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Abstract

There are implementations of the celebrated Gosper algorithm (1978) on almost any com-
puter algebra platform. Within my PhD thesis work I implemented Karr’s Summation
Algorithm (1981) based on difference field theory in the Mathematica system. Karr’s
algorithm is, in a sense, the summation counterpart of Risch’s algorithm for indefinite
integration. Besides Karr’s algorithm which allows us to find closed forms for a big class
of multisums, we developed new extensions to handle also definite summation problems.
More precisely we are able to apply creative telescoping in a very general difference field
setting and are capable of solving linear recurrences in its context.
Besides this we find significant new insights in symbolic summation by rephrasing the
summation problems in the general difference field setting. In particular, we designed
algorithms for finding appropriate difference field extensions to solve problems in symbolic
summation. For instance we deal with the problem to find all nested sum extensions
which provide us with additional solutions for a given linear recurrence of any order.
Furthermore we find appropriate sum extensions, if they exist, to simplify nested sums to
simpler nested sum expressions. Moreover we are able to interpret creative telescoping as
a special case of sum extensions in an indefinite summation problem. In particular we are
able to determine sum extensions, in case of existence, to reduce the order of a recurrence
for a definite summation problem.

Zusammenfassung

In meiner Doktorarbeit implementierte ich Karrs Algorithmus (1981) in dem Computer-
algebra System Mathematica. Karrs Algorithmus kann als Summations-Gegenpart zu
Rischs Algorithmus für symbolische Integration angesehen werden.
Die Grundidee in Karrs Algorithmus ist, dass indefinite Summationsprobleme in Form
von Differenzen-Gleichungen erster Ordnung beschrieben werden. Karrs Algorithmus
kann lineare Differenzen-Gleichungen erster Ordnung in einer grossen Klasse von rekursiv
aufgebauten Differenzen-Körpern in voller Allgemeinheit lösen. Dadurch kann man mit
dem Computer Summationsausdrücke in symbolisch geschlossener Form vereinfachen, die
aus verschachtelten Summen- und Produkt-Termen bestehen. Insbesondere erweiterte ich
Karrs Algorithmus derart, dass automatisch Differenzen-Körper Erweiterungen gesucht,
und im Falle ihrer Existenz auch gefunden werden können, in denen eine geschlossene
Form für eine indefinite Summe existiert.
Ein wesentliches Resultat meiner Arbeit ist, dass Karrs Algorithmus Zeilbergers “creative
telescoping” Methode beinhaltet. Dadurch können wir in vielen Fällen Rekurrenzen
finden, die eine gegebene definite Summe als Lösung besitzen. Daraus ergibt sich die
Möglichkeit, eine grosse Klasse von definiten Multisummen-Identitäten automatisch be-
weisen zu können. Ausgehend von dieser Erkenntnis, entwickelte ich Karrs Algorithmus
weiter, um lineare Differenzen-Gleichungen beliebiger Ordnung in Differenzen-Körpern zu
lösen. Insbesondere beschäftige ich mich damit, verschachtelte Summen-Erweiterungen,
eine Unterklasse von d’Alembert Erweiterungen, automatisch zu finden, die zu weiteren
Lösungen einer gegebenen Differenzen-Gleichung führen. Somit kann man in vielen Fällen
für eine gegebene definite Summe erstmals eine geschlossene Form in algorithmischer Weise
finden!



vi



Contents

Introduction 1

1 Symbolic Summation in Difference Fields 5
1.1 Some Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Calkin’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 An Alternating Version of Calkin’s Identity . . . . . . . . . . . . . . . 9

1.2 Indefinite Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Recursive Aspects - An Example from Physics . . . . . . . . . . . . . 13
1.2.2 †Indefinite Summation and First Order Linear Difference Equations . 16
1.2.3 Reducing the Depth of Nested Sums by Sum Extensions . . . . . . . . 17

1.2.3.1 A 3-fold Sum and Harmonic Numbers . . . . . . . . . . . . . 17
1.2.3.2 A 3-fold Sum and q-Harmonic Numbers . . . . . . . . . . . . 18
1.2.3.3 A 6-fold Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3.4 Some Families of Identities with Harmonic Numbers . . . . . 20

1.2.4 †Indefinite Summation and Difference Field Extensions . . . . . . . . 22
1.2.4.1 The Underlying Difference Field of an Indefinite Sum . . . . 22
1.2.4.2 Appropriate Sum Extensions for an Indefinite Sum . . . . . . 24

1.3 Definite Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Krattenthaler’s Example . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Kirschenhofer’s Example and its q-Generalization . . . . . . . . . . . . 31
1.3.3 Finding Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.3.1 Creative Telescoping . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.3.2 †The Creative Telescoping Problem in Difference Fields . . . 37
1.3.3.3 Finding Recurrences and Sum Extensions . . . . . . . . . . . 38

1.3.4 Solving Linear Recurrences . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.4.1 †Difference Equations in Difference Fields . . . . . . . . . . . 39

The General Problem . . . . . . . . . . . . . . . . . . . . . . . . 40
An Output Observation . . . . . . . . . . . . . . . . . . . . . . . 41
Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3.4.2 Sum Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Elimination of Algebraic Relations . . . . . . . . . . . . . . . . 42
Simplification of Nested Sums . . . . . . . . . . . . . . . . . . . 43

1.3.4.3 d’Alembertian Solutions and Difference Fields . . . . . . . . 44
1.3.5 Reducing the Recurrence Order by Sum Extensions . . . . . . . . . . 45

1.3.5.1 Example: Harmonic Numbers in a Product . . . . . . . . . . 45
1.3.5.2 A Significant Reduction of the Recurrence Order . . . . . . . 50

1.4 Symbolic Summation in Difference Fields . . . . . . . . . . . . . . . . . . . . 52

vii



viii CONTENTS

2 Difference Fields 55
2.1 Basic Definitions for Difference Fields . . . . . . . . . . . . . . . . . . . . . . 55

2.1.1 Difference Field Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . 56
2.1.2 Difference Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 ΠΣ-Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.1 First Order Linear Extensions . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.2 Homogeneous and Inhomogeneous Extensions . . . . . . . . . . . . . . 60
2.2.3 Π-Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.4 Σ-extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.5 ΠΣ-Extensions and ΠΣ-Fields . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.6 The Period in a ΠΣ-Extension . . . . . . . . . . . . . . . . . . . . . . 73
2.2.7 The Spread in a ΠΣ-extension . . . . . . . . . . . . . . . . . . . . . . 77

2.3 Some Difference Field Isomorphisms in Difference Fields . . . . . . . . . . . . 78
2.3.1 The Summand Isomorphism for Proper Sum Extensions . . . . . . . . 78
2.3.2 The Indefinite Summation Isomorphism . . . . . . . . . . . . . . . . . 79
2.3.3 A Recursively Induced Isomorphism for ΠΣ-Fields . . . . . . . . . . . 79

2.4 Construction of Difference Rings and Fields . . . . . . . . . . . . . . . . . . . 81
2.4.1 Some Simple Constructions of Difference Fields . . . . . . . . . . . . . 81
2.4.2 Construction of Sum Extensions without Changing the Constant Field 81
2.4.3 Construction of Product Extensions without Changing the Constant

Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.4.4 A Proper Sum Representation of a Sum Extension . . . . . . . . . . . 83
2.4.5 Embeddings of Proper Sum Extensions in a Reduced Product-Sum Ex-

tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4.6 Changing the Order of Sum Extensions . . . . . . . . . . . . . . . . . 86
2.4.7 Construction of Difference Rings of Fractions . . . . . . . . . . . . . . 88
2.4.8 Lifting of Difference Ring Extensions to ΠΣ-Fields . . . . . . . . . . . 90

2.5 ΠΣ-Fields and the Ring of Sequences . . . . . . . . . . . . . . . . . . . . . . . 94
2.5.1 Lifting of Polynomial Extensions . . . . . . . . . . . . . . . . . . . . . 100
2.5.2 Lifting to a Quotient Ring . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.5.3 ΠΣ-Fields and Indefinite Summation . . . . . . . . . . . . . . . . . . . 110

2.5.3.1 The Sum Case . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.5.3.2 The Product Case . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Solving Difference Equations 117
3.1 The Reduction Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.1.1 The Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.1.2 Decomposition of the Solution Range F(t) . . . . . . . . . . . . . . . . 120

3.1.2.1 Sums and Direct Sums of Vector Spaces . . . . . . . . . . . . 120
3.1.2.2 Partial Fraction Decomposition . . . . . . . . . . . . . . . . . 120
3.1.2.3 Decomposition of a ΠΣ-Extension . . . . . . . . . . . . . . . 122

3.1.3 The Basic Reduction Strategy for ΠΣ-Fields . . . . . . . . . . . . . . 124
3.1.3.1 The Denominator Bounding Method . . . . . . . . . . . . . 124

The Period 0 Denominator Bounding . . . . . . . . . . . . . . . 124
The Period 1 Denominator Bounding . . . . . . . . . . . . . . . 127

3.1.3.2 The Incremental Reduction Method for Polynomial Degree
Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.1.3.3 The First Base Case . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS ix

3.1.4 Variations of Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.2 The Incremental Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.2.1 Some Notations, Conventions and Definitions . . . . . . . . . . . . . . 133
3.2.1.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2.1.2 Vectors, Matrices and Basis Matrices . . . . . . . . . . . . . 133

3.2.2 A Basis of the Solution Space . . . . . . . . . . . . . . . . . . . . . . . 137
3.2.3 Filtrations, Graduations and the Rank Function . . . . . . . . . . . . 138
3.2.4 The Incremental Solution Space . . . . . . . . . . . . . . . . . . . . . 141
3.2.5 The Incremental Reduction . . . . . . . . . . . . . . . . . . . . . . . . 146

3.2.5.1 An Example of an Incremental Reduction Step . . . . . . . . 147
3.2.5.2 The Proof of the Incremental Reduction Theorem . . . . . . 148

3.2.6 The Complete Reduction Process in ΠΣ-fields . . . . . . . . . . . . . . 151
3.2.6.1 The First Base Case . . . . . . . . . . . . . . . . . . . . . . . 153
3.2.6.2 An Example of the Complete Reduction Process . . . . . . . 154
3.2.6.3 A Hidden Reduction Process and a New Base Case . . . . . 155
3.2.6.4 A Shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.2.6.5 Solving Difference Equations in Mathematica . . . . . . . . . 157

3.3 Special Cases For Polynomial Boundings . . . . . . . . . . . . . . . . . . . . . 158
3.3.1 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.3.2 A Bounding Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.3.3 A Special Case for m-th Order Recurrences . . . . . . . . . . . . . . . 160
3.3.4 Polynomial Boundings for Π-Extensions . . . . . . . . . . . . . . . . . 161

3.3.4.1 The First Order Case for Π-Extensions . . . . . . . . . . . . 161
3.3.4.2 A Generalization for m-th Order Recurrences . . . . . . . . . 164

3.3.5 Polynomial Boundings for Σ-Extensions . . . . . . . . . . . . . . . . . 167
3.3.5.1 The First Order Case for Σ-Extensions . . . . . . . . . . . . 167
3.3.5.2 A Generalization for m-th Order Recurrences . . . . . . . . . 171

3.4 Polynomial Degree Boundings for Proper Sum Extensions . . . . . . . . . . . 176
3.4.1 A Simple Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.4.2 The Truncated Solution Space and Polynomial Degree Bounds . . . . 177
3.4.3 Collecting Further Information for the Truncated Solution Space . . . 182
3.4.4 The Truncated Solution and Difference Equations . . . . . . . . . . . 186
3.4.5 Some Notations and Facts about Modules . . . . . . . . . . . . . . . . 190
3.4.6 Some Ideas to Compute the Truncated Solution Space . . . . . . . . . 192
3.4.7 Computing the Truncated Solution Space For Proper Sum Extensions 194
3.4.8 A Speed up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.4.9 The Special Case a ∈ Fn For Proper Sum Extensions . . . . . . . . . . 212

3.5 Denominator Boundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.5.1 The Denominator, Order and σ-Function . . . . . . . . . . . . . . . . 221
3.5.2 Some Special Cases for the Period 1 Denominator Bounding . . . . . . 226

3.5.2.1 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.5.2.2 A Simple Case . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.5.2.3 The First Order Case . . . . . . . . . . . . . . . . . . . . . . 228
3.5.2.4 A Generalization for the m-th order Case . . . . . . . . . . . 230

3.5.3 M. Bronstein’s Period 0 Denominator Bounding . . . . . . . . . . . . 232
3.5.3.1 A Simple Transformation of the Difference Equation . . . . . 232
3.5.3.2 The Period 0 Denominator Bounding and its Consequences . 232

3.6 Solutions in Some Special Difference Rings . . . . . . . . . . . . . . . . . . . . 235



x CONTENTS

3.6.1 Some Special Difference Rings . . . . . . . . . . . . . . . . . . . . . . 235
3.6.2 Zero Divisors and Invertible Elements . . . . . . . . . . . . . . . . . . 238
3.6.3 The Reduction Process and Two Base Cases . . . . . . . . . . . . . . 239

4 Summation and Difference Field Extensions 245
4.1 Solutions in Reduced Product-Sum Extensions . . . . . . . . . . . . . . . . . 247
4.2 The Fundamental Theorem for the First Order Case . . . . . . . . . . . . . . 250

4.2.1 Finding Solutions for the First Order Case . . . . . . . . . . . . . . . 250
4.2.2 Product-Sum Extensions for the First Order Case . . . . . . . . . . . 251
4.2.3 Some Misleading Interpretations . . . . . . . . . . . . . . . . . . . . . 256

4.3 Definite Summation in Difference Fields . . . . . . . . . . . . . . . . . . . . . 258
4.3.1 Finding a Recurrence for a Definite Summation Problem . . . . . . . . 258
4.3.2 A Connection Between the Telescoping Equation and Sum Extensions 260

4.4 Low Nested Sum Extensions for First Order Equations . . . . . . . . . . . . . 263
4.4.1 Finding Low Nested Sum Extensions Automatically to Solve the Solu-

tion Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
4.4.2 Indefinite Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
4.4.3 Definite Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

4.5 Difference Field Extensions For Difference Equations . . . . . . . . . . . . . . 272
4.5.1 Right Division of First Order Linear Shift Operators . . . . . . . . . . 274
4.5.2 Sum Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

4.5.2.1 A Criterion for Existence of Sum Extensions . . . . . . . . . 275
4.5.2.2 Complete Sum Extensions for Linear Difference Equations . 276
4.5.2.3 Sum Extensions and Factorization of Difference Operators in

Linear Right Factors . . . . . . . . . . . . . . . . . . . . . . . 280
4.5.2.4 Finding Complete Sum Extensions . . . . . . . . . . . . . . . 282

4.5.3 Dealing with d’Alembertian Extensions . . . . . . . . . . . . . . . . . 287
4.5.3.1 A Criterion for Existence of d’Alembertian Extensions . . . . 287
4.5.3.2 Finding d’Alembertian Solutions . . . . . . . . . . . . . . . . 288

4.5.4 Finding New Sum Extensions . . . . . . . . . . . . . . . . . . . . . . . 290

Vita 297

Bibliography 299

Index 303



Introduction

Karr developed an algorithm for indefinite summation [Kar81, Kar85] based on the theory
of difference fields [Coh65]. He introduced so called ΠΣ-fields, in which first order linear
difference equations can be solved in full generality. This algorithm cannot only deal with
series of hypergeometric terms, like Gosper’s algorithm [Gos78, PS95a, PS95b], series with
q-hypergeometric terms, like [PR97], or holonomic series, like Chyzak’s algorithm [CS98],
but also with series of terms where for example the harmonic numbers can appear in the
denominator. Karr’s algorithm is, in a sense, the summation counterpart of Risch’s algorithm
[Ris69, Ris70] for indefinite integration.

I implemented this algorithm [Sch99, Sch00a, Sch00b] in the computer algebra system
Mathematica and developed a user interface that dispenses the user from working explicitly
with difference fields. Instead, the user can handle all summation problems in terms of sums
and products.

As [Weg97, Rie01], which is based on different approaches, Karr’s algorithm also allows
to solve a large class of multisum problems which will be illustrated in a variety of examples
in the next chapter.

In some cases appropriate difference field extensions are necessary in order to “simplify”
a given summation problem. If there exists such an appropriate difference field extension,
our algorithm will find it. Therefore one does not have to deal with problems concerning
difference field extensions. This feature to find automatic extensions will be demonstrated in
Section 1.2.3 and its theoretical background will be explained in Section 4.4.1. For example,
with our implementation one can easily find the right hand sight of the following 3-fold sum
identity

N∑
i=1

i∑
j=1

j∑
k=1

1

K + k

K + j

K + i
= 3HK H

(2)
K+N + HK+N

(
3 H2

K − 3H
(2)
K + 3 H

(2)
K+N

)
− 2H

(3)
K + 2H

(3)
K+N

)
where K is a positive integer and H(α)

n :=
∑n

i=1
1
iα .

Finally, I extended Karr’s algorithm to handle definite summation problems. Although
Karr’s original summation algorithm was already capable of carrying out creative telescoping
[Zei90], nobody has noticed this possibility until now. With creative telescoping we can
compute a recurrence which has a given definite sum as a solution; therefore one can verify
automatically a given definite sum identity. How creative telescoping works will be illustrated
by an example in Section 1.3.3 and will be viewed in depth in Section 4.3.

Based on Bronstein’s denominator bounding [Bro00], I was able to streamline Karr’s
ideas. Additionally, I have generalized Karr’s algorithm such that linear difference equations
of any order can be solved in any given ΠΣ-field. In some sense, this generalization includes

1



2 INTRODUCTION

the approaches of [Abr89, Pet92, Pet94, Abr95, APP98, vH98, vH99, Wei01]. Hence we
can find solutions of recurrences and thus not only prove definite sum identities, but even
discover closed forms of definite sums in a very general setting. It is also possible to deal
with ring extensions in form of algebraic relations, like ((−1)k)2 = 1. These aspects, further
observations and open problems will be introduced in Section 1.3.4 and discussed further in
Chapter 3.

In order to find solutions of a given difference equation, in many cases one has to extend
the underlying difference field. Starting from results in [AP94, HS99], we focus on problems
how one can find appropriate difference field extensions, namely sum extensions and so called
d’Alembertian extensions, to find solutions for a recurrence. In this context, our indefinite
summation algorithm plays a major role to simplify this solutions further. These aspects will
be made clear by examples in Sections 1.3.1 and 1.3.2, further explained in Sections 1.3.4.2
and 1.3.4.3 and in details treated in Section 4.5.

For instance, we know how to tackle definite summation problems, like [FK00]

n∑
k=1

Hk (3 + k + n)! (−1)k (−1)−1+n

(1 + k)! (2 + k)! (−k + n)!
+

(n)!
(3 + n)!

n∑
k=1

−(3 + k + n)! (−1)k (1− (2 + n) (−1)n)
k (1 + k)!2 (−k + n)!

= (2 + n)(−1)n − 2,

or [Kir96]

N∑
k=0

(
N
k

)
(−1)k

(k + K)4
=

1

6 K4
(

K+N
K

) (
6−K3 H3

K + 3 K2 H2
K+N + K3 H3

K+N + 3 K2 H2
K (1 + K HK+N )

− 3 K2 H
(2)
K + 3 K2 H

(2)
K+N − 3 K HK

(
2 + 2 K HK+N + K2 H2

K+N −K2 H
(2)
K + K2 H

(2)
K+N

)
+

HK+N

(
6 K − 3 K3 H

(2)
K + 3 K3 H

(2)
K+N

)
− 2 K3 H

(3)
K + 2 K3 H

(3)
K+N

)
.

Finally we are able to find appropriate difference field extensions automatically in order
to reduce the order of a recurrence. If such kind of difference field extensions exist, they
will be found in our algorithm. In Section 1.3.5 we present definite summation examples
which could be solved only by this feature. How we find such extensions will be described in
Section 4.4.1.

How to get the Mathematica package

The Mathematica package is available in an encoded form at

www.risc.uni-linz.ac.at/research/combinat/risc/software/.
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How to read this thesis

Chapter 2: The following chapter will explain in a variety of examples what kind of sum-
mation problems we can deal with and illustrate the usage of my Mathematica package.
Headings written in italics are directed at readers who are not only interested in the usage of
my package or how one can tackle different summation problems, but who are also interested
in more details and further results of my thesis. Furthermore, headings starting with a † are
for readers who are curious how the summation problems can be rephrased in terms of dif-
ference fields. These sections might be helpful for a better understanding of what will follow
in the remaining chapters. Finally, the last Section 1.4 summarizes the summation problems
which appear in Chapter 1 and motivates the topics discussed in detail in Chapters 2–4.
Chapters 2–4: The remaining chapters explain the algorithms for treating summation
problems in difference fields. In order to keep this thesis to a size which is still somehow
reasonable, the style of presentation is very dense and sometimes illustrative examples are
omitted. Finally I want to mention that I see this thesis not as a final result of my research
but as the starting point for further investigations.
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Chapter 1

Symbolic Summation in Difference
Fields

In the book Concrete Mathematics [GKP94, exercise 6.69] the task of finding a closed form
representation of

n∑
k=1

k2 Hn+k,

where Hn :=
∑n

k=1
1
k is the n-th harmonic number, is posed as a bonus problem. Knuth’s

solution to this problem is

1
3

n

(
n +

1
2

)
(n + 1) (2 H2 n −Hn)− 1

36
n
(
10 n2 + 9 n− 1

)
where he remarks

“It would be nice to automate the derivation of formulas such as this.”

Inspired by Karr’s algorithm [Kar81, Kar85] I developed a summation algorithm based on
difference field theory which can compute the closed form of this bonus problem. The im-
plementation is available in form of a Mathematica package called Sigma, in which functions
are provided to define a given summation problem in the Mathematica environment.
In[1]:= << Sigma‘

Sigma - A summation package by Carsten Schneider

In[2]:= Problem69 = SigmaSum[kˆ2SigmaHNumber[n + k], {k,1,n}]

Out[2]=

n∑
k=1

(
k2 Hk+n

)
The functions SigmaSum and SigmaProduct are used to define sums and products. There are
several other functions available, like SigmaHNumber, SigmaBinomial or SigmaPower to define
harmonic numbers, binomials or powers. Additional functions are provided to introduce new
objects. The summation algorithm is applied to the bonus problem by calling the function
SigmaReduce. Below the solution is simplified further by using the built-in Mathematica
function Simplify.

In[3]:= SigmaReduce[Problem69]//Simplify

Out[3]= − 1

36
n (1 + n) (−1 + 10 n + 6 (1 + 2 n) Hn − 12 (1 + 2 n) H2 n)

5
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1.1 Some Motivating Examples

In this section I want to demonstrate the different aspects of symbolic summation I can deal
with and want to give a first feeling how one can find “closed forms” of a summation problem.
In [Cal94] Calkin found the following curious identity

n∑
k=0

( k∑
j=0

(
n

j

))3

=
n

2
8n + 8n − 3 n

4
2n

(
2 n

n

)
.

In the following I will take different variations of Calkin’s multisum and try to “simplify”
them.

1.1.1 Calkin’s Identity

Let us first try to find “nice closed forms” of the sums

a∑
k=0

( k∑
j=0

(
n

j

))p

where p ∈ {1, 2, 3} and1 a, n ∈ N0.

The Case p = 1

Applying our summation algorithm to

In[4]:= mySum =
a∑

k=0

( k∑
j=0

(
(n

j

).

)
)

;

yields to the following closed form:

In[5]:= SigmaReduce[mySum]//Simplify

Out[5]=
1

2

(
(−a + n)

(n
a

).

+ (2 + 2 a− n)
a∑

ι1=0

(
( n

ι1

).

)

)

For the specific value a = n we can simplify this result further by using2 the Binomial
Theorem

∑n
i=0

(
n
i

)
= 2n and find

n∑
k=0

( k∑
j=0

(
n

j

))
= (2 + n) 2n−1.

1Z denotes the set of all integers, N denotes the set of positive integers {1, 2, 3, . . . } and N0 denotes the set
N ∪ {0}.

2Please note that the right side 2n of the Binomial Theorem can be also computed automatically by using
our summation package.
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The Case p = 2 - A Sum Extension

Now we try to find a closed form of

In[6]:= mySum =
a∑

k=0

(
( k∑

j=0

(
(n

j

).

)
)2

);

and fail:

In[7]:= SigmaReduce[mySum]

Out[7]=

a∑
ι1=0

(

(
ι1∑

ι2=0

(
( n

ι2

).

)

)2

)

Loosely speaking, we are not able to find a closed form expressed by the objects a, n,
(
n
a

)
and∑a

k=1

(
n
k

)
. But by choosing an appropriate sum extension we are capable of finding a closed

form of the double nested sum mySum in terms of only single nested sums. This appropriate
sum extension can be found automatically in our summation algorithm by setting the option
SimplifyByExt→ Depth.

In[8]:= SigmaReduce[mySum,SimplifyByExt → Depth]

Out[8]= (−a + n)
(n
a

). a∑
ι1=0

(
( n

ι1

).

) +
(
1 + a− n

2

) ( a∑
ι1=0

(
( n

ι1

).

)

)2

+
a∑

ι1=0

(
− 1

2
n (
( n

ι1

).

)
2)

Applying our algorithm to the summation problem we have found a sum extension, namely

a∑
i=0

−1
2

n

(
n

i

)2

= −1
2

n
a∑

i=0

(
n

i

)2

,

which amounts algebraically to an extension of the underlying difference field, the solution
space. Finally, for a = n we obtain

n∑
k=0

( k∑
j=0

(
n

j

))2

= (n + 1) 4n − n

2
4n − n

2

(
2 n

n

)

by using3 the Binomial Theorem and a variation of the Vandermonde identity
n∑

k=0

(
n

k

)2
=

(
2 n

n

)
.

The Case p = 3 - A Definite Summation Problem

If we try to simplify the sum
a∑

k=0

( k∑
j=0

(
n

j

))3

with our algorithm to an expression in terms of single nested sums, as in the previous ex-
amples, we fail. Replacing the upper bound a with the specific value n turns the indefinite
summation problem to a definite one:

3Please note that these definite sum identities can be also computed automatically with our summation
package.



8 CHAPTER 1. SYMBOLIC SUMMATION IN DIFFERENCE FIELDS

In[9]:= mySum =
n∑

k=0

(
( k∑

j=0

(
(n

j

).

)
)3

)

For this definite summation problem we are now able to find a closed form. In a first step
we generate a recurrence that is satisfied by mySum. The idea how to compute a recurrence
is based on Zeilberger’s creative telescoping method [Zei90].

In[10]:= rec = GenerateRecurrence[mySum]

Out[10]= {−16 (1 + 2 n) SUM[n]− 4 (12 + 7 n) SUM[1 + n]

+4 (1 + n) SUM[2 + n]

== 8

(
− 10

(
n∑

ι1=0

(
( n

ι1

).

)

)3

+ 9 n

(
n∑

ι1=0

(
( n

ι1

).

)

)3)
}

Using the Binomial Theorem we can simplify this recurrence further to

In[11]:= rec = rec[[1]]/.
{ n∑

ι1=0

(
( n

ι1

).

) → (2)n.
}

Out[11]= −16 (1 + 2 n) SUM[n]− 4 (12 + 7 n)SUM[1 + n]

+4 (1 + n) SUM[2 + n] == 8
(
− 10 ((2)n.)3 + 9 n ((2)n.)3

)
Finally we solve4 this recurrence in terms of n, 2n and

(
2 n
n

)
. In order to tell our algorithm

to use the product extension
(
2 n
n

)
, we set the option Tower→ {

(
2 n
n

)
}.

In[12]:= recSol = SolveRecurrence[rec,SUM[n],Tower → {
(2n

n

).

}]

Out[12]=
{{

0, n
(2 n

n

).

(2)n.
}
,
{
1,

1

2
(2 + n) ((2)n.)3

}}
The result has to be interpreted as follows: the algorithm delivers one solution of the ho-
mogeneous version of the recurrence, namely n

(
2 n
n

)
2n and one particular solution of the

inhomogeneous recurrence itself: 1
2 (2 + n) 23 n.

Finally the closed form of mySum is the linear combination of the homogeneous solutions5 plus
the particular computed inhomogeneous solution which has exactly the same initial values as
mySum. This is also computed automatically:

In[13]:= FindLinearCombination[recSol,mySum,2]//Simplify

Out[13]= −3

4
n
(2 n

n

).

(2)n. +
1

2
(2 + n) ((2)n.)3

Therefore we obtain the identity

n∑
k=0

( k∑
j=0

(
n

j

))3

=
n

2
8n + 8n − 3 n

4
2n

(
2 n

n

)
.

4Extending the underlying difference field with
(
2 n
n

)
allows us to find a solution of the homogeneous

version of the recurrence. This product extension can be found automatically by using the function
FindProductExtensions which will be introduced in Section 1.1.2.

5In this example there is just one solution of the homogeneous version of the recurrence.
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1.1.2 An Alternating Version of Calkin’s Identity

In [Zha99] Zhang succeeds in finding closed forms of the alternating multisums

a∑
k=0

(−1)k

( k∑
j=0

(
n

j

))p

where p ∈ {1, 2, 3} and a = n ∈ N0 - with the exception p = 3 and a = n is even. One can
treat these summation problems in a similar way as in the previous subsection. For the case
p = 1 we can even derive a more general identity, namely:

In[14]:= mySum =
a∑

k=0

(
(b)k.

k∑
j=0

(
(n

j

).

)
)

;

In[15]:= res = SigmaReduce[mySum,SimplifyByExt → Depth]//Simplify

Out[15]=

−1 + b (b)a.

a∑
ι1=0

(
( n

ι1

).

)−
a∑

ι1=1

(( n
ι1

).

(b)ι1.

)
−1 + b

This identity can be again simplified by the Binomial Theorem for the situation a = n:

n∑
k=0

k∑
j=0

bj

(
n

j

)
=
−1 + 2n bn+1 − (b + 1)n

b− 1
.

Furthermore, for b = 1 this gives the first instance of the alternating Calkin family.

The Case p = 3, a = n and n is even - A d’Alembertian Solution

There is only one more sophisticated case which I want to focus on, namely p = 3, a = n and
n is even - exactly that case which could not be handled in [Zha99]:

n∑
k=0

(−1)k

( k∑
j=0

(
n

j

))3

.

Since we assume that n is even, we can substitute n by 2n.

In[16]:= mySum =
2 n∑
k=0

(
(−1)k.

k∑
j=0

(
(2 n

j

).

)
)3)

;

For this definite summation problem we compute a recurrence.

In[17]:= rec = GenerateRecurrence[mySum,RecOrder → 2]//Simplify

Out[17]=
{
96 n (14 + 11 n)

(
2 + 9 n + 9 n2

)
SUM[n]+(

180 + 1252 n + 2907 n2 + 2799 n3 + 946 n4
)
SUM[1 + n]+

(1 + n)2
(
9 + 39 n + 22 n2

)
SUM[2 + n] ==

16
(
1512 + 9884 n + 20210 n2 + 16897 n3 + 5005 n4

)
(−1)2 n.

(
2 n∑

ι1=0

(
(2 n

ι1

).

)

)3}
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The recurrence can be simplified further by applying the Binomial Theorem and the fact that
(−1)2 n = 1 for any n ∈ N0.

In[18]:= rec = rec/.
{( 2 n∑

ι1=0
(
(2 n

ι1

).
)

)3 → (64)n. , (−1)2 n. → 1
}

Out[18]=
{
96 n (14 + 11 n)

(
2 + 9 n + 9 n2

)
SUM[n]+(

180 + 1252 n + 2907 n2 + 2799 n3 + 946 n4
)
SUM[1 + n]+

(1 + n)2
(
9 + 39 n + 22 n2

)
SUM[2 + n] ==

16
(
1512 + 9884 n + 20210 n2 + 16897 n3 + 5005 n4

)
(64)n.

}
Finally we solve the recurrence in terms of objects given in the recurrence.

In[19]:= SolveRecurrence[rec[[1]],SUM[n]]

Out[19]=
{{

1,
(64)n.

2

}}
Unfortunately the algorithm delivers only a particular inhomogeneous solution, which is not
a sufficient solution, since it does not have the same initial values as the original summation
problem.
Now we can try to extend the underlying difference field to find all solutions of the homoge-
neous version of the recurrence. By calling the function FindSumSolutions we can find all
nested sum extensions6 expressed in terms of objects given in the recurrence which deliver
us further solutions of the recurrence.

In[20]:= FindSumSolutions[rec[[1]],SUM[n]]

Out[20]=
{{{

1,
(64)n.

2

}}
,
{
96 n (14 + 11 n)

(
2 + 9 n + 9 n2

)
PROD[n]+(

180 + 1252 n + 2907 n2 + 2799 n3 + 946 n4
)
PROD[1 + n]+

(1 + n)2
(
9 + 39 n + 22 n2

)
PROD[2 + n] == 0

}}
The result is not very encouraging since we did not find any sum extension which constitutes
some homogeneous solutions. But we point out that additionally to the already known
inhomogeneous solution –as a by-product of the algorithm– we have obtained the following
homogenous recurrence:

In[21]:= ProdRec = 96 n (14 + 11 n)
(
2 + 9 n + 9 n2

)
PROD[n]+(

180 + 1252 n + 2907 n2 + 2799 n3 + 946 n4
)

PROD[1 + n]+

(1 + n)2
(
9 + 39 n + 22 n2

)
PROD[2 + n] == 0;

This tells us the following: if we find a product extension which results in a solution of this
recurrence then, by extending the solution space by this product extension, the function call
FindSumSolutions will provide at least one more solution of the recurrence rec.
Please note that ProdRec is exactly the homogeneous version of the inhomogeneous recurrence
rec. In this sense, the previous statement is trivial; finding a product extension which leads
to a solution of ProdRec gives us at least one homogeneous solution of rec. But, as one can
see in the following, if the function FindSumSolutions is applied iteratively, all solutions of
the recurrence rec can be found.
So let us try to find a product extension which delivers us a solution of ProdRec by calling
the function FindProductExtensions. This function uses M. Petkovšek’s package Hyper
[Pet92, Pet94, PWZ96] which has to be loaded first.

In[22]:= << Hyper‘;

6See Sections 1.3.4.2 and 4.5 for further details.
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This package is able to find all hypergeometric solutions of a linear recurrence with polynomial
coefficients. In the following we obtain the following product extension:

In[23]:= tower = FindProductExtensions[ProdRec,PROD[n]]
I use M. Petkovšek’s package Hyper to find product extensions.

Out[23]=
{ n∏

i=2

(
− 32 (−1 + i)

−1 + 2 i

)}
As already stated above, we try to find all nested sum extensions in terms of the objects
given in the recurrence, but this time we first extend the underlying difference field by the
found product.

In[24]:= FindSumSolutions[rec[[1]],SUM[n],Tower → tower]

Out[24]=
{{{

0,
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

)}
,
{
1,

(64)n.

2

}}
,

{
− 3 (1 + 2 n)

(
28 + 148 n + 225 n2 + 99 n3

)
PROD[n]+

32 (1 + n)3 (3 + 11 n) PROD[1 + n] == 0
}}

As already indicated above, we just find the homogeneous solution, exactly that one which was
delivered by the package Hyper. But additionally the algorithm delivered a new recurrence,
namely
In[25]:= ProdRec = −3 (1 + 2 n)

(
28 + 148 n + 225 n2 + 99 n3

)
PROD[n]+

32 (1 + n)3 (3 + 11 n) PROD[1 + n] == 0;
As mentioned already above, if we find a product extension which leads to a solution of this
recurrence then, by extending the solution space with this product extension, the function
call FindSumSolutions will provide at least one more solution of the recurrence rec.
We first find7 a product extension which delivers us a homogenous solution of ProdRec.

In[26]:= FindProductExtensions[ProdRec[[1]],PROD[n]]
I use M.Petkovšek’s package Hyper to find product extension.

Out[26]=
{ n∏

i=1

(3 (−1 + 2 i) (−2 + 3 i) (−1 + 3 i)
32 i3

)}
We extend the underlying difference field by this product extension

In[27]:= tower =
{ n∏

i=2

(
− 32 (−1 + i)

−1 + 2 i

)
,

n∏
i=1

(3 (−1 + 2 i) (−2 + 3 i) (−1 + 3 i)
32 i3

)}
;

and call the procedure in order to find all possible nested sum extensions over the underlying
difference field which delivers new solutions.

In[28]:= recSol = FindSumSolutions[rec[[1]],SUM[n],Tower → tower]

Out[28]=
{
{},
{{

0,
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

)}
,
{
0,

32

3

(
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

))

n∑
ι1=1

(
ι31 (−8 + 11 ι1)

∏ι1
ι2=1

(
3 (−1+2 ι2) (−2+3 ι2) (−1+3 ι2)

32 ι32

)
(−1 + 2 ι1) (−2 + 3 ι1) (−1 + 3 ι1)

)}
,
{
1,

(64)n.

2

}}}
Since the recurrence rec has order 2 and we found 2 linearly independent solutions of the
homogeneous version of the recurrence, the recurrence is completely solved. Instead of using

7Please note that in this example the product extension can be read off directly, since the order of the
recurrence is just 1.
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the function FindSumSolutions we could also apply the function SolveRecurrence by setting
the option NestedSumExt→ ∞; with the exception that in this case the algorithm does not
deliver a recurrence to find further product extensions – in case they exist.

In[29]:= recSol = SolveRecurrence[rec[[1]],SUM[n],NestedSumExt →∞,

Tower → tower]

Out[29]=
{{

0,
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

)}
,
{
0,

32

3

(
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

))

n∑
ι1=1

(
ι31 (−8 + 11 ι1)

∏ι1
ι2=1

(
3 (−1+2 ι2) (−2+3 ι2) (−1+3 ι2)

32 ι32

)
(−1 + 2 ι1) (−2 + 3 ι1) (−1 + 3 ι1)

)}
,
{
1,

(64)n.

2

}}
Finally by calling the function FindLinearCombination we find the linear combination of
the homogeneous solutions of the recurrence plus the particular inhomogeneous solution such
that the initial values are the same as the definite sum mySum. By default the comparison of
the initial values is started at the lower summation bound of mySum, in our case 0. In this
concrete situation we have to start with the initial value 1 in order to find the desired linear
combination. This can be achieved by setting the option MinInitialValue→1.

In[30]:= sol = FindLinearCombination[recSol,mySum,2,MinInitialValue → 1]

Out[30]=
(64)n.

2
+

64

3

(
n∏

ι1=2

(
− 32 (−1 + ι1)

−1 + 2 ι1

))

n∑
ι1=1

(
ι31 (−8 + 11 ι1)

∏ι1
ι2=1

(
3 (−1+2 ι2) (−2+3 ι2) (−1+3 ι2)

32 ι32

)
(−1 + 2 ι1) (−2 + 3 ι1) (−1 + 3 ι1)

)
By some rewriting we derive the following identity:

2 n∑
k=0

(−1)k

( k∑
j=0

(
2 n

j

))3

=
1
6

64n(3− (−1)n 4(
2 n
n

)
n

n∑
i=1

i3 (11 i− 8)
(
2 i
i

)2 (3 i
i

)
(2 i− 1) (3 i− 2) (3 i− 1) 64i

)

Finally we can simplify the right hand side by our summation package further to

64n

2
− (−1)n

16 n

64n(
2 n
n

) n−1∑
i=0

(3 + 11 i)
(

2 i

i

)2(3 i

i

)
64−i

Note that the sum on the right hand side is indefinite. More generally, nested sums of
indefinite sums are included in the class of d’Alembertian solutions, which are introduced in
[AP94]; further results can be found in [Sin91]. In Section 4.5 I will consider d’Alembertian
solutions and especially nested sum solutions in more details under the aspect of difference
fields.
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1.2 Indefinite Summation

1.2.1 Recursive Aspects - An Example from Physics

In this section I will demonstrate in more details how one can tackle multisums in a recursive
way. This will be illustrated by looking at a multisum expression which appears in [EG95].
Essam and Guttmann considered multisums Sn(p) for n ∈ N0 and positive integers p with

Sn(p) =
∑

0≤q1≤···≤qp≤n

wn(q1, . . . , qp)

where

wn(q1, . . . , qp) =
∏

1≤i<j≤p

(qj − qi + j − i)
p∏

j=1

(n + p− j)!
(qj + j − 1)! (n− qj + p− j)!

.

The Case p = 2

We reformulate, following [AP99], this multisum for p = 2 and obtain

Sn(2) =
n+1∑
k1=0

k1∑
k2=0

k1 − k2

n + 1

(
n + 1

k1

)(
n + 1

k2

)
.

For simplicity we consider the following sum which can be easily transformed to Sn(2):

a∑
k1=0

k1∑
k2=0

(k1 − k2)
(

n

k1

)(
n

k2

)
. (1.1)

Please note that we consider the indefinite version of the summation problem; this means the
upper bound of the outermost sum is not the specific value n but an arbitrary value a which
does not appear in the summand. The goal is to eliminate the sum quantifiers by using the
two sums:

In[31]:= tower =
{ a∑

k=0

((
(n
k

).

)
2

),
a∑

k=0

(
(n
k

).

)
}
;

In a first step we apply our indefinite summation algorithm to the innermost sum

In[32]:= Sum1 =
k1∑

k2=0

(
(k1− k2)

( n
k1

). ( n
k2

).)
;

and obtain the result:
In[33]:= summand = SigmaReduce[Sum1,Tower → tower]

Out[33]= −1

2

( n
k1

).
(

(k1− n)
( n
k1

).

+ (−2 k1 + n)
k1∑

ι1=0

(
( n

ι1

).

)

)

Now we replace the innermost sum Sum1 in the summation problem (1.1) with the result
summand and obtain the following sum which is equal to (1.1):

In[34]:= Sum2 = SigmaSum[summand, {k1,0,a}]

Out[34]=

a∑
k1=0

(
− 1

2

( n
k1

).
(

(k1− n)
( n
k1

).

+ (−2 k1 + n)
k1∑

ι1=0

(
( n

ι1

).

)

))
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In a second step we apply the summation algorithm to Sum2 and receive finally a closed form
(in the given context) of the summation problem (1.1).

In[35]:= SigmaReduce[Sum2,Tower → tower]//Simplify

Out[35]=
1

2

(
(a− n)

(n
a

). a∑
ι1=0

(
( n

ι1

).

) + n
a∑

ι1=0

((
( n

ι1

).

)
2

)

)
For the specific upper bound a = n we can simplify this result further by using the Binomial
Theorem and

∑n
k=0

(
n
k

)2 =
(
2 n
n

)
and we obtain

a∑
k1=0

k1∑
k2=0

(k1 − k2)
(

n

k1

)(
n

k2

)
=

n

2

(
2 n

n

)
.

The Case p = 3

Similarly we can deal with the case p = 3 by considering the sum

n∑
k1=0

k1∑
k2=0

k2∑
k3=0

(k1 − k2) (k2 − k3)(k1 − k3)
(

n

k1

)(
n

k2

)(
n

k3

)
.

• Step 1:

In[36]:= Sum1 =
k2∑

k3=0

(
(k1− k2) (k1− k3) (k2− k3)

( n
k2

). ( n
k3

). ( n
k1

).)
;

In[37]:= summand = SigmaReduce[Sum1,Tower → tower]

Out[37]= −1

4
(k1− k2)

( n
k1

). ( n
k2

).
(

(−1 + 2 k1− n) (k2− n)
( n
k2

).

−

(
4 k1 k2 + n− 2 k1 n− 2 k2 n + n2

) k2∑
ι1=0

(
( n

ι1

).

)

)

• Step 2:

In[38]:= Sum2 = SigmaSum[summand, {k2,0,k1}];

In[39]:= summand = SigmaReduce[Sum2,Tower → tower]

Out[39]=
1

4 n (−1 + 2 n)(( n
k1

).
(

(k1− n)2
(
k1− 2 k1 n + n2 + 2 k1 n2 − n3

)
(
( n
k1

).

)
2

−

k1 (k1− n) n (−1 + 2 n)
( n
k1

). k1∑
ι1=0

(
( n

ι1

).

) + n2

(
2 k1 (1− 2 n) n + (−1 + n) n2 + k12 (−2 + 4 n)

) k1∑
ι1=0

((
( n

ι1

).

)
2

)

))
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• Step 3:

In[40]:= Sum3 = SigmaSum[summand, {k1,0,n}];

In[41]:= SigmaReduce[Sum3]//Simplify

Out[41]=

(−1 + n) n2
(∑n

ι1=0

( n
ι1

).) ∑n
ι1=0 (

( n
ι1

).

)
2

−8 + 16 n

By using the Binomial Theorem and
∑n

k=0

(
n
k

)2 =
(
2 n
n

)
we obtain

n∑
k1=0

k1∑
k2=0

k2∑
k3=0

(k1 − k2) (k2 − k3)(k1 − k3)
(

n

k1

)(
n

k2

)(
n

k3

)
=

(n− 1) n2 2n
(
2 n
n

)
16 n− 8

.

The Case p = 5

Finally we will compute a “closed form” of the following 5-fold sum.

In[42]:= mySum =
n∑

k1=0

(
k1∑

k2=0

(
k2∑

k3=0

(
k3∑

k4=0

( k4∑
k5=0

(
(k1− k2) (k1− k3) (k2− k3)

(k1− k4) (k2− k4) (k3− k4) (k1− k5) (k2− k5)

(k3− k5) (k4− k5)
( n
k1

). ( n
k2

). ( n
k3

). ( n
k4

).

( n
k5

).)))))
;

Since this example is too big to unfold the summation problem step by step in this thesis,
we will apply the package such that the solution of the problem is obtained in one stroke.

In[43]:= result = SigmaReduce[mySum,Tower → tower]

Out[43]=

3 (−3 + n) (−2 + n)2(−1 + n)3 n5

(
n∑

ι1=0

(
( n

ι1

).

)

) (
n∑

ι1=0

((
( n

ι1

).

)
2

)

)2

256 (−5 + 2 n)
(
3− 8 n + 4 n2

)2
Simplifying this result further for the concrete situation a = n leads to

3 (−3 + n) (−2 + n)2 (−1 + n)3 n5
(
2 n
n

)2
2n

256 (−5 + 2 n) (3− 8 n + 4 n2)2
.
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1.2.2 †Indefinite Summation and First Order Linear Difference Equations

In this section I will give a rough outline of our approach to deal with indefinite summation
problems which is based on the theory of difference fields. In the following a difference field
is considered as a field F together with any field automorphism8 σ : F → F. In short we will
write (F, σ).
As M. Karr observed in [Kar81, Kar85], a huge class of indefinite summation problems can
be formalized by first order linear difference equations in difference field settings. Since
our approach inspired by Karr’s summation algorithm can solve first order linear difference
equations in full generality, our algorithm enables to treat indefinite summation.
I will illustrate our approach by the following elementary problem: find a closed form of

In[44]:= mySum =
n∑

k=0

(k (k)!.);

With my package we can solve the problem immediately:

In[45]:= SigmaReduce[mySum]

Out[45]= −1 + (1 + n) (n)!.

A difference field for the problem

Let t1, t2 be indeterminates and consider the field automorphism9 σ : Q(t1, t2) → Q(t1, t2)
canonically defined by

σ(c) = c ∀c ∈ Q,

σ(t1) = t1 + 1,

σ(t2) = (t1 + 1) t2.

Note that the automorphism acts on t1 and t2 like the shift operator N on n and n! via
Nn = n + 1 and Nn! = (n + 1) n!.

A first order difference equation

The summation problem can be rephrased in terms of the difference field (Q(t1, t2), σ) as
follows: find a solution g ∈ Q(t1, t2) of

σ(g)− g = t1 t2.

Our algorithm computes the solution g = t2 from which

(k + 1)!− k! = k k!

immediately follows.

The closed form

By telescoping one obtains the closed form evaluation
n∑

k=0

k k! = (n + 1)!− 1.

8More precisely, we will consider only a subclass of difference fields, so called ΠΣ-fields [Kar81, Kar85]
which will be considered in details in Section 2.2.

9Q denotes the set of rational numbers.
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1.2.3 Reducing the Depth of Nested Sums by Sum Extensions

One important possibility of our summation package is to find automatically appropriate
sum extensions to simplify a given indefinite summation problem. Whereas the following
subsections demonstrate10 this feature and illustrate its possibilities, Section 1.2.4 will give
a rough outline how the problem can be formulated in difference fields.

1.2.3.1 A 3-fold Sum and Harmonic Numbers

If we apply our algorithm to the indefinite sum

In[46]:= mySum =
N∑

ι1=1

( ι1∑
ι2=1

( ι2∑
ι3=1

( 1
K + ι3

)
K + ι2

)
K + ι1

)
;

where K /∈ {−1,−2,−3, . . . } is a complex number, we cannot simplify it further. More
precisely, the underlying difference field in which the sum can be expressed consists only of
transcendental elements. This fact will be illustrated in more details in Section 1.2.4.1.
Applying the summation algorithm with the option SimplifyByExt→Depth, activates the
feature to search automatically for appropriate sum extensions in which mySum can be ex-
pressed in a simpler form.

In[47]:= SigmaReduce[mySum,SimplifyByExt → Depth]

Out[47]=
1

6 K2

(
6

N∑
ι1=1

( 1

K + ι1

)
+ 6 K

(
N∑

ι1=1

( 1

K + ι1

))2

+ K2

(
N∑

ι1=1

( 1

K + ι1

))3

+

(
− 3− 3 K

N∑
ι1=1

( 1

K + ι1

)) N∑
ι1=1

( K + 2 ι1

(K + ι1)
2

)
− K

N∑
ι1=1

( K + 3 ι1

(K + ι1)
3

))
By applying partial fraction decomposition to the summands of the new sums, we obtain

K + 2 i

(K + i)2
= − K

(K + i)2
+

2
K + i

,
K + 3 i

(K + i)2
= − 2 K

(K + i)3
+

3
(K + i)2

.

Restricting ourself to the case that K is a positive integer, this observation motivates us to
go back where we started and to solve the summation problem in terms of the Harmonic
numbers.

In[48]:= SigmaReduce
[
mySum,Tower →

{
{HK+N,N},

{
H(2)

K+N,N
}
,
{
H(3)

K+N,N
}}]

Out[48]=
1

6

(
− H3K − 3 HK H

2
K+N + H3K+N + 3 HK H

(2)
K −

3 HK H
(2)
K+N + HK+N

(
3 H2K − 3 H

(2)
K + 3 H

(2)
K+N

)
− 2 H

(3)
K + 2 H

(3)
K+N

)
Now the question arises how this situation is handled for any K ∈ N0. If one looks closer at
the definition of our summation object HN+K , namely

10The following examples are for illustrative purposes only. It might well be that the reader finds a more
direct approach for obtaining their closed form evaluations.
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In[49]:= GetDefinition[HK+N,N]

Out[49]=

N∑
o1=1

( 1

K + o1

)
+ HK

and in general11

H(α)
N+K =

N∑
i=1

1
(K + i)α

+ H(α)
K

for positive integers α, one can see how this summation problem is handled. K is interpreted
as an indeterminate and H(α)

K stands for a constant which guarantees the correct evaluation
for any K ∈ N0.

1.2.3.2 A 3-fold Sum and q-Harmonic Numbers

Similarly we can simplify the following q-analogue of the above sum,

In[50]:= mySum =
N∑

ι1=1

( (q)ι1.

ι1∑
ι2=1

( (q)ι2.

ι2∑
ι3=1

(
(q)ι3.

−1 + qK (q)ι3.

)
−1 + qK (q)ι2.

)
−1 + qK (q)ι1.

)
;

by extending the underlying difference field by appropriate sum extensions and obtain:

In[51]:= SigmaReduce[mySum,SimplifyByExt → Depth]

Out[51]=
1

6

(
2

N∑
ι1=1

(
((q)ι1.)3(

− 1 + qK (q)ι1.
)3
)

+

3

(
N∑

ι1=1

(
((q)ι1.)2(

− 1 + qK (q)ι1.
)2
))

N∑
ι1=1

(
(q)ι1.

−1 + qK (q)ι1.

)
+

(
N∑

ι1=1

(
(q)ι1.

−1 + qK (q)ι1.

))3)
If one looks closer at the sum extensions, one notices that for positive integers K these sums
are the so called q-harmonic numbers [AU85]. We have not defined these kind of objects yet.
This can be achieve by calling the following function:

In[52]:= DefineObject[qHK[a ,n ],n ,
n∑

kk=1

(
((q)kk.)

a

(1− (q)K. (q)kk.)
a

)
+ qHK[a,K],True]

Applying GetDefinition to qHK[3,N] we just get its definition back:

In[53]:= qHK[3,N]//GetDefinition

Out[53]=

N∑
kk=1

(
((q)kk.)

3

(1− (q)K. (q)kk.)
3

)
+ qHK[3, K]

Finally we define how qHK[3,N] is evaluated for a specific integer N - it is just the evaluation
of its definition in terms of sums and products:
In[54]:= qHK[i ,n Integer] := GetDefinition[qHK[i,x]]/.{x → n}
Indeed, here we obtain the corresponding evaluation for N = 4:

In[55]:= qHK[3,4]

11Note that HN+K = H
(1)
N+K and HN+K = H

(1)
N+K .
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Out[55]=
q3

(1− q (q)K.)
3 +

q6

(1− q2 (q)K.)
3 +

q9

(1− q3 (q)K.)
3 +

q12

(1− q4 (q)K.)
3 + qHK[3, K]

As in the previous subsection we can now simplify our sum by the new introduced objects:

In[56]:= SigmaReduce[mySum,Tower → {qHK[1,n],qHK[2,n],qHK[3,n]}]

Out[56]=
1

6

(
qHK[1, K]3 − 3 qHK[1, K]2 qHK[1, N]−

qHK[1, N]3 + qHK[1, N] (3 qHK[2, K]− 3 qHK[2, N])+

qHK[1, K]
(
3 qHK[1, N]2 − 3 qHK[2, K] + 3 qHK[2, N]

)
+

2 qHK[3, K]− 2 qHK[3, N]
)

1.2.3.3 A 6-fold Sum

Here we consider the following 6-fold sum

In[57]:= mySum =
f∑

e=1

(
e∑

d=1

(
d∑

c=1

(
c∑

b=1

(
b∑

a=1

( 1
Ha

)))))

which can be simplified by appropriate sums that are found automatically:

In[58]:= result = KReduce[mySum,SimplifyByExt− > Depth]

Out[58]=
1

24

(
(1 + f) (2 + f) (3 + f) (4 + f)

f∑
ι1=1

(
1

Hι1

)
+

2 (1 + f)

(
(2 + f)

(
− 2 (3 + f)

f∑
ι1=1

(
ι1
Hι1

)
+ 3

f∑
ι1=1

(
(−1 + ι1) ι1

Hι1

))
−

2
f∑

ι1=1

(
(−2 + ι1) (−1 + ι1) ι1

Hι1

))
+

f∑
ι1=1

(
(−3 + ι1) (−2 + ι1) (−1 + ι1) ι1

Hι1

))
Since the computed sum extensions can be expressed by the sums

In[59]:= tower =
{ f∑

i=1

( 1
Hi

)
,

f∑
i=1

( i
Hi

)
,

f∑
i=1

( i2

Hi

)
,

f∑
i=1

( i3

Hi

)
,

f∑
i=1

( i4

Hi

)}
;

we obtain finally

In[60]:= KReduce[result, f ,Tower− > tower]

Out[60]=
1

24

(
(1 + f) (2 + f) (3 + f) (4 + f)

f∑
ι1=1

(
1

Hι1

)
− 2 (5 + 2 f)

(5 + f (5 + f))
f∑

ι1=1

(
ι1
Hι1

)
+ (35 + 6 f (5 + f))

f∑
ι1=1

(
ι21
Hι1

)
−

2 (5 + 2 f)
f∑

ι1=1

(
ι31
Hι1

)
+

f∑
ι1=1

(
ι41
Hι1

))
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1.2.3.4 Some Families of Identities with Harmonic Numbers

Using the feature of finding appropriate sum extensions to simplify a given sum12, might be
useful to determine and to investigate interesting families of identities. The following two
examples illustrate how one can easily detect interesting relations with my package.

Family 1

Looking at

In[61]:= mySum3 =
n∑

k=1

(
Hk H(3)

k

)
;

In[62]:= SigmaReduce[mySum3,SimplifyByExt → Depth]//Simplify

Out[62]= (−n + (1 + n) Hn) H(3)
n −

n∑
ι1=1

(−1 + Hι1

ι21

)
and

In[63]:= mySum4 =
n∑

k=1

(
Hk H(4)

k

)
;

In[64]:= SigmaReduce[mySum4,SimplifyByExt → Depth]//Simplify

Out[64]= (−n + (1 + n) Hn) H(4)
n −

n∑
ι1=1

(−1 + Hι1

ι31

)
and

In[65]:= mySum5 =
n∑

k=1

(
Hk H(5)

k

)
;

In[66]:= SigmaReduce[mySum5,SimplifyByExt → Depth]//Simplify

Out[66]= (−n + (1 + n) Hn) H(5)
n −

n∑
ι1=1

(−1 + Hι1

ι41

)
one discovers immediately the pattern

n∑
k=1

Hk H(p)
k = (−n + (1 + n) Hn) H(p)

n + H(p−1)
n +

n∑
k=1

Hk

kp−1

for p ∈ N and n ∈ N0. Whereas this is in reduced representation for p > 2, i.e. the underlying
difference field extension consists only of transcendental elements, for p = 1, 2 we can simplify
the sums further to

In[67]:= SigmaReduce[
n∑

k=1

(H2
k)]//Simplify

Out[67]= 2 n− (1 + 2 n) Hn + (1 + n) H2n

and

In[68]:= SigmaReduce[
n∑

k=1

(Hk H(2
k ))]//Simplify

Out[68]=
1

2

(
− H2n − (1 + 2 n) H(2)

n + 2 Hn
(
1 + (1 + n) H(2)

n

))
12See Section 4.4 for further details.
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Family 2

Analyzing

In[69]:= mySum1 =
n∑

k=1

( Hk

1 + k

)
;

In[70]:= SigmaReduce[mySum1,SimplifyByExt → Depth]

Out[70]=
2 Hn + (1 + n) H2n + (−1− n)

∑n
ι1=1

(
1
ι21

)
2 (1 + n)

and

In[71]:= mySum2 =
n∑

k=1

(
H(2)

k

(1 + k)2

)
;

In[72]:= SigmaReduce[mySum2,SimplifyByExt → Depth]//Simplify

Out[72]=
2 H

(2)
n + (1 + n)2 (H(2)

n )
2
− (1 + n)2

∑n
ι1=1

(
1
ι41

)
2 (1 + n)2

and

In[73]:= mySum3 =
n∑

k=1

(
H(3)

k

(1 + k)3

)
;

In[74]:= SigmaReduce[mySum3,SimplifyByExt → Depth]//Simplify

Out[74]=
2 H

(3)
n + (1 + n)3 (H(3)

n )
2
− (1 + n)3

∑n
ι1=1

(
1
ι61

)
2 (1 + n)3

one can immediately find the following pattern for p ∈ N and n ∈ N0.

n∑
k=1

H(p)
k

(1 + k)p
= 2H(p)

n + (1 + n)p H(p)
n

2 − (1 + n)p H(2 p)
n .
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1.2.4 †Indefinite Summation and Difference Field Extensions

In the following I try to give a rough outline how the problem of simplifying sums by appro-
priate sum extensions can be formulated in difference fields.

1.2.4.1 The Underlying Difference Field of an Indefinite Sum

In order to get a proper understanding of the problem, we first have to understand how one
can construct the underlying difference field to a given summation problem. This will be
illustrated with the example presented in Section 1.2.3.1.
• In a first step we try to eliminate the sum quantifier in13

In[75]:= sum1 =
ι2∑

ι3=1

( 1
K + ι3

)
;

and fail:

In[76]:= summand1 = SigmaReduce[sum1]

Out[76]=

ι2∑
ι3=1

( 1

K + ι3

)
Let Q(K)(t1) be a field of rational functions over Q. Consider the field automorphism
σ : Q(K)(t1) → Q(K)(t1) canonically defined by

σ(c) = c ∀c ∈ Q(K),
σ(t1) = t1 + 1.

Note that the automorphism σ acts on t1 like the shift operator S on ι2 with Sι2 = ι2 + 1.
Therefore we can rephrase the indefinite summation problem in terms of the difference field
(Q(K)(t1), σ): there does not exist a g ∈ Q(K)(t1) such that

σ(g)− g =
1

K + t1
.

As we show later in Section 2.4.2, we can construct a unique difference field extension
(Q(K)(t1)(t2), σ) of (Q(K)(t1), σ) canonically defined by

σ(t2) = t2 + σ(
1

K + t1
) = t2 +

1
K + t1 + 1

.

As a result of Section 2.4.2 we obtain that t2 has to be transcendental over Q(K)(t1). Note
that the automorphism σ acts on t1 and t2 like the shift operator S on ι2 and

∑ι2
ι3=1

(
1

K+ι3

)
where Sι2 = ι2 + 1 and

S

ι2∑
ι3=1

( 1
K + ι3

)
=

ι2∑
ι3=1

( 1
K + ι3

)
+

1
K + ι2 + 1

.

13In Section 1.2.3.1 we assumed that K /∈ {−1,−2,−3 . . . } is a complex number. Here we prefer to consider
K as a transcendental element over Q.
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• Next we try to get rid of the outermost sum of

In[77]:= sum2 = SigmaSum[summand1/(ι2 + K), {ι2,1, ι1}]

Out[77]=

ι1∑
ι2=1

(∑ι2
ι3=1

(
1

K+ι3

)
K + ι2

)
and do not succeed:

In[78]:= summand2 = SigmaReduce[sum2]

Out[78]=

ι1∑
ι2=1

(∑ι2
ι3=1

(
1

K+ι3

)
K + ι2

)
In terms of difference fields this means that we do not find a g ∈ Q(K)(t1)(t2) such that

σ(g)− g =
t2

K + t1
.

Thus we can proceed by constructing a unique difference field extension (Q(K)(t1)(t2)(t3), σ)
of (Q(K)(t1)(t2), σ) canonically defined by

σ(t3) = t3 + σ(
t2

K + t1
)

where t3 has to be transcendental over Q(K)(t1)(t2).

• Finally we attack the outermost sum of

In[79]:= sum3 = SigmaSum[summand2/(ι1 + K), {ι1,1,n}]

Out[79]=

n∑
ι1=1

(∑ι1
ι2=1

(∑ι2
ι3=1

(
1

K+ι3

)
K+ι2

)
K + ι1

)
and fail again:

In[80]:= SigmaReduce[sum3]

Out[80]=

n∑
ι1=1

(∑ι1
ι2=1

(∑ι2
ι3=1

(
1

K+ι3

)
K+ι2

)
K + ι1

)
This means in terms of difference fields that we do not find a g ∈ Q(K)(t1)(t2)(t3) such that

σ(g)− g =
t3

K + t1
.

Again we proceed by constructing a unique difference field extension (Q(K)(t1)(t2)(t3)(t4), σ)
of (Q(K)(t1)(t2)(t3), σ) canonically defined by

σ(t4) = t4 + σ(
t3

K + t1
)

where t4 is transcendental over Q(K)(t1)(t2)(t3).
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By this process we have constructed a difference field (Q(K)(t1)(t2)(t3)(t4), σ) where the
domain Q(K, t1, t2, t3, t4) is a field of rational functions over Q and in which t4 “represents”
the indefinite sum sum3.
Actually what I have sketched here is an oversimplified process how one can construct a dif-
ference field to a given indefinite summation problem. More precisely, in my implementation
I construct a difference ring homomorphism from a sub-difference ring of the difference field
(Q(K)(t1)(t2)(t3)(t4), σ) to the ring of sequences (S(Q(K)), S) in which the summation ob-
jects can be properly defined. Loosely speaking, this homomorphism will link the element t4
with the summation object sum3. How we can construct the underlying difference field and
its difference ring homomorphism for a given summation problem will be treated carefully in
Section 2.5.

1.2.4.2 Appropriate Sum Extensions for an Indefinite Sum

We will start again to build up a difference field in which we can describe the indefinite sum
given in Section 1.2.3.1; but this time we try to extend the difference field step by step by
avoiding nested sum extensions.

•We start again with the difference field (Q(K)(t1), σ) and fail to eliminate the sum quantifier
in

In[81]:= sum1 =
ι2∑

ι3=1

( 1
K + ι3

)
;

In[82]:= summand1 = SigmaReduce[sum1,SimplifyByExt → Depth]

Out[82]=

ι2∑
ι3=1

( 1

K + ι3

)
Therefore, as indicated in the previous section, we can construct a unique difference field
extension (Q(K)(t1)(t2), σ) of (Q(t1), σ) canonically defined by

σ(t2) = t2 + σ(
1

K + t1
)

where t2 must be transcendental over Q(K)(t1).

• Now we attempt to remove the outermost sum of

In[83]:= sum2 = SigmaSum[summand1/(ι2 + K), {ι2,1, ι1}]

Out[83]=

ι1∑
ι2=1

(∑ι2
ι3=1

(
1

K+ι3

)
K + ι2

)
but this time we look for an appropriate sum extension where the summand does not depend
on the sum

∑ι1
i=1

1
K+i .

In[84]:= summand2 = SigmaReduce[sum2,SimplifyByExt → Depth]

Out[84]=
2
∑ι1

ι2=1

(
1

K+ι2

)
+ K

(∑ι1
ι2=1

(
1

K+ι2

))2
−
∑ι1

ι2=1

(
K+2 ι2
(K+ι2)

2

)
2 K

Here my algorithm has found automatically a difference field extension (Q(K)(t1)(t2)(t′3), σ)
of (Q(K)(t1)(t2), σ) canonically defined by

σ(t′3) = t′3 +
K + 2 t1 + 2
(K + t1 + 1)2

.
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In addition, it follows by a result of Section 2.4.2 that t′3 must be transcendental over
Q(K)(t1)(t2). Note that the automorphism σ acts on t1 and t′3 like the shift operator S

on ι1 and
∑ι1

ι2=1

(
K+2 ι2
(K+ι2)2

)
where Sι1 = ι1 + 1 and

S

ι1∑
ι2=1

( K + 2 ι2

(K + ι2)
2

)
=

ι1∑
ι2=1

( K + 2 ι2

(K + ι2)
2

)
+

K + 2 ι1 + 2
(K + ι1 + 1)2

.

Furthermore the algorithm finds a g3 ∈ Q(t1)(t2)(t′3) such that

σ(g3)− g3 =
t2

K + t1
,

namely

σ(g3) =
2 t2 + K t22 − t′3

2 K
.

Translating σ(g3) back in terms of the corresponding summation objects leads to summand2.

• Finally we succeed in eliminating the outermost sum of

In[85]:= sum3 = SigmaSum[summand2/(ι1 + K), {ι1,1,n}]

Out[85]=

n∑
ι1=1

(
2
∑ι1

ι2=1

(
1

K+ι2

)
+ K

(∑ι1
ι2=1

(
1

K+ι2

))2
−
∑ι1

ι2=1

(
K+2 ι2
(K+ι2)

2

)
2 K (K + ι1)

)

by an appropriate sum extension where the summand does not depend on
∑n

i=1
1

K+i and∑n
i=1

K+2 i
(K+i)2

.

In[86]:= SigmaReduce[sum3,SimplifyByExt → Depth]

Out[86]=
1

6 K2

(
6

n∑
ι1=1

( 1

K + ι1

)
+ 6 K

(
n∑

ι1=1

( 1

K + ι1

))2

+ K2

(
n∑

ι1=1

( 1

K + ι1

))3

+

(
− 3− 3 K

n∑
ι1=1

( 1

K + ι1

)) n∑
ι1=1

( K + 2 ι1

(K + ι1)
2

)
− K

n∑
ι1=1

( K + 3 ι1

(K + ι1)
3

))

More precisely, my implementation finds a difference field extension (Q(K)(t1)(t2)(t′3)(t
′
4), σ)

of (Q(K)(t1)(t2)(t′3), σ) canonically defined by

σ(t′4) = t′4 +
K + 3 t1 + 3
(K + t1 + 1)3

where t′4 is transcendental over Q(K)(t1)(t2)(t′3) in which we find a g4 ∈ Q(K)(t1)(t2)(t′3)(t
′
4)

with

σ(g4)− g4 =
σ(g3)
K + t1

.

In particular the algorithm finds that

σ(g4) =
6 t2 + 6 K t22 + K2 t32 − 3 t′3 − 3 K t2 t′3 −K t′4

6 K2
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which represents the closed form of sum3.

Looking closer at the difference fields constructed in this and the previous section one can
recognize that there is a difference field isomorphism14

(Q(t1)(t2)(t3)(t4), σ)
τ' (Q(t1)(t2)(t′3)(t

′
4), σ)

canonically defined by

τ(t1) = t1,

τ(t2) = t2,

τ(t3) = σ(g3) =
2 t2 + K t22 − t′3

2 K
,

τ(t4) = σ(g4) =
6 t2 + 6 K t22 + K2 t32 − 3 t′3 − 3 K t2 t′3 −K t′4

6 K2
.

Intuitively this means that the difference fields (Q(t1)(t2)(t3)(t4), σ)'(Q(t1)(t2)(t′3)(t
′
4), σ)

are –up to renaming– just the same. On the other side –from the simplification point
of view– it matters tremendously how “the” difference field is constructed in which the
summation problem is formulated.

These aspects will be worked out in Sections 4.2 and 4.4. Additionally I will consider in
details in Section 4.4 how one can construct difference field extensions to simplify a given
summation problem.

14Consider Section 2.1.1 for more details about difference field isomorphisms in general and Proposition 2.3.2
in Section 2.3.2 to understand this particular isomorphism.
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1.3 Definite Summation

Besides indefinite summation our summation package is able to deal with definite summation.
The following two Sections 1.3.1 and 1.3.2 will illustrate how one can find closed forms of
definite sums with our package. Here we use the following method: first we try to compute a
recurrence which is satisfied by the given definite sum and next we look for solutions of this
recurrence. Then finally we make the attempt to find a closed form for the definite sum by
combining the solutions of the recurrence in an appropriate way. In Sections 1.3.3 and 1.3.4
we will describe in more details how we find recurrences for a given definite sum and how we
can solve a given recurrence in terms of our difference field setting.

1.3.1 Krattenthaler’s Example

In [FK00] the following identity is used to solve a combinatorial counting problem:

n∑
k=1

Hk (3 + k + n)! (−1)k (−1)−1+n

(1 + k)! (2 + k)! (−k + n)!
+

(n)!
(3 + n)!

n∑
k=1

−(3 + k + n)! (−1)k (1− (2 + n) (−1)n)
k (1 + k)!2 (−k + n)!

= (2 + n)(−1)n − 2. (1.2)

With my package one not only can prove this identity automatically but one even is able to
find the closed form

(2 + n)(−1)n − 2.

In the following the two sums on the left hand side of (1.2) are considered separately.

In[87]:= mySum1 = SigmaSum[SigmaPower[−1,k] SigmaPower[−1,n− 1]
SigmaFactorial[n + k + 3]/(SigmaFactorial[k + 1]

SigmaFactorial[k + 2]SigmaFactorial[n− k])
SigmaHNumber[k], {k,1,n}]

Out[87]=

n∑
k=1

(Hk (3 + k + n)!. (−1)k. (−1)−1+n.

(1 + k)!. (2 + k)!. (−k + n)!.

)
In[88]:= mySum2 = SigmaSum[−SigmaPower[−1,k]

SigmaFactorial[n + k + 3](1− SigmaPower[−1,n](n + 2))/
(k SigmaFactorial[k + 1]ˆ2SigmaFactorial[n− k]),

{k,1,n}]

Out[88]=

n∑
k=1

(
− (3 + k + n)!. (−1)k. (1− (2 + n) (−1)n.)

k (1 + k)!.
2 (−k + n)!.

)
According to the first sum, I will demonstrate the basic procedure to solve definite summation
problems with my Mathematica package; whereas considering the second sum, I focus on some
technical details one has to take into account to find closed forms.
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A closed form of mySum1

Finding a recurrence

First a recurrence is found that is satisfied by mySum1.

In[89]:= rec1 = GenerateRecurrence[mySum1]//Simplify

Out[89]=
{
n (1 + n) (2 + n) (−1 + n)!.

(
(2 + n) (4 + n)2

(
27 + 15 n + 2 n2

)
SUM[n]−

(3 + n) (4 + n) (9 + 2 n)
(
13 + 8 n + n2

)
SUM[1 + n]−

(3 + n) (4 + n) (5 + 2 n)
(
6 + 6 n + n2

)
SUM[2 + n]+

(3 + n)2 (5 + n)
(
20 + 13 n + 2 n2

)
SUM[3 + n]

)
==

−2 (−1)n
(
315 + 286 n + 84 n2 + 8 n3

)
(4 + n)!.

}
The idea how to find a recurrence is based on Zeilberger’s creative telescoping method [Zei90].
Although Karr’s original summation algorithm [Kar81] was already capable of carrying out
creative telescoping, nobody has noticed this possibility until now.

Solving the recurrence

In the second step, solutions of the recurrence are computed. Here we set the option
NestedSumExt→ ∞ in order to find all nested sums15 expressed in the underlying differ-
ence ring which deliver new solutions.

In[90]:= SolveRecurrence[rec1,SUM[n],NestedSumExt →∞]

Out[90]=
{
{0, 1}, {0, (2 + n) (−1)n.},

{
0,−

2− n + 6
∑n

ι1=1

(
1+ι1

ι1 (2+ι1)

)
+ 6 n

∑n
ι1=1

(
1+ι1

ι1 (2+ι1)

)
6 (1 + n)

}
,

{
1,

1

(1 + n) (2 + n)(
(−1)n.

(
3 + 3 n + n2 + 8

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+ 16 n

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+

10 n2
n∑

ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+ 2 n3

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)))}}
Using partial fraction decomposition, we obtain

1 + i

i (2 + i)
=

1
2 i

+
1

2 (2 + i)

which tells us that the result can be reformulated by the Harmonic numbers. So in our
situation we just again solve the recurrence but this time we extend the solution range, more
precisely the underlying difference ring, with the Harmonic numbers by setting Tower→ {Hn}.

In[91]:= recSol1 =
SolveRecurrence[rec1,SUM[n],Tower → {Hn}]

Out[91]=
{
{0, 1},

{
0,
−9 n− 5 n2 + 8 Hn + 12 n Hn + 4 n2 Hn

(1 + n) (2 + n)
}
, {0, (2 + n) (−1)n.},

{
1,

(−32 n− 33 n2 − 9 n3 + 32 Hn + 64 n Hn + 40 n2 Hn + 8 n3 Hn) (−1)n.

4 (1 + n) (2 + n)
}}

15See Section 1.3.4.2 and 4.5 for more details.



1.3. DEFINITE SUMMATION 29

This has to be interpreted as follows: our algorithm delivers three linear independent solutions
of the homogeneous version of the recurrence, namely

1,
−9 n− 5 n2 + 8 Hn + 12 n Hn + 4 n2 Hn

(1 + n) (2 + n)
, (2 + n) (−1)n

and one particular solution of the inhomogeneous recurrence itself:

(−32 n− 33 n2 − 9 n3 + 32 Hn + 64 n Hn + 40 n2 Hn + 8 n3 Hn) (−1)n

4 (1 + n) (2 + n)
.

