- Problem:
- Find the earliest meeting time acceptable to every member of a group of three people.

- For each member
*F, G, H*,

a time function*f, g, h*.*f(t)**>=**t*- The smallest time
*r**>=**t*where*F*can meet. `com`(*t*) :=*(t = f(t) = g (t) =h(t))*.

- Formal specification:
- Given: functions
*f*,*g*,*h*over`Nat`

where*f(t)**>=**t**and**g(t)**>=**t**and**h(t)**>=**t**and**f(f(t))=f(t)**and**g(g(t))=g(t)**and**h(h(t))=h(t)*

and some*z*with`com`(*z*). - Find:
*r*=`min`{*t**<=**z*|`com`(*t*)}

(within a finite number of execution steps).

- Given: functions

Wolfgang.Schreiner@risc.uni-linz.ac.at

Id: intro.tex,v 1.2 1996/01/31 15:37:03 schreine Exp schreine