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Glossary

AND/OR Tree: The execution of a logic program can be viewed as the traversal of a tree where each path starting at the root represents an alternating sequence of AND nodes (corresponding to the goals in a rule) and OR nodes (corresponding to the rules applicable to a goal).

AND-parallelism: In logic programming, AND-parallelism arises from concurrently proving multiple goals in a query or program rule.

Declarative Programming: A declarative programming language has its basis in a formal model with nice properties (such as mathematical functions in functional programming or Horn clauses in logic programming) rather than in a model of the underlying machine.

Formula: A (logical) formula is a statement on a domain of objects (the universe) that is either true or false. A formula may be atomic (described by a predicate symbol), composed from other formulas by logical connectives or be formed by quantification of object variables.

Function: A (mathematical) function is a mapping from a set of values (the domain) to another set of values (the range) such that the application of  the function to an argument from the domain uniquely denotes a result from the range.

Higher-order Functions: A higher-order function takes functions as arguments and/or returns functions as results. Frequently occurring computation patterns (program skeletons) can be expressed as higher-order functions.

Horizontal Parallelism: In functional programming, horizontal parallelism arises from the concurrent evaluation of multiple function arguments.

Horn Clause: A Horn clause is a logic implication whose first part is a (possibly empty) conjunction of  atomic formulas and whose second part is an atomic formula where all variables are universally quantified. A logic program is a collection of Horn clauses called rules and facts.

Non-strict Evaluation: A non-strict evaluation strategy may terminate on an expression even if the evaluation of some sub-expression fails to do so. Non-strict strategies (e.g. lazy evaluation) give rise to programs that can deal with (pseudo-)infinite data structures.

OR-parallelism: In logic programming, OR-parallelism arises from concurrently proving a goal from multiple program rules.

Polymorphism: The type systems of most functional languages allow to write functions that take in a safe way arguments from different types. Such polymorphic functions give rise to generic programming based on reusable program skeletons.

Query: A query is a "and"-combination of atomic formulas. The purpose of  logic programming is to find for the variables that occur in the query substituting terms that make the query true.

Referential Transparency: In functional programming, referential transparency denotes the fact that a program behaves like a mathematical expression: its evaluation returns a result but cannot cause side-effects that influence the results of other expressions.

SLD-resolution: SLD-resolution is an automated theorem proving strategy that, given a set of Horn clauses and a query, determines all substitutions for the variables in the query that make the query true. This strategy forms the theoretical basis of logic programming.

Strict Evaluation: A strict evaluation strategy is one that does not terminate on an expression whenever the evaluation of some sub-expression does not terminate. Strict strategies (e.g. evaluate the arguments before applying a function) are efficient and easy to implement.

Unification: Unification makes two formulas equal by finding substitution terms for the variables in the argument terms of the formulas. This mechanism is used in logic programming to determine whether a program rule (Horn clause) is applicable to a goal formula.

Vertical parallelism: In functional programming, vertical parallelism arises from executing a function concurrently with evaluating its arguments. 

Summary

Most programming languages are models of the underlying machine, which has the advantage of a rather direct translation of a program statement to a sequence of machine instructions. Some languages, however, are based on models that are derived from mathematical theories, which has the advantages of a more concise description of a program and of a more natural form of reasoning and transformation. In functional languages, this basis is the concept of a mathematical function which maps a given argument values to some result value. A program is a mathematical term which is evaluated to a normal form by replacing each occurrence of a function symbol by its corresponding definition. On the other hand, logic languages are built upon the concept of a predicate that relates certain values to each other. A program is a logic formula in which an inference mechanism finds substitutions for the variables such that the formula becomes true. The efficient execution of functional and logic languages has made great progress during the last two decades; further developments have extended the expressiveness of the programming models (constraint logic programming) and unified them in a common framework (functional logic programming). Powerful type systems have been developed which allow to write in a safe way programs that may be applied to a variety of application domains (generic programming). The ideas exemplified by functional and logic languages have essentially influenced the design of other programming languages.

1. Introduction

Functional and logic programming languages are also called declarative languages; programs in these languages are said to describe (declaratively) what to do and not (operationally) how to do it. While this statement may be questioned, declarative languages have certainly their basis in formal models with properties that make programs particularly amenable to precise reasoning and correctness-preserving transformations. This is in contrast to imperative languages which are based on models of the underlying machine; programs written in imperative languages can be thus more directly compiled to efficient machine code, but reasoning and program transformations are comparatively difficult (see 6.45.5.2.  Imperative Programming).

Declarative programming languages have been developed since the 1970s, but their roots can be traced to the 1930s when mathematicians and logicians began to study the theory of computability. Concise formal calculi were developed in which (supposedly) any calculation can be expressed that a machine can perform and that thus should already suffice as linguistic frameworks for computer programming (Church’s thesis, see 6.45.1.2.  Models of Computation). For instance, although the 
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-calculus developed by Alonzo Church consists of just three kinds of expressions and a simple reduction rule, it is believed to be capable of performing every possible computation; a subset of the programming language LISP developed by McCarthy in the late 1950s can be considered as an implementation of this calculus. Nevertheless, it was at that time not believed that a practically useable programming language could be in its entirety based on a simple formal model.

However, in the late 1960s and early 1970s several ideas arose how to write programs in a purely declarative style and still have them executed with reasonable efficiency. Depending on the formal theory, two major schools of  thought have subsequently emerged: the functional programming community has focused on the concept of the mathematical function as a value-mapping entity; since such a function is typically defined by a set of equations, this yields a style of “programming with recursive equations” (the title of an early paper). The task of the programmer is construct a wanted result value from the given argument values by some basic constructs with a simple mathematical interpretation; reasoning about program correctness thus is immediately reduced to conventional mathematical reasoning and program transformations can be performed like arithmetic calculations. While early functional languages were comparatively slow, especially in the second half of the 1980s compilation techniques were developed that nowadays allow very efficient execution. Functional languages have also considerably contributed to the theory of type systems by concepts such as polymorphic functions (functions applicable to arguments of different types) and functors (parameterized program modules that take modules as arguments and return modules as results) which yielded the idea of generic programming (nowadays en vogue in object-oriented languages). The myriad of functional languages developed in the 1980s has today crystalized into two major representatives: ML (for Meta-Language) developed at the University of Edinburgh in the course of a project in automated theorem proving and Haskell (named after the logician Haskell Curry) which was developed by a joint initiative of various research groups in Europe and the US.