Finding the linear combination

Finally, the closed form of mySum1 is that linear combination of the homogeneous solutions
plus the inhomogeneous solution which has exactly the same initial values as mySum1. This
is also computed automatically:

In[92]:= solution1 =
FindLinearCombination[recSol1,mySum1,3]//Simplify

Out[92]= − 1

(1 + n) (2 + n)
(
5 + 3 n +

(
− 5− 2 n + 2 n2 + n3

)
(−1)n.−

2
(
2 + 3 n + n2

)
Hn (−1 + (2 + n) (−1)n.)

)
A Closed form of mySum2

Finding a recurrence

Similar to mySum1 a recurrence of order 2 for the second sum is computed.

In[93]:= rec2 = GenerateRecurrence[mySum2,RecOrder → 2]
55.03 Second

Out[93]=
{
n (1 + n) (3 + n) (4 + n) (7 + 2 n)

(1 + 3 (−1)n + (−1)n n) (−1 + 4 (−1)n + (−1)n n) (−1 + n)!. SUM[n]−
6 n (1 + n) (3 + n)2 (−1 + 2 (−1)n + (−1)n n)

(−1 + 4 (−1)n + (−1)n n) (−1 + n)!. SUM[1 + n]−
n (1 + n) (2 + n) (3 + n) (5 + 2 n) (−1 + 2 (−1)n + (−1)n n)

(1 + 3 (−1)n + (−1)n n) (−1 + n)!. SUM[2 + n] ==

2
(
35 + 24 n + 4 n2

) (
1− 3 (−1)n − 10 (−1)2 n + 24 (−1)3 n − (−1)n n−

6 (−1)2 n n + 26 (−1)3 n n− (−1)2 n n2 + 9 (−1)3 n n2 + (−1)3 n n3
)

(4 + n)!.
}

Here the order of the recurrence we were looking for is specified by the option RecOrder→2.
By default - as in the previous example for mySum1 - the algorithm starts looking for a
recurrence of order one and increases the order step by step if it does not succeed in finding
a recurrence of the given order.
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Solving the recurrence

In the second step, the following solutions for the recurrence are found16.

In[94]:= SolveRecurrence[rec2,

SUM[n],NestedSumExt →∞,WithMinusPower → True]//

Simplify

Out[94]=
{{

0,−n
(
8 + 6 n + n2

)
+
(
9 + 28 n + 23 n2 + 8 n3 + n4

)
(−1)n.

}
,
{
0, 1882+

725 n− 162 n2 − 27 n3 +
(
− 698 + 756 n + 621 n2 + 216 n3 + 27 n4

)
(−1)n.

}
,{

1,
1

3

(
− 9− 55 n− 116 n2 − 105 n3 − 48 n4 − 11 n5 − n6−

2
(
6 + 11 n + 6 n2 + n3

) n∑
ι1=1

(
−3 + ι1 (2 + 3 ι1 + ι21) (−1)ι1.

1 + ι1

)
+

(2 + n) (−1)n.

(
n
(
4 + 13 n + 7 n2 + n3

)
+

2
(
6 + 11 n + 6 n2 + n3

) n∑
ι1=1

(
−3 + ι1 (2 + 3 ι1 + ι21) (−1)ι1.

1 + ι1

)))}}
By partial fraction decomposition we obtain

−3 + i (2 + 3 i + i2) (−1)i

1 + i
= − 3

1 + i
+ i (2 + i) (−1)i

and therefore we see immediately that the solutions of the recurrence can be expressed by
the Harmonic numbers:

In[95]:= recSol2 = SolveRecurrence[rec2,SUM[n],
Tower → {Hn},WithMinusPower → True]

Out[95]=
{{

0,−8 n− 6 n2 − n3 + 9 (−1)n.+
28 n (−1)n. + 23 n2 (−1)n. + 8 n3 (−1)n. + n4 (−1)n.

}
,{

0, 114 + 25 n− 24 n2 − 4 n3 − 21 (−1)n.+
112 n (−1)n. + 92 n2 (−1)n. + 32 n3 (−1)n. + 4 n4 (−1)n.

}
,{

1,
1

76

(
− 650 n− 630 n2 − 143 n3 + 912 Hn + 1672 n Hn + 912 n2 Hn+

152 n3 Hn − 195 (−1)n. + 1040 n (−1)n. + 1845 n2 (−1)n.+
916 n3 (−1)n. + 143 n4 (−1)n. − 1824 Hn (−1)n. − 4256 n Hn (−1)n.−
3496 n2 Hn (−1)n. − 1216 n3 Hn (−1)n. − 152 n4 Hn (−1)n.

)}}
To handle this problem, I have generalized Karrs’s algorithm for solving linear difference
equations of any order. For this generalization a denominator bounding is used which was
developed by M. Bronstein [Bro99, Bro00]. There are still unsolved problems, as I will outline
in Section 1.3.4.
In addition, we have to consider the algebraic relation

((−1)k)2 = 1

to find all solutions for the recurrence. In order to take care of this, one can set the option
WithMinusPower→True. Further comments on this kind of extensions can be found on
page 42.

16The option WithMinusPower→True is explained below.
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Finding the linear combination of mySum2

Finally the closed form of mySum2 can be found as before:

In[96]:= solution2 = FindLinearCombination[recSol2,mySum2,2]//Simplify

Out[96]= −(3 + n)
(
− 1 + 3 n + 2 n2 −

(
− 1 + 6 n + 7 n2 + 2 n3

)
(−1)n.+

2
(
2 + 3 n + n2

)
Hn (−1 + (2 + n) (−1)n.)

)
The closed form of mySum1+mySum2

Finally, by combining the closed forms of mySum1 and mySum2 the closed form of the original
summation problem (1.2) is computed.

In[97]:= solution1 + solution2/((n + 1)(n + 2)(n + 3))//Simplify

Out[97]= −2 + (2 + n) (−1)n.

1.3.2 Kirschenhofer’s Example and its q-Generalization

In [Kir96] P. Kirschenhofer found several families of sum identities, like for instance for the
sums

N∑
k=0

(
N
k

)
(−1)k

(k + K)m

where K and m are positive integers. In the following session we will find the closed form for
the particular case m = 4.

In[98]:= mySum =
N∑

k=0

((N
k

).

(−1)k.

(k + K)4

)
;

First we find a recurrence for the sum17.

In[99]:= rec = GenerateRecurrence[mySum,RecOrder → 4]

Out[99]=
{
− (1 + N) (2 + N) (3 + N) (4 + N) SUM[N]+

2 (2 + N) (3 + N) (4 + N) (5 + 2 K + 2 N) SUM[1 + N]− (3 + N) (4 + N)(
55 + 36 K + 6 K2 + 36 N + 12 K N + 6 N2

)
SUM[2 + N] + (4 + N)

(7 + 2 K + 2 N)
(
25 + 14 K + 2 K2 + 14 N + 4 K N + 2 N2

)
SUM[3 + N]−

(4 + K + N)4 SUM[4 + N] ==
0
}

Finally we solve the recurrence by using the following product extension18

In[100]:= tower =
{{(K + N

K

).

,N
}}

;

and find all nested sums which provide us with a solution of the recurrence.
17Instead of using my package to find the recurrence, one could use the much more efficient Paule-Schorn

package described in [PS95a] which can deal exactly with those hypergeometric sequences as input.
18This product extension can be immediately found, if one first solves the problem for the more specific

cases K = 1, 2, 3... and recognizes from the pattern of the results the binomial
(

N+K
K

)
. Otherwise, one can

use M. Petkovšek’s package Hyper in combination with my function FindProductExtensions (Section 1.1.2)
which leads immediately to the needed product extension.
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In[101]:= SolveRecurrence[rec[[1]],SUM[N],Tower → tower,NestedSumExt →∞]

Out[101]=
{{

0,
1(K + N
K

).

}
,
{
0,

N∑
ι1=1

( 1

K + ι1

)
(K + N

K

).

}
,
{
0,

N∑
ι1=1

( ι1∑
ι2=1

( 1

K + ι2

)
K + ι1

)
(K + N

K

).

}
,

{
0,

N∑
ι1=1

( ι1∑
ι2=1

( ι2∑
ι3=1

( 1

K + ι3

)
K + ι2

)
K + ι1

)
(K + N

K

).

}
, {1, 0}

}
Taking Section 1.2.3.1 into account, we know that those multisums can be expressed by the
Harmonic numbers. Therefore we can solve the recurrence in one stroke using the Harmonic
numbers itself.

In[102]:= tower =
{{(K + N

K

).

,N
}
,
{
H(3)

N+K,N
}
,
{
H(2)

N+K,N
}
, {HN+K,N}

}
;

In[103]:= recSol = SolveRecurrence[rec[[1]],SUM[N],Tower → tower]

Out[103]=
{{

0,
1(K + N
K

).

}
,
{
0,

HK+N(K + N
K

).

}
,
{
0,

H2K+N + H
(2)
K+N(K + N

K

).

}
,

{
0,

H3K+N + 3 HK+N H
(2)
K+N + 2 H

(3)
K+N(K + N

K

).

}
, {1, 0}

}

Finally we derive the following closed form:

In[104]:= sol = FindLinearCombination[recSol,mySum,N,3]//Simplify

Out[104]=
1

6 K4
(K + N

K

).

(
6− K3 H3K + 3 K2 H2K+N + K3 H3K+N + 3 K2 H2K (1 + K HK+N)− 3 K2 H

(2)
K +

3 K2 H
(2)
K+N − 3 K HK

(
2 + 2 K HK+N + K2 H2K+N − K2 H

(2)
K + K2 H

(2)
K+N

)
+

HK+N

(
6 K− 3 K3 H

(2)
K + 3 K3 H

(2)
K+N

)
− 2 K3 H

(3)
K + 2 K3 H

(3)
K+N

)
A q-Generalization

Now let us look at the following q-generalization of the above sum which specialized at K = 0
gives a variation introduced in [Dil95, Theorem 4].

In[105]:= mySum =
N∑

k=0

(−1)k. (q)
1
2 (−1+k) k

.

[
N
k

]
q

(−1 + (q)K. (q)k.)
4 ;
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Using my package one can compute a recurrence for the q-sum

In[106]:= rec = GenerateRecurrence[mySum,RecOrder → 4]

Out[106]=
{
q6
(
− 1 + q (q)N.

) (
− 1 + q2 (q)N.

) (
− 1 + q3 (q)N.

) (
− 1 + q4 (q)N.

)
SUM[N]−

q3
(
− 1 + q2 (q)N.

) (
− 1 + q3 (q)N.

)(
− 1 + q4 (q)N.

) (
− 1− q− q2 − q3 + 4 q4 (q)K. (q)N.

)
SUM[1 + N]+

q
(
− 1 + q3 (q)N.

) (
− 1 + q4 (q)N.

)(
1 + q + 2 q2 + q3 + q4 +

(
− 4 q4 − 4 q5 − 4 q6

)
(q)K. (q)N.+

6 q8 ((q)K.)
2

((q)N.)
2)

SUM[2 + N]−(
− 1 + q4 (q)N.

) (
− 1− q + 2 q4 (q)K. (q)N.

) (
1 + q2+(

− 2 q4 − 2 q5
)

(q)K. (q)N. + 2 q8 ((q)K.)
2

((q)N.)
2)

SUM[3 + N]+(
1− 4 q4 (q)K. (q)N. + 6 q8 ((q)K.)

2
((q)N.)

2
−

4 q12 ((q)K.)
3

((q)N.)
3
+ q16 ((q)K.)

4
((q)N.)

4)
SUM[4 + N] ==

0
}

Here I want to comment that A. Riese’s package qZeil [PR97] is tremendously faster than
my package to find a recurrence for q-summation problems. Especially, Riese’s package
provides features to find appropriate generalizations of a given hypergeometric sequence to a
q-hypergeometric sequence.
Using the q-analogue package q-Hyper [APP98], we easily find the following product extension
which gives a solution of the recurrence.

In[107]:= tower =
{{[K + N

K

]
q

,N
}}

;

Looking for all nested sum extensions using the underlying difference field extended by this
product extension, gives us the following solutions:

In[108]:= SolveRecurrence[rec,SUM[N],NestedSumExt → 4,Tower → tower]

Out[108]=
{{

0,
1[

K + N
K

]
q

}
,
{
0,

N∑
ι1=1

( (q)ι1.

−1 + qK (q)ι1.

)
q

[
K + N
K

]
q

}
,
{
0,

N∑
ι1=1

( (q)ι1.

ι1∑
ι2=1

(
(q)ι2.

−1 + qK (q)ι2.

)
−1 + qK (q)ι1.

)

q2
[
K + N
K

]
q

}
,

{
0,

N∑
ι1=1

( (q)ι1.

ι1∑
ι2=1

( (q)ι2.

ι2∑
ι3=1

(
(q)ι3.

−1 + qK (q)ι3.

)
−1 + qK (q)ι2.

)
−1 + qK (q)ι1.

)

q3
[
K + N
K

]
q

}
, {1, 0}

}

Finally, the discussion in Section 1.2.3.2 motivates us to solve the recurrence with the q-
Harmonic numbers

In[109]:= tower =
{{[K + N

K

]
q

,N
}
,qHK[3,N],qHK[2,N],qHK[1,N]

}
;
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In[110]:= recSol = SolveRecurrence[rec[[1]],SUM[N],Tower → tower]

Out[110]=
{{

0,
1[

K + N
K

]
q

}
,
{
0,

qHK[1, N][
K + N
K

]
q

}
,
{
0,

qHK[1, N]2 + qHK[2, N][
K + N
K

]
q

}
,

{
0,

qHK[1, N]3 + 3 qHK[1, N] qHK[2, N] + 2 qHK[3, N][
K + N
K

]
q

}
, {1, 0}

}
which provides us with the following closed form:

In[111]:= FindLinearCombination[recSol,mySum,4,MinInitialValue → 1]//FullSimplify

Out[111]=
1

6 (−1 + (q)K.)
4
dK + N

K
e
q

(
− 6

(
− 2 + (q)K.

)
(q)K.

(
2 +

(
− 2 + (q)K.

)
(q)K.

)
+

(
− 1 + (q)K.

)3
((q)K.)

4
qHK[1, K]3−

3
(
− 1 + (q)K.

)2
((q)K.)

3 (
− 4 + 3 (q)K.

)
qHK[1, N]2−(

− 1 + (q)K.
)3

((q)K.)
4
qHK[1, N]3+

qHK[1, K]2
(
− 3

(
− 1 + (q)K.

)2
((q)K.)

3 (
− 4 + 3 (q)K.

)
−

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[1, N]

)
+

3
(
− 1 + (q)K.

)2
((q)K.)

3 (
− 4 + 3 (q)K.

)
qHK[2, K]−

3
(
− 1 + (q)K.

)2
((q)K.)

3 (
− 4 + 3 (q)K.

)
qHK[2, N]+

qHK[1, N]
(
− 6

(
− 1 + (q)K.

)
((q)K.)

2 (
6 + (q)K.

(
− 8 + 3 (q)K.

))
+

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[2, K]−

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[2, N]

)
+

qHK[1, K]
(
6
(
− 1 + (q)K.

)
((q)K.)

2 (
6 + (q)K.

(
− 8 + 3 (q)K.

))
+

6
(
− 1 + (q)K.

)2
((q)K.)

3 (
− 4 + 3 (q)K.

)
qHK[1, N]+

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[1, N]2−

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[2, K]+

3
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[2, N]

)
+

2
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[3, K]−

2
(
− 1 + (q)K.

)3
((q)K.)

4
qHK[3, N]

)
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1.3.3 Finding Recurrences

In this section I will describe how we can derive a recurrence for a definite summation problem
by the following example: find a recurrence for

In[112]:= mySum =
n∑

k=0

(
Hk

(n
k

).)
;

The idea of how to find a recurrence is based on Zeilberger’s creative telescoping method
[Zei90]. In the following I describe how creative telescoping in the difference field context can
be utilized to find recurrences for a definite summation problem and how one can rephrase
creative telescoping in general in terms of difference fields. Moreover I am able to interpret
creative telescoping as a special case of sum extensions in an indefinite summation problem.
In the next section I describe how one can derive the following recurrence by creative tele-
scoping

In[113]:= rec = GenerateRecurrence[mySum]

Out[113]= {4 (1 + n) SUM[n]− 2 (3 + 2 n) SUM[1 + n] + (2 + n) SUM[2 + n] == 1}

Remark: If we solve the recurrence

In[114]:= recSol = SolveRecurrence[rec[[1]],SUM[n],
Tower → {SigmaPower[2,n]},NestedSumExt → 2]

Out[114]=
{
{0, (2)n.},

{
0, (2)n.

n∑
ι1=1

( 1
ι1

)}
,
{
1,−(2)n.

n∑
ι1=1

(
1

ι1 (2)ι1.

)}}
then we find the closed form

In[115]:= FindLinearCombination[recSol,mySum,2]

Out[115]= (2)n.

n∑
ι1=1

( 1
ι1

)
− (2)n.

n∑
ι1=1

(
1

ι1 (2)ι1.

)

1.3.3.1 Creative Telescoping

As already mentioned we can find a recurrence for a definite summation problem by creative
telescoping. In our concrete example we compute:

In[116]:= creaSol = CreativeTelescoping[mySum]

Out[116]=
{
{0, 0, 0, 1},

{
4 (1 + n),−2 (3 + 2 n),

2 + n,
(
(1 + n)

(
− 2 + k− n +

(
2 k− 2 k2 + k n

)
Hk
) (n

k

).)/
((1− k + n) (2− k + n))

}}
This result has to be interpreted as follows. If

f(n, k) :=
(

n

k

)
Hk



36 CHAPTER 1. SYMBOLIC SUMMATION IN DIFFERENCE FIELDS

then

c1(n) := 4 (1 + n)
c2(n) := −2 (3 + 2n)
c3(n) := 2 + n

g(n, k) :=
(1 + n)

(
− 2 + k − n +

(
2 k − 2 k2 + k n

)
Hk

) (
n
k

))
(1− k + n) (2− k + n)

(1.3)

solves the telescoping problem

g(n, k + 1)− g(n, k) = c1(n) f(n, k) + c2(n) f(n + 1, k) + c3(n) f(n + 2, k). (1.4)

Summing the equation from 0 to n we obtain

g(n, n + 1)− g(n, 0) = c1(n)
n∑

k=0

f(n, k) + c2(n)
n∑

k=0

f(n + 1, k) + c2(n)
n∑

k=0

f(n + 2, k). (1.5)

By

SUM[n] =
n∑

k=0

f(n, k)

SUM[n + 1] =
n+1∑
k=0

f(n + 1, k) =
n∑

k=0

f(n + 1, k) + f(n + 1, n + 1)

SUM[n + 2] =
n+2∑
k=0

f(n + 2, k) =
n∑

k=0

f(n + 2, k) + f(n + 2, n + 1) + f(n + 2, n + 2)

(1.6)

we finally obtain

g(n, n + 1)− g(n, 0) + c1(n) f(n + 1, n + 1) + c2(n) (f(n + 2, n + 1) + f(n + 2, n + 2))
= c1(n) SUM[n] + c2(n) SUM[n + 1] + c2(n) SUM[n + 2]. (1.7)

This transformation of the creative telescoping equation (1.4) into the sum recurrence (1.7)
can be achieved by the function call:

In[117]:= TransformToRecurrence[creaSol,mySum]

Out[117]= {4 (1 + n) SUM[n]− 2 (3 + 2 n) SUM[1 + n] + (2 + n) SUM[2 + n] == 1}
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1.3.3.2 †The Creative Telescoping Problem in Difference Fields

Whereas in this section I give just the main idea of how creative telescoping works in the
setting of difference fields, I regard creative telescoping in full detail in Section 4.3.

A difference field for the problem

Let Q(n)(t1, t2, t3) be the field of rational functions over Q and consider the field automor-
phism σ : Q(n)(t1, t2, t3) → Q(n)(t1, t2, t3) canonically defined by

σ(c) = c ∀c ∈ Q(n), σ(t2) = t2 +
1

t1 + 1
,

σ(t1) = t1 + 1, σ(t3) =
n− t1
t1 + 1

t3.

Note that the automorphism acts on t1, t2 and t3 like the shift operator K on k, Hk and
(
n
k

)
with K k = k + 1, K Hk = Hk + 1

k+1 and K
(
n
k

)
= n−k

k+1

(
n
k

)
.

Therefore f(n, k) can be rephrased in terms of the difference field (Q(n)(t1, t2, t3), σ) by

f(n, k) = Hk

(
n

k

)
↔ t2 t3 := f ′1

f(n + 1, k) = Hk

(
n + 1

k

)
=

(n + 1) Hk

(
n
k

)
n + 1− k

↔ (n + 1) t2 t3
n + 1− t1

:= f ′2

f(n + 2, k) = Hk

(
n + 2

k

)
=

(n + 1) (n + 2) Hk

(
n
k

)
(n + 1− k) (n + 2− k)

↔ (n + 1) (n + 2) t2 t3
(n + 1− t1) (n + 2− t1)

=: f ′3.

The Creative Telescoping Problem in Difference Fields

The creative telescoping problem (1.4) can be reformulated in terms of the difference field
Q(n)(t1, t2, t3) as follows: find an element g ∈ Q(n)(t1, t2, t3) and a vector (0, 0, 0) 6=
(c1, c2, c3) ∈ Q(n)3 such that

σ(g)− g = c1 f ′1 + c2 f ′2 + c3 f ′3.

Although Karr’s original summation algorithm was already capable of carrying out creative
telescoping, as will be indicated in Section 1.4, nobody has noticed this possibility until now.
We find the solution

c1 := 4 (1 + n),
c2 := −2 (3 + 2n),
c3 := 2 + n,

g :=
(1 + n)

(
− 2 + t1 − n +

(
2 t1 − 2 t21 + t1 n

)
t2
)
t3

)
(1− t1 + n) (2− t1 + n)

which can be immediately translated back in terms of k, Hk and
(
n
k

)
. This results in (1.3)

and leads to the solution of the creative telescoping problem (1.4).
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1.3.3.3 Finding Recurrences and Sum Extensions

In the following I demonstrate how creative telescoping can be interpreted as a special case
of sum extensions in an indefinite summation problem. For this illustration consider the
following sum

In[118]:= mySum =
a∑

k=0

(
Hk

(2 + n
k

).)
;

which we express in terms of

In[119]:= tower =
{ a∑

k=0

(
Hk

(n
k

).)
,

a∑
k=0

(
Hk

(1 + n
k

).)}
;

by calling the function:

In[120]:= SigmaReduce[mySum,Tower → tower]

Out[120]=
1

(2 + n) (1− a + n)(
1− a + n + (−1− n)

(n
a

).

+
(
− 2 a + n− 2 a n + n2

)
Ha
(n
a

).

+

(
− 4 + 4 a− 8 n + 4 a n− 4 n2

) a∑
ι1=0

(
Hι1

( n
ι1

).)
+

(
6− 6 a + 10 n− 4 a n + 4 n2

) a∑
ι1=0

( (1 + n) Hι1

( n
ι1

).

1 + n− ι1

))
In other words, if

SUM[a, n] :=
a∑

k=0

Hk

(
n

k

)
,

we find c1(a, n), c2(a, n) ∈ Q(a, n) and h(a, n) ∈ Q(a, n, Hk,
(
n
a

)
) such that

SUM[a, n + 2] = c1(a, n) SUM[a, n] + c2(a, n) SUM[a, n + 1] + h(a, n).

Substituting a by n leads us to an equivalent equation of (1.5). Finally, using (1.6) results in
a recurrence for the definite sum

n∑
k=0

Hk

(
n

k

)
.

Summarizing, the general problem to find a recurrence by the creative telescoping method,
is just a special case of solving an indefinite summation problem in terms of appropriate
sum extensions.

We will look at this observation comprehensively in Section 4.3.2.
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1.3.4 Solving Linear Recurrences

In this section we discuss several aspects which are related to solving linear recurrences in
difference fields. Whereas in the following section we rephrase the problem of solving linear
recurrences to the problem of finding solutions of a linear difference equation, in the next
sections we will look closer at nested sum solutions and d’Alembertian solutions for a given
difference equation.

1.3.4.1 †Difference Equations in Difference Fields

In Section 1.3.2 we solved the recurrence

In[121]:= rec =
{
− (1 + N) (2 + N) (3 + N) (4 + N) SUM[N]+

2 (2 + N) (3 + N) (4 + N) (5 + 2 K + 2 N) SUM[1 + N]− (3 + N) (4 + N)(
55 + 36 K + 6 K2 + 36 N + 12 K N + 6 N2

)
SUM[2 + N] + (4 + N)

(7 + 2 K + 2 N)
(
25 + 14 K + 2 K2 + 14 N + 4 K N + 2 N2

)
SUM[3 + N]−

(4 + K + N)4 SUM[4 + N] ==
0
}

by using the Harmonic numbers

In[122]:= tower =
{{(K + N

K

).

,N
}
,
{
HN+K,N

}
,
{
H(2)

N+K,N
}
, {HN+K

(3),N}
}
;

and found the result:

In[123]:= SolveRecurrence[rec[[1]],SUM[N],Tower → tower]

Out[123]=
{{

0,
1(K + N
K

).

}
,
{
0,

HK+N(K + N
K

).

}
,
{
0,

H2K+N + H
(2)
K+N(K + N

K

).

}
,

{
0,

H3K+N + 3 HK+N H
(2)
K+N + 2 H

(3)
K+N(K + N

K

).

}
, {1, 0}

}

As already sketched in Section 1.2.3.1, we represent H(α)
N+K in the following way

H(α)
N+K =

N∑
i=1

1
(K + i)α

+ H(α)
K

where K is interpreted as an indeterminate and H(α)
K stands for a constant which guarantees

the correct evaluation for any K ∈ N0.
Therefore we assume in the following that K is transcendental over Q. Let Q(K)(t1, . . . , t5)
be the field of rational functions over Q with the field automorphism σ canonically defined
by

σ(c) = c ∀c ∈ Q(K), σ(t3) = t3 +
1

K + t1 + 1
,

σ(t1) = t1 + 1, σ(t4) = t4 +
1

(K + t1 + 1)2
,

σ(t2) = t2
K + t1 + 1

t1 + 1
, σ(t5) = t5 +

1
(K + t1 + 1)3

.
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Note that the automorphism σ acts on t1 and t2, t3, t4, t5 like the shift operator S on N and(
N
K

)
, HN+K , H(2)

N+K , H(3)
N+K with SN = N + 1 and

S

(
N + K

K

)
=

K + N + 1
N + 1

(
N + K

K

)
, S H(2)

N+K = H(2)
N+K +

1
(N + K + 1)2

,

S HN+K = HN+K +
1

N + K + 1
, S H(3)

N+K = H(3)
N+K +

1
(N + K + 1)3

.

Furthermore let

a0 : = −(1 + t1) (2 + t1) (3 + t1) (4 + t1),
a1 : = 2 (2 + t1) (3 + t1) (4 + t1) (5 + 2 K + 2 t1),

a2 : = −(3 + t1) (4 + t1)
(
55 + 36 K + 6 K2 + 36 t1 + 12 K t1 + 6 t21

)
,

a3 : = (4 + t1)(7 + 2 K + 2 t1)
(
25 + 14 K + 2 K2 + 14 t1 + 4 K t1 + 2 t21

)
,

a4 : = (4 + K + t1)4.

Then the problem of solving the recurrence rec in terms of N and
(
N+K

K

)
, HN+K , H(2)

N+K ,

H(3)
N+K can be rephrased as the following problem in terms of difference fields: find all g ∈

Q(K)(t1, . . . , t5) such that

a4 σ4(g) + a3 σ3(g) + a2 σ2(g) + a1 σ(g) + a0 g = 0. (1.8)

As result we obtain four linear independent solutions over Q(K), namely

g1 :=
1
t2

g2 :=
t3
t2

g3 :
t23 + t4

t2
g4 :=

t33 + 3 t3 t4 + 2 t5
t2

where the set
{k1 g1 + k2 g2 + k3 g3 + k4 g4 | ki ∈ Q(K)}

describes all solutions in Q(K)(t1, . . . , t5) of the difference equation (1.8). From this result
the above output of the function SolveRecurrence immediately follows.

The General Problem

In general, given a difference field (F, σ) with constant field

K := {k ∈ F |σ(k) = k},

together with a0, . . . , am ∈ F and f ∈ F, we look for all g ∈ F such that

am σm(g) + · · ·+ a0 g = f. (1.9)

As a result we are interested in linearly independent solutions g1, . . . , gl ∈ F of the homoge-
neous version of the difference equation and in one particular solution p ∈ F of the difference
equation (1.9) such that

{p + k1 g1 + · · ·+ km gm | ki ∈ K}

delivers all solutions g ∈ F of the recurrence (1.9).
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An Output Observation

In the above example the coefficients ai of the recurrence lie in Q(K)(t1) and we are looking
for solutions in Q(K)(t1)(t2, . . . , t5) where t2 represents the binomial

(
N+K

K

)
and t3, t4, t5

reflect the harmonic numbers HN+K , H(2)
N+K and H(3)

N+K . Then looking at the solutions

g3 :=
t

3
3 + 3 t3 t4 + 2 t5

t2
g2 :=

t
2

3 + t4
t2

g1 :=
t

1
3

t2
g0 :=

t
0

3

t2

we see that the solutions are in Q(K)(t1, t2, t4, t5)[t3] and that there is a decreasing sequence
of the degrees in the polynomial solutions.
In general, let (F(t), σ) be a ΠΣ-field19 with

σ(t) = t + β, β ∈ F∗

where t is transcendental over F and the constant field of F(t) is the same as of F. Moreover,
assume that the coefficients ai of the recurrence (1.9) are free of t, i.e. ai ∈ F. Then there is
the following result in Section 4.1, Theorem 4.1.1: Whenever there is a solution g ∈ F(t) for
the recurrence (1.9) then g is a polynomial in t and deg(g) ≤ m+deg(f). Additionally, there
are solutions g0, . . . , gl−1 ∈ F[t] for the recurrence (1.9) with l := deg(g)− deg(f) where

deg(gi) = i.

In our example, for F := Q(K)(t1, t2, t4, t5), there exists a solution g3 ∈ F[t5] with deg(g3) = 3
and therefore there are solutions gi with deg(gi) = i for i ∈ {0, 1, 2}.

Open Problems

The method to compute solutions of a difference equation is based on a reduction technique.
For the first order case M. Karr managed to develop a complete algorithm to solve first order
difference equations in so called ΠΣ-fields which will be introduced in Section 2.2.5.
Based on Bronstein’s denominator bounding [Bro00], I was able to extend Karr’s reduction
technique for the general case of higher order linear difference equations.

Boundings One crucial step in this reduction are boundings in order to restrict the search
space. Open problems still remain for the general case to solve m-th order difference equa-
tions, namely:
• There are still unsolved problems concerning degree boundings of some solution parts (Sec-
tions 3.1.3.1 and 3.1.3.2). Nevertheless one can find all possible solutions by an incremental
strategy, i.e., increasing step by step the degree boundings for each computation attempt
(Sections 3.3.1 and 3.5.2.1). By increasing the value of the plusBound option, these bound-
ings are raised. Consequently the chances are higher to find more solutions. For this strategy,
however, more time and space resources are required. By default - as in all examples - the
value of plusBound is set to 1 in the functions SolveRecurrence or FindSumSolutions.
• In particular in Section 3.4, I make an effort to find a polynomial degree bound for sum
extensions. Up to now I failed to prove the termination of the developed method (Imple-
mentation Note 3.4.1). Therefore I introduced an option LoopLimitForSumBound→Int which
specifies the maximal amount of loops Int to find the bound. If the allowed maximal number
of loops is reached, the computed bound might be too low which amounts to the problem
that some solutions can not be found. In this situation a warning is printed out with the
suggestion to increase this loop bound in order to obtain further solutions.

19See Section 2.2 for further details.
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Difference Rings The reduction strategy to solve difference equations has been originally
developed for difference fields, more precisely for ΠΣ-fields. I tried to extend the reduction
technique to deal also with product extensions of the type

k∏
i=1

α

where α is an n-th root of unity. Please note that in this case we do not work anymore
in difference fields but in difference rings where even zero-divisors can appear. Despite the
method works quite successful, there are still open problems which are described in more
details in Section 3.6.

1.3.4.2 Sum Solutions

The theoretical background how one finds all sum solutions for a difference equation is dis-
cussed carefully in Section 4.5. As already illustrated in Sections 1.3.1 and 1.3.2, we are able
to find appropriate sum extensions in order to find further solutions for a given recurrence.
The solutions are, loosely speaking, expressed in the form

d1

n∑
i1=0

d2

i1∑
i2=0

d3 · · ·
il−1∑
il=0

dl+1 (1.10)

where the di are written in terms of sums and products that occur in the recurrence.
Assuming that the recurrence can be rephrased in terms of a difference field (F, σ), more
precisely in a ΠΣ-field, an important result is that sum solutions for such a recurrence can
be expressed in a difference field extension of (F, σ); more precisely, that the solutions can be
described in a ΠΣ-field. This means that one can apply my indefinite summation algorithm,
which works in ΠΣ-fields, to simplify the found sum solutions further.

Elimination of Algebraic Relations

In general the sum solutions are algebraic dependent, which means that one can eliminate
sum quantifiers by using our indefinite summation algorithm. For instance, in Section 1.3.1
we were faced with the following recurrence
In[124]:= rec1 = n (1 + n) (2 + n) (−1 + n)!.

(
(2 + n) (4 + n)2

(
27 + 15 n + 2 n2

)
SUM[n]−

(3 + n) (4 + n) (9 + 2 n)
(
13 + 8 n + n2

)
SUM[1 + n]−

(3 + n) (4 + n) (5 + 2 n)
(
6 + 6 n + n2

)
SUM[2 + n]+

(3 + n)2 (5 + n)
(
20 + 13 n + 2 n2

)
SUM[3 + n]

)
==

−2
(
315 + 286 n + 84 n2 + 8 n3

)
(4 + n)!. (−1)n. ;

which we solved by a sum extension:

In[125]:= SolveRecurrence[rec1,SUM[n],NestedSumExt →∞]

Out[125]=
{
{0, 1}, {0, (2 + n) (−1)n.},

{
0,−

2− n + 6
∑n

ι1=1

(
1+ι1

ι1 (2+ι1)

)
+ 6 n

∑n
ι1=1

(
1+ι1

ι1 (2+ι1)

)
6 (1 + n)

}
,

{
1,

1

(1 + n) (2 + n)

(
(−1)n.

(
3 + 3 n + n2 + 8

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+

16 n
n∑

ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+ 10 n2

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)
+ 2 n3

n∑
ι1=1

( 1 + ι1
ι1 (2 + ι1)

)))}}
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Actually, the indefinite summation algorithm was applied automatically to simplify the com-
puted sum solutions. By setting the option AlgebraicRelationInSumSolutions→True, the
user can see the original sum solutions - without further elimination of algebraic relations:

In[126]:= SolveRecurrence[rec1,SUM[n],NestedSumExt →∞,

AlgebraicRelationInSumSolutions → True]

Out[126]=
{
{0, 1}, {0, (2 + n) (−1)n.},

{
0,−

n∑
ι1=1

(
(3 + 2 ι1) (−1)ι1.

ι1∑
ι2=1

(
(−1)ι2.

ι2 (2 + ι2)

))}
,

{
1, 2

n∑
ι1=1

(
(3 + 2 ι1) (−1)ι1.

ι1∑
ι2=1

( 1 + ι2
ι2 (2 + ι2)

))}}

Simplification of Nested Sums

Although one can eliminate algebraic relations in sum solutions, which corresponds to an
elimination of sum quantifiers, one still obtains sum solutions which are highly recursively
defined in the form (1.10). In this case one can try to simplify the result further by finding
appropriate sum extensions. In Kirschenhofer’s example introduced in Section 1.3.2 we find
sum extensions with a 3-nested sum for the recurrence
In[127]:= rec =

{
− (1 + N) (2 + N) (3 + N) (4 + N) SUM[N]+

2 (2 + N) (3 + N) (4 + N) (5 + 2 K + 2 N) SUM[1 + N]− (3 + N) (4 + N)(
55 + 36 K + 6 K2 + 36 N + 12 K N + 6 N2

)
SUM[2 + N] + (4 + N)

(7 + 2 K + 2 N)
(
25 + 14 K + 2 K2 + 14 N + 4 K N + 2 N2

)
SUM[3 + N]−

(4 + K + N)4 SUM[4 + N] ==
0
}

using the product

In[128]:= tower =
{{(K + N

K

).

,N
}}

;

In[129]:= SolveRecurrence[rec[[1]],SUM[N],Tower → tower,NestedSumExt →∞]

Out[129]=
{{

0,
1(K + N
K

).

}
,
{
0,

N∑
ι1=1

( 1

K + ι1

)
(K + N

K

).

}
,
{
0,

N∑
ι1=1

( ι1∑
ι2=1

( 1

K + ι2

)
K + ι1

)
(K + N

K

).

}
,

{
0,

N∑
ι1=1

( ι1∑
ι2=1

( ι2∑
ι3=1

( 1

K + ι3

)
K + ι2

)
K + ι1

)
(K + N

K

).

}
, {1, 0}

}
This result can be simplified further by using single nested sums, as can be seen in Sec-
tion 1.2.3.1. By setting the option SimplifyByExt→Depth, this will be done automatically:
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In[130]:= SolveRecurrence[rec[[1]],SUM[N],Tower → tower,
NestedSumExt →∞,SimplifyByExt → Depth]

Out[130]=
{{

0,
1(K + N
K

).

}
,

{
0,

N∑
ι1=1

( 1

K + ι1

)
(K + N

K

).

}
,
{
0,

N∑
ι1=1

( 1

(K + ι1)
2

)
+

(
N∑

ι1=1

( 1

K + ι1

))2

2
(K + N

K

).

}
,

{
0,

2
N∑

ι1=1

( 1

(K + ι1)
3

)
+ 3

(
N∑

ι1=1

( 1

(K + ι1)
2

)) N∑
ι1=1

( 1

K + ι1

)
+

(
N∑

ι1=1

( 1

K + ι1

))3

6
(K + N

K

).

}
,

{1, 0}
}

1.3.4.3 d’Alembertian Solutions and Difference Fields

In general d’Alembertian solutions not only consist of nested sum extensions but also of
products over the underlying difference field. Therefore nested sum solutions are contained
in d’Alembertian solutions. But whereas sum extensions can be always described in difference
fields, more precisely in ΠΣ-fields, many product extensions cannot be handled in ΠΣ-fields,
even worse, most of them can be only treated in difference rings. Therefore dealing with
d’Alembertian solutions usually means to work in difference rings. But as described above,
I consider it as an essential step to eliminate algebraic relations and to simplify nested sums
further to simpler nested sums. Unfortunately, there does not exist such an algorithm which
works also in difference fields in general or even in difference rings. Since our algorithm works
only properly in ΠΣ-fields, I want to restrict just to those product extensions which can be
treated in ΠΣ-fields.
In my approach I do not extend the underlying difference field automatically by product
extensions, but give full control to the user about how he designs the difference field. As
can be seen in Section 1.1.2, using the function FindSumSolutions, the user obtains, besides
all sum solutions, a recurrence for which there does not exist a solution in the underlying
difference field. If one finds a product extension which leads to a solution of this recurrence
then extending the underlying difference field by this product extension and solving the
recurrence with FindSumSolutions or SolveRecurrence with the option NestedSumExt→∞
will give at least one more solution of the recurrence.
By this strategy the user has full control about how the difference field is extended. Addition-
ally, the user is independent of different packages to find product extensions for a recurrence.
He can use M. Petkovšek’s package Hyper [Pet92] to find hypergeometric solutions of a recur-
rence with polynomial coefficients, or he can use q-Hyper [APP98] to deal with q-recurrences.
As will be shown in the next section, it would be very interesting to have further algorithms
which can find product extensions over more general difference fields where for instance the
Harmonic numbers are involved. One can find further information about d’Alembertian
solutions in Section 4.5.
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1.3.5 Reducing the Recurrence Order by Sum Extensions

As already motivated by previous sections, I am interested in computing a recurrence for a
given definite summation problem. In the following I will give some fascinating examples
which illustrate how one can reduce the order of such a recurrence by using appropriate sum
extensions. The theoretical background and the algorithmical aspects will be described in
Section 4.4.

1.3.5.1 Example: Harmonic Numbers in a Product

We are looking for a closed form of the following curious sum20:

In[131]:= mySum =
n∑

r=1

( r∑
l=1

( l∏
k=1

( H−k+n

1 + H−k+n

))
1 + Hn−r

)
;

The Naive Approach

In a first step we find a recurrence for the sum which is definite.

In[132]:= rec = GenerateRecurrence[mySum,RecOrder → 2]
822.513 Second

Out[132]=
{
−
(
5 + 5 n + n2

)
Hn (1 + Hn)

(1 + (1 + n) Hn) (2 + n + (1 + n) Hn) SUM[n] + (2 + n + (1 + n) Hn)(
5 + 5 n + n2 +

(
20 + 25 n + 9 n2 + n3

)
Hn +

(
25 + 40 n + 20 n2 + 3 n3

)
H2n+(

10 + 20 n + 12 n2 + 2 n3
)
H3n
)
SUM[1 + n]−(

5 + 5 n + n2
)
Hn (1 + Hn)(

4 + 4 n + n2 +
(
4 + 6 n + 2 n2

)
Hn +

(
1 + 2 n + n2

)
H2n
)
SUM[2 + n] ==

−(1 + n)
(
5 + 5 n + n2

)
Hn (1 + Hn) (1 + (1 + n) Hn),

Hn (1 + Hn) (1 + (1 + n) Hn) (2 + n + (1 + n) Hn) SUM[n]−
(1 + Hn) (1 + 2 Hn) (1 + (1 + n) Hn) (2 + n + (1 + n) Hn) SUM[1 + n]+
(2 + n + (1 + n) Hn)

(
(2 + n) Hn + (3 + 2 n) H2n + (1 + n) H3n

)
SUM[2 + n] ==

(1 + n) Hn (1 + Hn) (1 + (1 + n) Hn)
}

In a second step we solve the recurrence by using the product21

In[133]:= tower =
{ n∏

k=1

( Hk

1 + Hk

)}
;

and find out that

20This example is for illustrative purposes only. It might well be that the reader finds a more direct approach
for obtaining its closed form evaluation.

21Unfortunately there does not exist an algorithm which can find, for a given recurrence with coefficients
in terms of Harmonic numbers, a product extension which delivers a solution of the recurrence. In this sense,
I see my package as a motivation for further investigations to consider more general problems in symbolic
summation. How I could find this particular product extension will be clear later.



46 CHAPTER 1. SYMBOLIC SUMMATION IN DIFFERENCE FIELDS

In[134]:= SolveRecurrence[rec[[1]],SUM[n],NestedSumExt → 2,Tower → tower]
80.145 Second

Out[134]=
{{

0,
(1 + Hn)

∏n
ι1=1

(
Hι1

1+Hι1

)
Hn

}
,
{
0,

(1 + Hn)
(∏n

ι1=1

(
Hι1

1+Hι1

)) ∑n
ι1=1

(
Hι1 (−1+Hι1 ι1)

∏ι1
ι2=1

(
1+Hι2
Hι2

)
(1+Hι1 ) (−1+ι1+Hι1 ι1)

)
Hn

}
,

{
1,

1

Hn

(
(1 + Hn)

(
n∏

ι1=1

(
Hι1

1 + Hι1

))

n∑
ι1=1

(Hι1 (−1 + Hι1 ι1)
(∏ι1

ι2=1

(
1+Hι2

Hι2

)) ∑ι1
ι2=1

(
ι2

−1+ι2+Hι2 ι2

)
(1 + Hι1) (−1 + ι1 + Hι1 ι1)

))}}

Finding a Recurrence with Lower Order by a Sum Extension

Instead of applying usual creative telescoping, I compute a recurrence of order 1 by finding
an appropriate sum extension automatically, namely

In[135]:= rec = GenerateRecurrence[mySum,SimplifyByExt → Depth]
463.466 Second

Out[135]=
{
(2 + n) Hn SUM[n]− (2 + n) (1 + Hn) SUM[1 + n] ==

−(2 + n) Hn

(
1 +

n∑
ι1=1

(
1 + n− ι1

2 + n + Hn−ι1 + n Hn−ι1 − ι1 − Hn−ι1 ι1

))}
A Definite Summation Subproblem

The found sum

In[136]:= defPart =
n∑

ι1=1

(
1 + n− ι1

2 + n + Hn−ι1 + n Hn−ι1 − ι1 −Hn−ι1 ι1

)
;

has to be transformed from a definite sum representation to an indefinite one. Therefore we
again compute a recurrence

In[137]:= recDefPart = GenerateRecurrence[defPart][[1]]
15.623 Second

Out[137]= (−2− n + (−1− n) Hn) SUM[n] + (2 + n + (1 + n) Hn) SUM[1 + n] == 1 + n

solve it

In[138]:= recSolDefPart =
SolveRecurrence[recDefPart,SUM[n],NestedSumExt → 1]

5.097 Second

Out[138]=
{
{0, 1},

{
1,

n∑
ι1=1

(
1

1 + Hι1

)}}
and finally find the closed form:

In[139]:= solDefPart = FindLinearCombination[recSolDefPart,defPart,1]

Out[139]=

n∑
ι1=1

(
1

1 + Hι1

)
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Finding a Closed Form

Now we can substitute the definite sum by the indefinite representation and obtain the
following recurrence which can be solved by my package.

In[140]:= rec = rec/.{defPart → solDefPart}

Out[140]=
{
(2 + n) Hn SUM[n]− (2 + n) (1 + Hn) SUM[1 + n] == (−2− n) Hn

(
1 +

n∑
ι1=1

(
1

1 + Hι1

))}
Here one can directly read off the product extension which gives us a solution of the ho-
mogeneous version of the recurrence, namely

∏n
k=1

Hk
1+Hk

. Computing the solutions of the
recurrence

In[141]:= recSol = SolveRecurrence[rec[[1]],SUM[n],NestedSumExt → 1,Tower → tower]
54.539 Second

Out[141]=
{{

0,
(1 + Hn)

∏n
ι1=1

(
Hι1

1+Hι1

)
Hn

}
,

{
1,

1

Hn

(
(1 + Hn)

(
n∏

ι1=1

(
Hι1

1 + Hι1

)) n∑
ι1=1

((
Hι1 (−1 + Hι1 ι1)(

ι1∏
ι2=1

(
1 + Hι2

Hι2

)) (
Hι1 + (1 + Hι1)

ι1∑
ι2=1

(
1

1 + Hι2

)))/
(
(1 + Hι1)

2 (−1 + ι1 + Hι1 ι1)
)))}}

we finally obtain the closed form of the definite sum mySum.

In[142]:= FindLinearCombination[recSol,mySum,1]

Out[142]=
1

Hn

(
(1 + Hn)

(
n∏

ι1=1

(
Hι1

1 + Hι1

)) n∑
ι1=1

((
Hι1 (−1 + Hι1 ι1)(

ι1∏
ι2=1

(
1 + Hι2

Hι2

)) (
Hι1 + (1 + Hι1)

ι1∑
ι2=1

(
1

1 + Hι2

)))/
(
(1 + Hι1)

2 (−1 + ι1 + Hι1 ι1)
)))

Please note, that not only the result is nicer in comparison to the naive approach but also
the timings are better - we needed only 539 seconds instead of 903 seconds.
By our indefinite summation algorithm SigmaReduce this expression can be simplified further
to

−2− 1

Hn
−

n∑
ι1=1

1

1 + Hι1

+
1 + Hn
Hn

(
n∏

ι1=1

Hι1

1 + Hι1

) (
1 +

n∑
ι1=1

ι1∏
ι2=1

1 + Hι2

Hι2

+

n∑
ι1=1

(
ι1∏

ι2=1

1 + Hι2

Hι2

)
ι1∑

ι2=1

(
1

1 + Hι2

)
−

n∑
ι1=1

(
ι1∏

ι2=1

1 + Hι2

Hι2

)
ι1∑

ι2=1

1

1 + Hι2

1 + Hι1

)
.
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A Variation of the previous example

Now we consider a small variation of the previous example

In[143]:= mySum =
n∑

r=1

( r∑
l=1

( l∏
k=1

( H−k+n

1 + H−k+n

))
(1 + Hn−r)

2

)
;

and fail to compute a recurrence due to memory overflow:

In[144]:= rec = GenerateRecurrence[mySum]
Order: 1

Order: 2

Out[144]= $Aborted

Whereas trying to compute a recurrence by finding an appropriate sum extension results in
a recurrence of order 1.

In[145]:= rec = GenerateRecurrence[mySum,SimplifyByExt → Depth]
1078.43 Second

Out[145]=
{
− Hn SUM[n] + (1 + Hn) SUM[1 + n] ==

Hn
(
1 +

n∑
ι1=1

(
(1 + n− ι1)

2

(2 + n + Hn−ι1 + n Hn−ι1 − ι1 − Hn−ι1 ι1)
2

))
}

Applying again the definite summation method, like in the previous example, we find

n∑
i=1

(1 + n− i)2

(2 + n + Hn−i + n Hn−i − i−Hn−i i)2
=

n∑
i=1

1
(1 + Hi)2

.

Therefore we can reformulate the above recurrence to

In[146]:= rec =
{
−Hn SUM[n] + (1 + Hn) SUM[1 + n] == Hn

(
1 +

n∑
ι1=1

(
1

(1 + Hι1)
2

))
;

and can solve this recurrence by using the product extension22

In[147]:= tower =
{ n∏

k=1

( Hk

1 + Hk

)}
;

In[148]:= recSol = SolveRecurrence[rec,SUM[n],Tower → tower,NestedSumExt → 1]
58.394 Second

Out[148]=
{{

0,
(1 + Hn)

∏.n

ι1 = 1

(
Hι1

1+Hι1

)
Hn

}
,
{
1,

1

Hn(
(1 + Hn)

(
n∏

ιi=1

(
Hι1

1 + Hι1

)) n∑
ι1=1

((
Hι1 (−1 + Hι1 ι1)

(
ι1∏

ι2=1

(
1 + Hι2

Hι2

))
(
2 Hι1 + H2ι1 +

(
1 + 2 Hι1 + H2ι1

) ι1∑
ι2=1

(
1

(1 + Hι2)
2

)))/
(
(1 + Hι1)

3 (−1 + ι1 + Hι1 ι1)
)))}}

22Here I guessed the product extension by looking at the previous example.
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Finally we find the following closed form.

In[149]:= FindLinearCombination[recSol,mySum,1]
0.29 Second

Out[149]=
1

Hn

(
(1 + Hn)

(
n∏

ι1=1

(
Hι1

1 + Hι1

)) n∑
ι1=1

((
Hι1 (−1 + Hι1 ι1)

(
ι1∏

ι2=1

(
1 + Hι2

Hι2

))
(
2 Hι1 + H2ι1 +

(
1 + 2 Hι1 + H2ι1

) ι1∑
ι2=1

(
1

(1 + Hι2)
2

)))/
(
(1 + Hι1)

3 (−1 + ι1 + Hι1 ι1)
)))

By our indefinite summation algorithm SigmaReduce this expression can be simplified further
to

−

(1 + 2 Hn)
(
1 +

n∑
ι1=1

1

(1 + Hι1)
2

)
Hn

+
1 + Hn
Hn

(
n∏

ι1=1

Hι1

1 + Hι1

) (
1 +

n∑
ι1=1

ι1∏
ι2=1

1 + Hι2

Hι2

−

n∑
ι1=1

ι1∏
ι2=1

1 + Hι2

Hι2

(1 + Hι1)
3 +

n∑
ι1=1

ι1∏
ι2=1

1 + Hι2

Hι2

(1 + Hι1)
2 +

n∑
ι1=1

(
ι1∏

ι2=1

1 + Hι2

Hι2

)
ι1∑

ι2=1

1

(1 + Hι2)
2

)
.
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1.3.5.2 A Significant Reduction of the Recurrence Order

In [KP98, Equation 25] there appears the following sum

In[150]:= mySum =
n∑

j=1

( j∑
k=1

(H−k+n

k

))
which can be simplified to

In[151]:= SigmaReduce[mySum]

Out[151]= n− n Hn + (1 + n)
n∑

ι1=1

(Hn−ι1

ι1

)
Using my package one can easily find that

n∑
k=1

Hn−k

k
= H2

n −H(2)
n

and therefore we obtain

n∑
j=1

j∑
k=1

Hn−k

k
= n− n Hn + (1 + n)

(
H2

n −H(2)
n

)
.

Now let us look at a small variation of the definite sum:

In[152]:= mySum =
n∑

k=1

(H−k+n

k8

)
;

If we try to compute a recurrence with the naive approach, we fail due to memory overflow:

In[153]:= rec = GenerateRecurrence[mySum]
Order: 1

Order: 2

Order: 3

Order: 4

Order: 5

Order: 6

Order: 7

Order: 8

Order: 9

Out[153]= $Aborted

But we are able to compute a recurrence by finding an appropriate sum extension:

In[154]:= rec = GenerateRecurrence[mySum,SimplifyByExt → Depth]

Out[154]=
{
− n8 SUM[n] + n8 SUM[1 + n] == 1 + n8

n∑
ι1=2

( 1

(2 + n− ι1) (−1 + ι1)
8

)}
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Now we analyze the summand of the sum extension using partial fraction decomposition.

In[155]:=
1

(2 + n− ι1) (−1 + ι1)8
//Apart

Out[155]=
1

(1 + n) (−1 + ι1)
8 +

1

(1 + n)2 (−1 + ι1)
7 +

1

(1 + n)3 (−1 + ι1)
6+

1

(1 + n)4 (−1 + ι1)
5 +

1

(1 + n)5 (−1 + ι1)
4 +

1

(1 + n)6 (−1 + ι1)
3+

1

(1 + n)7 (−1 + ι1)
2 +

1

(1 + n)8 (−1 + ι1)
− 1

(1 + n)8 (−2− n + ι1)

By
n∑

i=2

1
2 + n− i

=
n∑

i=2

1
i− 1

and summing each fraction separately, we obtain the following recurrence
−n8 SUM[n] + n8 SUM[1 + n] ==

1 + n8

(∑n
ι1=2

(
1

(−1+ι1)
8

)
1 + n

+

∑n
ι1=2

(
1

(−1+ι1)
7

)
(1 + n)2

+

∑n
ι1=2

(
1

(−1+ι1)
6

)
(1 + n)3

+

∑n
ι1=2

(
1

(−1+ι1)
5

)
(1 + n)4

+

∑n
ι1=2

(
1

(−1+ι1)
4

)
(1 + n)5

+

∑n
ι1=2

(
1

(−1+ι1)
3

)
(1 + n)6

+

∑n
ι1=2

(
1

(−1+ι1)
2

)
(1 + n)7

+

∑n
ι1=2

(
1

−1+ι1

)
(1 + n)8

+

−1 +
∑n

ι1=2

(
1
ι1

)
(1 + n)8

)
One can easily solve this recurrence - even by hand - and search out for a solution of the
recurrence using Harmonic numbers, namely

1− 1

n8
− H(9)

n +
n∑

i=1

(Hi
i8

)
+

−2+n∑
i=0

( Hi

(2 + i)8
)

+
−2+n∑
i=0

(
H
(2)
i

(2 + i)7

)
+

−2+n∑
i=0

(
H
(3)
i

(2 + i)6

)
+

−2+n∑
i=0

(
H
(4)
i

(2 + i)5

)
+

−2+n∑
i=0

(
H
(5)
i

(2 + i)4

)
+

−2+n∑
i=0

(
H
(6)
i

(2 + i)3

)
+

−2+n∑
i=0

(
H
(7)
i

(2 + i)2

)
+

−2+n∑
i=0

(
H
(8)
i

2 + i

)
.

Since the initial values of this expression and the original summation problem are the same,
they must be equal.
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1.4 Symbolic Summation in Difference Fields

Below I will give a summary of the first chapter with respect to what kind of problems of
symbolic summation we have to deal with in terms of difference fields. This will give a
motivation for the following chapters where these problems will be treated.

Chapter 2: Difference Fields

As outlined in Chapter 1, we are mainly interested in solving difference equations. In this
thesis we will develop algorithms to solve difference equations in so called ΠΣ-fields (F, σ)
with its constant field

K := {k ∈ F |σ(k) = k}.

In Chapter 2 we will show how one can constructively define such difference fields; in addition,
we will explore its properties.

Chapter 3: Solving Difference Equations

As we have indicated in Section 1.2.2 we have to solve the following problem to deal with
respect to indefinite summation.

Telescoping

• GIVEN f ∈ F,

• FIND g ∈ F:

σ(g)− g = f

In order to solve this problem, one uses a reduction process where one has to solve the
following more general problem.

Parameterized First Order Linear Difference Equations

• GIVEN f0, . . . , fd ∈ F, a0, a1 ∈ F,

• FIND ALL c0, . . . , cd ∈ K, h ∈ F:

a1 σ(h)− a0 h = c0 f0 + · · ·+ cd fd

As was shown in Section 1.3.3.2, this is exactly what we need for creative telescoping in order
to find a recurrence of a definite summation problem.
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Creative Telescoping

• GIVEN fi = summand(n + i, k) ∈ F,

• FIND ALL c0, . . . , cd ∈ K, g ∈ F:

σ(g)− g = c0 f0 + · · ·+ cd fd

From creative telescoping we can derive a recurrence for the definite sum as it was outlined in
Section 1.3.3.1. In order to solve this recurrence we have to solve linear difference equations
of higher order. This was already mentioned in Section 1.3.4.1.

m-th Order Linear Difference Equations

• GIVEN f, a0, . . . , am ∈ F,

• FIND ALL g ∈ F:
am σm(g) + · · ·+ a0 g = f

In order to solve this problem, one uses a reduction process where one has to solve the
following more general problem.

Parameterized m-th Order Linear Difference Equations

• GIVEN a0, . . . , am ∈ F,f0, . . . , fd ∈ F,

• FIND ALL g ∈ F, c0, . . . , cd ∈ K:

am σm(g) + · · · a0 g = c0 f0 + · · · cd fd

This is the main problem we will focus on in Chapter 3.

Chapter 4: Summation and Difference Field Extensions

Finally we are interested in finding appropriate sum extensions in order

• to reduce the depth of nested sums (Section 1.2.3),

• to find nested sum extensions which give rise to additional solutions of a recurrence
(Section 1.3.4.2)

• and to find sum extensions to reduce the order of a creative telescoping equation (Sec-
tion 1.3.5).

These problems and its solutions will be treated in the last Chapter 4. Moreover, I will
derive further insight into symbolic summation by rephrasing the summation problems in the
general difference field setting.
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Chapter 2

Difference Fields

2.1 Basic Definitions for Difference Fields

Definition 2.1.1. A difference field (resp. ring1) is a field (resp. ring) F together with a
field (resp. ring) automorphism σ : F → F. ♦

Notation 2.1.1. The difference field (resp. ring) given by the field (resp. ring) F and auto-
morphism σ is denoted by (F, σ). ♦

Example 2.1.1. Consider the difference field (Q, σ) with the field automorphism

∀q ∈ Q : σ(q) = q.

It can be easily shown that this is the only field automorphism of Q and thus (Q, σ) is uniquely
defined. ♦

Let (A, σ) be a difference ring and consider the following set

B := {k ∈ A |σ(k) = k}.

Then one can easily prove that B is a subring of A. Furthermore, if A is a field then also B
is a field.

Definition 2.1.2. Let (A, σ) be a difference ring. We define the following set

constσA := {k ∈ F |σ(k) = k}

and call it the constant ring of (A, σ). If constσA is a field, we even call it the constant field
of (A, σ). ♦

Remark 2.1.1. If not differently stated, in the following we assume that for any difference
ring (A, σ) the constant ring constσA is a field, i.e. we assume that a difference ring (A, σ)
has the constant field constσA. Additionally, the constant field of any difference ring (A, σ)
has always characteristic 0. This means

Q ⊆ constσA.

♦
1Throughout this thesis all rings are assumed to be commutative.
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Example 2.1.2. Consider the difference field (C, σ) with the automorphism canonically
defined by

σ(a + i b) = a− i b.

Then this is the only nontrivial difference field and the real numbers form the constant field
of (C, σ). ♦

Lemma 2.1.1. Let (A, σ) be a difference ring. The difference operator

∆ :
{

A → A
f 7→ σ(f)− f

satisfies for all f, g ∈ A the following difference rules:

1. ∆(f + g) = ∆(f) + ∆(g);

2. ∆(fg) = f∆(g) + ∆(f)g + ∆(f)∆(g). (Leibnitz)

Proof. We have

∆(f g) = σ(f g)− f g = σ(f) σ(g)− f g

= f (σ(g)− g) + (σ(f)− f) g + (σ(f)− f) (σ(g)− g)
= f ∆(g) + ∆(f) g + ∆(f) ∆(g);

∆(f + g) = σ(f + g)− (f + g) = (σ(f)− f) + (σ(g)− g) = ∆(f) + ∆(g).

Example 2.1.3. Consider the polynomial ring Q[n] where n is transcendental over Q. We
define the map

σ :
{

Q[n] → Q[n]∑
i fi n

i 7→
∑

i fi (n + 1)i.

One can easily check that σ is a ring automorphism and that (Q[n], σ) is a difference ring
with constant field Q. Clearly, the difference operator ∆ on Q[n] satisfies the difference rules.

♦

2.1.1 Difference Field Isomorphisms

Definition 2.1.3. Two difference fields (resp. rings) (F, σ) and (F̃, σ̃) are isomorphic, in
symbols (F, σ)'(F̃, σ̃), if there exists a field (resp. ring) isomorphism τ : F → F̃ with

τ σ = σ̃ τ.

τ is called difference field (resp. ring) isomorphism . ♦

Corollary 2.1.1. Let (A, σ), (Ã, σ̃) be difference rings, a0, . . . , am, f ∈ A and assume

(A, σ)
τ' (Ã, σ̃).

Then for all g ∈ A we have

a0 σm(g) + · · ·+ am−1 σ(g) + am g = f

m

τ(a0) σ̃m τ(g) + · · ·+ τ(am−1) σ̃ τ(g) + τ(am) τ(g) = τ(f).
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Definition 2.1.4. Let (A, σ), (Ã, σ̃) be difference fields (resp. rings). τ : A → Ã is called
difference field (resp. ring) homomorphism/epimorphism/monomorphism, if τ is a field (resp.
ring) homomorphism/epimorphism/monomorphism with

τ σ = σ̃ τ.

♦

2.1.2 Difference Field Extensions

Definition 2.1.5. Let (E, σE), (F, σF) be difference fields (resp. rings). (E, σE) is called a
difference field (resp. ring) extension of (F, σF), in symbols (F, σF) ≤ (E, σE), if F is a subfield
(resp. subring) of E and for all f ∈ F we have σF(f) = σE(f). ♦

Example 2.1.4. Consider the quotient field Q(n) of the polynomial ring Q[n] from Exam-
ple 2.1.3. As shown later (Lemma 2.4.5), there exists a unique difference field (Q(n), σ̃) which
is a difference ring extension of (Q[n], σ) with

σ̃ :

{
Q(n) → Q(n)
a
b 7→ σ(a)

σ(b) .

♦

Remark 2.1.2. If (E, σ̃) is a difference ring extension of (A, σ) then in the following we will
not distinguish anymore that σ : A → A and σ̃ : E → E are actually different automorphisms.
Rather than this, we will say that (E, σ) is a difference ring extension of (A, σ). If g ∈ E \ A
then, of course, writing σ(g) means that we use the automorphism of the difference ring
(E, σ), whereas using σ(g) with g ∈ A means that σ can be both, the automorphism of (A, σ)
or (E, σ). It will be always clear from the context which automorphism has to be used. ♦

Example 2.1.5. Let (E, σ) be a difference ring extension of (A, σ) in which we have an
element t ∈ E with

σ(t) = α t + β

for some2 α ∈ A∗ and β ∈ A. A[t], by adjoining t to A, is a subring of E and a ring extension
of A. As for all f ∈ A[t] ⊆ E we have σ(f) ∈ A[t], it follows that σ restricted on A[t] is a
difference ring automorphism and thus (A[t], σ) is a difference ring with

(A, σ) ≤ (A[t], σ) ≤ (E, σ).

If E is a field then A[t] is an integral domain and we can construct the quotient field Q(A[t]).
Furthermore - as will be shown later in Lemma 2.4.5 - there is a unique difference ring
extension (Q(A[t]), σ) of (A[t], σ). If A is a subfield of the field E then we even have

(A, σ) ≤ (Q(A[t]), σ) ≤ (E, σ).

♦

2Given a set A we will denote by A∗ the set A \ {0}, i.e. A∗ := A \ {0}
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Example 2.1.6. Let (F, σ) be a difference field, α ∈ F∗, β ∈ F and consider the polynomial
ring F[t] with t transcendental over F. If we look at the map

σ :
{

F[t] → F[t]∑n
i=0 fi t

i 7→
∑n

i=0 σ(fi) (α t + β)i

then one can easily verify that σ : F[t] → F[t] is a ring homomorphism. Furthermore,

τ :

{
F[t] → F[t]∑n

i=0 fi t
i 7→

∑n
i=0 σ−1(fi)

(
t−β
α

)i

is again a ring homomorphism and we have

τ(σ(t)) = t.

Therefore τ is the inverse homomorphism of σ and thus σ is an automorphism. Consequently
(F[t], σ) is a difference ring and therefore a difference ring extension of (F, σ). ♦

Remark 2.1.3 (and Definition). Let (A[t], σ) be a difference ring extension of (A, σ)
defined by

σ :
{

A[t] → A[t]∑n
i=0 fi t

i 7→
∑n

i=0 σ(fi) (α t + β)i (2.1)

with α ∈ A∗ and β ∈ A. In the following this will be shortly expressed by saying that (A[t], σ)
is a difference ring extension of (A, σ) canonically defined by

σ(t) = α t + β.

If nothing more is specified then we assume that t is transcendental or not transcendental
over A. ♦

The proof of the following lemma is straightforward.

Lemma 2.1.2. Let (A[t], σ) be a difference ring canonically defined by

σ(t) = α t + β

with α ∈ A∗, β ∈ A and t transcendental over A. Then for all i ∈ Z it follows that

deg(σi(f)) = deg(f).

Example 2.1.7. Consider the difference ring extension (F[t], σ) of (F, σ) which we have
defined in Example 2.1.6. Clearly, we can define the quotient field F(t) of F[t] and define a
map σ : F(t) → F(t) canonically defined by

σ(
a

b
) =

σ(a)
σ(b)

for a ∈ F[t] and b ∈ F[t]∗. Then it follows that σ : F(t) → F(t) is a field automorphism and
therefore (F(t), σ) a difference field with

(F, σ) ≤ (F[t], σ) ≤ (F(t), σ).

♦
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Remark 2.1.4 (and Definition). Let (A(t), σ) be a difference field extension of (A, σ).
If the difference field (A(t), σ) is not specified further then we always assume that t might
be either algebraic or transcendental over A. If it is algebraic then we might also write3

A(t) = A[t].
Furthermore, assume that (A(t), σ) is defined by

σ(
a

b
) =

σ(a)
σ(b)

for a ∈ A[t], b ∈ A[t]∗ and where σ acts on A[t] by (2.1). In the following this will be shortly
expressed by saying that (A(t), σ) is a difference field extension of (A, σ) canonically defined
by

σ(t) = α t + β.

♦

Definition 2.1.6. A difference field extension (F(t), σ) of (F, σ) is called affine, if it is canon-
ically defined by

σ(t) = α t + β

for some α ∈ F∗ and β ∈ F.
In particular, (F(t), σ) is called sum extension of (F, σ), if

σ(t) = t + β

and (F(t), σ) is called product extension of (F, σ), if

σ(t) = α t.

♦

Definition 2.1.7. Let (E, σ) be a difference field extension of (F, σ).
t ∈ E is called4 a sum over F, if σ(t)− t ∈ F.
t ∈ E∗ is called a hyperexponential over F, if σ(t)

t ∈ F. ♦

Definition 2.1.8. Let (F(t1, . . . , tn), σ) be a difference field extension of (F, σ).
(F(t1, . . . , tn), σ) is called sum extension of (F, σ), if (F(t1, . . . , ti)(ti+1), σ) is a sum-

extension of (F(t1, . . . , ti), σ) for all5 0 ≤ i ≤ n− 1.
(F(t1, . . . , tn), σ) is called product extension of (F, σ), if (F(t1, . . . , ti)(ti+1), σ) is a product

extension of (F(t1, . . . , ti), σ) for all 0 ≤ i ≤ n− 1.
(F(t1, . . . , tn), σ) is called product-sum extension of (F, σ), if (F(t1, . . . , ti)(ti+1), σ) is a

product extension or a sum extension of (F(t1, . . . , ti), σ) for all 0 ≤ i ≤ n− 1.
(F(t1, . . . , tn), σ) is called d’Alembertian extension of (F, σ), if (F(t1, . . . , tn), σ) is a pro-

duct-sum extension of (F, σ) and every product extension is hyperexponential over F. ♦

3See for instance [Lan97] Proposition 1.4.
4In [Bro00] these elements are called primitive
5For the case i = 0 this means that (F(t1), σ) is a sum extension of (F, σ).
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2.2 ΠΣ-Fields

2.2.1 First Order Linear Extensions

Definition 2.2.1. A difference field extension (F(t), σ) of (F, σ) is called first order linear,
if it is canonically defined by

σ(t) = α t + β

for some α ∈ F∗ and β ∈ F, t is transcendental over F and constσF(t) = constσF. ♦

Example 2.2.1. Let (Q(t), σ) be a difference field where t is transcendental over Q and σ is
defined canonically on Q(t) by

σ(t) = 4 t.

By definition, (Q, σ) ≤ (Q(t), σ) is affine and t is transcendental over Q. As will be shown
later, we also have constσQ(t) = Q and thus the extension is first order linear. ♦

Example 2.2.2. In Example 2.1.4 we constructed a difference field (Q(n), σ) with σ(n) =
n+1 where n is transcendental over Q. As will be shown later, we also have constσQ(n) = Q
and thus the extension is first order linear. ♦

Definition 2.2.2. Let F[t] be a polynomial ring with coefficients in the field F, t is transcen-
dental over F, and let F(t) be the field of of rational functions over F, this means F(t) is the
quotient field of F[t]. p

q ∈ F(t) is in reduced representation if p, q ∈ F[t], gcd(p, q) = 1 and q
is monic. ♦

The proof of the following lemma is straightforward.

Lemma 2.2.1. Let (F(t), σ) be a first order linear extension of (F, σ). Then F(t) is a field
of rational functions over K. Furthermore, σ is an automorphism of F[t] and thus (F(t), σ)
is a difference ring extension of (F[t], σ). Additionally, we have for all f, g ∈ F[t] that

gcd(σ(f), σ(g)) = σ(gcd(f, g)),
deg(σ(f)) = deg(f)

and f is irreducible in F[t], if and only if σ(f) is irreducible in F[t].

2.2.2 Homogeneous and Inhomogeneous Extensions

Definition 2.2.3. Let (E, σ) be a difference field extension of (F, σ). The difference field
extension (E, σ) of (F, σ) is called homogeneous, if there exists an element g ∈ E\F such that

σ(g)
g

∈ F.

Otherwise the extension is called inhomogeneous. ♦

Example 2.2.3. All difference field extensions (F(t), σ) of (F, σ) defined canonically by

σ(t) = α t

with α ∈ F∗ are homogeneous. ♦

The following theorem was first stated in [Kar81, Theorem 1] and its proof is essentially
the same as in [Kar85].
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Theorem 2.2.1. Let (F(t), σ) be a difference field extension of (F, σ) canonically defined by

σ(t) = α t + β

for some α ∈ F∗ and β ∈ F. Then the following conditions are equivalent:

1. (F(t), σ) is a homogeneous extension of (F, σ).

2. There exists a g ∈ F[t] \ F with σ(g)
g ∈ F.

3. There exists a w ∈ F with σ(w) = α w + β and6 t /∈ F.

Proof. “1 ⇒ 2” Let g ∈ F(t) \ F with

σ(g)
g

∈ F.

If t is algebraic then obviously7 F(t) = F[t] and thus g ∈ F[t]. Now assume that g is
transcendental over F and write

g =
p

q

in reduced representation, in particular p, q ∈ F[t] are relatively prime. We have

σ(g)
g

=
σ(p/q)

p/q
=

σ(p) q

p σ(q)
∈ F

and because of gcd(σ(p), σ(q)) = gcd(p, q) = 1 it follows that

p | σ(p), σ(q) | q.

Since deg(σ(p)) = deg(p) and deg(σ(q)) = deg(q), it follows that

σ(p)
p

∈ F,
σ(q)

q
∈ F;

and as g /∈ F, we get p /∈ F or q /∈ F.

“2 ⇒ 3” Let g =
∑n

i=0 gi t
i with n ≥ 1, gi ∈ F, gn 6= 0 and define

u :=
σ(g)

g
∈ F.

We have
n∑

i=0

σ(gi) (α t + β)i = σ(g) = u g = u
n∑

i=0

gi t
i

and thus, by coefficient comparison,

u gn =σ(gn) αn,

u gn−1 =σ(gn) n αn−1 β + σ(gn−1) αn−1 = (σ(gn) n β + σ(gn−1))αn−1. (2.2)

6Please note that we corrected Karr’s Theorem by adding the second condition t /∈ F.
7See Remark 2.1.4.
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Substituting
αn−1 =

u gn

α σ(gn)

into equation (2.2) yields

u gn−1 = (σ(gn) n β + σ(gn−1))
u gn

α σ(gn)

which is equivalent to
gn−1

gn
=

n β

α
+ σ(

gn−1

gn
)

1
α

.

Thus with
w := −gn−1

n gn
∈ F

we obtain
σ(w)− α w = β.

“3 ⇒ 1” Assume there is a w ∈ F with

σ(w)− α w = β.

Then we have
σ(t− w)− α (t− w) = 0

and thus
σ(g)

g
= α ∈ F

with g := t− w /∈ F.

Remark 2.2.1. Let (F(t), σ) be an affine difference field extension of (F, σ) canonically
defined by

σ(t) = α t + β

for some α ∈ F∗, β ∈ F and t /∈ F. Suppose one can solve first order linear difference equations
in the difference field (F, σ); in particular this means, one can check if there exists a solution
g ∈ F such that

σ(g)− α g = β.

Then by Theorem 2.2.1 one has an algorithm which decides if (F(t), σ) is a homogeneous or
an inhomogeneous extension of (F, σ). ♦

Example 2.2.4. Let (Q(n), σ) be the difference field defined in Example 2.1.3 with σ(n) =
n + 1 and n transcendental over Q. Let h be a transcendental element over Q(n) and define
canonically the difference field extension (Q(n, h), σ) of (Q(n), σ) by

σ(h) = h +
1

n + 1
.

As will be shown later, one can check automatically that there does not exist a g ∈ Q(n)
such that

σ(g)− g =
1

n + 1
and therefore (Q(n, h), σ) is an inhomogeneous extension of (Q(n), σ). ♦
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In [Kar81] Karr remarked that one can “change a basis” so that a homogeneous difference
field extension (F(t), σ) of (F, σ) canonically defined by

σ(t) = α t + β

for some α ∈ F∗ and β ∈ F can be rewritten to a difference field extension (F(x), σ) of (F, σ)
canonically defined by

σ(x) = α x.

