Chapter 5: Recursion

In some of the following exercises, we use the function \(\text{Fin}(A) \) to denote the set of all finite subsets of set \(A \) and \(\text{Inf}(A) \) to denote the set of all infinite subsets of \(A \).

1. Consider the following grammar:

\[
N \in \text{Nat} \\
N ::= 0 \mid s(N)
\]

Intuitively, every value \(s^n(0) \in \text{Nat} \) (the \(n \)-fold application of constructor \(s \) to \(0 \)) represents the natural number \(n \in \mathbb{N} \). Define by primitive (structural) recursion the function \(+: \text{Nat} \times \text{Nat} \to \text{Nat} \) such that \(m + n \) returns the “sum” of its arguments and the predicate \(\leq \subseteq \text{Nat} \times \text{Nat} \) that determines whether the first argument is “less than or equal” the second one. Based upon \(m + n \), define a corresponding “multiplication” function \(m \cdot n \) from which you then define a corresponding “power” function \(m^n \).

2. Consider your definition of \(m + n \) from Exercise 1. First prove by structural induction \(\forall n \in \text{Nat}. \ 0 + n = n + 0 \). Then prove \(\forall m \in \text{Nat}, n \in \text{Nat}. \ s(m + n) = m + s(n) \). Based upon these results, prove the commutativity property \(\forall m \in \text{Nat}, n \in \text{Nat}. \ m + n = n + m \).

3. Define by an inductive definition for finite sequences \(s, t \in \mathbb{N}^* \) of equal length the relation \(s \leq t \) that is true if every element of \(s \) is less than or equal the corresponding element of \(t \) (you may assume the existence of operations head and tail over finite sequences). Transform the definitions into the “rule-oriented” style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward continuity.

4. Repeat Exercise 3 but for infinite sequences \(s, t \in \mathbb{N}^{\omega} \) by using coinductive definitions. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for downward continuity.

5. Define by an inductive definition the relation “\(A \) contains only prime numbers” for \(A \in \text{Fin}(\mathbb{N}) \). Define by a coinductive definition the same relation for \(A \in \text{Inf}(\mathbb{N}) \). Transform the definitions into the “rule-oriented” style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward respectively downward continuity.

6. Define by an inductive definition the subset relation \(A \subseteq B \) for finite sets \(A \in \text{Fin}(\mathbb{N}) \) and \(B \in \text{Fin}(\mathbb{N}) \). Transform the definition into the “rule-oriented” style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.
7. Define by a coinductive definition the subset relation \(A \subseteq B \) for infinite sets \(A \in \text{Inf}(\mathbb{N}) \) and \(B \in \text{Inf}(\mathbb{N}) \). Transform the definition into the “rule-oriented” style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.

8. Define by an inductive function definition the union function \(A \cup B \) for finite sets \(A \in \text{Fin}(\mathbb{N}) \) and \(B \in \text{Fin}(\mathbb{N}) \). Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.

9. Define by a coinductive function definition the union function \(A \cup B \) for infinite sets \(A \in \text{Inf}(\mathbb{N}) \) and \(B \in \text{Inf}(\mathbb{N}) \) (please note that this definition must iterate over “both” sets in order to add elements from both sets to the result). Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.

10. Repeat Exercises 8 and 9 by defining the intersection function \(A \cap B \) over finite respectively infinite sets \(A \) and \(B \).

11. Let \(A \in \text{Fin}(\mathbb{N}) \) and \(n \in \mathbb{N} \). Introduce by a (possibly rule-oriented) inductive definition over \(A \) a predicate \(A \geq n \) that states “every element of \(A \) is greater than or equal \(n \)”. Prove by the principle of induction for properties defined as least fixed points (applied to the unary relation \(\cdot \geq n \)) that \(A \geq n \Rightarrow (\forall a \in A. a \geq n) \) holds.

12. Repeat Exercise 11 but apply the proof principle of “fixed point induction”. To justify the application of this principle, verify that the formula defining \(A \geq n \) indeed satisfies the syntactic constraints of an “inclusive formula”.

13. Let \(A \) be an infinite subset of \(\mathbb{N} \) and \(n \in \mathbb{N} \). Introduce by a (possibly rule-oriented) coinductive definition over \(A \) a predicate \(A \geq n \) that states “every element of \(A \) is greater than or equal \(n \)”. Furthermore, define by coinduction a function \(A + n \) whose result is the set derived from \(A \) by adding \(n \) to each of its elements. Prove by the principle of coinduction for properties defined as greatest fixed points (applied to the unary relation \(\cdot \geq n \)) that \(A + n \geq n \) holds.

14. Let \(A \in \text{Inf}(\mathbb{N}) \). Consider the operation \(A + n \) introduced in Exercise 13. Prove by the principle of coinduction that \(A + 0 \sim A \) holds (here \(\sim \) is the bisimilarity relation introduced by the definition of \(A + n \)).