
Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbständig und ohne fremde Hilfe
verfasst habe, andere als die angegebenen Quellen und Hilfsmittel nicht verwendet und mich auch
ansonsten keiner unerlaubten Hilfe bedient habe.

Linz, Juni 2003

Dipl.|Ing. Markus Rosenkranz

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

3

Zusammenfassung

Obwohl Randwertprobleme (RWP) wohl zu den wichtigsten Problemtypen aus Physik, Chemie
oder auch Finanzwissenschaft gehören, ist ihre Behandling im Symbolic Computation noch ziem
lich dürftig. Bislang werden noch die einfachsten RWP gewöhnlich entweder numerisch oder per
Hand gelöst, allenfalls auf ad|hoc Basis unterstützt durch Computeralgebra|Pakete. Wohl hat man
im Symbolic Computation diverse Werkzeuge zum Lösen von Differentialgleichungen, aber ihre
Anwendung auf RWP ist weitgehend unbefriedigend.

In dieser Dissertation legen wir eine neue Methode zur Lösung von RWP für lineare gewöhnli
che Differentialgleichungen mit konstanten Koeffizienten vor. Im Unterschied zu den bisherigen
Methoden, die vermittels der Greenschen Funktion alles auf die Funktionsebene zurückführen,
fungiert unser Verfahren ganz auf Operatorebene. Die nötigen Operatoren werden in unserer
Methode als nichtkommutative Polynome repräsentiert, wobei Basisoperatoren wie Differentation,
Integration und Randauswertung als Unbestimmte auftreten.

Der entscheidende Schritt zur Lösung des RWP besteht darin, den gesuchten Greenschen
Operator als eine geeignete Moore|Penrose|Schiefinverse aufzufassen. Um die daraus hervorge
henden Gleichungen nach dem Greenschen Operator aufzulösen, wird eine sorgfältig zusammenges
tellte nichtkommutative Gröbnerbasis verwendet, welche die wesentlichen Interaktionen zwischen
den Basisoperatoren widerspiegelt.

Wir haben unser Verfahren implementiert als Mathematica Paket, eingebettet in das in B. Buch
bergers Gruppe entwickelte Theorema System. Ein Teil der Dissertation kann auch als Bedienung
sanleitung für diese Implementierung gelten.

Abstract

Although boundary value problems (BVPs) are among the most important problem types coming
from physics, chemistry and even finance, their coverage in symbolic computation is still rather
weak. Up to now, even the simplest BVPs are usually solved either numerically or by some hand|
crafted calculations, possibly supported by some computer algebra package in an ad|hoc way.
Symbolic computation does have several tools for solving differential equations, but their applica
tion to BVPs is largely unsatisfactory.

In this thesis, we present a new method for solving BVPs for linear ordinary differential equa
tions with constant coefficients. Unlike existing methods that reduce everything to the functional
level via the Green’s function, our approach works on the level of operators throughout. Our
method proceeds by representing the operators needed as noncommutative polynomials using as
indeterminates basic operators like differentation, integration, and boundary evaluation.

The crucial step for solving the BVP is to understand the desired Green’s operator as a suitable
oblique Moore|Penrose inverse. The resulting equations are then solved for the Green’s operator
using a carefully compiled noncommutative Gröbner basis that reflects the essential interactions
between the basic operators.

We have implemented our method as a Mathematica package embedded into the Theorema
system developed in B. Buchberger’s group. Part of the thesis may also be regarded as a user’s
manual for this implementation.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

4

Table of Contents

 Preface... 6

 Prolog: Genesis of the Green’s Polynomials.. 8

 The Algebra of Green’s Polynomials... 10

 The Example of Steady Heat Conduction in a Rod.. 10

 The Green’s Polynomials.. 22

 Inverting Differential Operators.. 47

 Computing the Nullspace Projector.. 49

 Finding the Green’s Operator.. 52

 A User’s Manual for the Green’s Package... 56

 The Theorema Environment... 56

 The Overall Design of the Green’s Suite.. 67

 The Reductor for Noncommutative Polynomials.. 70

 The Matrix Evaluator.. 87

 The Green’s Evaluator.. 91

 Implementation Notes.. 94

 General Design Principles in Theorema Programming... 94

 Organization of the Green’s Suite... 96

 Implementation of the Polynomial Reductor.. 97

 Implementation of the Matrix Evaluator...103

 Implementation of the Green’s Evaluator...104

 Appendix: The Concept of Polynomial...107

 A Sloppy Definition..107

 A Rigorous Definition...109

 An Alternative and More General Definition...111

 Computing with Polynomials..125

 Commutative versus Noncommutative...128

 Epilog: Prospects of Generalization...132

 Curriculum Vitae...134

 Acknowledgements...136

 References..139

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

5

Preface

The present PhD thesis has grown out of a cooperation between the group of B. Buchberger and
the group of Heinz W. Engl at the Johannes Kepler University of Linz; see the Prolog for a short
overview of its genesis. Its main thrust is to extract the algorithmic power contained in the concept
of Moore|Penrose inverse. This line of thought is also reflected in the outline of its contents:

Chapter 1 constitutes the theoretical basis of the thesis. It develops the crucial concept of the
Green’s polynomials (together with their algorithmic incarnation: the system of Green’s identities),
following the idea of representing the Green’s operator of a BVP as a suitable oblique Moore|
Penrose inverse. Using this methodology, everything is reduced to the problem of determining a
suitable nullspace projector for the Moore|Penrose inverse and a right inverse of the given differen
tial operator. These two subproblems are readily solved by two concise formulae, thus turning the
whole approach into an overall algorithm for solving BVPs. The chapter concludes with the correct
ness proof of this algorithm.

We have also implemented our algorithm as a Mathematica package, embedded into the Theo
rema system developed in B. Buchberger’s group. Chapter 2 is a user’s manual for this implementa
tion, which we have called the Green’s suite. After a short overview of the general Theorema
environment and the global setup of our package, we describe its three main components: the
reductor for noncommutative polynomials, the matrix evaluator, and the Green’s evaluator.

We round up with a concise description of the most important implementation issues in
Chapter 3. Unlike the previous chapter, which is explicitly written for a user of our system, the last
chapter is intended to provide some background material potentially valuable for a programmer
building on our implementation of the Green’s suite. We follow the same structure as in the previ
ous chapter, describing first a couple of general issues related to Theorema programming, then
some overall aspects of how the Green’s suite is organized, and finally implementation details of
the polynomial reductor, the matrix evaluator, and the Green’s evaluator.

Since noncommutative polynomials are the main fabric from which we have woven the rele
vant structures, the interested reader might be curious how such these objects can be introduced in
a rigorous manner~following a uniform paradigm. We have therefore prepared a fairly comprehen
sive appendix on the concept of polynomial, written from a dedicated logical viewpoint. In our
formulation, we use the notion of categories and functors in the sense introduced by B. Buchberger
for automated theorem proving and computer|supported formalization. It turns out that such a view
establishes a lucid connection between the general polynomial concept and Gödel’s completeness
proof~a synopsis of two themes not often seen together. And a beautiful dejà|vu of some topics
that got me started in B. Buchberger’s group (and I hope this dejà|vu will not be the last of its
type).

The thesis is framed by a Prolog sketching the interesting genesis of its main ideas and an
Epilog suggesting various lines of future research.