The following corollary makes this statement more precise.

Corollary 2.2.1. Let (F(t), σ) and (F(x), σ) be homogeneous difference field extensions of
(F, σ) canonically defined by

σ(t) = α t + β,

σ(x) = α x

where α ∈ F∗, β ∈ F and t, x are transcendental over F. Then we have

(F(t), σ)'(F(x), σ).

Proof. As (F(t), σ) is a homogeneous difference field extension of (F, σ), by Theorem 2.2.1
there is an element w ∈ F such that

σ(w)− α w = β.

Now consider the canonical map

τ :
{

F(t) → F(x)
t 7→ x + w.

Since t and x are transcendental over F, τ is a field isomorphism. By

τ σ(t) =τ(α t + β) = α(x + w) + β = α x + β + α w,

σ τ(t) =σ(x + w) = α x + σ(w) = α x + β + α w

it follows that τ σ = σ τ and thus τ is a difference field isomorphism.

Example 2.2.5. Let (Q(n), σ) be the difference field defined in Example 2.1.4 with σ(n) =
n+1. Let t be transcendental over Q(n) and consider the difference field extensions (Q(n, t), σ)
and (Q(n, t), σ̃) canonically defined by

σ(t) = n t + 1− n,

σ̃(t) = n t.

Since w = 1 is a solution of
σ(w) = nw + 1− n,

it follows that (Q(n, t), σ) and (Q(n, t), σ̃) are homogeneous extensions and τ : F(t) → F(t)
canonically defined by

σ(t) = t + 1

is a difference field isomorphism. Thus

(Q(n, t), σ)
τ' (Q(n, t), σ̃).

♦
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2.2.3 Π-Extensions

Let (F(t), σ) be a first order linear extension of (F, σ). Then Corollary 2.2.1 motivates us to
consider only those homogeneous extensions with

σ(t) = α t.

Definition 2.2.4. (F(t), σ) is a Π-extension of (F, σ) if

1. (F(t), σ) is first order linear

2. and σ(t) = α t with α ∈ F∗.

♦

Remark 2.2.2. Let (F(t), σ) be a Π-extension of (F, σ). Then (F(t), σ) is canonically
defined by

σ(t) = α t

for some α ∈ F∗, t is transcendental over F and constσF(t) = constσF. ♦

Definition 2.2.5. Let (F(t1, . . . , tn), σ) be a difference field extension of (F, σ).
(F(t1, . . . , tn), σ) is called Π-extension of (F, σ), if (F(t1, . . . , ti)(ti+1), σ) is a Π-extension

of (F(t1, . . . , ti), σ) for all 0 ≤ i ≤ n− 1. Moreover, if (H, σ) is a sub-difference field of (F, σ)
and all ti for 1 ≤ i ≤ n are hyperexponentials over H, i.e. σ(ti)

ti
∈ H, then (F(t1, . . . , tn), σ) is

called a Π-extension of (F, σ) over H. ♦

Definition 2.2.6. The homogeneous group of the difference field (F, σ) is defined by

H(F,σ) :=
{

σ(g)
g

| g ∈ F∗
}

.

♦

The following theorem was essentially stated in [Kar81, Theorem 2] and its proof is given
in [Kar85, Theorem 2.2]. For the reason of completeness we will repeat the proof.

Theorem 2.2.2. Let (F(t), σ) be a difference extension of (F, σ) canonically defined by

σ(t) = α t

for some α ∈ F∗ and8 t 6= 0. Then (F(t), σ) is first order linear if and only if for all n > 0
we have

αn /∈ H(F,σ).

Proof. “⇒” Suppose there is an n > 0 such that

αn ∈ H(F,σ),

i.e.
σ(w) = αnw

8In [Kar85] the Theorem 1 of [Kar81] was corrected by including the second condition t 6= 0.
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for some w ∈ F∗. By
σ(tn) = αntn

we obtain

σ(
tn

w
) =

σ(tn)
σ(w)

=
αntn

αnw
=

tn

w

and thus
tn/w ∈ constσF(t).

So either constσF(t) 6= constσF or t is algebraic over F.
“⇐” Suppose t is algebraic over F, i.e. there is an irreducible

g(x) =
m∑

i=0

gix
i ∈ F[x]

where m ≥ 1, gm = 1 and
g(t) = 0.

It follows that

0 = σ(g(t)) =
m∑

i=0

σ(gi) αi ti.

For

h(x) =
m∑

i=0

σ(gi)αi xi ∈ F[x]

we have h(t) = 0 and thus
g|h.

Because of deg(g) = deg(h) and gm = 1 it follows that

lc(h)︸ ︷︷ ︸
αm

g = h

and thus
∀i : αmgi = σ(gi)αi.

If g = x, it follows that t = 0 which contradicts to the assumption. Otherwise, if g 6= x, there
exists a k with k < m and gk 6= 0 and thus

σ(gk)
gk

= αm−k

which is equivalent to αm−k ∈ H(F,σ).
Now suppose that t is transcendental over F but

constσF 6= constσF(t).

Thus there is a g ∈ F(t) \ F with σ(g) = g. Let

g =
p

q
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be in reduced representation. Because of

σ(p)
σ(q)

=
p

q

and gcd(σ(p), σ(q)) = gcd(p, q) = 1 it follows that

σ(p)
p

,
σ(q)

q
∈ F. (2.3)

Now either p or q has degree greater than 0, say deg(q) = m > 0, i.e.

q =
m∑

i=0

qi t
i, qm 6= 0.

By (2.3) there is a u ∈ F with

u q = σ(q) =
m∑

i=0

σ(qi) αi ti

and thus by coefficient comparison we get

u qi = σ(qi) αi

for all 0 ≤ i ≤ m. If there is some qk 6= 0 for 0 ≤ k < m then it follows that

qm

qk
=

σ(qm)
σ(qk)

αm−k.

Thus for w := qm/qk ∈ F we get
σ(w)

w
= αm−k

where m− k > 0 and we are done. Otherwise, we have

q = qm tm.

As gcd(p, q) = 1, it follows that the constant term of p is not zero. If deg(p) > 0 then we
can argue as with q. Otherwise, we have to consider the remaining case p ∈ F and q = qm tm

with m > 0. We have

p

qm tm
=

p

q
= g = σ(g) =

σ(p)
σ(q)

=
σ(p)

σ(qm) αm tm

and thus
σ(p/qm)

p/qm
= αm

and consequently σ(w)
w = αm for w := p/qm ∈ F with m > 0.

Corollary 2.2.2. Let (F(t), σ) be a difference field extension of (F, σ) canonically defined
by

σ(t) = α t

where α ∈ F∗ and t 6= 0. Then (F(t), σ) is a Π-extension of (F, σ) if and only if there does
not exist an n > 0 such that

αn ∈ H(F,σ).
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Example 2.2.6. Let (Q(t), σ) be the difference field from Example 2.2.1, this means t is
transcendental over Q and σ is canonically defined by

σ(t) = 4 t.

Since there does not exist an n > 0 such that

4n ∈ H(Q,σ) = {1},

it follows by Corollary 2.2.2 that (Q(t), σ) is a Π-extension of (Q, σ); in particular this means
that constσQ(t) = Q as already stated in Example 2.2.1. ♦

Remark 2.2.3. Let (F(t), σ) be a difference field extension of (F, σ) canonically defined by

σ(t) = α t

for some α ∈ F∗ and suppose that one can check if there exists an n > 0 such that

αn ∈ H(F,σ). (2.4)

Then there exists an algorithm which decides if (F(t), σ) is a Π-extension of (F, σ), in par-
ticular, if t is transcendental over F and the constant field is not extended. Please note that
in Section 2.2.5 we will define so called ΠΣ-fields in which one can check if there exists an
n > 0 with the property (2.4). ♦
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2.2.4 Σ-extensions

The following theorem was first stated in [Kar81, Theorem 3] and its proof is essentially the
same as in [Kar85].

Theorem 2.2.3. Let (F(t), σ) be an inhomogeneous extension of (F, σ) canonically defined
by

σ(t) = α t + β

with α ∈ F∗, β ∈ F and9 t /∈ F. Then (F(t), σ) is first order linear.

Proof. Suppose the constant field is extended. Then there exists a g ∈ F(t) \ F with σ(g)
g =

1 and thus by Theorem 2.2.1 the extension is homogeneous, contrary to the assumption.
Otherwise, suppose t is algebraic over F, i.e. there is an irreducible polynomial

g(x) =
m∑

i=0

gix
i ∈ F[x]

where m ≥ 1, gm = 1 and
g(t) = 0.

It follows that

0 = σ(g(t)) =
m∑

i=0

σ(gi)(α t + β)i.

For

h(x) :=
m∑

i=0

σ(gi)(α x + β)i ∈ F[x]

we have h(t) = 0 and thus
g | h.

Because of deg(g) = deg(h) and gm = 1 it follows that

lc(h)︸ ︷︷ ︸
αm

g = h.

We have

h =
m∑

i=0

σ(gi) (α x + β)i = αm g = αm
m∑

i=0

gi x
i

and thus matching coefficients at degree m− 1 we get

αm−1 σ(gm−1) + m αm−1 β = αm gm−1

which is equivalent to
σ(

gm−1

m
) = α

gm−1

m
+ β.

Since t /∈ F by assumption, the extension is homogeneous by Theorem 2.2.1, a contradiction.

9Please note that we corrected Karr’s Theorem by adding the condition t /∈ F.
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Definition 2.2.7. Let (F(t), σ) be a difference field extension of (F, σ) with

σ(t) = α t + β

where α ∈ F∗ and β ∈ F. (F(t), σ) is a Σ-extension of (F, σ) if

1. (F(t), σ) is an inhomogeneous extension of (F, σ) with t /∈ F

2. and for all n ∈ Z∗ we have

αn ∈ H(F,σ) ⇒ α ∈ H(F,σ).

♦

Remark 2.2.4. Let (F(t), σ) be a Σ-extension of (F, σ). Then (F(t), σ) is canonically
defined by

σ(t) = α t + β

for some α, β ∈ F∗, t is transcendental over F and constσF(t) = constσF. ♦

The first condition of the definition of a Σ-extension (F(t), σ) of (F, σ) can be easily
checked by the following proposition, if one can solve first order difference equations in the
difference field (F, σ).

Lemma 2.2.2. Let (F(t), σ) be difference field extension of (F, σ) canonically defined by

σ(t) = α t + β

for some α ∈ F∗ and β ∈ F. Then this extension is inhomogeneous and t /∈ F if and only if
there does not exist a g ∈ F with

σ(g) = α g + β.

Proof. By Theorem 2.2.1 the extension is inhomogeneous if and only if there does not exist
a g ∈ F with

σ(g) = α g + β

or t ∈ F. Therefore, if the extension is inhomogeneous and t /∈ F then there does not exist a
g ∈ F with σ(g) = α g+β. Reversely, assume there does not exist a g ∈ F with σ(g) = α g+β.
Then clearly the extension is inhomogeneous. But of course, we cannot have t /∈ F, since
otherwise take g := t.

Corollary 2.2.3. Let (F(t), σ) be a difference field extension of (F, σ) canonically defined
by

σ(t) = α t + β

where α ∈ F∗ and β ∈ F. Then (F(t), σ) is a Σ-extension of (F, σ) if and only if

1. there does not exist a g ∈ F with

σ(g)− α g = β

and

2. for all n ∈ Z∗ we have
αn ∈ H(F,σ) ⇒ α ∈ H(F,σ).
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Remark 2.2.5. The second condition in Definition 2.2.7 or Corollary 2.2.3 will not be prop-
erly motivated in this thesis. Loosely speaking, it is a technical condition which is necessary
to guarantee some properties which are needed to compute the so called σ-factorization which
is defined in [Kar81]. This σ-factorization10 is an essential step to compute the denominator
bounding in Section 3.5.3; in addition, we need σ-factorization to decide if there exists an
n > 0 with the property (2.4) which is necessary to decide if an extension is a Π-extension.

The algorithmically aspects how one can compute the σ-factorization are considered in
details in [Kar81, Kar85]. Although σ-factorization plays a fundamental role in the summa-
tion theory under construction, for this thesis I decided to focus more on new aspects how
one can solve linear difference equations of any order in so called ΠΣ-fields (see the next
section). ♦

Definition 2.2.8. Let (F(t1, . . . , tn), σ) be a difference field extension of (F, σ).
(F(t1, . . . , tn), σ) is called Σ- extension of (F, σ), if (F(t1, . . . , ti)(ti+1), σ) is a Σ-extension

of (F(t1, . . . , ti), σ) for all 0 ≤ i ≤ n− 1. ♦

The main goal in this thesis is to deal with symbolic summation in difference fields.
Therefore we will mainly focus on Π-extensions with which we can describe products and
on those Σ-extensions with which we can describe sums. More precisely, we will consider in
more details those Σ-extensions which are canonically defined by σ(t) = t + β. Since this is
an important subclass of Σ-extensions, we introduce the following definition.

Definition 2.2.9. Let (F(t1, . . . , tn), σ) be a difference field extension of (F, σ).
(F(t1, . . . , tn), σ) is called a proper sum extension of (F, σ), if (F(t1, . . . , tn), σ) is a sum

and Σ-extension of (F, σ). Moreover, if (H, σ) is a sub-difference field of (F, σ) and all ti for
1 ≤ i ≤ n are sums over H, i.e. σ(ti) − ti ∈ H, then (F(t1, . . . , tn), σ) is called a proper sum
extension of (F, σ) over H. ♦

Corollary 2.2.4. Let (F(t), σ) be a sum extension of (F, σ), i.e. (F(t), σ) is canonically
defined by

σ(t) = t + β

for some β ∈ F. Then (F(t), σ) is a proper sum extension, if and only if there does not
exist a g ∈ F with

σ(g)− g = β.

Example 2.2.7. Let (Q(n), σ) be the difference field from Example 2.2.2, this means n is
transcendental over Q and σ is canonically defined by

σ(n) = n + 1.

Since there does not exist a g ∈ Q such that

σ(g)− g = 1,

it follows by Corollary 2.2.4 that (Q(n), σ) is a proper sum extension of (Q, σ); in particular
this means that constσQ(n) = Q as stated already in Example 2.2.2. ♦

10Here P. Paule’s greatest factorial factorization introduced in [Pau95] may play an important role to avoid
factorizations.
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2.2.5 ΠΣ-Extensions and ΠΣ-Fields

Definition 2.2.10. Let (F(t1, . . . , tn), σ) be a difference field extension of (F, σ).
(F(t1, . . . , tn), σ) is called ΠΣ-extension of (F, σ) if (F(t1, . . . , ti), σ) is either a Π- or a

Σ-extension of (F(t1, . . . , ti−1), σ) for all 1 ≤ i ≤ n.
(F(t1, . . . , tn), σ) is called reduced product-sum extension of (F, σ), if (F(t1, . . . , tn), σ) is a

product-sum extension and a ΠΣ-extension of (F, σ).
(F(t1, . . . , tn), σ) is called reduced d’Alembertian extension of (F, σ), if (F(t1, . . . , tn, σ) is

a d’Alembertian extension and a ΠΣ-extension of (F, σ).
Furthermore (F, σ) is called a ΠΣ-field over K, if F = K(t1, . . . , tn) and (K(t1, . . . , tn), σ)

is a ΠΣ-extension of (K, σ) with constσF = K.
♦

Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field over the constant field K.

PROBLEMS:

1. GIVEN α ∈ F∗

FIND all n:
αn ∈ H(F,σ)

2. GIVEN a1, a2, f1, . . . , fn ∈ F with a1 6= 0 6= a2

FIND all c1, . . . , cn ∈ K, g ∈ F:

a1σ(g) + a2g = c1f1 + · · ·+ cnfn

These problems are COMPUTABLE, if

• for any k ∈ K one can decide, if k ∈ Z,

• polynomials in K[t1, . . . , tn] may be factored over K and

• there exists an algorithm which finds for all (c1, . . . , ck) ∈ Kk all (n1, . . . , nk) ∈ Zk such
that

cn1
1 · · · cnk

k = 1.
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Implementation Note 2.2.1. Let K := Q(n1, . . . , nr) be a field of rational functions
and let (F, σ) with F := K(t1, . . . , tl) be a ΠΣ-field over the constant field K canonically
defined by

σ(ti) = αi ti + βi, αi ∈ K(t1, . . . , ti−1)∗, βi ∈ K(t1, . . . , ti−1)

for 1 ≤ i ≤ l. Let α, β ∈ F. Then the function call

CheckSigmaExtension[{tl+1, αl+1, βl+1}, {{t1, α1, β1}, . . . , {tl, αl, βl}}]

checks if one can construct a Σ-extension (F(tl+1), σ) canonically defined by

σ(tl+1) = αl+1 tl+1 + βl+1.

In particular in this function call Corollary 2.2.3 is applied and one checks if

1. there does not exist a g ∈ F with

σ(g)− αl+1 g = βl+1

and

2. for all n ∈ Z∗ we have
αn

l+1 ∈ H(F,σ) ⇒ αl+1 ∈ H(F,σ).

Similarly the function call

CheckPiExtension[{tl+1, αl+1, 0}, {{t1, α1, β1}, . . . , {tl, αl, βl}}]

checks if one can construct a Π-extension (F(tl+1), σ) canonically defined by

σ(tl+1) = αl+1 tl+1.

In particular in this function call Corollary 2.2.2 is applied and one checks if there does
not exist an n > 0 such that

αn
l+1 ∈ H(F,σ).
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2.2.6 The Period in a ΠΣ-Extension

Definition 2.2.11. Let (E, σ) be a difference field extension of (F, σ). The period of f ∈ E∗
is defined by

per(F,σ)(f) :=

{
0 if ∀p > 0 : σp(f)

f /∈ F
min {p > 0 |σp(f)/f ∈ F} otherwise.

♦

Remark 2.2.6. Let (F, σ) be a difference field. We have

∀f ∈ F∗ : per(F,σ)(f) = 1.

♦

Example 2.2.8. Consider the Σ-extension (Q(n), σ) of (Q, σ) canonically defined by

σ(n) = n + 1.

Since for all f ∈ Q(n) \Q we have

∀p > 0 :
σp(f)

f
/∈ Q,

it follows that
∀f ∈ Q(n) : per(Q,σ)(f) = 0.

♦

Example 2.2.9. Consider the Π-extension (Q(t), σ) of (Q, σ) canonically defined by

σ(t) = 2 t.

We have for all i ∈ Z
σ(ti)

ti
= 2i ∈ Q

and consequently
∀i ∈ Z : per(Q,σ)(t

i) = 1.

♦

The main goal of this chapter is to prove Theorem 2.2.4 which states that all elements in
a difference field have either period 0 or 1, and characterizes the elements which have period
0 or 1. This Theorem is included in [Kar81, Theorem 4] and is essentially the same as [Kar85,
Lemma 3.2]. I chose the proof given in [Bro00] which is quite a simplified version of Karr’s
proof.

Definition 2.2.12. Let (A, σ) be a difference ring. The σ-factorial of f ∈ A is defined by

(f)k :=
k−1∏
i=0

σi(f)

for k ∈ Z. ♦
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Lemma 2.2.3. Let (F(t)), σ) be a difference field extension of (F, σ) and let p ∈ F[t] \F such
that

σn(p)
p

∈ F

for some n > 0. Then for g := (p)n we have

σ(g)
g

∈ F.

Proof. We have

σ(g)
g

=
∏n−1

i=0 σi+1(p)∏n−1
i=0 σi(p)

=
∏n−1

i=0 σi(p)∏n−1
i=0 σi(p)

σn(p)
p

=
σn(p)

p
∈ F.

The following Lemma and its proof is essentially the same as in [Bro00, Corollary 1].

Lemma 2.2.4. Let (F(t), σ) be a Σ-extension of (F, σ). Then for all f ∈ F[t] \ F we have

per(F,σ)(f) = 0

and {
f ∈ F[t]∗ |per(F,σ)(f) = 1

}
= F∗.

Proof. Assume there is an f ∈ F[t] \ F with per(F,σ)(f) > 0, i.e.

σp(f)
f

∈ F

where p > 0 is minimal. Then by Lemma 2.2.3 it follows that

σ((f)p)
(f)p

∈ F.

By Theorem 2.2.1 it follows that (F(t), σ) is a homogeneous extension of (F, σ) which is a
contradiction. The statement{

f ∈ F[t]∗ |per(F,σ)(f) = 1
}

= F∗

follows immediately by Remark 2.2.6.

The following Lemma and its proof is essentially the same as in [Bro00, Corollary 2].

Lemma 2.2.5. Let (F(t), σ) be a Π-extension of (F, σ). Then for all f ∈ F[t]∗ we have

per(F,σ)(f) ∈ {0, 1}

and {
f ∈ F[t]∗ |per(F,σ)(f) = 1

}
= {h tm |h ∈ F∗ & m ≥ 0}.
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Proof. Assume there is an f ∈ F[t] \ F with per(F,σ)(f) = 1, i.e.

σ(f)
f

∈ F.

For g := f/lc(f) we get
σ(g)

g
=

σ(f)
f

lc(f)
σ(lc(f))

and thus σ(g)
g ∈ F. Now let

g = tm +
m−1∑
i=0

gi t
i

where gi ∈ F and consider

σ(g) = αm tm +
m−1∑
i=0

σ(gi) αi ti = u g

where u ∈ F∗. Then by matching coefficients we obtain

u = αm

and, by using this information,
σ(gi) αi = αm gi

for all 0 ≤ i < m. As (F(t), σ) is a Π-extension, there does not exist an h ∈ F∗ with

σ(h)
h

= αi

for any i > 0. Consequently gi = 0 for all 0 ≤ i < m and we get

f = v tm

for some v ∈ F∗. Therefore we have{
f ∈ F[t]∗ |per(F,σ)(f) = 1

}
⊆ {h tm |h ∈ F∗ & m ≥ 0}.

Conversely, we have
σ(v tm)

v tm
=

αm σ(v)
v

∈ F

for any m ≥ 0 and v ∈ F∗ and therefore the sets are equal.
Finally, assume there is an f ∈ F[t] \ F with per(F,σ)(f) = p, i.e.

σp(f)
f

∈ F

with p > 0 minimal. Then by Lemma 2.2.3 we obtain

σ((f)p)
(f)p

∈ F

and thus, from above, we have (f)p = tm v for some m ≥ 0 and v ∈ F. As

f | (f)p = tm v

it follows that
f = tn u

for some n ≥ 0 and u ∈ F∗ and thus per(F,σ)(f) = 1.
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The following theorem contains Lemmas 2.2.4 and 2.2.5 and extends them slightly from
the polynomial case to the rational function case.

Theorem 2.2.4. Let (F(t), σ) be a Σ-extension of (F, σ). Then for all f ∈ F(t) \ F we have

per(F,σ)(f) = 0

and {
f ∈ F(t)∗ |per(F,σ)(f) = 1

}
= F∗.

Let (F(t), σ) be a Π-extension of (F, σ). Then for all f ∈ F(t)∗ we have

per(F,σ)(f) ∈ {0, 1}

and {
f ∈ F(t)∗ |per(F,σ)(f) = 1

}
= {h tm |h ∈ F∗ & m ∈ Z}.

Proof. Let f ∈ F(t)∗ with f = p
q in reduced representation and assume

σn(f)
f

∈ F

for some n ∈ Z. Then
σn(p)
σn(q)

= σn(
p

q
) =

p

q
u

for some u ∈ F. Since gcd(p, q) = gcd(σn(p), σn(q)) = 1, it follows that

σn(p) = p u1,

σn(q) = q u2

for some u1, u2 ∈ F with u = u1/u2. Thus the theorem follows immediately by the Lem-
mas 2.2.4 and 2.2.5.

Corollary 2.2.5. Let (F(t), σ) be a ΠΣ-extension of (F, σ), α ∈ F∗ and g ∈ F(t)∗ with

σ(g)
g

= α.

Then g = w tk where w ∈ F∗ and

k ∈
{
{0} if t is a Σ-extension
Z if t is a Π-extension.

Corollary 2.2.6. Let (F(t1, . . . , tn), σ) be a ΠΣ-extension of (F, σ) where for any Π-extension
with

σ(ti) = αi ti

we have αi ∈ F∗. Let α ∈ F∗ and suppose there is a g ∈ F(t1, . . . , tn)∗ such that

σ(g)
g

= α.

Then g = w tk1
1 · · · tkn

n where w ∈ F∗ and

ki ∈
{
{0} if ti is a Σ-extension
Z if ti is a Π-extension.
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Proof. For n = 0 nothing has to be proven. Now let g ∈ F(t1, . . . , tn)(tn+1) such that

σ(g)
g

= α.

Applying Corollary 2.2.5 we get
g = w t

kn+1

n+1

where w ∈ F(t1, . . . , tn). If tn+1 is a Σ-extension it follows that kn+1 = 0 and thus g ∈
F(t1, . . . , tn). Applying the induction assumption we get the result. If tn+1 is a Π-extension
we have

α =
σ(g)

g
=

σ(w)
w

α
kn+1

n+1

and thus
σ(w)

w
=

α

α
kn+1

n+1

∈ F.

Consequently by the induction assumption we get w = w̃ tk1
1 · · · tkn

n where w̃ ∈ F and ki = 0
if ti is a Σ-extension or ki ∈ Z if ti is a Π-extension.

2.2.7 The Spread in a ΠΣ-extension

The following definition of the spread function will play an essential role in Section 3.5.3 to
bound parts of the denominator of solutions of a given difference equations.

Definition 2.2.13. Let (A[t], σ) be a difference ring with t transcendental over A and a, b ∈
A[t]∗. We define the spread of a and b w.r.t. σ as

spreadσ(a, b) = {m ≥ 0 | deg(gcd(a, σm(b))) > 0}.

♦

Given a ΠΣ-extension (F(t), σ) of (F, σ), the following theorem states when the set
spreadσ(a, b) for a, b ∈ F[t] is finite.

Theorem 2.2.5. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and a, b ∈ F[t]∗. Then spreadσ(a, b)
is an infinite set if and only if (F(t), σ) is a Π-extension of (F, σ) and t | gcd(a, b).

Proof. By [Bro00, Theorem 6] it follows that spreadσ(a, b) is an infinite set if and only if
b has a nontrivial factor p ∈ F[t] \ F with per(F,σ)(p) 6= 0 such that σn(p) | a for some
n ≥ 0. By Theorem 2.2.4 this is possible if and only if (F(t), σ) is a Π-extension of (F, σ) and
t | gcd(a, b).
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2.3 Some Difference Field Isomorphisms in Difference Fields

2.3.1 The Summand Isomorphism for Proper Sum Extensions

Lemma 2.3.1. Let (F(s), σ) and (F(t), σ) be difference field extensions of (F, σ) with

σ(s) = s + β,

σ(t) = t + β + σ(g)− g

for some β, g ∈ F. Then

(F(s), σ) is a proper sum extension of (F, σ)

m

(F(t), σ) is a proper sum extension of (F, σ).

Proof. We have
(F(s), σ) is not a proper sum extension of (F, σ)

m Cor. 2.2.4

∃f ∈ F : σ(f)− f = β

m

∃h ∈ F : σ(h− g)− (h− g) = β

m

∃h ∈ F : σ(h)− (h) = β + σ(g)− g

m Cor. 2.2.4

(F(t), σ) is not a proper sum extension of (F, σ).

Proposition 2.3.1. Let (F(s), σ) and (F(t), σ) be sum extensions of (F, σ) with

σ(s) = s + β,

σ(t) = t + β + σ(g)− g

for some g, β ∈ F. If (F(s), σ) is a proper sum extension of (F, σ) then also (F(t), σ) is a
proper sum extension of (F, σ) and

(F(s), σ)'(F(t), σ).

Proof. By Lemma 2.3.1 it follows immediately that (F(t), σ) is a proper sum extension of
(F, σ). Therefore s and t are transcendental over F and consequently

τ̃ : F(s) → F(t)

canonically defined by

τ̃(s) = t− g,

τ̃(z) = τ(z) ∀z ∈ F



2.3. SOME DIFFERENCE FIELD ISOMORPHISMS IN DIFFERENCE FIELDS 79

is a field isomorphism. Furthermore we have

τσ(s) = τ(s + β) = t− g + β,

στ(s) = σ(t− g) = t + β + σ(g)− g − σ(g) = t− g + β

and thus
τσ = στ.

Consequently τ is a difference field isomorphism.

2.3.2 The Indefinite Summation Isomorphism

The following proposition needs Corollary 4.1.2 which is one of the consequences of Chapter 3.
Due to the completeness of this section I already state here the proposition.

Proposition 2.3.2. Let (F(s), σ) be a proper sum extension of (F, σ) and (F(t), σ) be a sum
extension of (F, σ). Assume there is a g ∈ F(s) \ F such that

σ(g)− g = σ(t)− t.

Then (F(t), σ) is a proper sum extension of (F, σ) and

(F(s), σ)'(F(t), σ).

Proof. Let
σ(g)− g = σ(t)− t =: β ∈ F.

By Corollary 4.1.2, which arises naturally but in an other context, there are a c ∈ constσF
and a w ∈ F such that

g = c s + w.

Since s is transcendental over F, also g is transcendental over F and therefore τ : F(t) → F(g)
canonically defined by

τ(t) = g

is a field isomorphism. We have

τσ(t) = τ(t + β) = g + β,

στ(t) = σ(g) = g + β

and thus τ is a difference field isomorphism. Since F(g) = F(s), the proposition follows.

2.3.3 A Recursively Induced Isomorphism for ΠΣ-Fields

Lemma 2.3.2. Let (F, σ) and (G, σ) be difference fields with

(F, σ)
τ' (G, σ).

Let (F(x), σ) and (G(y), σ) be difference field extensions of (F, σ) and (G, σ) with

σ(x) = α x + β,

σ(y) = τ(α) y + τ(β).

Then
(F(x), σ) is a ΠΣ-extension of (F, σ)

m
(G(y), σ) is a ΠΣ-extension of (G, σ).
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Proof. Let a ∈ F and n ∈ Z. We have

αn ∈ H(F,σ) ⇔ ∃g ∈ F :
σ(g)

g
= αn

⇔ ∃g ∈ F : σ(g)− αn g = 0
Cor. 2.1.1⇔ ∃g ∈ G : σ(g)− τ(αn) g = 0

⇔ ∃g ∈ G :
σ(g)

g
= τ(α)n

⇔ τ(α)n ∈ H(G,σ).

Therefore looking at Corollaries 2.2.2 and 2.2.3 it follows immediately that (F(x), σ) is a
ΠΣ-extension of (F, σ) if and only if (G(y), σ) is a ΠΣ-extension of (G, σ).

Proposition 2.3.3. Let (F, σ) and (G, σ) be difference fields with

(F, σ)
τ' (G, σ).

Let (F(x), σ) and (G(y), σ) be difference field extensions of (F, σ) and (G, σ) with

σ(x) = α x + β,

σ(y) = τ(α) y + τ(β).

If (F(x), σ) is a ΠΣ-extension of (F, σ) then also (G(y), σ) is a ΠΣ-extension of (G, σ) and

(F(x), σ)'(G(y), σ).

Proof. By Lemma 2.3.2, (F(x), σ) and (G(y), σ) are ΠΣ-extensions of (F, σ) and (G, σ) and
therefore x is transcendental over F and y is transcendental over G. Thus

τ̃ : F(x) → G(y)

canonically defined by

τ̃(x) = y,

τ̃(z) = τ(z) ∀z ∈ F

is a field isomorphism. Additionally we have

τ̃(σ(x)) = τ̃(α x + β) = τ(α) y + τ(β),
σ(τ̃(x)) = σ(y) = τ(α) y + τ(β)

and thus
τ̃σ = στ̃ .

Consequently

(F(x), σ)
τ̃' (G(y), σ).
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2.4 Construction of Difference Rings and Fields

2.4.1 Some Simple Constructions of Difference Fields

The following lemma restates what was already described in Example 2.1.7.

Lemma 2.4.1. Let (F, σ) be a difference field, t be transcendental over F and α ∈ F∗, β ∈ F.
Then there exists a difference field extension (F(t), σ) of (F, σ) canonically defined by

σ(t) = α t + β.

Lemma 2.4.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) canonically defined by σ(t) = α t+β
(α ∈ F∗, β ∈ F) and assume

(F, σ)
τ' (G, σ̃)

for some difference field (G, σ̃). Then there is a ΠΣ-extension (G(x), σ̃) canonically defined
by σ̃(x) = τ(α) x + τ(β) and

(F(t), σ)
τ' (G(x), σ̃).

Proof. Let x be transcendental over G. Then by Lemma 2.4.1 there is a difference field
extension (G(x), σ̃) of (F, σ) canonically defined by

σ̃(x) = τ(α) x + τ(β).

The lemma follows immediately by Proposition 2.3.3.

2.4.2 Construction of Sum Extensions without Changing the Constant
Field

Proposition 2.4.1. Let (F, σ) be a difference field with constant field K and β ∈ F. If there
does not exist a g ∈ F with

σ(g)− g = β

then there is - up to a difference field isomorphism - a unique difference field extension
(F(t), σ) of (F, σ) canonically defined by

σ(t) = t + β.

Moreover, (F(t), σ) is a proper sum extension of (F, σ) and constσF(t) = K.

Proof. By Lemma 2.4.1 we can construct a difference field extension (F(t), σ) of (F, σ) where
t is transcendental over F and

σ(t) = t + β.

Since there does not exist a g ∈ F such that

σ(g)− g = β,

(F(t), σ) is a proper sum extension of (F, σ) by Corollary 2.2.4 and therefore constσF(t) =
constσF. If there exists an other difference field extension (F(x), σ) of (F, σ) with σ(x) = x+β
then by Proposition 2.3.3 they are isomorphic.
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Corollary 2.4.1. Let (F, σ) be a difference field with constant field K and β ∈ F. Then there
is - up to a difference field isomorphism - a unique difference field extension (F(t), σ) of (F, σ)
with

σ(t) = t + β

and constσF(t) = K.

Proof. If there does not exist a g ∈ F with

σ(g) = g + β

then the corollary follows by Proposition 2.4.1. Otherwise, if there exists such a g ∈ F then
clearly for t := g we have (F(t), σ) = (F, σ) and constσF(t) = K. If there exists an other
difference field extension (F(x), σ) of (F, σ) with σ(x) = x + β and constσF(x) = K then

σ(t− x) = (t− x)

and therefore t− x ∈ K. Thus F(x) = F = F(t).

2.4.3 Construction of Product Extensions without Changing the Constant
Field

Proposition 2.4.2. Let (F, σ) be a difference field and α ∈ F∗. Assume there does not exist
an n > 0 such that

αn ∈ H(F,σ).

Then there is - up to a difference field isomorphism - a unique difference field extension
(F(t), σ) with

σ(t) = α t.

Moreover, (F(t), σ) is a Π-extension of (F, σ) and constσF(t) = K.

Proof. By Lemma 2.4.1 we can construct a difference field extension (F(t), σ) of (F, σ) where
t is transcendental over F and

σ(t) = α t.

If there does not exist an n > 0 with αn ∈ H(F,σ) then by Corollary 2.2.2 it follows that
(F(t), σ) is a Π-extension of (F, σ). Assume there is an other difference field extension of
(F(x), σ) with σ(x) = α x then by Proposition 2.3.3 they are isomorphic.

Corollary 2.4.2. Let (F, σ) be a difference field and α ∈ F∗. Assume there does not exist an
n > 1 such that

αn ∈ H(F,σ).

Then there is - up to a difference field isomorphism - a unique difference field extension
(F(t), σ) with

σ(t) = α t

and constσF(t) = K.
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Proof. If there does not exist an n ≥ 0 with αn ∈ H(F,σ) then the corollary follows by
Proposition 2.4.2. If α ∈ H(F,σ) then there exists a g ∈ F with

σ(g)
g

= α.

Then for t := g we have (F(t), σ) = (F, σ) and constσF(t) = K. If there exists an other
difference field extension (F(x), σ) of (F, σ) with σ(x) = α x and constσF(x) = K then

σ(
t

x
) =

t

x

and therefore t/x ∈ K. Thus F(x) = F = F(t).

2.4.4 A Proper Sum Representation of a Sum Extension

Proposition 2.4.3. Let (E, σ) be a sum extension of (F, σ) with constσE = constσF. Then
there is a proper sum extension (G, σ) of (F, σ) with

(G, σ)'(E, σ).

Proof. Let (E, σ) with E = F(s1, . . . , sn) be a sum extension of (F, σ). We will do the proof
by induction on the number n of sum extensions. For n = 0 nothing has to be proven.
Now assume that the statement holds for n ≥ 0 sum extensions and let (E(s), σ) with E =
F(s1, . . . , sn) be a sum extension of (E, σ) canonically defined by

σ(s) = s + β

and constσE(s) = constσF. By the induction assumption there is a proper sum extension
(G, σ) of (F, σ) with

(G, σ)
τ' (E, σ).

Assume there is a g ∈ E such that
σ(g)− g = β. (2.5)

Then we obtain
σ(g − s) = g − s

and thus there is a k ∈ constσF with

s = g + k.

Therefore
(E(s), σ) = (E, σ)'(G, σ).

Now suppose there does not exist such a g ∈ E(s) with (2.5). Then (E(s), σ) is a proper sum
extension of (E, σ). By Lemma 2.4.1 we can construct a difference field extension (G(t), σ)
of (G, σ) with

σ(t) = t + τ(β).

By Proposition 2.3.3 (G(t), σ) is a proper sum extension of (G, σ) with

(E(s), σ)'(G(t), σ).
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2.4.5 Embeddings of Proper Sum Extensions in a Reduced Product-Sum
Extension

Lemma 2.4.3. Let (F(t1)(t2), σ) be a reduced product-sum extension11 of (F, σ). Then it
follows that (F(t2)(t1), σ) is a reduced product-sum extension of (F, σ) and

(F(t1)(t2), σ)'(F(t2)(t1), σ).

Proof. Let (F(t1)(t2), σ) be a reduced product-sum extension of (F, σ). Since (F(t2), σ) is
a sub-difference field of (F(t1)(t2), σ), it follows immediately that (F(t2), σ) is a reduced
product-sum extension of (F, σ). Since F(t1, t2) is the field of rational functions with co-
efficients in F, t1 is transcendental over F(t2) and therefore (F(t2)(t1), σ) is a product-sum
extension of (F, σ). Since additionally we have

constσF(t1)(t2) = constσF(t2)(t1)

it follows immediately that (F(t2)(t1), σ) is first order linear and thus a reduced product-sum
extension of (F(t1), σ). Additionally, there is the following trivial difference field isomorphism
τ : F(t1)(t2) → F(t2)(t1) canonically defined by

τ(t1) = t1, τ(t2) = t2.

Proposition 2.4.4. Let (F(t1, . . . , tn), σ) be a reduced product-sum extension of (F, σ) and
(F(t1, . . . , tn)(x), σ) be a proper sum extension of (F(t1, . . . , tn), σ). Then (F(x)(t1, . . . , tn), σ)
is a reduced product-sum extension of (F, σ) and

(F(x)(t1, . . . , tn), σ)'(F(t1, . . . , tn)(x), σ).

Proof. We will prove the theorem by induction on n. Clearly the induction base n = 0 holds.
Let (F(t1, . . . , tn+1)(x), σ) be a proper sum extension of (F(t1, . . . , tn+1), σ) being a reduced
product-sum extension of (F, σ). By Lemma 2.4.3 it follows that (F(t1, . . . , tn)(x)(tn+1), σ)
is a reduced product-sum extension of (F, σ) and

(F(t1, . . . , tn)(tn+1)(x), σ)'(F(t1, . . . , tn)(x)(tn+1), σ).

By the induction hypothesis we may assume that (F(x)(t1, . . . , tn), σ) is a reduced product-
sum extension of (F, σ) and

(F(x)(t1, . . . , tn), σ)'(F(t1, . . . , tn)(x), σ).

Thus by Proposition 2.3.3 and the fact that (F(t1, . . . , tn)(x)(tn+1), σ) is a reduced product-
sum extension of (F, σ) we conclude that (F(x)(t1, . . . , tn)(tn+1), σ) is a reduced product sum
extension of (F, σ) and

(F(x)(t1, . . . , tn)(tn+1), σ)'(F(t1, . . . , tn)(x)(tn+1), σ).

Finally, we get that (F(x)(t1, . . . , tn+1), σ) is a reduced product-sum extension of (F, σ) and

(F(x)(t1, . . . , tn+1), σ)'(F(t1, . . . , tn+1)(x), σ).

11See Definition 2.2.10 on page 71.
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Proposition 2.4.5. Let (F(x), σ) be a proper sum extension of (F, σ) and (F(x)(t1, . . . , tn), σ)
be a reduced product-sum extension of (F(x), σ). Then (F(t1, . . . , tn)(x), σ) is a reduced
product-sum extension of (F, σ) and

(F(x)(t1, . . . , tn), σ)'(F(t1, . . . , tn)(x), σ).

Proof. The proof is similar to the proof of Proposition 2.4.4.

Corollary 2.4.3. Let (E, σ) be a reduced d’Alembertian extension12 of (F, σ). Then there is
a reduced d’Alembertian extension (F(h1, . . . , hm)(s1, . . . , sn), σ) of (F, σ) in which

1. hi is hyperexponential over F(h1, . . . , hi−1) for 1 ≤ i ≤ m

2. and si is a sum over F(h1, . . . , hm)(s1, . . . , si−1) for 1 ≤ i ≤ n

such that

(E, σ)'(F(h1, . . . , hm)(s1, . . . , sn), σ)

Proof. Let (E, σ) with E = F(t1, . . . , tl) be a reduced d’Alembertian extension of (F, σ).
We will prove the corollary by induction on the number of extensions ti. For the case l = 0
nothing has to be proven. By the induction assumption there exists a difference field extension
F(h1, . . . , hk)(s1, . . . , sl−k) of (F, σ) as stated above with

(E, σ)
τ' (F(h1, . . . , hk)(s1, . . . , sl−k)︸ ︷︷ ︸

=:G

, σ).

Let (E(tl+1), σ) be a ΠΣ-extension of (E, σ) where tl+1 is hyperexponential over F or a
sum over E with

σ(tl+1) = α tl+1 + β.

By Lemma 2.4.1 we construct a difference field extension (G(x), σ) of (G, σ) with

σ(x) = τ(α) x + τ(β).

Then by Proposition 2.3.3 (G(x), σ) is a ΠΣ-extension of (F, σ) and

(E(t), σ)'(G(x), σ).

If tl+1 is a sum over E, x is also a sum over F and thus the induction hypothesis is proven.
Otherwise x is hyperexponential over G. Then by Proposition 2.4.4 it follows that

(F(h1, . . . , hk)(s1, . . . , sl−k)(x), σ)'(F(h1, . . . , hk)(x)(s1, . . . , sl−k), σ)

and consequently the induction hypothesis is proven.

12See Definition 2.2.10 on page 71.
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2.4.6 Changing the Order of Sum Extensions

Corollary 2.4.4. Let (F, σ) and (G, σ) be difference fields with

(F, σ)
τ' (G, σ)

and constant field K. Let (F(x), σ) and (G(y), σ) be difference field extensions of (F, σ) and
(G, σ) with

σ(x) = x + β,

σ(y) = y + τ(β)

and constσF(x) = constσG(y) = K. Then

(F(x), σ)'(G(y), σ).

Proof. If (F(x), σ) is a proper sum-extension then the corollary follows by Proposition 2.3.3.
Otherwise, (F(x), σ) is not a proper sum-extension of (F, σ). By Corollary 2.2.4 there is a
g ∈ F such that

σ(g)− g = β,

σ(τ(g))− τ(g) = τ(β).

Consequently g − x, τ(g)− y ∈ K and thus

x = g + k,

y = τ(g) + k′

for some k, k′ ∈ K. By τ(x) = τ(g) + k′ we finally get

τ(x) = y + k′′

for some k′′ ∈ K which provides the desired isomorphism.

Lemma 2.4.4. Let (F(s)(t), σ) be a difference field extension of (F, σ) where s, t are sums
over F and constσF(s)(t) = constσF. Then (F(t)(s), σ) is a difference field extension of (F, σ)
with constσF(s)(t) = constσF and

(F(s)(t), σ)'(F(t)(s), σ).

Proof. Let (F(s)(t), σ) be a difference field extension of (F, σ) where constσF(s)(t) = constσF
and σ(s) = s + β, σ(t) = t + γ with β, γ ∈ F.

If (F(s), σ) is not a proper sum extension of (F, σ) then there is a g ∈ F with

σ(g)− g = β

and thus g − s ∈ K. Consequently s ∈ F and therefore

(F(s)(t), σ) = (F(t), σ) = (F(t)(s), σ).

Now assume, (F(s), σ) is a proper sum extension of (F, σ). If also (F(s)(t), σ) is a proper
sum extension of (F(s), σ) then the lemma follows by Lemma 2.4.3. Otherwise, assume that
(F(s)(t), σ) is not a proper sum extension of (F(s), σ). Then there is a g ∈ F(s) with

σ(g)− g = γ
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and thus
g − t ∈ K. (2.6)

If g ∈ F then t ∈ F and thus

(F(s)(t), σ) = (F(s), σ) = (F(t)(s), σ).

Otherwise assume g ∈ F(s) \ F. Since (F(t), σ) is a sub-difference field of (F(s)(t), σ) and
g ∈ F(s) \ F, by Proposition 2.3.2, (F(t), σ) is a proper sum extension of (F, σ) with

(F(s), σ)'(F(t), σ).

Furthermore (F(t)(s), σ) cannot be a proper sum extension of (F(s), σ), since otherwise also
(F(s)(t), σ) is a proper sum extension of (F, σ) by Lemma 2.4.3. Consequently there is a
g ∈ F(t) with

σ(g)− g = β,

therefore g − s ∈ K and thus s ∈ F(t). By (2.6) we have t ∈ F(s) and thus

(F(s)(t), σ) = (F(s), σ)'(F(t), σ) = (F(t)(s), σ).

Proposition 2.4.6. Let (F(t1, . . . , tn)(s), σ) be a sum extension of (F, σ) where the constant
field is not extended. Then (F(s)(t1, . . . , tn), σ) is a sum extension of (F, σ) and

(F(t1, . . . , tn)(s), σ)'(F(s)(t1, . . . , tn), σ).

Proof. The theorem follows by induction on the number of extensions using Corollary 2.4.4
and Lemma 2.4.4. (See the proof of Proposition 2.4.4.)
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2.4.7 Construction of Difference Rings of Fractions

Let A be a ring and M be a multiplicative subset of A - a multiplicative monoid. Then we
can construct the ring of fractions13 of A by M as follows. We define a relation

(a,m) ∼ (a′,m′)

on the product set A×M , by the condition that there exists an element s ∈ M such that

(am′ −m a′) s = 0. (2.7)

Then one can check that the relation is an equivalence relation; the equivalence class con-
taining (a,m) is denoted by a

m . We can define addition and multiplication by the rules

a

m
+

a

m′ =
am′ + m a′

m m′ ,
a

m

a′

m′ =
a a′

m m′ . (2.8)

One can verify that these operations are well defined and that the set Q(A,M) of all equiv-
alence classes forms a ring under the operations (2.8), with 0

1 as zero and 1
1 as unit element.

The natural mapping λ : A → Q(A,M) given by

λ : x 7→ x

1

is a ring homomorphism. Furthermore λ maps all elements of M to units in Q(A,M), since

s

1
1
s

= 1.

In the following we will assume that M consists only of units in A. Then condition (2.7)
simplifies to

(a,m) ∼ (a′,m′) ⇔ am′ −m a′ = 0.

Additionally, λ is a ring monomorphism and therefore an embedding of A into the ring
Q(A,M). In this sense, we see Q(A,M) as a ring extension of A.

Furthermore, if A is an integral domain, Q(A, A∗) is nothing else as the quotient field
Q(A).

Lemma 2.4.5. Let (A, σ) be a difference ring, let M ⊆ A be a multiplicative monoid con-
sisting only of units in A, and let σ : M → M restricted on M be a monoid automorphism.
If Q(A,M) denotes the ring of fractions A by M then there is a unique ring automorphism
τ : Q(A,M) → Q(A,M) such that (Q(A,M), τ) is a difference ring extension of (A, σ).

Proof. Consider the map τ : Q(A,M) → Q(A,M) defined by

τ(
a

b
) =

σ(a)
σ(b)

for a ∈ A, b ∈ M . Since σ(a) ∈ A and σ(b) ∈ M , the map is well defined and one can easily
check that τ is a ring automorphism. Therefore (Q(A,M), τ) is a difference ring extension of
(A, σ). Now let λ : Q(A,M) → Q(A,M) be any ring automorphism with λ(r) = σ(r) for all
r ∈ A and let f = a

b with a ∈ A, b ∈ M . Then

λ(f) σ(b) = λ(f) λ(b) = λ(f b) = λ(
a

b
b) = λ(a

b

b
) = λ(a) = σ(a)

13See for instance [Lan97, Part I, Chapter 2, Localization 2] or [Coh89, 9.3 Localization].
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and since σ(b) ∈ M we have

λ(f) = λ(f)
σ(b)
σ(b)

= λ(f) σ(b)
1

σ(b)
= σ(a)

1
σ(b)

=
σ(a)
σ(b)

.

Consequently

λ(f) =
σ(a)
σ(b)

and thus λ = τ .

Let A be a ring, D ⊆ A be an integral domain, Q(D) the quotient field of D and Q(D)[x]
the corresponding polynomial ring, x transcendental over Q(D). Let r ∈ A such that D∗ is a
subset of the units in D[r]. Then clearly

h :
{

D[x] → A∑n
i=0 fi x

i 7→
∑n

i=0 fi r
i

is a ring homomorphism. This motivates the notation

D[r] := h(D[x])

as

h(D[x]) =

{
n∑

i=0

fi r
i | fi ∈ D, n ≥ 0

}
.

Now consider the ring of fractions Q(D[r], D∗) with the multiplicative monoid D∗. Since
D∗ is contained in the set of all units in D[r], by Lemma 2.4.5 Q(D[r], D∗) is a ring extension
of D[r]. An element of this ring can be described by∑n

i=0 fi r
i

d
=

n∑
i=0

fi r
i

d

where fi ∈ D, d ∈ D∗. By the notation

f

d
r :=

f r

d

we can represent the elements by
n∑

i=0

fi

di
ri

where fi ∈ D, di ∈ D∗. Finally, this motivates the notation

Q(D)[r] := Q(D[r], D∗).

Besides the fact that Q(D)[r] is a ring extension of D[r] one can see Q(D)[r] also as a ring
extension of Q(D).

Proposition 2.4.7. Let (A, σ) be a difference ring extension of (D, σ) where D is an integral
domain. Let r ∈ A be such that D∗ is contained in the set of all units of D[r]. Then
(Q(D)[r], σ) is a difference ring extension of (D[r], σ). Furthermore (Q(D)[r], σ) is a difference
ring extension of (Q(D), σ).
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2.4.8 Lifting of Difference Ring Extensions to ΠΣ-Fields

Let F[t] be a polynomial ring with coefficients in the field F, i.e. t is transcendental over the
field F. Let I be a ideal of F[t] and consider the set of cosets

S := {h + I |h ∈ F[t]}

where we define the cosets by

h + I := {h + p | p ∈ F[t]}.

Then we can define multiplication and addition by the rules

(h1 + I) (h2 + I) = h1 h2 + I, (h1 + I) + (h2 + I) = (h1 + h2) + I. (2.9)

One can verify that these operations are well defined and that the set of cosets S forms a
ring under the operations (2.9) with 0 + I as zero and 1 + I as unit element. This ring is
called factor ring modulo the ideal I and is denoted by F[t]/I.

Lemma 2.4.6. Let F[t] be the polynomial ring with coefficients in the field F, g ∈ F[t] and
R := F[t]/I be the factor ring modulo the ideal I := 〈g〉. Let r ∈ R∗. Then there is a u ∈ F[t]∗

with g - u and
r = u + I.

Furthermore r is a zero divisor in R if and only if

gcd(u, g)F[t] 6= 1.

Proof. Since r ∈ R∗, it follows that r 6= 0+ I which means that there is a u ∈ F[t]∗ such that

r = u + I

with g - u and consequently the first statement of the lemma is proven. Furthermore we have

r is a zero divisor ⇔ ∃s ∈ R∗ : r s = 0
⇔ ∃v ∈ F[t]∗ : g - v & g | u v

⇔ gcd(u, g) 6= 1.

The first equivalence follows by the first statement of the lemma. Let us consider the second
equivalence. Assume g - v, g | u v and gcd(u, g) = 1. Then it follows that g | v by g | u v and
gcd(u, g) = 1, a contradiction. Conversely, assume gcd(u, g) 6= 1. Then take

v :=
g

gcd(u, g)
∈ F[t]∗.

Since gcd(u, g) 6= 1, it follows that deg(v) < deg(g) and therefore g - v. Additionally, we have

u v = u
g

gcd(u, g)
=

u

gcd(u, g)
g.

As u
gcd(u,g) ∈ F[t], it follows that g | u v; therefore the second equivalence and thus the second

statement of the lemma is proven.
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Lemma 2.4.7. Let (F[x], σ) be a difference ring and let F[t] be a ring for which there is a
ring isomorphism τ : F[x] → F[t]. Then

σ′ :
{

F[t] → F[t]
f 7→ τ(σ(τ−1(f)))

is a ring isomorphism. Furthermore we have

(F[x], σ)
τ' (F[t], σ′).

Proof. Since σ and τ are ring isomorphisms, it follows immediately that σ′ is a ring isomor-
phism. Additionally we have

σ′(τ(f)) = τ(σ(τ(τ−1(f)))) = τ(σ(f))

for all f ∈ F[x] and therefore τ is a difference ring isomorphism.

Proposition 2.4.8. Let (F(t), σ) be a ΠΣ-extension of (F, σ) canonically defined by

σ(t) = α t + β

where α ∈ F∗ and β ∈ F. Furthermore, let (F[x], σ) be a difference ring extension of (F, σ)
canonically defined by

σ(x) = α x + β

where x is not a zero divisor in case of β = 0. Then F[x] is an integral domain.

Proof. Assume F[x] has zero divisors. As (F(t), σ) is a ΠΣ-extension, it follows that t is
transcendental over F. Then clearly,

φ :
{

F[t] → F[x]∑n
i=0 fi t

i 7→
∑n

i=0 fi x
i

is a surjective ring homomorphism14 and therefore φ is a difference ring epimorphism. Fur-
thermore there is an isomorphism between F[x] and the factor ring F[t]/ ker φ, i.e.

F[t]/ ker φ
τ' F[x].

Additionally, we have that the following diagram

F[t]
φ

- F[x]

@
@

@
@

@

π

R

F[t]/ ker φ

τ

?

commutes for

π :
{

F[t] → F[t]/ ker φ
f 7→ f + ker φ.

14φ is also called evaluation homomorphism [Lan97].



92 CHAPTER 2. DIFFERENCE FIELDS

By Lemma 2.4.7 there is a difference ring extension (F[t]/ ker φ, σ) of (F, σ) such that τ is a
difference ring isomorphism, i.e.

(F[t]/ ker φ, σ)
τ' (F[x], σ)

As φ is a difference ring epimorphism,

ρ :
{

F[t] → F[t]/ ker φ
f 7→ φ(τ(f))

is a difference ring epimorphism and since the above diagram commutes it follows by ρ = π
that π is a difference ring epimorphism from (F[t], σ) onto (F[t]/ ker φ, σ).

As F[t] is a principle ideal domain, there is a g ∈ F[t] with

ker φ = 〈g〉.

If g is irreducible then F[t]/〈g〉 is a field and therefore also F[x] is a field which contradicts
to the assumption that F[x] has zero divisors. If g is reducible, we may write g = p q with
p, q,∈ F[t] \ F and p is irreducible. We have

0 + 〈g〉 = π(g) = π(p q) = π(p) π(q)

and thus
0 + 〈g〉 = σi(π(p) π(q)) = π(σi(p))π(σi(q)) (2.10)

for all i ∈ Z. As deg(σi(p)),deg(σi(q)) < deg(g), it follows that

π(σi(p)) 6= 0 + 〈g〉 6= π(σi(q))).

For any h ∈ F[t]∗ with deg(h) < deg(p) it follows by Lemma 2.4.6 that

π(h) is a zero divisor ⇔ gcd(h, g) 6= 1.

Hence it follows by (2.10) that

∀i ∈ Z : gcd(σi(p), g) 6= 1. (2.11)

Therefore spreadσ(g, p) is an infinite set and thus by Theorem 2.2.5 (F(t), σ) must be a
Π-extension of (F, σ) and t | gcd(p, g). Consequently

p = u t

for some u ∈ F and thus π(t) and therefore also φ(t) = x must be a zero divisor, a con-
tradiction. Consequently F[x] cannot have any zero divisors and is therefore an integral
domain.

Corollary 2.4.5. Let (F(t), σ) be a ΠΣ-extension of (F, σ) canonically defined by

σ(t) = α t + β

for some α ∈ F∗, β ∈ F and constσF = K. Furthermore, let (F[x], σ) be a difference ring
extension of (F, σ) canonically defined by

σ(x) = α x + β

where x is not a zero divisor in case of β = 0. Then F[x] is an integral domain. Furthermore
there is a uniquely defined difference ring extension (Q(F[x]), σ) = (F(x), σ) of (F[x], σ).
(F(x), σ) is a ΠΣ-extension of (F, σ) and

(F(t), σ)'(F(x), σ).
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Proof. By Proposition 2.4.8 it follows that F[x] is an integral domain. Thus we can build the
field of fractions F(x) and get by Lemma 2.4.5 the uniquely defined difference ring extension
(F(x), σ) of (F[x], σ). Furthermore (F(x), σ) is a difference field extension of (F, σ). If (F(t), σ)
is a Σ-extension of (F, σ), the corollary follows by Proposition 2.3.3. If (F(t), σ) is a Π-
extension then there does not exist an n > 0 with

αn ∈ H(F,σ)

and thus (F(x), σ) is a Π-extension of (F, σ). Clearly, τ : F(t) → F(x) canonically defined by
τ(t) = x is a difference field isomorphism.
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2.5 ΠΣ-Fields and the Ring of Sequences

Let K be a field with characteristic zero. By KN we denote the set of all sequences

(an)∞n=0 = 〈a0, a1, a2, . . . 〉

with ai ∈ K. By component-wise addition and multiplication KN forms a commutative ring
in which the field K can be naturally embedded by identifying k ∈ K with the sequence

〈k, k, k, . . . 〉.

One can define a shift-operation via the following ring epimorphism

S :
{

KN → KN

〈a0, a1, a2, . . . 〉 7→ 〈a1, a2, a3, . . . , 〉

but one can immediately see that S is not a ring automorphism. We define an equivalence
relation on KN where two sequences a and b are equivalent if there exists a δ ≥ 0 such that

∀k ≥ δ : ak = bk.

The equivalence classes form a ring which is denoted by S(K). The elements of S(K) will be
denoted by sequence notation. We can now define a ring epimorphism

S :
{
S(K) → S(K)
〈a0, a1, a2, . . . 〉 7→ 〈a1, a2, a3, . . . , 〉

like for the ring KN but this time S is even a ring monomorphism and thus a ring automor-
phism. Therefore (S(K), S) forms a difference ring.

Definition 2.5.1. The difference ring (S(K), S) introduced above is called the ring of
K-sequences. ♦

The ring of K-sequences (S(K), σ) has zero divisors, so for example a := 〈1, 0, 1, 0, 1, 0, . . . 〉
and b := 〈0, 1, 0, 1, 0, 1, . . . 〉 are not the zero element, but we have

a b = 0 := 〈0, 0, 0, . . . 〉.

If one looks closer at the ring of sequences then one notices that nonzero divisors of S(K) are
exactly those elements a with the property that there exists a δ ≥ 0 with

∀k ≥ δ : ak 6= 0.

On the other side, these are exactly those elements which are invertible, i.e. units.
The following lemma is inspired by [NP97] where P. Paule and I. Nemes introduced an

evaluation map in order to link a difference ring (A, σ) with constant field K with the ring
of K-sequences. I extended this concept by using this evaluation map in order to define a
difference ring homomorphism from the difference ring (A, σ) to the ring of K-sequences.

Lemma 2.5.1. Let (A, σ) be a difference ring with constant field K together with a map
ev : A× N0 → K. The map

h :
{

(A, σ) → (S(K), S)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉
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is a difference ring homomorphism if and only if the map ev has the following properties: for
all f, g ∈ A there exists a δ ≥ 0 such that

∀i ≥ δ : ev(f g, i) = ev(f, i) ev(g, i),
∀i ≥ δ : ev(f + g, i) = ev(f, i) + ev(g, i)

and for all f ∈ A there exists a δ ≥ 0 with

∀i ≥ δ : ev(σ(f), i) = ev(f, i + 1).

Proof. “⇒” Let f, g ∈ A. We have

h(f + g) = h(f) + h(g), h(f g) = h(f) h(g), h(σ(f)) = S(h(f)),

and thus

h(f + g)i = h(f)i + h(g)i, h(f g)i = h(f)i h(g)i, h(σ(f))i = h(f)i+1

for all i ≥ δ for some δ ≥ 0; i.e.

ev(f + g, i) = ev(f, i) + ev(g, i), ev(f g, i) = ev(f, i) ev(g, i), ev(σ(f), i) = ev(f, i + 1).

“⇐” Assume for all f, g ∈ A there exists a δ ≥ 0 such that ev(f + g, i) = ev(f, i) + ev(g, i)
and ev(f g, i) = ev(f, i) ev(g, i) for all i ≥ δ. Then it follows immediately that h is a
ring homomorphism. Now let f ∈ A and let δ ≥ 0 with ev(σ(f), i) = ev(f, i + 1) for all
i ≥ δ. Then h is a difference ring homomorphism, since

h(σ(f)) = 〈ev(σ(f), 0), . . . , ev(σ(f), δ − 1), ev(σ(f), δ), ev(σ(f), δ + 1) . . . 〉
= 〈ev(σ(f), 0), . . . , ev(σ(f), δ − 1), ev(f, δ + 1), ev(f, δ + 2) . . . 〉
= 〈ev(f, 1), . . . , ev(f, δ), ev(f, δ + 1), ev(f, δ + 2) . . . 〉
= S(h(f)).

Here we make use of our convention that 〈. . . 〉 denotes equivalence classes of sequences.

Definition 2.5.2. Let (A, σ) be a difference ring with constant field K together with a map
L : A → N0. The function ev : A× N0 → K is called L-homomorphic if for all f, g ∈ A and
for all i ≥ max(L(f), L(g)) we have

ev(f + g, i) = ev(f, i) + ev(g, i),
ev(f g, i) = ev(f, i) ev(g, i)

and it follows that
ev(σ(f), i) = ev(f, i + 1)

for all i ≥ L(f). ♦

Proposition 2.5.1. Let (A, σ) be a difference ring together with a map L : A → N0. If the
map ev : A× N0 → K is L-homomorphic then

h :
{

(A, σ) → (S(K), S)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

is a difference ring homomorphism.



96 CHAPTER 2. DIFFERENCE FIELDS

Proof. This follows immediately by Lemma 2.5.1.

Example 2.5.1. In this example we will construct a difference ring monomorphism from the
ΠΣ-field (Q(x), σ) canonically defined by

σ(x) = x + 1

into S(Q). We start with the constant difference field (Q, σ). In order to turn

h :
{

Q → S(Q)
q 7→ 〈ev(q, 0), ev(q, 1), . . . 〉

into a difference ring monomorphism we define the L-homomorphic map

ev :
{

Q× N0 → Q
(q, i) 7→ q

where L is defined by

L :
{

Q → N0

q 7→ 0.

Now we extend the function ev from ev : Q× N0 → Q to ev : Q[x]× N0 → Q by defining

ev(
∑

i

pi x
i, k) :=

∑
i

ev(pi, k) ev(x, k)i

and
ev(x, i) := i.

Furthermore one can easily check that ev is an L-homomorphic map where L is extended
from L : Q → N0, as follows, to

L :
{

Q[x] → N0

p 7→ 0.

Then by Proposition 2.5.1 the map

h :
{

Q[x] → S(Q)
p 7→ 〈ev(p, 0), ev(p, 1), . . . 〉

is a difference ring homomorphism. As will be seen later by Theorem 2.5.1, h is even a
difference ring monomorphism.

Finally, we define Z : Q[x] → N0 by

Z(p) := z + 1

where z is the greatest positive integer which is a root of p ∈ Q[x]. If there does not exist
such a root then Z(p) := 0. Clearly, this function is computable. Now we extend the function
L from L : Q[x] → N0 to L : Q(x) → N0 by15

L(f) := Z(den(f))
15If f ∈ Q[x] then den(f) = 1, therefore Z(den(f)) = Z(1) = 0 and thus L(f) = 0 as it was defined for

L : Q[x] → N0.
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and ev from ev : Q[x]× N0 → N0 to ev : Q(x)× N0 → N0 by16

ev(
a

b
, k) :=

{
0 if k < L(a/b)
ev(a,k)
ev(b,k) if k ≥ L(a/b).

Then one can check that ev is an L-homomorphic map and hence by Proposition 2.5.1 the
map

h :
{

Q(x) → S(Q)
p 7→ 〈ev(p, 0), ev(p, 1), . . . 〉

is a difference ring homomorphism. Moreover, one can easily see that h is even a difference
ring monomorphism. ♦

Example 2.5.2. Now consider the Σ-extension (Q(x)(y), σ) of (Q(x), σ) canonically defined
by

σ(y) = y +
1

x + 1
.

Then the function L : Q(x) → N0 from Example 2.5.1 can be extended to L : Q(x)[y] → N0

by

L(
m∑

i=0

pi y
i) := max(L(p0), . . . , L(pm)).

Additionally, ev can be extended from ev : Q(x)× N0 → K to ev : Q(x)[y]× N0 → K by

ev(
d∑

j=0

rj yj

︸ ︷︷ ︸
=f

, k) :=
{

0 if i < L(f)∑d
j=0 ev(rj , k) ev(y, k)j if i ≥ L(f)

and

ev(y, k) =
k∑

i=1

ev(
1
x

, i).

Since ev is an L-homomorphic map, by Proposition 2.5.1 the map

h :
{

Q(x)[y] → S(Q)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

is a difference ring homomorphism. As will be shown later by Theorem 2.5.1, h is even a
difference ring monomorphism. ♦

In the next step one should try to lift this monomorphism to the quotient difference field
(Q(x, h), σ). When we lifted the difference ring monomorphism form Q[x] to Q(x), it was a
crucial step that we could define a function Z which tells us form which index value on a
sequence has nonzero entries. Is it guaranteed that for all elements p ∈ Q(x)[y] there exists
a δ ∈ N0 such that

∀k ≥ δ : ev(p, k) 6= 0?

More precisely, can one always construct a monomorphism from a ΠΣ-field with constant
field K into S(K)? I could not find an answer to this question. The following example
illustrates how I try to deal with this problem.

16For all f ∈ Q[x] we have L(f) = 0 and therefore ev is properly extended.
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Example 2.5.3. Given the difference ring monomorphism h : Q(x)[h] → S(Q), we consider
the multiplicative monoid

M = {f ∈ Q[x, y] |h(f) is a unit in S(Q)}.

As will be shown later by Proposition 2.5.2 (Q(Q(x)[y],M), σ) is a uniquely defined difference
ring extension of (Q(x)[y], σ). Furthermore, for this difference ring (Q(Q(x)[y],M), σ) we can
define a function Z : M → N0 such that for all f ∈ M we have

∀k ≥ Z(f) : ev(f, k) 6= 0.

As we will shown later, we are now able to define a difference ring monomorphism from
(Q(Q(x)[y],M), σ) into S(Q). But please note, that this function Z is in general not con-
structive. ♦

Remark 2.5.1. Let K[t1, . . . , tn] a polynomial ring with coefficients in the field K and let
K(t1, . . . , tn) be the field of rational functions over K, this means K(t1, . . . , tn) is the quotient
field of K[t1, . . . , tn]. Let < be any admissible ordering17 on the monoid [t1, . . . , tn] of power
products ti11 . . . tinn . Then for f ∈ K[t1, . . . , tn] we denote by lc(f) ∈ K the coefficient of the
greatest monomial in f with respect to the admissible ordering <. If f ∈ K(t1, . . . , tn) then
there are uniquely determined f1, f2 ∈ K[t1, . . . , tn] such that

f =
f1

f2

and lc(f2) = 1. In the following we write

num(f) = f1, den(f) = f2

as the numerator and denominator of f .
If we consider the field of rational functions K[t] over K then by convention we choose the

admissible ordering
t0 < t1 < t2 < t3 < . . .

and we obtain for f ∈ F(t) that

f =
num(f)
den(f)

is just the reduced representation introduced in Definition 2.2.2. ♦

Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field with constant field K. In the following we
will consider difference rings (A, σ) = (Q(K[t1, . . . , tn], B), σ) where B is a multiplicative
sub-monoid of K[t1, . . . , tn], together with difference ring extensions (F, σ) of (A, σ).

In this concrete situation we will always have the following properties for the function
L : A → N0 in Definition 2.5.2.

1. For all k ∈ K we have L(k) = 0,

2. for all f, g ∈ A we obtain

L(f g) ≤ max(L(f), L(g)), (2.12)
L(f + g) ≤ max(L(f), L(g)), (2.13)
L(σ(f)) ≤ L(f) (2.14)

and
17See for instance [Win96, Chapter 8.2]
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3. for all for all f, g ∈ K[t1, . . . , tn] it follows that

L(f) ≤ L(f g) = max(L(f), L(g)), (2.15)
L(f) ≤ L(f + g) = max(L(f), L(g)). (2.16)

4. Furthermore for all f ∈ Q(A,M) we have

max(L(num(f)), L(den(d))) ≤ L(f). (2.17)

This motivates the following definition:

Definition 2.5.3. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, B ⊆ K[t1, . . . , tn]∗ a multi-
plicative monoid and (F, σ) be a difference ring extension of (A, σ) = (Q(K[t1, . . . , tn], B), σ).
Let ev : A× N0 → K and L : A → N0 be maps. ev is called homomorphic map bounded by L,
if ev is L-homomorphic and L possesses the properties 1. to 4. from above. ♦

Example 2.5.4. In the Examples 2.5.1 and 2.5.2 we always have that ev is a homomorphic
map bounded by L. ♦

Corollary 2.5.1. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, B ⊆ K[t1, . . . , tn]∗ a multi-
plicative monoid and (F, σ) be a difference ring extension of (A, σ) = (Q(K[t1, . . . , tn], B), σ).
If there exists a homomorphic map ev : A× N0 → K bounded by L : A → N0 then

h :
{

(A, σ) → (S(K), S)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

is a difference ring homomorphism.

Proof. Assume there exists a homomorphic map ev : A× N0 → K bounded by L : A → N0.
Then by definition ev is an L-homomorphic map. But then by Proposition 2.5.1 it follows
immediately that

h :
{

(A, σ) → (S(K), S)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

is a difference ring homomorphism.
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2.5.1 Lifting of Polynomial Extensions

Lemma 2.5.2. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, B ⊆ K[t1, . . . , tn]∗ a multi-
plicative monoid and (F, σ) be a difference ring extension of (A, σ) = (Q(K[t1, . . . , tn], B), σ).
Assume there is a difference ring homomorphism

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A× N0 → K bounded by L : A → N0. Let (F(t), σ) be a Π-
extension of (F, σ) with

σ(t) = α t, α ∈ A∗

and where h(α) is a unit in S(K). Then there are maps ẽv : A[t]× N0 → K and L̃ : A[t] → N0

such that ẽv is a homomorphic map bounded by L̃. If h is even a difference ring monomor-
phism then

〈ev(t, 0), ev(t, 1), . . . 〉 /∈ constSS(K).

Proof. As h(α) is a unit in S(K), there is an ε ≥ L(σ−1(α)) such that

∀i ≥ ε : ev(σ−1(α), i) 6= 0. (2.18)

Let us fix such an ε. We define L̃ : A[t] → N0 by18

L̃(f) :=
{

L(f) if f ∈ A
max(L(r0), . . . , L(rd), ε) if f =

∑d
i=0 ri t

i /∈ A

and ẽv : A[t]× N0 → K by

ẽv(t, k) :=

{
0 if i < L̃(t)(= ε)
c
∏k

j=ε ev(σ−1(α), j) if i ≥ L̃(t)
(2.19)

for some19 c ∈ K∗ and

ẽv(
d∑

j=0

rj tj︸ ︷︷ ︸
=f

, k) :=

{
0 if i < L̃(f)∑d

j=0 ev(rj , k) ẽv(t, k)j if i ≥ L̃(f).

For f =
∑m

j=0 fi t
i, g =

∑m
j=0 gi t

i ∈ A[t] we have

L̃(f + g) = max(L(f0 + g0), . . . , L(fm + gm), ε)
(2.13)

≤ max(L(f0), . . . , L(fm), L(g0), . . . , L(gm), ε)

= max(max(L(f0), . . . , L(fm), ε),max(L(g0), . . . , L(gm), ε)) = max(L̃(f), L̃(g),

L̃(f g) = L̃(
2 m∑
i=0

ti
i∑

j=0

fj gi−j) = max(L(f0 g0), . . . , L(
2 m∑
j=0

fj g2 m−j), ε)

(2.12),(2.13)

≤ max(L(f0), . . . , L(fm), L(g0), . . . , L(gm), ε) = max(L̃(f), L̃(g))

18Note that L̃(t) = ε.
19Please note that the choice of c ∈ K∗ is free. In order to deal later with indefinite summation, it will be

essential to specify an appropriate value for this c with respect to the given summation problem.
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and one can easily see that for all f, g ∈ K[t1, . . . , tn][t] with (2.15) and (2.16) even equality
holds. Furthermore we obtain for f ∈ A[t] as above that

L(σ(f)) = L(
m∑

j=0

σ(fj) αj tj) = max(L(σ(f0)), L(σ(f1) α), . . . , L(σ(fm) αm), ε)

(2.12)

≤ max(L(σ(f0)), . . . , L(σ(fm)), L(α), ε)
(2.14)

≤ max(L(f0), . . . , L(fm), ε) = L(f).

Now let f =
∑m

i=0
fi

di
ti with fi ∈ K[t1, . . . , tn], di ∈ M and gcd(fi, di) = 1. Furthermore let

f = p
d with p ∈ K[t1, . . . , tn], d ∈ M and gcd(p, d) = 1. Then we have d = lcm(d0, . . . , dm)

and there are qi ∈ K[t1, . . . , tn] with qi fi = pi and qi | d. It follows that

max(L(f)) =max(L(f0/d0), . . . , L(fm/dm), ε)
(2.17)

≥ max(L(f0), . . . , L(fm), L(d0), . . . , L(dm), ε)
(2.15)
= max(L(f0), . . . , L(fm), L(q0), . . . , L(qm), L(d), ε)

(2.15)
= max(L(f0 q0), . . . , L(fm qm), L(d), ε)
=max(L(p0), . . . , L(pm), L(d), ε) = max(L(p), L(d)).