Logic programming is an outcome of research in automated theorem proving. In 1965, Robinson published the resolution method as an efficient decision procedure for logic formulas written in a subset of first-order predicate logic called Horn clause logic. While not every logic formula can be expressed in this language, it is sufficiently rich to serve as the basis of a rule-based programming style where the task of the programmer is to construct a relation between values: those given by the user are considered as input from which the system computes the other ones as output. In the early 1970s, Kowalski elaborated the theory of logic programming with Colmerauer producing the first implementation of the programming language Prolog (Programming in Logic). The language became an instant success and triggered the world-wide interest of many institutions that developed various dialects and (also commercial) implementations. A major break-through was achieved in the second half of the 1980s when the Japanese Research Organization ICOT chose logic programming as the basis of their “5th Generation Computers” project. While this initiative failed to produce a new basis for computer architecture, it helped to widely disseminate expertise in logic programming. In the 1990s, research in logic programming focused on making the basic principle more expressive by including constraints (equations and inequalities) over arithmetic domains, which gave rise to constraint logic programming. The resolution mechanism was extended by methods for “constraint solving” which brought mathematics in closer contact to logic programming.

From the very beginning, both functional and logic programming languages have been considered for  parallel programming, i.e., the solution of a problem by concurrent execution of multiple tasks on multiprocessors and computer networks. In contrast to imperative languages, declarative languages do not impose a predefined order of execution steps such that a variety of concurrent evaluation/inference strategies can be devised. While efficient automatic parallelization is still out of reach, parallelization annotations in “para-functional” languages and “Guarded Horn Clause Languages” allow with comparatively little effort to write parallel programs in a declarative style.

In the 1990s, new developments have started to blur the distinction between functional programming and logic programming leading to functional-logic programming: here a logic formula also has a return value or, vice versa, a function call is also a goal which has to be satisfied by constructing term substitutions for the variables. A new mechanism called “narrowing” unifies the execution strategies “term reduction” for functional programming and “resolution” for logic programming and thus enhances the expressiveness of the declarative style of programming. While research currently focuses more on the theoretical aspects, the next decade will certainly see also further progress on more efficient compilation strategies for this kind of languages.

While numerous applications have been developed in declarative languages, their main impact on computer science is an indirect one: the ideas and techniques elaborated in functional and logic programming have found their way to conventional languages, especially to object-oriented languages such as C++ and Java and to the languages used in computer algebra systems such as Mathematica.

Functional Programming

1.1 Mathematical Foundations

A mathematical function
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 is a mapping f from a set of objects A called the domain to a  target set B called the range such that for every element a of A the term f(a) (the application of f to a) uniquely denotes an object of B. Typically f is defined by an equation 
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where T is a term in which only x occurs as a free variable; the result of  f(a) is determined by evaluating T after the formal parameter x has been replaced by actual argument a. For instance,
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defines a function square on the set Z of integer numbers such that the application square(2) denotes the result 2*2 = 4. A function may also take multiple parameters, e.g. defining
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yields squarediff(3,2)=(3+2)*(3-2)=5*1=5. We may construct the defining term also hierarchically with the help of local definitions:
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A function may be defined by multiple terms guarded by conditions on the parameters, e.g.
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defines the absolute value of an integer number. If the condition can be expressed by a syntactic pattern of the arguments, then a function definition may consist of multiple equations, e.g.
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defines a function tail on lists of elements from any set A: when tail is applied to an empty list, it returns the empty list; when it is applied to a list with first element x and rest list xs, it returns xs. 

A function may also refer to itself recursively on the right hand side of the defining equation, e.g.
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defines a function sum that when applied to a list of integer numbers returns the sum of the list elements, e.g. sum([1,2,3]) = 1+sum([2,3]) = 1+(2+sum([3])) = 1+(2+(3+sum([])))=1+(2+(3+0))) = 6.

Given functions 
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 such that for every a in A we have
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. Thus we may construct in a modular way from simple functions more complex ones.

1.2 Programming Model

In a functional programming language like Haskell or ML, the definition of a program function closely resembles a mathematical function definition. For instance,  we can define in Haskell 

square :: Int -> Int

square x = x*x

such that the term (square 2) evaluates to 4. Likewise we can define 

squarediff :: Int -> Int -> Int

squarediff a b = c*d where

  c = a+b

  d = a-b

abs :: Int -> Int

abs x | x < 0     = -x

      | otherwise =  x

tail :: [a] -> [a]

tail []     = []

tail (x:xs) = xs

sum :: [Int] -> Int

sum []     = 0

sum (x:xs) = 1 + (sum xs)

such that e.g. the term (sum [1,2,3]) evaluates to 6.  It is illustrative to compare above definition of sum to a corresponding definition in an imperative programming language (see 6.45.5.2.  Imperative Programming):

fun sum(a: Array[Int], n: Int): Int

  var s, i: Int

  s := 0

  for i := 1 to n do

    s := s+a[i]

  return s

     end

In an imperative language, a program is a sequence of commands (or statements) that operate on a hidden state, namely the computer store holding the current values of the program variables (s, i). Program execution proceeds in a sequence of assignments which start in some initial state and iteratively modify this state by updating the variable values until some final state is reached which denotes the result of the computation (
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). All imperative languages (and also the object-oriented ones, see 6.45.5.3.  Object-oriented Programming) reflect this state-oriented view which has its basis in the von Neumann model of computation which itself represents an abstraction of the underlying hardware (see 6.45.2.4.  Processors).
On the contrary, in a functional language a program is a mathematical term (or  expression) and program execution proceeds in a sequence of reduction steps: in each step, we select a subterm denoting a function application (the redex) and replace it by the defining term after having substituted the formal parameters by the actual arguments. The reduction process terminates when we yield a term that does not contain any more redex (a normal form). 

