
Unification

Temur Kutsia

RISC, Johannes Kepler University Linz, Austria
kutsia@risc.jku.at



Improving the Recursive Descent Algorithm

I Improvement 1: Linear Space, Exponential Time
I Improvement 2. Linear Space, Quadratic Time
I Improvement 3. Almost Linear Algorithm



Recursive Descent Algorithm is Expensive

Example

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

Unifying s and t will create an mgu where each xi and each yi
is bound to a term with 2i+1 − 1 symbols:

{x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), . . . ,

y0 7→ x0, y1 7→ f (x0, x0), y2 7→ f (f (x0, x0), f (x0, x0)), . . .}

I Problem: Duplicate occurrences of the same variable
cause the explosion in the size of terms.

I Fix: Represent terms as graphs, which share subterms.



Term Dags

Term Dag
A term dag is a directed acyclic graph such that
I its nodes are labeled with function symbols or variables,
I its outgoing edges from any node are ordered,
I outdegree of any node labeled with a symbol f is equal to

the arity of f ,
I nodes labeled with variables have outdegree 0.



Term Dags

I Convention: Nodes and terms the term dags represent will
not be distinguished.

I Example: “node” f (a, x) is a node labeled with f and
having two arcs to a and to x .



Term Dags

The only difference between various dags representing the
same term is the amount of structure sharing between
subterms.

Example
Three representations of the term f (g(a, x),g(a, x)):

f

g

a x

g

a x

f

g

a x

g

a

f

g

a x



Term Dags

I It is possible to build a dag with unique, shared variables
for a given term in O(n ∗ log(n)) where n is the number of
symbols in the term.

I Assumption for the algorithm we plan to consider:
I The input is a term dag representing the two terms to be

unified, with unique, shared occurrences of all variables.



Term Dags

Representing substitutions involving only subterms of a term
dag:
I Directly by a relation on the nodes of the dag, either

I stored explicitly as a list of pairs, or
I by storing a link (“substitution arcs”) in the graph itself, and

maintaining a list of variables (nodes) bound by the
substitution.



Term Dags

Substitution application. Two alternatives:
1. Implicit: Identifies two nodes connected with a substitution

arc, without actually moving any of the subterm links.
2. Explicit: Expresses the substitution by moving any arc

(subterm or substitution) pointing to a variable to point to a
binding.

Example
A term dag for two terms f (x ,g(a)) and f (g(y),g(y)), and for
their mgu {x 7→ g(a), y 7→ a}:

f

x g

a

f

g g

y Implicit

f

x g

a

f

g g

y Explicit



Term Dags

I With implicit application, the binding for a variable can be
determined by traversing the graph depth first, left to right.

I Explicit application represents a substitution in a direct way.



Recursive Descent Algorithm (RDA) on Term Dags

Assumptions:
I Dags consist of nodes.
I Any node in a given dag defines a unique subdag

(consisting of the nodes which can be reached from this
node), and thus a unique subterm.

I Two different types of nodes: variable nodes and function
nodes.

I Information at function nodes:
I The name of the function symbol.
I The arity n of this symbol.
I The list (of length n) of successor nodes (corresponds to

the argument list of the function)
I Both function and variable nodes may be equipped with

one additional pointer (displayed as a dashed arrow in
diagrams) to another node.



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)= (3)

f(1)

x(2)

x(2)

a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)

I Find(2)= (3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)= (3)

f(1)

x(2)

x(2)

a(3)

a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Union:
Takes as input a pair of nodes u, v that do not have
additional pointers and creates such a pointer from u to v .



Auxiliary procedures for the RDA on Term Dags

I Occur:
Takes as input a variable node u and another node v (both
without additional pointers) and performs the occur check,
i.e. it tests whether the variable is contained in the term
corresponding to v . The test is performed on the virtual
term expressed by the additional pointer structure, i.e. one
applies Find to all nodes that are reached during the test.