By definition we have for all f, g ∈ A[t] and all k ≥ max(L̃(f), L̃(g)) that

ẽv(f g, k) = ẽv(f, k) ẽv(g, k),
ẽv(f + g, k) = ẽv(f, k) + ẽv(g, k).

Since for k ≥ L̃(t) = ε we have

ẽv(t, k + 1) = c

k+1∏
j=ε

ev(σ−1(α), j) = c

 k∏
j=ε

ev(σ−1(α), j)

 ev(σ−1(α), k + 1)

= ẽv(t, k) ev(α, k) = ẽv(α t, k) = ẽv(σ(t)),

it follows with L̃(σ(f)) ≤ L̃(f) that

ev(σ(f), k) = ev(σ(
m∑

j=0

fj tj , k)) = ev(
m∑

j=0

σ(fj)σ(t)j , k) =
m∑

j=0

ev(σ(fj), k) ev(σ(t), k)j

=
m∑

j=0

ev(fj , k + 1) ev(t, k + 1)j = ev(
m∑

j=0

fj tj , k + 1).

Consequently for all f ∈ A[t] we have

∀k ≥ L̃(f) : ev(f, k + 1) = ev(σ(f), k)

and thus ẽv is a homomorphic map bounded by L̃.
Now assume that h is a difference ring monomorphism and that

h(t) ∈ constSS(K),
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i.e. there is a δ ≥ ε such that

∀i ≥ 0 : ẽv(t, δ + i) = ẽv(t, δ + i + 1).

Then

0 = ẽv(t, δ + i + 1)− ẽv(t, δ + i) = ẽv(σ(t)− t, δ + i)
= ẽv((α− 1) t, δ + i) = ẽv(α− 1, δ + i) ẽv(t, δ + i).

As

ẽv(t, δ + i) = c

δ+i∏
j=ε

ev(σ−1(α), j) 6= 0

by (2.18), we must have ẽv(α− 1, δ + i) = 0 and thus

ẽv(α, δ + i) = 1

for all i ≥ 0. Consequently α = 1, a contradiction to the assumption that (F(t), σ) is a
Π-extension of (F, σ).

Lemma 2.5.3. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, B ⊆ K[t1, . . . , tn]∗ a multi-
plicative monoid and (F, σ) be a difference ring extension of (A, σ) = (Q(K[t1, . . . , tn], B), σ).
Assume there is a difference ring monomorphism

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A× N0 → K bounded by L : A → N0. Let (F(t), σ) be a Σ-
extension of (F, σ) with

σ(t) = t + β, β ∈ A.

Then there are maps ẽv : A[t]× N0 → K and L̃ : A[t] → N0 such that ẽv is a homomorphic
map bounded by L̃. If h is even a difference ring monomorphism then

〈ev(t, 0), ev(t, 1), . . . 〉 /∈ constSS(K).

Proof. Let ε := L(σ−1(β)). We define L̃ : A[t] → N0 by20

L̃(f) :=
{

L(f) if f ∈ A
max(L(r0), . . . , L(rd), ε) if f =

∑d
i=0 ri t

i /∈ A

and ẽv : A[t]× N0 → K by

ẽv(t, k) :=

{
0 if i < L̃(t)(= ε)
c +

∑k
j=ε ev(σ−1(β), j) if i ≥ L̃(t)

(2.20)

for some21 c ∈ K and

ẽv(
d∑

j=0

rj tj︸ ︷︷ ︸
=f

, k) :=

{
0 if i < L̃(f)∑d

j=0 ev(rj , k) ẽv(t, k)j if i ≥ L̃(f).

20Note that L̃(t) = ε.
21Please note that the choice of c ∈ K∗ is free. In order to deal later with indefinite summation, it will be

essential to specify an appropriate value for this c with respect to the given summation problem.
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Properties (2.12), (2.13), (2.15), (2.16) and (2.17) can be shown similar as in the proof of
Lemma 2.5.2. Additionally we have for f =

∑m
j=0 fj tj ∈ A[t] that

L̃(σ(f)) = L̃(
m∑

j=0

σ(fj) (t + β)j) = L(
m∑

j=0

tj
m∑

i=j

(
i

j

)
σ(fi) βm−i)

= max(L(
m∑

i=0

(
i

0

)
σ(fi) βm−i)), . . . , L(σ(fm)), ε)

(2.12),(2.13)

≤ max(L(σ(f0)), . . . , L(σ(fm)), L(β), ε)
(2.12)

≤ max(L(f0), . . . , L(fm), ε) = L̃(f).

By definition we have for all f, g ∈ A[t] and all k ≥ max(L̃(f), L̃(g)) that

ẽv(f g, k) = ẽv(f, k) ẽv(g, k),
ẽv(f + g, k) = ẽv(f, k) + ẽv(g, k).

Since for k ≥ L̃(t) = ε we have

ẽv(t, k + 1) = c +
k+1∑
j=ε

ev(σ−1(β), j) = c +
k∑

j=ε

ev(σ−1(β), j) + ev(σ−1(β), k + 1)

= ẽv(t, k) + ev(β, k) = ẽv(t + β, k) = ẽv(σ(t)),

it follows by L̃(σ(f)) ≤ L̃(f) as in the proof of Lemma 2.5.2, that for all f ∈ A[t] we have

∀k ≥ L̃(f) : ev(f, k + 1) = ev(σ(f), k).

Consequently ẽv is a homomorphic map bounded by L̃.
Now assume that h is a difference ring monomorphism and that

h(t) ∈ constSS(K),

i.e. there is a δ ≥ ε such that

∀i ≥ 0 : ẽv(t, δ + i) = ẽv(t, δ + i + 1).

Then

0 = ẽv(t, δ + i + 1)− ẽv(t, δ + i) = ẽv(σ(t)− t, δ + i) = ẽv(β, δ + i).

Consequently β = 0, a contradiction to the assumption that (F(t), σ) is a Σ-extension of
(F, σ).

Theorem 2.5.1. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, B ⊆ K[t1, . . . , tn]∗ a multi-
plicative monoid and (F, σ) be a difference ring extension of (A, σ) = (Q(K[t1, . . . , tn], B), σ).
Assume there is a difference ring homomorphism

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉
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for a homomorphic map ev : A× N0 → K bounded by L : A → N0. Let (F(t), σ) be a ΠΣ-
extension of (F, σ) with

σ(t) = α t, α ∈ A∗

and where h(α) is a unit in S(K), or

σ(t) = t + β, β ∈ A.

Then there is a difference ring homomorphism

h′ :
{

A[t] → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A[t]× N0 → K bounded by L : A[t] → N0. If h is even a dif-
ference ring monomorphism and all elements of h(A) are units in h(A[t]) then there is a
difference ring monomorphism h′ with the above properties.

Proof. By Lemmas 2.5.2 and 2.5.3 we get a homomorphic map ev : A[t]× N0 → K bounded
by L : A[t] → N0. Define the map

h :
{

A[t] → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉 .

By Corollary 2.5.1 we get that h is a difference ring homomorphism and therefore the first
statement is proven.

Now assume that h is a difference ring monomorphism and all elements in A are units in
A[t]. Clearly, (h(A[t]), S) is a difference ring extension of (h(A), S) and we have

(h(A[t]), S) = (h(A)[x], S).

Since all elements of h(A) are units in h(A[t]) we may apply Proposition 2.4.7 and it follows
that (Q(h(A))[x], S) is a difference ring extension of (h(A)[x], S) with

S(x)− x = S(h(t))− h(t) = h(σ(t))− h(t) = h(σ(t)− t) = h(β), or
S(x) = S(h(t)) = h(σ(t)) = h(α t) = h(α) h(t) = h(α) x.

Furthermore (Q(h(A))[x], S) can be seen as a difference ring extension of (Q(h(A)), σ). As
(A, σ)'(h(A), σ) and the difference extension (Q(A), σ) of (A, σ) is uniquely defined by
Lemma 2.4.5, it follows that

(Q(A), σ)'(Q(h(A)), S). (2.21)

Since (Q(A)(t), σ) is a ΠΣ-extension of (Q(A), σ) and (2.21), we get by Lemma 2.4.2 that
there is a ΠΣ-extension (Q(h(A))(t̃), S) of (Q(h(A)), S) with

S(t̃) = h(α) t̃ or S(t̃) = t̃ + h(β).

So we may apply Corollary 2.4.5 to the ΠΣ-extension (Q(h(A))(t̃), S) of (Q(h(A)), S) and
the difference ring extension (Q(h(A))[x], S) of (Q(h(A)), S). Therefore x is transcendental
over Q(h(A)) and thus also transcendental over h(A). Thus

h : A[t] → h(A)[x] = h(A[t])

is a difference ring isomorphism and therefore

h : A[t] → S(K)

is a difference ring monomorphism.
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2.5.2 Lifting to a Quotient Ring

Proposition 2.5.2. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A = K[t1, . . . , tn] and
B ⊆ A∗ be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of
(Q(A, B), σ) for which there is a difference ring homomorphism h : Q(A, B) → S(K). Let

M = {f ∈ A |h(f) is a unit in S(K)}.

Then there is a uniquely defined difference ring (Q(A,M), σ) such that

(Q(A, B), σ) ≤ (Q(A,M), σ) ≤ (F, σ).

Proof. For any f, g ∈ M we have that h(f g) = h(f) h(g) is a unit in S(K) and thus f g ∈ M .
Therefore M is a multiplicative sub-monoid of A∗ and thus we can construct the quotient
ring Q(A,M). As h is a difference ring homomorphism, it follows that for all f ∈ B we have
h(f), h(1/f) ∈ S(K) with

h(f) h(
1
f

) = h(1) = (1, 1, 1, . . .) ,

and thus h(f) ∈ M . Therefore
B ⊆ M

and consequently
Q(A, B) ≤ Q(A,M) ≤ F.

Now consider
M̃ := {f ∈ Q(A, B) |h(f) is a unit in S(K)}.

As for M , it follows immediately that M̃ is a multiplicative sub-monoid of Q(A, B)∗. Since
for all f ∈ M̃ we have that h(σ(f)) = S(h(f)) and h(σ−1(f)) = S−1(h(f)) are units in
S(K), it follows immediately that σ : M̃ → M̃ is a monoid automorphism. Thus by Lemma
2.4.5, (Q(Q(A, B), M̃), σ) is a uniquely defined difference ring extension of (Q(A, B), σ) and
it follows immediately that

(Q(A, B), σ) ≤ (Q(Q(A, B), M̃), σ) ≤ (F, σ).

Now let q ∈ Q(Q(A, B), M̃), i.e. q = f/g where

f =
f1

f2
∈ Q(A, B), f1 ∈ A, f2 ∈ B

g =
g1

g2
∈ M̃ ⊆ Q(A, B), g1 ∈ A, g2 ∈ B.

As h(g2) and h(g) are units in S(K), also h(g1) is a unit in S(K) and thus g1 ∈ M . Therefore
g̃ = g2

g1
∈ Q(A,M) where

g g̃ = 1.

Thus 1
g ∈ Q(A,M), therefore f

g ∈ Q(A,M) and consequently

Q(Q(A, B), M̃) ⊆ Q(A,M).

On the other side we have
A ⊆ Q(A, B), M ⊆ M̃

and thus
Q(Q(A, B), M̃) ⊇ Q(A,M).

Altogether we get Q(Q(A, B), M̃) = Q(A,M) and thus the proposition is proven.
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Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗ be a multi-
plicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ) for which
there is a difference ring homomorphism

h :
{

Q(A, B) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

with ev : Q(A, B)× N0 → K being a homomorphic map bounded by L : Q(A, B) → N0. Let

M = {f ∈ A |h(f) is a unit in S(K)}.

In the following we will construct a difference ring homomorphism h̃ : Q(A,M) → S(K) from a
given difference ring monomorphism h : Q(A, B) → S(K) defined by an homomorphic map ev
bounded by L. In order to achieve this construction we need to define a function Z̃ : M → N0

with

Z̃(f) :=
{

0 if @k ∈ N0 : ev(f, k) = 0
max {k + 1 | ev(f, k) = 0} otherwise

and thereby the function Z : M → N0 by

Z(f) := max(Z̃(f), L(f)). (2.22)

For this function we have the following properties.

Lemma 2.5.4. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗

be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ)
for which there is a difference ring homomorphism

h :
{

Q(A, B) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

with ev : Q(A, B)× N0 → K being a homomorphic map bounded by L : Q(A, B) → N0. Let

M = {f ∈ A |h(f) is a unit in S(K)}.

Then we have for the function Z : M → N0 as defined in (2.22) the following properties:

∀f, g ∈ M : Z(f g) = max(Z(f), Z(g)) ≥ Z(f), (2.23)
∀f ∈ Q(A, B) : L(f) ≥ Z(den(σ(f))). (2.24)

Proof. Let f, g ∈ M ⊆ K[t1, . . . , tn]. If z := Z̃(f g) ≥ max(L(f), L(g)) then

∀k ≥ z : ev(f g, k) = ev(f, k) ev(g, k)

and thus
Z̃(f g) = max(Z̃(f), Z̃(g));

so by L(f g) = max(L(f), L(g)) it follows that

Z(f g) = Z(f) Z(g).

Otherwise, if Z̃(f g) < max(L(f), L(g)) =: l then

∀k ≥ l : ev(f, k) ev(g, k) = ev(f g, k) 6= 0



2.5. ΠΣ-FIELDS AND THE RING OF SEQUENCES 107

and thus
max(Z̃(f), Z̃(g)) ≤ l;

therefore

max(Z(f), Z(g)) = max(Z̃(f), Z̃(f), L(f), L(g)) = max(L(f), L(g)) = L(f g) = Z(f g).

Thus the first statement is proven. Now assume f ∈ A. Then we have for all k ≥ L(f) ≥
L(σ(f)) that

ev(σ(f), k) = ev(
num(σ(f))
den(σ(f))

, k) =
ev(num(σ(f)), k)
ev(den(σ(f)), k)

,

thus ev(den(σ(f)), k) 6= 0 for all k ≥ L(f), and consequently

L(f) ≥ Z̃(den(σ(f))).

Since

L(f)
(2.14)

≥ L(σ(f))
(2.17)

≥ max(L(num(σ(f))), L(den(σ(f)))), (2.25)

it follows that
∀f ∈ A : L(f) ≥ Z(den(σ(f))). (2.26)

Let f ∈ B and k ≥ Z(f). Since

k ≥ Z(f) ≥ L(f) ≥ L(σ(f)),

it follows that

0 6= ev(f, k + 1) = ev(σ(f), k) = ev(
num(σ(f))
den(σ(f))

, k) =
ev(num(σ(f)), k)
ev(den(σ(f)), k)

,

and hence
ev(num(σ(f)), k) 6= 0.

Since (2.25), it follows that

∀f ∈ B : Z(f) ≥ Z(num(σ(f))). (2.27)

Now let f = f1

f2
∈ Q(A, B) with gcd(f1, f2) = 1. Since den(σ(f1)),num(σ(f2)) ∈ B, we have

Z(den(σ(f)))
(2.23)

≤ Z(num(σ(f2)) den(σ(f1)))
(2.23)
= max(Z(num(σ(f2))), Z(den(σ(f1))))

(2.27),(2.26)

≤ max(Z(f2), L(f1)) ≤ max(L(f1), L(f2), Z(f2)) = L(f)

and thus the second statement is proven.

Lemma 2.5.5. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗

be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ)
for which there is a difference ring homomorphism

h :
{

Q(A, B) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

with ev : Q(A, B)× N0 → K being a homomorphic map bounded by L : Q(A, B) → N0. Let

M = {f ∈ A |h(f) is a unit in S(K)}.

Then there are maps ev : Q(A,M)× N0 → K and L : Q(A,M) → N0 such that ev is a homo-
morphic map bounded by L.
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Proof. Define the function Z : M → N0 as in (2.22), L̃ : Q(A,M) → N0 by

L̃(
a

b
) = max(L(a), L(b), Z(b))

and ẽv : Q(A,M) → Q(A,M) by

ẽv(
a

b
, k) :=

{
0 if k < L̃(a/b)
ev(a,k)
ev(b,k) if k ≥ L̃(a/b)

where a ∈ A, b ∈ M with gcd(a, b) = 1. Clearly, L̃ and ẽv are well defined functions. If b ∈ K
then Z(b) = L(b) = 0, and therefore L̃(a/b) = L(a/b). Thus properties (2.15) and (2.16)
hold. For f = f1

f2
, g = g1

g2
∈ Q(A,M) with fi, gi ∈ A and gcd(f1, f2) = gcd(g1, g2) = 1 we have

L̃(f + g) =max(L(num(f + g)), L(den(f + g)), Z(den(f + g)))
(2.15)

≤ max(L(f1 g2 + f2 g1), L(f2 g2), Z(f2 g2))
(2.12),(2.13),(2.23)

≤ max(L(f1), L(f2), Z(f2), L(g1), L(g2), Z(g2)) = max(L(f), L(g)),

L̃(f g) = max(L(num(f g)), L(den(f g)), Z(den(f g)))
(2.15),(2.23)

≤ max(L(f1 g1), L(f2 g2), Z(f2 g2))
(2.12),(2.23)

≤ max(L(f1), L(f2), Z(f2), L(g1), L(g2), Z(g2)) = max(L(f), L(g)),

L̃(σ(f)) = max(L(num(σ(f))), L(den(σ(f))), Z(den(σ(f))))
(2.15)

≤ max(L(num(σ(f1)) den(σ(f2))), L(den(σ(f1)) num(σ(f2))), Z(den(σ(f))))
2.15)
= max( L(num(σ(f1))), L(den(σ(f2))),

L(den(σ(f1))), L(num(σ(f2))), Z(den(σ(f))))
(2.17),(2.24)

≤ max(L(σ(f1)), L(σ(f2)), L(f)) ≤ max(L(f1), L(f2), Z(f2), L(f))
= L(f).

Property (2.17) follows immediately by the definition of L. Again by definition, we have for
all f, g ∈ Q(A,M) and all k ≥ max(L̃(f), L̃(g)) that

ẽv(f g, k) = ẽv(f, k) ẽv(g, k),
ẽv(f + g, k) = ẽv(f, k) + ẽv(g, k).

Finally, let f = f1

f2
∈ Q(A,M) with fi ∈ K[t1, . . . , tn], gcd(f1, f2) = 1 and let k ≥ L̃(f). Since

k ≥L̃(f) ≥ max(L(f1), L(f2)),

∀f ∈ A : L(f)
(2.14)

≥ L(σ(f))
(2.17)

≥ max(L(num(σ(f))), L(den(σ(f)))),
(2.28)

we have

ẽv(f, k + 1) =
ev(f1, k + 1)
ev(f2, k + 1)

=
ev(σ(f1), k)
ev(σ(f2), k)

=
ev(num(σ(f1)), k)/ev(den(σ(f1)), k)
ev(num(σ(f2)), k)/ ev(den(σ(f2)), k)

=
ev(num(σ(f1)), k) ev(den(σ(f2)), k)
ev(num(σ(f2)), k)ev(den(σ(f1)), k)

(2.28)
=

ev(num(σ(f1)) den(σ(f2)), k)
ev(num(σ(f2)) ev(den(σ(f1)), k)

= ev(
σ(f1)
σ(f2)

, k) = ev(σ(f), k).
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Consequently ẽv is a homomorphic map bounded by L̃.

Theorem 2.5.2. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗

be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ)
for which there is a difference ring homomorphism

h :
{

Q(A, B) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

with ev : Q(A, B)× N0 → K being a homomorphic map bounded by L : Q(A, B) → N0. Let

M = {f ∈ A |h(f) is a unit in S(K)}.

Then there is a difference ring homomorphism

h′ :
{

Q(A,M) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : Q(A,M)× N0 → K bounded by L : Q(A,M) → N0. Further-
more, if h is a difference ring monomorphism then there is a difference ring monomorphism
h′ with the above properties.

Proof. By Lemma 2.5.5 there is a homomorphic map ẽv : Q(A,M)× N0 → K bounded by
the map L̃ : Q(A,M) → N0 with

∀f ∈ A : L̃(f) = L(f)

and
∀f ∈ A ∀k ≥ 0 : ẽv(f, k) = ev(f, k).

Therefore by Corollary 2.5.1 there is a difference ring homomorphism

h :
{

Q(A[t],M) → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉.

If h : A[t] → S(K) is even a difference ring monomorphism, it follows directly that

h : Q(A[t],M) → S(K)

is also a difference ring monomorphism.



110 CHAPTER 2. DIFFERENCE FIELDS

2.5.3 ΠΣ-Fields and Indefinite Summation

Example 2.5.5. In the following we indicate how one translate the indefinite summation problem

F (1)
n :=

n∑
m=1

m∑
k=2

∑k
i=1

1
i

k2 − 1

into an expression from a ΠΣ-field (Q(t1, t2, t3), σ) and how one defines the corresponding difference
ring homomorphism h : (Q(t1)[t2, t3], σ) → (S(K), S).

SnF
(1)
n = F

(1)
n + Sn

n∑
k=2

k∑
i=1

1

i

k2 − 1︸ ︷︷ ︸
:=F

(2)
n

We have

σ(w) = w + σ(t3)

and

∀n ≥ 2 : h(w)n = F
(1)
n

↓ ↑
↓ ↑

SnF
(2)
n = F

(2)
n +

Sn

:=F
(3)
n︷ ︸︸ ︷

n∑
i=1

1

i

(n+1)2−1

Define ΠΣ-field (Q(t1, t2, t3), σ) with

σ(t3) = t3 +
σ(t2)

(t1 + 1)2 − 1

and homomorphism h : (F(t1)[t2, t3], σ) → (S(K), S), s.t.

∀n ≥ 2 : h(t3)n = F
(2)
n

We have
∃w ∈ Q(t1, t2, t3) : σ(w)− w = σ(t3),

i.e. w := −−1−t1−t2+t1t22+t21t22−2t21t3−2t31t3
2(t1(1+t1))

↓ ↑
↓ ↑

Define ΠΣ-field (Q(t1, t2), σ) with

SnF
(3)
n = F

(3)
n + 1

n +1
σ(t2) = t2 +

1

t1 + 1

and monomorphism h : (F(t1)[t2], σ) → (S(K), S), s.t.

∀n ≥ 1 : h(t2)n = F
(3)
n

We have

@w ∈ Q(t1, t2) : σ(w)− w = σ(t2)

(t1+1)2−1

↓ ↑
↓ ↑

Define ΠΣ-field (Q(t1), σ) with

Snn = n + 1 σ(t1) = t1 + 1

and monomorphism h : (F(t1), σ) → (S(K), S), s.t.
∀n ≥ 0 : h(t1)n = n

We have
@w ∈ Q(t1) : σ(w)− w = 1

t1+1

↓ ↑
↓ ↑

Let (Q, σ) with
∀k ∈ K σ(k) = k

→ →
We have

@w ∈ Q : σ(w)− w = 1

♦
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Implementation Note 2.5.1. In functions like SigmaReduce, GenerateRecurrence,
Find-SumSolutions or SolveRecurrence, introduced in Chapter 1, input expressions in
terms of nested sums and products are tried to be transformed to expressions from a ΠΣ-
field. Besides this, as sketched in the previous example, a difference ring homomorphism
from a sub-difference ring of the ΠΣ-field to the ring of sequences is constructed. After
solving a summation problem in terms of this ΠΣ-field, the result is translated back by
this difference ring homomorphism to a corresponding solution in the ring of sequences.
The following subsections describe in more details how this translation process works and
actually is implemented.

Lemma 2.5.6. Let a ΠΣ-field (F, σ) with constant field K and F = K(t1, . . . , tn) be a differ-
ence ring extension of (A, σ) where K[t1, . . . , tn] ⊆ A and assume there is a difference ring
homomorphism h : A → S(K). Let

M = {f ∈ K[t1, . . . , tn] |h(f) is a unit in S(K)}.

Then for all p, q ∈ M and s, r,∈ K[t1, . . . , tn] we have

gcd(p, r) ∈ M, (2.29)
lcm(p, q) ∈ M, (2.30)
lcm(r, s) ∈ M ⇒ r ∈ M, (2.31)
gcd(r, s) ∈ M ⇒ gcd(r p, s) ∈ M. (2.32)

Proof. Let A′ := K[t1, . . . , tn], p, q ∈ M and r, s ∈ A′. There exists a p′ ∈ A′ with p =
gcd(p, r) p′ and thus

h(p) = h(gcd(p, r))h(p′).

Since h(p) is a unit in S(K), it follows that also h(gcd(p, r)) is a unit in S(K) and therefore
gcd(p, r) ∈ M . Consequently (2.29) is proven. In particular we have gcd(p, q) ∈ A and thus
by lcm(p, q) = p gcd(p, q) it follows immediately that also lcm(p, q) ∈ M and therefore (2.30)
is proven. If lcm(r, s) ∈ M then we may write

lcm(r, s) = r r′

for some r′ ∈ A′ and thus
h(lcm(r, s)) = h(r) h(r′).

As h(lcm(r, s)) is a unit in S(K), it follows immediately that h(r) is a unit in S(K) and thus
r ∈ M which proves (2.31). We have

gcd(r p, s) = gcd(gcd(r, s) gcd(p, s), s).

By (2.29) we get gcd(p, s) ∈ M and if we additionally assume gcd(r, s) ∈ M , it follows directly
that gcd(r p, s) ∈ M and consequently (2.32) is proven.

2.5.3.1 The Sum Case

Proposition 2.5.3. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and
B ⊆ A∗ be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of
(Q(A, B), σ) for which there is a difference ring homomorphism h : Q(A, B) → S(K). Let

M = {f ∈ A |h(f) is a unit in S(K)}
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and assume β ∈ Q(A,M). If there exists a g ∈ F with

σ(g)− g = β and gcd(den(g),den(σ(g))) ∈ M

then g ∈ Q(A,M).

Proof. Let β = a
b with a ∈ A, b ∈ M , gcd(a, b) = 1 and g = c

d with c, d ∈ A and gcd(c, d) = 1.
Let

c′ = σ(c) d/p + c σ(d)/p

d′ = lcm(d, σ(d))

for p = gcd(d,num(σ(d))). We have

a

b
= β = σ(g)− g =

c′

d′

By [Win96, Theorem 2.3.1] it follows that gcd(c′, d′) = gcd(c′, p) and thus

b =
d′

gcd(c′, p)
k

for some k ∈ K. By assumption we have p ∈ M and therefore by Lemma 2.5.6,(2.29),
gcd(c′, p) ∈ M . As

h(b) h(gcd(c′, p)) = h(d′) h(k),

h(d′) is a unit in S(K), i.e. d′ = lcm(σ(d), d) ∈ M . By Lemma 2.5.6,(2.31), it follows that
d ∈ M and thus g = c

d ∈ Q(A,M).
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The Sum Case

Consider the sequence 〈∗, . . . , ∗, Fδ, Fδ+1, . . . 〉 ∈ S(K) with

Fn+1 = Fn +
Cn

Dn

for some sequences C,D ∈ S(K).
Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗ be a multi-

plicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ) for which
there is a difference ring homomorphism h : Q(A, B) → S(K) with ev : Q(A, B)× N0 → K be-
ing a homomorphic map bounded by L : Q(A, B) → N0 such that for suitable c, d ∈ Q(A, B)
we have

∀n ≥ L(c) : h(c)n = Cn ∀n ≥ L(d) : h(d)n = Dn 6= 0.

For
M = {f ∈ A |h(f) is a unit in S(K)}

Theorem 2.5.2 provides a ring homomorphism h : Q(A,M) → S(K) for a homomorphic map
ev : A× N0 → K bounded by L : Q(A,M) → N0. Especially, we get d ∈ M . Consequently
for β := c

d ∈ Q(A,M) we have

∀n ≥ L(β) : h(β)n =
Cn

Dn
.

Case 1: There does not exist a g ∈ F such that

σ(g)− g = β.

Then there is a unique proper sum extension (F(t), σ) of (F, σ) with

σ(t) = t + β

and constσF(t) = K (Proposition 2.4.1) and a ring homomorphism h : Q(A,M)[t] → S(K)
for a homomorphic map ev : Q(A,M)[t]× N0 → K bounded by L : Q(A,M)[t] → N0 (Theo-
rem 2.5.1). In addition, as already indicated in the proof of Lemma 2.5.3, the c in (2.20) can
be adjusted such that

∀n ≥ max(L(t), δ) : Fn = h(t)n.

Case 2: There exists a g ∈ F such that

σ(g)− g = β.

If gcd(den(g), σ(den(g))) /∈ M , STOP. Otherwise it follows by Proposition 2.5.3 that g ∈
Q(A,M) and thus there is a k ∈ K such that

∀n ≥ max(L(g), δ) : Fn = h(g + k)n.
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2.5.3.2 The Product Case

Proposition 2.5.4. Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and
B ⊆ A∗ be a multiplicative monoid. Assume that (F, σ) is a difference ring extension of
(Q(A, B), σ) for which there is a difference ring homomorphism h : Q(A, B) → S(K). Let

M = {f ∈ A |h(f) is a unit in S(K)}

and let α ∈ Q(A,M) with num(α) ∈ M . If there exists a g ∈ F with

σ(g) = α g and gcd(den(g),num(σ(den(g)))) ∈ M

then g ∈ Q(A,M).

Proof. Let g = g1

g2
where g1, g2 ∈ A and gcd(g1, g2) = 1. Furthermore let α = α1

α2
with

α1, α2 ∈ M and gcd(α1, α2) = 1. We have

α1 g1

α2 g2
= α g = σ(g) = σ(

g1

g2
) =

num(σ(g1)) den(σ(g2))
num(σ(g2)) den(σ(g1))

where by Lemma 2.5.6.(2.32) we get

gcd(α1 g1, α2 g2) ∈ M.

Thus there are a u ∈ M and a v ∈ A such that

α2 g2 v = num(σ(g2)) den(σ(g1))u.

Since
gcd(g2,num(σ(g2))) = gcd(den(g),num(σ(den(g)))) ∈ M,

α2 ∈ M , u ∈ M and den(σ(g1)) ∈ M it follows again by (2.32) that

gcd(g2 α2,num(σ(g2) den(σ(g1))u) ∈ M.

And as
g2 α2 | num(σ(g2) den(σ(g1))u

we get g2 α ∈ M , thus g2 ∈ M and consequently g ∈ Q(A,M).

Proposition 2.5.5. Let (F, σ) = (K(s1, . . . , sm, t1, . . . , tn), σ) be a ΠΣ-field where for all
Π-extensions ti we have

σ(ti) = αi ti

for αi ∈ K(s1, . . . , sm). Let A := K[s1, . . . , sm, t1, . . . , tn] and B ⊆ A∗ be a multiplicative
monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ) for which there is
a difference ring homomorphism h : Q(A, B) → S(K) with h(ti) and h(αi) are units in S(K)
for all Π-extensions ti. Let

M = {f ∈ A |h(f) is a unit in S(K)}

and let α ∈ Q(A,M) with num(α) ∈ M . If there exists a g ∈ F with

σ(g) = α g

then g = w tk1
1 · · · tkn

n for some w ∈ K(s1, . . . , sm) and ki ∈ Z. Furthermore if

gcd(num(σ(den(w))),den(w)) ∈ M

then g ∈ Q(A,M).
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Proof. Assume
σ(g) = α g

for some g ∈ F. By Corollary 2.2.6 it follows that

g = w tk1
1 · · · tkn

n

where w ∈ K(s1, . . . , sm) and ki = 0 if ti is a Σ-extension and ki ∈ Z if ti is a Π-extension. By
assumption it follows that ti ∈ M and αi ∈ Q(A,M) with num(αi) ∈ M if ti is a Π-extension.
Therefore we get

σ(g)
g

=
σ(w)

w
u = α

for some u ∈ Q(A,M) with num(u) ∈ M . Thus we may apply Proposition 2.5.4 and obtain
that g ∈ Q(A,M), if gcd(den(w),den(σ(w))) ∈ M .
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The Product Case

Consider the sequence 〈∗, . . . , ∗, Fδ, Fδ+1, . . . 〉 ∈ S(K) \ {0} with

Fn+1 =
Cn

Dn
Fn

for some sequences C,D ∈ S(K).
Let (F, σ) = (K(t1, . . . , tn), σ) be a ΠΣ-field, A := K[t1, . . . , tn] and B ⊆ A∗ be a multi-

plicative monoid. Assume that (F, σ) is a difference ring extension of (Q(A, B), σ) for which
there is a difference ring homomorphism h : Q(A, B) → S(K) with ev : Q(A, B)× N0 → K be-
ing a homomorphic map bounded by L : Q(A, B) → N0 such that for suitable c, d ∈ Q(A, B)
we have

∀n ≥ L(c) : h(c)n = Cn 6= 0 ∀n ≥ L(d) : h(d)n = Dn 6= 0.

For
M = {f ∈ A |h(f) is a unit in S(K)}

Theorem 2.5.2 provides a ring homomorphism h : Q(A,M) → S(K) for a homomorphic map
ev : A× N0 → K bounded by L : Q(A,M) → N0. In particular, we have c, d ∈ M . Thus for
α := c

d we get

∀n ≥ L(α) : h(α)n =
Cn

Dn
.

Case 1: There does not exist an n > 0:

αn := (
c

d
)n ∈ H(Q(A),σ).

Then there is a unique Π-extension (F(t), σ) of (F, σ) with

σ(t) = α t

and constσF(t) = K (Proposition 2.4.2) and a ring homomorphism h : Q(A,M)[t] → S(K)
for a homomorphic map ev : Q(A,M)[t]× N0 → K bounded by L : Q(A,M)[t] → N0 (Theo-
rem 2.5.1). In addition, as already indicated in the proof of Lemma 2.5.2, the c in (2.19) can
be adjusted such that

∀n ≥ max(L(t), δ) : Fn = h(t)n.

Case 2: There exists a g ∈ F such that

σ(g) = α g.

If22 gcd(den(g),num(σ(den(g)))) /∈ M , STOP. Otherwise it follows that g ∈ Q(A,M) by
Proposition 2.5.4 and thus there is a k ∈ K with

∀n ≥ max(L(g), δ) : Fn = h(k g)n.

Case 3: OTHERWISE STOP

22See Corollary 2.5.5 for a simplification of the test.



Chapter 3

Solving Difference Equations

As already indicated in Section 1.4 we are mainly interested in solving linear difference
equations in ΠΣ-fields in order to handle definite and indefinite summation problems. In this
chapter the main ideas and main algorithm will be described how one can solve difference
equations. For some cases we even try to solve difference equations in difference rings although
there are still a lot of open problems. But even in the ΠΣ-field case not all problems are
completely solved yet. If one runs in such problematic cases we provide heuristic methods to
find all solutions.

Whereas in the first section the main ideas of the reduction strategy will be presented,
in the remaining sections of this chapter the different parts of the reduction process will be
considered in details.

All these steps and ideas in this chapter leads to an “algorithm” which I have implemented
in the computer algebra system Mathematica.

3.1 The Reduction Strategy

3.1.1 The Solution Space

Let (A, σ) be a difference ring with constant field K. We are interested in the following
problem:

• GIVEN a1, . . . , am ∈ A with (a1 . . . am) 6= (0, . . . , 0) =: 0 and f1, . . . , fn ∈ A.

• FIND ALL g ∈ A, c1, . . . , cn ∈ K such that

a1 σm−1(g) + · · ·+ am g = c1 f1 + · · ·+ cn fn.

Remark 3.1.1. A is a vector space over K. ♦

Definition 3.1.1. Let (A, σ) be a difference ring with constant field K and consider a sub-
space V of A as a vector space over K. Let

0 6= a = (a1, . . . , am) ∈ Am,

f = (f1, . . . , fn) ∈ An.

We define the solution space for a, f in V by

V(a, f , V) = {(c1, . . . , cn, g) ∈ Kn × V : a1 σm−1(g) + · · ·+ am g = c1 f1 + · · ·+ cn fn}.

♦

117
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Remark 3.1.2. V(a, f , V) is a vector space over K. ♦

Definition 3.1.2. Let (A, σ) be a difference ring with constant field K. 0 6= a ∈ Am is called
V-finite, if V(a, (0) , A) is a finite dimensional vector space over K. ♦

Proposition 3.1.1. Let (A, σ) be a difference ring with constant field K and assume f ∈ An

and 0 6= a ∈ Am. Let V be a subspace of A as a vector space over K. If a is V-finite then
V(a, f , V) is a finite dimensional vector space over K, in particular,

dim V(a, f , V) ≤ dim V(a, (0) , V) + n.

Proof. Let d := dim V(a, (0) , V) and assume that

dim V(a, f , V) > n + d,

say there are (c1i, . . . , cni, gi) ∈ Kn × V for 1 ≤ i ≤ n + d + 1 which are linearly independent
over K and solutions of V(a, f , V). Then one can transform the matrix

M :=


c11 . . . cn1 g1

c12 . . . cn2 g2
...

...
...

...
c1,n+d+1 . . . cn,n+d+1 gn+d+1


by row operations over K to a matrix

M ′ :=


c′11 . . . c′n1 g′1
c′12 . . . c′n2 g′2
...

...
...

...
c′1,n+d+1 . . . c′n,n+d+1 g′n+d+1


where the submatrix

C ′ :=


c′11 . . . c′n1

c′12 . . . c′n2
...

...
...

c′1,n+d+1 . . . c′n,n+d+1


is in row reduced form and the rows in M ′ and the rows in M are a basis of the same vector
space W. Since we assumed that the (c1i, . . . , cni, gi) are linearly independent over K, it
follows that all rows in M ′ have a nonzero entry and are linearly independent over K. On the
other side, only the first n rows in C ′ can have nonzero entries and therefore the last d + 1
columns in M ′ must be of the form (

0, . . . , 0, g′i
)

where g′i 6= 0. Therefore we find d + 1 linearly independent solutions over K with

σagi = 0

which contradicts to the assumption.

Proposition 3.1.2. Let (F, σ) be a difference field. Then 0 6= a ∈ Fm is V-finite and we
have

dim V(a, (0) , V) ≤ m− 1.
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Proof. This follows immediately by Lemma A.5 in [HS99].

Corollary 3.1.1. Let (F, σ) be a difference field, 0 6= a ∈ Fm and f ∈ Fn. Then a is V-finite
and

dim V(a, f , V) ≤ m + n− 1.

Proof. This follows by Propositions 3.1.1 and 3.1.2.

Notation 3.1.1. Let (A, σ) be a difference ring with constant field K and consider a subspace
V of A as a vector space over K. Let 0 6= a = (a1, . . . , am) ∈ Am and g ∈ A. Then we
introduce the following notation

σag := a1 σm−1(g) + · · ·+ am g.

Furthermore, given f = (f1, . . . , fn) ∈ An and g ∈ A we write

f∧g = (f1, . . . , fn, g)

for the concatenation of f with the element g. Additionally, for f = (f1, . . . , fn) ∈ Fn and
g = (g1, . . . , gn) ∈ Fn we write

f g = f1 g1 + · · ·+ fn gn

for the inner product. By these notations we obtain the following compact description of the
solution space:

V(a, f , V) = {
c∧g︷ ︸︸ ︷

(c1, . . . , cn, g) ∈ Kn × V : a1 σm−1(g) + · · ·+ am g︸ ︷︷ ︸
σag

= c1 f1 + · · ·+ cn fn︸ ︷︷ ︸
c f

}

↓

V(a, f , V) = {c∧g ∈ Kn × V |σag = c f}.

♦
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3.1.2 Decomposition of the Solution Range F(t)

Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K. In the following we will
decompose the solution range F(t) into a direct sum of subspaces of F(t) as a vector space
over K. Having this decomposition we can introduce in the next section the main reduction
idea, namely to eliminate step by step the different parts of the direct sum components of
the solutions range F(t).

3.1.2.1 Sums and Direct Sums of Vector Spaces

Definition 3.1.3. Let V be a vector space over K and V1, . . . , Vn be subspaces of V over K.
V is called a sum of V1, . . . , Vn, in symbols

V = V1 + · · ·+ Vn,

if each element x ∈ V can be represented in the form

x = x1 + · · ·+ xn

where xi ∈ Vi. V is called a direct sum of V1, . . . , Vn, in symbols

V = V1 ⊕ · · · ⊕ Vn,

if each element x ∈ V can be uniquely represented in the form

x = x1 + · · ·+ xn

where xi ∈ Vi. ♦

3.1.2.2 Partial Fraction Decomposition

Let t be transcendental over a field F, let K be a subfield of F and consider F(t) as a vector
space over K.

Theorem 3.1.1. Any f ∈ F(t) can be uniquely represented in the form

f = g +
p

q

where g, p, q ∈ F[t] such that gcd(p, q) = 1 and deg(p) < deg(q) and q is monic.

Example 3.1.1. By the polynomial division algorithm we obtain

1− t− t2 + t3 + t4 + t5 − 2t6 + t7

(−1 + t)2t3
= t2 +

1− t− t2 + t3 + t4

(−1 + t)2t3
.

♦

Definition 3.1.4. We define

F(t)(frac) := {p

q
∈ F(t) | p

q is in reduced representation and deg(p) < deg(q)}.

♦
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Corollary 3.1.2. Consider F[t] and F(t)(frac) as subspaces of F(t) over K. Then we have

F(t) = F[t]⊕ F(t)(frac).

Let P ⊂ F[t] be the set of all monic polynomials being irreducible over F.

Theorem 3.1.2. Any f ∈ F(t)(frac) can be uniquely represented in the form

f =
∑
p∈P

fp

pd(p)

where fp ∈ F[t] and d(p) > 0 such that

• deg(fp) < deg(pd(p)),

• p - fp.

Example 3.1.2. By the extended Euclidean algorithm we obtain the decomposition

1− t− t2 + t3 + t4

(−1 + t)2t3
=

t + 1
t3

+
t

(t− 1)2
.

♦

Corollary 3.1.3. Any f ∈ F(t)(frac) can be uniquely represented in the form

f =
g

tk
+

p

q

where g ∈ F[t], p
q ∈ F(t) is in reduced representation and k > 0 such that

• deg(g) < k, t - g,

• deg(p) < deg(q), t - q.

Theorem 3.1.3. Let p ∈ P ,f ∈ F[t] and d ≥ 0 such that

• deg(f) < deg(pd),

• p - f .

Then f
pd can be uniquely represented in the form

f

pd
=

d∑
i=1

fi

pi

where fi ∈ F[t] with deg(fi) < deg(p).

Definition 3.1.5. We define

F(t)(fracpart) := {p

q
∈ F(t)(frac); t - q}.

♦
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Corollary 3.1.4. Consider F[t], F[1/t] \ F∗ and F(t)(fracpart) as subspaces of F(t) over K.
Then we have

F(t) = F[t]⊕ (F[1/t] \ F∗)⊕ F(t)(fracpart)︸ ︷︷ ︸
=F(t)(frac)

.

Proof. Define
F :=

{ p

tm
|m ≥ 1 & p ∈ F[t] & deg(p) < m & t - p

}
.

By Corollary 3.1.3 we have

F(t)(frac) = F(t)(fracpart) ⊕ F

and by Theorem 3.1.3 it follows that

F = F[1/t] \ F∗.

Therefore by Corollary 3.1.2 the statement is proven.

3.1.2.3 Decomposition of a ΠΣ-Extension

Let (F(t), σ) be a ΠΣ-extension of (F, σ) and let us recall that by Theorem 2.2.4 the period
of f ∈ F(t)∗ is given by

per(F,σ)(f) :=
{

1 if f = c ti where c ∈ F∗, i ∈ Z and (F(t), σ) is a Π-extension
0 otherwise.

Definition 3.1.6. Let (F(t), σ) be a difference field extension of (F, σ). h ∈ F[t]∗ has pure
period m ∈ {0, 1}, if

∀f ∈ F[t] \ F : f |h ⇒ per(F,σ)(f) = m.

♦

Remark 3.1.3. Note that f ∈ F[t]∗ has pure period 1 if and only if f = h ti for some i ∈ N0

and h ∈ F∗. Therefore f has pure period 1 if and only if it has period 1. ♦

Definition 3.1.7. Let (F(t), σ) be a ΠΣ-extension of (F, σ). We define

F(t)(0) :=
{

p

q
∈ F(t)(frac) | q has pure period 0

}
,

F(t)(1) :=
{

p

q
∈ F(t)(frac) |per(F,σ)(q) = 1

}
.

♦

Corollary 3.1.5. If (F(t), σ) is a Σ-extension of (F, σ) then

F(t)(1) = {0},

F(t)(0) = F(t)(frac).

If (F(t), σ) is a Π-extension of (F, σ) then

F(t)(1) = F[1/t] \ F∗,

F(t)(0) = F(t)(fracpart).
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Proof. This follows immediately by Theorem 2.2.4.

Corollary 3.1.6. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K. Then

F(t) = F[t]⊕ F(t)(1) ⊕ F(t)(0)

where F[t], F(t)(1) and F(t)(0) are considered as subspaces of F(t) over K.

Proof. This is a direct consequence of Corollary 3.1.4 and Corollary 3.1.5.

Definition 3.1.8. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and

h = hp︸︷︷︸
∈F[t]

+ h1︸︷︷︸
∈F(t)(1)

+ h0︸︷︷︸
∈F(t)(0)

∈ F(t).

Then hp is called polynomial part, h1 is called fractional part with period 1 and h0 is called
fractional part with pure period 0. ♦

Example 3.1.3. Let (Q(t1), σ) be the ΠΣ-field over the constant field Q canonically defined
by

σ(t1) = t1 + 1.

Consider the Π-extension (Q(t1, t2), σ) of (Q(t1), σ) canonically defined by

σ(t2) = (t1 + 1) t2.

Then the upper braces indicate how the following rational function splits into the polynomial
part and the fractional parts with pure period 0 and period 1.

t1 + t2 + t1t2 + 2t22 + t1t
3
2 + t1t

4
2

t22(t1 + t2)
=

Q(t1)[t2]︷︸︸︷
t2t1︸ ︷︷ ︸

Q(t1)[t2]

+

Q(t1)(t2)(1)︷ ︸︸ ︷
1
t2

+
t1
t22

+

Q(t1)(t2)(0)︷ ︸︸ ︷
1

t2 + 1︸ ︷︷ ︸
Q(t1)(t2)(0)

∈ Q(t1, t2)

Consider the Σ-extension (Q(t1, t2), σ) of (Q(t1), σ) canonically defined by

σ(t2) = t2 +
1

t1 + 1
.

Then the lower braces indicate how the rational function splits into the polynomial part and
the fractional parts with pure period 0 only.

♦
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3.1.3 The Basic Reduction Strategy for ΠΣ-Fields

In the following section we try to give a first description how linear difference equations are
solved in a ΠΣ-field (F(t), σ) over the constant field K. Given f ∈ F(t)n and 0 6= a ∈ F(t)m

there is the following reduction process to find a basis for V(a, f , F(t)).

Find a basis for



V(a, f ,

F(t)︷ ︸︸ ︷
F[t]⊕ F(t)(1) ⊕ F(t)(0) )

by denominator bounding

V(a′, f ′, F[t]⊕ F(t)(1) )

?

period 0

elimination

6

by denominator bounding

V(a′′, f ′′, F[t] )
?

period 1

elimination

6

by incremental reduction

V(a′′′, f ′′′, {0} )
?

polynomial

degree

elimination

6

||

NullspaceK(f ′′′)× {0}

In the following subsections I will explain in more details the methods for the different
reduction steps.

3.1.3.1 The Denominator Bounding Method

The Period 0 Denominator Bounding We will give the main idea how we can achieve
the following reduction.

Find a basis for



V(a, f ,

F(t)︷ ︸︸ ︷
F[t]⊕ F(t)(1) ⊕ F(t)(0) )

V(a′, f ′, F[t]⊕ F(t)(1) )

?

period 0
elimination

6

In this reduction the following simple Lemma 3.1.1 gives the main idea.
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Lemma 3.1.1. Let (F(t), σ) be a difference field extension of (F, σ) with constant field K and
let F(t) = W⊕V be a direct sum of subspaces V and W of F(t) as vector spaces over K. Let
0 6= a = (a1, . . . , am) ∈ F[t]m and f ∈ F[t]n. Assume there is a d ∈ F(t)∗ such that for all

c∧g ∈ V(a, f , F(t))

we have d g ∈ W. Then
c∧g ∈ V(a, f , F(t))

m

c∧(gd) ∈ V(a′, f , W)

for

a′ :=
(

a1

σm−1(d)
, . . . ,

am−1

σ(d)
,
am

d

)
.

Proof. We have
c∧g ∈ V(a, f , F(t))

m

σag = cf

m

a1σ
m−1(g) + · · ·+ am−1σ(g) + amg = c f

||

a1
σm−1(d)
σm−1(d)

σm−1(g) + · · ·+ am−1
σ(d)
σ(d)

σ(g) +
d

d
am g

||
a1

σm−1(d)
σm−1(g d) + · · ·+ am−1

σ(d)
σ(g d) +

am

d
d g

m

σa′(g d) = c f

m

c∧(g d) ∈ V(a′, f , W).

Let W be a subspace of F(t)(1) as a vector space over K. As will be shown in Section
3.5.3, more precisely in Theorem 3.5.6, we are able to compute a particular d ∈ F[t]∗ such
that for all

c∧g ∈ V(a, f , F[t]⊕W⊕ F(t)(0))

we have
d g ∈ F[t]⊕W. (3.1)

Giving this d we may compute

a′ :=
(

a1

σm−1(d)
, . . . ,

am−1

σ(d)
,
am

d

)
.
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If we can solve V(a′, f , F[t]⊕W) then by Lemma 3.1.1 it follows that

V(a, f , F[t]⊕W⊕ F(t)(0)) =
{
c∧g

d
| c∧g ∈ V(a′, f , F[t]⊕W)

}
.

Therefore we achieve the following general reduction strategy

Find a basis for



V(a, f , F[t]⊕W⊕ F(t)(0) )

V(a′, f ′, F[t]⊕W )
?

period 0
elimination

6

Please note that this reduction process is more general than what is actually needed. But
solving this more general problem gives us more flexibility as will be indicated in Section 3.1.4.
In particular, for W = F(t)(1) we get the reduction process described above.

One can immediately see that the particular d ∈ F[t]∗ fulfilling (3.1) bounds the denomi-
nator of the fractional part with pure period 0. In this sense we call this reduction method
period 0 denominator bounding.

Example 3.1.4. Let (Q(t1), σ) be the difference field canonically defined by σ(t1) = t1 + 1
and consider the Σ-extension (Q(t1, t2), σ) of (Q(t1), σ) canonically defined by

σ(t2) = t2 +
1

t1 + 1
.

For the difference equation
σ2(g) + σ(g)− g = f

with

f :=
−3 + 2 t22 + 4 t21 t22 + t31 t22 + t1 (−2 + 5 t22)

t2 (1 + t2 + t1 t2)(3 + 2 t2 + t21 t2 + t1 (2 + 3 t2))
∈ Q(t1, t2)

we have the following solution space

V((1, 1,−1), (f) , Q(t1, t2)) = {c1

(
1,

1
t2

)
+ c2 (0, 1) | c1, c2 ∈ Q}.

Thus d := t2 has the property that for all

c∧g ∈ V((1, 1,−1), (f) , Q(t1, t2))

it follows that
d g ∈ Q(t1)[t2]

and one can see that d bounds the denominator of the fractional part with pure period 0.
Additionally, by Corollary 3.1.5 and Lemma 3.1.1 we get the following elimination of the

fractional part of pure period 0:

V((1, 1,−1), (f) ,

=F(t)︷ ︸︸ ︷
Q(t1)[t2]⊕Q(t1)(t2)

(0) ⊕Q(t1)(t2)
(1)︸ ︷︷ ︸

={0}

)

||
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V((1, 1,−1), (f) , Q(t1)[t2]⊕Q(t1)(t2)
(0) )

V(
(

1
σ2(t2)

,
1

σ(t2)
,− 1

t2

)
, (f) , Q(t1)[t2] )

?
6

In other words, solving

V := V(
(

1
σ2(t2)

,
1

σ(t2)
,− 1

t2

)
, (f) , Q(t1)[t2])

yields to

V((1, 1,−1), (f) , F(t)) =
{(

c,
g

t2

)
| (c, g) ∈ V

}
.

♦

The Period 1 Denominator Bounding Now we consider the second reduction step in
the reduction process described in the beginning of Section 3.1.3.

Find a basis for



V(a, f , F[t]⊕ F(t)(1) )

V(a′, f ′, F[t] )
?

period 1
elimination

6

Let W be a subspace of F(t)(0) as a vector space over K. Similar to the period 0 denomi-
nator bounding we are interested in finding a particular d ∈ F[t]∗ such that for all

c∧g ∈ V(a, f , F[t]⊕W⊕ F(t)(1))

we have
d g ∈ F[t]⊕W.

Given such a d we may apply Lemma 3.1.1 in order to achieve the reduction process.

Find a basis for



V(a, f , F[t]⊕ F(t)(1) ⊕W )

V(a′, f ′, F[t]⊕W )
?

period 1
elimination

6

In particular for W = {0}, we get the reduction described above.
For first order linear difference equations this problem to find such a particular d ∈ F[t]∗

is solved as one can see in Section 3.5.2.3. Unfortunately, for difference equations of higher
order this d can be only computed for some special cases (Section 3.5.2.4). If we run in a
situation where we do not have an algorithm to compute such a d, we apply an heuristic
method described in Section 3.5.2.1.
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3.1.3.2 The Incremental Reduction Method for Polynomial Degree Elimination

In this section we try to give a first “oversimplified” sketch how the incremental reduction
method for the polynomial degree elimination works. In Section 3.2 we will finally consider
this incremental reduction process in more details.

Find a basis for



V(a, f , F[t] )

V(a′, f ′, {0} )
?

polynomial
degree

elimination

6

In a first step one finds a bound1 b ∈ N0 ∪ {−1} such that for all

c∧g ∈ V(a, f , F[t])

we have deg(g) ≤ b. Of course, for any d ∈ N0 ∪ {−1},

F[t]d := {f ∈ F[t] | deg(f) ≤ d}

is a subspace of F[t] over K. In other words, we try to find a b ∈ N0 ∪ {−1} such that

V(a, f , F[t]) = V(a, f , F[t]b)

As will be shown in Sections 3.3.4.1 and 3.3.5.1 the polynomial degree bounding for the
first order case is solved completely. In Sections 3.3.5.2 and 3.3.4.2 we extend these methods
based on [Kar81] for some special cases to the m-th order case.

Finally in Section 3.4 we find further degree boundings for proper sum extensions. If we
run in a situation where we do not have an algorithm to compute a bound, we apply an
heuristic method described in Section 3.3.1.

If we find such a polynomial degree bounding, we can do in a second step the following
reduction process:

V(a, f , F[t]b)

↓ ↑
V(ab−1, fb−1, F[t]b−1)

↓ ↑
...

...

↓ ↑
V(a0, f0, F[t]0)

↓ ↓
V(a−1︸︷︷︸

a′

, f−1︸︷︷︸
f ′

, F[t]−1)

||

V(a′, f ′, {0} ).

How this reduction process works in details will be explained in Section 3.2.
1Since the zero-polynomial has degree −∞ (see Section 3.2.1.1), we actually need only to consider b ∈

N0 ∪ {−1} to get a full filtration of F[t] (see Section 3.2.3).
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Example 3.1.5. Consider the ΠΣ-field (Q(t1, t2), σ) over the constant field Q canonically
defined by

σ(t1) = t1 + 1,

σ(t2) = t2 +
1

t1 + 1
.

In order to find a solution g for
σ(g)− g = t1 t2,

we find a basis of V((1,−1), (t2) , Q(t1, t2)) by the following reduction process:

Find a basis of

V((1,−1), (t2) , Q(t1, t2))

|| period 0 denominator bounding

V((1,−1), (t2) , Q(t1)[t2])

|| polynomial degree bounding2

V((1,−1), (t2) , Q(t1)[t2]2)

↓ ↑
Find a basis of

V((1,−1),
(
−1− 2t2 − 2t1t2

(1 + t1)2
, t2

)
, Q(t1)[t2]1)

↓ ↑ 3

Find a basis of

V((1,−1),
(
− 1

t1 + 1
,−1

)
, Q(t1)[t2]0)

↓ ↑
Find a basis of

V((1,−1), (0, 0) , Q(t1)[t2]−1)

||
V((1,−1), (0, 0) , {0})

||{
(c1, c2, g) ∈ Q2 × {0} |σ(g)− g = c1 0 + c2 0

}
||

{c1 (1, 0, 0) + c2 (0, 1, 0) | c1, c2 ∈ Q}.
Finally, this reduction process yields to

V((1,−1), (t2) , Q(t1, t2)) = {(0, c1) + c2 (1, t1 (t2 − 1)) | c1, c2 ∈ Q}

which gives us the specific solution g := t1 (t2 − 1) for

σ(g)− g = t2.

♦
2See Corollary 3.3.3.
3This reduction step will be considered in more details in Example 3.2.7.
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Example 3.1.6. Consider the ΠΣ-field (Q(t1, t2), σ) over the constant field Q canonically
defined by

σ(t1) = t1 + 1,

σ(t2) = (t1 + 1) t2.

In order to find the solution g := t2 for

σ(g)− g = t1 t2

in Section 1.2.2, the following reduction process is involved.

Find basis of

V((1,−1), (t1t2) , Q(t1)(t2))

|| period 0 and 1 denominator bounding

V((1,−1), (t1t2) , Q(t1)[t2])

|| polynomial degree bounding4

V((1,−1), (t1t2) , Q(t1)[t2]1)

↓ ↑

Find basis of

V((1,−1), (0) , Q(t1)[t2]0)

↓ ↑

Find basis of

V((1,−1), (0) , Q(t1)[t2]−1︸ ︷︷ ︸
{0}

)

||

{(c, g) ∈ Q× {0} |σ(g)− g = 0}

||

{(c, 0) | c ∈ Q}.

The complete reduction process for all subproblems will be shown in Example 3.2.8.
♦

4See Corollary 3.3.2.
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3.1.3.3 The First Base Case

Let (A, σ) be a difference ring with constant field K, 0 6= a ∈ Am and f ∈ An. As can be seen
in Section 3.1.3.2, we have to deal with the following base case problem: find a basis of

V(a, f , {0}).

The following Theorem 3.1.4 allows us to reduce this problem to a nullspace problem of A as
a vector space over K.

Definition 3.1.9. Let A be a vector space over K and consider An as a vector space over K.
Let f ∈ An. Then we define the nullspace of f over K by

NullspaceK(f) = {c ∈ Kn | c f = 0}.

♦

Lemma 3.1.2. Let A be a vector space over K and f ∈ An. Then NullspaceK(f) is a subspace
of An over K.

Theorem 3.1.4. Let (A, σ) be a difference ring with constant field K and assume 0 6=
a ∈ Am and f ∈ An. Then

V(a, f , {0}) = NullspaceK(f)× {0}.

Proof. We have

c∧g ∈ V(a, f , {0}) ⇔ σag = c f & g = 0
⇔ c f = 0& g = 0
⇔ c ∈ NullspaceK(f) & g = 0
⇔ c∧g ∈ NullspaceK(f)× {0}.

If we run into the base case V(a, f , {0}), we will apply this Theorem 3.1.4; we only have
to consider the problem to find a basis of the vector space NullspaceK(f)×{0}. In particular
in Lemma 3.2.7 we will deal with this problem for a ΠΣ-field (F(t), σ) and in Lemma 3.6.6
we will solve this problem if (F, σ) is a ΠΣ-field and (F[t], σ) is a difference ring extension
canonically defined by σ(t) = −t with the relation t2 = 1.



132 CHAPTER 3. SOLVING DIFFERENCE EQUATIONS
3
.1

.4
V

a
ri

a
ti

o
n
s

o
f
S
tr

a
te

g
ie

s

F
in

al
ly

,
I

in
di

ca
te

th
at

be
si

de
s

th
e

re
du

ct
io

n
st

ra
te

gy
pr

es
en

te
d

in
Se

ct
io

n
3.

1.
3,

ot
he

r
st

ra
te

gi
es

m
ig

ht
be

po
ss

ib
le

.

O
u
r

R
ed

u
ct

io
n

V
(a

,f
,

F(
t)

︷
︸︸

︷
F[

t]
⊕

F(
t)

(0
)
⊕

F(
t)

(1
)
)

V
(a

′ ,
f′

,F
[t
])

?
de

n.
bo

un
di

ng
6

V
(a

′′
,f

′′
,{

0}
)

?
in

cr
.

re
du

ct
io

n
6

T
hi

s
is

th
e

st
ra

te
gy

w
e

fo
cu

se
d

on
in

th
e

la
st

se
ct

io
ns

an
d

w
hi

ch
w
il
l

be
th

e
st

ra
te

gy
un

de
r

fu
rt

he
r

di
s-

cu
ss

io
n.

D
en

om
in

at
or

B
ou

n
d
in

g
as

L
at

e
as

P
os

si
b
le

V
(a

,f
,F

[t
]⊕

F(
t)

(0
)
⊕

F(
t)

(1
)
)

V
(a

′ ,
f′

,F
(t

)(0
)
⊕

F(
t)

(1
)
)

?
in

cr
re

du
ct

io
n

6

V
(a

′′
,f

′′
,F

[t
]⊕

F(
t)

(1
)
)

?
pe

ri
od

0
de

n.
bo

un
di

ng
6

V
(a

′′′
,f

′′′
,F

(t
)(1

)
)

?
in

cr
.

re
du

ct
io

n
6

V
(a

′′′
′ ,
f′
′′′

,F
[t
])

?
pe

ri
od

1
de

n.
bo

un
di

ng
6

V
(a

′′′
′′
,f

′′′
′′
,{

0}
)

?
in

cr
.

re
du

ct
io

n
6

In
th

is
st

ra
te

gy
w

e
us

e
th

e
fle

xi
bi

lit
y

th
at

th
e

or
de

r
of

th
e

pe
ri

od
0

an
d

1
de

no
m

in
at

or
bo

un
di

ng
ca

n
be

ex
ch

an
ge

d.

D
ir

ec
t

In
cr

em
en

ta
l
R

ed
u
ct

io
n

fo
r

P
er

io
d

1

V
(a

,f
,F

[t
]⊕

F(
t)

(0
)
⊕

F(
t)

(1
)
)

V
(a

′ ,
f′

,F
(t

)(0
)
⊕

F(
t)

(1
)
)

?
in

cr
re

du
ct

io
n

6

V
(a

′′
,f

′′
,F

[t
]⊕

F(
t)

(1
)
)

?
pe

ri
od

0
de

n.
bo

un
di

ng
6

V
(a

′′′
,f

′′′
,F

(t
)(1

)
)

?
in

cr
.

re
du

ct
io

n
6

V
(a

′′′
′′
,f

′′′
′′
,{

0}
)

?
in

cr
.

re
du

ct
io

n
6

K
ar

r
in

tr
od

uc
ed

in
[K

ar
81

]a
n

in
cr

em
en

ta
lr

e-
du

ct
io

n
m

et
ho

d
w

hi
ch

el
im

in
at

es
th

e
pe

ri
od

1
fa

ct
or

s
in

th
e

de
no

m
in

at
or

fo
r

th
e

fir
st

or
de

r
di

ffe
re

nc
e

eq
ua

ti
on

ca
se

.
T

hi
s

re
du

ct
io

n
ca

n
be

ge
ne

ra
liz

ed
fo

r
th

e
hi

gh
er

or
de

r
ca

se
.

A
dd

it
io

na
lly

,
K

ar
r

de
ve

lo
pe

d
in

[K
ar

81
]

in
cr

em
en

ta
l

re
du

ct
io

n
st

ra
te

gi
es

,
si

m
ila

r
to

th
e

po
ly

no
m

ia
l

de
gr

ee
re

du
ct

io
n,

in
or

de
r

to
el

im
in

at
e

th
e

pe
ri

od
0

fa
ct

or
s

in
th

e
de

no
m

in
at

or
fo

r
th

e
fir

st
or

de
r

di
ffe

re
nc

e
eq

ua
ti

on
ca

se
.

T
he

se
di

ffe
re

nt
st

ra
te

gi
es

w
ill

no
t

be
co

ns
id

er
ed

fu
rt

he
r

in
th

is
th

es
es

bu
t

fo
r

si
m

pl
ic

it
y

w
e

w
ill

fo
cu

s
on

ly
on

th
e

fir
st

st
ra

te
gy

.



3.2. THE INCREMENTAL REDUCTION 133

3.2 The Incremental Reduction

In the following the incremental reduction method will be considered in details which al-
lows us to eliminate the polynomial degrees of the possible solutions as it was indicated in
Section 3.1.3.2.

3.2.1 Some Notations, Conventions and Definitions

3.2.1.1 Polynomials

Let A[t] be a polynomial ring over a ring A, this means we assume that t is transcendental
over A. By convention the zero-polynomial 0 has degree −∞, i.e.

deg(0) = −∞.

Furthermore, if f =
∑n

i=0 fi ti ∈ A[t] then the i-th coefficient fi of f will be denoted by [f ]i,
i.e.

[f ]i = fi.

Additionally, for g = (g1, . . . , gn) ∈ A[t]n we introduce

[g]i = ([g1]i , . . . , [gn]i) .

3.2.1.2 Vectors, Matrices and Basis Matrices

Let A be a vector space over K and, more generally, consider An as a vector space over K.

Vectors

In the following we will consider a vector f ∈ An either as a row or as a column vector. It
will be convenient not to distinguish between these two types of presentations. This means
the row vector

f = (f1, . . . , fn)

may be also interpreted as the column vector

f =

 f1
...

fn

 .

We will show that there cannot appear any ambiguous situations in the sequel. For the vector
multiplication of the vectors f and g = (g1, . . . , gn) introduced in Notation 3.1.1 there cannot
be confusion:

n∑
i=1

fi gi = f g = (f1, . . . , fn) (g1, . . . , gn) =

 f1
...

fn


 g1

...
gn


= (f1, . . . , fn)

 g1
...

gn

 =

 f1
...

fn

 (g1, . . . , gn) .
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Matrices and Vectors

Whereas a vector will be denoted always with a small letter, matrices will be denoted by
capital letters:

A :=


a11 . . . a1n

a21 . . . a2n
...

...
...

am1 . . . amn

 ∈ Am×n, B :=


b11 . . . b1m

b21 . . . b2m
...

...
...

bn1 . . . bnm

 ∈ An×m.

Multiplying a matrix A with the vector f from the right always means that the vector f is
interpreted as a column vector:

A · f =

a11 . . . a1n
...

...
...

am1 . . . amn

 ·

 f1
...

fn

 =


∑n

i=0 a1i f1i
...∑n

i=0 ami fmi


whereas multiplying a matrix B with the vector f from the left means always that the vector
f is interpreted as a row vector:

f ·B = (f1, . . . , fn) ·

b11 . . . b1m
...

...
...

bn1 . . . bnm

 =

(
n∑

i=0

bi1 fi, . . . ,
n∑

i=0

bim fi

)
.

In the following we will denote the multiplication of a matrix with a vector by the operation
symbol ·. We will denote the usual matrix multiplication by

AB =

a11 . . . a1n
...

...
...

am1 . . . amn


b11 . . . b1m

...
...

...
bn1 . . . bnm

 =


∑n

i=0 a1i bi1 . . .
∑n

i=0 a1i bim
...

...
...∑n

i=0 ami bi1 . . .
∑n

i=0 ami bim

 .

Finally, given vectors fi = (fi1, . . . , fin) ∈ An for 1 ≤ i ≤ m we may obtain matrices

(f1, . . . , fm) or

 f1
...

fm

 by interpreting fi as column vectors

(f1, . . . , fm) :=


f11 . . . fm1

f12 . . . fm2
...

...
...

f1n . . . fmn


or by interpreting them as row vectors f1

...
fm

 :=

 f11 f12 . . . f1n
...

...
...

fm1 fm2 . . . fmn

 .
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Concatenations

By the concatenation of the two matrices

A :=

a11 . . . a1m
...

...
...

ad1 . . . adm

 ∈ Ad×m, B :=

b11 . . . b1n
...

...
...

bd1 . . . bdn

 ∈ Ad×n

we mean

C =

 a11 . . . a1m b11 . . . b1n
...

...
...

...
...

...
ad1 . . . adm bd1 . . . bdn

 ;

we also write
C = A∧B

for the result. Similarly, by the concatenation of the two vectors

f = (f1, . . . , fm) , g = (g1, . . . , gn)

we mean
h = (f1, . . . , fm, g1, . . . , gn) ;

we also write
h = f∧g.

As already introduced in Notation 3.1.1 we write

f∧g = (f1, . . . , fd, g)

for f = (f1, . . . , fd) ∈ Ad and g ∈ A. Similarly, we will write

A∧f =

a11 . . . a1m
...

...
...

ad1 . . . adm

∧
 f1

...
fd

 =

a11 . . . a1m f1
...

...
...

ad1 . . . adm fd

 .

Basis Matrices

Let V be a finite dimensional subspace of An as a vector space over K. Let B = {b1, . . . ,bd}
be a family of linearly independent vectors of An over K with

bi =

 bi1
...

bin

 ∈ An

such that
V = {k1 b1 + · · ·+ kd bd | ki ∈ K}.

Often we will represent the basis B of V by the basis matrix

MB :=

 b1
...

bd

 =

 b11 . . . b1n
...

...
...

bd1 . . . bdn

 ,
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i.e. we have
V =

{
k ·MB |k ∈ Kd

}
. (3.2)

For the special situation V = {(0, . . . , 0)} ⊆ An, the basis matrix is

MB = (0, . . . , 0) ∈ A1×n.

In order to indicate that MB is the basis matrix of V, we will write

V � basis - MB.

If B is only a set of generators of V and not necessarily a basis, i.e. the elements bi might
be linearly dependent over K, we write

V � span - MB,

in order to indicate that the matrix MB generates the vector space V by (3.2). In this
situation we call MB just a generator matrix.

Lemma 3.2.1. Let A be a ring which is also a vector space over the field K and let V ⊆ W ⊆ A
be finite dimensional vector spaces over K with

MV � span - V,

MW � span - W.

Then there exists a matrix K with entries in K such that

MV = KMW.

Proof. Let

MV =

 v1
...

vd

 and MW =

 w1
...

we

 .

We have
spanK(v1, . . . ,vd) = V ⊂ W = spanK(w1, . . . ,we)

Thus there are vectors ki = (ki1, . . . , kie) ∈ Ke for 1 ≤ i ≤ d such that

vi = ki1w1 + · · ·+ kiewe = ki ·MW

and therefore
MV = KMW

with

K =

 k1
...

kd

 .
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3.2.2 A Basis of the Solution Space

Starting from these notations and conventions we will describe the solution space in such a
way that the incremental reduction method can be explained properly.

Let (A, σ) be a difference ring with constant field K and consider A as a vector space over
K. Let V be a subspace of A. Assume

0 6= a = (a1, . . . , am) ∈ Am, f = (f1, . . . , fn) ∈ An

where a is V-finite and let

B = {


c11
...

c1n

g1

 , . . . ,


cd1
...

cdn

gd

}
be a basis of the solution space V(a, f , V). We have

a1 σm−1(gi) + · · ·+ am gi = ci1 f1 + · · ·+ cin fn

and

V(a, f , V) = spanK(B) = {k1


c11
...

c1n

g1

+ · · ·+ kd


cd1
...

cdn

gd

 | ki ∈ K}.

We represent the basis B by the basis matrix

MB =


c11 . . . c1n g1

c21 . . . c2n g2
...

...
...

cd1 . . . cdn gd


and thus get

V(a, f , V) = {k ·MB |k ∈ Kd}.
In the following we compose the basis matrix by

MB =


c11 . . . c1n g1

c21 . . . c2n g2

...
...

...
cd1 . . . cdn gd


	�

�
�

� @
@

@
@R

C =


c11 . . . c1n

c21 . . . c2n

...
...

cd1 . . . cdn

 g =

 g1

...
gd


Q

Q
Q

Q
Q

Q
Qs +�

�
�

�
�

�
�

MB = C∧g

Since C∧g is a basis matrix of V(a, f , V), we also write

C∧g � basis - V(a, f , V).
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3.2.3 Filtrations, Graduations and the Rank Function

As was already mentioned in Section 3.1.3.2, filtrations and graduations will play an essential
role for the incremental reduction method. In the following we will have a closer look at these
notions.

Definition 3.2.1. Let V be a vector space and 〈Vi〉i∈Z a sequence of subspaces of V. V is a
direct sum of 〈Vi〉i∈Z, in symbols

V =
⊕
i∈Z

Vi,

if every element x ∈ V has a unique representation

x =
∑
i∈Z

xi, xi ∈ Vi

where only finitely many xi are nonzero. ♦

Example 3.2.1. Let K be a subfield of F, t be transcendental over F and consider F[t] as a
vector space over K. Then for the subspaces

Ti :=
{

ti F if i ≥ 0
{0} if i < 0

of F[t] over K we have the direct sum

F[t] =
⊕
i∈Z

Ti.

♦

Definition 3.2.2. A direct sum 〈Gi〉i∈Z of V is called graduation of V. ♦

Definition 3.2.3. A filtration of a vector space V is a sequence 〈Vi〉i∈Z of subspaces such
that we have a chain

· · · ⊆ Vd−1 ⊆ Vd ⊆ Vd+1 ⊆ · · · → V

whose limit is V. ♦

Definition 3.2.4. Let A[t] be a polynomial ring over a ring A, i.e. t is transcendental over
A. We define the rank function || || of A[t] by

||f || :=
{
−1 if f = 0
deg(f) otherwise.

Furthermore, we define the rank function || || of a rational function field F(t) by

||f || := ||fp||

where
f = fp ⊕ f̃ ∈ F[t]⊕ F(t)(frac).

♦
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Definition 3.2.5. Let K be a subfield of F and let F(t) be a rational function field over F.
Consider F(t) as a vector space over K and let W be a subspace of F(t) over K. Then we
define

Wd := {f ∈ W | ||f || ≤ d}.

Similarly, let A[t] be a polynomial ring with coefficients in the ring A and K ⊆ A be a field.
Consider A[t] as a vector space over K and let W be a subspace of A[t] over K. Then we
define

Wd := {f ∈ W | ||f || ≤ d}.

♦

Lemma 3.2.2. Let K be a subfield of F, F(t) be a rational function field over F and let W
be a subspace of F(t) as a vector space over K. Then 〈Wi〉i∈Z is a filtration of W.

Example 3.2.2. Let K be a subfield of F, F(t) be a rational function field over F an consider
F[t] as a subspace of F(t) as a vector space over K. We have the following filtration of F[t]
and F(t):

F[t]d = {f ∈ F[t] | ||f || ≤ d},

F(t)d = {f ∈ F(t) | ||f || ≤ d} = F[t]d ⊕ F(t)(frac),

i.e.

{0} = F[t]−1 ⊂ F[t]0 ⊂ F[t]1 ⊂ · · · → F[t],
{0} = F(t)−1 ⊂ F(t)0 ⊂ F(t)1 ⊂ · · · → F(t).

♦

Lemma 3.2.3. Let W be a subspace of V. Then

V ' V/W⊕W.

Example 3.2.3. Let A[t] be a polynomial ring over A, K ⊆ A be a field and consider A[t]
as a vector space over K. We have

A[t]d/A[t]d−1 ' td A

and thus
A[t]d = td A⊕ A[t]d−1.