Before going into the actual subject matter, we should fix a few issues of convention and
notation. First of all, the reader may have noticed that we use the definite article with words like
"Green’s function", "Green’s operator" or "Green’s polynomials". In the literature, there seems to
be some disagreement on whether one should say just "Green’s function" or "the Green’s func
tion". For example, [63] uses the first variant, whereas [45] uses the second. But as soon as an
adjective is adjoined to these terms, the definite article is unavoidable anyway (for both authors),
as in the phrase "the modified Green’s function". Therefore we have decided to use the definite
article throughout.

Regarding single and double quotes, we tried to be consistent with the following convention:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

6

Regarding single and double quotes, we tried to be consistent with the following convention:
We use double quotes of actually quoting a phrase, whereas single quotes are reserved for relativiz
ing something (meaning that one ùabuses÷ a certain phrase as a kind of metaphor or one is not
ùdeadly serious÷ about it).

The numbering scheme used in formal units like "Definition" or "Lemma" was only necessary
in Chapter 1, where we have numbered everything in one sequence. All formal units are ended by
a á sign. The formal unit "Input" is used for Theorema input that is sent verbatim to the Mathemat
ica kernel: so if you have the text as a notebook rather than on paper, you can evaluate these cells
by selecting their cell brackets and pressing ÷�ó. Analogously, the formal unit "Computation"
represents Theorema computations carried by the Mathematica kernel. The text above the horizon
tal line is verbatim input; the text below verbatim output.

About formal issues we need not say much since we will work in a very normal setting, using
only standard notation unless explained otherwise. Thus the reader may assume first|order predi
cate logic with Zermelo|Fraenkel set theory as the underlying foundation system (possibly
enhanced by logical sorts as in Section 3 of the Appendix). Free variables are understood as univer
sally quantified. Let F be a formula and T a term (typically containing x as a free variable). Then
the notation Fx¬T denotes F with all free occurrences of the variable x replaced by the term T .
Furthermore, we use x# T for the lambda quantifier on T , usually expressed as Λx T or Λ x . T in
computer science texts.

The set of natural numbers is understood to include zero and is denoted by N ; the positive
natural numbers are denoted by N´ (if A is any monoid, its unit group A´ is given by the set of all
its invertible elements). Unless otherwise specified, the range of k, l, m, n is N , that of x, y, z is R .

Following [46], we write f *HXL and f*HXL for denoting the direct and inverse image of a set X
under a function f , respectively. As usual in mathematics~especially in operator theory~we will
sometimes omit the parentheses used for function application when the context excludes ambiguity.

Unless otherwise specified, a vector space (in particular, an algebra) A is assumed to have C as
its field of scalars. Accordingly, we mean "C|linear" when we say "linear".

Moreover, we will always conceive a vector space A as containing a specific basis, which will
be denoted by A# . In formal terms, this means the following: Whereas a complex vector space is
usually understood as a carrier set V with vector addition + : V ´ V ® V , the zero vector 0 Î V ,
the negative vector - : V ® V , and scalar multiplication × : C´ V ® V , we add to this signature an
additional operation # : N® V , yielding the chosen sequence of basis vectors. (Strictly speaking,
we should call A a "based vector space" or a "based algebra", but we will refrain from doing so in
order to keep the language simple.)

The transpose of a matrix A is written as A§ .

The reflexive|transitive closure of ® is denoted by ®
*

, the symmetric one by « , the reflexive|

symmetric|transitive one by «
*

.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

7

Prolog: Genesis of the Green’s Polynomials

The ideas presented in this PhD thesis emerged in the stimulating atmosphere of the so|called
Hilbert seminars held in Linz and Hagenberg between October 2001 and June 2002. These semi
nars were organized by B. Buchberger and Heinz W. Engl in the frame of a special research
project (in German "Spezialforschungsbereich", abbreviated SFB) founded in 1998 at the Johannes
Kepler University of Linz. This project~associated with the FWF grant F13~joins several insti
tutes with the explicit goal of establishing bridges between "symbolic mathematics" and "numeric
mathematics", two firmly established key disciplines of modern mathematics~both highly algorith
mic in spirit and yet so different in character. It is the conviction of this SFB that both disciplines
contain a rich potential of interaction, and this vision has already triggered quite some interesting
cooperation projects between various symbolic and numeric groups at the Johannes Kepler
University.

Embedded into this context, the Hilbert seminars served as a unique instrument for establishing
a fundamentally new link between symbolic methodology and numeric heritage; it is the object of
this Prolog to describe the nature and genesis of this link.

The idea of the seminars was to explore the topic of operator theory both from a symbolic and
numeric viewpoint. For this purpose, the two principal investigators started with some fundamental
lectures providing the necessary background as seen from their respective field~Heinz W. Engl
from the numeric side and B. Buchberger from the symbolic side.

On the numeric side, Heinz W. Engl gave a series of lectures about the following topics:

è Ill|posed problems and their intrinsic numeric difficulties.

è The usage of Tikhanov regularization for mastering these difficulties.

è The Moore|Penrose inverse as a convenient conceptual frame for "solving ill|posed
problems".

è Regularization in the light of singular value decomposition.

On the symbolic side, B. Buchberger focused on the following points in his lectures:

è The necessity of a rigorous formal language for representing problems in the sense of
symbolic computation.

è The role of predicate logic as the universal linguistic frame for both symbolic and numeric
mathematics.

è The usage of computer|supported tools like Theorema once a problem has a rigorous
formulation.

After these initial lectures, the groups focused on the following two relevant papers. Heinz
W. Engl suggested the study of [27], exploring a the concept of the oblique Moore|Penrose inverse
from a minimization viewpoint. After a presentation of the main points of this paper, delivered by
Benjamin Hackl on January 23 in 2002, the group discussed potential connections to symbolic
methods. The other paper [34], together with the companion papers [67] and [35], was suggested
by B. Buchberger and presented by Teimuraz Kutsia also on January 23; it discusses the usage of
noncommutative Gröbner bases for simplifying operator expressions arising in control theory.

Both of these papers contained some crucial ingredients preparing the results exposed in this

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

8

Both of these papers contained some crucial ingredients preparing the results exposed in this
PhD thesis:

è The first paper opened the view for the oblique Moore|Penrose inverse and its additional
freedom available in it by the choice of nullspace and range projectors. This particular
concept of generalized inverse also provided a convenient equational characterization that
is in a sense more fundamental than the more common standard Moore|Penrose inverse in
Hilbert spaces (corresponding to orthogonal projectors), where the projector equalities are
usually replaced by the more abstract self|adjointness conditions for the square operators.

è The second paper showed a simple way of applying noncommutative Gröbner bases for
manipulating operators. However, they do not consider solving any operator equations,
they are only interested in transforming compound operators (often covering several pages)
into simpler forms by applying certain given operator equalities. Since Gröbner bases were
discovered by B. Buchberger in his PhD thesis [17] (see also the journal version [7] and
the survey article [13]), this line of research was naturally all the more attractive.

The fundamental insight needed for putting these two things together is the following chain of
thoughts: It is well known that noncommutative Gröbner bases~just as their commutative compan
ions~may not only be used for simplifying terms but also for solving equations. The simplest
equation on the operator level is a BVP, so maybe we could use noncommutative Gröbner bases on
them? But usually one sees a BVP as an inversion problem for a differential operator that is made
bijective by incorporating the boundary conditions into its domain~but this elegant trick does not
have any immediate computational content. Therefore the crucial idea is to remove the boundary
conditions from the artificial domain of the differential operator and search for a Moore|Penrose
inverse instead (see the explanation after Equation 2 in Chapter 1).