Example

I Occur(2,6)=False
I Occur(2,7)=True

f(1)

x(2)

x(2)

g(3)

a(4)

a(4)

f(5)

g(6)

g(6)

g(7)

g(7)

y(8)

y(8)



Auxiliary procedures for the RDA on Term Dags

I Occur:
Takes as input a variable node u and another node v (both
without additional pointers) and performs the occur check,
i.e. it tests whether the variable is contained in the term
corresponding to v . The test is performed on the virtual
term expressed by the additional pointer structure, i.e. one
applies Find to all nodes that are reached during the test.

Example

I Occur(2,6)=False

I Occur(2,7)=True

f(1)

x(2)

x(2) g(3)

a(4)

a(4)

f(5)

g(6)

g(6) g(7)

g(7)

y(8)

y(8)



Auxiliary procedures for the RDA on Term Dags

I Occur:
Takes as input a variable node u and another node v (both
without additional pointers) and performs the occur check,
i.e. it tests whether the variable is contained in the term
corresponding to v . The test is performed on the virtual
term expressed by the additional pointer structure, i.e. one
applies Find to all nodes that are reached during the test.

Example

I Occur(2,6)=False
I Occur(2,7)=True

f(1)

x(2)

x(2) g(3)

a(4)

a(4)

f(5)

g(6)

g(6) g(7)

g(7)

y(8)

y(8)



RDA on Term Dags

Input: A pair of nodes k1 and k2 in a dag
Output: True if the terms corresponding to k1 and k2 are

unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify1 (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Unify1. Recursive descent algorithm on term dags.
(Continues on the next slide)



Recursive Descent Algorithm on Term Dags

if variable-node(u) then
if Occurs (u, v) ; /* Occur-check */
then

return False
else

Union(u, v) ; /* Variable elimination */
return True

end

Procedure Unify1. Recursive descent algorithm on term dags.
Continued.

(Continues on the next slide)



Recursive Descent Algorithm on Term Dags

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . ,un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

while i ≤ n and bool do
i := i + 1; bool := Unify1(Find(ui),Find(vi));
/* Decomposition */

end
return bool

Procedure Unify1. Recursive descent algorithm on term dags.
Finished.



RDA on Term Dags. Example 1

I Unify f (x ,g(a),g(z)) and f (g(y),g(y), x).
I First, create dags.
I Numbers indicate nodes.

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))

Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)

Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)x(2)

x(2)

x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)

Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)

g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False

Union(2,8)
Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)x(2)x(2)

x(2) g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)g(8)

g(8) g(9)

g(9)

y(10)

y(10)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))

Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)

Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)

Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8) g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))

Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5

Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)

a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10

orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)y(10)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)

Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False

Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)a(5)

a(5) z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2,8) = False
Union(2,8)

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10,5)
Occur(10,5) = False
Union(10,5)

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))

Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4

Find(2) = 8
Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2) g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)x(2)

x(2)

x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)

g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)

Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))

Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6

Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5) z(6)

z(6)

z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5

Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)

a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)y(10)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False

Union(6,5)
True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)a(5)

a(5)

z(6)z(6)

z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1,7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4,8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6,5) = False
Union(6,5)

True

f(1)

g(3)

g(3)

x(2)

x(2)x(2)

g(4)

g(4)

a(5)

a(5)a(5)

z(6)

z(6)z(6)

f(7)

g(8)

g(8)g(8)

g(9)

g(9)

y(10)

y(10)y(10)



RDA on Term Dags. Example 1 (Cont.)

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)

I From the final dag one can read off:
I The unified term f (g(a),g(a),g(a)).
I The mgu in triangular form [x 7→ g(y); y 7→ a; z 7→ a].

I The algorithm does not create new nodes. Only one extra
pointer for each variable node.

I Needs linear space.
I Time is still exponential. See the next example.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1

Exponential number of recursive calls.



Correctness of RDA for Term Dags

I Proof is similar as for the RDA. These two algorithm differ
only by the data structure they operate on.



Complexity of RDA for Term Dags

I Linear space: terms are not duplicated anymore.
I Exponential time: Calls Unify1 recursively exponentially

often.

I Fortunately, with an easy trick one can make the running
time quadratic.

I Idea: Keep from revisiting already-solved problems in the
graph.