A term may have more than one potential redex, e.g. in squarediff(sum(a), sum(b))each of the underlined function symbols denotes the head of a term that may be selected for reduction. However, no matter, which selection strategy we apply, if a reduction sequence yields a normal form, this normal form is uniquely determined. This fundamental feature is a consequence of the Church-Rosser Theorem in λ-calculus which forms the theoretical basis of functional programming (see 6.45.1.2.  Models of Computation).

As a consequence, functional programming languages have the following characteristics that distinguish them from imperative or object-oriented languages:

· Referential transparency. A functional program is an expression that can be considered as a mathematical term: its result is a unique value that only depends on the results of its subexpressions. Consequently, if the program is executed multiple times, it always returns the same result. Conversely, the only effect of executing a functional program is returning a result: e.g., in program f(g(a),h(b)) the execution of g(a) cannot have a side-effect that affects the result of h(b). Furthermore, if we define a name x=T in a functional program, then any occurrence of x in the scope of the definition may be replaced by T without changing the overall result.

All this is not true for imperative languages: here the definition of a program function may refer to global data that may be destructively updated between calls; actually the function itself may update these data such that two subsequent identical applications give different results.

· No destructive assignments. A (purely) functional programming language does not have an assignment statement that updates the value of a variable. A "variable" in a functional language is actually a constant i.e. a name that is bound by a definition to a value; this binding is immutable, i.e., it cannot be changed in the scope of the definition (single assignment property).
This restriction has a major consequence on the functional style of programming: while it is in imperative programming common to have a global data structure that is iteratively updated in the course of computation, in functional programming always a new version of the structure has to be constructed (nevertheless the new structure may share components with the old one or the system may automatically find that the old structure can be safely updated in place).

1.3 Evaluation Strategies

While the Church-Rosser theorem guarantees the unicity of program results, the choice of the redex selection strategy has a crucial influence on the fact whether (and how quickly) a program terminates and thus on the expressiveness (and dynamic behavior) of a functional programming language. Two major reduction strategies and corresponding schools of thought have emerged:

· Eager Evaluation: function arguments are evaluated to normal forms before the function is applied. This strategy (which has been adopted by ML) is an example of a strict strategy where the non-termination of any subcomputation always means the non-termination of the whole computation. However, it has the advantage of a simple and very efficient implementation similar to call by value in imperative programming languages.
· Lazy Evaluation: the function is invoked with unevaluated argument terms; a term is only evaluated only when its value is required to proceed with the computation (e.g. to determine the value of a condition guarding a function definition) and it is evaluated only as far as needed to proceed with the computation (e.g. only the structure of the first cell has to be evaluated to determine whether a list is empty). This evaluation strategy (which has been adopted by Haskell) belongs to the class of non-strict strategies where a function may deliver a result even if not all of its arguments have been fully evaluated. It has the advantage of a more uniform programming style and the possibility to deal with pseudo-infinite data structures.
To illustrate the last item, take the functions
intlist :: Int -> [Int]

intlist n = n : (intlist n+1)

take :: Int -> [a] -> [a]

take 0     xs     = []

take (n+1) []     = []

take (n+1) (x:xs) = x : (take n xs)

the first of which constructs an infinite list of integers while the second one returns a prefix of  a list, respectively. The program

sumlist (take 3 (intlist 1))

does not terminate in eager evaluation because this strategy attempts to fully evaluate intlist 1. However, in lazy evaluation the program returns the result 6 = sumlist [1,2,3] because only a finite prefix of the infinite list is actually evaluated. Such pseudo-infinite data structures (infinite in their definition but finite in their actual evaluation) give in a natural way rise to a number of important functional algorithms which cannot be easily expressed in an eager strategy. In particular, they allow to write cyclic functions that take their own results as inputs. As an example, we may define the lists of all even respectively of all odd natural numbers as

evennats = 0 : (times2 oddnats)

oddnats = plus1 evennats 

where times2 and plus1 are functions that multiply each list element by 2 respectively add 1. Cyclic list definitions are important because of their ability to model reactive systems as networks of processes communicating by streams of data.

1.4 Higher Order Functions

A feature that considerably contributes to the expressiveness of functional languages is the ability to write higher-order functions which take functions as arguments and/or return functions as results. Take for instance the function composition 
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 which can be defined in Haskell as


(.) :: (a -> b)-> (b -> c) -> (a -> c)

     (f . g) x = g (f x)

such that it becomes possible to define a function 

listsquare :: [Integer] -> Integer

listsquare = sum . square

In particular in list processing, many typical patterns of computation have been abstracted to higher-order functions, e.g. the function

map :: (a -> b) -> [a] -> [b]

map f []     = []

map f (x:xs) = (f x):(map f xs)

"maps" a function f on a list  (i.e. applies it to every element of the list) while the functions

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e

foldl f e (x:xs) = foldl f (f e x) xs

"left folds" a list  (i.e. it reduces its element to a single one by application of a binary function f  from left to right) such that we can define listsum = fold (+) 0. Particular list processing patterns are even given special syntax, e.g. the "list comprehension"

[ f x | x <- l, p x ]

resembles in syntax and semantics the mathematical set construction 
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The consistent use of a number of fundamental higher-order list processing functions with well known algebraic laws allows one to quickly reason about compound functions and transform them to more efficient ones by "calculation" with their basic constituents. Also the economy of program construction is considerably increased by coding for varying application domains generally reusable program skeletons as higher order functions which can be "filled with flesh" (i.e., which can be adapted to concrete demands) by passing application-specific functions as arguments. 

