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Resolution in FOL: Basic Idea
Method for showing inconsistency of a set of clauses: infer F by resolution

Propositional resolution:
A ∨ B
A ∨ C

}
` B ∨ C

Predicate logic:
P[a, b] ∨ Q[a]
P[a, b] ∨ R[b]

}
` Q[a] ∨ R[b]

P[x , b] ∨ Q[x ] −→ P[a, b] ∨ Q[a]
P[a, b] ∨ R[b]

}
` Q[a] ∨ R[b]

substitution
{x → a}
“unifier”

P[x , f [b]] ∨ Q[x ] −→ P[a, f [b]] ∨ Q[a]
P[a, f [y ]] ∨ R[y ] −→ P[a, f [b]] ∨ R[b]

}
` Q[a] ∨ R[b]

. {x → a, y → b}

In general:
A1,A2: atoms, C1, C2: clauses, σ: most general unifier of A1,A2

A1 ∨ C1
A2 ∨ C2

}
` (C2 ∨ C2)σ resolvent

A1 and A2 are the literals resolved upon.



Substitution and Resolution: Examples
C1 : P[x ] ∨ Q[x ]
C2 : P[f [y ]] ∨ R[y ]

σ′ : {x → f [a], y → a} C′1 : P[f [a]] ∨ Q[f [a]]
C′2 : P[f [a]] ∨ R[a]

C′1, C′2 are instances of C1, C2 (ground, because they contain no variables).
σ′ is an unifier of {P[x ],P[f [y ]]}.
The resolvent of C′1 and C′2 is

C′3 : Q[f [a]] ∨ R[a]

C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [y ]] ∨ R[y ]

σ∗ : {x → f [y ]} C∗1 : P[f [y ]] ∨ Q[f [y ]]
C∗2 : ¬P[f [y ]] ∨ R[y ]

C∗1 , C∗2 are instances of C1, C2. C′1, C′2 are instances of C∗1 , C∗2 ({y → a}).
σ∗ is an unifier of {P[x ],P[f [y ]]}. σ∗ is more general then σ′, because
σ∗ can be ”specialized” to σ′ by composition with another substitution:

{x → f [a], y → a} = {x → f [y ]} ◦ {y → a}
σ∗ is the most general unifier of {P[x ],P[f [y ]]}.
The resolvent of C∗1 and C∗2 is C∗3 : Q[f [y ]] ∨ R[y ].
C′3 is and instance of C∗3 . C∗3 is also the resolvent of C1 and C2, because
is uses the most general unifier of the literals resolved upon.



Substitution: Definition

A substitution is a finite set of pairs (replacements) v → t between a
variable and a different term:

{v1 → t1, ..., vn → tn},
where for each i 6= j : vi 6= vj .

Application of a substitution σ to an expression E :
Eσ is the expression obtained by replacing simultaneously in E each
occurrence of every variable vi present in the substitution by its
corresponding term ti .

Example: f [z , a, g [x ], y ]{x → z , z → h[a, y ]} = f [h[a, y ], a, g [z ], y ].

Remark. For formulae φ where all free variables are implicitely universally
quantified, we have:

φ |= φσ



Substitution: Composition

(Eσ)θ = E(σ ◦ θ)
σ ◦ θ is the composition of σ and θ.

Composition rule:

σ ◦ θ
{x1 → t1, ..., xn → tn} ◦ {y1 → u1, ..., yn → un}

is the union of the two sets:

{x1 → t1θ, ..., xn → tnθ} without the elements for which xj = tjθ,
{y1 → u1, ..., yn → un} without the elements for which yi ∈ {x1, ..., xn}.

Composition of substitutions . . .

I . . . is associative: (σ ◦ θ) ◦ λ = σ ◦ (θ ◦ λ)

I . . . is not commutative: σ ◦ θ 6= θ ◦ σ
I . . . has neutral element: {} (the empty substitution)



Substitution: Composition Examples
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

{x → f [b], y → y , x → a, y → b, z → y}
θ ◦ λ = {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

{x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
θ1 ◦ θ2 = {x → a, y → f [g [x ]]}



Unification
The substitution σ is a unifier of {E1, ..., En} iff E1σ = ... = Enσ.
The set {E1, ..., En} is unifiable iff there exists an unifier of it.