It turned out that this scheme actually works: As we show in detail in Chapter 1, the additional
freedom available in the choice of the projectors for the Moore|Penrose inverse is always sufficient
for taking care of the boundary conditions. Various basic operations like differentiation, integration
and boundary evaluation are represented by polynomial indeterminates. The Moore|Penrose
equations can be augmented by suitable noncommutative polynomial equalities for describing the
algebraic essence of the various relations between the basic operations. Finding the Green’s opera
tor corresponds to solving the resulting noncommutative polynomial system. This is essentially the
procedure presented by the author in the Hilbert Seminar on March 20, 2002; in a polished form, it
is published in the journal paper [57].

In the course of further research, extensive simplifications to the strategy described above were
found. In particular, it turned out that only one of the four Moore|Penrose equations is actually
needed, and the expensive computation of noncommutative Gröbner bases can be avoided using a
carefully selected precomputed one. This new approach was presented in a poster at ISSAC’2003,
to be published as an extended abstract in [60]. In the present PhD thesis, it is for the first time
described in full detail~the key concept is a certain noncommutative polynomial algebra, which
we have called the Green’s algebra~see Proposition 31 in Chapter 1.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

9

1 The Algebra of Green’s Polynomials

In this chapter, we will present the core results of the PhD thesis~a new method for solving
regular BVPs for linear differential equations with constant coefficients (see Definition 7 for the
precise specification). We will first motivate our idea in Section 1 by the simple example of steady
heat conduction in a rod. Following these traces, Section 2 develops the main tools used for attack
ing BVPs in our sense~most importantly, the system of Green’s equalities given in Input 14 and
their associated algebra of Green’s polynomials introduced in Proposition 31. With these tools, it is
possible to design a complete algorithm for solving BVPs: The first step is to right|invert the given
differential operators as described in Section 3. The right inverse so obtained is then multiplied by
a certain nullspace projector, whose computation is discussed in Section 4. Finally, we put all
things together in Section 5, concluding the chapter with the correctness proof for the overall
algorithm of solving BVPs.

1.1 The Example of Steady Heat Conduction in a Rod

Before going to the relevant definitions and theorems, let us give a ùclassical÷ example of what
type of problems we have in mind and how we go about to solve them. In this chapter, we are
concerned with BVPs for ordinary linear differential operators with constant coefficients (we will
henceforth refer to such problems simply as BVPs). One of the simplest and yet non|trivial prob
lems of this type is exemplified by the one|dimensional heat equation with constant conductivity
and fixed temperature at both ends. One sees this example or some minor variant in almost any
introductory chapter on linear BVPs; see e. g. page 42 in [63] or page 13 in [33]. Using suitable
units, this BVP can be formulated thus:

Given f Î C@0, 1D ,
find u Î C2@0, 1D
such that

(1)
u’’ = f ,
u H0L = u H1L = 0 .

The proper topological setting for this problem is to consider both C@0, 1D and C2@0, 1D as
Banach spaces with the Chebyshev norm ° × ´¥ . The differentiation operator D : u# u’ is then

conceived as a partial function on C@0, 1D with dense domain C1@0, 1D . For the example above,

this means that D2 operates on C@0, 1D with dense domain C2@0, 1D . Note that D2 is a closed and
discontinuous operator in this view, but this is all one needs for applying the crucial Propositions 2

and 3 cited below. One could think it is preferable to take C2@0, 1D with its canonical norm: Then

the operator D2 would be total, and it would even be continuous, not just closed. But the drawback

of this setting is that C2@0, 1D is not the ùnatural÷ domain for the operator D2 as it is usually used in

Sturm|Liouville theory. If the elements of C2@0, 1D are obtained from measurements, the data error
is typically estimated in the norm of C@0, 1D , and it would not be reasonable to ask for estimates in

the norm of C2@0, 1D , as this would involve the unstable process of differentiating data; see [26] for
details.

For our purposes, though, we can us ignore all topological notions by assuming that and

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

10

For our purposes, though, we can us ignore all topological notions by assuming that f and
hence u are in C¥@0, 1D , which we shall view as a "naked" vector space without any topology. Of
course, allowing only smooth right|hand sides f is rather restrictive: as explained above, the
natural assumption would be that f is just continuous. But actually even this is too restricted for
practical purposes, where one typically deals with weak solutions living in various Sobolev spaces.
And if one wants to include those, it turns out to be more efficient to change over to the completely
distributional setting C0

-¥ @0, 1D subsuming all the Sobolev spaces one can ask for; we will do this
in Definition 37. In fact, both C¥@0, 1D and C0

-¥@0, 1D have a slightly unusual topology: they are
locally convex vector spaces that cannot be made into Banach spaces in any natural way. For the
purpose of solving BVPs symbolically, however, these topologies are not relevant.

Of course one may always prove topology|related statements in an independent effort. For
example, it is not difficult to show within the distributional setting that restricting f to C@0, 1D
leads to u always being in C2@0, 1D ; this corresponds to the classical solution concept described
above. The point we want to make here is that distributions allow us to separate the topological
side from the algebraic one, and we want to focus on the latter. The only topology we need here is
for defining differentiation and integration; but having done so, we can immediately "forget" the
topology and view these operators as plain linear transformations as explained above.

Using the smooth setting, all the operators involved will have the type C¥@0, 1D® C¥@0, 1D .
Besides this, we note that the BVP (1) is regular in the sense that it has precisely one solution
(throughout this thesis we will deal only with regular problems). Now solving a problem like (1)
means that one can assign a solution u Î C¥@0, 1D to each so|called forcing function f Î C¥@0, 1D .
In other words, the solution "is" an operator G : C¥@0, 1D® C¥@0, 1D , usually named the Green’s
operator. But not only the solution, also the relevant data for this problem are encoded in operators:

è The differential equation u’’ = f is formed by the operator D2 = u# u’’. The forcing
function f occurring on its right|hand, however, does not contain any significant informa
tion~it serves only as a placeholder for the functional formulation given in (1). In opera

tor|theoretic terms, the differential equation is simply D2 G = I ; applied to an arbitrary
function f Î C¥@0, 1D , this givens (1) because G f Î C¥@0, 1D is the solution u by the
very definition of G . We use I for the identity operator on whatever space is considered;
here this is of course C¥@0, 1D .
è The boundary conditions uH0L = 0 and uH1L = 0 can be formulated by the corresponding

boundary operators. On the left|hand side, this is the left|boundary operator L mapping u
to the constant function x# uH0L ; on the right|hand side, it is the corresponding operator R
mapping u to x# uH1L . Using these operators, the boundary conditions can now be written
on the operator level as L G = O and R G = O ; the functional formulation follows from this
as before. Here we have written O for the null operator mapping every function of
C¥@0, 1D to the null function x# 0.

So the natural interpretation of (1) is clearly situated on the operator level: Given the differen

tial operator D2 and the boundary operators L and R , find the Green’s operator G for them, i.e.
find G such that

(2)

D2 G = I,

L G = O,

R G = O

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

11

In other words, G should be a right inverse of D2 , and it should be annihilated by L and R .