1.5 Parallel Execution

Because of the Church-Rosser theorem it does essentially not matter in which order subexpressions are evaluated in a functional program, in particular they can be evaluated in parallel (see Models of Computation) on multiple processors within a machine (see Multiprocessors) or on multiple machines (see Clusters). This feature has made functional languages from their very origin attractive candidates for writing parallel programs: in f(a,b), we may evaluate arguments a and b in parallel (horizontal parallelism) and also, if we adopt a non-strict evaluation semantics, the arguments in parallel with the execution of f (vertical parallelism). In this way, recursively defined functions may create an arbitrary number of concurrent tasks: for instance, the application (map f l) gives rise to data-parallelism where for all elements x of l the values (f x)are computed in parallel; likewise, if function g returns a list, the program f(g(a)) gives rise to stream-parallelism where one task executing g produces a stream of elements which is consumed by another task executing f.  The lack of side-effects in a functional program thus exhibits a lot of potential parallelism.

Figure1: Horizontal and Vertical Parallelism

However, the problem arises that most of this parallelism is too fine-grained (i.e. the computational tasks have too small work size) to be efficiently exploited on real architectures: the task creation and communication overhead outweighs the benefits gained from parallel execution. It turns out that the complexity of the efficient parallelization of a functional program by compiler and/or runtime system therefore is (for different reasons) comparable to the automatic parallelization of imperative programs. Therefore most functional languages intended for the development of parallel programs (para-functional languages) resort to program annotations by which the programmer may explicitly specify which expressions shall be evaluated by concurrent tasks. These annotations may have a variety of forms, e.g. in a strict language (peval f a b) demands the concurrent evaluation of arguments a and b before f is invoked; in a non-strict language (e@p) tags expression e for evaluation on the processor addressed by p; in a lazy language (par e x)  returns e but triggers the creation of a task that evaluates the term to which the name x is bound. By embedding such annotations in higher-order functions, generic parallel programming strategies (parallel program skeletons) can be expressed that may be reused in many application scenarios. 

A deficiency of purely functional programs with respect to parallelization is that they do not allow to write programs that encapsulate non-determinism, i.e., that contain non-deterministic subcomputations while the overall result is still uniquely determined. For instance, in order to compute the sum of a sequence of values it does not matter in which order the pair-wise addition is performed. Within a functional setting, a possible solution is to introduce builtin higher-order functions such as a version of  fold that internally operates in a non-deterministic fashion but that is externally a well-defined function (provided that the argument function is associative and commutative).

1.6 Type Systems

Apart from their mathematical elegance with respect to computing, functional languages have considerably contributed to the development of types in programming. Functional languages possess arguably the most elaborate type systems with respect to the safe reuse of program code in different application domains. Much of this is due to the functional language ML in which this idea of generic programming has been developed very far.

Genericity occurs in ML and Haskell first on the level of  polymorphic functions, i.e., functions that may take arguments from different types. For example, the map function has polymorphic type (a -> b) -> [a] -> [b] where a and b are type variables that may stand for any concrete type. Therefore the term (foldl (+) 0 [1,2,3]) is well typed (a=Int, b=Int) as well as (foldl insert ”” [’a’, ’b’, ’c’]) is (a=Char, b=String). Furthermore, the programmer does not even have to explicitly write down the type of a function (all our previous examples did for presentation only): the compiler uses a type-inference mechanism to automatically deduce the most general polymorphic type from every function definition.

Genericity occurs in ML also on the level of  functors, i.e., parameterized program structures which encapsulate types, functions, and other structures: a functor may take a structure as an argument and returns a structure as a result. For instance, a functor

functor Polynomial(structure C: Ring): PolyRing =

struct

  type Poly = ...

  fun add(p1: Poly, p2: Poly) = ... C.add(c1, c2) ...

  ...

end

constructs a structure of polynomial operations independently of the actual type of the polynomial coefficients by referring to a formal parameter structure C that matches signature Ring (which lists the interfaces of all required operations). In a functor instantiation Polynomial(Integer) the compiler checks whether the structure Integer indeed matches Ring and then constructs the specific result structure with signature PolyRing. In this way, a hierarchy of generic program structures is constructed from which in a type-safe fashion specific instances can be generated.

In Haskell, the related notion of type classes has been introduced to use a function on different types that provide a common set of operations. Thus the addition function has polymorphic type 

(+) :: (Num a) => a -> a -> a

which indicates that (+) may be used on any type that has the operations defined by class Num.

1.7 Implementation Issues

Originally, functional languages were notorious for being slow and memory-consuming. However, research on compilers and runtime systems have since the 1980s produced very efficient implementations that can in many cases compete with those of imperative languages.

For instance, compilers are nowadays able to detect particular recursion patterns (e.g. tail recursion) that can be transformed to loop iteration such that control overhead of a functional program need not exceed that of an imperative one. Moreover, fusion transformations are used to avoid the construction of intermediate data structures; e.g. the result of (fold (+) 0 (map f l)) can be determined directly from list l without  computing the result of map first.
In lazy languages, sophisticated analysis techniques are applied to detect the strictness of particular (applications of) functions such that the overhead of lazy evaluation of function arguments can be avoided. Together with compilation techniques that generate efficient machine code from the code for the abstract machine model, also lazy languages have drastically improved their performance such that they are now in the same order of magnitude as imperative ones.

The performance of functional languages is therefore not any more an obstacle for their use in real-world applications. As for their integration into existing environments, external interfaces have been developed to use in functional programs object code that was developed in imperative languages. State-oriented program features such as input/output are either handled by non-functional language extensions (ML) or by encapsulation within a functional framework (monads in Haskell).