A unifier σ of a set S of expressions is a most general unifier (MGU) of it
iff
for each unifier θ of the set S there exists a substitution λ such that

θ = σ ◦ λ.

Examples:

I {Q[a, y ], Q[x , f [b]]}, MGU: {x → a, y → f [b]}
I {P[x ], P[y ]}, MGUs: {x → y}, {y → x}
I {P[a], P[b]}, not unifiable
I {P[f [x ]], P[g [y ]]}, not unifiable
I {P[x ], P[f [x ]]}, not unifiable ({x → f [x ]} not correct)
{P[x ], P[f [x ]]}{x → f [x ]} = {P[f [x ]], P[f [f [x ]]]}

I {P[x ], Q[y ]} not unifiable
I {Q[x , f [x ]], Q[y , y ]}, not unifiable
{x → y} : {Q[y , f [y ]], Q[y , y ]}
{x → f [y ], y → f [y ]} : {Q[f [y ], f [f [y ]]], Q[f [y ], f [y ]]}



Unification Algorithm: Disagreement Set

Unification algorithm for finding a most general unifier, or its
nonexistence.

The disagreement set of a nonempty set S of expressions is obtained by

I locating the first position (starting from the left) at which not all
the expressions in S have exactly the same symbol and then

I extracting from each expression in S the subexpression that begins
with the symbol occupying that position.

Examples:
S D σ

{P[ g [x ], x , f [g [y ]]],
P[ z , a, f [z ]]} {g [x ], z} {z → g [x ]}

{P[g [x ], x , f [g [y ]]],
P[g [x ], a , f [g [x ]]]} {x , a} {z → g [a], x → a}

{P[g [a], a, f [g [ y ]]],
P[g [a], a, f [g [ a ]]]} {y , a} {z → g [a], x → a, y → a}



Unification Algorithm: Imperative Version

Input: set S of expressions.

1. k := 0, Sk := S, σk := {}
2. If Sk is singleton then stop; σk is MGU of S. Otherwise find the

disagreement set Dk of Sk .

3. If there exists vk , tk ∈ Dk s.t. vk is a variable which does not occur
in tk , go to 4. Otherwise, stop; S is not unifiable.

4. Let σk+1 = σk ◦ {vk → tk} and Sk+1 = Sk{vk → tk}.
5. k = k + 1 and go to 2.



Resolution: the Inference Rule

If two or more literals (with the same sign) of a clause C have MGU σ,
then Cσ is called a factor of C.

Example: Let C : P[x ] ∨ P[a] ∨ Q[f [x ]] ∨ Q[f [a]] be a clause. Then
the MGU is σ = {x → a} and Cσ : P[a] ∨ Q[f [a]] is a factor of C.

Let C1 and C2 be two clauses with no variables in common. Let A1 and
A2 be two literals in C1 and C2, respectively. If the atoms A1 and A2 have
a MGU σ, then the clause C1σ ∨ C2σ is a binary resolvent of C1 and C2.

Example: C1 : P[x ] ∨ Q[x ], C2 : P[a] ∨ R[x ].
By renaming x with y in C2, we have C2 : P[a] ∨ R[y ]
σ = {x → a} is the MGU of the literals P[x ] and P[a].
The binary resolvent of C1 and C2 is Q[a] ∨R[y ].

From two clauses we obtain a set of resolvents:

I From each clause C, C′ one obtains a set of factors F ,F ′;
I From each pair from ({C} ∪ F)× ({C′} ∪ F ′), a possible binary

resolvent may be generated. (If there are several MGUs, considering
only one of them is sufficient).



Resolution: Proof Method
Resolution: (Robinson, 1965)
I is an inference rule which generates resolvents from a set of clauses
I is a refutation proof procedure: empty clause is tried to be derived

from a set of clauses
I is refutationally complete: a set of clauses is unsatisfiable iff the

empty clause can be derived

Resolution together with refutation and normal form:
Given: formulae ϕ1, ..., ϕn

Prove: ψ by resolution.

1. Bring ϕ1, ..., ϕn, ..., ¬ψ into standard form: set of clauses.

2. Use the resolution inference rule to derive new clauses in all possible
ways, including by using the new produced clauses.

3. If the empty clause appears, stop: contradiction found, ψ is proved.

4. If no new clause can be produced (and the empty clause is not
found), then the proof fails.

Only for unsatisfiable sets of clauses the procedure is guaranteed to stop,
if the set is satisfiable then it may continue forever.