Whereas there are many right inverse of D2 , the annihilation constraints are supposed to single out
one particular right inverse~which must then be the uniquely defined Green’s operator. (Observe

that we could also view D2 as an operator from 8u Î C¥@0, 1D È uH0L = uH1L = 0< to C¥@0, 1D . In
this case, it is of course invertible, and G is its two|sided rather than just right inverse. But the
problem with this approach is that it swallows the information contained in the two boundary
equations into the domain specification of D , where we lack any natural computational access.
Therefore such a model is more useful for proving abstract properties about the problem than for
finding its concrete solution.)

The main challenge in the equation system (2) is that it does not give us easy access to the
unknown G . So it may be a good idea to have a look at some other equations analysis offers us for
characterizing ùalmost inverse÷ operators like the right inverse G in our case. Now there is one
famous concept in analysis, which generalizes operator inversion~the Moore|Penrose inverse
[72]. Any(!) linear operator between two inner product spaces (in the topological setting: any
bounded linear operator between two Hilbert spaces) has a uniquely determined Moore|Penrose
inverse, which is as close to an inverse as possible in the following sense: It maps each point back
to a location with minimal distance to the original point; and among all such locations, it selects the
one with minimal norm. Hence one can view the Moore|Penrose inverse as a two|stage minimizer,
working first on the codomain and then on the domain.

The concept of the Moore|Penrose inverse, though sufficiently flexible for many purposes, is
still not good enough for us: We need a very specific right inverse fulfilling some particular bound
ary conditions, and chances are that it does not coincide with the unique Moore|Penrose inverse; in
fact, this suspicion will be confirmed soon. So we need an even more general concept of inverse
that allows some freedom for possibly incorporating the boundary requirements. Such a concept
exists, and it is rightly called the generalized inverse; see pages 14|16 in [72]. The idea is that we
may change the distance measure both for the codomain and the domain minimization. Whereas
the original minimizers are realized by orthogonal projections, the modified ones use oblique
projections (generalized inverses in Hilbert spaces are therefore also called oblique inverses). More
generally, one can introduce generalized inverses in plain vector spaces (in the topological setting
typically: Banach spaces [27]), because projection makes sense even when there is no inner prod
uct and hence no concept of angle and orthogonality. So the Moore|Penrose inverse is just the
ùcanonical÷ generalized inverse corresponding to choosing both projectors to be orthogonal.

1 Definition (Generalized Inverse in Vector Spaces)

Let X and Y be vector spaces, and let T be a linear operator from X to Y . Choose
projectors P and Q onto N =NHTL and R = RHTL , respectively, and let M and S be the
corresponding complements HI - PL* X and HI - QL* Y . Then the generalized inverse of T

relative to these projectors, denoted by TP,Q
Ö , is defined as the linear extension of HT ÈM L-1

with nullspace S .

á

2 Proposition (Elementary Properties of Generalized Inverses in Vector Spaces)

Using the above notation and assumptions, TP,Q
Ö is a uniquely defined linear operator from

Y to X with nullspace S and range M .

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

12

3 Proposition (Moore|Penrose Equations in Vector Spaces)

Again using the above notation and assumptions, TP,Q
Ö is uniquely characterized as that

linear operator TÖ from Y to X which fulfills the so|called Moore|Penrose equations

(3)

T TÖ T = T,

TÖ T TÖ = TÖ ,

TÖ T = I - P,

T TÖ = Q.

á

Applied to the BVP (2), this means that we try to obtain G as a generalized inverse HD2LP,Q

Ö
 for

some projectors yet to be determined. We will therefore write G for this generalized inverse and
subsequently show that it is indeed the Green’s operator for the given BVP.

Before going on with finding G as a generalized inverse, let us also mention that there is an
alternative approach that can somehow be considered the "standard method" of solving BVPs of
the type we study here. It proceeds by translating the operator problem into a functional setting in
the following way. One can prove that every solution u of a regular BVP for a linear differential
operator can be represented as

(4)u HxL = à
0

1

g Hx, ΞL f HΞL â Ξ,

where g is called the Green’s function of the BVP; see e.g. page 189 in [38]. In other words, the
Green’s operator G is written as an integral operator having the Green’s function g as its kernel.
Instead of searching for the operator G , one can thus search for the (binary!) function g . In fact,
there are methods for finding g for any regular BVP, using some linear algebra on the fundamental
system of the homogeneous differential equation; see for example [63], [37], [38]. The common
feature of all these methods is that they immediately work on the level of functions rather than
operators~which is not the "natural" setting of this problem, as we pointed out above.

The method we want to present here is, to our best knowledge, a new one. It is genuinely based
on operators in the sense that it directly computes the Green’s operator G rather than the Green’s
function g , which can be extracted in a trivial post|processing step~if at all desired. For BVPs
more complicated than the ones considered here, it is not clear whether such an extraction would
be possible; e.g. for nonlinear problems it will typically not be possible. Besides its conceptual
superiority, our new method might also involve a gain in efficiency, since we solve a linear system
only with numeric rather than functional entries as done in the methods mentioned above.

Now let us go on with the computation of the appropriate generalized inverse for the operator

D2 . Its range is all of C¥@0, 1D , so Q is the identity I . Now for the nullspace, which is clearly

(5)N = 8x# Α x + Β È Α, Β Î R<
in our example (for a more general case, the determination of the nullspace involves solving a
homogenous differential equation). We will try to construct a projector P onto N such that the
boundary conditions are also incorporated.

We should note some general features here: On the one hand, any linear differential operator is
surjective on C¥@0, 1D , so the range projector Q will always be trivial. On the other hand, it will
always be non|injective, so the nullspace projector can never be trivial. This is to our best

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

13

always be non|injective, so the nullspace projector P can never be trivial. This is to our best
advantage as we would have no chance for the boundary conditions otherwise! In the case of (5),
we see that choosing P amounts to specifying for each u Î C¥@0, 1D real numbers Α, Β such thatHP uL HxL = Α x + Β for all x Î @0, 1D . From Proposition 2 we know that

(6)RHGL = HI - PL* C¥@0, 1D.
We want to have uH0L = 0 and uH1L = 0 for all u Î RHGL , so the counter|projectionsH1 - PL v = v - P v should vanish at the boundary for all v Î C¥@0, 1D . Hence we must construct a
projector P such that P v coincides with v for all v Î C¥@0, 1D . Now this is a trivial interpolation
problem: Given a function v Î C¥@0, 1D , find a linear function P v that agrees with v at the grid
points 0, 1 Î @0, 1D . A short calculation leads to

(7)P u = x# H1 - xL u H0L + x u H1L.
We note again that we expect a similar, though more complicated, interpolation problem for any
other linear differential operator.

Since we are driving at an operator|theoretic formulation, we prefer to define P purely in terms
of operators. This can easily be done by introducing the operator X for multiplying with the inde
pendent variable, defined by

(8)X u = x# x u HxL
for all u Î C¥@0, 1D . Using X , the operator P can be characterized as

(9)P = H1 - XL L + X R.