Logic Programming

1.8 Logical Foundations

A logic formula is a statement about a domain of discourse (the universe). For example, if a and b are names for objects of the universe (i.e., constants) and f denotes a function in the universe (i.e., it is a function symbol) and p names a property in the universe (i.e., it is a predicate symbol), then 

p(a,f(b))
is read "property p holds for the objects denoted by constant a and term f(b)". Formulas can be composed by logical connectives such as 
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 ("and") and 
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("if-then"), e.g., the formula 
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means "if p holds for a and f(b) and q holds for b, then r holds for a and b". For a statement on all objects of our universe, we may use variables like X and Y as object placeholders. A formula


[image: image22.wmf])

,

(

)

(

))

(

,

(

:

,

Y

X

r

Y

q

Y

f

X

p

Y

X

Þ

Ù

"


thus  is read "for all objects X and Y it is true that, if p holds for X and f(Y) and q holds for Y, then r holds for X and Y". The symbol 
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("for all") is the universal quantifier which states that the encapsulated formula is true if we replace variables X and Y by any element of our universe. Likewise, the symbol 
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 ("exists") is the existential quantifier which states that the encapsulated formula is true if we replace the quantified variables by some object of our universe; e.g.


[image: image25.wmf])

(

))

(

,

(

:

,

Y

q

Y

f

X

p

Y

X

Ù

$


reads as "for some X and Y, p holds for X and f(Y) and q holds for Y". An important class of formulas for logic programming are (universal) Horn clauses, i.e., formulas of the form
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where
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 is a sequence of all the variables that are contained in the term sequences
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 the premises of the clause and q its conclusion. If 
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, the clause has no premises, i.e., it is of form 
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; we call such a clause a fact. 

Let P be a 
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- combination of Horn clauses and let Q be a formula of form 
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 (where 
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 lists all variables in Q), we have to find terms 
[image: image36.wmf]T

 for 
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 such that substituting 
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 makes Q true (assuming P holds). This problem is solved automatically by a procedure called SLD-resolution which finds all such substitutions. This procedure is the basis of logic programming where P is considered as a program and Q as a query to be answered.

1.9 Programming Model

In a logic programming language such as Prolog, a program is a sequence of Horn clauses written as

q(Tn+1) :- p1(T1), ..., pn(Tn). % a rule

q(T).                           % a fact

i.e., the implication is directed from right to left and all occurring variables are considered as universally quantified (variable names start with a capital letter to distinguish them from constant names which start with a lower-case letter). As an example, take the program

father(paul, john).

father(john, mary).

father(john, samuel).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- father(X, Z), ancestor(Z, Y).

The last rule "X is an ancestor of Y, if X is father of Z and Z is an ancestor of Y" represents the clause
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A query is written as

?- q1(T1), ..., qn(Tn).

where all variables are considered as existentially quantified,. For instance, the query "which person X is a child of  John?" is written as

?- father(john, X).

which actually represents the formula
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Executing the query gives the result

X = mary

X = samuel

Yes

i.e. the system computes all substitutions that make the query true and thus names all chidren of John. Likewise the query

?- ancestor(X, mary).
X = paul

X = john

Yes

computes all ancestors of Mary. The query  

?- father(samuel, X).

No

shows that Samuel does not have any children. The query 

?- father(X, mary), father(Y, X).
X = john, Y = paul

Yes

names the father of Mary and the father of her father.

1.10 Inference Strategy

Prolog proceeds as follows to infer the set of all variable bindings that answer a query:

· The goals in a query are proved from left to right. The system attempts to prove each goal by constructing substitution terms for the variables in the goal (see below); if successful, these terms replace the variables also in the remaining goals. When all goals have been proved, the set of all variable substitutions represents an answer to the query.

· If a goal cannot be proved under the current variable substitution, the system backtracks to the predecessor goal in order to construct a new substitution for which another attempt is started; if no more substitution exists, the system backtracks to the next but one predecessor and so on. The backtracking mechanism is also triggered when an answer has been computed such that the complete set of answers is generated.

· To prove a goal, the system traverses from top to bottom all rules that have on the left hand side (the rule head) the same predicate as the goal. For each such rule, the terms in the head are unified with the terms in the goal by generating variable substitutions for the head variables as well as for the goal variables. If unification succeeds, the system continues with proving the right hand side (the body) of the rule in the same way as in the initial query. If a rule fails, the next rule is selected. If no more rule exists, proving the goal has failed and backtracking is triggered.

· If backtracking attempts to construct a new variable binding for a goal, the process proceeds with that rule that follows the rule by which the goal has been proved the last time. Thus for every goal the complete set of applicable rules is traversed such that all possible substitution terms are generated.

Above procedure can be visualized as the depth-first traversal of a search tree where each path in the tree consists of an alternating sequence of AND nodes and OR nodes; the root of the tree is an AND node that represents the initial query:

· The children of an AND node represent the goals in the query (for the root node) or in a rule (for an inner node); all children have to be proved to establish the truth of the node.

· The children of an OR node represent the rules for a goal predicate; all children have to be investigated to find all substitutions that make the goal true.

The search procedure starts with the construction of the left-most path in this tree which corresponds to the first goal in every rule (AND node) respectively to the first rule for every goal predicate (OR node). When the construction reaches an AND node without children (i.e., a fact), the path is terminated. If a solution has been found for all children of an AND node, the truth for the AND node has been established. If a solution has been found for some child of an OR node, the truth of the OR node has been established. If the truth of the root node has been established, the proof has succeeded and an answer has been found. If the proof of an AND node fails (because the proof of some of some of its children has failed), backtracking returns to the parental OR-node which tries to proof the next child node in turn. When all subbranches originating in an OR-node have been processed, the proof of the OR node (and thus also the proof of the parental AND node) fails.