”Semi–decision” procedure



Resolution: Correctness

Φ is unsatisfiable
|= ¬ ∧ Φ

Completeness ⇓ iff ⇑ Correctness
∧Φ `∗ F

there is a deduction of
the empty clause from Φ

Correctness of the inference rule. Take A = A1σ = A2σ.
A1 ∨ C1 −→

instantiation
A ∨ C1σ

A2 ∨ C2 −→ A∨ C2σ

}
−→

resolution
C1σ ∨ C2σ

From ϕ |= ϕσ and
ψ ∨ ϕ1

ψ ∨ ϕ2

}
|= ϕ1 ∨ ϕ2 we obtain:

A1 ∨ C1
A2 ∨ C2

}
|= C1σ ∨ C2σ

Correctness of method. Due to correctness of the inference rule:
If ∧Φ `∗ F, then ∧Φ |= F.

Thus if some interpretation I |= ∧Φ, then I |= F (impossible).



Completeness of Resolution:
Herbrand Interpretations

Running example:
P[a], ∀

x
(P[x ] ∨ P[f [x ]]) |= P[f [f [a]]]

(1) P[a] (2) P[x ] ∨ P[f [x ]] (3) P[f [f [a]]]

The Herbrand Universe: an “universal” domain.
H = {a, f [a], f [f [a]], . . . , f [f [. . . [a] . . .]], . . .} (enumerable!)

Herbrand interpretations and their “universality”.

I =


DI = H
aI = a
fI : H → H, fI [a] = f [a], fI [f [a]] = f [f [a]], . . .
PI : H → {T,F}, PI [a] = T (P[a]), PI [f [a]] = F (P[f [a]]), . . .

Universality: From J |= ϕ construct H-interpretation I |= ϕ:
PI [f [f [. . . [a] . . .]]] = PJ [fJ [fJ [. . . [aJ ] . . .]]]

It is sufficient to check satifiability on Herbrand interpretations !
(But this holds only for formulae in Skolem standard form.)



Completeness of Resolution:
Semantic Tree

Running example: (1)P[a] (2) P[x ] ∨ P[f [x ]] (3) P[f [f [a]]]
Herbrand interpretation: {P[a], P[f [a]], . . . ,P[f [f [. . . [a] . . .]]], . . .}
Representation of all interpretations: binary tree (“semantic tree”)

.

. x (6)

. (5) x. x (1)

. (4) x. x (2”)

. (3) x. x(2’)

(2’) P[f [a]] ∨ P[f [f [a]]] (2”) P[a] ∨ P[f [a]] (4) P[f [a]] (5) P[a] (6) F
x → f [a] x → a

Unsatisfiable set −→ closed semantic tree

Resolution −→ Unsatisfiable set of ground instances



Completeness of Resolution:
Herbrand Theorem

For every unsatisfiable set of clauses Φ there exists an unsatisfiable finite
set of instances of Φ.

Herbrand proving procedure: Instantiate incrementally using the
Herbrand universe, and check consistency at every step.

If the set is unsatisfiable, the theorem insures that this will finish.

If the set is satisfiable, then the procedure runs for ever: semidecision
procedure.

Resolution: more efficient, because unification finds the instantiations
which can lead to contradiction.

H-Theorem insures that a ground proof by resolution exists.

A resolution step involving variables simulates several ground resolutions:
Lifting Lemma shows that ground proof can be lifted to a general
resolution proof.

Same problem as H-procedure: resolution for a satisfiable set may not
finish (however possible termination is easier to detect: no new clauses).

Satisfiability in first order predicate logic is undecidable.



Gödel Completeness Theorem

In classical logic:
Φ inconsistent (contradictory) iff Φ |= F

We proved:
If Φ unsatisfiable, then Φ inconsistent (contradictory)

Thus, by contraposition,
If Φ consistent, then Φ satisfiable∗

in a constructive manner: the satisfying interpretation (model) of the set
is constructed from the syntactic material available in the formula.

This has a strong computational significance: when we implement
algorithms relevant to a certain logic theory, we can always use as
elements of the respective domains the ground atoms arising from the
Skolem normal form of that theory.

∗ This is Gödel completeness theorem, a milestone in the development of
classic logic, which gets an important additional significance in the
current technological situation.
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