, 1990.

Equational Theories, Reformulations of Notions Unification Type Decidability

Summary

- Unification type depends on
 - equational theory,
 - signature (kinds),
 - cardinality of unification problems.
- Decidability depends on
 - equational theory,
 - signature (kinds),
 - cardinality of unification problems.

Equational Theories, Reformulations of Notions Unification Type Decidability

Three Main Questions in Unification Theory

Decidability: Is it decidable whether an *E*-unification problem is solvable? If yes, what is the complexity of this decision problem?Unification type: What is the unification type of the theory *E*?Unification algorithm: How can we obtain an (efficient) *E*-unification algorithm, or a (preferably minimal) *E*-unification procedure?

Equational Theories, Reformulations of Notions Unification Type Decidability

Summary of Results for Specific Theories

General unification:

Theory	Decidability	Туре	Algorithm/Procedure
ø, BR	Yes	1	Yes
A, AU	Yes	∞	Yes
C, AC, ACU	Yes	ω	Yes
I, CI, ACI	Yes	ω	Yes
AI	Yes	0	?
$D_{\{f,g\}}A_g$	No	∞	?
AG	Yes	ω	Yes
CRU	No	? (∞ or 0)	?

BR - Boolean ring, D - distributivity, CRU - commutative ring with unit.

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012

C-Unification and Matching ACU-Unification and Matching

Commutative Unification and Matching

• C-unification inference system \mathcal{U}_C can be obtained from the $\mathcal U$ by adding the C-Decomposition rule:

C-Decomposition: $\{f(s_1, s_2) \doteq^?_{\mathsf{C}} f(t_1, t_2)\} \uplus P'; S \Longrightarrow$ $\{s_1 \doteq^?_{\mathsf{C}} t_2, s_2 \doteq^?_{\mathsf{C}} t_1\} \cup P'; S,$ if f is commutative.

- C-Decomposition and Decomposition transform the same system in different ways.
- C-matching algorithm \mathcal{M}_C is obtained analogously from \mathcal{M} .

C-Unification and Matching ACU-Unification and Matching

C-Unification

In order to C-unify s and t:

- **1** Create an initial system $\{s \doteq^{?}_{\mathsf{C}} t\}; \emptyset$.
- 2 Apply successively rules from U_C, building a complete tree of derivations. C-Decomposition and Decomposition rules have to be applied concurrently and form branching points in the derivation tree.

C-Unification and Matching ACU-Unification and Matching

Example. C-Unification

C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

$$\{g(f(x,y),z) \doteq_{\mathsf{C}}^{?} g(f(f(a,b),f(b,a))),c)\}; \varnothing$$

$$\{f(x,y) \doteq_{\mathsf{C}}^{?} f(f(a,b),f(b,a)),z \doteq_{\mathsf{C}}^{?} c\}; \varnothing$$

$$\{f(x,y) \doteq_{\mathsf{C}}^{?} f(f(a,b),f(b,a)),z \doteq_{\mathsf{C}}^{?} c\}; \varnothing$$

$$\{x \doteq_{\mathsf{C}}^{?} f(a,b),y \doteq_{\mathsf{C}}^{?} f(b,a),z \doteq_{\mathsf{C}}^{?} c\}; (x \doteq_{\mathsf{C}}^{?} f(a,b),z \doteq_{\mathsf{C}}^{?} c\}; (x \doteq_{\mathsf{C}}^{?} f(a,b),z \doteq_{\mathsf{C}}^{?} c); (x \triangleq_{\mathsf{C}}^{?} c); (x \doteq_{\mathsf{C}}^{?} c); (x \triangleq_{\mathsf{C}}^{?} c); (x \triangleq_{$$

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012

C-Unification and Matching ACU-Unification and Matching

Properties of the C-Unification Algorithm

Theorem

Applied to a C-unification problem P, the C-unification algorithm terminates and computes a complete set of C-unifiers of P.

Proof.

