CFLP: a Mathematica Implementation of a
Distributed Constraint Solving System

Mircea Marinf Tetsuo Idat
Wolfgang Schreiner!

TResearch Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University

A-4040 Linz, Austria
Mircea.Marin@risc.uni-linz.ac.at
Wolfgang.Schreiner@risc.uni-linz.ac.at
Institute of Information Sciences and Electronics

University of Tsukuba

Tsukuba 305-8573, Japan

ida@score.is.tsukuba.ac. jp

April 15, 1999

Abstract

The need for combining and making cooperate various constraint solvers
is widely recognized. Such an integrated system would allow solving prob-
lems that can not be solved by a single solver.

CFLP (Constrained Functional Logic Programming language) is a
distributed software system consisting of a functional logic interpreter run-
ning on one machine and a number of constraint solving engines running
on other machines. The interpreter is based on a deterministic version of
a lazy narrowing calculus which was extended in two main directions: (a)
the possibility to specify explicit OR-parallelism, and (b) the possibility
to specify constraints over various domains. The OR parallel features of
the interpreter allow the decomposition of the solution space into differ-
ent subspaces denoted by various sets of constraints; the individual sets
are solved by different constraint solving engines in parallel and joined
together to form the total solution set. This allows to investigate prob-
lems with large solution spaces using the computational power available
in large computer networks.

The system is written entirely in Mathematica and uses the MathLink
protocol for inter-process communication. The current implementation
can solve problems expressible in functional logic and involving constraints
such as linear, polynomial and differential equations.

1 Introduction

Recent refinements of lazy narrowing calculi for solving equations over the do-
main of terms lead to successful implementations that can be used as starting
point of developing a system based on equational reasoning. However, there
are many applications such as theorem proving and computational geometry,
where the expressive power of a pure functional logic language is not sufficient.
These problems usually involve solving systems of constraints over various do-
mains, like polynomial equations, differential equations, linear equations and
inequations. The CLP scheme proposed by Jaffar and Lassez [3] showed the
possibility to integrate constraint solving capabilities over domains like reals,
booleans, finite domains, rational and infinite trees in logic programming lan-
guages. Notably, almost all of these languages have a sequential implementation.
Our investigation showed that it is possible to refine a lazy narrowing calculus
with inference rules for specifying constraints and to develop a model for solving
the constraints in a distributed environment.

The system is called CFLP (Constrained Functional Logic Programming)
and consists of a functional logic interpreter based on the lazy narrowing calculi
LCNC [1] and Higher-Order LNC [7] and a number of constraint solvers that
may run on possibly different machines. The interpreter is implemented in
the symbolic computation system Mathematica [8]. The cooperation between
interpreter and constraint solvers is coordinated by a constraint scheduler, which
schedules the tasks generated by the interpreter among the solvers.

The paper is structured as follows: in Section 2.1 we illustrate by examples
the system capabilities. Section 3 describes the system architecture. Subsections
3.1, 3.2 and 3.3 describe the three main components of the system: interpreter,
scheduler and constraint solvers.

2 Examples

In this section we illustrate the functionality of CFLP with a few examples.

2.1 A Polynomial Approximation Problem

Consider the problem of finding the relationship between the coefficients of
a uni-variate polynomial f € C[z] of degree 3 and a uni-variate polynomial
g € C[z] of degree 4 related by the constraint that they have the same values for
z=1,2,3,4. In CFLP, this problem can be modeled as an equality between the
lists {f[1], fI2], f[3], f[4]} and {g[1], g9[2], g[3], 9[4]}. In order to express lists
of function evaluations, we make use of the higher-order function map which is
defined by the conditional rewrite rule:

map[F, {}] = {},
map[F, [y | 2]l = [Fly] | 1] < t = map[F, 2]

In variables F) z,y, z. Note that in this example F' is a higher-order variable. We
write f[t1,...,t,] for the term obtained by applying f to arguments ¢y, ... ,t,.