♦

Definition 3.2.6. Let A[t] be a polynomial ring over A and let || || be the rank function of
A. For f = (f1, . . . , fn) ∈ A[t]n we define

||f || = max
i
||fi||.

♦
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Lemma 3.2.4. Let (A[t], σ) be a difference ring canonically defined by

σ(t) = α t + β

with α ∈ A∗, β ∈ A and t transcendental over A. Let 0 6= a ∈ A[t]m and f, g ∈ A[t] such that

σag = f.

Then
||f || ≤ ||a||+ ||g||.

If A is an integral domain, g 6= 0 and if for a = (a1, . . . , am) we have

||ar|| = ||a|| for some r ∈ {1, . . . ,m},
||ai|| < ||a|| ∀i 6= r

then
||f || = ||a||+ ||g||.

Proof. If g = 0, we have f = σag = 0 and hence −1 = ||f || ≤ ||a|| + ||g|| with ||g|| = −1 and
||a|| ≥ 0 holds. Otherwise assume that g 6= 0. We have

||f || = ||σag|| = ||a1 σm−1(g) + · · ·+ am g|| ≤ max(||a1 σm−1(g)||, . . . , ||am g||).

Please note that we have ||ai σ
m−i(g)|| ≤ ||ai|| + ||σm−i(g)||, if ai = 0; otherwise, if ai 6= 0, we

even have equality. Moreover if ai = 0 and aj 6= 0 then ||ai||+ ||σm−i(g)|| < ||aj ||+ ||σm−j(g)||.
Since there exists an j with aj 6= 0, it follows that

max(||a1 σm−1(g)||, . . . , ||am g||) = max(||a1||+ ||σm−1(g)||, . . . , ||am||+ ||g||).

By Lemma 2.1.2 we have ||σi(g)|| = ||g|| for all i ∈ Z and thus

max(||a1||+ ||σm−1(g)||, . . . , ||am||+ ||g||) = max(||a1||, . . . , ||am||) + ||g|| = ||a||+ ||g||

which proves the first statement of the lemma. If there exists additionally an r with the
above properties, we have

||a1 σm−1(g) + · · ·+ am g|| = ||ar σm−r(g)|| = max(||a1 σm−1(g)||, . . . , ||am g||)

and by the same argumentations as for the first statement the second second follows imme-
diately.
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3.2.4 The Incremental Solution Space

In order to deal with the incremental reduction technique, we finally have to introduce the
incremental solution space.

Definition 3.2.7. Let (A[t], σ) be a difference ring with constant field K and t transcendental
over A. Let 0 6= a ∈ A[t]m with l := ||a|| and let f ∈ A[t]d+l for some d ∈ N0. We define the
incremental solution space by

I(a, f , td A) := {c∧g ∈ Kn × td A |σag − cf ∈ A[t]d+l−1}.

♦

Let (A[t], σ) be a difference ring canonically defined by

σ(t) = α t + β

with α ∈ A∗, β ∈ A, constant field K and t transcendental over A. If g ∈ td A and f ∈ A[t]d+l,
by Lemma 3.2.4 we have

||σag|| ≤ ||a||+ ||g|| = l + d,

||f || ≤ l + d.

In other words, the incremental solution space I(a, f , td A) delivers us all linear combinations
c ∈ Kn of f over the constant field K, c f , and all elements g ∈ td A such that the l + d-th
coefficient, the coefficient of highest possible degree, of the polynomial

σag − cf ∈ A[t]

vanishes.

Lemma 3.2.5. Let (A[t], σ) be a difference ring with constant field K and t transcendental
over K. Let 0 6= a ∈ A[t]m with l := ||a|| and let f ∈ A[t]d+l for some d ∈ N0. Then the
incremental solution space I(a, f , td A) is a vector space over K.

In Section 3.1.3.2 we already indicated that we want to achieve the following reduction

V(a, f , A[t]d)

↓ ↑
V(a, f̃ , A[t]d−1).

As will be shown in the next section we can do this reduction under some conditions in
the following way:

V(a, f , A[t]d)

@
@

@
@

@
1.

R

I@
@

@
@

@

3.

I(a, f , td A)

	�
�

�
�

�

2.

V(a, f̃ , A[t]d−1)

3.

6

This diagram has to be read as follows:
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1. If the incremental solution space I(a, f , td A) has a finite basis representation we can try
to compute its basis matrix.

2. Given this basis matrix we can compute a specific f̃ ∈ A[t]λd−1 for some λ ≥ 1 which
will be specified later. Now we can try to find a basis matrix for the solution space
V(a, f̃ , A[t]d−1) - if it has a finite basis representation.

3. By using the basis matrices of V(a, f̃ , A[t]d−1) and I(a, f , td A) we finally can compute
the basis matrix of the solution space V(a, f , A[t]d).

As will be shown later, this reduction technique will always work, if (A(t), σ) is a ΠΣ-
extension of a ΠΣ-field (F, σ).

In the sequel we will explore some properties of the incremental solution space I(a, f , td A)
which tell us under which circumstances it is a finite vector space over the constant field K,
i.e. there exists a basis matrix of I(a, f , td A), and how one can find this basis matrix.

Example 3.2.4. Consider the ΠΣ-field (Q(t1, t2), σ) over the constant field Q canonically
defined by

σ(t1) = t1 + 1,

σ(t2) = t2 +
1

t1 + 1
.

Let c1, c2 ∈ Q and w ∈ Q(t1). We have

(c1, c2, t2 w) ∈ I((1,−1),
(
−1− 2 t2 − 2 t1 t2

(1 + t1)2
, t2

)
, t2 Q(t1))

m (d=1,l=0)

c1
−1− 2 t2 − 2 t1 t2

(1 + t1)2
+ c2 t2 − ( σ(t2 w) − t2 w) ∈ Q(t1)

m

c1

(
− 1

(t1 + 1)2
− 2

t1 + 1
t2

)
+ c2 t2 − ( (t2 +

1
t1 + 1

) σ(w) − t2 w) ∈ Q(t1)

m
−2 c1

t1 + 1
+ c2 − (σ(w)− w) = 0

m

(c1, c2, w) ∈ V((1,−1),
(

−2
t1 + 1

, 1
)

, Q(t1)).

As will be shown later, we can compute a basis matrix of V((1,−1),
(

1
(t1+1)2

, 1
)

, Q(t1)) in
the ΠΣ-field (Q(t1), σ):(

0 0 1
0 1 t1

)
� basis - V((1,−1),

(
−2

(t1 + 1)2
, 1
)

, Q(t1)),

and therefore we compute the basis matrix of the incremental solution space:(
0 0 t2
0 1 t2 t1

)
� basis - V((1,−1),

(
−1− 2 t2 − 2 t1 t2

(1 + t1)2
, t2

)
, t2 Q(t1)).

♦
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Example 3.2.5. Consider the ΠΣ-field (Q(t1, t2), σ) over the constant field Q canonically
defined by

σ(t1) = t1 + 1,

σ(t2) = (t1 + 1) t2

and let

f :=
(
1 + (3 + 3 t1 + t21) t2 + (6 + 10 t1 + 6 t21 + t31) t22

)
= (f) ,

a := (t2, 1,−t2, t2) .

For c ∈ Q and w ∈ Q(t1) we have

(c, t2 w) ∈ I(a, f , t2 Q(t1))

m (d=1,l=1)

c f − σa(t2 w) ∈ Q(t1)[t2]1

m

c f − (t2 σ3(w t2) + σ2(t2 w)− t2 σ(t2 w) + t22 w) ∈ Q(t1)[t2]1

m

c f − (t2 (t1 + 3)(t1 + 2)(t1 + 1) t2 σ3(w) +

(t1 + 2)(t1 + 1) t2 σ2(w)− t2 (t1 + 1) t2σ(w) + t22 w) ∈ Q(t1)[t2]1

m

c (6 + 10 t1 + 6 t21 + t31︸ ︷︷ ︸
=:f̃

)−
(
(t1 + 3)(t1 + 2)(t1 + 1) σ3(w)− (t1 + 1) σ(w) + w

)
= 0

m

(c, w) ∈ V(ã,
(
f̃
)

, Q(t1))

where
ã := ((t1 + 3)(t1 + 2)(t1 + 1), 0,−(t1 + 1), 1) .

♦

Let (A, σ) be a difference ring and let us recall the definition of the σ-factorial of f ∈ A
from Definition 2.2.12 which has been defined by

(f)k =
k−1∏
i=0

σi(f)

for k ∈ Z.
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Example 3.2.6. For the ΠΣ-field (Q(t1, t2), σ) over the constant field Q canonically defined
by

σ(t1) = t1 + 1,

σ(t2) = (t1 + 1) t2

we have for all i ∈ N0 that

σi(t2) = (t1 + i)(t1 + i− 1) . . . (t1 + 1) t2 = (t1 + 1)i t2.

♦

Lemma 3.2.6. Let (A[t], σ) be a difference ring extension of (A, σ) canonically defined by

σ(t) = α t + β, α ∈ A∗, β ∈ A,

with constant field K and t is transcendental over A. Let 0 6= a = (a1, . . . , am) ∈ A[t]m with
l := ||a|| and f ∈ A[t]nd+l for some d ∈ N0. Then

c∧(w td) ∈ I(a, f , td A) ⇔ c∧w ∈ V(ã, f̃ , A)

where

0 6= ã :=
(
[a1]l (α)d

m−1 , . . . , [am−1]l (α)d
1 , [am]l (α)d

0

)
∈ Am,

f̃ := [f ]d+l ∈ An.

Proof. We have
c∧(w td) ∈ I(a, f , td A)

m

σa(w td)− c f ∈ A[t]d+l−1

m

a1 σm−1(w td) + · · ·+ am w td − c f ∈ A[t]d+l−1

m

a1 σm−1(w) (α)d
m−1 td + · · ·+ am−1 σ(w) αd td + am w td − c f ∈ A[t]d+l−1

m[
a1 σm−1(w) (α)d

m−1 td + · · ·+ am−1 σ(w) αd td + am w td − c f
]
d+l

= 0

m

[a1]l σm−1(w) (α)d
m−1 + · · ·+ [am−1]l σ(w) αd + [am]l w − c [f ]d+l︸ ︷︷ ︸

f̃

= 0

m

σãw = c f̃

m

c∧w ∈ V(ã, f̃ , A)

where ã and f̃ as from above.
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The following theorem is a generalization of Theorem 16 in [Kar81] which I have extended
from the first order case to the m-th order case of linear difference equations. Furthermore I
have extended the difference field domain (F[t], σ) to the more general domain (A[t], σ) where
(A, σ) is a difference ring.

Theorem 3.2.1. Let (A[t], σ) be a difference ring extension of (A, σ) canonically defined
by

σ(t) = α t + β, α ∈ A∗, β ∈ A,

with constant field K and t is transcendental over A. Let 0 6= a = (a1, . . . , am) ∈ A[t]m

with l := ||a||, f ∈ A[t]nd+l for some d ∈ N0 and let

0 6= ã :=
(
[a1]l (α)d

m−1 , . . . , [am−1]l (α)d
1 , [am]l (α)d

0

)
∈ Am,

f̃ := [f ]d+l ∈ An.

Then I(a, f , td A) is a finite dimensional vector space over K if and only if ã is V-finite.
Furthermore, if ã is V-finite then we have

C∧w � basis - V(ã, f̃ , A)

m

C∧(wtd) � basis - I(a, f , td A).

Proof. If ã is V-finite, by Proposition 3.1.1 V(ã, f̃ , A) is a finite dimensional vector space
over K and therefore there is a basis matrix C∧w for V(ã, f̃ , A). But then by Lemma 3.2.6
C∧wtd is a basis matrix for I(a, f , td A) and consequently I(a, f , td A) is a finite dimensional
vector space over K. Conversely, if I(a, f , td A) is a finite dimensional vector space over K,
there is a basis matrix C∧w for I(a, f , td A) and consequently by Lemma 3.2.6 C∧w

td
is a

basis matrix for V(ã, f̃ , A) which means that V(ã, f̃ , A) is a finite dimensional vector space
over K.
The second statement follows directly from these argumentations.

This reduction given in Theorem 3.2.1 will be indicated by the diagram

I(a, f , td A)

V(ã, f̃ , A).

1.

?

2.

6
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3.2.5 The Incremental Reduction

If we are capable of computing a finite basis of the incremental solution space I(a, f , td A)
then we can do the following reduction by Theorem 3.2.2 below.

V(a, f , A[t]d) V(a, f , A[t]d)
Q

Q
Q

Q
Q1. s

kQ
Q

Q
Q

Q

3.

7→ I(a, f , td A)

+�
�

�
�

�

2.
V(a, f̃ , A[t]d−1)

6

?

V(a, f̃ , A[t]d−1)

3.
6

The following theorem is a generalization of Theorem 12 in [Kar81] which I have extended
from the first order case to the m-th order case of linear difference equations. Furthermore I
have extended the difference field domain (F[t], σ) to the more general domain (A[t], σ) where
(A, σ) is a difference ring.

Theorem 3.2.2 (Incremental Reduction Theorem). Let (A[t], σ) be a difference ring
extension of (A, σ) with constant field K and

σ(t) = α t + β, α ∈ A∗, β ∈ A,

where t is transcendental over A. Let 0 6= a ∈ A[t]m with l := ||a|| and f ∈ A[t]nd+l for
some d ∈ N0. If a is V-finite and I(a, f , td A) is a finite dimensional vector space, we can
carry out the following reduction process:

1. Let
C∧g � basis - I(a, f , td A)

with C ∈ Kλ×n and g ∈ (td A)λ for some λ ≥ 1.

2. Takea

f̃ := C · f − σag ∈ A[t]λd+l−1

and let
D∧h � basis - V(a, f̃ , A[t]d−1)

with D ∈ Kµ×λ and h ∈ A[t]µd−1 for some µ ≥ 1.

3. Then
(DC)∧(h + D · g) � basis - V(a, f , A[t]d)

with DC ∈ Kµ×n and h + D · g ∈ A[t]µd .

aNote that f̃ has entries in Ad+l−1 by Definition 3.2.7.
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3.2.5.1 An Example of an Incremental Reduction Step

Example 3.2.7. Let (Q(t1, t2), σ) be the ΠΣ-field over the constant field Q canonically
defined by

σ(t1) = t1 + 1,

σ(t2) = t2 +
1

t2 + 1
.

We illustrate Theorem 3.2.2 by the following reduction:

V((1,−1),

=:f︷ ︸︸ ︷(
−1− 2 t2 − 2 t1 t2

(1 + t1)2
, t2

)
, Q(t1)[t2]1)

HH
1.

jYHH
3.

I((1,−1), f , t2 Q(t1))
���

2.V(1,−1,

(
−1

t1 + 1
,−1

)
︸ ︷︷ ︸

=:̃f

, Q(t1)[t2]0︸ ︷︷ ︸
Q(t1)

)

6

1. Compute5

I((1,−1), f , t2 Q(t1)) � basis - C∧g =
(

0 0
0 1

)
∧
(

t2
t2 t1

)
.

2. Let

f̃ := C · f − (σ(g)− g) =
( −1

t1+1

−1

)
∈ Q(t1)[t2]20 = Q(t1)2

and compute

V((1,−1),
(

−1
t1 + 1

,−1
)

, Q(t1)[t2]0) � basis - D∧h =
(

0 −1
0 0

)
∧
(

t1
1

)
.

3. Compute

DC =
(

0 −1
0 0

)
, h + D · g =

(
t1 − t1 t2

1

)
.

We get

(DC)∧(h + D · g) =
(

0 −1
0 0

)
∧
(

t1 − t1 t2
1

)
l

V((1,−1),
(
−1− 2 t2 − 2 t1 t2

(1 + t1)2
, t2

)
, Q(t1)[t2]1).

♦

5See Example 3.2.4 for further details.
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3.2.5.2 The Proof of the Incremental Reduction Theorem

Proof. As I(a, f , td A) and V(a, f , A[t]) are finite dimensional vector spaces, we may assume
that V(a, f̃ , A[t]d−1), V(a, f̃ , A[t]d) and I(a, f , td A) have basis matrices. Given the matrices
C∧g and D∧h stated as above, we clearly have DC ∈ Kµ×n and h + D · g ∈ A[t]µd .

Step 1

First we will show that (DC)∧(h + Dg) generates a subspace of V(a, f , A[t]d). We have

σah = D · f̃ = D · (C · f − σag) ⇔σah = D · (C · f)−D · σag

⇔σah + D · σag = (DC) · f
⇔σa(h + D · g) = (DC) · f

and by h+D·g ∈ A[t]µd it follows that (DC)∧(h + D · g) generates a subspace of V(a, f , A[t]d).

Step 2

Second we will show that (DC)∧(h + D · g) is a basis matrix. If

(DC)∧(h + D · g) = (0, . . . , 0) (3.3)

then by convention it is a basis matrix and represents the vector space {0} ⊆ Kn × A.
Otherwise, assume that the basis matrix is not of the form (3.3). We will show that the

rows in the matrix (DC)∧(h + D · g) are linearly independent over K which proves that it
is a basis matrix. Assume the rows are linearly dependent. Then there is a 0 6= k ∈ Kµ such
that

k · ((DC)∧(h + D · g)) = 0.

• Now assume that
k ·D = 0. (3.4)

D∧h is a basis matrix by assumption. If D∧h consists of exactly one zero-row, we are in
the case (3.3), a contradiction. Therefore we may assume that the rows are nonzero and
linearly independent over K. Hence by (3.4) it follows that

0 6= kh ∈ A[t]d−1. (3.5)

Since g ∈ (td A)λ, we can conclude that

k (D · g) ∈ td A.

Therefore by (3.5) we have

0 6= kh + k (D · g) = k (h + D · g)

and thus
k · ((DC)∧(h + D · g)) 6= 0,

a contradiction.



3.2. THE INCREMENTAL REDUCTION 149

• Otherwise, assume that
v := k ·D 6= 0.

Then we have

0 = k · ((DC)∧(h + D · g)) = (k · (DC))∧(k (h + D · g))
= (k ·D) ·C)∧(kh + (k ·D) · g)) = (v ·C)∧(kh + v g)

and thus
v ·C = 0 and kh + v g = 0. (3.6)

But C∧g is a basis matrix.

– Assume C∧g does not consist of exactly one zero-row. Then by assumption the rows
must be all nonzero and linearly independent over K. Hence by (3.6) we have

0 6= v g ∈ td A.

As kh ∈ A[t]d−1, we finally get kh + v g 6= 0, a contradiction to (3.6).

– Otherwise, C∧g consists of exactly one zero-row. Then it follows that

(DC)∧(h + D · g) = (0, . . . , 0, h1) .

If h1 = 0, we are in the case (3.3), a contradiction. Otherwise, the matrix (0, . . . , 0, h1)
has a nonzero row which is of course linearly independent over K.

Altogether it follows that (DC)∧(h + D · g) is a basis matrix and there is a vector space W
such that

W � basis - (DC)∧(h + D · g)

where
W ⊆ V(a, f , A[t]d). (3.7)

Step 3

Finally we show equality for (3.7) which proves the theorem. Assume

V(a, f , A[t]d) � basis - Ẽ∧h̃

with Ẽ ∈ Kν×n, h̃ ∈ A[t]νd and write

h̃ = h1︸︷︷︸
(td A)ν

+ h2︸︷︷︸
A[t]νd−1

.

Let V be the vector space such that

Ẽ∧h1
� span - V.

Since
0 = σah̃− Ẽ · f = σah1 + σah2 − Ẽ · f (3.8)
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by assumption and
σah2 ∈ A[t]νd+l−1

by Lemma 3.2.4, it follows that

σah1 − Ẽf ∈ A[t]sd+l−1.

Therefore V ⊂ V(a, f , td A) and thus by Lemma 3.2.1 we find a matrix D̃ ∈ Kλ×ν such that

Ẽ∧h1 = D̃(C∧g) = (D̃C)∧(D̃ · g),

this means
Ẽ = D̃C and h1 = D̃ · g. (3.9)

By (3.8) we have

σah2 = Ẽ · f − σah1
(3.9)
= (D̃C) · f − σa(D̃ · g) = D̃ · (C · f)− D̃ · σag = D̃ · (C · f − σag)

and hence
σah2 = D̃ · f̃ . (3.10)

Let U be the vector space such that

U � span - D̃∧h2.

Then by (3.10) it follows that U ⊆ V(a, f̃ , A[t]d−1) and thus by Lemma 3.2.1 we find a matrix
K ∈ Kν×µ such that

D̃∧h2 = K (D∧h) = (KD)∧(K · h),

this means
D̃ = KD and h2 = K · h. (3.11)

Then

Ẽ∧h̃ = Ẽ∧(h1 + h2)
(3.9)
= (D̃C)∧(D̃ · g + h2)

(3.11)
= (KDC)∧((KD) · g + K · h) = K ((DC)∧(D · g + h)).

and it follows6 that
W ⊇ V(a, f , A[t]d)

which proves the theorem.

6In particular, K is a basis transformation, i.e. ν = µ and K is invertible.
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3.2.6 The Complete Reduction Process in ΠΣ-fields

Let (F(t), σ) be a ΠΣ-field over the constant field K, 0 6= a ∈ F[t]m and f ∈ F[t]n. Since any
vector 0 6= b from F(t) is V-finite by Proposition 3.1.2, we may apply Theorems 3.2.2 and
3.2.1 and obtain the following reduction process to compute a basis of V(a, f , F(t)).

V(a, f , F(t))

by denominator
bounding
(Section 3.5)

a′ ∈ F[t]m, f ′ ∈ F[t]n||a′||+b V(a′, f ′, F[t])

6

?

||
by polynomial
degree bounding
(Sections 3.3,3.4)

f ′b := f ′, rb := n V(a′, f ′b, F[t]b)

@
@

@
@

1.
R

I@
@

@
@

5.

Theorem 3.2.2 I(a′, f ′b, tb F)

	�
�

�
�

4.
Theorem 3.2.1

f ′b−1 ∈ F[t]
rb−1
||a||+b−1

V(a′, f ′b−1, F[t]b−1)

5.

6

V(ã′b, f̃ ′b, F)

2.

?

3.

6

ã′b ∈ Fm, f̃ ′b ∈ Frb

@
@

@
@

1.
R

I@
@

@
@

5.

Theorem 3.2.2 I(a′, f ′b−1, tb−1 F)

	�
�

�
�

4.
Theorem 3.2.1

f ′b−2 ∈ F[t]
rb−2
||a′||+b−2

V(a′, f ′b−2, F[t]b−2)

5.

6

V(ã′b−1, f̃ ′b−1, F)

2.

?

3.

6

ã′b−1 ∈ Fm, f̃ ′b−1 ∈ Frb−1

...

f ′0 ∈ F[t]r0
||a′|| V(a′, f ′0, F[t]0)

@
@

@
@

1.
R

I@
@

@
@

5.

Theorem 3.2.2 I(a′, f ′0, F)

	�
�

�
�

4.
Theorem 3.2.1

f ′−1 ∈ F[t]
r−1
||a′||−1

V(a′, f ′−1, F[t]−1)

5.

6

V(ã′0, f̃ ′0, F)

2.

?

3.

6

ã′0 ∈ Fm, f̃ ′0 ∈ Fr0

Theorem 3.1.4 ||

NullspaceK(f ′−1)× {0}
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This has to be read as follows.

• Suppose we find d ∈ F[t]∗, 0 6= a′ ∈ F[t]m with l := ||a′|| ≥ 0 and f ′ ∈ F[t]n by the

denominator bounding method
(Sections 3.1.3.1 and 3.5)

such that
V(a, f , F(t)) =

{
c∧g

d
| c∧g ∈ V(a′, f ′, F[t])

}
.

Then given a basis matrix for V(a′, f ′, F[t]) we are able to compute a basis matrix for V(a, f , F(t)).

• Suppose we find a

polynomial degree bound
(Sections 3.3 and 3.4)

b ∈ N0 ∪ {−1} such that
V(a′, f ′, F[t]) = V(a′, f ′, F[t]b)

where
f ′b := f ′ ∈ F[t]rb

l+b, rb := n.

• In order to find a basis matrix for V(a′, f ′b, F[t]b),

we apply Theorem 3.2.2.

1. We have to compute a basis matrix for the incremental solution space I(a′, f ′b, tb F).

2. In order to achieve this,

we apply Theorem 3.2.1.

This tells us how we can compute 0 6= ã′b ∈ Fm and f̃ ′b ∈ Frb and that we must find a basis
matrix for V(ã′b, f̃ ′b, F).

Now we have to start the reduction process again,
but this time in the ΠΣ-field (F, σ).

3. Now we construct the basis matrix for I(a′, f ′b, tb F) by using the basis matrix for V(ã′b, f̃ ′b, F).

4. Now Theorem 3.2.1 tells us how to compute f ′b−1 ∈ F[t]rb−1
l+b−1 for some rb−1 ≥ 1 and that we

have to find a basis matrix for V(a′, f ′b−1, F[t]b−1).

For this we have again to apply Theorem 3.2.1.

5. Finally we can obtain a basis matrix for V(a′, f ′b, F[t]b) by the basis matrices of I(a′, f ′b, tb F) and
V(a′, f ′b−1, F[t]b−1).
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3.2.6.1 The First Base Case

Finally, by Theorem 3.1.4 we have to deal with the problem to find a basis of NullspaceK(f ′−1)
where f ′−1 ∈ F[t]r−1

||a||−1. By the following lemma we obtain an algorithm which computes a
basis of this vector space.

Lemma 3.2.7. Let (F, σ) with F := K(t1, . . . , te) be a ΠΣ-field over K and f ∈ Fn. Then
NullspaceK(f) is a finite dimensional subspace of Kn and a basis can be computed by linear
algebra.

Proof. Let f = (f1, . . . , fn) ∈ Fn. Since F is a ΠΣ-field, it follows that F is the quotient field
of the polynomial ring K[t1, . . . , te]. We can find a d ∈ K[t1, . . . , te]∗ such that

g = (g1, . . . , gn) := (f1 d, . . . , fn d) ∈ K[t1, . . . , te].

For c ∈ Kn we have
c f = 0 ⇔ c g = 0

and therefore
NullspaceK(f) = NullspaceK(g).

Let c1, . . . , cn be indeterminates and make the ansatz

c1 g1 + · · ·+ cn gn = 0.

Then the coefficients of each monomial td1
1 . . . tde

e in c1 g1 + · · ·+ cn gn must vanish. Therefore
we get a linear system of equations

c1 p11+ . . . +cn p1n = 0
...

cr pr1+ . . . +cn prn = 0
(3.12)

where each equation corresponds to a coefficient of a monomial which must vanish. Since
pij ∈ K, finding all (c1, . . . , cn) ∈ Kn which are a solution of (3.12) is a simple linear algebra
problem. In particular applying Gaussian elimination we get immediately a basis for the
vector space

{c ∈ Kn | c is a solution of (3.12)},

thus for NullspaceK(g) and consequently also for NullspaceK(f).
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3.2.6.2 An Example of the Complete Reduction Process

Example 3.2.8. Let (Q(t1, t2), σ) be the ΠΣ-field over the constant field Q canonically
defined by

t1 = t1 + 1,

t2 = (t1 + 1) t2.

In order to find a g ∈ Q(t1, t2) such that

σ(g)− g = t1 t2,

we compute a basis of the solution space V((1,−1), (t1t2) , Q(t1, t2)) by the following reduc-
tion.

V((1,−1), (t1 t2) , Q(t1, t2))
†

||

V((1,−1), (t1 t2) , Q(t1)[t2])

||

V((1,−1), (t1 t2) , Q(t1)[t2]1)

@
@1.R
I@

@
5.

I((1,−1), (t1 t2) , t2 Q(t1))

	�
�
4.

V((1,−1), (0) , Q(t1))

5.
6

V((t1 + 1,−1), (t1) , Q(t1))
†

2.
?

3.
6

|| Short Cut ||

Q×Q V((t1 + 1,−1), (t1) , Q[t1])

||

V((t1 + 1,−1), (t1) , Q[t1]0)

@
@1.R
I@

@
5.

I((t1 + 1,−1), (t1) , t1 Q)

	�
�
4.

V((t1 + 1,−1), (0) , {0})

5.
6

V((1, 0), (1) , Q)†

2.
?

3.
6

|| || New Base Case

NullspaceQ((0))× {0} NullspaceQ((−1, 1))

♦

What remains open in this reduction process is a shortcut and an additional base case
indicated by framed boxes. These two situations will be considered in the following two
sections.
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3.2.6.3 A Hidden Reduction Process and a New Base Case

Looking closer at the reduction process (look at the labels † in Example 3.2.8), one can notice
a hidden reduction process, namely

V((1,−1), (t1 t2) , Q(t1, t2))

↓ ↑
V((t1 + 1,−1), (t1) , Q(t1))

↓ ↑
V((1, 0), (1) , Q).

In the general case, for a ΠΣ-field (F, σ) with F := K(t1, . . . , te) over the constant field K
and 0 6= ae ∈ Fme and fe ∈ Fne the following reduction process pops up:

V(ae, fe, K(t1, . . . , te))

↓ ↑
V(ae−1, fe−1, K(t1, . . . , te−1))

↓ ↑
V(ae−2, fe−2, K(t1, . . . , te−2))

↓ ↑
...

...

↓ ↑
V(a1, f1, K(t1))

↓ ↑
V(a0, f0, K).

Finally we have to deal with the problem to solve V(a0, f0, K) for some 0 6= a0 ∈ Fn0 and
f0 ∈ Fm0 . The following Theorem allows us to handle this second base case.

Theorem 3.2.3. Let (F, σ) be a difference field with constant field K, f ∈ Fn and 0 6=
a = (a1, . . . , am) ∈ Fm. Then

V(a, f , K) = NullspaceK(f∧u)

where u := −
∑m

i=1 ai.

Proof. Let c ∈ Kn and g ∈ K. It follows that

c∧g ∈ V(a, f , K) ⇔ c f − σag = 0

⇔ c f − g

(
m∑

i=0

ai

)
= 0

⇔ c∧g ∈ NullspaceK(f∧u).

Remark 3.2.1. Given f ∈ Kn in a field K a basis of NullspaceK(f) can be immediately
computed by linear algebra. ♦
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3.2.6.4 A Shortcut

In Example 3.2.8 we used a shortcut [Kar81, Proposition 10] for the reduction process which
is based on the following lemma.

Lemma 3.2.8. Let (A, σ) be a difference ring with constant field K, V be a subspace of A
over K and let 0n = (0, . . . , 0) ∈ An. Then

V((1,−1),0n, V) :=
{

Kn ×K if V ∩K = K
Kn × {0} otherwise.

Proof. We have

V(a,0n, V) = {(c1, . . . , cn, g) ∈ Kn × V |σ(g)− g = c1 0 + · · ·+ cn 0}.

If V ∩K = K,
{g ∈ V |σ(g)− g = 0} = K

and therefore
V((1,−1),0n, V) = Kn ×K.

Otherwise, we must have V = {0} and therefore it follows that

V((1,−1),0n, V) = Kn × {0}.
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3.2.6.5 Solving Difference Equations in Mathematica

Let K := Q(n1, . . . , nr) be a field of rational functions and let (F, σ) with F := K(t1, . . . , tl)
be a ΠΣ-field over the constant field K canonically defined by

σ(ti) = αi ti + βi, αi ∈ K(t1, . . . , ti−1)∗, βi ∈ K(t1, . . . , ti−1)

for 1 ≤ i ≤ l. Let

0 6= a = (a1, . . . , am) ∈ Fm,

f = (f1, . . . , fn) ∈ Fn.

Then by the function call

SolveDifferenceVectorSpace[{a1, . . . , am}, {f1, . . . , fn}, {{t1, α1, β1}, . . . , {tr, αr, βr}}]

one computes a basis of the solution space

V(a, f , F) = V((a1, . . . , am), (f1, . . . , fn) , K(t1, . . . , tr))

using the reduction process sketched in Section 3.2.6. In the following sections we are
concerned with the missing parts in this reduction process, namely with

• polynomial degree boundings (Sections 3.3 and 3.4)

• and denominator boundings (Section 3.5).

Furthermore, in Section 3.6, we will give some ideas how one can solve difference equations
in some special difference rings. More precisely, we consider difference ring extensions
(F[t], σ) of the ΠΣ-field (F, σ) canonically defined by

σ(t) = α t

where α ∈ K is a primitive k-th root of unity and

tk = 1.

All ideas in the following sections are used for the implementation of my Mathematica
package.
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3.3 Special Cases For Polynomial Boundings

Let (A[t], σ) be a difference ring extension of (A, σ) with constant field K and t transcendental
over A. Let 0 6= a ∈ A[t]m and f ∈ A[t]n. In this section we will deal with the problem to
find a bound b ∈ N0 ∪ {−1} such that

V(a, f , A[t]) = V(a, f , A[t]b)

for some special cases. As one can see for instance in Section 3.1.3.2 this bound is needed for
the incremental reduction method.

3.3.1 A Lower Bound

Proposition 3.3.1. Let (A[t], σ) be a difference ring with constant field K and t transcen-
dental over A. Let 0 6= a ∈ A[t]m and f ∈ A[t]. If there is a g ∈ A[t] such that

σag = f

then
||g|| ≥ max(||f || − ||a||,−1).

Proof. By Lemma 3.2.4 we have
||f || − ||a|| ≤ ||g||

and since ||g|| ≥ −1, it follows that

||g|| ≥ max(||f || − ||a||,−1).

For the general setting under discussion one does not know an algorithm to determine a
polynomial degree bounding b such that

V(a, f , A[t]) = V(a, f , A[t]b)

for given 0 6= a ∈ A[t]m and f ∈ A[t]n. In this case, the previous proposition motivates to
choose heuristically a bound

max(||f || − ||a||,−1) + plusBound

where plusBound ≥ 0 has to be chosen by the user and must be incremented if the desired
solution cannot be found.
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3.3.2 A Bounding Criterion

Definition 3.3.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and W be a subspace of F(t)
over the constant field K. b ∈ N0 ∪ {−1} is called bound for V(a, f , W) if

V(a, f , W) = V(a, f , Wb).

♦

Lemma 3.3.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and W be subspace of F(t) over
the constant field K. Let 0 6= a ∈ F[t]m, b ∈ N0 ∪ {−1} and f ∈ F[t]. If b is a bound for
V(a, (f) , W) then for all g ∈ W with σag = f we have ||g|| ≤ b.

Theorem 3.3.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ), let W be subspace of F(t) over
the constant field K, 0 6= a ∈ F[t]m and b ∈ N0 ∪ {−1}. If for all f ∈ F[t] with ||f || ≤ ||f || it
follows that b is a bound for V(a, (f) , W) then

b is a bound for V(a, f , W).

Proof. Assume b is a bound for V(a, (f) , W) for all f ∈ F[t] with ||f || ≤ ||f ||. Let c∧g ∈
V(a, f , W), i.e.

σag = c f . (3.13)

Take f := c f . By
||f || = ||c f || ≤ ||f ||

and (3.13) we may conclude that b is a bound for V(a, (f) , W) and it follows that ||g|| ≤ b by
Lemma 3.3.1. Consequently for all c∧g ∈ V(a, f , W) we have ||g|| ≤ b and thus

V(a, f , W) = V(a, f , Wb)

which proves the theorem.

In the next sections the following corollary will be heavily used in proofs for checking if
a particular b is a bound for a given solution space.

Corollary 3.3.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ), let W be subspace of F(t) over
the constant field K and let 0 6= a ∈ F[t]m. Let b ∈ N0 ∪ {−1} be such that for all f ∈ F[t]
and g ∈ W with ||f || ≤ ||f || and

σag = f

we have ||g|| ≤ b. Then b is a bound for V(a, f , W).

Proof. The corollary follows immediately by Lemma 3.3.1 and Theorem 3.3.1.
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3.3.3 A Special Case for m-th Order Recurrences

Theorem 3.3.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) and W be subspace of F(t) over
the constant field K. Let 0 6= a = (a1, . . . , am) ∈ F[t]m with

||ar|| = ||a|| for some r ∈ {1, . . . ,m},
||ai|| < ||a|| ∀i 6= r

and f ∈ F(t)n. Then max(||f || − ||a||,−1) is a bound for V(a, f , W).

Proof. Let f ∈ F(t) and g ∈ W with σag = f and ||f || ≤ ||f ||. If g 6= 0 then by Lemma 3.2.4
it follows that

||f || ≥ ||f || = ||σag|| = ||a||+ ||g||

and therefore
||g|| ≤ ||f || − ||a||.

Otherwise, if g = 0 then ||g|| = −1. Altogether we have

||g|| ≤ max(||f || − ||a||,−1)

and therefore by Corollary 3.3.1 max(||f || − ||a||,−1) is a bound for V(a, f , W).
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3.3.4 Polynomial Boundings for Π-Extensions

3.3.4.1 The First Order Case for Π-Extensions

Let (F(t), σ) be a Π-extension of (F, σ) and let W be a subspace of F(t) over the constant
field K. Let

0 6= a = (a1, a2) ∈ F[t]2

and f ∈ F[t]n. In this section we will deal with the problem to find a bound b for V(a, f , W).
In particular for W := F[t] we deal with the problem to find a bound b for V(a, f , F[t]), i.e.

V(a, f , F[t]) = V(a, f , F[t]b)

which is needed for the incremental reduction method as one can see in Section 3.1.3.2.
If ||a1|| 6= ||a2||, Theorem 3.3.2 provides a bound for V(a, f , W). What remains to consider

is the case ||a1|| = ||a2|| ≥ 0.

This means, without loss of generality, we assume that

a1 = tp + r1,

a2 = −c tp + r2
(3.14)

for c ∈ F∗, p ≥ 0 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p.

The result of this section delivers a bound for exactly that case (3.14). Especially, in
order to compute this bound, we must be able to decide, if there exists a d ≥ 0 for some
c, α ∈ F∗ such that

c

αd
∈ H(F,σ).

Furthermore, if there exists such a d, we must even compute it. As mentioned in Section 2.2.5
these problems can be solved if (F, σ) is a ΠΣ-field.

The main idea of the following section is taken from Theorem 15 of [Kar81]. Whereas
in Karr’s version theoretical and computational aspects are mixed, I tried to separate his
theorem in several parts to achieve more transparency.

Theorem 3.3.3. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t. Let a1, a2 ∈ F[t] as
in (3.14). If there exists a g ∈ F(t) with ||g|| ≥ 0 such that

||a1 σ(g) + a2 g|| < ||g||+ p (3.15)

then
c

α||g||
∈ H(F,σ).

Example 3.3.1. Consider the Π-extension (Q(t1, t2), σ) of (Q(t1), σ) canonically defined by

σ(t1) = t1 + 1,

σ(t2) = (t1 + 1) t2

and the difference equation

t2 σ(g)−

c︷ ︸︸ ︷
(t1 + 1)4 t2 g = −t1 (2 + t1) t2 (2 + t22 + 2 t1 (1 + t22) + t21 (1 + t22)).
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There is the solution
g = t42 + t22 + 1;

therefore inequality (3.15) is satisfied and it follows by Theorem 3.3.3 that

c

α4
=

(t1 + 1)4

(t1 + 1)4
= 1 ∈ H(Q(t1),σ).

♦

Proof. Let

g =
d∑

i=0

git
i + r

where gi ∈ F, gd 6= 0 and r ∈ F(t) with ||r|| = −1. We have

a1 σ(g) + a2 g = a1 σ(
d∑

i=0

gi t
i + r) + a2 (

d∑
i=0

gi t
i + r)

= a1(
d∑

i=0

σ(gi) (α t)i + σ(r)) + a2 (
d∑

i=0

gi t
i + r)

= (tp + r1) (
d∑

i=0

σ(gi) (α t)i + σ(r))− c (tp − r2) (
d∑

i=0

gi t
i + r)

and thus

[a1 σ(g) + a2 g]p+d = 0 ⇔
[
tp σ(gd) (α t)d − c tp gd td

]
p+d

= 0

⇔ σ(gd) αd − c gd = 0

⇔ c

αd
=

σ(gd)
gd

⇔ c

αd
∈ H(F,σ).

Lemma 3.3.2. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, α ∈ F∗. Assume
there exists a d ∈ Z for c ∈ F∗ such that

c αd ∈ H(F,σ).

Then d is uniquely determined.

Proof. Assume there are d1, d2 ∈ Z with

d1 < d2

and
c αd1 ∈ H(F,σ), c αd2 ∈ H(F,σ),

i.e. there are g1, g2 ∈ F∗ such that
σ(g1)

g1
= c αd1 ,
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σ(g2)
g2

= c αd2 .

Since d2 − d1 > 0, it follows that

αd2−d1 =
σ(g2)/g2

σ(g1)/g1
=

σ(g2/g1)
g2/g1

and thus
αd2−d1 ∈ H(F,σ).

By Corollary 2.2.2 (F(t), σ) is not a Π-extension of (F, σ), a contradiction.

Theorem 3.3.4. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, α ∈ F∗, and W
be a subspace of F(t) over the constant field K. Let f ∈ F[t]n and assume a1, a2 ∈ F[t] as
in (3.14). If there exists a d ≥ 0 such that

c

αd
∈ H(F,σ)

then d is uniquely determined and max(d, ||f || − p) is a bound for V(a, f , W). If there does
not exist such a d then max(||f || − p,−1) is a bound for V(a, f , W).

Proof. We will proof the theorem by Corollary 3.3.1. Let f ∈ F[t] and g ∈ W be arbitrary
but fixed such that

a1 σ(g) + a2 g = f and ||f || ≤ ||f ||.

We will show by case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that

||g|| ≤ b

which will prove that b for the particular case is a bound for V(a, f , W).

1. Assume there exists a d ≥ 0 such that
c

αd
∈ H(F,σ).

Then d is uniquely determined by Lemma 3.3.2.

If ||g||+ p > ||f || and ||g|| ≥ 0, it follows by Theorem 3.3.3 that ||g|| = d and consequently

||g|| = d = max(||f || − p, d) ≤ max(||f || − p, d).

Otherwise, if ||g||+ p ≤ ||f || or ||g|| = −1, we have

||g|| ≤ max(||f || − p, d) ≤ max(||f || − p, d).

Thus for both cases we may apply Corollary 3.3.1 and it follows that max(||f || − p, d) is
a bound for V(a, f , W).

2. Assume there does not exist such a d. Then by Theorem 3.3.3 it follows that

||g||+ p = ||f || ≤ ||f || or ||g|| = −1

and thus by Corollary 3.3.1 max(||f || − p,−1) is a bound for V(a, f , W).
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Corollary 3.3.2. Let (F(t), σ) be a Π-extension of (F, σ) and let W be a subspace of F(t)
over the constant field K and f ∈ F[t]n. Then max(0, ||f ||) is a bound for V((1,−1), f , W).

Proof. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, α ∈ F∗. Since 1
α0 = 1 ∈ H(F,σ),

it follows by Theorem 3.3.4 that max(0, ||f ||) is a bound for V((1,−1), f , W).

3.3.4.2 A Generalization for m-th Order Recurrences

Let (F(t), σ) be a Π-extension of (F, σ) and let W be a subspace of F(t) over the constant
field K.

Let 0 6= a = (a1, . . . , aλ, . . . , aµ . . . , am) ∈ F[t]m with λ < µ,

||aλ|| = ||aµ|| = p,

||ai|| < p ∀i 6= λ, µ

and

aλ = tp + r1,

aµ = −c tp + r2
(3.16)

for c ∈ F∗, p ≥ 0 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p.

Let f ∈ F[t]n. In this section we will deal with the problem to find a bound b for V(a, f , W).

Theorem 3.3.5. Let (F(t), σ) be a Π-extension of (F, σ) and set

σk(t) = αk t, α ∈ F∗

for all k ∈ Z∗. Assume a ∈ F[t]m as in (3.16) and suppose that (F(t), σµ−λ) is a Π-extension
of (F, σµ−λ). If there exists a g ∈ F(t) with ||g|| ≥ 0 such that

||σag|| < ||g||+ p

then
σµ−m(c)

α
||g||
µ−λ

∈ H(F,σµ−λ).

Proof. Let d := ||g|| ≥ 0. We have

0 = [σag]p+d =

[
m∑

i=1

ai σ
m−i(g)

]
p+d

=
[
aλ σm−λ(g) + aµ σm−µ(g)

]
p+d

because of (3.16) and thus

0 =
[
σµ−m(aλ) σµ−λ(g) + σµ−m(aµ) g

]
p+d

.

By

σµ−m(aλ) = αp
µ−m tp + σµ−m(r1),

σµ−m(aµ) = −σµ−m(c) αp
µ−m tp + σµ−m(r2)
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it follows that [
b1 σµ−λ(g) + b2 g

]
p+d

= 0

for

b1 := tp + σµ−m(r1)/αp
µ−m,

b2 := −σµ−m(c) tp + σµ−m(r2)/αp
µ−m.

As (F(t), σµ−λ) is a Π-extension of (F, σµ−λ) we may apply Theorem 3.3.3 and thus we obtain

σµ−m(c)
αd

µ−λ

∈ H(F,σµ−λ).

Theorem 3.3.6. Let (F(t), σ) be a Π-extension of (F, σ) with constant field K and set

σk(t) = αk t, αk ∈ F∗

for all k ∈ Z∗. Let W be a subspace of F(t) over K. Let f ∈ F[t]n, assume a ∈ F[t]m as in
(3.16) and suppose that (F(t), σµ−λ) is a Π-extension of (F, σµ−λ). If there exists a d ≥ 0
such that

σµ−m(c)
αd

µ−λ

∈ H(F,σµ−λ)

then d is uniquely determined and max(d, ||f || − p) is a bound for V(a, f , W). If there does
not exist such a d then max(||f || − p,−1) is a bound for V(a, f , W).

Proof. We will proof the theorem by Corollary 3.3.1. Let f ∈ F[t] and g ∈ W be arbitrary
but fixed such that

σag = f and ||f || ≤ ||f ||.

We will show by case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that

||g|| ≤ b

which will prove that b for the particular case is a bound for V(a, f , W).

1. Assume there exists a d ≥ 0 such that

σµ−m(c)
αd

µ−λ

∈ H(F,σµ−λ).

Then by Lemma 3.3.2 d is uniquely determined. If ||g|| + p > ||f || and ||g|| ≥ 0, by
Theorem 3.3.5 it follows that ||g|| = d and therefore

||g|| = d = max(||f ||, d) ≤ max(||f ||, d).

Otherwise, if ||g||+ p ≤ ||f || or ||g|| = −1, we have

||g|| ≤ max(||f ||, d) ≤ max(||f ||, d).

Consequently in both cases we may apply Corollary 3.3.1 and max(||f ||, d) is a bound
for V(a, f , W).
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2. Assume there does not exist such a d. Then by Theorem 3.3.5 it follows that

||g||+ p = ||f || ≤ ||f || or ||g|| = −1

and thus by Corollary 3.3.1 max(||f || − p,−1) is a bound for V(a, f , W).

Let (F, σ) be a ΠΣ-field and (F(t), σ) a Π-extension of (F, σ). Then the following theorem
guarantees that for any k 6= 0 the difference field (F(t), σk) is a Π-extension of (F, σk).
Therefore we can apply Theorem 3.3.6 to get a polynomial degree bound.

Theorem 3.3.7. Let (F, σ) be a ΠΣ-field. If (F(t), σ) is a ΠΣ-extension of (F, σ) then
(F(t), σk) is for all k ∈ Z \ {0} a ΠΣ-extension of (Fk, σ).

The theorem is taken from [Kar85, Theorem 4] which is one of the main results of this
article.
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3.3.5 Polynomial Boundings for Σ-Extensions

3.3.5.1 The First Order Case for Σ-Extensions

Let (F(t), σ) be a Σ-extension of (F, σ) and let W be a subspace of F(t) over the constant
field K. Let

0 6= a = (a1, a2) ∈ F[t]2

and f ∈ F[t]n. In this section we will deal with the problem to find a bound b for V(a, f , W).
In particular for W := F[t] we will deal with the problem to find a bound b for V(a, f , F[t]),
i.e.

V(a, f , F[t]) = V(a, f , F[t]b)

which is needed for the incremental reduction method as one can see in Section 3.1.3.2.
If ||a1|| 6= ||a2||, Theorem 3.3.2 provides a bound for V(a, f , W). What remains to consider

is the case ||a1|| = ||a2|| ≥ 0.
The main idea of the following section is taken from Theorem 14 of [Kar81]. Whereas

in Karr’s version theoretical and computational aspects are mixed, I tried to separate his
theorem in several parts to achieve more transparency.

Lemma 3.3.3. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β, (α, β ∈ F∗), and
0 6= a = (a1, a2) ∈ F. If there exists a g ∈ F(t) with ||g|| > 0 and

||a1 σ(g)− a2 g|| < ||g||+ ||a|| − 1

then
||a1|| = ||a2|| > 0.

Proof. Let g ∈ F(t) as stated above. Due to Theorem 3.3.2 it follows that

||a1|| = ||a2||.

Now assume ||a1|| = ||a2|| = 0, i.e. a1, a2 ∈ F. Thus there is a u ∈ F with

||σ(g)− u g|| < ||g|| − 1. (3.17)

Let

g =
d∑

i=0

gi t
i + r

where d ≥ 1, gi ∈ F for all 0 ≤ i ≤ d with gd 6= 0 and r ∈ F(t) with ||r|| = −1. By (3.17) it
follows that

σ(gd td)− u gd td = 0

and thus
σ(gd td)

gd td
= u ∈ F.

By Theorem 2.2.1 (F(t), σ) is a homogeneous extension of (F, σ) and therefore not a Σ-
extension of (F, σ), a contradiction.

Corollary 3.3.3. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t+β, (α, β ∈ F∗),
and let W be a subspace of F(t) over the constant field K. Let f ∈ F[t]n and a ∈ (F∗)2.
Then ||f ||+ 1 is a bound for V(a, f , W).
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Therefore for the case ||a1|| = ||a2|| = 0 Corollary 3.3.3 delivers a bound. What remains to
consider is the case ||a1|| = ||a2|| > 0.

This means, without loss of generality, we assume that

a1 = (tp + u1 tp−1 + r1),

a2 = c (tp + u2 tp−1 + r2)
(3.18)

for some c ∈ F∗, u1, u2 ∈ F, p ≥ 1 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p− 1.

Then we are able to find a bound for V(a, f , W) if one can compute the solution space
V(b,v, F) for any b,v ∈ F2. As mentioned in Section 2.2.5 this problem can be solved if
(F, σ) is a ΠΣ-field.

Theorem 3.3.8. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β, α, β ∈ F∗.
Assume a1, a2 ∈ F[t] as in (3.18). If there is a g ∈ F(t) with ||g|| > 0 and

||a1σ(g)− a2 g|| < ||g||+ p− 1

then there exists a w ∈ F such that

σ(w)− α w = α (u2 − u1)− ||g||β.

Proof. Let g ∈ F(t) with d = ||g|| > 0 as stated above. By

||a1σ(g)− a2 g|| < d + p− 1

it follows that

[a1 σ(g) + a2 g]p+d = 0 and [a1 σ(g) + a2 g]p+d−1 = 0.

Let

g =
d∑

i=0

gi t
i + r

where gi ∈ F, gd 6= 0 and r ∈ F(t) with ||r|| = −1. We have

a1 σ(g)− a2 g =a1 σ(
d∑

i=0

gi t
i + r) + a2 (

d∑
i=0

gi t
i + r)

=a1 (
d∑

i=0

σ(gi) (α t + β)i + σ(r)) + a2 (
d∑

i=0

gi t
i + r)

=(tp + u1 tp−1 + r1)(
d∑

i=0

σ(gi) (α t + β)i + σ(r))

+ c (tp + u2 tp−1 + r2)(
d∑

i=0

gi t
i + r).

Therefore,

[a1 σ(g) + a2 g]p+d = 0 ⇔ σ(gd) αd + c gd = 0

⇔ c = −σ(gd)
gd

αd. (3.19)
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By
0 = [a1 σ(g) + a2 g]p+d−1 = [a1 σ(g)]p+d−1 + [a2 g]p+d−1

and looking closer at the two summands

[a2 g]p+d−1 = [a2]p [g]d−1 + [a2]p−1 [g]d = c gd−1 + c u2 gd = c (gd−1 + u2 gd),

[a1 σ(g)]p+d−1 = [a1]p−1 [σ(g)]d + [a1]p [σ(g)]d−1

=u1 αd σ(gd) +
[
σ(gd) (α t + β)d + σ(gd−1) (α t + β)d−1

]
d−1

=u1 αd σ(gd) + d αd−1 β σ(gd) + αd−1 σ(gd−1)

we obtain

u1 αd σ(gd) + d αd−1 β σ(gd) + αd−1 σ(gd−1) + c (gd−1 + u2 gd) = 0.

By (3.19) it follows that

u1 αd σ(gd) + d αd−1 β σ(gd) + αd−1 σ(gd−1)−
σ(gd)

gd
αd (gd−1 + u2 gd) = 0.

m

σ(gd) (u1 α + d β − α
gd−1

gd
− α u2) = −σ(gd−1)

m

σ(
gd−1

gd
)− α

gd−1

gd
= (u2 − u1) α− d β

and thus for w := gd−1

gd
the theorem is proven.

Corollary 3.3.4. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β, α, β ∈ F∗.
Assume a1, a2 ∈ F[t] as in (3.18). If there exists a g ∈ F(t) with ||g|| > 0 and

||a1σ(g)− a2 g|| < ||g||+ p− 1

then u1 6= u2.

Proof. Assume u1 = u2. Then by Theorem 3.3.8 there is a w ∈ F such that

σ(w)− α w = −||g||β

and thus
σ(

w

−||g||
)− α

w

−||g||
= β.

By Corollary 2.2.3 (F(t), σ) is not a Σ-extension of (F, σ), a contradiction.

Lemma 3.3.4. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t+β, α, β ∈ F∗. Assume
there exist a d ∈ Z, a w ∈ F and a u ∈ F such that

σ(w)− α w = u α + d β.

Then d is uniquely determined.
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Proof. Assume there are w1, w2 ∈ F and

d1 < d2

with
σ(w1)− α w1 = u α + d1 β and

σ(w2)− α w2 = u α + d2 β.

Then it follows that
σ(w2 − w1)− α (w2 − w1) = (d2 − d1) β

m

σ(
w2 − w1

d2 − d1
)− α

w2 − w1

d2 − d1
= β.

By Corollary 2.2.3 (F(t), σ) is not a Σ-extension of (F, σ), a contradiction.

Theorem 3.3.9. Let (F(t), σ) be a Σ-extension of (F, σ) with σ(t) = α t + β, (α, β ∈ F∗),
and let W be a subspace of F(t) over the constant field K. Let f ∈ F[t]n and assume
a1, a2 ∈ F[t] as in (3.18). If u1 = u2 then max(||f || − p + 1, 0) is a bound for V(a, f , W).
Otherwise, if there exist a d ≥ 0 and a w ∈ F such that

σ(w)− α w = (u2 − u1) α− d β

then d is uniquely determined and max(d, ||f || − p + 1) is a bound for V(a, f , W). If there
does not exist such a d then max(||f || − p + 1, 0) is a bound for V(a, f , W).

Proof. We will proof the theorem by Corollary 3.3.1. Let f ∈ F[t] and g ∈ W be arbitrary
but fixed such that

a1 σ(g) + a2 g = f and ||f || ≤ ||f ||.

We will show by case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that

||g|| ≤ b

which will prove that b for the particular case is a bound for V(a, f , W).
If u1 = u2 then by Corollary 3.3.4 it follows that ||g|| ≤ 0 or

||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1

and thus by Corollary 3.3.1 max(||f || − p + 1, 0) is a bound for V(a, f , W). Otherwise, assume
u1 6= u2.

1. Assume there exist a d ≥ 0 and a w ∈ F such that

σ(w)− α w = (u2 − u1) α− d β.

Then by Lemma 3.3.4 d is uniquely determined.

If ||g||+ p− 1 > ||f || and ||g|| > 0, by Theorem 3.3.4 it follows that

||g|| = d = max(||f || − p + 1, d) ≤ max(||f || − p + 1, d).
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Otherwise, if ||g||+ p− 1 ≤ ||f || or ||g|| ≤ 0 then clearly we have

||g|| ≤ max(||f || − p + 1, d) ≤ max(||f || − p + 1, d).

Thus in both cases, by Corollary 3.3.1, max(||f || − p + 1, d) is a bound for V(a, f , W).

2. Assume there do not exist such a d and a w. Then by Theorem 3.3.8 it follows that

||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1 or ||g|| ≤ 0

and thus by Corollary 3.3.1 max(||f || − p + 1, 0) is a bound for V(a, f , W).

3.3.5.2 A Generalization for m-th Order Recurrences

Let (F(t), σ) be a Σ-extension of (F, σ) and let W be a subspace of F(t) over the constant
field K.

Let 0 6= a = (a1, . . . , aλ, . . . , aµ . . . , am) ∈ F[t]m with λ < µ,

||aλ|| = ||aµ|| = p,

||ai|| < p− 1 ∀i 6= λ, µ

and

aλ = (tp + u1 tp−1 + r1),

aµ = c (tp + u2 tp−1 + r2)
(3.20)

for some c ∈ F∗, u1, u2 ∈ F, p > 0 and r1, r2 ∈ F[t] with ||r1||, ||r2|| < p− 1.

Let f ∈ F[t]n. In this section we will deal with the problem to find a bound b for V(a, f , W).

Lemma 3.3.5. Let (F(t), σ) be a Σ-extension of (F, σ) and set

σk(t) = αk t + βk, αk ∈ F∗, βk ∈ F

for all k ∈ Z∗. Assume a ∈ F[t]m as in (3.20) and suppose that (F(t), σµ−λ) is a Σ-extension
of (F, σµ−λ). If there exists a g ∈ F(t) with ||g|| ≥ 0 and

||σag|| < ||g||+ p− 1

then we have
||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1

where

b1 : = tp + tp−1 (p βµ−m + σµ−m(u1))/αµ−m,

b2 : = σµ−m(c) tp + tp−1 (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m.
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Proof. Let d := ||g||. For i ∈ {0, 1} we have

0 = [σag]p+d−i =

[
m∑

i=1

ai σ
m−i(g)

]
p+d−i

=
[
aλ σm−λ(g) + aµ σm−µ(g)

]
p+d−i

because of (3.20) and thus

0 =
[
σµ−m(aλ) σµ−λ(g) + σµ−m(aµ) g

]
p+d−i

.

By

σµ−m(aλ) = (αµ−m t + βµ−m)p + σµ−m(u1) (αµ−m t + βµ−m)p−1 + σµ−m(r1)

= αp
µ−m tp + tp−1 (p αp−1

µ−m βµ−m + σµ−m(u1) αp−1
µ−m) + r̃1,

σµ−m(aµ) = σµ−m(c) (αµ−m t + βµ−m)p + σµ−m(u2) (αµ−m t + βµ−m)p−1 + σµ−m(r1)

= σµ−m(c) αp
µ−m tp + tp−1 (p αp−1

µ−m βµ−m σµ−m(c) + σµ−m(u2) αp−1
µ−m) + r̃2

for some r̃1, r̃2 ∈ F[t] with ||r̃i|| < p− 2 it follows that[
b1 σµ−λ(g) + b2 g

]
p+d−i

= 0

for

b1 := tp + tp−1 (p βµ−m + σµ−m(u1))/αµ−m,

b2 := σµ−m(c) tp + tp−1 (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m

and thus
||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1.

Theorem 3.3.10. Let (F(t), σ) be a Σ-extension of (F, σ) and set

σk(t) = αk t + βk, αk ∈ F∗, βk ∈ F

for all k ∈ Z∗. Assume a ∈ F[t]m as in (3.20) and suppose that (F(t), σµ−λ) is a Σ-extension
of (Fµ−λ, σ). Define

v1 : = (p βµ−m + σµ−m(u1))/αm−µ,

v2 : = (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m.

If there exists a g ∈ F(t) with ||g|| > 0 and

||σag|| < ||g||+ p− 1

then there exists a w ∈ F such that

σµ−λ(w)− αµ−λ w = αµ−λ (v2 − v1)− ||g||βµ−λ.
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Proof. Assume there exists a g ∈ F(t) with

||σag|| < ||g||+ p− 1.

Then by Lemma 3.3.5 there are

b1 := tp + tp−1 (p βµ−m + σµ−m(u1))/αµ−m,

b2 := σµ−m(c) tp + tp−1 (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m

such that

||b1 σµ−λ(g) + b2 g|| < ||g||+ p− 1.

As (F(t), σµ−λ) is a Σ-extension, in particular αµ−λ, βµ−λ ∈ F∗, we may apply Theorem 3.3.8
and obtain

σµ−λ(w)− αµ−λ w = αµ−λ (v2 − v1)− ||g||βµ−λ

for some w ∈ F.

Corollary 3.3.5. Let (F(t), σ) be a Σ-extension of (F, σ) and set

σk(t) = αk t + βk, αk ∈ F∗, βk ∈ F

for all k ∈ Z∗. Assume a ∈ F[t]m as in (3.20) and suppose that (F(t), σµ−λ) is a Σ-extension
of (F, σµ−λ). Define

v1 : = (p βµ−m + σµ−m(u1))/αm−µ,

v2 : = (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m.

If there exists a g ∈ F(t) with ||g|| > 0 and

||σag|| < ||g||+ p− 1

then v1 6= v2.

Proof. Assume there is a g ∈ F(t) with ||g|| > 0 and

||σag|| < ||g||+ p− 1.

By Theorem 3.3.10 there exists a w ∈ F such that

σµ−λ(w)− αµ−λ w = −||g||βµ−λ

and therefore

σµ−λ(
w

−||g||
)− αµ−λ

w

−||g||
= βµ−λ.

By Corollary 2.2.3 (F(t), σµ−λ) is not a Σ-extension of (Fµ−λ, σ), a contradiction.
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Theorem 3.3.11. Let (F(t), σ) be a Σ-extension of (F, σ) and set

σk(t) = αk t + βk, αk ∈ F∗, βk ∈ F

for all k ∈ Z∗. Let W be a subspace of F(t) over K. Let f ∈ F[t]n, assume a ∈ F[t]m

as in (3.20) and suppose that (F(t), σµ−λ) is a Σ-extension of (F, σµ−λ), in particular
βµ−λ ∈ F∗. Define

v1 : = (p βµ−m + σµ−m(u1))/αm−µ,

v2 : = (p βµ−m σµ−m(c) + σµ−m(u2))/αµ−m.

If v1 = v2 then max(||f || − p + 1, 0) is a bound for V(a, f , W). Otherwise, if there exist a
d ≥ 0 and a w ∈ F such that

σµ−λ(w)− αµ−λ w = (v2 − v1) αµ−λ − d βµ−λ

then d is uniquely determined and max(d, ||f || − p + 1) is a bound for V(a, f , W). If there
does not exist such a d then max(||f || − p + 1, 0) is a bound for V(a, f , W).

Proof. We will proof the theorem by Corollary 3.3.1. Let f ∈ F[t] and g ∈ W be arbitrary
but fixed such that

a1 σ(g) + a2 g = f and ||f || ≤ ||f ||.

We will show by case distinction that for an appropriate b ∈ N0 ∪ {−1} it follows that

||g|| ≤ b

which will prove that b for the particular case is a bound for V(a, f , W). If v1 = v2 then by
Corollary 3.3.5 it follows that

||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1 or ||g|| ≤ 0

and thus by Corollary 3.3.1 max(||f || − p + 1, 0) is a bound for V(a, f , W). Otherwise, assume
v1 6= v2.

1. Assume there exist a d ≥ 0 and a w ∈ F such that

σµ−λ(w)− αµ−λ w = (v2 − v1) αµ−λ − d βµ−λ.

Then by Lemma 3.3.4 d is uniquely determined.

If ||g||+ p− 1 > ||f || and ||g|| > 0, by Theorem 3.3.10 it follows that

||g|| = d = max(||f || − p + 1, d) ≤ max(||f || − p + 1, d).

Otherwise, if ||g||+ p− 1 ≤ ||f || or ||g|| ≤ 0 then clearly we have:

||g|| ≤ max(||f || − p + 1, d) ≤ max(||f || − p + 1, d).

Thus by Corollary 3.3.1 max(||f || − p + 1, d) is a bound for V(a, f , W).
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2. Assume there do not exist such a d and a w. Then by Theorem 3.3.10 it follows that
||g|| ≤ 0 or

||g|| ≤ ||f || − p + 1 ≤ ||f || − p + 1

and therefore by Corollary 3.3.1 max(||f || − p + 1, 0) is a bound for V(a, f , W).

Let (F, σ) be a ΠΣ-field and (F(t), σ) a Σ-extension of (F, σ). Then Theorem 3.3.7 guaran-
tees that for any k 6= 0 the difference field (F(t), σk) is a Σ-extension of (F, σk). Therefore
we can apply Theorem 3.3.11 to get a polynomial degree bound.
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3.4 Polynomial Degree Boundings for Proper Sum Extensions

Let (F(t), σ) be a proper sum extension of (F, σ), 0 6= a ∈ F[t]m and f ∈ F[t]n. In the
following we look at the problem to find a bound b for V(a, f , F[t]) which is needed for the
incremental reduction method introduced in Section 3.1.3.2. Whereas in Section 3.4.7 we
take into consideration the general situation, we regard a polynomial degree bound for the
special case a ∈ Fm in Section 3.4.9.

In particular, for the general situation I find a method to determine a polynomial degree
bound; although I failed to prove termination of this method, I achieved an important step to
solve difference equations where proper sum extensions are involved. If the method terminates
for a specific difference equation, it is guaranteed that the polynomial degree bound is correct.
Otherwise, by an upper bound of computation steps in this method, it is guaranteed that the
method will stop; in this situation a warning7 will be printed out with the hint to increase
the bound in order to find more solutions.

Moreover, I consider the special case a ∈ Fm for which I find a simple polynomial de-
gree bound. In addition, for this special case I dig up remarkable results concerning some
properties of solutions for a difference equations.

3.4.1 A Simple Check

Proposition 3.4.1. Let (F(t), σ) be a proper sum extension of (F, σ), f ∈ F[t]n and 0 6= a ∈
F[t]m. Let b := [a]||a|| . If there does not exist a g ∈ F∗ such that

σbg = 0

then ||f || is a bound for V(b, f , F[t]).

Proof. Assume there exist a g ∈ F[t] and a c ∈ Kn with d := ||g|| > ||f || and

σag = c f .

Take such a g, i.e. there are a w ∈ F∗ and an r ∈ F[t]d−1 such that

g = w td + r.

Let l := ||a||. We have
σag = c f ∈ F[t]l+d−1

⇓

σag ∈ F[t]l+d−1

m

a1 σm−1(w td + r) + · · ·+ am (w td + r) ∈ F[t]d+l−1

m

a1 σm−1(w) td + · · ·+ am w td ∈ F[t]d+l−1

m
7This situation has never been occurred up to now. I strongly believe that this method must terminate

in each situation. Nevertheless, since I have not found a proof for termination yet, I have to introduce this
bound for the maximal computation steps in order to turn the method to an heuristical algorithm.
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a1 σm−1(w) td + · · ·+ am w td

]
d+l

= 0

m

[a1]l σm−1(w) + · · ·+ [am]l w = 0

m

σbw = 0.

Assume there does not exist a w ∈ F∗ such that σbw = 0. Then by the above considerations
there do not exist a g ∈ F[t] and a c ∈ Kn with ||g|| > ||f || such that

σag = c f

and consequently ||f || is a bound for V(a, f , F[t]).

3.4.2 The Truncated Solution Space and Polynomial Degree Bounds

From now on we will assume for the whole Section 3.4 that (F(t), σ) is a proper sum
extension of (F, σ) with constant field K, W is a subspace of F[t] over K and

0 6= a = (a1, . . . , an) ∈ F[t]n,

f = (f1, . . . , fλ) ∈ F[t]λ.

We already know the definition of the solution space

V(a, f , W) =
{
c∧g ∈ Kλ ×W |σag = c f

}
and as already indicated in Section 3.2.3 we may write

W = tr W⊕Wr−1

for r ≥ 0. In the following we are not interested in all

g = g1 ⊕ g2 ∈ tr W⊕Wr−1

and all c ∈ Kλ such that
σag = c f

but only in that solution part g1 ∈ tr W, i.e. in the solution space

V(a, f , r, W) :=
{

g ∈ tr W | ∃ c ∈ Kλ, h ∈ Wr−1 : σa(g + h) = c f
}

.

Now we want also to “forget” the vector f . More precisely, we are interested in those solutions
g ∈ tr W such that there is an f ∈ F[t]||a||+r−1 with

σag = f.

This means we consider the vector space

Vr(a, W) :=
{
g ∈ tr W |σag ∈ F[t]||a||+r−1

}
.

This vector space is also called the truncated solution space.
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Lemma 3.4.1. Let r ≥ max(||f || − ||a||+ 1, 0). Then

V(a, f , r, W) ⊆ Vr(a, W).

Proof. Let g ∈ V(a, f , r, W), i.e. there are a c ∈ Kλ and an h ∈ Wr−1 such that

σa(g + h) = c f .

Since ||f || ≤ r + ||a|| − 1, it follows that

σa(g + h) ∈ W||a||+r−1

and as
σah ≤ ||a||+ ||h|| = ||a||+ r − 1,

we have
σag ∈ W||a||+r−1.

Consequently g ∈ Vr(a, W) and therefore V(a, f , r, W) ⊆ Vr(a, W).

Theorem 3.4.1. Let r ≥ max(||f || − ||a||+ 1, 0) and m ≥ 0 . If

Vr(a, F[t]) = Vr(a, F[t]m)

then m + r is a bound for Vr(a, F[t]).

Proof. By Lemma 3.4.1 we have V(a, f , r, F[t]) ⊆ Vr(a, F[t]) and therefore by assumption it
follows that

V(a, f , r, F[t]) ⊆ Vr(a, F[t]m). (3.21)

Let c∧g ∈ V(a, f , F[t]) with

g = g1 ⊕ g2 = tr F[t]⊕ F[t]r−1.

This means we have
σa(g1 + g2) = c f

and therefore it follows by definition that

g1 ∈ V(a, f , r, F[t]).

But by (3.21) we have ||g1|| ≤ r + m, therefore ||g|| ≤ r + m and thus

c∧g ∈ V(a, f , F[t]r+m).

Since
V(a, f , F[t]m+r) ⊇ V(a, f , F[t]),

it follows equality and therefore m + r is a bound of V(a, f , F[t]).

Definition 3.4.1. Let V be a subspace of F[t] over K. We say that g = (g1, . . . , gl) ∈ F[t]l

generates V over K, if
V = {k1 g1 + · · ·+ kl gl | ki ∈ K}.

♦
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Definition 3.4.2. We define for m ≥ −1 the function

fm :
{

N0 → P(F[t])
r 7→ Vr(a, F[t]m).

♦

Proposition 3.4.2. Let
V(b, (0) , F) � basis - C∧g

where b = [a]||a||. Then tr g generates f0(r) over K for all r ≥ 0, i.e.

f0(r) = {k1 tr g1 + · · ·+ kl t
r gl | ki ∈ K}

where g = (g1, . . . , gl).

Proof. We have

p ∈ f0(r) = Vr(a, F) =
{
g ∈ tr F |σa(g) ∈ F[t]||a||+r−1

}
m

∃h ∈ F : p = h tr & σbh = 0

m

∃c ∈ K ∃h ∈ F : p = h tr & (c, h) ∈ V(b, (0) , F)

where the first equivalence can be easily extracted from the proof of Proposition 3.4.1. It
follows immediately8 that g generates f0(r).

Lemma 3.4.2. Let m ≥ −1 and r ≥ 0. Then

fm(r) = fm+1(r) ∩ F[t]m+r.

Proof. We have

fm+1(r) ∩ F[t]m+r = Vr(a, F[t]m+1) ∩ F[t]m+r

=
{
g ∈ tr Fm+1 |σag ∈ F[t]||a||+r−1

}
∩ F[t]m+r

=
{
g ∈ tr Fm |σag ∈ F[t]||a||+r−1

}
= Vr(a, F[t]m) = fm(r).

Lemma 3.4.3. Let m ≥ −1. fm(r) is a subspace of fm+1(r) over K.

Proof. fm(r) and fm+1(r) are vector spaces over K and we have fm(r) ⊆ fm+1(r) by
Lemma 3.4.2.

Lemma 3.4.4. For m ≥ −1 and r ≥ 0 we have9

fm+1(r) ⊆ fm(r + 1) + tr F.

8In particular, if f0(r) = {0} then by convention C∧g = (0, 0) and thus we have g = (0) ∈ F[t] which
clearly generates f0(r) = {0}.

9See Section 3.1.2.1 for the definition of the sum of two vector spaces over the same field K.
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Proof. We have

g ∈ fm+1(r) ⇔ g ∈ Vr(a, F[t]m+1)
⇔ g ∈ tr F[t]m+1 & σag ∈ F[t]||a||+r−1

⇒ g ∈ tr+1 F[t]m + tr F & σag ∈ F[t]||a||+r (3.22)

⇔ g ∈ Vr+1(a, F[t]m)
⇔ g ∈ fm+1(r + 1) + tr F.

Corollary 3.4.1. For m ≥ −1 and r ≥ 0 we have

fm+1(r) =
{

g ∈ fm(r + 1) + tr F | [σag]||a||+r = 0
}

.

Proof. By assuming [σag]||a||+r = 0 we may replace the left-right implication in line (3.22) by
an equivalence.

Proposition 3.4.3. Let m ≥ −1 and r ≥ 0. Then fm(r) is a finite dimensional subspace of
F[t]m over K.

Proof. We will proof the proposition by induction on m. For m = −1 we have f−1(r) =
Vr(a, {0}) = {0} and by Proposition 3.4.2 we get a finite set which generates f0(r) over K
for all r ≥ 0. Consequently the induction base holds. Now let m ≥ 0 and assume that for
all r ≥ 0 the vector space fm(r) is finite dimensional, i.e. let g = (g1, . . . , gl) be a basis of
fm(r + 1) for an arbitrary but fixed r ≥ 0. Now consider

f := [σag]||a||

and let
V(b, f , F) � basis - C∧h

for b := [a]||a||. Then one can see by Corollary 3.4.1 that Cg + h generates the vector space
fm+1(r).

Notation 3.4.1. Let r, m ≥ 0 and {g1, . . . , gk} ⊆ tr F[t]m be a basis of fm(r) = Vr(a, F[t]m).
We write

fm(r) � basis - (g1, . . . , gk).

In particular, if fm(r) = {0}, we write

fm(r) � basis - (0).

♦

Given the truncated solution space Vr(a, F[t]) with

Vr(a, F[t]) = Vr(a, F[t]m)

for a specific m, the following theorem provides a shortcut in order to compute the solution
space V(a, f , F[t]) for a given f . I will skip the corresponding proof.
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Remark 3.4.1. Let (F(t), σ) be a proper sum extension of (F, σ), 0 6= a ∈ F[t]n and f ∈ F[t]λ.
Let r ≥ max(||f || − ||a||+ 1, 0) and assume

Vr(a, F[t]) = Vr(a, F[t]m).