- Termination is proved using the same measure as for syntactic unification.
- Completeness is based on the following two facts:
 - If Γ is transformed by only one rule of U_C into Γ', then u_C(Γ) = u_C(Γ').
 - If Γ is transformed by two rules of \mathcal{U}_{C} into Γ_1 and Γ_2 , then $u_{\mathsf{C}}(\Gamma) = u_{\mathsf{C}}(\Gamma_1) \cup u_{\mathsf{C}}(\Gamma_2)$.

42

C-Unification and Matching ACU-Unification and Matching

MCSU for C-Unification/Matching Problems Can Be Large

Example

- Problem: $f(f(x_1, x_2), f(x_3, x_4)) \doteq^?_{\mathsf{C}} f(f(a, b), f(c, d)).$
- mcsu contains 4! substitutions.

C-Unification and Matching ACU-Unification and Matching

Properties of the C-Unification Algorithm

- The algorithm, in general, does not return a minimal complete set of C-unifiers.
- The obtained complete set can be further minimized, removing redundant unifiers.
- Not clear how to design a C-unification algorithm that computes a minimal complete set of unifiers directly.

C-Unification and Matching ACU-Unification and Matching

Properties of the C-Unification Algorithm

Theorem

The decision problem of C-matching and unification is NP-complete.

Proof.

Exercise.

C-Unification and Matching ACU-Unification and Matching

ACU-Unification

 $\mathsf{ACU} = \{f(f(x,y),z) \approx f(x,f(y,z)), f(x,y) \approx f(y,x), f(x,e) \approx x\}$

- 1 Associativity, commutativity, unit element.
- **2** f is associative and commutative, e is the unit element.

C-Unification and Matching ACU-Unification and Matching

Example: Elementary ACU-Unification

Elementary ACU-unification problem:

$$\Gamma = \{f(x, f(x, y)) \doteq^{?}_{\mathsf{ACU}} f(z, f(z, z))\}$$

Solving idea:

- 1. Associate with the equation in Γ a homogeneous linear Diophantine equation 2x + y = 3z.
- 2. The equation states that the number of new variables introduced by a unifier σ in both sides of $\Gamma \sigma$ must be the same.

(Continues on the next slide.)

C-Unification and Matching ACU-Unification and Matching

Example. Elementary ACU-Unification (Cont.)

3. Solve 2x + y = 3z over nonnegative integers. Three minimal solutions:

x = 1, y = 1, z = 1x = 0, y = 3, z = 1x = 3, y = 0, z = 2

Any other solution of the equation can be obtained as a nonnegative linear combination of these three solutions.

(Continues on the next slide.)

C-Unification and Matching ACU-Unification and Matching

Example. Elementary ACU-Unification (Cont.)

4. Introduce new variables v_1 , v_2 , v_3 for each solution of the Diophantine equation:

	x	y	z
v_1	1	1	1
v_2	0	3	1
v_3	3	0	2

5. Each row corresponds to a unifier of Γ :

$$\sigma_1 = \{x \mapsto v_1, y \mapsto v_1, z \mapsto v_1\}$$

$$\sigma_2 = \{x \mapsto e, y \mapsto f(v_2, f(v_2, v_2)), z \mapsto v_2\}$$

$$\sigma_3 = \{x \mapsto f(v_3, f(v_3, v_3)), y \mapsto e, z \mapsto f(v_3, v_3)\}$$

However, none of them is an mgu.

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012

C-Unification and Matching ACU-Unification and Matching

Example. Elementary ACU-Unification (Cont.)

6. To obtain an mgu, we should combine all three solutions:

	x	y	z
v_1	1	1	1
v_2	0	3	1
v_3	3	0	2

The columns indicate that the mgu we are looking for should have

- in the binding for x one v_1 , zero v_2 , and three v_3 's,
- in the binding for y one v_1 , three v_2 's, and zero v_3 ,
- in the binding for z one v_1 , one v_2 , and two v_3 's
- 7. Hence, we can construct an mgu:

$$\sigma = \{x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))), \\ z \mapsto f(v_1, f(v_2, f(v_3, v_3)))\}$$

C-Unification and Matching ACU-Unification and Matching

Example: ACU-Unification with constants

• ACU-unification problem with constants

$$\Gamma = \{f(x, f(x, y)) \doteq^{?}_{\mathsf{ACU}} f(a, f(z, f(z, z)))\}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

• The minimal nontrivial natural solutions of S are (0,1,0) and (2,0,1).