By Proposition 3, G fulfills the Moore|Penrose equations (3); in particular, it is a right inverse

of D2 according to the fourth equation. Furthermore, G fulfills the boundary conditions due to our
construction of P . On the other hand, we mentioned above that the Green’s operator for a BVP like
(1) is uniquely determined, so it must indeed coincide with G as claimed above. Finally we can
now apply the characterization result of Proposition 3 in the other direction, yielding the fact that
G is uniquely determined by the equations

(10)

D2 G D2 - D2 = O,

G D2 G - G = O,

G D2 + HI - XL L + X R - I = O,

D2 G - I = O,

obtained from (3) by substituting the specific operators P , Q , J , K obtained by our considerations.
We call (10) the concrete Moore|Penrose equations for the BVP (1). Obviously, the first and
second equation are redundant, since they follow from the fourth one (In fact, the first redundancy
is true for any generalized inverse as observed on page 17 in [72]. The second redundancy, how
ever, is due to the special case of Q = I occurring when the operator to be pseudo|inverted is a
linear differential operator with constant coefficients.)

In order to compute with operators, one needs some algebraization for them. Now the obvious
data structure to use here is of course the noncommutative polynomial ring CXG, D, X, L, R\
because polynomial manipulation is one of the driving forces of computer algebra as pointed out in
Section 1 of the Appendix. In fact, all the equations of (10) can be understood very naturally as
polynomial equations exactly in this sense since we can replace the identity operator I and the null
operator by the one|polynomial and by the zero|polynomial , respectively (as is canoni

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

14

operator O by the one|polynomial 1 and by the zero|polynomial 0, respectively (as C is canoni
cally embedded into CXG, D, X, L, R\ , one usually identifies the complex numbers with the corre
sponding constant polynomials).

One remark about the scalar field C is in order here: In practical computation, we will of course
work in some computable subfield like Q or in some finite (algebraic and/or transcendental)
extension of Q . For theoretical purposes, though, it is more convenient to formulate all the results
for the ùmother field÷ C .

Interpreting now everything in the noncommutative polynomial ring CXG, D, X, L, R\ , we
obtain the following formulation

(11)
G D2 + H1 - XL L + X R - 1 = 0,

D2 G - 1 = 0

for the BVP (1).
Note that from now on, the "operators" G , D , X , L , R are just polynomial indeterminates,

carrying no interpretation whatsoever on them, as expounded in Section 3 of the Appendix. So
they are merely symbols, knowing nothing about differentiation or boundary values~in particular,
they are ignorant of any topology. Hence we must introduce all their ùessential÷ features gently by
adding suitable interaction equalities that describe the relevant relations between the operators
represented by the various indeterminates.

Besides this, we cannot expect a solution for G when working in CXG, D, X, L, R\ because
such a solution would be a polynomial in D , X , L , R . But we cannot represent the Green’s opera
tor using only differentiation, multiplication and boundary values! In fact, since G is some right

inverse of D2 , so to say its ùopposite÷, it would be natural if it does not contain a derivative but
rather its opposite~the antiderivative or integral. In other words, we expect G to come out as an
integration operator, and it should have a suitable Green’s function g as its kernel. Hence we must
explicitly add an indeterminate, say A , for representing the antiderivative. From the theory of
Green’s functions we know that their highest derivatives always have a jump on the diagonal; see
page 194 in [63]. Typically, gHx, ΞL is given by case distinction as g<Hx, ΞL for the lower triangle
x £ Ξ and g>Hx, ΞL for the upper triangle x ³ Ξ with suitable functions g< and g> , so the integral
representing Green’s operator naturally splits into two parts: one going from the left boundary to
the diagonal, the other going from the diagonal to the right boundary. So the corresponding opera
tors are

(12)
A u = x# Ù0x

u HΞL â Ξ,

B u = x# Ùx1
u HΞL â Ξ,

and we will call them the integral and cointegral operators, respectively. Note that A u is the
antiderivative of u with integration constant chosen such that it vanishes at the left boundary. The
cointegral B u of u is similar, but the integration constant is chosen such that it vanishes at the right
boundary, and the sign is inverted. The operators A and B are duals of each other.

Having these operators available, we should have a good chance of representing all Green’s
operators with polynomial functions. Hence we will adjoin them as new indeterminates, thus
working in the noncommutative polynomial ring CXG, D, X, A, B, L, R\ .

Now we must set up good interaction equalities. Viewing all of these equalities as oriented
from left to right, they form a reduction system for simplifying a compound operator involving
various mixed occurrences of D , X , A , B , L , R . This suggests that we should think of an intuitive
strategy that brings such compound operators more and more towards a canonical form. As we can
always expand polynomials into a sum of monomials, it will suffice to think about what we do to

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

15

always expand polynomials into a sum of monomials, it will suffice to think about what we do to
the words over the alphabet 8G, D, X, A, B, L, R< . Let us try to do this as systematically as possi
ble.

In the books, one always sees differential operators in a form where the Dk is moved to the
outmost right position. This suggests that we should first study those ùinteractions÷ where the
operator D is on the left and some other operator is on the right, and that we should try to ùmove÷
D across the operator on the right. If this operator is X , we can obviously achieve this goal by
virtue of the product rule of differentiation, which is

(13)D X = X D + 1.

in our case. If we want to go across an integral/cointegral operator A , B , we can apply the First
Fundamental Theorem of Calculus (often formulated in terms of the "indefinite integral"),

(14)
D A = 1,
D B = -1.

The only remaining case for D is now the boundary operators L , R . But this is trivial, because the
derivatives of the boundary constants must always vanish, so

(15)
D R = 0,
D L = 0.

Now that all the letters D are ùisolated÷ on the far right, thus giving an iterated differential

operator Dk , we come to the candidates for isolation~the boundary operators L , R . Here the idea
is similar to that of the differential operator: that it is not economical to extract boundary values
except at the very end, namely operating directly on the function given as input to the compound
operator. The only difference is that we do not move it completely to the right; it should ùstop÷
before D . The reason is that it makes perfect sense to have an operator like L D , meaning "take the
derivative of the left boundary point", whereas we have seen above that D L simply vanishes. So
let us first see what happens when a boundary operator on the left ùhits÷ an integral/cointegral
operator on the right. Obviously, the effect is either to expand the range of integration to the full
interval or to collapse it to the empty interval. Hence we have the integration|transport relations

(16)

L A = 0,

R A = A + B,

L B = A + B,

R B = 0.

Finally, when they hit an X , they are simply propagated with the corresponding boundary value of
x# x as an additional factor~which is simply 0 or 1 for L and R , respectively. This yields the
boundary propagation relations

(17)
L X = 0,
R X = R.

At this stage, the task of simplification is reduced to putting the remaining A , B and X into a
canonical order. We cannot solve this problem completely in the present setup; this will only be
done later in this chapter in the frame of a more general noncommutative polynomial ring. But we
can still specify the most important interactions, namely how to resolve the clash between two
adjacent integral/cointegral operators. Unlike for differential operators, one can always reduce

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

16

adjacent integral/cointegral operators. Unlike for differential operators, one can always reduce
iterated integrations into a single integral operator with a suitable kernel; see the next section for a
more detailed exposition of this idea. The basic tool for doing this is partial integration, yielding
the integral contraction relations

(18)

A A = X A - A X,

A B = X B + A X,

B A = A + B - X A - B X,

B B = B X - X B.

Assuming that we have finished rearranging the left part of the word, we should finally con
sider what to do if an integral/cointegral operator ùbumps into÷ the right part of the word consisting
of the boundary and differential operators (an X bumping into them does not harm). Obviously, the
integral/cointegral operator and neutralized a differential operator occurring right of it, by virtue of
the Second Fundamental Theorem of Calculus (often formulated in terms of the "definite integral"),

(19)
A D = 1 - L,
B D = R - 1.