I The algorithm of Corbin and Bidoit:

J. Corbin and M. Bidoit. A rehabilitation of Robinson’s
unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909–914. Elsevier Science, 1983.



Complexity of RDA for Term Dags

I Linear space: terms are not duplicated anymore.
I Exponential time: Calls Unify1 recursively exponentially

often.
I Fortunately, with an easy trick one can make the running

time quadratic.

I Idea: Keep from revisiting already-solved problems in the
graph.

I The algorithm of Corbin and Bidoit:

J. Corbin and M. Bidoit. A rehabilitation of Robinson’s
unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909–914. Elsevier Science, 1983.



Complexity of RDA for Term Dags

I Linear space: terms are not duplicated anymore.
I Exponential time: Calls Unify1 recursively exponentially

often.
I Fortunately, with an easy trick one can make the running

time quadratic.
I Idea: Keep from revisiting already-solved problems in the

graph.

I The algorithm of Corbin and Bidoit:

J. Corbin and M. Bidoit. A rehabilitation of Robinson’s
unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909–914. Elsevier Science, 1983.



Complexity of RDA for Term Dags

I Linear space: terms are not duplicated anymore.
I Exponential time: Calls Unify1 recursively exponentially

often.
I Fortunately, with an easy trick one can make the running

time quadratic.
I Idea: Keep from revisiting already-solved problems in the

graph.
I The algorithm of Corbin and Bidoit:

J. Corbin and M. Bidoit. A rehabilitation of Robinson’s
unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909–914. Elsevier Science, 1983.



Quadratic Algorithm on Term Dags

Input: A pair of nodes k1 and k2 in a dag
Output: True if the terms corresponding to k1 and k2 are

unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify2 (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Unify2. Quadratic Algorithm.
(No difference from Unify1 so far. Continues on the next slide)



Quadratic Algorithm

if variable-node(u) then
if Occurs (u, v) ; /* Occur-check */
then

return False
else

Union(u, v) ; /* Variable elimination */
return True

end

Procedure Unify2. Quadratic Algorithm. Continued.
(No difference from Unify1 so far. Continues on the next slide)



Quadratic Algorithm

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . ,un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

Union(u,v);
while i ≤ n and bool do

i := i + 1; bool := Unify2(Find(ui),Find(vi));
/* Decomposition */

end
return bool

Procedure Unify2. Quadratic Algorithm. Finished.
(The only difference from Unify1 is Union(u,v).)



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xn

xn

xn−1

x1

yn

yn

yn−1

y1



Properties of the Quadratic Algorithm

I Correctness can be shown in the similar way as for the
RDA.

I The algorithm is quadratic in the number of symbols in
original terms:

I Each call of Unify2 either returns immediately, or makes
one more node unreachable for the Find operation.

I Therefore, there can be only linearly many calls of Unify2.
I Quadratic complexity comes from the fact that Occur and
Find operations are linear.



Almost Linear Algorithm

How to eliminate two sources of nonlinearity of Unify2?
I Occur: Just omit the occur check during the execution of

the algorithm.
I Consequence: The data structure may contain cycles.
I Since the occur-check failures are not detected

immediately, at the end an extra check has to be performed
to find out whether the generated structure is cyclic or not.

I Detecting cycles in a directed graph can be done by linear
search.

I Find: Use more efficient union-find algorithm from

R. Tarjan.
Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)= (3)

f(1)

x(2)

x(2)

a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)

I CF(2)= (3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)=

(3)

f(1)

x(2)

x(2) a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)= (3)

f(1)

x(2)

x(2)

a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)= (3)

f(1)

x(2)

x(2)

a(3)

a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Union-with-weight:
I Takes as input a pair of nodes u, v that do not have

additional pointers.
I If the set {k | Find(k) = u} is larger than the set
{k | Find(k) = v} then it creates an additional pointer from
v to u.

I Otherwise, it creates an additional pointer from u to v .

Weighted union does not apply when we have a variable node
and a function node.



Almost Linear Algorithm

One more auxiliary procedure:
I Not-cyclic:

I Takes a node k as input, and tests the graph which can be
reached from k for cycles.