The construct lhs — rhs < cond is the CFLP notation for a conditional rewrite
rule, and lhs — rhs an unconditional rewrite rule. The condition part cond
of a rewrite rule is in this example an equation, but in general it can be any
CFLP goal. [h | t] denotes a list with head h and tail ¢, {} is the empty list,
and an expression of the form {ai,as,...,a,} is syntactic sugar for the list
[a1 | a2 ... [an | {}]--.]- Note that the second definition of map can be replaced
with the unconditional rewrite rule

maplF, [y | 2]] = [Fly] | maplF, 2]]

in variables F) y, z but for explanatory purpose we consider the previous defini-
tion.
The rewrite rules describing the polynomial f is

flz] a2 +ba*+cax+d

in variable z. In the equational theory defined by these conditional rewrite
rules, our problem reduces to solving the equation:

map[A\[{z},m Aan+pl4qgz+ r],{1,2,3,4}] =~ map|f, {1,2,3,4}]

in variables m,n, p, ¢, r and constants a, b, ¢, d. Here,) is the symbol for lambda-
abstraction.

For solving CFLP queries, our system provides the function TSolve. The
first argument of TSolve is the equational goal to be solved, the second one
is the list of variables to be computed, and the third (optional) argument is
the list of other variables appearing in the equational goal. Variables may be
type annotated. CFLP includes a polymorphic type checker for verifying the
type-correctness of the goal and conditional rules. The rest of the information
necessary for solving the goal is given by passing specific options of TSolve. For
our first example, the call is as follows:

TSolve
[mapA\[{z},m 2* + 7 22 +p 22 +q 2 + 7], {1,2,3,4}] = map[f,{1,2,3,4}],
DefinedSymbol-> {
map:Float X Float x TyList[Float] — TyList [Float],
f :Float — Float},
Rules->{
flzl] 5 az®+b2®>+cx+d,
maplF, (}] = {}.
map[F, [y | 211 — [F[y]|t] < t = map[F, 2]},
Constructor->{a: Float,b: Float,c : Float,d : Float}]

Logical variables are declared in the goal by annotating them with an overbar,
and rule variables are underlined. In order to type in expressions in the CFLP
language, a suitable palette is provided for the user convenience.

The TSolve options used for this call are:

e Rules: the set of conditional rewrite rules,

e Constructor: the constructor symbols,
e DefinedSymbol: the defined symbols.

The answer computed by TSolve is
{{am dh (-asminosas S5 pvno G0 gy ey 2501)

Note the use of higher-order variables and lambda-abstractions in the formu-
lation of the query and rewrite rules. The system is able to handle equations
involving operators defined outside the functional logic program. Furthermore,
the computed answer is a parametric solution, since r is a variable.

2.2 A Problem Involving Solver Cooperation

Consider the following program:
flz] = gyl € (z+y~3 VvV 22 —y=~09)
in complex variables x,y and the goal:

flal = glyl, 9ly®] ~ gle” — 1], Al{u}, H'[u]] = Al{u}, z w¥], H'[1] ~ 4

in variables x, y, 2, H. In this example the operator V denotes logical disjunction,
and it can be used in goals and conditional parts of rewrite rules to express
alternative solutions.

Solving this goal requires constraint solvers for linear, polynomial and dif-
ferential equations over the domain of complex numbers.

Upon the query:

TSolve[f[z] ~ g[y], gly°] ~ gl2* — 1], Al{u}, H'[u]] = A[{u}, 2 u¥], H'[1] ~ 4,
DefinedSymbol-> {f:Compl — Compl},
Rules->{f[z]gly] < (z+y~3 V 2° —y~9)},
Constructor->{g:Compl — Compl}]
the following solutions are computed:
{{z = 3+ VI8, H = A{u},el + 52720y oy V15,2 5 4,
{z+ 3 —V15,H — \{u},c2 + %],y V15,2 + 4},
{z = =9 —V15,H = A\[{u},cd + 41"_1:/;?],1/ = —/15, 2+ 4},
{20 —V9+ VI5, H — N{u},cd+ 5220)y s VT5, 205 4,
{z = VO —VI5,H - MN{u},cd + 220 y oy — V15,25 4},
{z = VO~ V15, H — N{u},ed + L2y s V15,2 5 4}}

It is not hard to see that these are all the solutions to the query.