The other cases, dealing with integrations ùbumping into÷ boundary operators, are rather trivial;
they boil down to integrating constant functions. One obtains thus the boundary integrations

(20)

A L = X L,

B L = L - X L,

A R = X R,

B R = R - X R.

Combining all these equalities (13), (14), (15), (16), (17), (18), (19), (20), we have now assem
bled all the relevant polynomial interaction equalities.

Joining them with the two left|over polynomial Moore|Penrose equations from (11), we can
start to solve for the Green’s operator G . Before doing so, however, it is reasonable to ask our
selves whether we can maybe reduce (11) even more, keeping only one of these two equations. In
general, they will of course be independent, but now we have got some additional knowledge from
the interaction equalities that might warrant a further reduction. As the information about the
boundary conditions is encoded in the nullspace projector P = H1 - XL L + X R occurring only in
the third equation, it is clear that the only possible reduction is to infer the fourth equation from the
third. Trying this out, we find that the fourth equation is indeed redundant: Bringing everything to
the left side, the third equation says that

(21)G D2 - 1 + H1 - XL L + X R

is equal to the zero polynomial. We multiply (21) by D2 from the left and by A2 from the right,
then we apply the reduction system induced by the interaction equalities on it. The result is

-1 + G D2 , which must still be equal to the zero polynomial~and this is the fourth Moore|Pen
rose equation.

Instead of doing this boring reduction by hand, we will let the computer do the job. In
Chapter 2 we give a detailed description of the computer package used here and developed in the
frame of this thesis. For the moment, it is enough to know that we can specify the oriented equali
ties that should be applied for reduction. We do this in the conventional way used in Theorema
[19], namely by stating the equalities together with a label for identifying them in a suitable environ

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

17

[19], namely by stating the equalities together with a label for identifying them in a suitable environ
ment (the label we have chose is simply the monomial on the left|hand side of the equality). Here
we have used the environment "System" since we are dealing with a system of equations; for other
purposes, one might prefer environments like "Theorem" or "Lemma" (there is no semantic differ
ence between environment names, so their choice is just a matter of style). After initializing the
packages, we specify the equality systems to be used and tell the system to apply the reduction
engine for noncommutative polynomials as the default evaluator, using the specified interaction
equalities. Besides this, we give the list of indeterminates to the evaluator and instruct it to display
the computational trace immediately after the Compute call rather than in a separate notebook. All
this is summarized in Input 4 below (remember that everything between the caption and the full
square at the end is entered verbatim).

4 Input (Computational Setup for Green’s Operators)

Needs@"Theorema‘"D
Needs@"Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘"D
SystemA"1. First Equalities for Isolating Differential Operators",

D A = 1 "DA"

D B = -1 "DB"

D X = 1 + X D "DX"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. First Equalities for Isolating Boundary Operators",

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L X = 0 "LX"

R X = R "RX"

E
SystemA"3. First Equalities for Contracting Integration Operators",

A A = X A - A X "AA"

A B = X B + A X "AB"

B A = A + B - X A - B X "BA"

B B = B X - X B "BB"

E

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

18

SystemA"4. First Equalities for Absorbing Integration Operators",

A D = -L + 1 "AD"

B D = R - 1 "BD"

A L = X L "AL"

B L = L - X L "BL"

A R = X R "AR"

B R = R - X R "BR"

E
SetOptions@Compute, by ® ReduceNoncommutativePolynomial, using ® 8

System@"1. First Equalities for Isolating Differential Operators"D,
System@"2. First Equalities for Isolating Boundary Operators"D,
System@"3. First Equalities for Contracting Integration Operators"D,
System@"4. First Equalities for Absorbing Integration Operators"D<D;

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8G, D, A, B, X, L, R<, inNotebook ® "Current"D;

á

We start the computation by the generic Theorema command Compute, applied to the input
polynomial (remember that all the output listed below is fully computer|generated). The reduction
steps are marked by the label of the equality used.

5 Computation (Derivation of the Fourth Moore|Penrose Equation from the Third)

Compute@D2 HG D2 - 1 + H1 - XL L + X RL A2 D;
We compute:

 -D D A A + D2 L A2 - D2 X L A2 + D2 X R A2 + D2 G D2 A2 =
x
HDAL

 - D A + D2 L A2 - D2 X L A2 + D2 X R A2 + D2 G D2 A2 =
x
HDAL

 -1 + D2 L A2 - D2 X L A2 + D2 X R A2 + D2 G D D A A =
x
HDAL

 -1 + D2 G D A + D2 L A2 - D2 X L A2 + D2 X R A2 =
x
HDAL

 -1 + D2 G + D2 L A2 - D D X L A2 + D2 X R A2 =
x
HDXL

 -1 + D2 G - D L A2 + D2 L A2 - D X D L A2 + D2 X R A2 =
x
HDXL

 -1 + D2 G - 2 D L A2 + D2 L A2 - X D2 L A2 + D D X R A2 =
x
HDXL

 -1 + D2 G - 2 D L A2 + D R A2 + D2 L A2 - X D2 L A2 + D X D R A2 =
x
HDXL

 -1 + D2 G - 2 D L A2 + 2 D R A2 + D2 L A2 - X D2 L A2 + X D2 R A2 =
x
HDLL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

19

 -1 + D2 G + 2 D R A2 + D D L A2 - X D2 L A2 + X D2 R A2 =
x
HDLL

 -1 + D2 G + 2 D R A2 - X D D L A2 + X D2 R A2 =
x
HDLL

 -1 + D2 G + 2 D R A2 + X D2 R A2 =
x
HDRL

 -1 + D2 G + X D D R A2 =
x
HDRL

-1 + D2 G �

á

So the four polynomial Moore|Penrose equations really collapse into the single equation

(22)G D2 = 1 - H1 - XL L - X R,

and this is the only place where the unknown G enters the equation system. Therefore the task of

solving for G boils down to multiplying (22) by a right inverse of D2 and reducing the correspond
ing polynomial on the right|hand side in a fashion analogous to that of Computation 5. Observe
that we have thus achieved a significant simplification of the original task of solving an equation
system with four, three or even two equations: In all these cases, one faces the much more difficult
question of somehow eliminating the coupling between the various occurrences of G in these
equations. In the second Moore|Penrose equation, there is even a non|linear occurrence of G ,
which would complicate the whole problem considerably: In this case, we would need tools for
solving polynomial systems.

But even then we are well within the polynomial approach, and there are powerful (but necessar
ily more complex) methods available for attacking such problems. The most successful is certainly
the computation of Gröbner bases, originally developed for commutative polynomials by B. Buch
berger; see the original PhD thesis [17], the journal version [7], and the concise treatment in [13].
Buchberger’s algorithm computes a Gröbner basis for the ideal of any given set of polynomials;
using a lexicographic term ordering, the Gröbner basis allows to read off the solutions of the
corresponding polynomial system.

Buchberger’s algorithm has a direct analog in the noncommutative setting, known as Mora’s
algorithm [51]. Unlike the commutative case, it does not always terminate. But when it does, the
Gröbner basis thus computed enjoys similar properties as the commutative ones. Hence it would be
applicable to our present problem. We followed this strategy in the paper [57] because at that time
we had not yet seen the possibility of reducing everything to one equation. So it seems that we do
not need Gröbner bases, but the real fact is that we can avoid the costly completion algorithm
(Buchberger’s / Mora’s algorithm) while there is still a Gröbner basis behind the scenes. The point
is just that it does not change; it need not be "completed". See the remarks after Definition 30 for
more details.