Figure 2.  AND/OR-Tree

This procedure traverses the complete AND/OR-tree and produces all solutions of the query unless we encounter an infinite branch corresponding to unbounded recursion. The system follows this path forever, i.e., the program does not terminate and other solutions cannot be computed. This is where Prolog deviates for efficiency reasons from the SLD-resolution procedure (which is essentially a breadth-first search procedure). While there is no logical significance for the order in which goals are arranged in a query or rule body, this order may therefore determine whether the Prolog system terminates for a particular query or not. As an example, assume that we had defined the last rule for predicate ancestor as

ancestor(X, Y) :- ancestor(Z, Y), father(X, Z).

with the goals in the body swapped such that the rule becomes left-recursive (the first goal has the same predicate-symbol as the rule-head). If we now ask

?- ancestor(X, mary).

the program does not terminate because by the left-to-right goal processing strategy, this call is reduced to ancestor(Z, mary) which is (up to variable renaming) identical to the original goal. 

On the other hand, the order of rules in a program does not affect the termination behavior but it influences the order in which answers are generated and thus indirectly determines (if the program runs into a non-terminating computation) which answers are generated at all.

An important feature in logic programming is that there is no a priory distinction between input and output arguments of a predicate. Take for instance the program

append([], Y, Y).

append([E|X], Y, [E|Z]) :- append(X, Y, Z).

which states a relationship between three lists, namely that the third list is the concatenation of the first two ones. The first rule is read as "the concatenation of the empty list with list Y is Y" while the second rule means "the concatenation of a list with first element E and rest list X with a list Y is the list with first element E and rest list Z where Z is the concatenation of X and Y".

A query for the answer of the question "what is the concatenation L of [1,2] with [3,4,5]?"

?- append([1,2], [3,4,5], L).

is therefore reduced to goal append([1], [3,4,5], Z) which is in turn reduced to goal append([], [3,4,5], Z1) for which the first rule establishes Z1=[3,4,5] such that the second rule establishes Z=[2,3,4,5] and thus finally gives

L=[1,2,3,4,5]
Yes

However, also the query "which list B has to be appended to [1,2] to yield [1,2,3,4,5]?" succeeds with an answer:

?- append([1,2], B, [1,2,3,4,5]).
B=[3,4,5]
Yes

Even a query "which two lists A and B have to be appended to yield [1,2,3,4,5]?" works:

?- append(A, B, [1,2,3,4,5]).

A=[] B=[1,2,3,4,5]

A=[1] B=[2,3,4,5]

...

A=[1,2,3,4,5] B=[]
Yes

Nevertheless, pitfalls may occur from the difference between logical interpretation and actual computation: take the program

sublist(S,L) :- append(AS,B,L), append(A,S,AS).

which determines whether S is a sublist of L, i.e., whether there exist lists A and B such that the concatenation of A and S and B gives L. The query

?- sublist([3,4], [1,2,3,4,5]).

Yes

succeeds as expected and also the query

?- sublist(S, [1,2,3,4,5]).

S = []

...

Yes

produces all sublists of [1,2,3,4,5]. However, if we revert the order of the clauses in the rule body to the logically equivalent (and perhaps more natural)

sublist(S,L) :- append(A,S,AS), append(AS,B,L).

above queries will not terminate. In the original solution, the first goal partitions the known list L into sublists AS and B such that in the second goal also AS is known. In both goals, therefore only finitely many possibilities for the first two arguments of the append goal exist. In the later solution, however, the first goal (whose third argument is unknown) yields solution terms of the form

A=[X1,...,Xm] S=[Y1,..,Yn] AS=[X1,...,Xm,Y1,...,Yn]

with m+n fresh variables Xi and Yj (for every m and n) ; afterwards the second clause tests whether AS can be unified with an initial segment of L. However, since the first goal gives infinitely many solutions, the program never terminates.

1.11 Extra-Logical Features

As shown in the previous section, writing logic programs has two facets: a logic facet and a control facet. While the former one is the basis for understanding, the later one cannot be neglected when it comes to writing programs that execute with a predictable dynamic behavior and terminate in a finite amount of time; in most logic languages, programs must be quite carefully designed with respect of the underlying proof strategy. Prolog gives programmers some possibilities to control program execution of which the cut operator "!" is the most important one. In a rule

q(T) :- p1(T1), ..., pm(Tm), !, r1(T1), ..., rn(Tn).

the occurrence of  "!" denotes a "point of no return" which when it has been crossed from left to right (after having proved the goals pi) must be not again crossed from right to left (by back-tracking from the goals ri). The predicates pi can be interpreted as guard conditions that control whether the rule is applicable: if the rule is selected and the pi have been passed (after generation of new variable bindings), the system commits itself to the choices it has made so far in the processing of the rule. No other rules for the goal predicate q will be attempted and no other bindings will be generated by the pi. Thus the cut operator prunes the AND/OR-tree and reduces the search space of the computation.

As an example, take the program

merge([X|Xs],[Y|Ys],[X|Zs]) :- X<=Y, !, merge(Xs, [Y|Ys], Zs).

merge([X|Xs],[Y,Ys],[X|Zs]) :- X>Y,  !, merge([X|Xs], Ys, Zs).

merge(Xs, [], Xs) :- !.

merge([], Ys, Ys) :- !.

which merges two ordered lists into a third order list: when the comparison of the head elements of the first two lists succeeds, there is no need for looking at the other rules any more.

Another use of the cut operator is to introduce a limited form of negation called negation by failure. The basic Horn clause logic does not have a connective "not" such that we cannot demand in a rule that a particular goal shall not hold. However, using the cut operator and the builtin predicate fail (whose proof always fails), we can e.g. define 

unmarried(X) :- married(X), !, fail.

unmarried(X).

which says that a person is unmarried, if it is not married. If the test  married(X) fails, the second rule is chosen which is trivially satisfied. However, if the test succeeds, the goal fails because of the fail predicate; the cut operator takes care that the second rule is not considered any more.