I The test is performed on the virtual graph expressed by the
additional pointer structure, i.e. one first applies
Collapsing-find to all nodes that are reached during
the test.



Almost Linear Algorithm

Input: A pair of nodes k1 and k2 in a directed graph.
Output: True if k1 and k2 correspond unifiable terms. False

Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify3 (k1, k2)
if Cyclic-unify(k1, k2) and Not-cyclic(k1) then

return True
else

return False
end

Procedure Unify3. Almost Linear Algorithm.
(Continues on the next slide)



Almost Linear Algorithm

Cyclic-unify (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Cyclic-unify.
(Continues on the next slide)



Almost Linear Algorithm

if variable-node(u) then
if variable-node(v) then

Union-with-weight(u, v)
else

Union(u, v); /* No occur-check. Variable elimination */
return True

end

Procedure Cyclic-unify.
(Continues on the next slide)



Almost Linear Algorithm

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . ,un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

Union-with-weight (u,v);
while i ≤ n and bool do

i := i + 1;
bool := Cyclic-unify(Collapsing-find(ui)

Collapsing-find(vi)); /* Decomposition */

end
return bool

Procedure Cyclic-unify. Finished.



Almost Linear Algorithm

The algorithm is very similar to the one described in Gerard
Huet’s thesis:

G. Huet. Résolution d’Équations dans des Langages
d’ordre 1,2, . . . , ω.
Thèse d’État, Université de Paris VII, 1976.



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).

I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.

I Hence, complexity of Unify3 is O(n ∗ α(n)).



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Summary of Unification Algorithms

I Recursive Descent Algorithm for unification is exponential
in time and space.

I Using term dags reduces space complexity to linear.
I Making the union pointer between function nodes before

unifying their arguments reduces time complexity to
quadratic.

I Using collapsing-find and union-with-weight further
reduces time complexity to almost linear.



Application Example

Theorem Proving
I Robinson’s unification algorithm was introduced in the

context of theorem proving.
I Unification: Computational mechanism behind the

resolution inference rule.



Resolution

I Resolution for first-order clauses:

A1 ∨ B ¬A2 ∨ C
Bσ ∨ Cσ

,

where σ = mgu(A1,A2).

I For instance, from the two sentences
I Every number is less than its successor.
I If y is less than x then y is less than the successor of x .

one concludes that
I every number is less than the successor of its successor.

I How?



Resolution

I Resolution for first-order clauses:

A1 ∨ B ¬A2 ∨ C
Bσ ∨ Cσ

,

where σ = mgu(A1,A2).
I For instance, from the two sentences

I Every number is less than its successor.
I If y is less than x then y is less than the successor of x .

one concludes that
I every number is less than the successor of its successor.

I How?



Resolution

I Resolution for first-order clauses:

A1 ∨ B ¬A2 ∨ C
Bσ ∨ Cσ

,

where σ = mgu(A1,A2).
I For instance, from the two sentences

I Every number is less than its successor.
I If y is less than x then y is less than the successor of x .

one concludes that
I every number is less than the successor of its successor.

I How?



Resolution

I Let’s write the sentences as logical formulas.

I Every number is less than its successor:
∀x number(x)⇒ less_than(x , s(x))

I If y is less than x then y is less than the successor of x :
∀y∀x less_than(y , x)⇒ less_than(y , s(x))

I Write these formulas in disjunctive form and strip off the
quantifiers:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x) ∨ less_than(y , s(x))



Resolution

I Let’s write the sentences as logical formulas.
I Every number is less than its successor:
∀x number(x)⇒ less_than(x , s(x))

I If y is less than x then y is less than the successor of x :
∀y∀x less_than(y , x)⇒ less_than(y , s(x))

I Write these formulas in disjunctive form and strip off the
quantifiers:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x) ∨ less_than(y , s(x))



Resolution

I Let’s write the sentences as logical formulas.
I Every number is less than its successor:
∀x number(x)⇒ less_than(x , s(x))