Now finding a right inverse is next to trivial in our case: Equation (14) tells us that D has the

right inverse A , so D2 has the right inverse A2 . Multiplying (22) by this right inverse, we obtain~
more or less~the desired Green’s operator

(23)G = H1 - H1 - XL L - X RL A2 ,

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

20

just that it is ùin a slightly unusual form÷. In particular, this is not yet a (single) integral operator
with a Green’s function as its kernel. Let us therefore apply the reduction system induced by the
interaction equalities for trying to get a better representation for G . Again, we prefer to resort to the
automatic evaluator implemented in the frame of this thesis.

6 Computation (Reduction of the Green’s Operator)

Compute@H1 - H1 - XL L - X RL A2 D;
We compute:

 A2 - L A A + X L A2 - X R A2 =
x
HLAL

 A2 + X L A A - X R A2 =
x
HLAL

 A2 - X R A A =
x
HRAL

 A2 - X A2 - X B A =
x
HAAL

 -A X + X A - X A2 - X B A =
x
HAAL

 -A X + X A - X2 A + X A X - X B A =
x
HBAL

-A X - X B + X A X + X B X �

á

The computation yields the Green’s operator in the canonical form

(24)G = -A X - X B + X A X + X B X,

and we could already regard this as the final answer. If we prefer to see the Green’s function, we
collect in (24) the terms belonging to the same integration operator, giving

(25)G = HX - 1L A X + X B HX - 1L.
Now we simply unfold the definition of the operators A, B, X as they are applied to a function
f Î C@0, 1D , evaluated at a point x Î @0, 1D , so

(26)

Gf HxL = Hx - 1L à
0

x

Ξ f HΞL â Ξ + x à
x

1HΞ - 1L f HΞL â Ξ =

à
0

xHx - 1L Ξ f HΞL â Ξ + à
x

1

x HΞ - 1L f HΞL â Ξ.

Writing this as a single integral such that (4) holds, we must pack both integrands into one func
tion, which we define by the corresponding case distinction

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

21

(27)g Hx, ΞL = : Hx - 1L Ξ Ü 0 £ Ξ £ x £ 1,

x HΞ - 1L Ü 0 £ x £ Ξ £ 1.

It should be noted that the procedure of transforming G in (24) into the corresponding Green’s
function g in (27) is completely mechanical: The monomials with A go into the first branch of g ,
those with B into the second branch; the occurrences of X before the integration operators become
x , those after the integration operators become Ξ . In fact, such a "mechanical procedure" could
readily be implemented; see the discussion towards the end of Section 2 of Chapter 2.

1.2 The Green’s Polynomials

The goal of this section is to generalize the solution strategy used for the example of steady heat
conduction in a rod. We want to treat any regular BVPs for linear differential operators with
constant coefficients. Let us make this precise by the following definition.

7 Definition (Regular BVP)

Let @a, bD be a finite interval in R , and let T be an n|th order linear differential operator
with constant coefficients

T u = c0 u + c1 u’ + c2 u’’ + ¼ + cn-1 uHn-1L + uHnL

operating on the Banach space HC¥@a, bD, ° × ´¥L . Let B1 , ¼, Bn be boundary operators
defined on the same domain, say

Bi u = pi,0 uHnL HaL + ¼ + pi,n-1 u’ HaL + pi,n u HaL +

qi,0 uHnL HbL + ¼ + qi,n-1 u’ HbL + qi,n u HbL ,
with coefficients pi,0 , ¼, pi,n , qi,0 , ¼, qi,n Î R for each i = 1, ¼, n . The boundary value
problem induced by T and B1 , ¼, Bn is to find for each forcing function f Î C¥@a, bD a
function u Î C¥@a, bD such that

T u = f ,
B1 u = ¼ = Bn u = 0.

We call the BVP regular iff it has a unique solution u Î C¥@a, bD for each forcing
function f Î C¥@a, bD .
á

This BVP is actually inhomogeneous in the differential equation and homogeneous in the
boundary conditions (a so|called semi|inhomogeneous problem). But we can always decompose a
fully inhomogeneous problem into such a semi|inhomogeneous one and a rather trivial BVP with
homogeneous differential equation and inhomogeneous boundary conditions (a so|called semi|
homogeneous problem); see page 43 in [63]. Hence we have not lost any essential generality in
Definition 7 by assuming homogeneous boundary conditions.

Applying the solution strategy used in the example of steady heat conduction, we must first
compute a suitable projector P onto NHTL such that the boundary conditions will be fulfilled for

TP,I
Ö . From the theory of ordinary differential equations we know that one can obtain a fundamental

system for a linear differential operator with constant coefficients by taking the functions x# ãΛx ,

x# x ãΛx , ¼, x# xk-1 ãΛx for each k|fold root Λ Î C of the characteristic equation for T ; see
page 89 in [21]. They form the basis of a function algebra that will be dubbed the polyexponential

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

22

page 89 in [21]. They form the basis of a function algebra that will be dubbed the polyexponential
functions because they are a mixture of "ordinary polynomial functions" (having the functions

x# xk as a basis) and "exponential polynomials" (having the functions x# ãΛx as a basis). For the
sake of brevity, we will usually refer to them as the "polyexponentials", and we will denote them
by E .

Then we must introduce new indeterminates for the multiplication operators induced by the

powers x# xk (where k runs through N*) and by the exponentials x# ãΛx (where Λ runs through
C*). The resulting noncommutative polynomial ring will have infinitely many indeterminates, but
this is no problem since each individual polynomial can contain only finitely many of them. So we
will work in the structure

(28)CX8D, A, B, L, R< Ü 8Xk È k Î N*< Ü 8EΛ È Λ Î C*<\,
where Xk denotes the corresponding multiplication operator mapping each u Î C¥@a, bD to

(29)Xk u = x# xk u HxL,
and likewise EΛ denotes the operator mapping u Î C¥@a, bD to

(30)EΛ u = x# ãΛx u HxL.
Of course we must now add some interaction relations describing that powers and exponentials

may be contracted and that we may always order them such that the exponentials come first. We
call them algebraic interaction equalities as they do not refer to any analysis concepts like differen
tiation or integration. Besides these new interactions, we have to make some obvious modifications
in the isolation equalities (still assuming a = 0 and b = 1 to simplify things for the moment).

Before specifying the interaction equalities, we tell the system that we want to use the powers

of X as indeterminates: For example, when X3 appears in a polynomial, this is one atomic indeter

minate; whereas D3 is understood as a shorthand for D D D .
Then we list all the interactions we need, plus some built|in knowledge: The addition and

subtraction appearing in the parameters of Xk and EΛ are not the same as the plus and minus
connecting the polynomials! The former should be left untouched by Mathematica, whereas the

latter are to be executed in the expected manner. Thus we want to have X2Å3 simplify to X5 .
Therefore we use circled operator symbols for those operations that should be carried out by
Mathematica, and we tell the system explicitly that Å and � should be the Mathematica functions
Plus and Minus, respectively. This is the meaning of the environment Built|in["Arithmetic"].