Another extra-logical feature in logic programming is arithmetic: it is provided with the help of a builtin predicate is which takes as its second argument an arithmetic expression, evaluates this expression to a number, and unifies the result with the first argument. For instance, the program

gcd(X,Y,Z):- Y>0, !, T is X mod Y, gcd(Y,T,Z).

gcd(X,0,X).

says that the third argument is the greatest common divisor of the first two arguments (both of which must be integer numbers). The is operator is uni-directional, i.e., it cannot be used to find those substitutions for the variables in the second argument that make the result expression equal to a value specified by the first argument. For this reason, in above example a query

?- gcd(12,18,X).

X = 6

Yes

succeeds but the query

?- gcd(X,18,6).

[Exception: ... ]

fails with an error message.

1.12 Parallel Execution

Since execution of a logic program is basically the traversal of and AND/OR-tree, the main source of parallelism is to traverse multiple branches of this tree in parallel. Corresponding to the two kinds of nodes, we have two forms of parallelism:

· AND-parallelism: multiple goals of a query respectively rule body are processed in parallel (instead of sequentially from left to right ). Here the problem arises that each goal may result in multiple variable bindings such that the results of different goals have to be appropriately combined. Furthermore, as discussed above, certain goals may yield non-terminating computations when their arguments have not been bound to values by other goals.

· OR-parallelism: multiple rules for a goal predicate are processed in parallel (instead of sequentially from top to bottom) and the results are joined to a set of solutions. Here the problem arises that mechanisms for pruning the search idea (the cut operator in Prolog) cannot be easily generalized to the parallel case.
Because of these problems, most attempts to parallel logic programming have focused on Guarded Horn Clause (GHC) languages: these special variants of logic languages only allow clauses of form

q(T) :- p1(T1), ..., pm(Tm) | r1(T1), ..., rn(Tn).

and every parameter position in a predicate has to be explicitly declared as input or as output; in a goal only a variable is allowed in the place of an output argument. The execution semantics is consequently restricted such that neither the unification of the goal with the head of the rule nor the processing of the guards pi may generate bindings of variables in input terms, i.e. unification is restricted to uni-directional pattern matching.

The commit operator "|" fulfills a role similar to the cut operator in Prolog: given a goal, the system selects among all applicable rules (those for which the unification with the head as well as the guard conditions pi succeed) non-deterministically one and commits to this rule; consequently in every OR-node of the search tree only one path is processed. However, the remaining goals ri may be processed in parallel, i.e., in every AND-node all branches may be simultaneously traversed. This form of AND-parallelism does not represent a problem any more because by the non-deterministic choice every goal may generate only one set of variable substitutions. Furthermore, the AND-parallel processes are automatically synchronized by their shared variables: a process that has to match an variable in an input argument with a non-variable term is blocked until another process has bound the variable to a term such that the matching process can proceed.

The form of parallelism exploited by GHC languages is thus quite similar to that of para-functional languages (see Parallel Execution of Functional Languages): horizontal parallelism corresponds to the parallel execution of goals that do not share a variable that is in an output position of one of the goals; vertical parallelism corresponds to the parallel execution of goals sharing a variable that is in the output position of one goal and in the input positions of the other goals. Likewise, stream parallelism arises when the variable shared by goals is a list of elements that are iteratively generated by one goal and correspondingly consumed by the other goal. Furthermore, similar to para-functional languages, annotations are used to indicate for which goals in a rule actually parallel tasks shall be created. As a major difference to functional languages, GHC languages inherently support non-determinism: e.g., a program can be easily written that merges the elements of two input streams to an output stream in the order in which they happen to arrive. The major differences to Prolog are that programs in GHC languages return only one element from the set of query solutions and that their predicates have a fixed input/output direction.  

1.12.1 Implementation Issues

The most important step for the efficient implementation of Prolog was the development of the Warren Abstract Machine (WAM), an abstract machine model to which a Prolog program can be compiled and which can be very efficiently executed on conventional computer architectures. Furthermore, similar to functional languages, optimization and transformation techniques have been developed to compile particular recursion structures to efficient code which corresponds to that of imperative languages. While also attempts have been made to develop type systems for logic languages, types have never become really popular in logic programming. Furthermore, while the functional programming community have always attempted to keep their languages pure (close to the mathematical interpretation), Prolog has had from its very origin a rather large extra-logical subset with imperative procedures for input/output, program manipulation, and operating system access. The development of GHC languages for parallel execution has represented an attempt to greater purity but also a closer approximation to the functional style of programming.

Refinement and Convergence

Since the 1980s research has yielded considerable progress in increasing the expressiveness of logic programming by admitting constraints on arithmetic domains (constraint logic programming) and in unifying logic programming with functional programming (functional logic programming).

1.13 Constraint Logic Programming

Prolog programs operate on a universe of terms (the Herbrand universe), i.e., the clauses represent statements about objects that have no relation deeper than syntactic equality. For this reason, Prolog can deal with arithmetic only by use of the extra-logical operator is that has a builtin understanding of number domains with the corresponding arithmetic operations. In a constraint logic programming (CLP) language, this term universe is extended to domains in which deeper laws hold, in particular arithmetic domains such as the rational numbers with associated algebraic operations (e.g. +, *) and predicates (e.g. =, <). For dealing with formulas on such domains, the general unification mechanism of Prolog must be complemented by domain-specific constraint solvers that can decide at any moment whether the remaining constraints are solvable. For efficiency reasons, these solvers must operate in an incremental fashion such that adding new constraints to an already solved set does not force them all to be re-solved.