C-Unification and Matching ACU-Unification and Matching

Example: ACU-Unification with constants

• ACU-unification problem with constants

$$\Gamma = \{f(x, f(x, y)) \doteq^{?}_{\mathsf{ACU}} f(a, f(z, f(z, z)))\}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

- Every natural solution of S is obtained by as the sum of one of the minimal solution and a solution of the corresponding homogeneous LDE 2x + y = 3z.
- One element of the minimal complete set of unifiers of Γ is obtained from the combination of one minimal solution of S with the set of all minimal solutions of 2x + y = 3z.

C-Unification and Matching ACU-Unification and Matching

Example: ACU-Unification with constants

• ACU-unification problem with constants

$$\Gamma = \{f(x, f(x, y)) \doteq^{?}_{\mathsf{ACU}} f(a, f(z, f(z, z)))\}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

• The minimal complete set of unifiers of Γ is $\{\sigma_1, \sigma_2\}$, where

$$\sigma_{1} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), \\ y \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), \\ z \mapsto f(v_{1}, f(v_{2}, f(v_{3}, v_{3})))\} \\ \sigma_{2} = \{x \mapsto f(a, f(a, f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))))), \\ y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2})), \\ z \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{3}, v_{3}))))\} \}$$

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012

C-Unification and Matching ACU-Unification and Matching

ACU-Unification with constants

- If an ACU-unification problem contains more than one constant, solve the corresponding inhomogeneous LDE for each constant.
- The unifiers in the minimal complete set correspond to all possible combinations of the minimal solutions of these inhomogeneous equations.

C-Unification and Matching ACU-Unification and Matching

ACU-Unification with constants

Example

 $xxy \doteq^{?}_{\mathsf{ACU}} aabbb:$

- Equation for a: 2x + y = 2. Minimal solutions: (1,0) and (0,2).
- Corresponding unifiers: $\{x \mapsto a, y \mapsto e\}$, $\{x \mapsto e, y \mapsto aa\}$
- Equation for b: 2x + y = 3. Minimal solutions: (0,3) and (1,1).
- Corresponding unifiers: $\{x \mapsto e, y \mapsto bbb\}$, $\{x \mapsto b, y \mapsto b\}$
- Unifiers in the minimal complete set: $\{x \mapsto a, y \mapsto bbb\}$, $\{x \mapsto ab, y \mapsto b\}$, $\{x \mapsto e, y \mapsto aabbb\}$, $\{x \mapsto b, y \mapsto aab\}$.

C-Unification and Matching ACU-Unification and Matching

From ACU to AC

Example

- How to solve $\Gamma_1 = \{f(x, f(x, y)) \doteq_{\mathsf{AC}}^? f(z, f(z, z))\}$?
- We "know" how to solve $\Gamma_2 = \{f(x, f(x, y)) \doteq_{ACU}^? f(z, f(z, z))\}$, but its mgu is not an mgu for Γ_1 .
- Mgu of Γ_2 :

$$\sigma = \{x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))) \\ z \mapsto f(v_1, f(v_2, f(v_3, v_3)))\}$$

- Unifier of Γ_1 : $\vartheta = \{x \mapsto v_1, y \mapsto v_1, z \mapsto v_1\}.$
- σ is not more general modulo AC than ϑ .

C-Unification and Matching ACU-Unification and Matching

From ACU to AC

Example

- Idea: Take the mgu of Γ_2 .
- Compose it with all possible erasing substitutions that map a subset of $\{v_1, v_2, v_3\}$ to the unit element.
- Restriction: The result of the composition should not map x, y, and z to the unit element.