Let
Vr(a, F[t]m) � basis - g1.

with g1 ∈ (tr F[t]m)l for some l ≥ 1. Let

V(a, f∧(σag1), F[t]r−1) � basis - C∧D∧g0

with C ∈ Ks×λ, D ∈ Ks×l and g0 ∈ F[t]sr−1 for some s ≥ 1. Then

V(a, f , F[t]) � basis - C∧(D · g1 + g0).

♦
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3.4.3 Collecting Further Information for the Truncated Solution Space

As in the previous section we assume that (F(t), σ) is a proper sum extension of (F, σ) with
constant field K and

0 6= a = (a1, . . . , an) ∈ F[t]n,

f = (f1, . . . , fλ) ∈ F[t]λ.

From now on we will assume that (F(t)[x], σ) is a difference ring extension of (F(t), σ) where
x is transcendental over F(t) with σ(x) = x. In particular, we have

constσF(t)[x] = K[x],

i.e. we have to deal with a constant ring, not anymore with a constant field. Furthermore
for f =

∑
i fi x

i ∈ F(t)[x] with fi ∈ F(t) and p ∈ F(t) we introduce the notation

f [p] :=
∑

i

fi p
i.

In addition, we introduce for w = (w1, . . . , wr) ∈ F(t)[x]r the notation

w[p] := (w1[p], . . . , wr[p]) ,

for a matrix M =

m11 . . . m1ν
...

...
mµ1 . . . mµν

 ∈ F(t)[x]µ×ν the notation

M[p] :=

m11[p] . . . m1ν [p]
...

...
mµ1[p] . . . mµν [p]


and for a set S ⊆ F(t)[x]r the notation

S[p] := {w[p] |w ∈ S}.

Definition 3.4.3. Let m ≥ 0, k ≥ 1. We call a map g : N0 → F[t]k m-polynomial, if g(d) =
g(d)[m + d] where

g(d) =
(
g
(d)
1 , . . . , g

(d)
k

)
∈ F[t, x]k

with

g
(d)
i = td

m∑
j=0

gij tj

and gij ∈ F[x]. ♦

Definition 3.4.4. Let m ≥ 0 and γ ≥ 0. We call fm γ-computable by g : N0 → F[t]k if

1. g is m-polynomial,

2. for all r ≥ γ we have that g(r) generates fm(r) over K and

3. for all r ≥ 0 we have that g(r) generates a subspace of fm(r) over K.
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♦

Proposition 3.4.4. Let
V(b, (0) , F) � basis - g

where b := [a]||a|| and define

h :
{

N0 → F[t]k

d 7→ g td.

Then f0(r) is 0-computable by h.

Proof. This follows by Proposition 3.4.2.

Definition 3.4.5. Let m ≥ 0, r ≥ 0 and g : N0 → F[t]k be m-polynomial. We define

Vg
m,r+1 :=

{
c∧h ∈ Kk × F | [σa(c g(r + 1) + h tr)]||a||+r = 0

}
.

♦

Remark 3.4.2. In the following we will write Vm,r+1 instead of Vg
m,r+1 if it is clear from the

context. ♦

Lemma 3.4.5. Let m ≥ 0, r ≥ 0 and let g : N0 → F[t]k be m-polynomial. Then Vm,r+1 is a
vector space over K.

Definition 3.4.6. Let m ≥ 0, r ≥ 0 and g : N0 → F[t]k be m-polynomial. We define

Wm,r+1 := {c g(r + 1) + h tr | c∧h ∈ Vm,r+1}.

♦

Lemma 3.4.6. Let m ≥ 0, r ≥ 0 and g : N0 → F[t]k be m-polynomial. Then Wm,r+1 is a
vector space over K.

Proof. This follows immediately by Lemma 3.4.5.

Theorem 3.4.2. Let m ≥ 0 and fm be γ-computable by g : N0 → F[t]k. Then for all r ≥ γ
we have

fm+1(r) = Wm,r+1.

Proof. Let r ≥ γ. Then
w ∈ fm+1(r)

m Cor. 3.4.1

w ∈ fm(r + 1) + tr F : [σaw]||a||+r = 0

m (3.23)

∃ c ∈ Kk ∃h ∈ F : w = c g(r + 1) + tr h & [σaw]||a||+r = 0

m

∃ c∧h ∈ Vm,r+1 : w = c g(r + 1) + tr h

m

w ∈ Wm,r+1.



184 CHAPTER 3. SOLVING DIFFERENCE EQUATIONS

Corollary 3.4.2. Let m ≥ 0 and fm be γ-computable by g : N0 → F[t]k. Then for all r ≥ 0
we have

fm+1(r) ⊇ Wm,r+1.

Proof. The proof is the same as in Theorem 3.4.2 but the equivalence (3.23) must be replaced
by a top-down implication.

Definition 3.4.7. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and c∧h ∈ K[x]k × F[x]. We
define for d ∈ N0

q
(d)
c∧h :=

[
σa(

k∑
s=1

c g(d+1) + h td)

]
||a||+d

and
Vm :=

{
c∧h ∈ K[x]k × F[x] | ∀d ≥ 0 : q

(d)
c∧h[m + d + 1] = 0

}
.

♦

Lemma 3.4.7. Let m ≥ 0 and g : N0 → F[t]k be m-polynomial. Vm is a module over K[x].

Remark 3.4.3. One can immediately see that

Vm,r+1 =
{
c∧h ∈ Kk × F | q(r)

c∧h[m + r + 1] = 0
}

.

♦

Lemma 3.4.8. Let m ≥ 0 and let g : N0 → F[t]k be m-polynomial. We have

∀ r ≥ 0 : Vm[m + r + 1] ⊆ Vm,r+1.

Proof. This follows immediately by Remark 3.4.3.

Definition 3.4.8. Let m, r ≥ 0 and g : N0 → F[t]k be m-polynomial. We define

W(r)
m :=

{
c g(r+1) + tr h | c∧h ∈ Vm

}
.

♦

Lemma 3.4.9. Let m ≥ 0 and g : N0 → F[t]k be m-polynomial. We have

W(r)
m [m + r + 1] = {c g(r + 1) + tr h | c∧h ∈ Vm[m + r + 1]}.

Proof. This follows by

W(r)
m [m + r + 1] =

{
c[m + r + 1]g(r+1)[m + r + 1] + tr h[m + r + 1] | c∧h ∈ Vm

}
= {c g(r + 1) + tr h | c∧h ∈ Vm[m + r + 1]}.

Lemma 3.4.10. Let m ≥ 0 and g : N0 → F[t]k be m-polynomial. We have

∀r ≥ 0 : W(r)
m [m + r + 1] ⊆ Wm,r+1.

Proof. This follows by Lemmas 3.4.8 and 3.4.9.
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Corollary 3.4.3. Let m ≥ 0 and fm be γ-computable by g : N0 → F[t]k. We have

∀r ≥ 0 : W(r)
m [m + r + 1] ⊆ Wm,r+1 ⊆ fm+1(r).

Proof. This a consequence of Lemmas 3.4.10 and 3.4.8.

Corollary 3.4.4. Let m ≥ 0 and let fm be γ-computable by g : N0 → F[t]k. Then

∀r ≥ γ : W(r)
m [m + r + 1] ⊆ Wm,r+1 = fm+1(r).

Proof. This follows by Lemma 3.4.10 and Theorem 3.4.2.
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3.4.4 The Truncated Solution and Difference Equations

As in the previous sections we assume that (F(t), σ) is a proper sum extension of (F, σ). For
k ∈ Z we define β(k) ∈ F such that

β(k) := σk(t)− t.

As in the previous section we assume that

0 6= a = (a1, . . . , an) ∈ F[t]n,

f = (f1, . . . , fλ) ∈ F[t]λ

and that (F(t)[x], σ) is a difference ring extension of (F(t), σ) where x is transcendental over
F(t) with σ(x) = x. Additionally, recall the notation

f [p] =
∑

i

fi p
i

for f =
∑

i fi x
i ∈ F(t)[x] with fi ∈ F(t) and p ∈ F(t).

Lemma 3.4.11. Let

a =
p∑

j=0

aj tj ∈ F[t], ap 6= 0

g =
e∑

j=d+1

gj−d−1 tj ∈ F[t], ge−d−1 6= 0

with gj = aj = 0 for all j < 0. If 0 ≤ i ≤ e + p and k ≥ 0 then

[
a σk(g)

]
e+p−i

=
i∑

s=0

ap+s−i

s∑
l=0

σk(gl+e−d−1−s)
(

l + e− s

e− s

)
βl

(k).

Proof. We have [
a σk(g)

]
e+p−i

=
i∑

s=0

ap+s−i

[
σk(g)

]
e−s

for 0 ≤ i ≤ e + p and

[
σk(g)

]
e−s

=

[
e∑

l=0

σk(gl−d−1)(t + β(k))
l

]
e−s

=
e∑

l=e−s

σk(gl−d−1)
[
(t + β(k))

l
]
e−s︸ ︷︷ ︸

( l
e−s)βl−e+s

(k)

=
s∑

l=0

σk(gl−d−1+e−s)
(

l + e− s

e− s

)
βl

(k)

for 0 ≤ s ≤ e + p. Combining these two identities, the lemma follows.
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Proposition 3.4.5. Let a = (a1, . . . , an) ∈ F[t]n with p := ||a||,

ai =
p∑

j=0

aij tj ∈ F[t],

g =
e∑

j=d+1

gj−d−1 tj ∈ F[t], ge−d−1 6= 0

with gj = 0 for all j < 0. If 0 ≤ i ≤ e + p then

[σag]e+p−i =
n∑

j=1

ajp σn−j(ge−d−1−i)

+
n∑

j=1

i−1∑
s=0

aj,p+s−i

s∑
l=0

σn−j(gl+e−d−1−s)
(

l + e− s

e− s

)
βl

(n−j)

+
n∑

j=1

ajp

i∑
l=1

σn−j(gl+e−d−1−i)
(

l + e− i

e− i

)
βl

(n−j).

Proof. By Lemma 3.4.5 it follows that

[σag]e+p−i =
n∑

j=1

i∑
s=0

aj,p+s−i

s∑
l=0

σn−j(gl+e−d−1−s)
(

l + e− s

e− s

)
βl

(n−j)

=
n∑

j=1

i−1∑
s=0

aj,p+s−i

s∑
l=0

σn−j(gl+e−d−1−s)
(

l + e− s

e− s

)
βl

(n−j)

+
n∑

j=1

ajp

i∑
l=0

σn−j(gl+e−d−1−i)
(

l + e− i

e− i

)
βl

(n−j)

and thus by

n∑
j=1

ajp

i∑
l=0

σn−j(gl+e−d−1−i)
(

l + e− i

e− i

)
βl

(n−j)

=
n∑

j=1

ajp σn−j(ge−d−1−i) +
n∑

j=1

ajp

i∑
l=1

σn−j(gl+e−d−1−i)
(

l + e− i

e− i

)
βl

(n−j)

the proposition follows.

Theorem 3.4.3. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and define b := [a]||a||. Then
there exists a w ∈ F[x]k such that

Vm =
{
c∧h ∈ K[x]k × F[x] |σbh = cw

}
.

Proof. Let a = (a1, . . . , an) with p := ||a|| and

ai =
p∑

j=0

aij tj ∈ F[t].
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Since

g :
{

N0 → F[t]k

d 7→ g(d)[m + d]

is m-polynomial, we have g(d) =
(
g
(d)
1 , . . . , g

(d)
k

)
∈ F[t, x]k with

g
(d)
i = td

m∑
j=0

gij tj

where gij ∈ F[x]. Define

wi := −
n∑

j=1

m∑
s=0

aj,p+s−m−1

s∑
l=0

σn−j(gi,l+m−s)
(

l + x− s

x− s

)
βl

(n−j) (3.24)

+
n∑

j=1

ajp

m+1∑
l=1

σn−j(gi,l−1)
(

x + l − i

x− i

)
βl

(n−j) ∈ F[x]

for 1 ≤ i ≤ k. Now let c∧h ∈ K[x]k × F[x]. Then we have

σbh = cw

m

σbh[m + d + 1] = c[m + d + 1]w[m + d + 1] ∀ d ∈ N0.

Using (3.24) we obtain

σbh[m + d + 1]− c[m + d + 1]w[m + d + 1]

||

k∑
ν=1

cν [m + d + 1]

 n∑
j=1

m∑
s=0

aj,p+s−m−1

s∑
l=0

σn−j(gν,l+m−s[m + d + 1])
(

l + m + d + 1− s

m + d + 1− s

)
βl

(n−j)

+
n∑

j=1

ajp

m+1∑
l=1

σn−j(gi,l−1[m + d + 1])
(

m + d + 1 + l − i

m + l + 1− i

)
βl

(n−j)

 + σbh[m + d + 1] (3.25)

for d ≥ 0. By replacing e by m+d+1 and i by m+1 in Proposition 3.4.5 one sees immediately
that (3.25) is equal to

k∑
ν=1

cν [m + d + 1]

σa

m∑
j=0

gνj [m + d + 1] td+1+j + td h[m + d + 1]


p+d

||σa

k∑
ν=1

cν [m + d + 1]
m∑

j=0

gνj [m + d + 1] td+1+j + td h[m + d + 1]


p+d

||
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q
(d)
c∧h[m + d + 1].

Thus
σbh = cw

m (3.26)

∀d ≥ 0 : q
(d)
c∧h[m + d + 1] = 0

and consequently
Vm =

{
c∧h ∈ K[x]k × F[x] |σbh = cw

}
.

Theorem 3.4.4. Let m ≥ 0 and g : N0 → F[t]k be m-polynomial. Define b := [a]||a|| and let
w ∈ F[x]k be defined by (3.24) in the proof of Theorem 3.4.3. Then for all r ≥ 0 we have

Vm,r+1 =
{
c∧h ∈ Kk × F |σbh = cw[m + r + 1]

}
.

Proof. Let c∧h ∈ Kk × F. Then by the proof of Theorem 3.4.3 we obtain immediately that

σbh = cw[m + r + 1]

m by (3.26)

q
(r)
c∧h[m + r + 1] = 0

m Remark 3.4.3

c∧h ∈ Vm,r+1.

Corollary 3.4.5. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and r ≥ 0. Then Vm,r+1 is a
finite dimensional vector space over K.

Proof. Let b := [a]||a||. By Theorem 3.4.4 it follows that there is a w ∈ Fk such that

Vm,r+1 =
{
c∧h ∈ Kk × F |σbh = cw

}
= V(b,w, F).

Thus by Corollary 3.1.1 Vm,r+1 is finite dimensional.



190 CHAPTER 3. SOLVING DIFFERENCE EQUATIONS

3.4.5 Some Notations and Facts about Modules

Let A be a module over a ring B and, more generally, consider An as a module over B. Let
M be a submodule of An over B. We call M finitely generated if there exists a finite set

G := {g1, . . . ,gd} ⊆ M ⊆ An

such that
M = {k1 g1 + · · ·+ kd gd | ki ∈ B}.

In this case we introduce as for the vector space case (Section 3.2.1.2) a generator matrix

MM :=

g1
...

gd

 ,

this means we have
M =

{
k ·MM |k ∈ Bd

}
.

We will write
M � span - MM

in order to indicate that MM is a generator matrix for M. For the special situation M =
{(0, . . . , 0)} ⊆ An, the generator matrix is

MB = (0, . . . , 0) ∈ A1×n.

G = {g1, . . . ,gd} is a basis of the finitely generated module M if the gi in G are linearly
independent over B. d is called the dimension of M. In this case MM is called basis matrix
of M; we will write

M � basis - MM

to indicate this fact. The following lemmas can be found for instance in [Sim84, Coh89,
Lan97].

Lemma 3.4.12. Let M be a module over a ring A. If M is finitely generated and has a basis
of dimension d then all bases of M have dimension d.

Lemma 3.4.13. Let M be a finitely generated module over a principle ideal domain A. Then
each submodule of M over A is finitely generated.

Lemma 3.4.14. Consider An as a module over a principle ideal domain A and let M be a
submodule of An over A. Then M is finitely generated over A and has a basis over A.

Remark 3.4.4. Consider An as a module over an Euclidean domain A and let M be a
submodule of An over A. Given

M � span - M

then the matrix M can be transformed10 by row operations

1. Interchange row11 ri by row rj .

10An algorithm can be found for instance in [Sim84, Theorem 6.1.8].
11ri means the row at position i
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2. Replace row ri by row k ri where k ∈ A∗.

3. Replace row ri by row ri + k rj where i 6= j and k ∈ A.

to a matrix M′ such that12

M � basis - M′

and M′ is in row-echelon form; this means that all entries below the left most nonzero entry
of a row are zero, in other words all entries below the “stair case” are zero. If M,M′ ∈ An×m

then we have13

{a ∈ Am |M · a = 0} =
{
a ∈ Am |M′ · a = 0

}
.

♦

Remark 3.4.5. Consider An as a module over an Euclidean domain A and let A ∈ Am×n.
Then by row and column14 operations one can compute15 a reduced matrix

D :=



d1

d2 0
. . .

dr

0 0
. . .

0


with di ∈ F∗ and di | di+1 for 1 ≤ i < r and obtains matrices16 P ∈ GLm(A) and Q ∈ GLn(A)
such that

D = PAQ.

Now consider the submodule
M := {f ∈ An |A · f = 0}

of An over A. Then by Lemmas 3.4.12 and 3.4.14 M is finitely generated and has a basis
whose dimension d is uniquely determined. By Theorem 6.7.2 in [Sim84] it follows that

d = n− r

and that the last d columns of Q are a basis of M. ♦

Definition 3.4.9. Let A be a module over a ring B, consider An as a module over B and let
f ∈ An. Then we define the annihilator of f over B by

AnnB(f) = {c ∈ Bn | c f = 0}.

♦

Lemma 3.4.15. Let A be a module over a ring B and f ∈ An. Then AnnB(f) is a submodule
of An over B.

12This property is a direct consequence of Theorem 6.1.2 and Corollary 6.1.7 in [Sim84].
13This is a consequence of Theorems 6.4.4 and 6.5.1 in [Sim84].
14Column operations are defined in a completely analogous manner by replacing the notion row by the

notion column in Remark 3.4.4.
15An algorithm is described in the proof of Theorem 6.5.6 in [Sim84].
16GLm(A) denotes the group of square matrices of length m with entries in A.
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3.4.6 Some Ideas to Compute the Truncated Solution Space

The following theorem glues the previous results together and gives an idea about how one
can find a m + 1-polynomial h : N0 → F[t]l for some l ≥ 1 such that fm+1(r) is δ computable
by h for some δ ≥ γ.

Theorem 3.4.5. Let m ≥ 0 and fm be γ-computable by g : N0 → F[t]k. Assume there is a
δ ≥ γ such that

∀r ≥ δ : W(r)
m [m + r + 1] = Wm,r+1.

Then
∀r ≥ δ : fm+1(r) = W(r)

m [m + r + 1].

Assume Vm is a finitely generated, in particular assume

Vm
� span - C∧q

with C ∈ K[x]l×k and q ∈ F[t][x]l for some l ≥ 1. Define

h(d) := C · g(d+1) + td q.

Then for all d ≥ 0 it follows that h(d) generates W(d)
m and fm+1 is δ-computable by

h :
{

N0 → F[t]l

r 7→ h(r)[m + r + 1].

Proof. By Corollary 3.4.4 and the assumption W(r)
m [m + r + 1] = Wm,r+1 for all r ≥ δ it

follows immediately that

∀r ≥ δ : fm+1(r) = W(r)
m [m + r + 1].

By the Definition 3.4.8 of W(d)
m we can conclude that h(d) generates W(d)

m for all d ≥ 0. Thus

∀r ≥ 0 : W(r)
m [m + r + 1] ⊆ fm+1(r)

by Corollary 3.4.3 and it follows that fm+1 is δ-computable by h.

This theorem will provide later a stopping condition for Algorithm 3.4.2.

Theorem 3.4.6. Let m ≥ 0 and fm+1 be δ-computable by g : N0 → F[t]k, i.e. fm+1(r) is
generated by g(r) = g(r)[m + r] where g(r) =

(
g
(r)
1 , . . . , g

(r)
k

)
∈ F[t, x]k with

g
(r)
i = tr

m∑
j=0

gij tj

and gij ∈ F[x]. If
||g(0)|| ≤ m

then for all r ≥ δ and all j ≥ 0 we have

fm(r) = fm+j(r).



3.4. POLYNOMIAL DEGREE BOUNDINGS FOR PROPER SUM EXTENSIONS 193

Proof. If ||g(0)|| ≤ m then for all r ≥ δ we have

||g(r)|| ≤ m + r.

By Lemma 3.4.2 we have
fm(r) = fm+1(r) ∩ F[t]m+r.

Since fm+1(r) is generated by g(r)[m + r], it follows that

fm(r) = fm+1(r)

for all r ≥ δ. Thus the induction base holds. Now let i ≥ 1 and assume fm+i(r) = fm(r) for
all r ≥ δ. Then by Corollary 3.4.1 it follows for all r ≥ δ that

fm+i+1(r)
Cor. (3.4.1)

=
{

g ∈ fm+i(r + 1) + tr F | [σag]||a||+r = 0
}

I.A.=
{

g ∈ fm(r + 1) + tr F | [σag]||a||+r = 0
}

Cor. (3.4.1)
= fm+1(r)

I.B.= fm(r).
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3.4.7 Computing the Truncated Solution Space For Proper Sum Exten-
sions

Also for this Subsection 3.4.7 we will assume that (F(t), σ) is a proper sum extension of (F, σ),

0 6= a = (a1, . . . , an) ∈ F[t]n,

f = (f1, . . . , fλ) ∈ F[t]λ

and that (F(t)[x], σ) is a difference ring extension of (F(t), σ) where x is transcendental over
F(t) and σ(x) = x. Additionally, we again recall the notation

f [p] =
∑

i

fi p
i

Furthermore, for f =
∑

j fj xj ∈ F[t][x] with fj ∈ F[t] we write

[f ]xi := fi;

and for f =
∑

j fj tj ∈ F[x][t] with fj ∈ F[x] we write

[f ]ti := fi.

Let m ≥ 0 and assume we have given a m-polynomial g : N0 → F[t]k such that fm is
γ-computable by g. If (F, σ) is a ΠΣ-field over K, we will achieve the following two results.

• We explain how one can find a specific δ ≥ γ such that for all r ≥ δ we have

∀r ≥ δ : W(r)
m [m + r + 1] = Wm,r+1.

• Furthermore we show that Vm is finitely generated and how one can compute a basis
matrix for Vm.

After finding these two ingredients, Theorem 3.4.5 then tells us how one can compute a
m + 1-polynomial h : N0 → F[t]l such that fm+1 is δ-computable by h.

Lemma 3.4.16. Let 0 6= b ∈ Fn and σbg = f with

g =
d∑

i=0

gi x
i ∈ F[x] and f =

e∑
i=0

fi x
i ∈ F[x].

Then d = e and σbgi = fi for 0 ≤ i ≤ d.

Proof. We have

σbg = σb(
d∑

i=0

gi x
i) =

d∑
i=0

(σbgi) xi =
e∑

i=0

fi x
i.

Due to the fact that x is transcendental over F, it follows that d = e and

σbgi = fi

for 1 ≤ i ≤ d.
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Lemma 3.4.17. Let 0 6= b ∈ Fn and assume that {h1, . . . , hρ} is a basis for the vector space
{h ∈ F |σbh = 0}. Then

{g ∈ F[x] |σbg = 0} = h1 K[x] + · · ·+ hρ K[x].

Proof. If g ∈ h1 K[x] + · · ·+hρ K[x] then clearly we have g ∈ F[x] and σbg = 0. Contrary, let
g ∈ F[x] with σbg = 0, say g =

∑l
i=0 gi x

i with gi ∈ F. Then by Lemma 3.4.16 it follows that

σbgi = 0

for 0 ≤ i ≤ l, i.e. there are ci1, . . . , ciρ ∈ K such that

gi = ci1 h1 + · · ·+ ciρ hρ.

Hence

g =
(
1, x, . . . , xl

)  g0
...
gl

 =
(
1, x, . . . , xl

)
(

c01 . . . c0ρ
...

...
cl1 . . . clρ

 ·

 h1
...

hρ

)

= (
(
1, x, . . . , xl

)
·

c01 . . . c0ρ
...

...
cl1 . . . clρ

)

︸ ︷︷ ︸
∈K[x]ρ

 h1
...

hρ



and hence the lemma is proven.

Lemma 3.4.18. Let 0 6= b ∈ Fn and w = (w1, . . . , wk) ∈ F[x]k with

wi =
d∑

j=0

wij xj

for 1 ≤ i ≤ k. Let g ∈ F[x] and c ∈ K[x]k with

σbg = cw.

Define
v := ( w10, . . . , wk0,

w11, . . . , wk1,
...

...
w1d, . . . , wkd) ∈ Fµ

with µ := k (d + 1) and let

V(b,v, F) � basis - A∧p

with A ∈ Kl×µ and p ∈ Fl for some l ≥ 1. Then there exists an m ∈ K[x]l such that

m (A · v) = cw.
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Proof. Let c = (c1, . . . , ck) ∈ K[x]k with ci =
∑s

j=0 cij xj , 1 ≤ i ≤ k. Due to the assumption

σbg = cw

and Lemma 3.4.16 there exist gi ∈ F for 0 ≤ i ≤ d + s such that

σbgi = [cw]xi =
k∑

r=1

i∑
j=1

crj wr,i−j .

Thus there exist ei ∈ Kµ for 1 ≤ i ≤ d + s with

ei v =
k∑

r=1

i∑
j=1

crj wr,i−j = σbgi =: hi (3.27)

or, in other words,
ei∧gi ∈ V(a,v, F).

Since A∧p is a basis matrix for V(a,v, F), one can find bi ∈ Kl for 1 ≤ i ≤ d + s such that

bi · (A∧p) = ei∧gi.

Consequently there is a B ∈ K(d+s)×l such that

BA =

 e0
...

ed+s

 .

Then by (3.27) we have  e0
...

ed+s

 · v =

 h0
...

hd+s


and thus (

1, x, . . . , xd+s
)

(

 e0
...

ed+s

 · v) =
d+s∑
j=0

hj xj = cw.

Therefore

cw =
(
1, x, . . . , xd+s

)
((BA) · v) = (

(
1, x, . . . , xd+s

)
·B︸ ︷︷ ︸

=:m

) (A · v)

which proves the lemma.

Let g : N0 → F[t]k be m-polynomial and define

v := ( [w1]
x
0 , . . . , [wk]

x
0 ,

[w1]
x
1 , . . . , [wk]

x
1 ,

...
...

[w1]
x
d , . . . , [wk]

x
d) ∈ Fµ

(3.28)

for µ := k (d + 1) where
w = (w1, . . . , wk) ∈ F[x]k

is defined by (3.24) in the proof of Theorem 3.4.3 for that g.



3.4. POLYNOMIAL DEGREE BOUNDINGS FOR PROPER SUM EXTENSIONS 197

Assuming that AnnK[x]((B · v)∧−w) is a finitely generated module over the Euclidean
domain K[x], the following theorem tells us that also Vm is finitely generated over K[x] and
describes how one can compute a generator matrix which spans the vector space Vm.

Theorem 3.4.7. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and define v ∈ Fµ and w ∈
F[x]k as stated in (3.28) for that g. Assume that AnnK[x]((B · v)∧−w) is a finitely generated
module. Then Vm is a finitely generated module over K[x]. Let 0 6= b := [a]t||a|| ∈ Fn and let

V(b,v, F) � basis - B∧q

with B ∈ Ks×µ and q ∈ Fs for some s ≥ 1. Furthermore let

AnnK[x]((B · v)∧−w) � basis - C∧D

with C ∈ K[x]l×s and D ∈ K[x]l×k for some l ≥ 1 such that

C · (B · v) = D ·w. (3.29)

Then
Vm

� span - D∧(C · q).

Proof. By Theorem 3.4.3 we have

Vm =
{
c∧h ∈ K[x]k × F[x] |σbh = cw

}
. (3.30)

Consider the finitely generated module

V :=
{
d ∈ K[x]l |d · (D∧(C · q))

}
,

i.e. D∧(C · q) is the generator matrix for V. We will show that

Vm = V.

As B∧q is a basis matrix for V(b,v, F), we have

B · v = σbq

and consequently

D ·w (3.29)
= C · (B · v) = C · σbq = σb(C · q).

Thus by (3.30) it follows that
V ⊆ Vm.

Contrary, let a∧p ∈ Vm be arbitrary but fixed. Then we have

σbp = aw

and thus there exists an h ∈ K[x]s by Lemma 3.4.18 such that

h (B · v) = aw. (3.31)
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Since C∧D is a basis matrix for AnnK[x]((B · v)∧−w) it follows by (3.31) that there is a
d ∈ K[x]l such that

h∧a = d · (C∧D) = (d ·C)∧(d ·D),

i.e.

h = d ·C, a = d ·D.

Therefore

a∧(hq) = (d ·D)∧((d ·C)q) = (d ·D)∧(d (C · q)) = d · (D∧(C · q))

and thus

a∧(hq) ∈ V.

Now we will show that a∧p ∈ V. Then it will follow that

V ⊇ Vm

and consequently
Vm = V � span - D∧(C · q).

In particular it will follow that Vm is a finitely generated module over K[x].
If p = hq then we are done. Otherwise, we have

σb(hq− p︸ ︷︷ ︸
6=0

) = 0.

Assume there are exactly {h1, . . . , hη} linearly independent solutions hi ∈ F over K such that

σahi = 0.

Without loss of generality we can assume that B is in row-echelon form such that

B∧q =



∗

E
...
∗
h1

0
...

hη


.

Then we have

p := B · v = (
ν:=s−η entries︷ ︸︸ ︷
∗, . . . , ∗ ,

η entries︷ ︸︸ ︷
0, . . . , 0) ∈ Ks,

in particular for 1 ≤ i ≤ η
(0, . . . , 0, 1︸︷︷︸

(ν+i) pos.

, 0, . . . , 0)

is a solution of AnnK[x](p∧−w). Since C∧D is a basis matrix for AnnK[x](p∧−w) it follows
that there are xi ∈ K[x]l for 1 ≤ i ≤ η such that

xi · (D∧C) = (0, . . . , 0, 1︸︷︷︸
(ν+i) pos.

, 0, . . . , 0)
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and consequently

xi · (D∧(C · q)) = (xi ·D)∧(xi (C · q)) = 0∧((xi ·C)q)
= 0∧((0, . . . , 0, 1︸︷︷︸

(ν+i) pos.

, 0, . . . , 0) (∗, . . . , ∗︸ ︷︷ ︸
ν

, h1, . . . , hη))

= 0∧hi.

By Lemma 3.4.17 there is
h1 c1 + · · ·+ hη cη = hq− p

for some ci ∈ K[x] and therefore for

x := x1 c1 + · · ·+ xη cη ∈ K[x]l

we have
x · (D∧(C · q)) = 0∧(h1 c1 + · · ·+ hη cη) = 0∧(hq− p).

Thus
0∧(hq− p) ∈ V

and consequently
a∧p = (a∧(hq)︸ ︷︷ ︸

∈V

)− (0∧(hq− p)︸ ︷︷ ︸
V

) ∈ V

which finally proves the theorem.

In the previous Theorem 3.4.7 we assumed that AnnK[x]((B · v)∧−w) is a finitely gener-
ated module over K[x] in order to proof that Vm is finitely generated over K[x]. Furthermore
we needed a basis matrix AnnK[x]((B · v)∧−w) in order to compute Vm. The following lemma
gives us a tool to compute such a basis matrix AnnK[x]((B · v)∧−w) if (F, σ) is a ΠΣ-field
over K.

Lemma 3.4.19. Let (F, σ) with F := K(t1, . . . , te) be a ΠΣ-field over K and let f ∈ F[x]n.
Then AnnK[x](f) is a module over K[x] which is finitely generated and a basis can be computed
by linear algebra.

Proof. Let f = (f1, . . . , fn) ∈ F[x]n. Since (F, σ) is a ΠΣ-field over K, it follows that F is the
quotient field of the polynomial ring K[t1, . . . , te]. Since x is transcendental over F it follows
in particular that K[x][t1, . . . , te] is a polynomial ring with coefficients in K[x], and K[x] is
itself a polynomial ring with coefficients in K. We can find a d ∈ K[t1, . . . , te]∗ such that

g = (g1, . . . , gn) := (f1 d, . . . , fn d) ∈ K[x][t1, . . . , te].

For c ∈ K[x]n we have
c f = 0 ⇔ c g = 0

and therefore
AnnK[x](f) = AnnK[x](g).

Let c1, . . . , cn be indeterminates and make the ansatz

c1 g1 + · · ·+ cn gn = 0.
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Then the coefficients of each monomial td1
1 . . . tde

e in c1 g1 + · · ·+ cn gn must vanish. Therefore
we obtain a linear system of equations

c1 p11+ . . . +cn p1n = 0
...

cr pr1+ . . . +cn prn = 0
(3.32)

where each equation corresponds to a coefficient of a monomial which must vanish. Therefore
we are interested in finding the set

M := {c ∈ K[x]n | c is a solution of (3.32)}.

Since pij ∈ K[x], M is a submodule of K[x]n over the Euclidean domain K[x]. By Lemma
3.4.14 this module M over K[x]n is finitely generated and by Remark 3.4.5 a basis can be
computed. Therefore we find also a basis for AnnK[x](g) and consequently also for AnnK[x](f).

Corollary 3.4.6. Let (F, σ) with F := K(t1, . . . , te) be a ΠΣ-field over K. Let m ≥ 0,
g : N0 → F[t]k be m-polynomial. Then Vm is a finitely generated module over K[x].

Proof. This is a direct consequence of Theorem 3.4.7 and Lemma 3.4.19.

In the following we will achieve a similar result for Vm,r+1, namely how we can compute
a basis for Vm,r+1. Having this result in hands we will be able to find a δ ≥ γ such that for
all r ≥ δ we have

Vm[m + r + 1] = Vm,r+1.

Then we have in particular
W(r)

m [m + r + 1] = Wm,r+1

- what will be shown later.

Lemma 3.4.20. Let 0 6= b ∈ Fn and w = (w1, . . . , wk) ∈ F[x]k with

wi =
d∑

j=0

wij xj

for 1 ≤ i ≤ k. Let g ∈ F, c ∈ Kk and d ∈ N0 with

σbg = cw[d]. (3.33)

Define
v := ( w10, . . . , wk0,

w11, . . . , wk1,
...

...
w1d, . . . , wkd) ∈ Fµ

with µ := k (d + 1) and assume

V(b,v, F) � basis - A∧p

with A ∈ Kl×µ and p ∈ Fl for some l ≥ 1 . Then there exists an m ∈ Kl such that

m (A · v) = cw[d].
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Proof. Let Idk be the identity matrix with length k and define

M := (Idk|x Idk| . . . |xd−1 Idk|xd Idk).

We have
w

(3.33)
= M · v

and thus
σbg = cw[d] = c (M[d] · v) = (c ·M[d])v.

Since A∧p is a basis matrix for V(b,v, F), it follows by

σbg = (c ·M[d])v

that there is an m ∈ Kl such that
mp = g.

Take such an m. Together with
σbp = A · v

it follows that
σbg = σb(mp) = mσbp = m (A · v)

and therefore
m (A · v) = σbg

(3.33)
= cw[d]

which proves the lemma.

The following theorem delivers the corresponding result for Vm,r+1 as in Theorem 3.4.7
for Vm.

Theorem 3.4.8. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and define v ∈ Fµ and w ∈
F[x]k as stated in (3.28) for that g. Let 0 6= b := [a]t||a|| ∈ Fn and let

V(b,v, F) � basis - B∧q

with B ∈ Ks×µ and q ∈ Fs for some s ≥ 1. Furthermore let r ≥ 0 and

NullspaceK((B · v)∧−w[m + r + 1]) � basis - C∧D

with C ∈ K[x]l×s and D ∈ K[x]l×k for some l ≥ 1 such that

C · (B · v) = D ·w[m + r + 1]. (3.34)

Then
Vm,r+1

� span - D∧(C · q).

Proof. By Corollary 3.4.5 Vm,r+1 is a finite dimensional vector space over K, this means we
can take A ∈ Kl×k and p ∈ Fl for some l ≥ 1 such that

Vm,r+1
� basis - A∧p.

Since
Vm,r+1 =

{
c∧h ∈ Kk × F |σbh = cw[m + r + 1]

}
(3.35)
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by Theorem 3.4.4, we have
σbp = A ·w

and thus there exists an H ∈ K[x]s×l by Lemma 3.4.20 such that

H · (B · f) = A ·w[m + r + 1]. (3.36)

Thus by (3.34), (3.36) there is a vector space Ṽ with

AnnK((B · f∧−w)) ⊇ Ṽ

C∧D

basis?
6

H∧A.

span?
6 (3.37)

As B∧q is a basis matrix for V(b,v, F), we have

B · v = σbq

and consequently

D ·w[m + r + 1]
(3.34)
= C · (B · f) = C · σbq = σb(C · q),

A ·w[m + r + 1]
(3.36)
= H · (B · f) = H · σbq = σb(H · q).

Together with (3.37) it follows that there is a vector space ˜̃V with

˜̃V ⊇ Vm,r+1

D∧(C · q)
span?
6

A∧(H · q).
basis?6

But by (3.35) it follows immediately that

Ṽ ⊆ Vm,r+1

and thus Vm,r+1 = ˜̃V . Consequently

Vm,r+1
� span - D∧(C · q).

Finally, the following theorem gives us a criterium to determine a δ ≥ 0 such that for all
r ≥ δ we have

Vm[m + r + 1] = Vm,r+1

and
W(r)

m [m + r + 1] = Wm,r+1.

Theorem 3.4.9. Let m ≥ 0, g : N0 → F[t]k be m-polynomial and define v ∈ Fµ and w ∈
F[x]k as stated in (3.28) for that g. Let 0 6= b := [a]t||a|| ∈ Fn and let

V(b,v, F) � basis - B∧q
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with B ∈ Ks×µ and q ∈ Fs for some s ≥ 1 . Assume that AnnK[x]((B · f)∧−w) is a finitely
generated module over K[x] and let δ ∈ N0 such that for all d ≥ δ we have

AnnK[x]((B · v)∧−w)[d] = NullspaceK((B · v)∧−w[d])

with
dim AnnK[x]((B · v)∧−w) = dim NullspaceK((B · v)∧−w[d]).

Then for all r ≥ δ we have

Vm[m + r + 1] = Vm,r+1 and W(r)
m [m + r + 1] = Wm,r+1.

Proof. Assume that AnnK[x]((B · f)∧−w) is a finitely generated module over K[x]. This
means there exists a matrix C∧D with

AnnK[x]((B · v)∧−w) � basis - C∧D

such that C · (B · v) = D ·w. Let r ≥ δ be arbitrary but fixed. Since

AnnK[x]((B · v)∧−w)[m + d + 1] = NullspaceK((B · f)∧−w[m + d + 1])

by assumption, we have

NullspaceK((B · v)∧−w[m + r + 1]) � span - C[m + r + 1]∧D[m + r + 1].

By dim AnnK[x]((B · v)∧−w) = dim NullspaceK((B · v)∧−w[d]) it follows in particular that
C[m + r + 1]∧D[m + r + 1] is a basis matrix for NullspaceK((B · v)∧−w[m + r + 1]). Ap-
plying Theorems 3.4.7 and 3.4.8 it follows that

Vm
� span - D∧(C · q),

Vm,r+1
� span - D[m + r + 1]∧(C[m + r + 1] · q).

But this means that
Vm[m + r + 1] = Vm,r+1.

Looking at Definition 3.4.6 and Lemma 3.4.9 we have

Wm,r+1 = {c g(r + 1) + tr h | c∧h ∈ Vm,r+1},
W(r)

m [m + r + 1] = {c g(r + 1) + tr h | c∧h ∈ Vm[m + r + 1]}

and consequently
W(r)

m [m + r + 1] = Wm,r+1.

The following lemma and proposition provides an algorithm to find such a δ if (F, σ) is a
ΠΣ-field over K.

Lemma 3.4.21. Let A ∈ K[x]m×n and consider the module M := {f ∈ K[x]n |A · f = 0}
over K[x] and the vector space Vd := {f ∈ Kn |A[d] · f = 0} over K. Then there exists a
δ ≥ 0 such that for all d ∈ N0 with d ≥ δ we have

M[d] = Vd

and dim M = dim Vd. If one can compute all roots in N0 of a polynomial in K[x] then δ can
be computed.
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Proof. Since K[x] is an Euclidean domain, by Remark 3.4.5 one can transform the matrix A
by row and column operations to a reduced matrix

D :=



d1

d2 0
. . .

dr

0 0
. . .

0


with di ∈ F∗ and di | di+1 for 1 ≤ i < r. Then it follows that the submodule

M := {f ∈ K[x]n |A · f = 0}

of K[x]n over K[x] has a basis with the uniquely determined dimension n − r. Furthermore
by this row and column operations we obtain P ∈ GLm(K[x]) and Q ∈ GLn(K[x]) such that

D = PAQ

and it follows that the last n− r columns qr+1, . . . ,qn ∈ K[x]n of Q form a basis of M.
During this triangularization let L ⊆ K[x]∗ be the finite set of k’s used in rule17 (2) for

a row or column operation. Let γ ∈ N0 be the greatest root in N0 of all the polynomials in
L. If there does not exist such a root then take γ := −1. Furthermore take the greatest root
δ′ ∈ N0 of dr and define δ := max(δ′, γ). If there does not exist such a δ′ ∈ N0, take δ := γ.
Clearly, if we can compute the roots of polynomials in K, we can compute this δ.

Now we will prove that δ + 1 fulfills the above property. Let d > δ. Take the matrix
B := A[d] with entries in K and transform it to the matrix E applying the same steps as for
A but taking the corresponding k[d] instead of k ∈ K[x] in a rule (2) or (3) of a column or
row operation. Since we did exactly the same operations, it follows that

E = D[d], (3.38)

i.e.

E :=



d1[d]
d2[d] 0

. . .
dr[d]

0 0
. . .

0.


Since we can guarantee by definition of δ that k[d] ∈ K∗ in each step (2), the row and column
operations are applied correctly. Furthermore, since dr[d] 6= 0 and di | di+1, it follows that

di[d] 6= 0

for all 1 ≤ i ≤ r. Applying Remark 3.4.5 to B tells us that

V := {f ∈ Kn |B · f = 0}
17See Remark 3.4.5.
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has dimension n − r. Furthermore by this correctly applied column and row operations we
obtain P′ ∈ GLm(K) and Q′ ∈ GLn(K) such that

A[d] = B = P′D[d]Q′

where P′ = P[d] and Q′ = Q[d]. By Remark 3.4.5 it follows that the last n − r columns
qr+1[d], . . . ,qn[d] ∈ Kn of Q′ = Q[d] are a basis of V. Consequently it follows immediately
that

M[d] = V

and hence the lemma is proven.

Proposition 3.4.6. Let (F, σ) with F := K(t1, . . . , te) be a ΠΣ-field over K and f ∈ F[x]n.
Then there exists a δ ≥ 0 such that for all d ≥ δ we have

(AnnK[x](f))[d] = NullspaceK(f [d])

and dim AnnK[x](f) = dim NullspaceK(f [d]). If one can compute all roots in N0 of a polyno-
mial in K[x] then δ can be computed.

Proof. By the same arguments as in the proof of Lemma 3.4.19 we find two linear equation
systems

c1 p11+ . . . +cn p1n = 0
...

cr pr1+ . . . +cn prn = 0,

c1 p11[d]+ . . . +cn p1n[d] = 0
...

cr pr1[d]+ . . . +cn prn[d] = 0
(3.39)

such that

AnnK[x](f)) = {c ∈ K[x]n | c is a solution of the left system in (3.39)},
NullspaceK(f)) = {c ∈ Kn | c is a solution of the right system in (3.39)}.

Thus the theorem follows by Lemma 3.4.21.

Assumption 3.4.1. In the following we assume that (F, σ) is a ΠΣ-field over K. Addition-
ally, we should assume that one can compute for any a ∈ Fm and f ∈ Fn the solution space
V(a, f , F). Since there are many unsolved problems for ΠΣ-fields to compute this solution
space, we restrict ourself to the assumption that for the concrete vectors b and v in Algo-
rithm 3.4.1 we are able to solve the solution space V(b,v, F). Furthermore we assume that
one can compute all roots in N0 of a polynomial in K[x].

Algorithm 3.4.1.

(δ,h)=FindABasis(m, γ,g)

Input: fm is γ-computable by g : N0 → F[t]k, see Assumption 3.4.1.
Output: A pair (δ,h) such that fm+1 is δ-computable by h.

(1) Let w = (w1, . . . , wk) be defined by (3.24) in the proof of Theorem 3.4.3, let b := [a]t||a||
and define

v := ( [w1]
x
0 , . . . , [wk]x0 ,

[w1]
x
1 , . . . , [wk]x1 ,

...
...

[w1]
x
d , . . . , [wk]xd) ∈ Fµ

with µ := k(d + 1).
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(2) Let
V(b,v, F) � basis- B∧q

with B ∈ Ks×n and q ∈ Fs for some s ≥ 1 .
(3) Let

AnnK[x]((B · v)∧−w) � basis- C∧D

with C ∈ K[x]l×s and D ∈ K[x]l×k for some l ≥ 1 such that C · (B · f) = D ·w.
(4) Let δ ∈ N0 with δ ≥ γ be such that for all d ≥ δ we have

AnnK[x]((B · v)∧−w)[d] = NullspaceK((B · v)∧−w[d])

with
dim AnnK[x]((B · v)∧−w) = dim NullspaceK((B · v)∧−w[d]).

(5) Define h : N0 → F[t]l by

h(r) = D · g(m+r+1)[r + 1] + tr C · q.

(6) RETURN(δ,h)

Corollary 3.4.7. Let m ≥ 0 and fm be γ-computable by g : N0 → F[t]k and assume that
(F, σ) is a ΠΣ-field. Then there exists a δ ≥ γ and a function

h : N0 → F[t]l

such that fm+1 is δ-computable by h. This function h and δ can be computed by Algo-
rithm 3.4.1 under the Assumption 3.4.1.

Proof. There exists a basis matrix for V(b,v, F). Take such a basis matrix. By Lemma 3.4.19
we are able to compute a basis matrix for AnnK[x]((B · v)∧−w) in Step (3). By Theorem 3.4.7
it follows that

Vm
� span - D∧(C · q).

By Proposition 3.4.6 there exists a δ as stated in step (4). Take such a δ. By Theorem 3.4.9
we obtain

∀r ≥ δ : W(r)
m [m + r + 1] = Wm,r+1.

Thus by Theorem 3.4.5 it follows that fm+1 is δ-computable by h.
Under Assumption 3.4.1 we are also able to compute a basis matrix B∧q for V(b,v, F)

in Step (2) and can compute a δ by Proposition 3.4.6. Therefore we can compute h by
Algorithm 3.4.1 under Assumption 3.4.1.

Corollary 3.4.8. Let (F, σ) be a ΠΣ-field over K. There exists a sequence

0 = δ0 ≤ δ1 ≤ · · · ≤ δi ≤ δi+1 ≤ . . .

and a sequence of functions gi : N0 → F[t]ki such that fi is δi-computable by gi.

Proof. By Proposition 3.4.4 there exists a function g0 such that f0 is 0-computable by g0.
Using Corollary 3.4.7 it follows by induction that there exists such a sequence of functions gi

and δi such that fi is δi computable by gi.

Assumption 3.4.2. Similar to Assumption 3.4.1 we assume the that for the concrete vector
b in Algorithm 3.4.2 we are able to solve the solution space V(b, (0) , F).
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Algorithm 3.4.2.

(δ,h)=FindABasis(a)

Input: a ∈ F[t]m, see Assumptions 3.4.1 and 3.4.2.
Output: a triple (δ,h,m) such that fm is δ-computable by h.

(1) Let
V(b, (0) , F) � basis- C∧g

where b := [a]t||a|| and define g(r)
0 := tr g.

(2) Let δ0 := 0.
(3) Let i:=0

(4) While(||g(0)
i || = i and i ≤ LoopLimitForSumBound)

(5) i:=i+1
(6) (δi,gi)=FindABasis(i, δi−1,gi−1)
(7) RETURN(δi−1,gi−1, i− 1)

Corollary 3.4.9. Let (h, δ, m) be the output of Algorithm 3.4.2 where Assumptions 3.4.1
and 3.4.2 hold. Then fm is δ-computable by h. Furthermore, if m < LoopLimitForSumBound
then for all r ≥ δ and all j ≥ 0 we have

fm(r) = fm+j(r).

Proof. By Corollary 3.4.8 and its proof it follows immediately that fm is δ-computable by h.
If additionally m < LoopLimitForSumBound is satisfied then in the m + 1-th iteration step
for all r ≥ δm+1 we have

||gm+1
(0)|| = m

and thus by Theorem 3.4.6 for all r ≥ δ and all j ≥ 0 it follows that

fm(r) = fm+j(r).

Remark 3.4.6. In [Sin91] M. Singer deals with the analogous problem to solve linear dif-
ferential equations in Liouvillian differential field extensions (F(t), D) of the type D(t)

t ∈ F.
In Lemma 3.8 he sketches an algorithm to find a degree bound for a polynomial solution
in t. Similarly, he computes incrementally the solution space until he finds a bound of the
polynomial solutions. Whereas in my approach I failed to find a termination proof - see
the stop condition ‘i ≤ LoopLimitForSumBound’ in Algorithm 3.4.2 - M. Singer succeeded
in doing so in his context. As M. Bronstein pointed out in some fruitful discussions [BS00],
there might be hope to analyse Singer’s approach and termination proof further to find also
a termination condition for my approach. ♦

Corollary 3.4.10. Let (F, σ) be a ΠΣ-field over K and let (F(t), σ) be a proper sum
extension of (F, σ). Let 0 6= a ∈ F[t]n and f ∈ F[t]λ. Let (h, δ, m) be the output of
Algorithm 3.4.2 under the Assumptions 3.4.1 and 3.4.2 and m < LoopLimitForSumBound.
Then

m + max(||f || − ||a||+ 1, δ)

is a bound for V(a, f , F[t]).
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Proof. By Corollary 3.4.9, it follows for all r ≥ δ and all j ≥ 0 that

fm(r) = fm+j(r)

and thus for all r ≥ δ we have

Vr(a, F[t]m) = Vr(a, F[t]).

Thus applying Theorem 3.4.1, m + max(||f || − ||a||+ 1, δ) is a bound for V(a, f , F[t]).

Implementation Note 3.4.1. Up to an important variation described in the next section
I have implemented Algorithm 3.4.2 in my Mathematica package. By setting the option

LoopLimitForSumBound→ no

one can define the maximal loops in Algorithm 3.4.2. If the Algorithm terminates before
running through the main loop no-times then by Corollary 3.4.10 a correct polynomial
degree bound is determined.
Otherwise, running through the loop no-times, the polynomial degree bound method stops
and the found “polynomial degree bound” is used. In this case the solutions for the solution
space V(a, f , F(t)) are still correct, but it might be that some of the solutions are missing;
this means we find only a basis for a subspace of V(a, f , F(t)). Therefore a warning message
will be printed out that suggests the user to increase the value no in case the computed
solutions are not sufficient.
Furthermore, as suggested in Remark 3.4.1 I used the computed truncated solution space
fm(r) = Vr(a, F[t]m) to compute the solution space V(a, f , F[t]). Therefore I shortened
the reduction process sketched in Section 3.2.6.
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3.4.8 A Speed up

As already mentioned in Implementation Note 3.4.1, I have not implemented Algorithm 3.4.2
but a clever variation of it.

Let (F, σ) be a ΠΣ-field over K. As formulated in Corollary 3.4.8, in the previous sections
the main goal was to construct a sequence

0 = δ0 ≤ δ1 ≤ · · · ≤ δm ≤ δm+1 ≤ . . .

and a sequence of functions gm : N0 → F[t]km such that fm is δm-computable by gm.
Looking closer at fm(r) we obtain by Lemma 3.4.3 the following inclusion of vector spaces

{0} = f−1(r) ⊆ f0(r) ⊆ f1(r) ⊆ · · · ⊆ fm(r) ⊆ fm+1(r) ⊆ . . .

for all r ≥ 0. Thus we can define the complement vector space fnew
m+1(r) in fm+1(r), i.e.

fm+1(r) = fm(r)⊕ fnew
m+1(r).

Then we have

fm+1(r) =

fm(r)︷ ︸︸ ︷
f1(r)︷ ︸︸ ︷

f0(r)︷ ︸︸ ︷
f−1(r)︷︸︸︷
{0} ⊕fnew

0 (r)⊕fnew
1 (r)⊕ · · · ⊕ fnew

m (r)⊕fm+1(r)new.

Actually, it is already sufficient to compute a function gm and to find a δm such that
f

(new)
m is δm-computable by gm. In the following we indicate how we can compute a sequence

of m-polynomial maps gm such that gm(r) generates a vector space Vm over K with

fnew
m (r) ⊆ Vm ⊆ fm(r).

In particular we try to choose the dimension of the vector space Vm as small as possible, i.e.
we try to minimalize the length of the vector gm(r).

In the following we indicate how we can achieve this. For the base case of this computation
process will still use Theorem 3.4.4 and construct a map g : N0 → F[t]k such that f0(r) =
fnew
0 (r) is 0-computable by g. In the following let m ≥ 0 and assume that we have computed

already a m-polynomial map

g′ :
{

N0 → F[t]k+l

d 7→ g′(d)[m + d]

with
g′(d) =

(
g
(d)
1 , . . . , g

(d)
k , p

(d)
1 , . . . , p

(d)
l

)
∈ F[t, x]k+l (3.40)

such that fm is γ-computable by g′. Assume further that

fnew
m ⊆

{
x1 g

(d)
1 [m + r], . . . , xk g

(d)
k [m + r] |xi ∈ K

}
(=: Vm)

and for 0 ≤ i ≤ l and all r ≥ γ that ||p(r)
i || < r + m and

∃w ∈ F :
[
σap

(r)
i [m + r + 1] + tr w

]
||a||+r

= 0. (3.41)
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Now consider the m-polynomial map

g :
{

N0 → F[t]k

d 7→ g(d)[m + d]

where g(d) =
(
g
(d)
1 , . . . , g

(d)
k

)
∈ F[t, x]k and define Vm,r+1, Vm, Wm,r+1 and Wm as in Sec-

tion 3.4.3 with this m-polynomial map g.

Theorem 3.4.10. Let m ≥ 0 and let Wm,r+1 be defined by the m-polynomial map g described
above. Then for all r ≥ γ it follows that

fnew
m+1(r) ⊆ Wm,r+1 + fm(r).

Proof. Let r ≥ γ and assume g′ : N0 → F[t]k+l, g : N0 → F[t]k as above. Define the m-
polynomial map

p :
{

N0 → F[t]l

d 7→ p(d)[m + d]

where p(d) =
(
p
(d)
1 , . . . , p

(d)
l

)
∈ F[t, x]k. Then

w ∈ fnew
m+1(r)

⇓ Cor. 3.4.1

w ∈ fm(r + 1) + tr F : [σaw]||a||+r = 0 & ||w|| = m + r + 1

m
∃ c ∈ Kk+l ∃h ∈ F : w = c g′(r + 1) + tr h & [σaw]||a||+r = 0 & ||w|| = m + r + 1

m

∃ c1 ∈ Kk, c2 ∈ Kl, h ∈ F :w = c1 g(r + 1) + c2 p(r + 1) + tr h (3.42)
& [σaw]||a||+r = 0 & ||w|| = m + r + 1

Let c1 ∈ Kk,c2 ∈ Kl and h ∈ F with

w = c1 g(r + 1) + c2 p(r + 1) + tr h.

Since (3.41), there exists h0 ∈ F such thatσa(c2 p(r + 1) + tr h0︸ ︷︷ ︸
=:w0

)


||a||+r

= 0.

As ||p(r + 1)|| ≤ m+ r, it follows that ||w0|| ≤ m+ r and thus w0 ∈ fm(r). Consequently with
h1 := h− h0 we have

w = c1 g(r + 1) + tr h1 + w0.

Finally, it follows by (3.42) that

∃ c∧h1 ∈ Vm,r+1, w0 ∈ fm(r) : w = c g(r + 1) + tr h1︸ ︷︷ ︸
∈Wm,r+1

+ w0︸︷︷︸
∈fm(r)

m
w ∈ Wm,r+1 + fm(r).
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Corollary 3.4.11. Let m ≥ 0 and let Wm,r+1 be defined by the polynomial map g : N0 → F[t]k

described above. Then

∀r ≥ γ : W(r)
m [m + r + 1] ⊆ Wm,r+1 ⊇ fnew

m+1(r).

Proof. This follows by Lemma 3.4.10 and Theorem 3.4.10.

Please note, that Theorems 3.4.7 and 3.4.8 and Theorem 3.4.9 are true for m-polynomial
maps and thus for our specific g : N0 → F[t]k. Therefore, if one applies Algorithm 3.4.1 on
the input (g, γ,m) one obtains the output (h, δ) such that for all r ≥ δ we have

W(r)
m [m + r + 1] = Wm,r+1 ⊇ fnew

m+1(r)

and h(r) generates over K the vector space W(r)
m [m + r + 1]. Thus, given g′ and h, one can

construct a map h′ such that fm+1 is δ-computable by h′.
Looking closer at Algorithm 3.4.1 in Step (3), one computes

Vm
� span - D∧(C · q).

Without loss of generality, one can transform (Remark 3.4.5) the generator matrix by row
operations in K[x] such that D is in row-echelon form. Moreover, all elements above a left
most entry have smaller degree in x. If a row at position i has just one nonzero entry then
we have

∃w ∈ F :
[
σag

(r)
i [m + r + 1] + tr w

]
||a||+r

= 0.

Consequently we can eliminate all those elements h(r)
i in h(r) which satisfy this property and

which have ||h(r)
i || ≤ m + r. Finally, we take this refined vector h(r) and adjoin it with all

elements in g(r) with ||g(0)
i || < m + r.

With this refined m + 1-polynomial map h we can repeat this procedure as in Algo-
rithm 3.4.2 to compute step by step maps gi and δi such that fi is δi computable by gi.

By this strategy we always try to keep the length of the vector g(r) as small a possi-
ble. Consequently also the vector w and especially v in the computation step (1) in Algo-
rithm 3.4.1 become shorter. Since the complexity of this algorithm depends highly on the
size of this vector w we can achieve a speed up.

Implementation Note 3.4.2. Finally, these ideas are realized in my Mathematica pack-
age to determine a polynomial degree bound.
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3.4.9 The Special Case a ∈ Fn For Proper Sum Extensions

Let (F, σ) be a ΠΣ-field over K. As in the previous sections we suppose that (F(t), σ) is a
proper sum extension of (F, σ). In this section we will additionally assume the special case

0 6= a ∈ Fn

and f ∈ F[t]λ. Furthermore we assume that (F(t)[x], σ) is a difference ring extension of
(F(t), σ) where x is transcendental over F(t) and σ(x) = x. Additionally, recall the notation

f [p] =
∑

i

fi p
i

for f =
∑

i fi x
i with fi ∈ F(t) and p ∈ F(t).

Lemma 3.4.22. For 0 ≤ l ≤ m < x and r ≥ 0 we have

(
x

m + 1

)
=
(

x−m + l

l + 1

)
l + 1
m + 1

m−l∏
i=1

(x + 1− i)

m−l∏
i=1

(l + i)

, (3.43)

(
m + r + 1

m + 1

)
=
(

r + l + 1
r

)
l + 1
m + 1

m−l∏
i=1

(m + r + 2− i)

m−l∏
i=1

(l + i)

. (3.44)

Proof. We have

(
x−m + l

l + 1

)
l + 1
m + 1

m−l∏
i=1

(x + 1− i)

m−l∏
i=1

(l + i)

=

l+1∏
i=1

(x−m + l + 1− i)

(l + 1)!
l + 1
m + 1

m−l∏
i=1

(x + 1− i)

m−l∏
i=1

(l + i)

=

m+1∏
i=m−l+1

(x + 1− i)

l!
1

m + 1

m−l∏
i=1

(x + 1− i)

m∏
i=l+1

i

=

m+1∏
i=1

(x + 1− i)

(m + 1)!
=
(

x

m + 1

)
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and

(
r + l + 1

r

)
l + 1
m + 1

m−l∏
i=1

(m + r + 2− i)

m−l∏
i=1

(l + i)

=

l+1∏
i=1

(r + l + 2− i)

(l + 1)!
l + 1
m + 1

m−l∏
i=1

(m + r + 2− i)

m−l∏
i=1

(l + i)

=

l+1∏
i=1

(r + i)

l!
1

m + 1

m+1∏
i=l+2

(r + i)

m∏
i=l+1

i

=

m+1∏
i=1

(r + i)

(m + 1)!
=
(

m + r + 1
m + 1

)
.

Lemma 3.4.23. Let m ≥ 0 and let fm be 0-computable by g : N0 → F[t]k. In particular
assume g(d) = g(d)[m + d] where

g(d) =
(
g
(d)
1 , . . . , g

(d)
k

)
∈ F[t, x]k

with

g
(d)
i = td

m∑
l=0

gil t
j

and

gil = g̃il

m−l∏
j=1

(x + 1− j) ∈ F[x], g̃il ∈ F.

Then for all r ≥ 0 we have
W(r)

m [m + r + 1] = fm+1(r)

and there is a module Ṽ over K[x] with finitely many generators in Kn ×
(

x
m

)
F such that for

all r ≥ 0 we have

fm+1(r) =
{
c g(r+1) + tr h | c∧h ∈ Ṽ[m + r + 1]

}
.

Proof. Let g : N0 → F[t]k be defined as in the assumption and define W(r)
m , Wm,r+1, Vm and

Vm,r+1 with this g. By Corollary 3.4.4 we have

∀r ≥ 0 : W(r)
m [m + r + 1] ⊆ Wm,r+1 = fm+1(r).

In the following we will show equality. Let r ≥ 0 and

h ∈ fm+1(r) = Wm,r+1.
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By Definition 3.4.6 there is a c∧w ∈ Vm,r+1 such that

h = c g(r + 1) + w tr = c g(r+1) + w tr

= tr+1
m∑

l=0

hl t
l

m−l∏
j=1

(m + r + 2− j) + w tr

where
hl := c (g̃1l, . . . , g̃kl) ∈ F[x].

Additionally we have
[σah]r = 0.

Since a = (a1, . . . , an) ∈ Fn, it follows that

0 = [σah]r =

σa(tr+1
m∑

l=0

hl t
l

m−l∏
j=1

(m + r + 2− j))


r

+ σaw

=

 n∑
i=1

ai

m∑
l=0

σn−i(hl)
m−l∏
j=1

(m + r + 2− j) (t + β(n−i))
r+l+1


r

+
n∑

i=1

ai σ
n−i(w)

=
n∑

i=1

ai

m∑
l=0

σn−i(hl)
(

r + l + 1
r

) m−l∏
j=1

(m + r + 2− j) βl+1
(n−i) +

n∑
i=1

ai σ
n−i(w).

(3.45)

Now we transform the expression18

H :=
n∑

i=1

ai

m∑
l=0

σn−i(hl)
m−l∏
j=1

(m + r + 2− j)
(

x

m + 1

)(
r + l + 1

r

)
βl+1

(n−i)

+
n∑

i=1

ai σ
n−i(w)

(
x

m + 1

)
by Lemma 3.4.22.(3.43) to

H =
n∑

i=1

ai

m∑
l=1

σn−i(hl)
m−l∏
j=1

(m + r + 2− j)
(

x−m + l

l + 1

)
l + 1
m + 1

×

×

m−l∏
j=1

(x + 1− j)

m−l∏
j=1

(l + j)

(
r + l + 1

r

)
βl+1

(n−i) +
n∑

i=1

ai σ
n−i(w)

(
x

m + 1

)

and finally by Lemma 3.4.22.(3.44) we can simplify H further to

H =
n∑

i=1

ai

m∑
l=1

σn−i(hl)
(

x−m + l

l + 1

)(
m + r + 1

m + 1

)
×

×
m−l∏
i=1

(x + 1− i) βl+1
(n−i) +

n∑
i=1

ai σ
n−i(w)

(
x

m + 1

)
. (3.46)

18Note that H = [σah]r
(

x
m+1

)
= 0.
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For

p(d) :=
(

m + r + 1
m + 1

)
c g(d+1) + w td

(
x

m + 1

)
(3.47)

=td+1

(
m + r + 1

m + 1

) m∑
l=0

hl t
l

m−l∏
j=1

(x + 1− j) + w

(
x

m + 1

)
td

we have
p(r)[m + r + 1]

1(
m+r+1

m+1

) = h. (3.48)

Furthermore by the same transformation as in (3.45) we obtain

P :=
[
σap

(d)[m + d + 1]
]
d

=

 n∑
i=1

ai

m∑
l=0

σn−i(hl)
(

m + r + 1
m + 1

)m−l∏
j=1

(m + d + 2− j) (t + β(n−i))
d+l+1


d

+
n∑

i=1

ai σ
n−i(w)

(
m + r + 1

m + 1

)

=
n∑

i=1

ai

m∑
l=0

σn−i(hl)
(

d + l + 1
d

)(
m + r + 1

m + 1

) m−l∏
j=1

(m + d + 2− j) βl+1
(n−i)

+
n∑

i=1

ai σ
n−i(w)

(
m + d + 1

m + 1

)
.

Looking at (3.46), one can see that

P = H[m + d + 1].

Furthermore looking at (3.45) and the definition of H one can see that

H = [σah]r

(
x

m + 1

)
= 0

and it follows that

0 =H[m + d + 1] = P =
[
σap

(d)[m + d + 1]
]
d

(3.47)
=

[
σa(
(

m + r + 1
m + 1

)
c g(d+1)[m + d + 1] + w td

(
m + d + 1

m + 1

)
)
]

d

for all d ≥ 0. By Definition 3.4.7 we have

Vm =

{
c∧h ∈ K[x]k × F[x] | ∀d ≥ 0 :

[
σa(

k∑
s=1

c g(d+1)[m + d + 1] + h td)

]
d

}
,

and consequently

(
(

m + r + 1
m + 1

)
c)∧(

(
x

m + 1

)
w) ∈ Vm.
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But by Definition 3.4.8 it follows that

p(r) ∈ W(r)
m+1

and therefore by (3.48) that

h ∈ W(r)
m+1[m + r + 1].

Hence
∀r ≥ 0 : W(r)

m [m + r + 1] ⊇ fm+1(r)

and we have proven
∀r ≥ 0 : W(r)

m [m + r + 1] = fm+1(r).

By (3.47) and (3.48) one can immediately see that for all r ≥ 0 and all f ∈ fm+1(r) there is
a

c∧w ∈ Vm ∩ (Kk × F
(

x

m + 1

)
) =: G

with
f = c g(r + 1) + tr w[m + r + 1].

Now consider the submodule Ṽ of Vm over K[x] which is generated by the infinite set G.
Then it follows that

fm+1(r) ⊆
{
c g(r+1) + tr h | c∧h ∈ Ṽ[m + r + 1]

}
for all r ≥ 0. But since

fm+1(r) = W(r)
m [m + r + 1] = {c g(r + 1) + tr h | c∧h ∈ Vm[m + r + 1]}

by Lemma 3.4.9, it follows by Ṽ ⊆ Vm that

fm+1(r) ⊇
{
c g(r+1) + tr h | c∧h ∈ Ṽ[m + r + 1]

}
and therefore equality. By Corollary 3.4.6 Vm is finitely generated over K[x] and thus by
Lemma 3.4.13 the submodule Ṽ of Vm is also finitely generated over K[x]. Since for any
v = (v1, . . . , vk, w) ∈ Ṽ we have (

x

m + 1

)
| w,

there is a finite set of generators in K× F
(

x
m+1

)
.

Theorem 3.4.11. For all m ≥ 0 there exists a map g(m) : N0 → F[t]km such that fm is 0-
computable by g(m). Furthermore, if ||g(m)(r)|| = m + r for some m ≥ 0 and r ≥ 0 then for
all 0 ≤ i ≤ m and all r ≥ 0 we have

||g(i)(r)|| = i + r.

Proof. We will show that for all 0 ≤ i ≤ m there exists a g : N0 → F[t]km such that fm is
0-computable by g : N0 → F[t]k. In particular we will show that g(r) = g(r)[m + r] where

g(r) =
(
g
(r)
1 , . . . , g

(r)
km

)
∈ F[t, x]k
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with

g
(r)
i = tr

m∑
l=0

gil t
j

and

gil = g̃il

m−l∏
j=1

(x + 1− j) ∈ F[x], g̃il ∈ F.

For m = 0 the theorem holds by Proposition 3.4.4. Additionally, g is of the desired form
as claimed above. Now assume that there exists a g : N0 → F[t]k with these properties for
m ≥ 0. By Lemma 3.4.23 there is a module Ṽ over K[x] with

Ṽ � span -

 c1∧(w1

(
x

m+1

)
)

...
cs∧(ws

(
x

m+1

)
)


where ci = (ci1, . . . , cik) ∈ Kk and wi ∈ F such that for all r ≥ 0 we have

fm+1(r) =
{
c g(r + 1) + w tr | c∧w ∈ Ṽ[m + r + 1]

}
.

Let r ≥ 0. Then it follows that fm+1(r) is generated by

h :
{

N0 → F[t]s

r 7→ (h1(r), . . . , hs(r))

with

hi(r) = (ci g(r + 1) + wi t
r

(
x

m + 1

)
)[m + r + 1]

= (
k∑

λ=1

ciλ tr+1
m∑

l=0

gλl t
l + wi t

r

(
x

m + 1

)
)[m + r + 1]

= (tr+1
m∑

l=0

tl
k∑

λ=1

ciλ gλl + wi t
r

(
x

m + 1

)
)[m + r + 1].

Thus we may write h(r) = h(r)[m + 1 + r] where

h(r) =
(
h

(r)
1 , . . . , h(r)

s

)
∈ F[t, x]s

and

h
(r)
i = tr

m+1∑
l=0

hil t
l

with

hil =
k∑

λ=1

ciλ g̃λ,l−1

m+1−l∏
j=1

(x + 1− j)

for 1 ≤ l ≤ m + 1 and

hi0 =
wi

(m + 1)!

m+1∏
j=1

(x + 1− j).
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Consequently fm+1(r) is 0-computable by h and h is of the desired form. Now assume

||h(r)|| = m + 1 + r

for some r ≥ 0. Thus there is an i with 1 ≤ i ≤ s and

0 6= hi,m+1 =
k∑

λ=1

ciλ g̃λ,m

and therefore it follows that
g̃λm ∈ F∗

for some 1 ≤ λ ≤ k. Therefore gλm[m + d] 6= 0 for all d ≥ 0, thus

||g(d)|| = m + d

for all d ≥ 0 and consequently the second statement is proven by the induction assumption.

Theorem 3.4.12. Let (F, σ) be a ΠΣ-field over K and let (F(t), σ) be a proper sum extension
of (F, σ) with constant field K; let a ∈ Fm. Assume there are k ≥ 0 linearly independent g ∈ F
over K with σag = 0. Then there exists a b with −1 ≤ b < m −max(1, k) such that for all
r ≥ 0 we have

{0} = f−1(r) ( f0(r) ( · · · ( fb(r) = fb+1(r) = · · ·

Proof. By Theorem 3.4.11 there are maps gi : N0 → F[t]k such that fi is 0-computable by gi.
Assume there does not exist a b ≥ 0 and r ≥ 0 such that

fb−1(r) ( fb(r). (3.49)

Then the theorem holds. Otherwise take such a b and r. Then we have ||gb(r)|| = b + r
and thus by Theorem 3.4.11 it follows that ||gi(d)|| = i + d for all d ≥ 0 and all 0 ≤ i ≤ b.
Consequently

fi(d) ( fi+1(d)

for all d ≥ 0 and 0 ≤ i ≤ b and therefore

f−1(d) ( f0(d) ( · · · ( fb(d) (3.50)

for all d ≥ 0. Hence, whenever there are an r ≥ 0 and a b ≥ 0 with (3.49), we will have (3.50).
Consequently this inclusion chain will either strictly grow to infinity or it will terminate for
all r ≥ 0 at a point b ≥ 0. Now assume that the chain strictly grows until a b ≥ 0. In
particular for d = 0 we find

gi ∈ fi(0) \ fi−1(0)

for 0 ≤ i ≤ b + 1 with
||gi|| = i

and
σa(gi) ∈ F[t]i+||a||−1 = {0}.

Therefore we find b + 1 linearly independent gi ∈ F[t] with σagi = 0 and hence

b < m− 1, (3.51)
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since otherwise Proposition 3.1.2 is violated. In particular we have

g0 ∈ F and g1, . . . , gb ∈ F[t] \ F.

Now assume there are k ≥ 1 linearly independent g ∈ F such that σag = 0. Then it follows
immediately that there are b + k − 1 linearly independent g with σag = 0. Hence

b < m− k,

since otherwise Proposition 3.1.2 is violated. Together with (3.51) it follows that

b < m−max(k, 1)

and thus the theorem is proven.

Corollary 3.4.12. Let (F, σ) be a ΠΣ-field over K and let (F(t), σ) be a proper sum
extension of (F, σ); let 0 6= a ∈ Fm and f ∈ F[t] with ||f || = l. If there is a g ∈ F[t] with

σag = f, deg(g) = n

then there are gi ∈ F[t] with
σagi = 0, deg(gi) = i

for 0 ≤ i ≤ n− l − 1.

Proof. Assume
σag = f

for some g, f ∈ F[t] with deg(g) = n ≥ ||f || = l. The corollary holds, if n = l. So suppose
n > l. Then g can be expressed by

g = h + p

where p ∈ F[t]l and
h ∈ fn−l−1(l + 1) \ fn−l−2(l + 1)

with deg(h) = l. Thus by Theorem 3.4.12 we have

f−1(r) ( f0(r) ( · · · ( fn−l−1(r)

for all r ≥ 0 and therefore there are

hi ∈ fi(0) \ fi−1(0)

with
σahi ∈ F[t]||a||−1 = {0}

and deg(hi) = i for 0 ≤ i ≤ n− l − 1.

Corollary 3.4.13. Let (F, σ) be a ΠΣ-field over K and let (F(t), σ) be a proper sum
extension of (F, σ) with constant field K. Let 0 6= a ∈ Fm, f ∈ F[t]n and assume there are
k ≥ 0 linearly independent g ∈ F over K with σag = 0. Then m + ||f || − max(k, 1) is a
bound for V(a, f , F[t]).
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Proof. By Theorem 3.4.12 there is a d with −1 ≤ d < m−max(k, 1) such that

f−1(r) ( f0(r) ( · · · ( fd(r) = fd+1(r) = · · ·

for r := ||f ||+ 1 and thus
Vr(a, F[t]d) = Vr(a, F[t]).

Therefore by Theorem 3.4.1 d + r is a bound for V(a, f , F[t]). By

d + r = d + ||f ||+ 1 ≤ m + ||f || −max(k, 1),

also m + ||f || −max(k, 1) is a bound for V(a, f , F[t]).