I If y is less than x then y is less than the successor of x :
∀y∀x less_than(y , x)⇒ less_than(y , s(x))

I Write these formulas in disjunctive form and strip off the
quantifiers:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x) ∨ less_than(y , s(x))



Resolution

I Let’s write the sentences as logical formulas.
I Every number is less than its successor:
∀x number(x)⇒ less_than(x , s(x))

I If y is less than x then y is less than the successor of x :
∀y∀x less_than(y , x)⇒ less_than(y , s(x))

I Write these formulas in disjunctive form and strip off the
quantifiers:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x) ∨ less_than(y , s(x))



Resolution

I Prepare for the resolution step. Make the clauses variable
disjoint:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x ′) ∨ less_than(y , s(x ′))

I Unify less_than(x , s(x)) and less_than(y , x ′). The mgu
σ = {x 7→ y , x ′ 7→ s(y)}

I Perform the resolution step and obtain the resolvent:
¬number(y) ∨ less_than(y , s(s(y))).

I What would go wrong if we did not make the clauses
variable disjoint?



Resolution

I Prepare for the resolution step. Make the clauses variable
disjoint:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x ′) ∨ less_than(y , s(x ′))

I Unify less_than(x , s(x)) and less_than(y , x ′). The mgu
σ = {x 7→ y , x ′ 7→ s(y)}

I Perform the resolution step and obtain the resolvent:
¬number(y) ∨ less_than(y , s(s(y))).

I What would go wrong if we did not make the clauses
variable disjoint?



Resolution

I Prepare for the resolution step. Make the clauses variable
disjoint:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x ′) ∨ less_than(y , s(x ′))

I Unify less_than(x , s(x)) and less_than(y , x ′). The mgu
σ = {x 7→ y , x ′ 7→ s(y)}

I Perform the resolution step and obtain the resolvent:
¬number(y) ∨ less_than(y , s(s(y))).

I What would go wrong if we did not make the clauses
variable disjoint?



Resolution

I Prepare for the resolution step. Make the clauses variable
disjoint:
¬number(x) ∨ less_than(x , s(x))
¬less_than(y , x ′) ∨ less_than(y , s(x ′))

I Unify less_than(x , s(x)) and less_than(y , x ′). The mgu
σ = {x 7→ y , x ′ 7→ s(y)}

I Perform the resolution step and obtain the resolvent:
¬number(y) ∨ less_than(y , s(s(y))).

I What would go wrong if we did not make the clauses
variable disjoint?



Factoring

I Another rule in resolution calculus that requires unification.
I Factoring

A1 ∨ A2 ∨ C
A1σ ∨ Cσ

where σ = mgu(A1,A2).



Resolution and Factoring in Action

Given:
I If y is less than x then y is less than the successor of x .
I If x is not less than a successor of some y , than 0 is less

than x .
Prove:
I 0 is less than its successor.



Resolution and Factoring in Action

Translating into formulas.

Given:
I ¬less_than(y , x) ∨ less_than(y , s(x)).
I less_than(x , s(y)) ∨ less_than(0, x).

Prove:
I less_than(0, s(0))



Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:
1. ¬less_than(y , x) ∨ less_than(y , s(x)).
2. less_than(x , s(y)) ∨ less_than(0, x).
3. ¬less_than(0, s(0)).

4. less_than(0, s(x)) ∨ less_than(x , s(y)),
(Resolvent of the renamed copy of 1
¬less_than(y ′, x ′) ∨ less_than(y ′, s(x ′)) and 2, obtained by
unifying less_than(y ′, x ′) and less_than(0, x) with
{y ′ 7→ 0, x ′ 7→ x}.

5. less_than(0, s(0))
(Factor of 4 with {x 7→ 0, y 7→ 0}

6. �
(Contradiction, resolvent of 3 and 5).



Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:
1. ¬less_than(y , x) ∨ less_than(y , s(x)).
2. less_than(x , s(y)) ∨ less_than(0, x).
3. ¬less_than(0, s(0)).
4. less_than(0, s(x)) ∨ less_than(x , s(y)),

(Resolvent of the renamed copy of 1
¬less_than(y ′, x ′) ∨ less_than(y ′, s(x ′)) and 2, obtained by
unifying less_than(y ′, x ′) and less_than(0, x) with
{y ′ 7→ 0, x ′ 7→ x}.