C-Unification and Matching ACU-Unification and Matching

From ACU to AC

Example

Minimal complete set of unifiers for Γ_1 :

$$\sigma_{1} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), \\ z \mapsto f(v_{1}, f(v_{2}, f(v_{3}, v_{3})))\} \\ \sigma_{2} = \{x \mapsto f(v_{3}, f(v_{3}, v_{3})), y \mapsto f(v_{2}, f(v_{2}, v_{2})), \\ z \mapsto f(v_{2}, f(v_{3}, v_{3}))\} \\ \sigma_{3} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), y \mapsto v_{1}, z \mapsto f(v_{1}, f(v_{3}, v_{3}))\} \\ \sigma_{4} = \{x \mapsto v_{1}, y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), z \mapsto f(v_{1}, v_{2})\} \\ \sigma_{5} = \{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\}$$

C-Unification and Matching ACU-Unification and Matching

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie. An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations. Information and Computation 113(1): 143–172 (1994).

Generalizes Fortenbacher's Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher.
 Efficient Solution of Linear Diophantine Equations.
 J. Symbolic Computation 8(1,2): 201–216 (1989).

C-Unification and Matching ACU-Unification and Matching

Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- a_{ij} 's are integers.
- Looking for nontrivial natural solutions.

C-Unification and Matching ACU-Unification and Matching

Homogeneous Case

Example

$$\begin{pmatrix} -x_1 + x_2 + 2x_3 - 3x_4 = 0 \\ -x_1 + 3x_2 - 2x_3 - x_4 = 0 \end{pmatrix}$$

Nontrivial solutions:

- $s_1 = (0, 1, 1, 1)$
- $s_2 = (4, 2, 1, 0)$

. . .

- $s_3 = (0, 2, 2, 2) = 2s_1$
- $s_4 = (8, 4, 2, 0) = 2s_2$
- $s_5 = (4, 3, 2, 1) = s_1 + s_2$
- $s_6 = (8, 5, 3, 1) = s_1 + 2s_2$

C-Unification and Matching ACU-Unification and Matching

Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- a_{ij} 's are integers.
- Looking for a basis in the set of nontrivial natural solutions.
- Does it exist?

C-Unification and Matching ACU-Unification and Matching

Homogeneous Case

The basis in the set S of nontrivial natural solutions of a homogeneous LDS is the set of \gg -minimal elements S.

 \gg is the ordering on tuples of natural numbers:

 $(x_1,\ldots,x_n)\gg(y_1,\ldots,y_n)$

if and only if

- $x_i \ge y_i$ for all $1 \le i \le n$ and
- $x_i > y_i$ for some $1 \le i \le n$.

C-Unification and Matching ACU-Unification and Matching

Matrix Form

Homogeneous linear Diophantine system with m equations and n variables:

 $Ax \downarrow = 0 \downarrow$,

where

$$A := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \quad x \downarrow := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad 0 \downarrow := \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

C-Unification and Matching ACU-Unification and Matching

Matrix Form

• Canonical basis in
$$\mathbb{N}^n$$
: $(e_1 \downarrow, \ldots, e_n \downarrow)$.

•
$$e_{j} \downarrow = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
, with 1 in *j*'s row.

C-Unification and Matching ACU-Unification and Matching

Matrix Form

• *a*: The linear mapping associated to *A*.

$$a(x\downarrow) = \begin{pmatrix} a_{11}x_1 & +\dots + & a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 & +\dots + & a_{mn}x_n \end{pmatrix} = x_1a(e_1\downarrow) + \dots + x_na(e_n\downarrow).$$

C-Unification and Matching ACU-Unification and Matching

Single Equation: Idea

Case m = 1: Single homogeneous LDE $a_1x_1 + \dots + a_nx_n = 0$. Fortenbacher's idea:

- Search minimal solutions starting from the elements in the canonical basis of $\mathbb{N}^n.$
- Suppose the current vector $v\downarrow$ is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- To decrease the search space, the following restrictions can be imposed:
 - If $a(v\downarrow) > 0$, then increase by one some v_j with $a_j < 0$.
 - If $a(v\downarrow) < 0$, then increase by one some v_j with $a_j > 0$.
 - (If a(v↓)a(e_j↓) < 0 for some j, increase v_j by one.)