2.3 Electrical Circuits

This example illustrates how the behavior of electrical circuits can be expressed
with our system. We consider circuits built from serial and parallel connections
of elementary components such as resistors and capacitors. Electrical compo-
nents act on electrical signals specified as pairs of the form {V, I}, where V is
the voltage and I the intensity of the signal.

The rules given below define an underlying theory of electrical circuits con-
sisting of serial connections of resistors/capacitors. Here, resistor{R,{V1,I1},
{V'2,12}] defines the relation between input {V'1,11} and output {V2,I12} for
a resistor with characteristic R. In a similar way is specified a capacitor. A se-
rial connection is specified by a predicate serial [comps, S1,52] where S1 is the
input signal, S2 the output signal, and comps is a list of electrical components
specified in a functional way. E.g., the predicate

serial [{A[{SIn, SOut},resistor[R1, SIn,SOut]],
A{SIn,SOut}, resistor{R2, SIn, SOut]|}, S1,52]

describes a serial connection of two resistors (with characteristics) R1 and R2,
input signal S1 and output signal S2.

ElTheory={
resistor{R, {V1,I1},{V2,12}] —» True < {V1-V1=1I1R,I1 =~ I2},
capacitor|CO, {V1,11},{V2,12}] - True « {V1 - V2~ I1 CO,I1 ~ 12},
serial [{}, S, S] — True,
serial [[Comp | CompList],SIn, SOut] — True <
{Comp[SIn, SBetw], serial[SBetw, SOut]}}

In a similar way one can define parallel connections. When specifying electrical
connections we find convenient to make use of the following abbreviations:

RComp[R]:=Function[{SIn,SOut},resistor[R,SIn,SOut]];
CComp[C1]:=Function[{SIn,SOut},capacitor[C1],SIn,SOut];

Consider now the following problem: Find the characteristic of a capacitor which
can replace a serial connection of 3 capacitors. The CFLP query for solving this
goal is:

TSolve|

serial [{CComp[C1], CComp[C2],CComp[C3]]}, {V1,11},{V2,12}] ~

capacitor[CO, {V1,11},{V2,12}],

{co},

DefinedSymbol-> {
capacitor:Float x TyList[Float] x TyList[Float] — Bool,
serial },

Constructor->{C1,C2,C3,11,V1},

Rules->ElTheory]

interpreter
A
Y
scheduler

m 1—solver m k—solver

m 1—solver - mk—solver

Figure 1: The architecture of CFLP

The call resumes with the computed answer:

C1C2C3

U0~ mmraceroy?

Note that this example we defined the components I1, V1 of the input signal
as constructors, and those of the output signal as logical variables. Since we were
interested only in finding the characteristic value C0, we provide TSolve with
a second argument which gives the list of variables of interest. If the argument
{C0} is omitted then the computed answer will be a binding substitution for
C0,V2,12.

3 The System Structure

CFLP is a distributed software system for solving equational goals in theories
that can be represented as sets of conditional rewrite rules over a term algebra
whose signature is extended with external operators. External operators are
used for expressing constraints over various domains.

The system consists of three components:

e an interpreter,
e 3 scheduler,
e various specialized constraint solvers.

The general architecture of the system is depicted in Fig. 1.

3.1 The Interpreter

The CFLP interpreter is based on a deterministic extension of the calculi Higher-
order LNC and LCNC ([7, 1]). The calculus essentially consists of the rules for
higher-order unification plus the lazy narrowing rules, and it was proven to be
sound and complete for various classes of equational theories of practical interest
([1],5]). We extended this calculus in two main directions:

(a) the possibility to specify constraints, i.e., equations that can not be solved
by narrowing, but for which specialized solvers are available, and

(b) the possibility to specify explicit OR- and AND-parallelism.