For instance, in a CLP program that operates on the domain of natural numbers, one can write a formula like

div(X, Y, R, Z) :- Z = X*Y+R, R<X.

and issue queries like

?- div(5, Y, R, 13)

Y = 2, R = 3

Yes

If the domain is finite, the problem is reduced to the problem of constraint satisfaction which has been thoroughly investigated by the artificial intelligence community; it can be solved by systematically traversing the space of partial solutions respectively exploring the space of all possible variable assignments (still the problem is in general NP-hard). 

If the domain is infinite, mathematical algorithms have to be applied for the solution of constraints in the particular application domain; e.g. a useful solver for linear rational constraints is the well-known simplex method. The Prolog III language developed by Colmerauer in 1990 is a CLP language over the domain of linear rational arithmetic. The European CHIP (Constraint Handling in Prolog) system deals with finite arithmetic and linear rational arithmetic. The Australian CLP(R) system handles linear real arithmetic; the Austrian RISC-CLP system deals also with non-linear real arithmetic and the domain of complex functions. 

The area of constraint logic programming thus represents a natural evolution of logic programming and is still a very active and fruitful area of research.

1.14 Functional Logic Programming

Depending on the point of view, the integration of functional and logic programming can be tackled in two ways: On the one hand, logic programming aspects can be integrated into functional languages by replacing in a term reduction step the pattern matching operation by unification. On the other hand, functions can be integrated into logic languages by combining the resolution principle with term reduction. Ultimately, both views yield similar operational principles. 

Taking the second perspective, the unification can be performed by introducing equality clauses into a logic language. For instance, the program

append([], L) = L.

append([E|R], L) = [E|append(R, L)].

last(L) = E :- append(X,[E]) = L.

defines a function append for list concatenation and a function last that returns the last element of a list. The definition of the later one can be read as "the last element of L equals E if appending some list X to the list with single element E equals L.

In order to evaluate the term last([1,2,3]) we thus have to find a solution to the equation append(X,[E]) = [1,2,3] which ultimately requires to compute unifying substitutions with respect to  a given set of equations, a problem that is called E-unification. This problem can be solved by a method called narrowing which is basically a sequence of  rewrite steps where unification replaces matching. Provided that the program equations satisfy certain restrictions (the resulting rewrite system must be terminating and give unique normal forms), narrowing is a sound and complete mechanism for the execution of a functional logic program. Furthermore, there exists a basic narrowing strategy that yields (under above restrictions) a normal form if any narrowing strategy yields a normal form and that can serve as the basis of a compiler-based implementation. 

While above restrictions demand that any subcomputation must terminate (corresponding to strict evaluation in functional languages), there also exist lazy narrowing strategies that can cope with unbounded subcomputations; these strategies require further restrictions to the program. Furthermore, research is active on higher-order narrowing where (corresponding to higher-order functional languages) functions can serve as function arguments and function results. Progress has been also made on the integration of higher-order and lazy narrowing.

A major problem with narrowing is that the resulting execution mechanism is highly non-deterministic in the sense that in a term many possible narrowing positions exists and for each position there are many applicable rules all of which must be attempted. A main goal of research is therefore to find more deterministic reduction strategies, i.e., to prune the search space such that program execution closer resembles the (deterministic) reduction strategies of functional languages. Also better implementations by use of program analysis techniques, concurrent and distributed implementations, and the integration of constraints are actively investigated.

Impacts on Computer Science

Functional and logic programming languages have been applied in various academic and industrial projects for the development of (partially large scale) systems, mainly in areas involving symbol manipulation like automated theorem proving and program verification, natural language processing, and speech recognition, computer mathematics, computational chemistry and biology, expert systems, database and information systems, decision support, planning, modeling, scheduling, etc. The concurrent functional language Erlang developed by the Ericsson Computer Science Laboratory has been extensively used for writing telecommunication control software and other distributed real time systems with high demands for reliability.

Despite of this track record, declarative languages have admittedly never gained the full acknowledgement of “industrially support” , partially because of their more or less radical deviation from the well-known imperative programming model in use today (in its object-oriented incarnation), partially because of their more difficult integration in existing development practices and environments. However, more than the declarative languages themselves and the applications developed with them, ideas, concepts, and implementation techniques introduced by these languages have influenced other languages and developments in computer science.

It is easily overlooked that every imperative programming languages like C or C++ has a rather large functional subset; also in these languages it is nowadays recommended practice to write program functions without side-effects for easier reuse (at least when this is easily feasible). The overloading of operators in C++ allows to write elegant functional-like programs operating on compound data structures. Variants of Fortran designed for automatic vectorization (Fortran 90) or semi-automatic parallelization (High Performance Fortran, HPF) include statements for the construction of whole vectors and matrices in a functional way.

The idea of generic programming with the help of reusable program skeletons parameterized by application-specific code (higher-order functions, functors) has become the basis of Ada’s generic modules and of the template construct in C++; the Standard Template Library (STL) is the fundament on which most C++ applications are built. Likewise, parameterized classes have been implemented as extensions of the Java language (Pizza, PolyJ); their inclusion into the language standard is probably just a matter of time. Analogous to higher-order programming in functional languages, it has become common practice in object-oriented programming to encapsulate program behavior into objects that are passed as method arguments respectively are returned as method results.

Also the results gained from the research on the efficient implementation of functional and logic languages (techniques for the efficient compilation of abstract machine code to actual machine code, mechanisms for automatic garbage collection) have found their way into the implementation of object-oriented languages; especially the Java Virtual Machine (JVM) has considerably profited from the expertise gained with the runtime systems of declarative languages.

Furthermore, the languages of the popular computer algebra systems Maple and Mathematica are based on combinations of imperative, functional, and logic programming principles (in fact, Mathematica’s computational kernel can be considered as an interpreter for a higher-order equational logic). The function libraries of these systems contain hundreds of thousands of lines written in these languages; the ever increasing popularity of these systems thus helps to promote functional and logic programming principles to a wide audience.
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