C-Unification and Matching ACU-Unification and Matching

Single Equation: Geometric Interpretation of the Idea

• Fortenbacher's condition

If $a(v\downarrow)a(e_j\downarrow) < 0$ for some j, increase v_j by one.

- Increasing v_j by one: $a(v \downarrow + e_j \downarrow) = a(v \downarrow) + a(e_j \downarrow)$.
- Going to the "right direction", towards the origin.

C-Unification and Matching ACU-Unification and Matching

Single Equation: Algorithm

Case m = 1: Single homogeneous LDE $a_1x_1 + \dots + a_nx_n = 0$. Fortenbacher's algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1 \downarrow, \dots, e_n \downarrow\}$ and the set of minimal nontrivial solutions $M = \emptyset$.
- Apply repeatedly the rules:
 - $\{v\downarrow\} \cup P', M \Longrightarrow P', M,$ if $v\downarrow \gg u\downarrow$ for some $u\downarrow \in M.$
 - ② $\{v\downarrow\} \cup P', M \Longrightarrow P', \{v\downarrow\} \cup M,$ if $a(v\downarrow) = 0$ and rule 1 is not applicable.
 - $\textbf{3} \ P, M \Longrightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, \ a(v \downarrow)a(e_j \downarrow) < 0, \ j \in 1..n\}, M,$ if rules 1 and 2 are not applicable.
- If \emptyset, M is reached, return M.

C-Unification and Matching ACU-Unification and Matching

System of Equations: Idea

- General case: System of homogeneous LDEs.
- $a(x\downarrow) = 0\downarrow$.
- Generalizing Fortenbacher's idea:
 - Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^n .
 - Suppose the current vector $v\downarrow$ is not a solution.
 - It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
 - To decrease the search space, increase only those components that lead to the "right direction".

C-Unification and Matching ACU-Unification and Matching

System of Equations: How to Restrict

- "Right direction": Towards the origin.
- If $a(v\downarrow) \neq 0\downarrow$, then do $a(v\downarrow + e_j\downarrow) = a(v\downarrow) + a(e_j\downarrow)$.
- $a(v\downarrow) + a(e_j\downarrow)$ should lie in the half-space containing O.
- Contejean-Devie condition: If $a(v\downarrow) \cdot a(e_j\downarrow) < 0$ for some j, increase v_j by one. (\cdot is the scalar product.)

C-Unification and Matching ACU-Unification and Matching

How to Restrict: Comparison

- Fortenbacher's condition
 If a(v↓)a(e_j↓) < 0 for some j, increase v_j by one.
- Contejean-Devie condition
 If a(v↓) · a(e_j↓) < 0 for some j, increase v_j by one.

C-Unification and Matching ACU-Unification and Matching

How to Restrict: Comparison

Fortenbacher's condition

Contejean-Devie condition

C-Unification and Matching ACU-Unification and Matching

System of Equations: Algorithm

System of homogeneous LDEs: $a(x\downarrow) = 0\downarrow$. Contejean-Devie algorithm:

- Start with the pair P, M where
 - $P = \{e_1 \downarrow, \dots, e_n \downarrow\}$ is the set of potential solutions,
 - $M = \emptyset$ is the set of minimal nontrivial solutions.
- Apply repeatedly the rules:
 - $\{v\downarrow\} \cup P', M \Longrightarrow P', M,$ if $v\downarrow \gg u\downarrow$ for some $u\downarrow \in M$.
 - $\begin{array}{l} \mbox{$2$} \{v{\downarrow}\}\cup P', M \Longrightarrow P', \{v{\downarrow}\}\cup M, \\ \mbox{if } a(v{\downarrow})=0{\downarrow} \mbox{ and rule 1 is not applicable.} \end{array}$
 - $\textbf{3} \ P, M \Longrightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, \ a(v \downarrow) \cdot a(e_j \downarrow) < 0, \ j \in 1..n\}, M,$ if rules 1 and 2 are not applicable.
- If \emptyset, M is reached, return M.