The interpreter successively decomposes the goal towards an answer substi-
tution by applying the inference steps of the underlying functional logic calculus.
The only equations which can not be solved in this way are those which involve
external operators. Such equations are factored into a sequence of simpler equa-
tions and a constraint, i.e., an equation which contains only external operators.
The constraints generated upon derivations are sent to specialized constraint
solvers via the component called constraint scheduler.

Note that the non-deterministic selection of an inference rule for a defined
symbol and explicit OR-formulas cause the initial goal to be reduced to disjoint
sets of constraints that have to be solved in parallel.

For example, in the second illustrative example, the reduction of the initial
goal

1z = glgl, 9ly®] ~ glz® — 1], Al{u}, H'[u]] = Al[{u}, 2 w¥], H'[1] ~ 4

involves the decomposition of the equation f[Z] ~ g¢[g] into simpler equations.
The transformation step performed by our lazy narrowing calculus is:

f[z] = g[y] = = ~ 20, (20 + 90 ~ 3) V (20 — y0 = 9), g[y0] ~ g[]
where z0,y0 are new variables. In this step we used the fresh variant
f[20] = y0 < (20 +y0 ~ 3V 20> — y0 ~ 9)

of the rule of f. Upon this step an OR-subgoal is introduced and as a result the
goal is finally decomposed into two disjoint sets of constraints. These sets of
constraints are sent to be solved to the constraint scheduler.

3.2 The Constraint Scheduler

The constraint scheduler coordinates the process of solving the systems of con-
straints received from the interpreter. In order to solve these sets of constraints,
the constraint scheduler maintains a dynamic data structure called constraint
tree. The nodes of the constraint tree are tuples of the form (o, cs), where o is
a substitution and cs is a system of constraints.

Whenever a set of constraints is received from the interpreter, a new son
(e, cs) of the root of the constraint tree is created. Here ¢ is the empty substi-
tution. The scheduler expands this tree by applying constraint solving methods
in parallel to all its leaf nodes. A leaf node (0, cs) is expanded w.r.t. a method
m € M as follows:

1. ¢sis decomposed into a set ¢s; of constraints to which m can be applied,
and the set csy of other constraints,

2. c¢s; is sent to be solved to a constraint solver which implements the method
m. We call such a solver an m-solver.

3. If the m-solver detects cs; inconsistent then the node (8, cs) is marked as
inconsistent. Otherwise, the m-solver returns (g, ¢s1) if it can not reduce
cs1, or it computes a finite sequence of pairs (01, csy), ..., (0p, cs,), with
the property that 6 is a solution of c¢s iff there exists a solution o; of cs;
(1 <i < p) such that § = o; 0 6;.

4. If the sequence (01, csy), ... ,(0p, cs,) is computed by the m-solver then
the nodes (6; 00,8;(¢cs2) U cs;) (1 <4 < p) are added to the constraint tree
as sons of (8, cs).

A node (o, cs) is final if ¢s can not be reduced by any m-solver, where m € M.

The implementation of the scheduling algorithm is inspired from the work
of Hong [2]. The scheduler can be regarded as a component parameterized
with respect to a list M = {my,... ,m} of constraint solving methods. The
scheduler repeatedly applies the sequence my, ... ,my of methods to the leaves
of the constraint trees until they become final nodes or become inconsistent.

The decomposition D(cs) is read from the final nodes of the subtree with root
node (g, cs). As soon as a final node is generated, its content is made accessible
to the interpreter.

3.3 The Constraint Solvers

The constraint solvers are implementations of the constraint solving methods
specified to the scheduler through the list M. The current implementation pro-
vides four methods for solving constraints over the domain of real and complex
numbers:

1. Linear, for linear equations (the Simplex algorithm),

2. Polynomial, for polynomial equations (the Grobner basis algorithm),
3. Derivative, for ordinary differential equations,

4. PartialDerivative, for partial differential equations.

These methods are tried in the order presented.