Let (F, σ) be a ΠΣ-field over K, let (F(t), σ) be a proper sum extension of (F, σ), 0 6= a ∈
Fm and f ∈ F[t]n. If one wants to compute the solution space V(a, f , F[t]) then the following
reduction process was introduced in Section 3.2.6:

V(a, f , F[t])

|| polynomial bounding

V(a,

f︷︸︸︷
fb , F[t]b)

Q
Q

Q
Q1. s

kQ
Q

Q
Q

5.

Theorem 3.2.2 I(a, fb, tb F)

+�
�

�
�

4.
Theorem 3.2.1

V(a, fb−1, F[t]b−1)

5.6

V(ãb, f̃b, F)

2.
?

3. 6

By Corollary 3.4.13 it follows that

b := m + ||f || − 1 > ||f ||

is a bound. Therefore by Theorem 3.2.1 we have

f̃b := 0, ãb :=a

and hence we obtain the following reduction

I(a, fb, tb F)

V(a,0, F).

2.
?

3. 6 (3.52)

Of course, we can compute the solution space V(a,0, F) before we compute a bound for
V(a, f , F[t]) and can extract the number k of linearly independent solutions g with σag = 0.
Then we can use this number k to improve the bound by Corollary 3.4.13 to

b := m + ||f || −max(k, 1).

Since k < m by Proposition 3.1.2, it follows that b > ||f || and therefore as for the old bound b
we have to do the reduction step (3.52). Therefore by remembering the result of this reduction
step we achieve an improved bounding without any additional computation costs.
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3.5 Denominator Boundings

In Section 3.1.3.1 the idea of denominator bounding was introduced in order to reduce the
problem of finding rational solutions in F(t) of a difference equation to searching polynomial
solutions in F[t]:

Find a basis for



V(a, f ,

F(t)︷ ︸︸ ︷
F[t]⊕ F(t)(1) ⊕ F(t)(0) )

by period 1 and 0 denominator bounding

V(a′, f ′, F[t] )
?

period 0 and 1
elimination

6

As already mentioned in Section 3.1.3.1 we will consider the elimination of the fractional
part with period 1 and pure period 0 in Sections 3.5.2 and 3.5.3.

3.5.1 The Denominator, Order and σ-Function

Given the field of rational functions F(t) over F and f ∈ F(t), we introduce, as in Re-
mark 2.5.1, the numerator and denominator of f in the following way. Let f = a

b be in
reduced representation, i.e. a, b ∈ F[t], gcd(a, b) = 1 and b is monic. Then

num(f) = a,

den(f) = b.

In the following sections the denominator of f ∈ F(t) will play an essential role, in
particular we will need the following simple lemma.

Lemma 3.5.1. Let (F(t), σ) be a difference field with t transcendental over F and f ∈ F(t).
Then

σ(den(f)) = u den(σ(f))

for some u ∈ F

Proof. For f = 0 the lemma clearly holds. Let f = a
b ∈ F(t)∗ and σ(f) = a′

b′ be in reduced
representation. We have

a′

b′
= σ(f) =

σ(a)
σ(b)

.

Since gcd(a, b) = 1, it follows by Lemma 2.2.1 that

gcd(σ(a), σ(b)) = 1.

As gcd(a′, b′) = 1, there is a u ∈ F with

σ(den(f)) = σ(b) = u b′ = den(σ(f)).

Besides the denominator we will need the order of an element of the polynomial ring F[t].
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Definition 3.5.1. Let F[t] be a polynomial ring and let f ∈ F[t]∗. We define the order of f
- in symbols ord(f) - as the maximal m ≥ 0 such that

tm | q.

For the zero-polynomial we define ord(0) := −1. ♦

Later we will need the following simple fact.

Lemma 3.5.2. Let (F(t), σ) be a Π-extension of (F, σ) and q ∈ F[t]. Then for all k ≥ 0 we
have

ord(q) = ord(σk(q)).

Proof. Let d := ord(q). If d = −1, 0, the lemma clearly holds. Now assume d > 0 and assume
there exists a k ≥ 0 with

ord(q) 6= ord(σk(q)). (3.53)

We have
q = td p

for some p ∈ F[t]∗ with t - p. Since

σk(q) = σk(td) σk(p) = (α)k tdσd(p)

where σd(p) ∈ F[t] and (α)k ∈ F∗, it follows by (3.53) that

t | σk(p)

and thus σk(p)/t ∈ F[t]. Then

σ−k(
σk(p)

t
) =

p

σ−k(t)
=

p

c t
∈ F[t]

for some c ∈ F and therefore t | p, a contradiction.

Lemma 3.5.3. Let (F(t), σ) be a Π-extension of (F, σ), let a ∈ F[t]∗ and let g ∈ F(t)∗ with
ord(den(g)) > 0. Then

ord(den(a σi(g))) = max(0, ord(den(g))− ord(a))

for all i ≥ 0.

Proof. Let d := ord(den(g)) > 0 and
g =

u

v td

for some u, v ∈ F[t]∗ with t - u, v and let

a = tp b

for some p ≥ 0 and b ∈ F[t]∗ with t - b. Then

a σi(g) = tp b σi(
u

v td
) =

b

td−p

σi(u)

σi(v) (α)d
i
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with d− p ∈ Z. Clearly we have

σi(u) ∈ F[t]∗ and σi(v) (α)d
i ∈ F[t]∗.

Since ord(u) = ord(v) = 0, it follows that

t - σi(u) and t - σi(v) (α)d
i

by Lemma 3.5.2. If d− p ≥ 0 then

den(ord(a σi(g))) = d− p = max(0, d− p),

otherwise
den(ord(a σi(g))) = 0 = max(0, d− p).

Lemma 3.5.4. Let F(t) be a field of rational functions over F and let

f = f1 + f2 + f3 ∈ F[1/t] \ F∗ ⊕ F[t]⊕ F(t)(fracpart).

Then ord(den(f)) = ord(den(f1)).

Proof. Let f3 = p
q be in reduced representation, in particular t - q. If ord(den(f1)) = 0 then

f1 = 0, hence

f = f2 + f3 = f2 +
p

q
=

f2 q + p

q

and thus ord(den(f)) = 0. Otherwise, if ord(den(f1)) > 0, let f1 = u
td

be in reduced
representation, in particular d ≥ 1 and t - u 6= 0. Then

f = f1 + f2 + f3 =
u

td
+ f2 +

p

q
=

u q + f2 td q + p td

td q

where t - u q, therefore
t - u q + f2 td q + p td

and hence ord(den(f)) = d = ord(den(f1)).

Lemma 3.5.5. Let t be transcendental over F, d ≥ 1 and

f =
d∑

i=1

fi

ti
∈ F[1/t] \ F∗.

Then ord(den(f)) = d if and only if fd 6= 0. Furthermore, ord(den(f)) ≤ d.

Proof. If fd 6= 0 then

f =
d∑

i=1

fi

ti
=

fd + t fd−1 + · · ·+ td−1 f1

td
=:

u

td

where u ∈ F[t] with t - u. Hence
ord(den(f)) = d.
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Contrary, assume that fd = 0. If f = 0 then clearly

ord(den(f)) = ord(1) = 0 < d.

In particular, d 6= ord(den(f)). Otherwise, if f 6= 0, let l < d be maximal such that fl 6= 0.
Then

f =
l∑

i=1

fi

ti
=

fl + t fl−1 + · · ·+ tl−1 f1

tl
=

u

tl

where u ∈ F[t] with t - u. Hence

ord(den(f)) = l < d

by the first part of the proof and thus ord(den(f)) 6= d .

Proposition 3.5.1. Let (F(t), σ) be a Π-extension of (F, σ), 0 6= a = (a1, . . . , am) ∈ F[t]m

and p := mini(ord(ai)). Let g ∈ F(t) with d := ord(den(g)) > p and define

S := {ai | ord(ai) = p}.

Then ord(den(σag)) < d− p if and only if

ord(den(
∑
i∈S

ai σ
m−i(g))) < d− p.

Proof. Take
hi := ai σ

m−i(g)

for all 1 ≤ i ≤ m and write

hi = hi1 + hi2 + hi3 ∈ F[1/t] \ F∗ ⊕ F[t]⊕ F(t)(fracpart).

If ai = 0 then hi = 0, therefore

oi := ord(den(hi)) = ord(1) = 0 < d− p

and thus we may write

hi1 =
oi∑

j=1

h̃ij

tj
.

Otherwise, if ai 6= 0 then by Lemma 3.5.3 it follows that

oi := ord(den(hi)) = max(0, d− pi) ≤ d− p

and by Lemma 3.5.5 we may write

hi1 =
oi∑

j=1

h̃ij

tj

with hij ∈ F. Write

σag = f1 + f2 + f3 ∈ F[1/t] \ F∗ ⊕ F[t]⊕ F(t)(fracpart);
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then

f1 = h11 + · · ·+ hm1 =
o1∑

j=1

h̃1j

tj
+ · · ·+

om∑
j=1

h̃mj

tj
.

We have

ord(den(f)) < d− p
Lemma (3.5.4)⇔ ord(den(f1)) < d− p

⇔ ord(den(
o1∑

j=1

h̃1j

tj
+ · · ·+

om∑
j=1

h̃mj

tj
)) < d− p

Lemma (3.5.5)⇔
∑
i∈S

h̃ioi = 0

Lemma (3.5.5)⇔ ord(den(
∑
i∈S

oi∑
j=1

h̃ij

tj
)) < d− p

⇔ ord(den(
∑
i∈S

ai σ
m−i(g))) < d− p.
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3.5.2 Some Special Cases for the Period 1 Denominator Bounding

Let (F(t), σ) be a Π-extension of (F, σ) with constant field K, f ∈ F[t]n and 0 6= a ∈ F[t]m.
Furthermore let W be a subspace of F(t)(0) as a vector space over K. We are interested in
finding a d ∈ F[t]∗ such that for all

c∧g ∈ V(a, f , F[t]⊕W⊕ F(t)(1))

we have
d g ∈ F[t]⊕W. (3.54)

Given such a d we can apply the reduction technique described in Section 3.1.3.1. By Corol-
lary 3.1.5 we have

F(t)(1) = F[1/t] \ F∗.

In other words, we are looking for a bound b ∈ N0 such that for all c ∈ Kn and g ∈ F(t) with

σag = c f

we have
b ≥ ord(den(g)). (3.55)

Then clearly d := tb satisfies property (3.54).

3.5.2.1 A Lower Bound

Lemma 3.5.6. Let (F(t), σ) be a Π-extension of (F, σ), 0 6= a = (a1, . . . , am) ∈ F[t]m with

p := min
i

(ord(ai))

and f ∈ F[t]∗. If there is a g ∈ F(t)∗ with den(ord(g)) > 0 and

σag = f

then
ord(den(g)) ≥ max(p− ord(f), 1).

Proof. We have d := ord(den(g)) > 0 and

g =
u

v td

for some u, v ∈ F[t] with t - u, v. Let
ai = tpi bi

for some pi ≥ 0 and bi ∈ F[t] with t - bi or bi = 0. We have

f = σag =
m∑

i=1

tpi bi σ
m−i(

u

v td
) =

m∑
i=1

tpi−d bi
σm−i(u)

σm−i(v) (α)d
m−i

(3.56)

with pi − d ∈ Z. Clearly we have

σm−i(u) ∈ F[t] and σm−i(v) (α)d
m−i ∈ F[t].
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Since ord(v) = 0, by Lemma 3.5.2 it follows that

t - σm−i(v) (α)d
m−i .

If pi − d ≥ 0 for all 1 ≤ i ≤ m then by (3.56) it follows that

ord(f) ≥ min(p1 − d, . . . , pm − d) = p− d

and consequently
d ≥ p− ord(f) = max(p− ord(f), 1).

Otherwise, if there exists an i with pi − d < 0 then p− d < 0 and hence

d ≥ 1 = max(p− d, 1).

As in the polynomial case (Section 3.3.1), for the general setting under discussion one
does not know an algorithm to determine a bound b for some 0 6= a = (a1, . . . , am) ∈ F[t]m

and f = (f1, . . . , fn) ∈ F[t]n such that for all g ∈ F(t) and c ∈ Kn with

σag = c f

we have
ord(den(g)) ≤ b.

In this case, the previous lemma motivates us to choose heuristically a bound

max(min
i

(ord(ai))−min
i

(ord(fi)), 1) + plusBound

where plusBound ≥ 0 has to be chosen by the user and must be incremented if the desired
solution cannot be found.

3.5.2.2 A Simple Case

Theorem 3.5.1. Let (F(t), σ) be a Π-extension of (F, σ), f ∈ F[t]n and 0 6= a =
(a1, . . . , am) ∈ F[t]m with

ord(ar) = p for some r ∈ {1, . . . ,m},
ord(ai) > p ∀i 6= r

If g ∈ F(t) with σag = c f for some c ∈ Kn then

ord(den(g)) ≤ p.

Proof. Suppose ord(den(g)) > p. Since

σag = c f ∈ F[t],

it follows that
ord(den(σag)) = ord(1) = 0.

Therefore, together with Proposition 3.5.1, it follows that

ord(den(ar σm−r(g))) < ord(den(g))− p.

But by Lemma 3.5.3 it follows that

ord(den(ar σm−r(g))) = max(0, ord(den(g))− p) = ord(den(g))− p,

a contradiction.
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3.5.2.3 The First Order Case

Let (F(t), σ) be a Π-extension of (F, σ),

0 6= a = (a1, a2) ∈ F[t]2

and f ∈ F[t]n. In this section we will deal with the problem to find a bound b as in (3.55).
Then we have a denominator bounding as stated in (3.54) which is needed for the incremental
reduction method as one can see in Section 3.1.3.2.

If ord(a1) 6= ord(a2), Theorem 3.5.1 provides a bound b. What remains to consider is the
case ord(a1) = ord(a2).

This means, without loss of generality, we assume that ord(a1) = ord(a2) =: p ≥ 0, i.e.

a1 = tp(1 + r1),
a2 = tp(−c + r2)

(3.57)

where r1, r2 ∈ F[t] with ord(ri) > 0 and c ∈ F∗.

The result of this section delivers a bound for exactly that case (3.57). Especially, in
order to compute this bound, we must be able to decide, if there exists a d ≥ 0 for some
c, α ∈ F∗ such that

c αd ∈ H(F,σ).

Furthermore, if there exists such a d, we must even compute it. As mentioned in Section 2.2.5
these problems can be solved if (F, σ) is a ΠΣ-field.

The main idea of the following section is taken from Theorem 18 of [Kar81]. Whereas
in Karr’s version theoretical and computational aspects are mixed, I tried to separate his
theorem in several parts to achieve more transparency.

Theorem 3.5.2. Let (F(t), σ) be a Π-extension of (F, σ), f ∈ F[t] and assume a1, a2 ∈ F[t]
as in (3.57). If there exists a g ∈ F(t) with d := ord(den(g)) > p such that

ord(den(a1 σ(g)− a2 g)) < d− p

then
c αd ∈ H(F,σ).

Proof. Let g ∈ F(t) with d := ord(den(g)) > p, i.e.

g =
u

v td

for some u, v ∈ F[t]∗ with gcd(u, v) = 1 and t - u, v. We have

a1 σ(g)− a2 g = (1 + r1)
σ(u)
σ(v)

1
αd td−p

− (c− r2)
u

v

1
td−p

=
(1 + r1) σ(u) v − (c− r2) u σ(v) αd

σ(v) v

1
αd td−p

.

As
ord(den(a1 σ(g)− a2 g)) < d− p,
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it follows that
t | ((1 + r1) σ(u) v − (c− r2) u σ(v) αd)

m[
(1 + r1) σ(u) v − (c− r2) u σ(v) αd

]
0

= 0.

Let u0 := [u]0 ∈ F∗ and v0 := [v]0 ∈ F∗. As t | ri we get

σ(u0) v0 − c u0 σ(v0) αd = 0 ⇔ σ(u0) v0

u0 σ(v0)
= c αd

⇔ σ(h)
h

= c αd

for h := u0
v0
∈ F∗ and thus

c αd ∈ H(F,σ).

Theorem 3.5.3. Let (F(t), σ) be a Π-extension of (F, σ), f ∈ F[t]n and assume a1, a2 ∈
F[t] as in (3.57). Let g ∈ F(t) and c ∈ Kn such that

a1 σ(g) + a2 g = c f .

If there exists a d ≥ 0 such that
c αd ∈ H(F,σ)

then d is uniquely determined and we have ord(den(g)) ≤ max(d, p). If there does not exist
such a d then ord(den(g)) ≤ p.

Proof. Let g ∈ F(t) and c ∈ Kn with

a1 σ(g)− a2 g = c f =: f.

Since f ∈ F[t], we have
ord(den(f)) = ord(1) = 0. (3.58)

1. Assume there exists a d ≥ 0 with

c αd ∈ H(F,σ).

Then by Lemma 3.3.2 d is uniquely determined. Assume ord(den(g)) > p. Since (3.58),
by Theorem 3.5.2 it follows that ord(den(g)) = d and therefore

ord(den(g)) = d = max(p, d).

Otherwise, if ord(den(g)) ≤ p then we have

ord(den(g)) ≤ max(p, d).

2. Assume there does not exist such a d. Since (3.58), by Theorem 3.5.2 it follows that

ord(den(g)) ≤ p.
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3.5.2.4 A Generalization for the m-th order Case

Let (F(t), σ) be a Π-extension of (F, σ).

Assume 0 6= a = (a1, . . . , aλ, . . . , aµ . . . , am) ∈ F[t]m with

ord(aλ) = ord(aµ) = p,

ord(ai) > ord(aλ) ∀i 6= λ, µ

and

aλ = tp + r1,

aµ = −c tp + r2
(3.59)

for c ∈ F∗ and r1, r2 ∈ F[t] with ord(r1), ord(r2) > 0.

In this section we will deal with the problem to find a bound b ≥ 0 as in (3.55). Then
we have a denominator bounding as stated in (3.54) which is needed for the incremental
reduction method as one can see in Section 3.1.3.2.

Theorem 3.5.4. Let (F(t), σ) be a Π-extensions of (F, σ) where we set

σk(t) = αk t

for all k ∈ Z∗. Let a ∈ F[t]m as in (3.59) and assume that (F(t), σµ−λ) is a Π-extension of
(F, σµ−λ). If there exists a g ∈ F(t) with d := ord(den(g)) > p such that

ord(den(σag)) < d− p

then
σ(µ−m)(c) αd

µ−λ ∈ H(F,σµ−λ).

Proof. Let g ∈ F(t) with d := ord(den(g)) ≥ p and assume

ord(den(σag)) < d− p.

Then by Proposition 3.5.1 and (3.59) it follows that

d− p > ord(den(aλ σm−λ(g) + aµ σm−µ(g)))

and thus by Lemmas 3.5.1 and 3.5.2 we have

d− p > ord(σµ−m(den(aλ σm−λ(g) + aµ σm−µ(g))))

= ord(den(σµ−m(aλ) σµ−λ(g) + σµ−m(aµ) g).

By

σµ−m(aλ) = αp
µ−m tp + σµ−m(r1),

σµ−m(aµ) = −σµ−m(c) αp
µ−m tp + σµ−m(r2)

it follows that
ord(den(b1 σµ−λ(g) + b2 g)) < d− p
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for

b1 := tp + σµ−m(r1)/αp
µ−m,

b2 := −σµ−m(c) tp + σµ−m(r2)/αp
µ−m.

As (F(t), σµ−λ) is a Π-extension of (Fµ−λ, σ), we may apply Theorem 3.5.2 and thus we obtain

σµ−m(c) αd
µ−λ ∈ H(F,σµ−λ).

Theorem 3.5.5. Let (F(t), σ) be a Π-extension of (F, σ) and set

σk(t) = αk t

for all k ∈ Z∗. Let f ∈ F[t]n, assume a ∈ F[t]m as in (3.59) and suppose that (F(t), σµ−λ)
is a Π-extension of (Fµ−λ, σ). Let g ∈ F(t) and c ∈ Kn such that

σag = c f .

If there exists a d ≥ 0 such that

σ(µ−m)(c) αd
µ−λ ∈ H(F,σµ−λ)

then d is uniquely determined and ord(den(g)) ≤ max(d, p). Otherwise, if there does not
exist such a d then ord(den(g)) ≤ p.

Proof. Let g ∈ F(t) and c ∈ Kn with

σag = c f =: f.

Since f ∈ F[t], we have
ord(den(f)) = ord(1) = 0. (3.60)

1. Assume there exists a d ≥ 0 with

σ(µ−m)(c) αd
µ−λ ∈ H(F,σµ−λ).

Then by Lemma 3.3.2 d is uniquely determined. Assume ord(den(g)) > p. Since (3.60),
by Theorem 3.5.4 it follows that

ord(den(g)) = d = max(p, d).

Otherwise, if ord(den(g)) ≤ p, we have

ord(den(g)) ≤ max(p, d).

2. Assume there does not exist such a d. Since (3.60), by Theorem 3.5.4 it follows that

ord(den(g)) ≤ p.

Let (F, σ) be a ΠΣ-field and (F(t), σ) a Π-extension of (F, σ). Then Theorem 3.3.7 guaran-
tees that for any k 6= 0 the difference field (F(t), σk) is a Π-extension of (F, σk). Therefore
we can apply Theorem 3.5.5 to compute a denominator bounding.
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3.5.3 M. Bronstein’s Period 0 Denominator Bounding

Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K, f ∈ F[t]n and 0 6= a ∈ F[t]m.
Furthermore let W be a subspace of F(t)(1) as a vector space over K. We are interested in
finding a d ∈ F[t]∗ such that for all

c∧g ∈ V(a, f ,

F(t)︷ ︸︸ ︷
F[t]⊕ F(t)(0) ⊕ F(t)(1))

we have
d g ∈ F[t]⊕W.

Given such a d we can apply the reduction technique described in Section 3.1.3.1.

3.5.3.1 A Simple Transformation of the Difference Equation

Without loss of generality we may assume that a = (a1, . . . , am) ∈ F[t]m where

a1 6= 0 6= am.

If not, say 0 = a1 = a2 = · · · = al−1 6= al and ak 6= ak+1 = · · · = am = 0 with 1 ≤ l ≤ k ≤ m
then

σag = c f

m

al σ
m−l(g) + · · ·+ ak σm−k(g) = c f

m

σk−m(al) σk−l(g) + · · ·+ σk−m(ak) g = cσk−m(f)

where
σk−m(al) 6= 0 6= σk−m(ak).

Therefore define

a′ :=
(
σk−m(al), σk−m(al+1), . . . , σk−m(ak)

)
∈ F[t]k−l+1,

f ′ := σk−m(f) ∈ F[t]n,

and solve the problem V(a′, f ′, F(t)). Finally we get

V(a, f , F(t)) =
{
c∧σm−k(g) | c∧g ∈ V(a′, f ′, F(t))

}
. (3.61)

3.5.3.2 The Period 0 Denominator Bounding and its Consequences

Let (A[t], σ) be a difference ring with t transcendental over A and let us recall the spread of
a, b ∈ A[t]∗ w.r.t. σ:

spreadσ(a, b) = {m ≥ 0 | deg(gcd(a, σm(b))) > 0}.

We have the following simple fact.

Lemma 3.5.7. Let (A[t], σ) be a difference ring with t transcendental over A and a, b ∈ A[t]∗.
If a ∈ A or b ∈ A then spreadσ(a, b) = ∅.
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Additionally, if (F(t), σ) is a ΠΣ-extension of (F, σ) and a, b ∈ F[t]∗ then by Theorem 2.2.5
spreadσ(a, b) is a finite set if and only if (F(t), σ) is a Σ-extension of (F, σ) or t - gcd(a, b). In
this case we can define the following sequence.

Definition 3.5.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ). Let a, b ∈ F[t]∗ with t - gcd(a, b)
if (F(t), σ) is a Π-extension of (F, σ). Let

spreadσ(a, b) = {m1 > m2 > · · · > ms}.

The sequence 〈(pi, qi, ui) | 1 ≤ i ≤ s + 1〉 is called bounding sequence of a and b if

1. p1 := a, q1 := b, u1 := 1 and

2. for 1 ≤ i ≤ s we have iteratively

pi+1 : =
pi

di
, qi+1 : =

qi

σ−mi(di)
, ui+1 : = ui

mi∏
j=0

σ−jdi

where di := gcd(pi, σ
mi(qi)).

♦

In [Kar81] M. Karr developed an algorithm to compute the so called σ-factorization for an
element in a ΠΣ-field (F(t), σ). Given the σ-factorizations of a, b ∈ F[t]∗, one can compute the
spread of a and b. Then the following theorem provides an algorithm to find a denominator
bounding for the solutions of the fractional part with period 0.

Theorem 3.5.6. Let (F(t), σ) be a ΠΣ-extension of (F, σ), a = (a1, . . . , am) ∈ F[t]m with
a1 6= 0 6= am and f ∈ F[t]n. Let

ã1 := σm−1(a1), ãm :=
am

tord(am)
,

and consider the bounding sequence

〈(pi, qi, ui) | 1 ≤ i ≤ s + 1〉

of ã1 and ãm. Assume there are a c ∈ Kn and a g ∈ F(t) with

σag = c f

where
g = p⊕ g1 ⊕ g0 ∈ F[t]⊕ F(t)(1) ⊕ F(t)(0).

Then
den(g0) | us+1.

Proof. The Theorem is a direct consequence of Theorems 8 and 10 of [Bro00].

Corollary 3.5.1. Let (F(t), σ) be a ΠΣ-extension of (F, σ), 0 6= a ∈ Fm and f ∈ F[t]n. If
there are a c ∈ Kn and a g ∈ F(t) such that

σag = c f

then g ∈ F[t]⊕ F(t)(1).
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Proof. Without loss of generality we may assume that a = (a1, . . . , am) ∈ Fm with a1 6= 0 6=
am. Otherwise transform the problem as described in Section 3.5.3.1 to a′ = (a′1, . . . , a

′
l) ∈ Fl

with a′1 6= 0 6= a′l and f ′ ∈ F[t]n. If we can prove the corollary for this special case then by
(3.61) the corollary follows also for the general case a and f .

Define ã1, ãm as in Theorem 3.5.6. It follows directly that ã1, ãm ∈ F and thus by
Lemma 3.5.7 it follows that

spreadσ(ã1, ãm) = ∅.

Therefore the bounding sequence of ã1 and ãm is 〈(ã1, ãm, 1)〉, in particular u1 = 1. By
Theorem 3.5.6 it follows that for any g ∈ F(t) with

g = p⊕ g1 ⊕ g0 ∈ F[t]⊕ F(t)(1) ⊕ F(t)(0)

we have
den(g0) | u1 = 1

and thus g ∈ F[t]⊕ F(t)(1).

Corollary 3.5.2. Let (F(t), σ) be a Σ-extension of (F, σ), 0 6= a ∈ Fm and f ∈ F[t]n. If
there are a c ∈ Kn and a g ∈ F(t) such that

σag = c f

then g ∈ F[t].

Proof. As (F(t), σ) is a Σ-extension of (F, σ), it follows by Corollary 3.1.5 that

F(t)(1) = ∅.

Thus the corollary is a direct consequence of Corollary 3.5.1.

Corollary 3.5.3. Let (F(t), σ) be a Π-extension of (F, σ), 0 6= a ∈ Fm and f ∈ F[t]n. If
there are a c ∈ Kn and a g ∈ F(t) such that

σag = c f

then g = p
tk

for some p ∈ F[t] and k ≥ 0.

Proof. As (F(t), σ) is a Π-extension of (F, σ) it follows by Corollary 3.1.5 that

F(t)(1) = F[1/t] \ F∗.

Thus the corollary is a direct consequence of Corollary 3.5.1.
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3.6 Solutions in Some Special Difference Rings

Given a ΠΣ-field (F, σ) over K and a primitive k-th root of unity α ∈ K, we want to sketch
how one can solve difference equations in a difference ring extension (F[y], σ) with the relation

yk = 1

canonically defined by
σ(y) = α y.

Intuitively, we try to model the object

αk =
k∏

i=1

α

in the difference field setting.

3.6.1 Some Special Difference Rings

Let F[x] be a polynomial ring with coefficients in a field F and consider the quotient ring
A := F[x]/〈xk − 1〉. By the remarks in Section 2.4.8, the ring A consists of cosets

p + 〈xk − 1〉

where p ∈ F[x]. By the division algorithm there are r, q ∈ F[x] with deg(r) < k such that

p = q (xk − 1) + r

and therefore we have

p + 〈xk − 1〉 = r + q (xk − 1) + 〈xk − 1〉 = r + 〈xk − 1〉.

Consequently we can represent the cosets of the ring A by the elements

R := {p ∈ F[x] | deg(p) < k}.

A classical result is the following lemma.

Lemma 3.6.1. Let F be a field and F[y] be a ring with yk = 1. Then

F[y] ' A∑k−1
i=0 fi y

i 7→
∑k−1

i=0 fi x
i.

Lemma 3.6.2. Let (F, σ) be a difference field with constant field K. Let α ∈ K be a primitive
k-th root of unity and consider the ring extension F[y] of F with

yk = 1.

Then (F[y], σ) canonically defined by

σ(y) = α y

is - up to a difference ring isomorphism - a unique difference ring extension of (F, σ) and

constσF[y] = constσF.



236 CHAPTER 3. SOLVING DIFFERENCE EQUATIONS

Proof. Let F[y] be a ring with yk = 1 as stated above. We have to show that σ canonically
defined by σ(y) = α y is an homomorphism. So assume a, b ∈ F[y] with

a = a0 + a1 y + · · ·+ ak−1 yk−1,

b = b0 + b1 y + · · ·+ bk−1 yk−1.

Clearly we have
σ(a + b) = σ(a) + σ(b).

Now consider

a b = (a0 + a1 y + · · ·+ ak−1 yk−1) (b0 + b1 y + · · ·+ bk−1 yk−1).

We have
[a b]i = a0 bi + a1 bi−1 + · · ·+ an−1 bi+1.

Looking at

σ(a) σ(b) = (σ(a0) + · · ·+ σ(ak−1) αk−1 yk−1) (σ(a0) + · · ·+ σ(ak−1) αk−1 yk−1)

we find

[σ(a) σ(b)]i = σ(a0) σ(bi) αi + σ(a1) α σ(bi−1) αi−1 + · · ·+ σ(ak−1) αk−1 σ(bi+1) αi+1)

and thus by using
αk = 1

we get

[σ(a) σ(b)]i yi = (σ(a0) σ(bi) + σ(a1) σ(bi−1) + · · ·+ σ(ak−1) σ(bi+1))αi yi

= σ(a0 bi + a1 bi−1 + · · ·+ ak−1 bi+1) αi yi

= σ([a b]i yi).

Consequently
σ(a b) = σ(a) σ(b),

and therefore σ is a difference ring homomorphism. As we can easily construct the inverse
by

σ−1(y) = αk−1 y,

it follows immediately that σ is a difference ring automorphism.
Now assume that constσF[y] 6= constσF. This means that we can take an f ∈ F[y] \ F

such that
σ(f) = f,

in particular, f =
∑l

i=0 fi y
i ∈ F[y] \ F with fi ∈ F and fl 6= 0 for some 0 < l < k. Then

l∑
i=0

fi y
i = f = σ(f) =

l∑
i=0

σ(fi) αi yi,

therefore
fl = σ(fl) αl
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and consequently
αl ∈ F,

a contradiction to the assumption that α is a primitive k-th root of unity. Now assume there
is an other difference ring extension (F[y′], σ) with y′k = 1 canonically defined by σ(y′) = α y′.
By Lemma 3.6.1 it follows that

F[y]'F[x]/〈xk − 1〉'F[y′]

and thus there exists a ring isomorphism τ : F[y] → F[y′] canonically defined by

τ(y) = y′.

Since
τ(σ(y)) = τ(α y) = α y′ = σ(y′) = σ(τ(y))

it follows immediately that τ is a difference ring isomorphism.

Lemma 3.6.3. The map

σ :
{

A → A∑k−1
i=0 fi x

i 7→
∑k−1

i=0 σ(fi) αi xi

is a ring automorphism.

Proof. By Lemma 3.6.1 there exists a ring isomorphism τ : F[y] → A with τ(y) = x and by
Lemma 3.6.2 there exists a difference ring extension (F[y], σ) canonically defined by

σ(y) = α y.

Therefore by Lemma 2.4.7 it follows that

σ′ :
{

F[t] → F[t]
f 7→ τ(σ(τ−1(f)))

is a ring automorphism. We have

σ′(y) = τ(σ(τ−1(y))) = τ(σ(x)) = τ(α x) = α y

and thus σ′ is canonically defined by σ′(y) = α y.

Proposition 3.6.1. Let (F, σ) be a difference field, α ∈ K be a primitive k-th root of unity
and F[y] be a ring with yk = 1. Let (F[y], σ) and (A, σ) be the difference ring extensions of
(F, σ) canonically defined by

σ(x) = α x, σ(y) = α y.

Then
(F[y], σ)' (A, σ)

and constσF[y] = constσA = constσF.

Proof. By Lemma 3.6.2 the difference ring (F[y], σ) is -up to a difference ring isomorphism-
uniquely defined and therefore

(F[y], σ)' (A, σ).

As a consequence the constant fields must be the same and because of constσF[y] = constσF
by Lemma 3.6.2, it follows that

constσF[y] = constσF[x] = constσF.
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3.6.2 Zero Divisors and Invertible Elements

The ring A := F[x]/〈xk−1〉 has zero divisors: The elements (x−1) and (1+x+x2 + · · ·xk−1)
in A are both different from 0, but we have

(x− 1) (1 + x + x2 + · · ·xk−1) = xk − 1

where xk − 1 represents the 0 element.

Lemma 3.6.4. Let u ∈ R∗. Then u is invertible in A if and only if

gcdF[x](u, xk − 1) = 1.

Proof. Let u, s ∈ R∗. We have

u s =A 1 ⇔ u s ≡ 1 mod xk − 1

⇔ u s + (xk − 1) p = 1

for some p ∈ F[x] and thus equivalently

gcdF[x](u, xk − 1) = 1.

Corollary 3.6.1. Let u ∈ R∗. Then u is a zero divisor if and only if

gcdF[x](u, xk − 1) 6= 1.

Proof. This is a consequence of Lemma 2.4.6.

Consequently the invertible elements are exactly those elements which are nonzero divi-
sors.
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3.6.3 The Reduction Process and Two Base Cases

In the following we assume that (F(t), σ) is a ΠΣ-field over K, α ∈ K is a primitive k-th
root of unity and we consider the difference ring extension (F(t)[x]/〈xk − 1〉, σ) canonically
defined by

σ(x) = α x.

In particular we have
constσ(F(t)[x]/〈xk − 1〉) = K.

Lemma 3.6.5. Let F[t, x] be a polynomial ring with coefficients in F. Then

F[t][x]/〈xk − 1〉 ' (F[x]/〈xk − 1〉)[t].

Proposition 3.6.2. Let (F(t), σ) be a ΠΣ-extension of (F, σ) with constant field K and α ∈ K
be a primitive k-th root of unity. Let (F(t)[x]/〈xk − 1〉, σ) be the difference ring extension of
(F(t), σ) canonically defined by

σ(x) = α x.

Then ((F[x]/〈xk − 1〉)[t], σ) is a difference ring with

(F[t][x]/〈xk − 1〉, σ) ' ((F[x]/〈xk − 1〉)[t], σ).

Let A := F[x]/〈xk − 1〉. Then A[t] is a polynomial ring with coefficients in A.

Let
B := F(t)[x]/〈xk − 1〉

and let 0 6= a ∈ Bm and f ∈ Bn. In the following I will sketched how one can try to apply
the reduction technique, described in Section 3.2.6 for ΠΣ-fields, to the problem of solving
the solution space V(a, f , B) in the difference ring (B, σ). Let

A := F[x]/〈xk − 1〉.

Then by Proposition 3.6.2 we have

(F[t][x]/〈xk − 1〉, σ) ' (A[t], σ) (3.62)

where A[t] is a polynomial ring with coefficients in A, i.e. t is transcendental over A. By this
observation we can try to apply Theorems 3.2.1 and 3.2.2 in order to obtain the following
reduction process (see also Section 3.2.6):

V(a, f , F(t)[x]/〈xk − 1〉)
by denominator
bounding ??

V(a′, f ′, F[t][x]/〈xk − 1〉)

6

?

|| by (3.62)

V(a′, f ′, A[t])

|| by polynomial
degree bounding??

V(a′, f ′, A[t]b)
HHHHH1. j

YHHHHH

5.

Theorem 3.2.2 I(a′, f ′, tb A)

������

4.
Theorem 3.2.1

V(a′, f ′′, A[t]b−1)

5.6

V(ã′, f̃ ′, A)

2.? 3. 6
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Open Problems

• In order to apply the reduction process sketched above, one has to find a denominator
bound d ∈ F[t]∗ such that for all g ∈ F(t)[x]/〈xk − 1〉 and c ∈ Kn with σag = c f we have

g d ∈ F[t][x]/〈xk − 1〉.

• An other open problem is to find a bound b for the solution space V(a, f , A[t]), this means
to find a b such that

V(a′, f ′, A[t]b) = V(a′, f ′, A[t]).

• Furthermore, we must assume that the solution spaces V(a′, f ′, A[t]b) and V(ã′, f̃ ′, A) are
finite dimensional in order to represent the vector spaces by basis matrices. In other words,
one has to guarantee that a′ and ã′ are V-finite. Here I have the following conjecture.

Conjecture 3.6.1. Let (F, σ) be a ΠΣ-field with constant field K and α ∈ K be a primitive
k-th root of unity. Let (F[y], σ) be a difference ring extension of (F, σ) with σ(y) = α y and
yk = 1. Let a = (a1, . . . , am) ∈ F[y]m with a1 6= 0 6= am. Then a is V-finite, if a1 and an are
units in F[y].

If this conjecture holds, then one can easily check by Lemma 3.6.4, if a′ and ã′ are V-finite.

Finally, if we succeed in doing all these reduction steps properly, we have to consider two
base cases (compare with Section 3.2.6).

The First Base Case

In the reduction process we finally reach the point to find all solutions V(a′,p, A[t]−1) for
some p ∈ A[t]r||a||−1 and r ≥ 1. By Theorem 3.1.4 we have

V(a,p, A[t]−1) = V(a,p, {0}) = NullspaceK(p)× {0}

and therefore we have to deal with the problem to find all solutions of NullspaceK(p). Since

A[t] = (F[x]/〈xk − 1〉)[t]'F[t][x]/〈xk − 1〉,

the following Lemma tells us that NullspaceK(p) is a finite dimensional vector space over K
and how one can compute a basis of NullspaceK(p).

Lemma 3.6.6. Let (F, σ) with F := K(t1, . . . , te) be a ΠΣ-field over K and consider the
difference ring extension (F[x]/〈xk − 1〉, σ) canonically defined by

σ(x) = α x.

Let f ∈ (F[x]/〈xk − 1〉)n. Then NullspaceK(f) is a finite dimensional subspace of Kn and
a basis can be computed by linear algebra.

Proof. Let f = (f1, . . . , fn) ∈ (F[x]/〈xk − 1〉)n. Since F is a ΠΣ-field, it follows that F is the
quotient field of the polynomial ring K[t1, . . . , te]. We can find a d ∈ K[t1, . . . , te]∗ such that

g = (g1, . . . , gn) := (f1 d, . . . , fn d) ∈ K[t1, . . . , te][x]/〈xk − 1〉.
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Furthermore we can assume that

gi =
k−1∑
j=0

gij xj .

For c ∈ Kn we have
c f = 0 ⇔ c g = 0

and therefore
NullspaceK(f) = NullspaceK(g).

Let c1, . . . , cn be indeterminates and make the ansatz

A := c1 g1 + · · ·+ cn gn = 0.

We have

A =
k−1∑
j=0

xj
n∑

i=0

ci gij

and therefore A = 0 if and only if

Ai :=
n∑

i=0

ci gij

for all 1 ≤ j < k. Since K[t1, . . . , te] is a polynomial ring over K, the coefficients of each
monomial td1

1 . . . tde
e in Ai must vanish. Therefore we obtain a set of linear systems of equations

c1 pi11+ . . . +cn pi1n = 0
...

cr pir1+ . . . +cn pirn = 0
0 ≤ i < k

 (3.63)

where in the i-th subsystem an equation corresponds to a coefficient of a monomial in Ai which
must vanish. Since pijk ∈ K, finding all c ∈ Kn such that c is a solution of (3.63) is a simple
linear algebra problem. In particular, applying Gaussian elimination we get immediately a
basis of the vector space

{c ∈ Kn | c is a solution of (3.63)},

thus for NullspaceK(g) and consequently also for NullspaceK(f).

The Second Base Case

Let (F, σ) with F := K(t1, . . . , tn) be a ΠΣ-field over K, α ∈ K be a primitive k-th root of
unity and consider the difference ring extension (F(t)[x]/〈xk − 1〉, σ) canonically defined by

σ(x) = α x.

Then similar as in Section 3.2.6.3 we obtain the following second base case during the reduc-
tion process:
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V(ae, fe, K(t1, . . . , te−1)(te)[x]/〈xk − 1〉)

|| by denominator bounding

V(a′e, f
′
e, K(t1, . . . , te−1)[te][x]/〈xk − 1〉)

|| Proposition 3.6.2

V(a′e, f
′
e, (K(t1, . . . , te−1)[x]/〈xk − 1〉)[te])

|| by polynomial degree bounding

V(a′e, f
′
e, (K(t1, . . . , te−1)[x]/〈xk − 1〉)[te]b)

↓ ↑ Incr. Reduction (Theorem 3.2.1)

V(ae−1, fe−1, K(t1, . . . , te−1)[x]/〈xk − 1〉)

↓ ↑

...
...

↓ ↑

V(a1, f1, K[x]/〈xk − 1〉).

Let
A := K[x]/〈xk − 1〉,

0 6= a ∈ Am and f ∈ An. In the following we will show that

V(a, f , A) =
{
c∧g ∈ Kk × A |σag = c f

}
is a finite dimensional vector space over K and how we can compute a basis by linear algebra.
Consider the vector space

V :=

(c∧g) ∈ Kn ×Kk |σa(g

 x0

...
xk−1

) = c f

 (3.64)

over K.

Lemma 3.6.7. Let (K, σ) be a difference field with constant field K, α ∈ K be a primitive
k-th root of unity and consider the difference ring extension (K[x]/〈xk − 1〉, σ) of (K, σ)
canonically defined by

σ(x) = α x.

Let f ∈ Kn. Then the vector space V over K defined by (3.64) is finite dimensional and a
basis of V can be computed by linear algebra.

Proof. Consider the polynomial

p = σa(
k−1∑
i=0

gi x
i)−

n∑
i=1

ci fi ∈ K[c1 . . . , cn, g0 . . . , gk−1][x]
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in the unknowns c1 . . . , cn and g0, . . . , gk−1. By using the relation xn = 1, the polynomial p
can be represented by

p =
k−1∑
i=0

pi x
i

where pi ∈ K[c1 . . . , cn, g0 . . . , gk−1], in particular

pi = c1 pi1 + · · ·+ cn pin + qi0 g0 + · · ·+ qi,k−1 gk−1

for some pij , qij ∈ K. Then we get

p = 0 ⇔ (p0 = 0 & p1 = 0 & . . .& pk−1 = 0).

Therefore solving this linear system of equations in the unknowns ci and gi delivers a basis
of the vector space V.

Given a basis of V the following theorem states how we can compute a basis for the
solution space V(a, f , A).

Theorem 3.6.1. Let (K, σ) be a difference field with constant field K, α ∈ K be a primitive
k-th root of unity and consider the difference ring extension (K[x]/〈xk − 1〉, σ) of (K, σ)
canonically defined by

σ(x) = α x.

Let f ∈ Kn and consider the vector space V over K defined by (3.64). Let

V � basis - C∧G

where C ∈ Kr×n and G ∈ Kr×k for some r ≥ 1. Then

V(a, f , A) � basis - C∧g

where

g := G ·

 x0

...
xk−1

 .

Proof. We have
c∧h ∈ V(a, f , A)

m

∃p ∈ Kk : σah = c f & h = p

 x0

...
xk−1


m

∃p ∈ Kk : c∧p ∈ V : h = p

 x0

...
xk−1


and thus the theorem follows.
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Implementation Note 3.6.1. Assume one has given a recurrence in terms of sums and
products, in particular with a product expression of the form

r∏
i=1

α

where α is a primitive k-th root of unity. Moreover, assume this recurrence can be trans-
lated during the function call SolveRecurrence or FindSumSolutions into a difference
equation expressed in a difference ring (F[y], σ) of the following form:

• (F, σ) is a ΠΣ-field over K with α ∈ K.

• (F[y], σ) is the difference ring extension of (F, σ) canonically defined by

σ(y) = α y.

Then by setting the option

WithMinusPower− > True

in the function SolveRecurrence or FindSumSolutions, one invokes the reduction tech-
nique described above in order to solve the difference equation and therefore to find solu-
tions for the corresponding recurrence in terms of sums and products.
Although there are a lot of open problems (see page 240), in examples this reduction
strategy turns out to be very powerful by using heuristical methods. Partially I have
already introduced these heuristics in Sections 3.3.1 and 3.5.2.1.



Chapter 4

Summation and Difference Field
Extensions

In this chapter we are interested in finding appropriate difference field extensions in order to
deal with symbolic summation problems. In Section 4.1 we will summarize all results of the
previous chapter which give us information about solutions of a given difference equation.
These results will be the basis for further investigations.

In Section 4.2 I will consider a special case of Karr’s Fundamental Theorem [Kar81,
Section 4] for proper product-sum extensions. Loosely speaking, the main result of this
section is that looking for an appropriate difference field extension such that there exists a
solution of a given difference equation

σ(g)− g = f

means to look for one appropriate sum over F.
This result seems in the beginning quite disappointing. Contrary, in Section 4.3 we are

able to give new insight for the creative telescoping method in a given difference field by using
the Fundamental Theorem.

Furthermore in Section 4.4 the results of the Fundamental Theorem motivates us to
search for one appropriate sum extension where the “summand” consists of terms as simple
as possible in the underlying difference field. In that section we will describe how we can find
such appropriate sum extensions by using Karr’s reduction method sketched in Section 3.2.6.
Additionally, we can use this idea to find recurrences of lower order for a given definite
summation problem by choosing an appropriate sum extension.

Finally in Section 4.5 we consider the problem to find appropriate sum extensions in
which additional solutions exist for a given difference equation of any order. Additionally, we
sketch how one can find d’Alembertian extensions which deliver further solutions of a given
difference equation.

Some Definitions and Remarks

Let (E, σ) be a difference field extension of (F, σ) and let a = (am, . . . , a0) ∈ Fm+1 with
am 6= 0 . We call

L := am σm + am−1 σm−1 + · · ·+ a0

a difference operator with order m ≥ 0, in symbols,

order(L) = m.

245
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If we apply g ∈ E on L, we write

L(g) = am σm(g) + am−1 σm−1(g) + · · ·+ a0 g.

In the notation of the previous chapter we have for all g ∈ F that

L(g) = σag. (4.1)

Given the difference operator L, we write

vect(L) = (am, . . . , a0) = a ∈ Forder(L)+1

to extract the vector a from the difference operator L such that we have (4.1) for all g ∈ F.
Furthermore we will write

kerL = {g ∈ E | L(g) = 0}

for the kernel of the difference operator L and will consider it as a subspace of E over K.
As described in [BP96] we can consider

F[σ] :=

{
n∑

i=0

ai σ
i |n ∈ N0 & ai ∈ F

}

as a noncommutative polynomial ring with usual addition and multiplication given by

σ a = σ(a) σ.

By convention we define order(0) = −∞. In this polynomial ring we can compute the
Euclidean right division of A ∈ F[σ] by B ∈ F[σ]∗ and obtain Q,R ∈ F[σ] such that

A = QB + R

where order(R) < order(B).
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4.1 Solutions in Reduced Product-Sum Extensions

In this section we collect all results of Chapter 3 which give us information of the solutions
of a given recurrence L ∈ F[σ] in a reduced product sum extension (F(t), σ) of (F, σ).

Proposition 4.1.1. Let (F(t), σ) be a Π-extension of (F, σ), L ∈ F[σ]∗, f =
∑

i fi t
i ∈ F[t]

and g ∈ F(t) with
L(g) = f.

Then g =
∑

i gi t
i ∈ F[t, 1

t ] and
L(gi t

i) = fi t
i

for all i ∈ Z.

Proof. By Corollary 3.5.3 it follows that g =
∑

i gi t
i ∈ F[t, 1

t ]. Therefore

L(gi t
i) = hi t

i

for some hi ∈ F and consequently
L(g) =

∑
i

hi t
i.

As t is transcendental over F, we may conclude by coefficient matching that hi = fi.

Corollary 4.1.1. Let (F(t), σ) be a Π-extension of (F, σ), f ∈ F and g ∈ F(t) such that

σ(g)− g = f.

Then g ∈ F.

Proof. Assume g /∈ F. Then by Proposition 4.1.1 there exists an i ∈ Z∗ and a d ∈ F∗ such
that

σ(d ti)− d ti = 0

m

σ(d)
d

= α−i.

If i < 0 then (F(t), σ) is not a Π-extension of (F, σ) by Corollary 2.2.2, a contradiction.
Otherwise we have

σ(h)
h

= αi

for h := 1/d, again a contradiction by Corollary 2.2.2.

Proposition 4.1.2. Let (F(t), σ) be a proper sum extension of (F, σ) with constant field K
and let L ∈ F[σ]∗ with m := order(L) ≥ 0. Let f ∈ F[t] and g ∈ F(t) with

L(g) = f.

Then g ∈ F[t].

Proof. This is just a reformulation of Corollary 3.5.2.
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Theorem 4.1.1. Let (F, σ) be a ΠΣ-field and let (F(t), σ) be a proper sum extension of
(F, σ); let L ∈ F[σ]∗ with m := order(L) ≥ 0 and let f ∈ F[t], g ∈ F(t) with

L(g) = f.

Then g ∈ F[t] with deg(g) ≤ m + deg(f). Furthermore there is a linearly independent set
{d0, . . . , dl−1} ⊆ F[t] over K for l := deg(g)− deg(f) with

L(di) = 0,

deg(di) = i

for all 1 ≤ i < l.

Proof. By Proposition 4.1.2 it follows that g ∈ F[t]. If l = deg(g) − deg(f) then by Corol-
lary 3.4.12 there is a linearly independent set {d0, . . . , dl−1} ⊆ F[t] over K with the above
properties. Furthermore by Corollary 3.4.13 we have deg(g) ≤ deg(f) + m.

If L ∈ F[σ] has order 1, we get the following special case in case (F, σ) is a ΠΣ-field. Here we
will prove a more general statement for any difference field (F, σ).

Lemma 4.1.1. Let (F(t), σ) be a proper sum extension (F, σ), L = a1 σ+a2 ∈ F[σ]∗, f ∈ F[t]
and g ∈ F(t) with

L(g) = a1 σ(g) + a2 g = f.

Then g ∈ F[t] with deg(g) ≤ deg(f) + 1. Furthermore, if deg(g) = deg(f) + 1 then there is a
d ∈ F∗ with

a1 σ(d)− a2 d = 0.

Proof. By Proposition 4.1.2 it follows that g ∈ F[t]. Furthermore by Corollary 3.3.3 we have
deg(g) ≤ deg(f) + 1. Now assume that deg(g) = deg(f) + 1. Then by Proposition 3.4.1
together with 0 6= (a1, a2) ∈ F2 it follows that there is a d ∈ F∗ with a1 σ(d)− a2 d = 0.

Proposition 4.1.3. Let (F(t), σ) be a proper sum extension of (F, σ), 0 6= (a1, a2) ∈ F2,
f ∈ F and g ∈ F(t) \ F with

a1 σ(g) + a2 g = f.

Then a1 6= 0 6= a2 and
g = d t + w

for some w ∈ F and d ∈ F∗. Furthermore we have

a1 σ(d) + a2 d = 0.

Proof. By Lemma 4.1.1 it follows that deg(g) = 1 and thus

g = d t + w

for some d ∈ F∗ and w ∈ F. If a1 = 0 or a2 = 0 then a1 σ(g) + a2 g /∈ F, a contradiction.
Hence a1, a2 ∈ F∗ and it follows that

a1 σ(d t + w) + a2 d t = (a1 σ(d) + a2 d)︸ ︷︷ ︸
∈F

t + v
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for some v ∈ F. Since f ∈ F and t is transcendental over F, we have

a1 σ(d) + a2 d = 0.

Remark 4.1.1. A similar result like Proposition 4.1.3 is achieved in [Kar85, Lemma 4.2].
♦

Corollary 4.1.2. Let (F(t), σ) be a proper sum extension of (F, σ) with constant field K. Let
f ∈ F and g ∈ F[t] with

σ(g)− g = f.

Then
g = c t + w

for some c ∈ K and w ∈ F.

Proof. If g ∈ F(t) \ F then by Proposition 4.1.3 there is a g = d t + w for some w ∈ F and
d ∈ F∗ such that σ(g)− g = f and

σ(d)− d = 0.

Therefore d ∈ K∗. Otherwise, if g ∈ F, the corollary follows immediately.
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4.2 The Fundamental Theorem for the First Order Case

4.2.1 Finding Solutions for the First Order Case

Let (F, σ) be a difference field, a1, a2 ∈ F∗, f ∈ F and assume there does not exist a g ∈ F
such that

a1 σ(g) + a2 g = f. (4.2)

How can we find an appropriate reduced product-sum extension to solve this first order
difference equation and how does this reduced product-sum extension look like? First we try
to solve the homogeneous variation

a1 σ(w) + a2 w = 0.

If there exists such a w ∈ F then we are done. Otherwise, if there does not exist an n > 1
with

(−a2

a1
)n ∈ H(F,σ) (4.3)

then by Corollary 2.4.2 we can construct immediately a Π-extension (F[t], σ) of (F, σ) canon-
ically defined by

σ(t) = −a2

a1
t

such that
a1 σ(t)− a2 = 0.

If there exists an n > 0 with (4.3) then we still may change the underlying difference field
(E, σ) to avoid this case.

In the following we assume that there exists a difference field (F, σ) and w ∈ F such that

a1 σ(w) + a2 w = 0.

If we look at the difference equation

a1 σ(w) σ(g) + a2 w g = f

m
−a2 w σ(g) + a2 w g = f

m

σ(g)− g = − f

a2 w
(4.4)

then we see immediately that w g is a solution of (4.2) if and only if g is a solution of (4.4).
Therefore we are interested in finding an appropriate difference field extension (G, σ) such
that there exists a g ∈ G with

σ(g)− g = f. (4.5)

If we are able to solve this problem, we also can deal with the problem to find an appropriate
difference field extension for the difference equation (4.2) - except we reach the case (4.3) for
some n > 1.

If there exists a g ∈ F with σ(g) − g = f then we are done. Otherwise it follows by
Proposition 2.4.1 that (F(t), σ) canonically defined by

σ(t) = t + f (4.6)

is –up to a difference field isomorphism– a unique sum extension of (F, σ) which is proper.
Of course, t is a solution of the recurrence (4.5).
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Now there arises the question if more interesting reduced product-sum extensions (E, σ)
of (F, σ) exist in which we find a g ∈ E with

σ(g)− g = f

and how the solution g looks like.

4.2.2 Product-Sum Extensions for the First Order Case

Definition 4.2.1. Let (E(t), σ) be a reduced product-sum extension of (F, σ) canonically
defined by

σ(t) = t + β.

The sum t is called sum-reduced w.r.t. F, if whenever there exists an h ∈ E with

β + σ(h)− h ∈ F

then β ∈ F.
Let (F(t1, . . . , tn), σ) be a reduced product-sum extension of (F, σ). (F(t1, . . . , tn), σ) is

called sum-reduced w.r.t. F, if in each sum extension (F(t1, . . . , ti), σ) of (F(t1, . . . , ti−1), σ)
the sum ti is sum-reduced w.r.t. F. ♦

Lemma 4.2.1. Let (E, σ) be a reduced product-sum extension of (F, σ). Then there exists a
reduced product-sum extension (H, σ) of (F, σ) which is sum reduced w.r.t. F and

(E, σ)'(H, σ).

Proof. We will prove the corollary by induction on the number n of extensions. For the
induction base n = 0 nothing has to be shown. Now assume that for the reduced product-sum
extension (E, σ) of (F, σ) with E := F(t1, . . . , tn) one has a reduced product-sum extension
(H, σ) of (F, σ) with H := F(t1, . . . , tn) which is sum-reduced w.r.t. F and

(E, σ)
τ' (H, σ).

Now consider the reduced product-sum extension (E(x), σ) of (E, σ) with

σ(x) = α x + β.

By Lemma 2.4.1 we can construct a difference field extension (H(y), σ) of (H, σ) with

σ(y) = τ(α) y + τ(β).

By Proposition 2.3.3 we get that (H(y), σ) is a reduced product-sum extension of (H, σ) and
that

(E(x), σ)'(H(y), σ).

If β = 0 then we are done. Otherwise we have α = 1 and β 6= 0. If there do not exist an
h ∈ H \ F and a w ∈ F such that

τ(β) = w + σ(h)− h

then we are also done. Otherwise, by Lemma 2.4.1 we can construct a difference field extension
(H(z), σ) of (H, σ) with

σ(z) = z + τ(β)− (σ(h)− h) = z + w.
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By Proposition 2.3.1 we get that (H(z), σ) is a proper sum extension and that

(H(y), σ)'(H(z), σ).

Thus
(E(x), σ)'(H(z), σ)

where (H(z), σ) is sum-reduced w.r.t. F.

Theorem 4.2.1 (Fundamental Theorem). Let (F(t1, . . . , tn), σ) be a reduced product-
sum extension of (F, σ) with constant field K which is sum-reduced w.r.t. F. Let f ∈ F
and g ∈ E such that

σ(g)− g = f.

Then
g =

∑
i∈S

ci ti + w

where w ∈ F, ci ∈ K and
S = {i | ti is a sum over F}.

Proof. We will prove the theorem by induction on the number n of extensions. For the
induction base n = 0 nothing has to be shown. Now assume that the theorem holds for n
extensions and consider a reduced product-sum extension (F(t1, . . . , tn+1), σ) of (F, σ) which
is sum-reduced w.r.t. F and in which we have σ(ti) = αi ti + βi with αi, βi ∈ F(t1, . . . , ti−1).
Let f ∈ F and g ∈ F(t1, . . . , tn+1) such that

σ(g)− g = f.

Then by the induction assumption we have

g =
n∑

i=2

ci ti + w

where w ∈ F(t1), ci ∈ K and furthermore ci = 0 if ti is not a sum over F(t1). Assume there
is a cj 6= 0 with βj /∈ F and let j be maximal. Then

σ(g)− g = σ(
n∑

i=2

ci ti + w)− (
n∑

i=2

ci ti + w)

= σ(
j−1∑
i=2

ci ti + w)− (
j−1∑
i=2

ci ti + w) + cj βj +
n∑

i=j+1

ci βi = f

m

βj + σ(h)− h = f −
n∑

i=j+1

ci βi ∈ F

where

h :=
1
cj

(
j−1∑
i=2

ci ti + w) ∈ F(t1, . . . , tj−1).



4.2. THE FUNDAMENTAL THEOREM FOR THE FIRST ORDER CASE 253

As (F(t1, . . . , tn), σ) is a sum-reduced extension of (F, σ) w.r.t. F, it follows that βj ∈ F which
contradicts to the assumption. Thus we may assume that for all j with cj 6= 0 we have βj ∈ F.
If w ∈ F then the theorem is already proven. Otherwise, assume w ∈ F(t1) \ F. We have

σ(w)− w = f − σ(
n∑

i=2

ci ti)−
n∑

i=2

ci ti = f −
n∑

i=2

ci βi ∈ F.

If (F(t1), σ) is a Π-extension of (F, σ) then by Corollary 4.1.1 w ∈ F, a contradiction. There-
fore (F(t1), σ) must be a proper sum extension of (F, σ). By Corollary 4.1.2 it follows that

w = c1 t1 + q

for some c1 ∈ K and q ∈ F and consequently we can write

g =
n∑

i=1

ci ti + q

where ci = 0 if ti is not a sum over F.

M. Karr states1 in [Kar81, Section 4] and proves in [Kar85, Section 4] the Fundamental
Theorem for the somehow more general case

a1 σ(g) + a2 g = f (4.7)

where a1, a2 ∈ F∗ and g is an element of a ΠΣ-extension (E, σ) of (F, σ). In order to achieve
this, he not only has to assume that the difference field (E, σ) is sum-reduced w.r.t. F but
he also has to restrict to some additional properties of Σ-extensions. He also states that one
can always transform a difference field extension (E, σ) of (F, σ) to a difference field with
the desired properties. But in this case he does not deal anymore with reduced product-
sum extensions, which we are basically interested in, but with more general ΠΣ-extensions.
Furthermore, as stated in Lemma 4.2.1, we can transform the difference field (E, σ) to an
isomorphic difference field which is sum-reduced w.r.t. F whereas in Karr’s more involved
transformation the difference field is in general not anymore isomorphic. On the other side,
we can reduce by the remarks of Section 4.2.1 the more general case (4.7) to

σ(g)− g = f.

If we want to focus on solutions which are represented in terms of sum and product extensions
then our simpler approach seems much more natural.

1Our special case is included Karr’s result.
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Corollary 4.2.1. Let (E, σ) be a reduced product-sum extension of (F, σ) with constant
field K. Let f ∈ F and g ∈ E such that

σ(g)− g = f.

Then there is a reduced product-sum extension (F(t1, . . . , tn), σ) of (F, σ) which is sum-
reduced w.r.t. F with

(E, σ)
τ' (F(t1, . . . , tn), σ).

The corresponding solution h := τ(g) ∈ F(t1, . . . , tn) is of the form

h =
∑
i∈S

ci ti + w

where w ∈ F, ci ∈ K and
S = {i | ti is a sum over F}.

Proof. By Lemma 4.2.1 there exists a proper sum extension (F(t1, . . . , tn), σ) which is sum-
reduced w.r.t. F and for which we have

(E, σ)
τ' (F(t1, . . . , tn), σ).

Therefore by Theorem 4.2.1 the corollary follows.

Lemma 4.2.2. Let (E, σ) be a reduced product-sum extension of (F, σ) with constant field K
which is sum-reduced over F. Let f ∈ F and g ∈ E such that

σ(g)− g = f.

Then one can construct a proper sum extension (F(s), σ) of (F, σ) and compute a c ∈ K and
a w ∈ F such that

σ(c s + w)− (c s + w) = f.

Moreover there is a difference field extension (H, σ) of (F, σ) such that

(F(s), σ)'(H, σ) ≤ (E, σ).

Proof. By Theorem 4.2.1 we have

g =
∑
i∈S

ci ti + w

where w ∈ F, ci ∈ K and

S = {i | ti is a sum over F} = {i1 < i2 < · · · < id}.

Consequently we have
f = σ(g)− g =

∑
i∈S

ci βi + σ(w)− w. (4.8)

Applying Proposition 2.4.4 we get

(F(t1, . . . , tn), σ)'(F(ti1 , ti2 , . . . , tid)(t1, . . . , ti1−1, ti1+1, . . . , tid+1, . . . , tn), σ)
≥(F(ti1 , ti2 , . . . , tid), σ)

(4.9)
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where (H, σ) with H := F(ti1 , ti2 , . . . , tid) is a proper sum extension of (F, σ). Surely we have

g ∈ H.

Let

p := 1/cid

d−1∑
j=1

cij tij .

Then there is a difference field extension (F(ti1 , . . . , tid−1
)(s), σ) of (F(ti1 , . . . , tid−1

), σ) with

σ(s) = s + βid + σ(p)− p = s + βid + 1/cid

d−1∑
j=1

cij βij︸ ︷︷ ︸
∈F

(4.10)

by Lemma 2.4.1. Furthermore, by Proposition 2.3.1 (F(ti1 , . . . , tid−1
)(s), σ) is a proper sum

extension of (F(ti1 , . . . , tid−1
), σ) and

(H, σ)'(F(ti1 , . . . , tid−1
)(s), σ). (4.11)

Finally, by applying Proposition 2.4.4, (F(s)(ti1 , . . . , tid−1
), σ) is a proper sum extension of

(F, σ) with
(F(ti1 , . . . , tid−1

)(s), σ)' (F(s)(ti1 , . . . , tid−1
), σ) ≥ (F(s), σ) (4.12)

and therefore (F(s), σ) is a proper sum extension of (F, σ) canonically defined by (4.10). For

h := cid s + w ∈ F(s)

we have

σ(h)− (h) = σ(w)− w + cid βid +
d−1∑
j=1

cij βij

(4.8)
= f.

Altogether we get

(F(s), σ)
(4.12)

≤ (F(s)(ti1 , . . . , tid−1
), σ)

' (F(ti1 , . . . , tid−1
)(s), σ)

(4.11)
' (F(ti1 , . . . , tid−1

)(td), σ)
(4.9)

≤ (F(ti1 , ti2 , . . . , tid)(t1, . . . , ti1−1, ti1+1, . . . , tid+1, . . . , tn), σ)
' (F(t1, . . . , tn), σ)

and thus the theorem is proven.

Proposition 4.2.1. Let (E, σ) be a reduced product-sum extension of (F, σ) with constant
field K. Let f ∈ F and g ∈ E such that

σ(g)− g = f.

Then there exists a proper sum extension (F(s), σ) of (F, σ), c ∈ K and h ∈ F such that

σ(c s + h)− (c s + h) = f.

Moreover there is a difference field extension (H, σ) of (F, σ) such that

(F(s), σ)'(H, σ) ≤ (E, σ).
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Proof. By Lemma 4.2.1 there exists a proper sum extension (F(t1, . . . , tn), σ) which is sum-
reduced w.r.t. F and for which we have

(E, σ)
τ' (F(t1, . . . , tn), σ).

Therefore by Lemma 4.2.2 the corollary follows.

4.2.3 Some Misleading Interpretations

Assume there does not exists a g ∈ F with

σ(g)− g = f. (4.13)

As already illustrated in Section 4.2.1, we are able to construct immediately a proper sum
extension (F(t), σ) of (F, σ) with

σ(t) = t + f

and g = t is a solution of the recurrence (4.13).
If we find any other reduced product-sum extension of (E, σ) which has a solution of

(4.13) then Corollary 4.2.1 tells us that there exists an isomorphic difference field in which
the solution is of the form

g =
∑
i∈S

ci ti + w

where w ∈ F, ci ∈ K and
S = {i | ti is a sum over F}.

This observation misleads M. Karr to the following remark in [Kar81]:

Loosely speaking, if f is summable in E, then part of it is summable in F , and
the rest consists of pieces whose formal sums have been adjoined to F in the
construction of E. This makes the construction of extension fields in which f is
summable somewhat uninteresting and justifies the tendency to look for sums of
f ∈ F only in F .

Even worse, Proposition 4.2.1 motivates us to search for exactly one proper sum extension.
Assume we find such a proper sum extension (F(s), σ) of (F, σ) such that there is an h ∈ F(s)
with

σ(h)− h = f

then it follows by Proposition 2.3.2 immediately that

τ :
{

F(t) → F(s)
t 7→ h

is a difference field isomorphism. Therefore, one can take the view that finding any other
proper sum extension (F(s), σ) of (F, σ) does not deliver anything new - it is isomorphic to
the easy constructible difference field (F(t), σ).

These results seem very disappointing and may unmotivate us to simplify sum and product
expressions by appropriate difference field extensions. But in the opposite way, these results
are very constructive and tell us for which kind of proper sum extensions we have to look in
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order to simplify sum expressions. Namely, as will be considered in more details in Section 4.4,
one should look for a proper sum extension2 (F(s), σ) canonically defined by

σ(s) = s + β

such that
(F(t), σ) ' (F(s), σ)

where β in terms of F is as “simple” as possible. In particular, “simple” means that β should
not depend on other sums or hyperexponentials over the difference field F, if possible. In
other words, if one wants to simplify expressions in terms of sums and products, it plays a
major role to choose the right representation of a difference field extension.

2Please note that the sum extension that we are looking for is sum-reduced w.r.t. F. But it might well be
that one could simplify a sum expression by looking for an appropriate proper sum-extension which is not
sum-reduced. This case is not considered further in the following.
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4.3 Definite Summation in Difference Fields

In this section we will consider in more details how definite summation problems can be
treated in difference fields. Additionally, we are able to give new insight for the creative
telescoping method in a given difference field by using the Fundamental Theorem.

In the following we will consider concisely what we have already mentioned informally in
Section 1.3.3.

4.3.1 Finding a Recurrence for a Definite Summation Problem

Let K be a field with characteristic 0 and consider the sum

Sum(n) =
n∑

k=0

F (n, k)

with
〈Sum(0),Sum(1), . . . 〉 ∈ S(K).

Assume further we have a ΠΣ-field (F, σ) over the constant field K(n) and a difference ring
homomorphism3

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A× N0 → K bounded by L : A → N0 where A is a sub-difference
ring of F. Assume further there exist an f = (f1, . . . , fm) ∈ Am and a γ ∈ N0 with

ev(fi, k) = F (n + i− 1, k)

for all k ≥ γ with . Now we solve V((1,−1), f , F).

1. Assume we find a c ∈ K(n)m and g ∈ F such that

σ(g)− g = c f = c1 f1 + · · ·+ cn fm. (4.14)

If g ∈ A then there exists a δ ≥ γ such that for all k ≥ δ we have

ev(fi, k) = F (n + i− 1, k)
ev(g, k) = G(k)
ev(ci, k) = ci = ci(n).

Therefore we can transform the telescoping equation back to the ring of sequences and
get for all g ≥ δ that

G(k + 1)−G(k) = c1(n) F (n, k) + · · ·+ cm(n) F (n + m− 1, k). (4.15)

Consequently, summing both sides from δ to a delivers an equation

G(a + 1)−G(δ) = c1(n)
a∑

k=δ

F (n, k) + · · ·+ +cm(n)
a∑

k=δ

F (n + m− 1, k) (4.16)

3See Section 2.5 for more details
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which is valid for all a ≥ δ. In particular, substituting a by n yields to

G(n + 1)−G(δ) = c1(n)
n∑

k=δ

F (n, k) + · · ·+ cm(n)
n∑

k=δ

F (n + m− 1, k)

for all n ≥ δ. Finally, by

n+i∑
k=δ

F (n + i, k) =
n∑

k=δ

F (n + i, k) +
i∑

r=1

F (n + i, n + r)

we can compute an expression B(n) with

c1(n)
n∑

k=λ

F (n, k) + · · ·+ cm(n)
n+m−1∑

k=λ

F (n + m− 1, k) = B(n).

Altogether, for the sum

Sum′(n) =
n∑

k=λ

F (n, k)

we are able to find the recurrence

c1(n) Sum′(n) + · · ·+ cm(n) Sum′(n + m− 1) = B(n)

where ci(n) ∈ K(n).

2. Otherwise, assume there do not exist a 0 6= c ∈ K(n)m and a g ∈ F with (4.14). Then
we can try to find a ΠΣ-extension (E, σ) of (F, σ) and a difference ring homomorphism
h : A′ → S(K) for a difference ring (A′, σ) with

(A, σ) ≤ (A′, σ) ≤ (E, σ)

such that there exit an fm+1 ∈ A and a γ′ ≥ γ with

ev(fm+1, k) = F (n + m, k)

for all k ≥ γ′. Finally we can proceed with f ′ = (f1, . . . , fm+1) ∈ Am+1 to compute
V((1,−1), f ′, E) and goon either with step one or two.

Implementation Note 4.3.1. In the function GenerateRecurrence introduced in Chap-
ter 1 all these ideas sketched above are realized.
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4.3.2 A Connection Between the Telescoping Equation and Sum Exten-
sions

By the following theorem we will derive a link between proper sum extensions and solving
the creative telescoping equation (4.14).

Theorem 4.3.1. Let (F, σ) be a difference field with constant field K and f =
(f1, . . . , fn) ∈ Fn. Take, up to a difference field isomorphism, the uniquely determined
sum-extension (F(t1, . . . , tn), σ) of (F, σ) with

σ(ti) = ti + fi

and constσF(t1, . . . , tn) = K.
Then there do not exist a 0 6= c ∈ Kn and a g ∈ F such that

σ(g)− g = c f

if and only if (F(t1, . . . , tn), σ) is a proper sum extension of (F, σ).

Proof. Assume there is
σ(g)− g = c f

for some 0 6= c ∈ K and g ∈ F. Then

σ(g)− g = c f = c (σ(t1)− t1, . . . , σ(tn)− tn) = σ(
n∑

i=1

ci ti)−
n∑

i=1

ci ti.

and thus

σ(
n∑

i=1

ci ti − g) =
n∑

i=1

ci ti − g.

Since constσF(t1, . . . , tn) = K, there is a k ∈ K such that

n∑
i=1

ci ti − g + k = 0,

hence there are algebraic relations in the ti and consequently (F(t1, . . . , tn), σ) is not a proper
sum extension of (F, σ) by Remark 2.2.4.

Contrary, assume that (F(t1, . . . , tn), σ) is not a proper sum extension of (F, σ). Let i be
minimal such that (F(t1, . . . , ti+1), σ) is not a proper sum extension of (F(t1, . . . , ti), σ). By
Corollary 2.2.4 there exists a g ∈ F(t1, . . . , ti) such that

σ(g)− g = fi+1.

Since by definition (F(t1, . . . , ti), σ) is a proper sum extension of (F, σ) which is sum-reduced
w.r.t. F, by Theorem 4.2.1 there are cj ∈ K and an h ∈ F such that

g = h +
i∑

j=1

cj tj .
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We have

σ(h)− h = fi+1 −
i∑

j=1

cj(σ(tj)− tj) = −c1 f1 − · · · − ci fi + fi+1

and hence there are a 0 6= c ∈ Kn and an h ∈ F such that

σ(h)− h = c f .

Starting from the context given in the previous Section 4.3.1, we will try to explain a re-
lationship/link between proper sum extensions and the creative telescoping method. Assume
that for f ′ = (f1, . . . , fm−1) ∈ Fm−1 there do not exist a 0 6= c′ ∈ K(n)m−1 and a g′ ∈ F with

σ(g′)− g′ = c′ f ′,

but we find a 0 6= c ∈ K(n)m and g ∈ F with

σ(g)− g = c f = c1 f1 + · · ·+ cm fm. (4.17)

This means that m is the minimal order to find the creative telescoping equation (4.17) in
the difference field (F, σ). In particular we must have

cm 6= 0

since otherwise m is not minimal. By Theorem 4.3.1, we can construct the proper sum
extension (E, σ) of (F, σ) with E = F(s1, . . . , sm−1) and

σ(si) = si + fi. (4.18)

Furthermore we can define a sum extension (E(sm), σ) of (E, σ) with

σ(sm) = sm + fm

and constσE(sm) = K(n). By Theorem 4.3.1 we get that (E(s), σ) is not a proper sum
extension of (E, σ) and therefore there exists an h ∈ F(s1, . . . , sm−1) such that

σ(h)− h = fm. (4.19)

One can immediately check by (4.17) that

h :=
g

cm
−

m−1∑
i=1

ci

cm
si

is a solution of (4.19). Since σ(sm − h) = sm − h, it follows that

sm =
g

cm
−

m−1∑
i=0

ci

cm
si + x (4.20)

for some x ∈ K. Consequently, solving the creative telescoping equation (4.17) is equivalent
to expressing the sum sm by the sums s1, . . . , sm−1 and an element from F. Furthermore
by the Fundamental Theorem 4.2.1 we get immediately that the si must be linear over the
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constant field K(n). In other words, if there exists a creative telescoping equation (4.15) then
the ci must be in K(n).