Temur Kutsia - MUG - July 19-20, 2012

C-Unification and Matching ACU-Unification and Matching

Contejean-Devie Algorithm on an Example

$$\begin{cases} -x_1 + x_2 + 2x_3 - 3x_4 = 0\\ -x_1 + 3x_2 - 2x_3 - x_4 = 0 \end{cases}$$

$$e_{1} \downarrow = (1, 0, 0, 0)^{T} \quad e_{2} \downarrow = (0, 1, 0, 0)^{T}$$
$$e_{3} \downarrow = (0, 0, 1, 0)^{T} \quad e_{4} \downarrow = (0, 0, 0, 1)^{T}$$

Start: $\{e_1 \downarrow, \ldots, e_4 \downarrow\}, \emptyset$.

- 2 $\{v\downarrow\} \cup P', M \Longrightarrow P', \{v\downarrow\} \cup M,$ if $a(v\downarrow) = 0\downarrow$ and rule 1 is not applicable.

 $\begin{array}{l} \textbf{3} \quad P, M \Longrightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, \\ a(v \downarrow) \cdot a(e_j \downarrow) < 0, \ j \in 1..n\}, M, \\ \text{if rules 1 and 2 are not applicable.} \end{array}$

C-Unification and Matching ACU-Unification and Matching

Contejean-Devie Algorithm on an Example

2012

C-Unification and Matching ACU-Unification and Matching

Properties of the Algorithm

 $a(x\downarrow) = 0\downarrow$: An *n*-variate system of homogeneous LDEs.

 $(e_1 \downarrow, \ldots, e_n \downarrow)$: The canonical basis of \mathbb{N}^n .

 $\mathcal{B}(a(x\downarrow) = 0\downarrow)$: Basis in the set of nontrivial natural solutions of $a(x\downarrow) = 0\downarrow$.

Theorem

- The Contejean-Devie algorithm terminates on any input.
- Let (e₁↓,..., e_n↓), Ø ⇒ * Ø, M be the sequence of transformations performed by the Contejean-Devie algorithm for a(x↓) = 0↓. Then

 $\mathcal{B}(a(x\downarrow)=0\downarrow)=M.$

C-Unification and Matching ACU-Unification and Matching

Notation

•
$$||x\downarrow|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

•
$$|(s_1, \ldots, s_n)| = s_1 + \cdots + s_n$$
.

C-Unification and Matching ACU-Unification and Matching

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x\downarrow) = 0\downarrow$ with $P_0 = (e_1\downarrow, \ldots, e_n\downarrow)$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x\downarrow) = 0\downarrow) \subseteq M$.

Proof.

Assume $s \downarrow \in \mathcal{B}(a(x \downarrow) = 0 \downarrow)$ and show that there exists a sequence of vectors

$$v_1 {\downarrow} = e_{j_0} {\downarrow} \ll \cdots \ll v_k {\downarrow} \ll v_{k+1} {\downarrow} = v_k {\downarrow} + e_{j_k} {\downarrow} \ll \cdots \ll v_{|s {\downarrow}|} {\downarrow} = s {\downarrow}$$

such that $v_i \downarrow \in P_{l_i}$, where P_{l_i} is from the given sequence of transformations and $l_i < l_j$ for i < j.

C-Unification and Matching ACU-Unification and Matching

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x\downarrow) = 0\downarrow$ with $P_0 = (e_1\downarrow, \ldots, e_n\downarrow)$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x\downarrow) = 0\downarrow) \subseteq M$.

Proof (cont.)