All solvers are implemented by separate Mathematica processes executing
in parallel and communicating with the constraint scheduler via MathLink con-
nections. There are two types of CFLP constraint solvers:

e Local constraint solvers. These solvers run as subsidiary Mathematica
kernel processes of the CFLP constraint scheduler.

e Shared constraint solvers. A shared constraint solver is started from out-
side a CFLP session and can be connected later to more CFLP constraint
schedulers, which may run on possibly different machines. This means
that we may have the situation depicted in Figure 2, where the constraint

schedulers schedulery, ... , scheduler,, may run on different machines.
interpreter 1 interpreter
scheduler | scheduler
m
M-solver

Figure 2: Shared constraint solver

The user can adjust the constraint solving component of the system by spec-
ifying the number of local constraint solvers which are started at system initial-
ization and the remote machines on which to look for shared constraint solvers.
The communication mechanism between the scheduler and constraint solvers
is implemented completely in MathLink ([8]). Therefore the CFLP system is
machine independent and can be used in heterogeneous networks.

4 Conclusions

CFLP is a software system consisting of a functional logic interpreter and a
distributed constraint solving system. In the current implementation we have
integrated solvers for linear, polynomial, differential and partial differential
equations over the domain of complex numbers. The constraint solvers are
all implemented in Mathematica.

We intend to further develop the system by integrating more constraint
solvers. These solvers may act on disjoint subsystems of constraints or on over-
lapping subsystems. Currently, only one constraint solver acts on a leaf node
of the constraint tree. An optimization would be to simultaneously act with
more constraint solvers on the same node in situations when the subsystems of
constraints are non-overlapping.

The functional logic extension of the underlying calculus to higher order logic
is still incomplete. Still, the current implementation can successfully handle
restricted versions of higher order goals and conditional term rewriting systems.
We will continue research in this field to identify more suitable extensions.

The system is intended to be used by researchers in logic programming lan-
guages and in functional logic programming languages as well as by researchers
in constraint solving who are willing to use its expressive and computational
power.

References

[1] Hamada, M., Middeldorp, A., Suzuki, T.: Completeness Results for a Lazy
Conditional Narrowing Calculus. DMTCS/CATS’99. Proceedings of the 2nd
Discrete Mathematics and Theoretical Computer Science Conference and the
5th Australasian Theory Symposium, Auckland, Springer-Verlag Singapore,
pp- 217-231, 1999.

[2] Hong, H.: RISC-CLP(CF): Constraint Logic Programming over Complex
Functions. Technical Report. Research Institute for Symbolic Computation.
Linz 1994.

[3] J. Jaffar, J.-L. Lassez, Constraint Logic Programming. Technical Report,
Department of Computer Science, Monash University, Clayton, 1987.

[4] Marin, M., Schreiner, W.: CFLP: A Distributed Constraint Solving Sys-
tem for Functional Logic Programming. Technical Report 98-23. Research
Institute for Symbolic Computation. Linz 1998.

[5] Middeldorp, A., Okui: A Deterministic Lazy Narrowing Calculus. Journal
of Symbolic Computation 25(6), pp. 733-757, 1998.

[6] Middeldorp, A., Okui, S., Ida, T.: Lazy Narrowing: Strong Completeness
and Eager Variable Elimination. Theoretical Computer Science, 167(1,2):95-
130, 1996.

[7] Suzuki, T., Nakagawa, K., Ida, T.: Higher Order Lazy Narrowing Calcu-
lus: a Computation Model for a Higher-Order Functional Logic Language.
Proceedings of Sixth International Conference on Algebraic and Logic Pro-
gramming. LNCS, 1997.

[8] Wolfram, S.: The Mathematica Book. 3rd Edition. Wolfram Media and
Cambridge University Press , 1996.

10