5. less_than(0, s(0))
(Factor of 4 with {x 7→ 0, y 7→ 0}

6. �
(Contradiction, resolvent of 3 and 5).



Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:
1. ¬less_than(y , x) ∨ less_than(y , s(x)).
2. less_than(x , s(y)) ∨ less_than(0, x).
3. ¬less_than(0, s(0)).
4. less_than(0, s(x)) ∨ less_than(x , s(y)),

(Resolvent of the renamed copy of 1
¬less_than(y ′, x ′) ∨ less_than(y ′, s(x ′)) and 2, obtained by
unifying less_than(y ′, x ′) and less_than(0, x) with
{y ′ 7→ 0, x ′ 7→ x}.

5. less_than(0, s(0))
(Factor of 4 with {x 7→ 0, y 7→ 0}

6. �
(Contradiction, resolvent of 3 and 5).



Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:
1. ¬less_than(y , x) ∨ less_than(y , s(x)).
2. less_than(x , s(y)) ∨ less_than(0, x).
3. ¬less_than(0, s(0)).
4. less_than(0, s(x)) ∨ less_than(x , s(y)),

(Resolvent of the renamed copy of 1
¬less_than(y ′, x ′) ∨ less_than(y ′, s(x ′)) and 2, obtained by
unifying less_than(y ′, x ′) and less_than(0, x) with
{y ′ 7→ 0, x ′ 7→ x}.

5. less_than(0, s(0))
(Factor of 4 with {x 7→ 0, y 7→ 0}

6. �
(Contradiction, resolvent of 3 and 5).



Application Example

Logic Programming:
I Logic programs consist of (nonnegative) clauses, written:

A← B1, . . . ,Bn,

where n ≥ 0 and A,Bi are atoms.
I Example:

I likes(john,X )← likes(X ,wine).
John likes everybody who likes wine.

I likes(john,wine).
John likes wine.

I likes(mary ,wine).
Marry likes wine.



Logic Programming

I Goals are negative clauses, written

← D1, . . . ,Dm

where m ≥ 0.
I Example:

I ← likes(john,X ).
Who (or what) does John like?

I ← likes(X ,marry), likes(X ,wine).
Who likes both marry and wine?

I ← likes(john,X ), likes(Y ,X ).
Find such X and Y that both John and Y like X .



Logic Programming

Inference step:

← D1, . . . ,Dm

← D1σ, . . . ,Di−1σ,B1σ, . . . ,Bnσ,Di+1σ, . . . ,Dmσ

where σ = mgu(Di ,A) for (a renamed copy of) some program
clause A← B1, . . . ,Bn.



Logic Programming

Example
Program:

likes(john,X )← likes(X ,wine).
likes(john,wine).
likes(mary ,wine).

Goal:

← likes(X ,marry), likes(X ,wine).

Inference:
I Unifying likes(X,marry) with likes(john,X’) gives
{X 7→ john,X ′ 7→ marry}

I New goal: ← likes(marry ,wine), likes(john,marry).



Prolog

I Prolog: Most popular logic programming language.
I Unification in Prolog is nonstandard: Omits occur-check.
I Result: Prolog unifies terms x and f (x), using the

substitution {x 7→ f (f (f (. . .)))}.
I Because of that, sometimes Prolog might draw

conclusions the user does not expect:

less(X,s(X)).

foo : −less(s(Y),Y).
?− foo.
yes.

I Infinite terms in a theoretical model for real Prolog
implementations.



Open Problems

The RTA list of open problems contains several ones related to
unification:

http://www.lsv.ens-cachan.fr/rtaloop/

http://www.lsv.ens-cachan.fr/rtaloop/

	Recursive Descent Algorithm is Expensive
	Improvement 1: Linear Space, Exponential Time
	Improvement 2. Linear Space, Quadratic Time
	Improvement 3. Almost Linear Algorithm