For $e_{j0}\downarrow$, any basic vector $\ll s\downarrow$ can be chosen. Such basic vectors do exist (since $s\downarrow \neq 0\downarrow$) and are in P_0 . Assume now we have $v_1\downarrow \ll \cdots \ll v_k\downarrow \ll s\downarrow$ with $v_k\downarrow \in P_{l_k}$. Then there exists $s_k\downarrow$ with $s\downarrow = v_k\downarrow + s_k\downarrow$ and $0 = ||a(s\downarrow)||^2 = ||a(v_k\downarrow)||^2 + ||a(s_k\downarrow)||^2 + 2a(v_k\downarrow) \cdot a(s_k\downarrow)$, which implies $a(v_k\downarrow) \cdot a(s_k\downarrow) < 0$.

Temur Kutsia – MUG – July 19-20, 2012 ISR 2012 - Universitat Politècnica de València - 16-20 July 2012

C-Unification and Matching ACU-Unification and Matching

Completeness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x\downarrow) = 0\downarrow$ with $P_0 = (e_1\downarrow, \ldots, e_n\downarrow)$ and $M_0 = \emptyset$. Then $\mathcal{B}(a(x\downarrow) = 0\downarrow) \subseteq M$.

Proof (cont.)

Hence, there exists $e_{j_k}\downarrow$ with $s_k\downarrow \gg e_{j_k}\downarrow$ such that $a(v_k\downarrow) \cdot a(e_{j_k}\downarrow) < 0$. We take $v_{k+1}\downarrow = v_k\downarrow + e_{j_k}\downarrow$. Then $s\downarrow \gg v_{k+1}\downarrow$ and by rule 3, $v_{k+1}\downarrow \in P_{l_{k+1}}$. After $|s\downarrow|$ steps, we reach s. Hence, $s\downarrow \in P_{l_{|s|}}$. Since $a(s\downarrow) = 0$, application of rule 2 moves $s\downarrow$ to M.

C-Unification and Matching ACU-Unification and Matching

Soundness

Theorem

Let $P_0, M_0 \Longrightarrow^* \emptyset, M$ be the sequence of transformations performed by the Contejean-Devie algorithm for $a(x\downarrow) = 0\downarrow$ with $P_0 = (e_1\downarrow, \ldots, e_n\downarrow)$ and $M_0 = \emptyset$. Then $M \subseteq \mathcal{B}(a(x\downarrow) = 0\downarrow)$.

Proof.

Any $s \downarrow \in M$ is a solution. Show that it is minimal. Assume it is not: $s \downarrow = s_1 \downarrow + s_2 \downarrow$, where $s_1 \downarrow$ and $s_2 \downarrow$ are non-null solutions smaller than s. Assume $s \downarrow$ was obtained during the transformations as $s \downarrow = v_i \downarrow + e_{j_i} \downarrow$, where $v_i \downarrow \in P_i$. But then $v_i \downarrow \gg s_1 \downarrow$ or $v_i \downarrow = s_1 \downarrow$ or $v_i \downarrow \gg s_2 \downarrow$ or $v_i \downarrow = s_1 \downarrow$ and $v_i \downarrow$ is greater than an already computed minimal solution. Therefore, it should have been removed from P_i . A contradiction.

C-Unification and Matching ACU-Unification and Matching

Termination

Theorem

Let $v_1 \downarrow, v_2 \downarrow, ...$ be an infinite sequence satisfying the Contejean-Devie condition for $a(x \downarrow) = 0 \downarrow$:

• u_1 is a basic vector and for each $i \ge 1$ there exists $1 \le j \le n$ such that $a(v_i \downarrow) \cdot a(e_j \downarrow) < 0$ and $v_{i+1} \downarrow = v_i \downarrow + e_j \downarrow$.

Then there exist $v \downarrow$ and k such that

- $v\downarrow$ is a solution of $a(x\downarrow) = 0\downarrow$, and
- $v \downarrow \ll v_k \downarrow$.

C-Unification and Matching ACU-Unification and Matching

Non-Homogeneous Case

Non-homogeneous linear Diophantine system with \boldsymbol{m} equations and \boldsymbol{n} variables:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

- *a*'s and *b*'s are integers.
- Matrix form: $a(x\downarrow) = b\downarrow$.