The corresponding result of (4.20) in terms of the ring of sequences is reflected by (4.16)
which is equivalent to

a∑
k=δ

F (n + m− 1, k) =
G(a + 1)
cm(n)

−
m−1∑
i=1

ci(n)
cm(n)

a∑
k=δ

F (n + i− 1, k)− G(δ)
cm(n)

where G(δ) ∈ K.
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4.4 Low Nested Sum Extensions for First Order Equations

Here we try to explain how one can find appropriate sum extensions in order to simplify
indefinite sums (Sections 1.2.3 and 1.2.4) and how one can generate a recurrence of lower
order by creative telescoping using an appropriate sum extension (Section 1.3.5).

Let (E, σ) be a difference field, f ∈ E and assume there does not exist a g ∈ E with

σ(g)− g = f. (4.21)

As already mentioned in Section 4.2.3, we can construct a proper sum extension (E(t), σ) of
(E, σ) with

σ(t) = t + f

and t is a solution of the recurrence (4.21). In order to get this solution, we had to increase
the recursion depth in this difference field extension.

Now let (E, σ) with E = F(t1, . . . , tn) be a reduced product-sum extension of a difference
field (F, σ) and let µ ∈ N be minimal such that

f ∈ F(t1, . . . , tµ).

In this section we try to find a proper sum extension (E(s), σ) with

σ(s) = s + β

such that there exists a g ∈ G with (4.21). Additionally, the recursion depth must be as
“simple” as possible, i.e. we try to find a β ∈ F(t1, . . . .ti) where i is minimal. Then of course,
this difference field extension (E(s), σ) is isomorphic to (E(t), σ) by Proposition 2.3.2, or in
other words we did not construct a really “new” difference field. But if i < µ then from the
summation point of view we simplify the summation expression by using terms which
depend on a smaller difference field. Especially, if β consists of less nested sum expressions
than f , we find a difference field extension (E(s), σ) with a smaller recursion depth w.r.t.
sums than the difference field extension (E(t), σ).

Please note that the following method finds such a difference field extension – in case it
exists.

4.4.1 Finding Low Nested Sum Extensions Automatically to Solve the
Solution Space

Theorem 4.4.1. Let (F, σ) be a difference field with constant field K and let (E, σ) be a
reduced product-sum extension of (F, σ), E := F(t1, . . . , te) and f ∈ En. Assume there is a
proper sum extension (E(s), σ) of (E, σ) with g ∈ E(s) \ E and 0 6= c ∈ Kn such that

σ(g)− g = c f .

Then in the reduction process, given by Theorems 3.2.1 and 3.2.2, for the problem

V((1,−1), f , E)

one has to solve a subproblem V((a1, a2),h, F) with 0 6= (a1, a2) ∈ F2 and h ∈ Fm such that

V((a1, a2),h, F) ( V((a1, a2),h, F(s)).
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Proof. By Proposition 2.4.4 there exists a reduced product-sum extension (F(t1, . . . , te)(s), σ)
of (F, σ) with

(F(t1, . . . , te)(s), σ)'(F(s)(t1, . . . , te), σ). (4.22)

Assume that for each subproblem V((a1, a2),h, F) in the reduction process with a1, a2 ∈ F
and h ∈ Fm we have

V((a1, a2),h, F) = V((a1, a2),h, F(s)).

But this means that for each subproblem V((b1, b2),q, F(t1, . . . , ti)) in the reduction process
for 0 ≤ i ≤ e and for some b1, b2 ∈ F(t1, . . . , ti) and q ∈ Fr with r ≥ 1 we have

V((b1, b2),q, F(t1, . . . , ti)) = V((b1, b2),q, F(s)(t1, . . . , ti)).

But then we have

V((1,−1), f , F(t1, . . . , te)) = V((1,−1), f , F(s)(t1, . . . , te)).

And since (4.22) we get

V((1,−1), f , F(t1, . . . , te)) = V((1,−1), f , F(t1, . . . , te)(s)).

which contradicts to the assumption that there are a g ∈ F(t1, . . . , te)(s) \ F(t1, . . . , te) and a
0 6= c ∈ Kn with

σ(g)− g = c f .

Thus there must exist a subproblem in the reduction process with

V((a1, a2),h, F) ( V((a1, a2),h, F(s)).

By construction of the reduction process we have (a1, a2) 6= 0.

Lemma 4.4.1. Let (F(s), σ) be a proper sum extension of (F, σ) and assume

V((a1, a2), f , F) ( V((a1, a2), f , F(s))

for some 0 6= (a1, a2) ∈ F2 and f ∈ Fn. Then a1 6= 0 6= a2 and there is a d ∈ F∗ such that

a1 σ(d) + a2 d = 0.

Proof. By assumption there are a g ∈ F(s) \ F and a c ∈ Kn with

a1 σ(g) + a2 g = c f ∈ F.

Thus by Proposition 4.1.3 it follows that a1 6= 0 6= a2 and there exists a d ∈ F∗ with

a1 σ(d) + a2 d = 0.



4.4. LOW NESTED SUM EXTENSIONS FOR FIRST ORDER EQUATIONS 265

Theorem 4.4.2. Let (F, σ) be a difference field with constant field K. Let (F(s), σ) be a
proper sum extension of (F, σ) and assume

V((a1, a2), f , F) ( V((a1, a2), f , F(s))

for some 0 6= (a1, a2) ∈ F2 and f = (f1, . . . , fn) ∈ Fn. Then a1 6= 0 6= a2. Take d ∈ F∗ such
that

a1 σ(d) + a2 d = 0

and consider the -up to a difference field isomorphism- uniquely determined difference field
extension (F(s1, . . . , sn), σ) of (F, σ) with

σ(si) = si +
fi

a2 d

for 1 ≤ i ≤ n and constσF(s1, . . . , sn) = K. Then there is a proper sum extension (F(t), σ)
of (F, σ) such that

(F(s), σ)'(F(t), σ) ⊆ (F(s1, . . . , sn), σ).

Proof. By Lemma 4.4.1 we can find a d ∈ F∗ such that

a1 σ(d) + a2 d = 0. (4.23)

Additionally, by Proposition 4.1.3 there are a g ∈ F(s) \ F and a c ∈ Kn such that

a1 σ(g) + a2 g = c f

where
g = d̃(s + h)

for some d̃ ∈ F∗ and h ∈ F. Furthermore we have

a1 σ(d̃) + a2 d̃ = 0. (4.24)

Using equation (4.23) and (4.24) we get

σ(
d̃

d
) =

d̃

d
,

consequently there is a k ∈ K∗ with
d̃ = k d

and thus we may assume
g = k d (s + h).

We have

c f = a1 σ(g) + a2 g = k (a1 σ(d (s + h)) + a2 d (s + h))
= k (a1 σ(d)(σ(s + h)) + a2 d (s + h))

m (4.23)

σ(s + h)− (s + h) = − c f
k a2 d
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m

σ(h)− h = −β − c
k

f
a2 d

(4.25)

Define by Lemma 2.4.1 a difference field extension (F(t), σ) of (F, σ) by

σ(t) = t + β + (σ(h)− h).

By Proposition 2.3.1 it follows that (F(t), σ) is a proper sum extension of (F, σ) and

(F(s), σ)'(F(t), σ). (4.26)

By Corollary 2.4.1 there is the -up to a difference field isomorphism- uniquely determined
difference field extension (F(t)(s1, . . . , sn), σ) of (F(t), σ) with

σ(si) = si +
fi

a2 d

for 1 ≤ i ≤ n and constσF(t)(s1, . . . , sn) = K. By (4.25) we get

n∑
i=1

fi

a2 d

ci

k
= −β − (σ(h)− h)

and thus

σ(t)− t = β + (σ(h)− h) = −
n∑

i=1

fi

a2 d

ci

k
= −

n∑
i=1

ci

k
(σ(si)− si).

Consequently
σ(t + (

c1

k
s1 + · · ·+ cn

k
sn)) = t + (

c1

k
s1 + · · ·+ cn

k
sn)

and therefore there is a c ∈ K with

t = −c1

k
s1 + · · ·+ cn

k
sn + c. (4.27)

Thus by Proposition 2.4.6 we get

(F(s1, . . . , sn), σ)
(4.27)
= (F(s1, . . . , sn)(t), σ)'(F(t)(s1, . . . , sn), σ) ≥ (F(t), σ)

(4.26)
' (F(s), σ).
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Corollary 4.4.1. Let (E, σ) with E := F(t1, . . . , te) be a reduced product-sum extension of
(F, σ) and let f ∈ En. Assume there is a proper sum extension (E(s), σ) of (E, σ) over F
with g ∈ E(s) \ E and 0 6= c ∈ Kn such that

σ(g)− g = c f .

Let
V(a1, f1, F), . . . ,V(ak, fk, F)

with

ai = (ai1, ai2) ∈ (F∗)2,
fi = (fi1, . . . , firi) ∈ Fri , ri > 0

be all sub-problems that have to be solved in the reduction process, given by Theorems 3.2.1
and 3.2.2, for the original problem V((1,−1), f , E) such that there are d1, . . . , dk ∈ F∗ with

ai1 σ(di)− ai2 di = 0.

Define the difference field extension (E(s11, . . . , s1ki
, . . . , sk1, . . . , skik), σ) of (E, σ) with

σ(sij) = sij +
fij

ai2 di

for 1 ≤ i ≤ k and 1 ≤ j ≤ ri and constσE(s11, . . . , skrk
) = K. Then there is a proper sum

extension (E(t), σ) of (E, σ) with

(E(s), σ)'(E(t), σ) ≤ (E(s11, . . . , skrk
), σ).

Proof. The corollary is a direct consequence of Theorem 4.4.1 and Theorem 4.4.2.

Remark 4.4.1. Let (F, σ) be a ΠΣ-field over the constant field K, let (E, σ) be a reduced
product-sum extension of (F, σ) with E = F(t1, . . . , tn) and define

Fi := F(t1, . . . , ti).

Let f ∈ En and assume that there exists a proper sum extension (E(s), σ), 0 6= c ∈ Kn and
g ∈ E[s] \ E with

σ(s)− s ∈ Fi

and
σ(g)− g = c f .

Assume that we can solve V((1,−1), f , E) by the reduction process given by Theorems
3.2.1 and 3.2.2. Then by Corollary 4.4.1 we find a sum extension (E(s1, . . . , sm), σ) of (E, σ)
where all sums sj are over Fi such that there is a proper sum extension (E(t), σ) of (E, σ)
over Fi with

(E(s), σ)'(E(t), σ) ≤ (E(s1, . . . , sm), σ).

By Proposition 2.4.6 we can permutate the sums sj in E(s1, . . . , sm) and get an isomorphic
sum extension. Therefore we can reorder the sums sj in such a way that sums involving less
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complicated expressions are ordered first. Finally we can apply Proposition 2.4.3 to compute
a proper sum extension (E(u1, . . . , ul), σ) of (E, σ) such that

(E(s1, . . . , sm), σ)'(E(u1, . . . , ul), σ).

Therefore, whenever there exist a 0 6= c ∈ Kn and a proper sum extension (E(s), σ) of (E, σ)
over F with g ∈ E(s) \ E such that

σ(g)− g = c f

then
(E(s), σ)'(E(u), σ) ≤ (E(u1, . . . , ul), σ)

where (E(u), σ) is some proper sum extension of (E, σ) over F. ♦

4.4.2 Indefinite Summation

Motivating examples for this section can be found in Section 1.2.3. Let K be field with
characteristic 0 and consider the sum

Sum(n) =
n∑

k=0

F (k) (4.28)

with
〈Sum(0),Sum(1), . . . 〉 ∈ S(K).

Let (F, σ) be a ΠΣ-field over the constant field K, let (E, σ) be a reduced product-sum
extension of (F, σ) with E = K(t1, . . . , tn) and let Fi := F(t1, . . . , ti). Assume further we have
a difference ring homomorphism4

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A× N0 → K bounded by L : A → N0 where A is a sub-difference
ring of E. Assume further there exists an f ∈ A ∩ F(t1, . . . , tµ) where µ is minimal such that

ev(f, k) = F (k)

for some k ≥ γ. Now suppose there does not exist a g ∈ E with

σ(g)− g = f.

Then we can construct a proper sum extension (E(t), σ) of (E, σ) canonically defined by

σ(t) = t + f.

In particular we have
σ(t)− t = f

and thus t is a solution of the given difference equation. In the naive way we could return
the result

n∑
k=γ

ev(f, k) +
γ−1∑
k=0

F (k) (4.29)

4See Section 2.5 for more details
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as the closed form of the sum (4.28).
Instead of this, we try to find a proper sum extension (G, σ) of (E, σ) over Fi such that i

is minimal and there exists a g ∈ G with

σ(g)− g = f. (4.30)

For this we use Remark 4.4.1 for i = 0, 1, . . . until we get a proper sum extension (G, σ) of
(E, σ) over Fi such that there exists a g ∈ G with (4.30). If we reach the case i without any
proper sum extension (G, σ) of (E, σ) over Fi and a solution g ∈ G then we have proven that
there cannot exist a proper sum extension (E(s), σ) of (E, σ) with

σ(s)− s ∈ Fi

and g ∈ E(s) with (4.30). Therefore going up step by step, the “simplest” solution can be
found.

If we reach the point i = µ, without any success, then we know that (E(t), σ) with

σ(t) = t + f

is the only and “simplest” sum over E which delivers us a solution of the recurrence and we
can return the result (4.29).

If we are successful at step i < µ and find a proper sum extension (G, σ) of (E, σ) over
Fi and a solution g ∈ G with (4.30) then by Lemma 4.2.2 and its proof we can construct a
proper sum extension (E(s), σ) of (E, σ) over Fi such that

g = c s + h,

with c ∈ K∗ and h ∈ E, is a solution of (4.30). In particular, by Proposition 2.3.2 it follows
that

(E(s), σ)'(E(t), σ).

Now we should try to construct a difference ring homomorphism h : A[s] → S(K). If we
succeed in this and g ∈ A[s] then we can find a δ ≥ γ such that for all k ≥ δ we have

ev(g, n) =
n∑

k=δ

F (k)

for all n ≥ δ.

Implementation Note 4.4.1. Setting the option

SimplifyByExt− > Depth

in functions like SigmaReduce and SolveRecurrence, introduced in Chapter 1, expressions
in terms of sums and products are tried to be simplified by appropriate sum extensions as
described above.
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4.4.3 Definite Summation

Motivating examples for this section can be found in Section 1.3.5. Let K be a field with
characteristic 0, n be transcendental over K and consider the sum

Sum(n) =
n∑

k=0

F (n, k)

with
〈Sum(0),Sum(1), . . . 〉 ∈ S(K).

Let (F, σ) be a ΠΣ-field over the constant field K(n), let (E, σ) be a reduced product-sum
extension of (F, σ) with E = F(t1, . . . , tn) and let Fi := F(t1, . . . , ti).

Assume we have a difference ring homomorphism5

h :
{

A → S(K)
f 7→ 〈ev(f, 0), ev(f, 1), . . . 〉

for a homomorphic map ev : A× N0 → K bounded by L : A → N0 where A is a sub-difference
ring of E. Furthermore assume that there exists an f = (f1, . . . , fm) ∈ Am with

ev(fi, k) = F (n + i− 1, k)

for some k ≥ γ. Additionally, suppose that there do not exist a 0 6= c ∈ K(n)m and a g ∈ F
such that

σ(g)− g = c f = c1 f1 + · · ·+ cm fm. (4.31)

Then we could proceed like in Section 4.3.1 with step two. Instead of this we apply Re-
mark 4.4.1 for the case i = 0, 1, 2, . . . and try to find a proper sum extension (G, σ) of (E, σ)
over Fi such that there exist a 0 6= c ∈ Kn and a g ∈ G with (4.31).

If we fail to find a proper sum extension (G, σ) of (E, σ) over Fi such that there exist a
0 6= c ∈ Km and a g ∈ G with (4.31) then we have proven that there does not exist a sum
extension in terms of Fi to solve the problem (4.31).

Let µ be minimal such that there is not a j with 1 ≤ j ≤ m such that

fj /∈ Fµ.

If we reach the point i = µ then any found sum extension is as similar complex as the sums
si in the proper sum extension (F(s1, . . . , sm), σ) canonically defined by (4.18). If one finds a
proper sum extension over Fµ \ Fµ−1 then I observed that one can usual find a recurrence of
order m+1. This means our proper sum extension does not deliver any interesting recurrence.

Now assume we succeed in finding a proper sum extension (G, σ) of (E, σ) over Fi with
i < µ and in finding a 0 6= c ∈ Km and g ∈ G with (4.31). Then by Lemma 4.2.2 and its
proof we can construct a proper sum extension (E(s), σ) of (F, σ) and a solution

g = k s + h

with k ∈ K∗ and h ∈ E and 0 6= c ∈ Km with (4.31). If we are able to construct a difference
ring homomorphism h : A[s] → S(K) with g ∈ A[s] then we are able to find a recurrence of
order m− 1 for Sum[n] by using the additional sum s.

5See Section 2.5 for more details
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Implementation Note 4.4.2. Setting the option

SimplifyByExt− > Depth

in the function GenerateRecurrence, one invokes the strategy described above in order
to find a recurrence with an appropriate sum extension.
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4.5 Difference Field Extensions For Difference Equations

In the following we consider the problem to find appropriate sum extensions in which there
exist solutions for a given difference equation of any order. Additionally we sketch how one
can find d’Alembertian extension to obtain further solutions for a given difference equation.

This section is inspired by S. A. Abramov’s and M. Petkovšek’s article [AP94] and
P. A. Hendriks’s and M. F. Singer’s work [HS99]. Let (F, σ) be a difference field, (A, σ)
be a difference ring extension of (F, σ) and L ∈ F[σ]∗ be factored by

L = RL1 . . .Ln

where the Li are linear factors in σ and R has no linear right factor in σ. In [AP94] Abramov
and Petkovšek define y ∈ A∗ with

L(y) = 0

as a d’Alembertian solution of L, if

L1 . . .Ln(y) = 0. (4.32)

They developed an algorithm to find all d’Alembertian solutions of L; in order to achieve
this, one has to assume that there exists an algorithm which takes an operator L ∈ F[σ]∗ as
input and returns a hyperexponential element g over F in a difference ring extension of (F, σ)
such that L(g) = 0, if it exists. Otherwise the algorithm must tell that there does not exist
such an element in any difference ring extension.

Let (K(x), σ) be a difference field canonically defined by

σ(x) = x + 1

where the constant field K is a subfield of the complex numbers. Clearly, by Section 2.5,
the difference field (K(x), σ) can be embedded in the ring of sequences (S(K), S). Hendriks
and Singer developed a theory based on Galois theory of difference equations to find all
Liouvillian solutions of L ∈ K(x)[σ]∗ in S(K). The main difference between d’Alembertian
solutions and Liouvillian solutions over the difference field (K(x), σ) is loosely speaking that
one not only factorize L by hypergeometric sequences g over K(x) with L(g) = 0 but one may
also use the interlacing sequence g of n hypergeometric sequences with L(g) = 0 to factorize
L. In particular d’Alembertian solutions are included in Liouvillian solutions for the case
K(x). Moreover, if one restricts to find only d’Alembertian solutions, both algorithms are
essentially the same.

Remarkable in the result of [HS99] is the following: if one finds a difference ring extension
(A, σ) of (K(x), σ) which contains all d’Alembertian solutions6 of L then any element g of
a d’Alembertian ring extension7 of (K(x), σ) with L(g) = 0 is already contained in the set
of d’Alembertian solutions. This means that one has found all solutions of nested sum and
product extensions where the product extensions must be over the difference field (K(x), σ).

In the following we will not focus on Liouvillian solutions, since I do not see how one can
represent the interlacing x of hypergeometric elements in S(K) in the form

σ(x) = α x + β

6Actually they are even able to prove this result for Liouvillian solutions.
7A difference ring extension (K(x)[t1, . . . , tn], σ) of (K(x), σ) is called d’Alembertian, if ti is a product

extension over K(x) or a sum extension over K(x)[t1, . . . , ti−1].
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which is the basic way how I consider difference rings and fields in this thesis.
The theory given in [AP94] and [HS99] delivers algorithms with which one can compute

difference ring extensions in order to represent all d’Alembertian solutions. But the extensions
represented in these difference rings are highly algebraic. Besides finding such extensions and
computing the solutions of a difference equation in these extensions, I consider it as an
essential step to eliminate these algebraic relations. In order to achieve this, I restrict myself
not only to d’Alembertian solutions of a difference ring but I mainly focus on sum solutions;
this means one can work in difference fields. In order to eliminate algebraic relations in those
sum extensions, we can therefore use the indefinite summation algorithm described in the
previous chapter which is based on ΠΣ-fields.

Furthermore the sums delivered by the following algorithms are highly nested defined.
With the results of Section 4.4 we can reduce depth of the sum extensions, if possible, and
can therefore simplify the result further. These last remarks are illustrated in Section 1.3.4.2.

In addition, in Section 4.5.4 I describe how one can avoid algebraic relations in that
sum-extensions during its construction.
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4.5.1 Right Division of First Order Linear Shift Operators

Lemma 4.5.1. Let (F, σ) be a difference field, L ∈ F[σ]∗ and let (E, σ) be a difference field
extension of (F, σ) in which we have d ∈ E∗ hyperexponential over F. Then:

L(d) = 0

m

∃R ∈ F[σ]∗ : L = R(σ − σ(d)
d

).

Proof. Let d ∈ E∗ hyperexponential over F with

L(d) = 0.

Since
(σ − σ(d)

d
)(d) = 0

and σ− σ(d)
d ∈ F[σ], it follows by the Euclidean right division that there is an R ∈ F[σ]∗ with

L = R(σ − σ(d)
d

).

Contrary, if there is an R ∈ F[σ]∗ with

L = R(σ − σ(d)
d

)

then
L(d) = R(σ − σ(d)

d
)(d) = R(0) = 0.

Lemma 4.5.2. Let (F, σ) be a difference field and L ∈ F[σ]∗. Then there exists a factorization

L = RL1 · · · Ln

where Li = σ − σ(di)
di

with di ∈ F∗ and R ∈ F[σ]∗ such that there does not exist a d ∈ F∗ with

σ − σ(d)
d

| R.

Proof. We will do the proof by induction on the order of L. If the order is 0, i.e. L ∈ F∗ then
the lemma clearly holds. Now assume the lemma holds for all difference operators of order
m ≥ 0 and let L ∈ F[σ]∗ be of order m + 1. If there does not exist a d ∈ F with

σ − σ(d)
d

| L

then the lemma also holds. Otherwise, assume there is such a d. Then by Lemma 4.5.1 there
is an R ∈ F[σ]∗ of order m with

L = R (σ − σ(d)
d

)

and therefore by the induction assumption the lemma follows.
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4.5.2 Sum Extensions

4.5.2.1 A Criterion for Existence of Sum Extensions

In this section we will find a criterion which tells us if there cannot exist a sum extension
which yields to additional solutions of a given difference equation.

Lemma 4.5.3. Let (E, σ) be a reduced sum extension of (F, σ), f ∈ F and L ∈ F[σ]∗. Then

∃g ∈ E \ F : L(g) = f

⇓

∃g ∈ F∗ : L(g) = 0.

Proof. We will do the proof by induction on the number n of extensions in the difference
field (E, σ). For n = 0 the theorem clearly holds. Now assume that the theorem holds for n
extensions and consider the proper sum extension (E, σ) of (F, σ) with n + 1 extensions, i.e.
E = F(s1, . . . , sn+1). Let g ∈ E \ F with

L(g) = f.

If g ∈ F(s1, . . . , sn) then by the induction assumption the theorem follows. Otherwise, g ∈
E \G where G := F(s1, . . . , sn). By Proposition 4.1.2 it follows that

g ∈ G[sn+1]

with deg(g) > 0. Thus there are a k > 0, h ∈ G∗ and a u ∈ G[sn+1] with deg(u) < k such
that

g = sk
n+1 h + u.

Since L(g) ∈ F and L ∈ F[σ]∗, it follows that

L(h) = 0

and therefore by the induction assumption we may conclude that there is an h′ ∈ F with

L(h′) = 0.

Theorem 4.5.1. Let (E, σ) be a sum extension of (F, σ). Let f ∈ F and L ∈ F[σ]∗. Then

∃g ∈ E \ F : L(g) = f

⇓

∃g ∈ F∗ : L(g) = 0.

Proof. By Proposition 2.4.3 there exists a proper sum extension (G, σ) of (F, σ) with

(G, σ)'(E, σ)

and thus by Lemma 4.5.3 the theorem is proven.
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Remark 4.5.1. This theorem is the essential result to find sum extensions which deliver
additional solutions of a given recurrence.

• In particular, this theorem says that there can exist only a sum extension which delivers
further solutions if there exists already a solution in the underlying difference field.
Contrary, if there does not exist a solution in the underlying difference field, there
cannot exist a sum extension which gives a solution. In this case one has only a chance
to find a solution, if one extends the underlying difference field by extensions where
products are involved as will be discussed in Section 4.5.3.

• On one side, if one specializes my theorem to the difference field case (K(x), σ) canon-
ically defined by

σ(x) = x + 1

with constant field K and considers only the homogeneous case f = 0, one obtains a
special case of [HS99, Theorem 5.1]. That theorem deals with the more general case of
Liouvillian solutions of a given difference equation; my sum solutions are included in
Liouvillian solutions.

On the other side, I consider also the inhomogeneous case of difference equations. Fur-
thermore, my theorem can be applied for any difference field and not only for the simple
case (K(x), σ).

♦

4.5.2.2 Complete Sum Extensions for Linear Difference Equations

Definition 4.5.1. Let (E, σ) be a sum extension of (F, σ) with constσE = constσF =: K,
L ∈ F[σ]∗ and f ∈ F. (E, σ) is called complete w.r.t. (L, f), if whenever there is a sum
extension (G, σ) of (E, σ) with constσG = K such that there is a g ∈ G with

L(g) ∈ {f, 0}

then we have g ∈ E. ♦

Let (F, σ) be a difference field with constant field K, L ∈ F[σ]∗ and f ∈ F and assume we
have a sum extension (E, σ) of (F, σ) which is complete w.r.t. (L, 0). Now let (G, σ) be any
sum extension of (F, σ) with G = F(t1, . . . , tn) and constσG = K such that we get a solution
g ∈ G \ F with

L(g) ∈ {f, 0}.

Then we can construct by Corollary 2.4.1 a sum extension (E(t1, . . . , tn), σ) of (E, σ) with
constσE(t1, . . . , tn) = K and clearly we have

g ∈ E(t1, . . . , tn).

But since (E, σ) is complete w.r.t. (L, f), it follows that g ∈ E. Therefore if there exists a
complete sum extension (E, σ) of (F, σ) w.r.t. (L, f) and we can construct it, we will get all
solutions which live in a sum extension.

Theorem 4.5.2. Let (F, σ) be a difference field with constant field K, L ∈ F[σ]∗ and f ∈ F.
Suppose there is a sum extension (G, σ) of (F, σ) with constant field K which is complete
w.r.t. (L, f). Assume there is a g ∈ G \ F such that

L(g) = f.
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Then there are a d ∈ F∗ and a R ∈ F[σ]∗ such that

L = R(σ − σ(d)
d

).

Furthermore, there is a w ∈ G∗ such that

R(w) = f.

Additionally, there is a t ∈ G with
L(d t) = f

and σ(t) = t + w
σ(d) .

Proof. Assume there is a g ∈ G \ F such that

L(g) = f.

Then by Theorem 4.5.1 we find a d ∈ F∗ such that

L(d) = 0.

Thus by Lemma 4.5.1 we can find an R ∈ F[σ]∗ with

L = R(σ − σ(d)
d

).

For
w := (σ − σ(d)

d
)(g) ∈ G

it follows immediately that
R(w) = f.

If w = 0 then
σ(g)− σd

d
g = 0 ⇔ σ(

g

d
) =

g

d

and hence g
d ∈ K, a contradiction to g /∈ F. Hence w 6= 0. By Proposition 2.4.1 there is a

difference field (G(t), σ) of (G, σ) with

σ(t) = t +
w

σ(d)

and constσG(t) = K. We have

L(d t) = R(σ(d t)− σ(d) t) = R(w) = f

and thus t ∈ G.

Algorithm 4.5.1. Find a sum solution of an inhomogeneous recurrence

((E, σ),p)=FindOneSumSolutionsForInhomEqu((F, σ),L, f)

Input: A difference field (F, σ) with K = constσF in which one can solve linear differ-
ence equations, L ∈ F[σ]∗ and f ∈ F∗.

Output: A sum extension (E, σ) of (F, σ) with constσE = K in which there is a
p ∈ E∗ with L(p) = f . If there does not exist such a sum extension then
((E, σ),p):=((F, σ),⊥)
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(1) Compute for a := vect(L) the solution space V(a, (f) , F) where 0 6= a ∈ Forder(L)+1

(2) IF there exists a p ∈ F∗ with L(p) = f

THEN Return((F, σ),p)
(3) IF there does not exist a d ∈ F∗ with L(d) = 0

THEN RETURN((F, σ),⊥)
ELSE TAKE such a d.

(4) COMPUTE R ∈ F[σ]∗ such that L = R(σ − σ(d)
d )

(5) ((G, σ), p)=FindOneSumSolutionForInhomEqu((F, σ),R, f)
(6) IF p = ⊥ THEN RETURN ((F, σ),⊥)
(7) CONSTRUCT the sum extension (G(s), σ) of (G, σ) with

σ(s) = s + p
σ(d) and

constσG(s) = K
(8) RETURN (G(s), σ), d s)

Proposition 4.5.1. Let (F, σ) be a difference field in which one can solve linear difference
equations, L ∈ F[σ]∗ and f ∈ F∗. Then Algorithm 4.5.1 with input ((F, σ),L, f) terminates.
If there does not exist a sum extension (G, σ) of (F, σ) with the same constant field and with
g ∈ G such that L(g) = f, then the output is ((F, σ),⊥). Otherwise, the output is ((G, σ), g)
with a sum extension (G, σ) of (F, σ) and g ∈ G with L(g) = f .

Proof. Termination: If the termination condition (2) is not fulfilled in the first n recursion
steps then one factors L ∈ F[σ]∗ with order m to

L = RL1 · · · Ln

where the Li ∈ F[σ] have order one and R ∈ F[σ]∗. Thus after at most m recursion steps
condition (3) is satisfied and the algorithm terminates.

Correctness: If there is a p ∈ F with

L(p) = f

in Step (2) then the output ((F, σ), p) for a solution L(p) = f is correct.
Otherwise assume there does not exist a p ∈ F∗ with L(p) = f . If there does not exist a

d ∈ F∗ with L(d) = 0 then by Lemma 4.5.1 there is not a d ∈ F∗ with σ − σ(d)
d | L and thus

by Theorem 4.5.2 there is no sum extension (G, σ) of (F, σ) with the same constant field and
with g ∈ G such that L(g) = f . Therefore the output ((F, σ),⊥) in Step (3) is correct.

Otherwise assume there is a d ∈ F∗ with L(d) = 0 and let R ∈ F[σ]∗ be defined by

L = R (σ − σ(d)
d

).

Now assume that in step (5) of Algorithm 4.5.1 the output ((E, σ), p) is correct. If p = ⊥
then by Theorem 4.5.2 there does not exist a sum extension (G, σ) of (F, σ) with the same
constant field and g ∈ G with L(g) = f and therefore the output ((F, σ),⊥) is correct in
Step (6).

Otherwise, if p ∈ E∗ then by Theorem 4.5.2 it follows immediately that

L(d s) = f

and consequently the output ((E(s), σ), d s) is correct in Step (8).
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Remark 4.5.2. Please note that in Algorithm 4.5.1 one obtains a sum extension (E, σ) of
(F, σ) which is not proper. But by Proposition 2.4.3 there exists a proper sum extension
(G, σ) of (F, σ) with

(E, σ)
τ' (G, σ).

In particular, by indefinite summation, i.e. by our indefinite summation algorithm, the dif-
ference field (G, σ) and the isomorphism τ can be computed and therefore one can transform
the solution g ∈ E of Algorithm 4.5.1 to τ(g) ∈ G where the element τ(g) is expressed by
proper sums.

Finally this result τ(g) in a proper sum extension is highly recursively defined. Using
Section 4.4 one can simplify this proper sum extension by representing it by a proper sum
extension with a lower recursion depth. These observations are illustrated in Section 1.3.4.2.

♦
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4.5.2.3 Sum Extensions and Factorization of Difference Operators in Linear
Right Factors

The following theorem emphasizes the link between sum extensions which are complete w.r.t.
(L, f) and the factorization of a difference operator into linear right factors.

Theorem 4.5.3. Let (F, σ) be a difference field, L ∈ F[σ]∗ and f ∈ F. Let (G, σ) be a
sum extension of (F, σ) which is complete w.r.t. (L, f). Assume there is a g ∈ G \ F such
that

L(g) = f.

Then one can find Li = σ − σ(di)
di

with di ∈ F∗ and R ∈ F[σ]∗ such that

1. L = RL1 · · · Ln with n ≥ 1,

2. R has no first order linear right factor of the type Li and

3. ∀g ∈ G : (L(g) = f ⇒ L1 · · · Ln(g) ∈ F).

Proof. By Lemma 4.5.2 we find a factorization

L = RL1 · · · Ln

with n ≥ 0, Li = σ − σ(di)
di

for some di ∈ F∗ and

@d ∈ F∗ : σ − σ(d)
d

| R. (4.33)

By Theorem 4.5.2 there are a d ∈ F∗ and an R ∈ F[σ]∗ with

L = R(σ − σ(d)
d

),

consequently n ≥ 1 and hence the first two statements of the theorem are proven. We will
prove the third statement by induction on n. Assume we have

L = RL1

with (4.33). Thus by Lemma 4.5.1, there is no d ∈ F∗ with

R(d) = 0

and thus by Theorem 4.5.1 it follows that

@u ∈ G \ F : R(u) = f. (4.34)

Let h ∈ G with
L(h) = f.

Then for w := L1(h) ∈ G we have
R(w) = f

and by (4.34) it follows that w ∈ F. Therefore the induction base holds. Now assume the
statement of the theorem holds for a factorization of length n− 1 and consider

L = RL1 · · · Ln−1Ln
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with (4.33) and Li = σ − σ(di)
di

for some di ∈ F∗. Let h ∈ G with

L(h) = f

and take
w := Ln(h) ∈ G.

We have
RL1 · · · Ln−1(w) = f,

thus by the induction assumption

L1 · · · Ln−1(w) ∈ F

and hence
L1 · · · Ln(h) ∈ F.

Specializing this theorem to the case f = 0 with the difference field (K(x), σ) canonically
induced by σ(x) = x + 1 yields to a result which is included in [HS99, Theorem 5.5].

Furthermore, one can see that sum solutions are a special case of d’Alembertian solutions
defined in [AP94], if one looks at (4.32) which defines d’Alembertian solutions.

Corollary 4.5.1. Let (F, σ) be a difference field, L ∈ F[σ]∗ and let (G, σ) be a reduced sum
extension of (F, σ) which is complete w.r.t. (L, 0). Assume there is a g ∈ G \ F such that

L(g) = 0.

Then one can find Li = σ − σ(di)
di

with di ∈ F∗ and R ∈ F[σ]∗ such that

1. L = RL1 · · · Ln with n ≥ 1,

2. R has no first order linear right factor of type Li and

3. ∀g ∈ G : (L(g) = 0 ⇒ L1 · · · Ln(g) = 0)

Proof. By Theorem 4.5.3 there are Li = σ − σ(di)
di

with di ∈ F∗ and R ∈ F[σ]∗ such that

1. L = RL1 · · · Ln with n ≥ 1,

2. R has no first order linear right factor of type Li and

3. ∀g ∈ G : (L(g) = 0 ⇒ L1 · · · Ln(g) ∈ F).

Let g ∈ G with
L(g) = 0

and assume
w := L1 · · · Ln(g) 6= 0.

Thus
R(w) = 0

and therefore by Lemma 4.5.1 R has the right factor σ − σ(w)
w , a contradiction.
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4.5.2.4 Finding Complete Sum Extensions

The following theorem delivers an algorithm to find sum extensions which are complete w.r.t.
(L1, 0).

Theorem 4.5.4. Let (F, σ) be a difference field with constant field K, L1 ∈ F[σ]∗, d ∈ F∗

and L2 := σ− σ(d)
d . Assume there exists a sum extension (E, σ) of (F, σ) with constσE = K

which is complete w.r.t. (L1, 0) and let

{f1, . . . , fk} ⊆ E∗

be a basis of kerL1. Then there is a sum extension (E(t1, . . . , tk), σ) of (F, σ) with

σ(ti) = ti +
fi

σ(d)

for 1 ≤ i ≤ k and constσE(t1, . . . , tk) = K. Furthermore (E(t1, . . . , tk), σ) is complete
w.r.t. (L1 L2, 0) and

{d, d t1, . . . , d tk} ⊆ E(t1, . . . , tk)

is a basis of kerL1 L2.

Proof. Let (H, σ) with H := E(t1, . . . , tk) be as stated in the theorem. First we consider the
case k = 0, i.e. there does not exist a p ∈ F∗ with L1(p) = 0. By Lemma 4.5.1 it follows that
there does not exist a p ∈ F∗ with σ− σ(p)

p | L1. Let (G, σ) be a sum extension of (H, σ) with
constant field K and g ∈ G∗ with

L1 L2(g) = 0.

Then by Corollary 4.5.1 it follows that

0 = L2(g) = σ(g)− σ(d)
d

g,

therefore
σ(

g

d
) =

g

d

and consequently g = c d for some c ∈ K. It follows that (E, σ) is already complete w.r.t.
(L1 L2, 0) and {d} is a basis of kerL1 L2. Consequently the induction base holds. Now
consider the case n > 0. We have for all i:

L2(d ti) = σ(d ti)− σ(d) ti = σ(d)(σ(ti)− ti) = σ(d)
fi

σ(d)
= fi

and thus
L2(d ti) = fi. (4.35)

Consequently
L1 L2(d ti) = 0

and therefore
〈d, d t1, . . . , d tk〉K ⊆ KerH L1 L2.

Let (G, σ) be a sum extension of (H, σ) with constant field K and g ∈ G with

L1 L2(g) = 0.
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Take
w := L2(g).

As (H, σ) is complete w.r.t. (L1, 0) and L1(w) = 0, we have w ∈ E. Thus there are ci ∈ K
with

L2(g) = w =
k∑

i=1

ci fi

for some ci ∈ K. By Equation (4.35) it follows for

h := d
k∑

j=1

cj tj

that

L2(h) = L2(d
k∑

j=1

cj tj) =
k∑

j=1

cj L1(d tj) =
k∑

j=1

cj fj .

Thus by

L2(g) = L2(h) ⇔ L2(g − h) = 0

⇔ (σ − σ(d)
d

)(g − h) = 0

⇔ σ(g − h) =
σ(d)

d
(g − h)

⇔ σ(g − h)
g − h

=
σ(d)

d

⇔ σ(
g − h

d
) =

g − h

d

there is a x ∈ K such that
g − h = x d

and therefore

g = d
k∑

j=1

cj tj + x d ∈ E(t1, . . . , tn).

Consequently E(t1, . . . , tk) is already complete w.r.t. (L1 L2, 0) and

〈d, d t1, . . . , d tk〉K = KerH L1 L2.

Finally we will prove that {d, d t1, . . . , d tk} is linearly independent over K. Assume there are
ci ∈ K with

c1 d t1 + · · ·+ ck d tk + ck+1 d = 0.

Hence by applying L2 on the equation we get

c1 f1 + · · ·+ ck fk = 0

and thus c1, . . . , ck = 0 because {f1, . . . , fk} is linearly independent over K. But then also
ck+1 = 0 and therefore {d, d t1, . . . , d tk} is linearly independent over K.
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Given a difference equation L(g) = 0 in a difference field (F, σ), by Theorem 4.5.4 we
obtain the following algorithm in order to compute a sum extension (E, σ) which is complete
w.r.t. (L1, 0) and to find a basis of all solutions in E. Please note that this algorithm is the
same as introduced in [AP94], if one restricts only to sum extensions.

Algorithm 4.5.2. Find all sum solutions for a homogeneous recurrence

((E, σ),B)=FindHomSumSolutions((F, σ),L)

Input: A difference field (F, σ) with K = constσF in which one can solve homogeneous
linear difference equations and L ∈ F[σ]∗.

Output: A sum extension (E, σ) of (F, σ) with constσE = K which is complete w.r.t.
(L, 0).
A basis B of KerL E.

(1) Compute for a := vect(L) the solution space V(a, (0) , (F, σ)) where 0 6= a ∈ Forder(L)+1

(2) IF there is no d ∈ F∗ with L(d) = 0
THEN RETURN((F, σ), ∅)
ELSE TAKE such a d.

(3) COMPUTE R ∈ F[σ]∗ such that L = R(σ − σ(d)
d )

(4) ((G, σ), {g1, . . . , gk})=FindHomSumSolutions((F, σ),R)
(5) CONSTRUCT the sum extension (G(t1, . . . , tk), σ) of (G, σ) with

σ(ti) = ti + gi

σ(d) for (1 ≤ i ≤ k) and

constσG(t1, . . . , tk) = K
(6) RETURN ((G(t1, . . . , tk), σ), {d, d t1, . . . , d tk})

Proposition 4.5.2. Let (F, σ) be a difference field in which one can solve homogeneous linear
difference equations and L ∈ F[σ]∗. Then Algorithm 4.5.2 with input ((F, σ),L) terminates.
Let ((E, σ),B) be the output. Then (E, σ) is a sum extension of (F, σ) with constσE = constσF
which is complete w.r.t. (L, 0) and B is a basis of KerE L

Proof. Termination: In the algorithm one factors L ∈ F[σ]∗ with order m to

L = RL1 · · · Ln

where the Li ∈ F[σ] have order one and R ∈ F[σ]∗ has no further right factor σ − σ(d)
d for

some d ∈ F∗. Thus after at most m recursion steps the algorithm terminates.
Correctness: If there is not a d ∈ F∗ with L(d) = 0 then by Theorem 4.5.1 (F, σ) is

complete w.r.t. (L, 0) and 0 is the only solution of L in (F, σ). Otherwise assume that in
step (4) of algorithm 4.5.2 one obtains a sum extension (G, σ) of (F, σ) that is complete w.r.t.
(R, 0) and a basis {g1, . . . , gk} for KerG L. Then by Theorem 4.5.4 the algorithm delivers the
output as stated in the theorem.

Remark 4.5.3. Looking at Remark 4.5.2, we see that one can construct a proper sum
extension (G, σ) of (F, σ) and a difference field automorphism

(E, σ)
τ' (G, σ)

if one can solve first order linear difference equations in (F, σ). Therefore we can transform
the solution set B to solutions expressed by proper sums.

Again note that one gets a proper sum extension which is highly recursively defined.
Using Section 4.4 one can simplify this proper sum extension by representing it by a proper
sum extension with a lower recursion depth. ♦
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Combining Algorithms 4.5.1 and 4.5.2 one gets the following algorithm:

Algorithm 4.5.3. Find all sum solutions for a inhomogeneous recurrence

((E, σ),B,p)=FindSumSolutionsForSolutionSpace((F, σ),L, f)

Input: A difference field (F, σ) with K = constσF in which one can solve linear differ-
ence equations, L ∈ F[σ]∗ and f ∈ F∗.

Output: A sum extension (E, σ) of (F, σ) with constσE = K which is complete w.r.t.
(L, f).
A basis B of KerL E.

p :=
{

q ∈ E∗ : L(q) = f if such a q exists
⊥ otherwise

(1) Compute for a := vect(L) the solution space V(a, (f) , (F, σ)) where 0 6= a ∈ Forder(L)+1

(2) Let

p :=
{

g ∈ F : L(g) = f if such a g exists
⊥ otherwise

(3) IF there is not a d ∈ F∗ with L(d) = 0

THEN RETURN((F, σ), ∅, p)

ELSE TAKE such a d.

(4) COMPUTE R ∈ F[σ]∗ such that L = R(σ − σ(d)
d )

(5) IF p 6= ⊥ THEN

(6) ((G, σ), {g1, . . . , gk})=FindHomSumSolutions((F, σ),R)

(7) CONSTRUCT the sum extension G(t1, . . . , tk) of (G, σ) with

σ(ti) = ti + gi

σ(d) for (1 ≤ i ≤ k) and

constσG(t1, . . . , tk) = K
(8) RETURN ((G(t1, . . . , tk), σ), {d, d t1, . . . , d tk}, p)

(9) ELSE

(10) ((G, σ), {g1, . . . , gk}, p)=FindSumSolutionsForSolutionSpace((F, σ),R, f)

(11) CONSTRUCT the sum extension G(t1, . . . , tk) of (G, σ) with

σ(ti) = ti + gi

σ(d) for (1 ≤ i ≤ k) and

constσG(t1, . . . , tk) = K
(12) IF p = ⊥ RETURN ((G(t1, . . . , tk), σ), {d, d t1, . . . , d tk},⊥)

(13) CONSTRUCT the sum extension (G(t1, . . . , tk)(s), σ) of (G(t1, . . . , tk), σ) with

σ(s) = s + p
σ(d) and

constσG(t1, . . . , tk)(s) = K
(14) RETURN (G(t1, . . . , tk)(s), σ), {d, d t1, . . . , d tk}, d s)

Corollary 4.5.2. Let (F, σ) be a difference field in which one can solve linear difference
equations, L ∈ F[σ]∗ and f ∈ F∗. Then Algorithm 4.5.3 with input ((F, σ),L, f) terminates.
Let ((E, σ),B,p) be the output of the algorithm. Then (E, σ) is a sum extension of (F, σ) with
constσE = constσF which is complete w.r.t. (L, f), B is a basis of KerE L and p is a solution
of L(p) = f if such a p ∈ E exists, otherwise p = ⊥.

Proof. This is a consequence of Propositions 4.5.1 and 4.5.2.
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Implementation Note 4.5.1. Besides an important modification (Implementation
Note 4.5.3), Algorithm 4.5.3 is invoked by setting the option

NestedSumExt− > Infinity

in the function SolveRecurrence. Using the function FindSumSolutions Algorithm 4.5.3
is automatically used without any option. In particular, that function will play a major
role to find d’Alembertian extensions as described in the next section (Implementation
Note 4.5.2).
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4.5.3 Dealing with d’Alembertian Extensions

In this section we will sketch how one can find appropriate sum and product extensions,
more precisely d’Alembertian Extensions, in terms of difference fields.

4.5.3.1 A Criterion for Existence of d’Alembertian Extensions

Lemma 4.5.4. Let (F(t), σ) be a Π-extension of (F, σ), L ∈ F[σ]∗ and f ∈ F. We have

∃g ∈ F(t) \ F : L(g) = f

⇓

∃g ∈ F∗, d ∈ Z∗ : L(g td) = 0.

Proof. Let g ∈ F(t) \ F with
L(g) = f.

By Proposition 4.1.1 it follows that g =
∑

i gi t
i ∈ F[t, 1

t ] and

L(gi t
i) = fi t

i

for all i ∈ Z. Since g /∈ F, there is at least one gd 6= 0 with d 6= 0 such that

L(gd td) = fd td

for some fd ∈ F. Since f ∈ F, it follows that fd = 0 which proves the lemma.

Lemma 4.5.5. Let (E, σ) be a Π-extension of (F, σ) with E := F(t1, . . . , tl) and ti hyperex-
ponential over F for 1 ≤ i ≤ l. Then for any L ∈ F[σ]∗ we have

∃g ∈ E∗ : L(g) = 0

⇓

∃ a hyperexponential g ∈ E∗ over F : L(g) = 0.

Proof. The proof is done by induction on the number l of Π-extensions. For the induction
base E = F, l = 0, nothing has to be shown. Now consider the Π-extension (E, σ) of (F, σ)
with E := F(t1, . . . , tl) and ti hyperexponential over F and assume that for any L̃ ∈ F[σ] the
theorem holds in (E, σ). Let (E(t), σ) be a Π-extension of (E, σ) with t hyperexponential over
F, L ∈ F[σ]∗ and g ∈ E(t)∗ with

L(g) = 0.

If g ∈ E, nothing has to be proven by the induction assumption. Otherwise, assume g /∈ E.
Then by Lemma 4.5.4 there are a u ∈ E∗ and a d ∈ Z∗ such that

L(u td) = 0.

If u ∈ F then we are done. Otherwise, assume u /∈ F and take

L̃ :=
1
td
L td ∈ F[σ].

Since σ(t)
t ∈ F∗, we have

L̃(u) =
1
td
L td(u) =

1
td
L(td u) = 0.
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Therefore by the induction assumption we may assume that there is a hyperexponential
v ∈ E∗ over F such that

L̃(v) = 0

thus
0 = L̃(v) =

1
td
L td(v) =

1
td
L(td v).

and consequently L(td v) = 0.

This is the corresponding result of Theorem 4.5.1. Please note that in the assumption
we restricted already to the situation that there exists a reduced d’Alembertian extension,
whereas in Theorem 4.5.1 we were able to deal with the more general case of sum extensions
and not only with proper sum extensions.

Theorem 4.5.5. Let (E, σ) be a reduced d’Alembertian extension of (F, σ). Let f ∈ F and
L ∈ F[σ]∗. Then

∃g ∈ E \ F : L(g) = f

⇓

∃ a hyperexponential g ∈ E∗ over F : L(g) = 0.

Proof. By Corollary 2.4.3 there is a d’Alembertian extension (F(h1, . . . , hm)(s1, . . . , sn), σ) of
(F, σ) where the hi’s are hyperexponential over F and the si’s are sums over F(h1, . . . , hm)
such that

(E, σ)'(F(h1, . . . , hm)︸ ︷︷ ︸
=:H

(s1, . . . , sn), σ).

If g ∈ H(s1, . . . , sn) \ H then by Theorem 4.5.1 there is a p ∈ H∗ such that L(p) = 0.
Therefore, in any case, we may assume that there is a g ∈ H∗ with L(g) = 0 and consequently
by Lemma 4.5.5 there is a hyperexponential q ∈ E∗ over F such that

L(q) = 0.

4.5.3.2 Finding d’Alembertian Solutions

Given a difference field (F, σ), L ∈ F[σ]∗ and f ∈ F, we are able to construct a complete
sum extension (E, σ) w.r.t. (L, f) by Algorithm 4.5.3. Now consider the recursion call in
Algorithm 4.5.3 or Algorithm 4.5.2 when there does not exist a d ∈ F∗ such that

R(d) = 0

or equivalently R does not have a right factor of the form

σ − σ(d)
d

(4.36)

for any d ∈ F∗. If there exist an R̃ ∈ F[σ] and a g ∈ F with

R = R̃ (σ − g)
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then we can construct a difference ring extension (F[t], σ) of (F, σ) such that

σ(t) = g t. (4.37)

If there does not exist an n ≥ 0 such that

gn ∈ H(F,σ) (4.38)

then we can even construct a Π-extension (F(t), σ) of (F, σ) with

R(t) = R̃ (σ(t)− g t) = 0.

Therefore we can again apply Algorithm 4.5.3 to find a complete sum extension of (F(t), σ)
w.r.t. (L, f).

Implementation Note 4.5.2. This idea is realized in my implementation by the function
FindSumSolutions (Section 1.1.2). Here we return exactly the difference operator R
which does not have any right factor of the form (4.36) for some d ∈ F∗. In this case the
user has to extend the underlying difference field by an appropriate Π-extension (F(t), σ)
canonically defined by (4.37). In order to find that g, one needs other algorithms like for
instance M. Petkovšek’s package Hyper. Further remarks one can find in Section 1.3.4.3.

Doing this, step by step, and extending the difference field by further Π-extensions over F,
we finally might reach the point and find a Π-extension (H, σ) of (F, σ) with H := F(t1, . . . , tn)
and σ(ti)

ti
∈ F such that there does not exist an R̃ ∈ F[σ] and a g ∈ F with

R = R̃ (σ − g). (4.39)

During this step-wise extension we might fail to compute a Π-extension if we run in the
situation that there exits an n > 0 with (4.38). In this case there is still hope to adapt
the underlying difference field to avoid this case. Otherwise this extension is not anymore
transcendental over the given difference field and in the worst case we even have to work in
difference rings; this case will be excluded in the following.

Now assume we find such a Π-extension (H, σ) as described above and let (G, σ) be a
complete sum extension of w.r.t. (L, 0). Then one can show that there does not exist any
d’Alembertian extension of (G, σ) which includes more solutions for the difference equation

L(g) = 0.

Suppose there is a d’Alembertian extension (E, σ) of (G, σ) which contains more solutions than
(G, σ). By Corollary 2.4.3 there is a d’Alembertian extension (F(h1, . . . , hm)(s1, . . . , sn), σ) of
(F, σ) where the hi are hyperexponential over F and the si are sums over A := F(h1, . . . , hm)
such that

(E, σ)'(A(s1, . . . , sn), σ). (4.40)

Since (G, σ) is a complete sum extension of (H, σ), the difference field (A, σ) must be a Π-
extension of (H, σ). Now compute a complete sum extension (B, σ) of (A, σ) w.r.t. (L, f) by
applying Algorithm 4.5.3 where we can force the algorithm to use elements in the difference
field (H, σ) in the same order for factoring L as when we computed the complete sum extension
(G, σ) of (H, σ) . Finally we will reach the situation where there is not a g ∈ F∗ and an
R̃ ∈ F[σ] with (4.39). Therefore we cannot factor further and consequently we get a complete
sum extension (B, σ) of (A, σ) which is equal to (G, σ). Since we have (4.40), (E, σ) cannot
contain more solutions than (G, σ).
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4.5.4 Finding New Sum Extensions

Algorithms 4.5.2 and 4.5.3 deliver sum extensions in which additional solutions of a given
difference equation may exist. Given such a sum extension, one is interested in eliminating
all algebraic relations of these sums and to transform it to a proper sum extension which
consists only of sums which are transcendental over the other sums. This elimination of
algebraic relations can be obtained by indefinite summation (Remarks 4.5.2 and 4.5.3) which
can be very expensive concerning time and memory aspects.

In this section we will reduce this simplification step by avoiding some algebraic relations
in the sum extensions during its construction in Algorithms 4.5.2 and 4.5.3.

Lemma 4.5.6. Let (F, σ) be a difference field with constant field K and let {d1, . . . , dn} ⊆ F∗
be linearly independent over K. Let

ei := σ(
di

dn
)− di

dn

for 1 ≤ i ≤ n. Then e1 · · · en−1 6= 0 and {e1, . . . , en−1} is linearly independent over K.

Proof. Assume there is an ei = 0, i.e.

σ(
di

dn
) =

di

dn

for some i with 1 ≤ i ≤ n− 1. Thus di
dn
∈ K and therefore there is a k ∈ K such that

di = k dn

which is a contradiction to the assumption that {d1, . . . , dn} is linearly independent over K.
Thus

e1 · · · en−1 6= 0.

Assume there are k1, . . . , kn−1 ∈ K such that

k1 e1 + · · ·+ kn−1 en−1 = 0

where not all ki = 0. Then we have

k1 (σ(
d1

dn
)− d1

dn
) + · · ·+ kn−1 (σ(

dn−1

dn
)− dn−1

dn
) = 0

m

k1 (σ(d1) dn − d1 σ(dn)) + · · ·+ kn−1 (σ(dn−1) dn − dn−1 σ(dn)) = 0

m

dn (k1 σ(d1) + · · ·+ kn−1 σ(dn−1)︸ ︷︷ ︸
6=0

) + σ(dn) (k1 d1 + · · ·+ kn−1 dn−1︸ ︷︷ ︸
6=0

) = 0

m
σ(dn)

dn
=

σ(k1 d1 + · · ·+ kn−1 dn−1)
k1 d1 + · · ·+ kn−1 dn−1

m
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σ(
k1 d1 + · · ·+ kn−1 dn−1

dn
) =

k1 d1 + · · ·+ kn−1 dn−1

dn
.

Consequently
k dn = k1 d1 + · · ·+ kn−1 dn−1

for some k ∈ K which contradicts to the assumption that {d1, . . . , dn} is linearly independent
over K. Hence also {e1, . . . , en−1} is linearly independent over K.

Proposition 4.5.3. Let (F, σ) be a difference field with constant field K, L ∈ F[σ]∗ and let
{d(0)

1 , . . . , d
(0)
n } ⊆ F∗ be linearly independent over K with

{d(0)
1 , . . . , d(0)

n } ⊆ KerF L.

Define

d
(j)
i := (σ(

d
(j−1)
i

d
(j−1)
n−j+1

)−
d

(j−1)
i

d
(j−1)
n−j+1

)σ(d(j−1)
n−j+1)

for 1 ≤ j < n and 1 ≤ i ≤ n− j. Then d
(0)
n · · · d(n−1)

1 6= 0. Furthermore there is an R ∈ F[σ]∗

such that
L = RL1 · · · Ln

where Li = σ − σ(d
(n−i)
i )

d
(n−i)
i

.

Proof. We have d
(0)
1 · · · d(0)

n 6= 0, {d(0)
1 , . . . , d

(0)
n } is linearly independent over K and L(d(0)

i ) = 0
for all 1 ≤ i ≤ n by assumption. Thus there is by Lemma 4.5.1 an R ∈ F[σ]∗ with

L = R (σ − σ(d(0)
n )

d
(0)
n

)

and consequently the induction base holds. Now assume that for l with 1 ≤ l < n we have
d

(l−1)
1 · · · d(l−1)

n−l+1 6= 0, {d(l−1)
1 , . . . , d

(l−1)
n−l+1} is linearly independent over K and that there is an

R ∈ F[σ]∗ with
RLn−l+2 · · · Ln.

Besides this, assume that

R(d(l−1)
i ) = 0

for all 1 ≤ i ≤ n − l + 1. Then by Lemma 4.5.6 it follows that d
(l)
1 · · · d(l)

n−l 6= 0 and

{d(l)
1 , . . . , d

(l)
n−l} is linearly independent over K. Furthermore by Lemma 4.5.1 there is an

R̃ ∈ F[σ] with

R = R̃(σ −
σ(d(l−1)

n−l+1)

d
(l−1)
n−l+1︸ ︷︷ ︸

=:Ln−l+1

)

and thus
L = R̃Ln−l+1 · · · Ln.
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Additionally, it follows for all 1 ≤ i ≤ n− l that

0 = R(d(l−1)
i ) = R̃(σ −

σ(d(l−1)
n−l+1)

d
(l−1)
n−l+1

)(d(l−1)
i ) = R̃(σ(d(l−1)

i )−
σ(d(l−1)

n−l+1)

d
(l−1)
n−l+1

d
(l−1)
i )

= R̃((σ(
d

(l−1)
i

dl−1
n−l+1

)−
d

(l−1)
i

d
(l−1)
n−l+1

)σ(d(l−1)
n−l+1)) = R̃(d(l)

i ) = 0.

Therefore the induction step l → l + 1 holds. Finally for n = l the statement of the theorem
is proven.

Lemma 4.5.7. Let (F, σ) be a difference field with constant field K, {d(0)
1 , . . . , d

(0)
n } ⊆ F∗ be

linearly independent over K and define

d
(j)
i := (σ(

d
(j−1)
i

d
(j−1)
n−j+1

)−
d

(j−1)
i

d
(j−1)
n−j+1

)σ(d(j−1)
n−j+1)

for 1 ≤ j < n and 1 ≤ i ≤ n− j. Let (E, σ) with

E := F( s
(1)
n ,

s
(2)
n , s

(2)
n−1,

s
(3)
n , s

(3)
n−1, s

(3)
n−2,

...
...

...
s
(n−1)
n , s

(n−1)
n−1 , s

(n−1)
n−2 , · · · , s

(n−1)
2 )

be a sum extension of (F, σ) with

σ(s(i)
n ) = s(i)

n +
d

(i)
n−i

σ(d(i−1)
n−i+1)

σ(s(i)
n−j) = s

(i)
n−j +

d
(i−j)
n−i+j

σ(d(i−j−1)
n−i+j+1)

s
(i)
n−j+1

for 1 ≤ i < n and 0 ≤ j < i and constσE = K. Then for all 1 ≤ i < n we have

d(0)
n s

(i)
n−i+1 = d

(0)
n−i + c1 d

(0)
n−i+1 + · · ·+ ci d

(0)
n

for some cj ∈ K.

Proof. Let 1 ≤ i < n. We will show for all k with 0 ≤ k < i that

d
(i−k−1)
n−i+k+1 s

(i)
n−k = d

(i−k−1)
n−i + c1 d

(i−k−1)
n−i+1 + · · ·+ ck d

(i−k−1)
n−i+k+1 (4.41)

for some cj ∈ K. By

σ(s(i)
n ) = s(i)

n +
d

(i)
n−i

σ(d(i−1)
n−i+1)

= s(i)
n + σ(

d
(i−1)
n−i

d
(i−1)
n−i+1

)−
d

(i−1)
n−i

d
(i−1)
n−i+1

it follows that

σ(s(i)
n −

d
(i−1)
n−i

d
(i−1)
n−i+1

) = s(i)
n −

d
(i−1)
n−i

d
(i−1)
n−i+1
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and thus

s(i)
n −

d
(i−1)
n−i

d
(i−1)
n−i+1

∈ K

Consequently
d

(i−1)
n−i+1 s(i)

n = d
(i−1)
n−i + c1 d

(i−1)
n−i+1

for some c1 ∈ K and hence the induction base k = 0 holds. Now let 0 ≤ k < i−1 and assume

d
(i−k−1)
n−i+k+1 s

(i)
n−k = d

(i−k−1)
n−i + c1 d

(i−k−1)
n−i+1 + · · ·+ ck+1 d

(i−k−1)
n−i+k+1

for some cj ∈ K. Then we have

σ(s(i)
n−k−1) = s

(i)
n−k−1 + d

(i−k−1)
n−i + c1 d

(i−k−1)
n−i+1 + · · ·+ ck+1 d

(i−k−1)
n−i+k+1)/σ(d(i−k−2)

n−i+k+2)

= s
(i)
n−k−1 + (σ(

d
(i−k−2)
n−i

d
(i−k−2)
n−i+k+2

)−
d

(i−k−2)
n−i

d
(i−k−2)
n−i+k+2

+ c1 (σ(
d

(i−k−2)
n−i+1

d
(i−k−2)
n−i+k+2

)−
d

(i−k−2)
n−i+1

d
(i−k−2)
n−i+k+2

)

+ · · ·+ ck+1 (σ(
d

(i−k−2)
n−i+k+1

d
(i−k−2)
n−i+k+2

)−
d

(i−k−2)
n−i+k+1

d
(i−k−2)
n−i+k+2

)

and it follows that

σ(s(i)
n−k−1 −

d
(i−k−2)
n−i

d
(i−k−2)
n−i+k+2

+ c1

d
(i−k−2)
n−i+1

d
(i−k−2)
n−i+k+2

+ · · ·+ ck+1

d
(i−k−2)
n−i+k+1

d
(i−k−2)
n−i+k+2

)

= s
(i)
n−k−1 −

d
(i−k−2)
n−i

d
(i−k−2)
n−i+k+2

+ c1

d
(i−k−2)
n−i+1

d
(i−k−2)
n−i+k+2

+ · · ·+ ck+1

d
(i−k−2)
n−i+k+1

d
(i−k−2)
n−i+k+2

.

Thus there is a ck+2 ∈ K with

s
(i)
n−k−1 =

d
(i−k−2)
n−i

d
(i−k−2)
n−i+k+2

+ c1

d
(i−k−2)
n−i+1

d
(i−k−2)
n−i+k+2

+ · · ·+ ck+1

d
(i−k−2)
n−i+k+1

d
(i−k−2)
n−i+k+2

+ ck+2,

hence the induction hypothesis

d
(i−k−2)
n−i+k+2 s

(i)
n−k−1 = d

(i−k−2)
n−i + c1 d

(i−k−2)
n−i+1 + · · ·+ ck+1 d

(i−k−2)
n−i+k+1 + ck+2 d

(i−k−2)
n−i+k+2

holds and consequently (4.41) is proven. Especially for k = i− 1 we obtain

d(0)
n s

(i)
n−i+1 = d

(0)
n−i + c1 d

(0)
n−i+1 + · · ·+ ci d

(0)
n

for some cj ∈ K and therefore the lemma is proven.
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Theorem 4.5.6. Let (F, σ) be a difference field with constant field K, L ∈ F[σ]∗ and let
{d(0)

1 , . . . , d
(0)
n } ⊆ F \ {0} be a basis of KerF L. Define

d
(j)
i := (σ(

d
(j−1)
i

d
(j−1)
n−j+1

)−
d

(j−1)
i

d
(j−1)
n−j+1

)σ(d(j−1)
n−j+1)

for 1 ≤ j < n and 1 ≤ i ≤ n− j and let R ∈ F[σ]∗ be defined by

L = RL1 · · · Ln

where Li = σ − σ(d
(n−i)
i )

d
(n−i)
i

. Let (E, σ) be a sum extension of (F, σ) which is complete w.r.t.

(R, 0) and let {f1, . . . , fk} be a basis of KerER.
Let (G, σ) with G = E(t(1)

n , . . . , t
(1)
1 , . . . , t

(k)
n , . . . , t

(k)
1 ) be a sum extension of (E, σ) with

σ(t(i)n ) = t(i)n +
fi

d
(n−1)
1

σ(t(i)j ) = t
(i)
j +

d
(i−j)
n−j

d
(j+1)
n−j+1

t
(i)
j+1

for 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ k and constσG = K.
Then (G, σ) is a complete sum extension of (F, σ) w.r.t. (L, 0) and

{d(0)
1 , . . . , d(0)

n , d(0)
n t(1)n , . . . , d(0)

n t(k)
n }

is a basis of KerG L. Furthermore t
(i)
n /∈ F for all 1 ≤ i ≤ k.

Proof. Let (G, σ) be a sum extension of (F, σ) with

G = E( s
(1)
n ,

s
(2)
n , s

(2)
n−1,

s
(3)
n , s

(3)
n−1, s

(3)
n−2,

...
...

...
s
(n−1)
n , s

(n−1)
n−1 , s

(n−1)
n−2 , · · · , s

(n−1)
2 ,

t
(1)
n , t

(1)
n−1, t

(1)
n−2, · · · , t

(1)
2 , , t

(1)
1

...
...

...
...

t
(k)
n , t

(k)
n−1, t

(k)
n−2, · · · , t

(k)
2 , t

(k)
1 )

(4.42)

where constFG = K and

1. σ(s(i)
n ) = s

(i)
n +

d
(i)
n−i

σ(d
(i−1)
n−i+1)

,

σ(s(i)
n−j) = s

(i)
n−j +

d
(i−j)
n−i+j

σ(d
(i−j−1)
n−i+j+1)

s
(i)
n−j+1 for 1 ≤ i < n and 0 ≤ j < i and

2. σ(t(i)n ) = t
(i)
n + fi

σ(d
(n−1)
1 )

,
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σ(t(i)j ) = t
(i)
j +

d
(n−1−j)
j+1

σ(d
(n−2−j)
j+2 )

t
(i)
j+1 for 1 ≤ i ≤ k and 0 ≤ j < n− 1.

Then by Proposition 4.5.3 and Theorem 4.5.4 it follows that (G, σ) is a complete sum
extension of (F, σ) w.r.t. (L, 0) and

{d(0)
n , d(0)

n s(1)
n , . . . , d(0)

n s
(n−1)
2 , d(0)

n t
(1)
1 , . . . , d(0)

n t
(k)
1 }

is a basis of KerG L. Furthermore by Lemma 4.5.7 we have that for all 1 ≤ i < n

d(0)
n s

(i)
n−i+1 = d

(0)
n−i + c1 d

(0)
n−i+1 + · · ·+ ci d

(0)
n

for some cj ∈ K and thus

(E(t(1)
n , t

(1)
n−1, . . . , t

(k)
1 ), σ) = (G, σ)

and
{d(0)

1 , . . . , d(0)
n , d(0)

n t
(1)
1 , . . . , d(0)

n t
(k)
1 }

is a basis of KerG L. But
{d(0)

1 , . . . , d(0)
n }

is a basis of KerF L and thus
t
(j)
1 /∈ F

for all (1 ≤ j ≤ k).

Applying Theorem 4.5.6 has several advantages.

1. If we solve the solution space V(a, (0) , F) for a := vect(L) then we get a basis

{d(0)
1 , . . . , d(0)

n }

of KerF L. Thus applying Theorem 4.5.6 delivers us a shortcut to factorize

L = RL1 . . . Ln.

Therefore we do not have to find for each step i again a homogeneous solution of

RL1 . . . Li.

2. If R has no homogeneous solution, or in other words, (F, σ) is complete w.r.t. (R, 0)
then also (F, σ) is complete w.r.t. (L, 0) and

{d(0)
1 , . . . , d(0)

n }

are the solutions. Therefore we do not return the sum extension (G, σ) with8

G := F( s
(1)
n ,

s
(2)
n , s

(2)
n−1,

s
(3)
n , s

(3)
n−1, s

(3)
n−2,

...
...

...
s
(n−1)
n , s

(n−1)
n−1 , s

(n−1)
n−2 , · · · , s

(n−1)
2 )

since anyway (G, σ) = (F, σ).
8See the sum extension in (4.42).
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3. Assume we have a complete sum extension (E, σ) of (F, σ) w.r.t. (R, 0) then we can
construct the complete sum extension (G, σ) of (E, σ) with G := E(t(1)

n , t
(1)
n−1, . . . , t

(k)
1 )

w.r.t. (L, 0) and a basis

{d(0)
1 , . . . , d(0)

n , d(0)
n t

(1)
1 , . . . , d(0)

n t
(k)
1 }

of KerG L. We have d
(0)
n t

(1)
1 /∈ F, which means that we extend the difference field

only if new solutions can be found in it.

4. In order to get a complete sum extension (E, σ) of (F, σ) w.r.t. (R, 0), we can proceed
using Theorem 4.5.6.

5. Having a complete sum extension (G, σ) of (F, σ) w.r.t. (L, 0) we are interested in a
proper sum representation (see Remark 4.5.3). If we want to compute a proper sum
extension (H, σ) of (F, σ) and a difference field isomorphism τ with

(H, σ)
τ' (G, σ)

then we have to use expensive operations like solving first order linear difference equa-
tions in a sub-difference field of (G, σ) in order to check if a sum extension is proper
or can be already expressed in the given difference field. Applying Theorem 4.5.6, we
eliminate a priori sum extensions which are not proper and therefore we avoid
expensive operations to solve first order difference equations.

Implementation Note 4.5.3. Finally, in the implementation of the functions Find-
SumSolutions and SolveRecurrence I realized Algorithm 4.5.3 by exploiting Theo-
rem 4.5.6 as described in the above remarks.



VITA 297

Carsten Schneider

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, A–4040 Linz, Austria

tel: +43 (0)732 2468-9959 fax: +43 (0)732 2468 9930
Carsten.Schneider@risc.uni-linz.ac.at

http:/www.risc.uni-linz.ac.at/research/combinat/risc

Date and Place of Birth: September 24, 1971, Erlangen

Nationality: German

Education:
1978 – 1980 Primary School Cadolzburg
1980 – 1982 Primary School, Wilhelm Löhe Schule Nürnberg
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L-homomorphic, 95
Q, 57, 88
A∗, 57
AnnB(f), 191
σag, 119
vect(L), 246
F(t)(frac), 120
F[σ], 246
F[t]d, 128
I(a, f , td A), 141
N, 6
N0, 6
NullspaceK(f), 131
Q, 16
Vr(a, W), 177
V(a, f , V), 117
Vm, 184
Vm,r+1, 183
V = W + U, 120
W(r)

m , 184
Wm,r+1, 183
Wd, 139
Z, 6
[.]i, 133
A∧B, 135
A∧f , 135
f∧g, 135
f∧g, 119, 135
constσA, 55
den, 98, 221
(S(K), S), 94
F(t)(fracpart), 121
γ-computable, 182
H(F,σ), 64
kerL, 246
num, 98, 221
⊕, 120, 138
ord(f), 222
order, 245
per(F,σ)(f), 73

F(t)(1), 122
F(t)(0), 122
|| ||, 138, 139
σ-factorial, 73
σ-factorization, 70, 233
(f)k, 73
spreadσ(a, b), 77, 232
0, 117
f [p], 182
fm, 179
m-polynomial, 182
q
(d)
c∧h, 184

V-finite, 118

annihilator, 191

base case, 155, 241
basis matrix, 135, 137, 190
bound for solution space, 159
bounding

denominator, 124
period 0, 124
period 1, 127

polynomial degree, 128
sequence, 233

canonically defined by, 58, 59
concatenation

matrix with vector, 135
of matrices, 135
of vectors, 135
vector with element, 119, 135

constant
field, 55
ring, 55

difference
field, 55

ΠΣ-field, 71
epimorphism, 57
homomorphism, 57
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isomorphism, 56
monomorphism, 57

operator, 56, 245
ring, 55

epimorphism, 57
homomorphism, 57
isomorphism, 56
monomorphism, 57

rules, 56
direct sum, 138

element
hyperexponential, 59
sum, 59
sum-reduced, 251

Euclidean right division, 246
extension

Π, 64
over, 64

ΠΣ, 71
Σ, 69, 70
affine, 59
d’Alembertian, 59
difference

field, 57
ring, 57

first order linear, 60
homogeneous, 60
inhomogeneous, 60
product, 59
product-sum, 59
proper sum, 70

over, 70
reduced

d’Alembertian, 71
product-sum, 71

sum, 59
complete, 276

sum reduced, 251

field
difference, 55
of rational functions, 98
quotient, 57
rational functions, 60

filtration, 138

generator matrix, 136, 190
graduation, 138

homogeneous group, 64
homomorphic map bounded by, 99

inner product, 119
isomorphism

difference field, 56
difference ring, 57
indefinite summation, 79
recursively induced, 79
summand isomorphism, 78

kernel, 246

matrix
basis, 135, 190
generator, 136, 190
reduced, 191
row echelon form, 191

module
annihilator, 191
basis, 190
finitely generated, 190

multiplication
matrix by matrix, 134
matrix by vector, 134
vector by vector, 119, 133

nullspace, 131

order, 222, 245

part
fractional part with period 1, 123
fractional part with pure period 0, 123
polynomial part, 123

period, 73
pure, 122

polynomial
coefficient, 133
denominator, 98, 221
numerator, 98, 221
zero, 133

quotient field, 88

rank function, 138, 139
reduced representation, 60
ring

difference, 55
factor ring modulo an ideal, 90
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of K-sequences, 94
of fractions, 88

solution
d’Alembertian, 272
Liouvillian, 272

solution space, 117, 137
incremental, 141
truncated, 177

spread, 77, 232

vector space
direct sum, 120
sum, 120