C-Unification and Matching ACU-Unification and Matching

Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S_0 :

- Solve S_0 and keep only the solutions with $x_0 \leq 1$.
- $x_0 = 1$: a minimal solution for $a(x\downarrow) = b\downarrow$.
- $x_0 = 0$: a minimal solution for $a(x\downarrow) = 0\downarrow$.
- Any solution of the non-homogeneous system $a(x\downarrow) = b\downarrow$ has the form $x\downarrow + y\downarrow$ where:
 - $x \downarrow$ is a minimal solution of $a(x \downarrow) = b \downarrow$.
 - y↓ is a linear combination (with natural coefficients) of minimal solutions of a(x↓) = 0↓.

C-Unification and Matching ACU-Unification and Matching

Back to ACU-Unification

Theorem

The decision problem for ACU-Matching and ACU-unification is NP-complete.

Specific vs General Results

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

General Results

In general, unification modulo equational theories

- is undecidable,
- unification type of a given theory is undecidable,
- admits a complete unification procedure (Gallier & Snyder, called an universal *E*-unification procedure).

General Results

Universal *E*-unification procedure \mathcal{U}_E .

Rules:

- Trivial, Orient, Decomposition, Variable Elimination from $\mathcal{U},$ plus
- Lazy Paramodulation:

$$\{e[u]\} \cup P'; S \Longrightarrow \{l \doteq^? u, e[r]\} \cup P'; S,$$

for a fresh variant of the identity $l \approx r$ from $E \cup E^{-1}$, where

- e[u] is an equation where the term u occurs,
- *u* is not a variable,
- if l is not a variable, then the top symbol of l and u are the same.

General Results

Universal E-unification procedure. Control.

In order to solve a unification problem Γ modulo a given E:

- Create an initial system $\Gamma; \emptyset$.
- Apply successively rules from \mathcal{U}_E , building a complete tree of derivations.
- No other inference rule may be applied to the equation l ≐? u that is generated by the Lazy Paramodulation rule before it is subjected to a Decomposition step.

General Results

Example

 $E = \{f(a, b) \approx a, a \approx b\}.$

Unification problem: $\{f(x,x) \doteq_E^? x\}$.

Computing a unifier $\{x \mapsto a\}$ by the universal procedure:

$$\{f(x,x) \doteq_E^? x\}; \varnothing \Longrightarrow_{LP} \{f(a,b) \doteq_E^? f(x,x), a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_D \{a \doteq_E^? x, b \doteq_E^? x, a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_O \{x \doteq_E^? a, b \doteq_E^? x, a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_S \{b \doteq_E^? a, a \doteq_E^? a\}; \{x \doteq a\}$$

$$\Longrightarrow_{LP} \{a \doteq_E^? a, b \doteq_E^? b, a \doteq_E^? a\}; \{x \doteq a\}$$

$$\Longrightarrow_T^+ \varnothing; \{x \doteq a\}$$

General Results

Pros and cons of the universal procedure:

- Pros: Is sound and complete. Can be used for any E.
- Cons: Very inefficient. Usually does not yield a decision procedure or a (minimal) *E*-unification algorithm even for unitary or finitary theories with decidable unification.

General Results

More useful results can be obtained by imposing additional restrictions on equational theories:

- Syntactic approaches: Restricting syntactic form of the identities defining equational theories.
- Semantic approaches: Depend on properties of the free algebras defined by the equational theory.

Summary

- Syntactic unification and matching.
 - Unification and matching algorithms.
 - Unification on term graphs, algorithms with improved complexity.
- Equational unification and matching
 - Classification with respect to unification type.
 - Algorithms for commutative and ACU-unification, including solving systems of linear Diophantine equations.
 - Universal *E*-unification procedure.

ISR 2012 sponsors

ALAN TURINGYEA

Temur Kutsia - MUG - July 19-20, 2012

ISR 2012 - Universitat Politècnica de València - 16-20 July 2012