Having specified all the explicit and implicit knowledge, we must fix some additional technicali
ties. First we instruct the Compute command to use the new set of interaction equalities, then we
tell the evaluator the names of the current indeterminates and some abbreviations (see Chapter 2
for details). The option ReductionPhases of the function ReduceNoncommutativePolynomial
specifies the order in which the systems given below are to be applied; the algebraic equalities are
not mentioned, meaning that they are to be used throughout all the phases. As we do not want to
see the long and tedious trace, we set the corresponding option to "None" this time.

8 Input (Modified Interaction Equalities for Exponential Polynomials)

UsePowers@XD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

23

SystemA"First Equalities for Algebraic Simplication", any@i, j, Λ, ΜD,
Xi X j = XiÅ j "XX"

EΛ EΜ = EΛÅΜ "EE"

Xi EΛ = EΛ Xi "XE"

E
SystemA"1. First Equalities for Isolating Differential Operators", any@i, ΛD,

D A = 1 "DA"

D B = -1 "DB"

D Xi = i Xi�1 + Xi D "DX"

D EΛ = Λ EΛ + EΛ D "DE"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. First Equalities for Isolating Boundary Operators", any@i, ΛD,

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L Xi = 0 "LX"

R Xi = R "RX"

L EΛ = L "RE"

R EΛ = E R "RE"

E
SystemA"3. First Equalities for Contracting Integration Operators",

A A = X A - A X "AA"

A B = X B + A X "AB"

B A = A + B - X A - B X "BA"

B B = B X - X B "BB"

E
SystemA"4. First Equalities for Absorbing Integration Operators",

A D = -L + 1 "AD"

B D = R - 1 "BD"

A L = X L "AL"

B L = L - X L "BL"

A R = X R "AR"

B R = R - X R "BR"

E

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

24

Built|inA"Arithmetic",

Å ® Plus

�® Minus
E

SetOptions@Compute,
by ® ReduceNoncommutativePolynomial,
using ® 8

System@"First Equalities for Algebraic Simplication"D,
System@"1. First Equalities for Isolating Differential Operators"D,
System@"2. First Equalities for Isolating Boundary Operators"D,
System@"3. First Equalities for Contracting Integration Operators"D,
System@"4. First Equalities for Absorbing Integration Operators"D<,

built|in ® Built|in@"Arithmetic"DD;
SetOptions@ReduceNoncommutativePolynomial,

ReductionPhases ® 8
"1. First Equalities for Isolating Differential Operators",
"2. First Equalities for Isolating Boundary Operators",
"3. First Equalities for Contracting Integration Operators",
"4. First Equalities for Absorbing Integration Operators"<,

Indeterminates ® 8X� , D, L, R, E� , A, B<, Units ® 8X0 , E0 <, inNotebook ® "None"D;
á

Using the reduction system resulting from orienting these equalities from left to right, we obtain
a fairly universal method for simplifying a polynomial in (28). For example, we can easily com
pute the fifth Legendre polynomial, whose Rodriguez formula is given by

P3 HxL =
1

������������������
23 3!

 ¶x
3 Hx2 - 1L3

The analytic polynomial corresponding to (30) is

(31)D3 HX2 - 1L3
times the normalization factor, and we can simplify (31) in the usual way for getting its expanded
version. (We have left out the normalization factor only because it clutters the output.)

9 Computation (Sample Reduction of an Analytic Polynomial)

ComputeAD3 HX2 - 1L3 E
-72 X + 18 D + 120 X3 - 108 X2 D + 90 X4 D - 36 X3 D2 - D3 + 18 X D2 + 18 X5 D2 + 3 X2 D3 - 3 X4 D3 +

X6 D3

á

The polynomial (31) is of course much more complex than the ordinary Legendre polynomial
since it represents a differential operator obtained by operating ¶x not only on the coefficient

function Hx2 - 1L3 but also ùacross÷ it. However, we get back the original Legendre polynomial~in
expanded form~by formally substituting D ¬ 0 and dividing by 48, thus obtaining

P3 HxL =
1
������
2
H5 x3 - 3 xL.

Having the new polynomial ring (28), we should try to close the gaps mentioned after (17). The
overall strategy explained there still works in the new polynomial ring: We carry out the reduction
in four phases~first isolating the differential operators, second isolating the boundary operators,
third contracting the integration operators, and fourth absorbing them into each other (the algebraic

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

25

third contracting the integration operators, and fourth absorbing them into each other (the algebraic
interactions may be used in any phase). But now we face a problem that may occur in the third
phase: How can we contract two integration operators, for example an A and another A if there are

some algebraic operators EΛ and Xk in between? Merging these intermediate operators yields a
single multiplication operator M f induced by some basis polyexponential f . Let us see how we
can absorb the two integral operators into one by using partial integration. For any u Î C¥@a, bD ,
we have

(32)HA Mf AL u = x# à
a

x

fHΞL Au HΞL âΞ

according to the standard interpretation of the indeterminates A and M f as operators on the
Banach space C¥@a, bD . Applying partial integration to this integral, we have to choose some
antiderivative of f . In particular, we may choose A f , the antiderivative normed to be 0 at a . Note,
however, that A f is simply another polyexponential, not to be confused with the noncommutative

polynomial A M f . Let us therefore write Ù *
f for this operation of A on f and let us call it the

integral action. Likewise we will write Ù* f for the corresponding operation of B on f and call it

the cointegral action. We will clarify these issues in greater detail below in Definition 11. Using

the antiderivative Ù *
f of f , partial integration yields

(33)à
0

x

fHΞL Au HΞL âΞ = Jà
*

fN HΞL Au HΞL E
Ξ=a

x

- à
a

xJà
*

fN HΞL u HΞL âΞ,

so the operator in (32) is

(34)A Mf A = MÙ *
f A - A MÙ *

f ,

where f and accordingly Ù *
f are some concrete polyexponentials. From (34) we can extract

polynomial equalities by substituting the three possible cases for M f , namely Xk for pure polynomi

als and EΛ for pure exponentials and EΛ Xk for proper polyexponentials. So the only problem is to

evaluate the integrals of x# xk and x# ãΛx and x# ãΛx xk , respectively. Now the first two are
trivial, but looking up integration tables for the third reveals some recursion formulae. Therefore
we conclude that we can always carry out the reduction (34) from left to right for any concrete

exponential polynomial like A E3 X4 A , but we cannot write down a closed formula for the generic

instance EΛ Xk .
How can we solve this problem? Well, why not take (34) itself as the new interaction equality!

In other words, we can generalize the polynomial ring once more such that it includes all multiplica
tion operators M f induced by functions f out of a certain reasonable class F that can be adapted;
the default choice for F will be the polyexponentials. Of course, then we do not need the indetermi

nate Xk and EΛ anymore; they are subsumed by Mx#xk and Mx#ãΛx , respectively. Since it starts to
get tedious by now, let us introduce a convenient agreement for getting rid of all these cumbersome

lambda quantifiers. So from now on, we will speak of the functions xk and ãΛx , and so their corre
sponding indeterminates are Mxk and MãΛx .

10 Convention (Implicit Lambda Quantification)

If a term T appears where we should have a function, it should be understood as x# T .

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

26

The polyexponentials E constitute just one out of various conceivable ùfunction domains÷ that
can be used for multiplication operators, but in the frame of this thesis we will not consider other
possibilities. Going through the interaction equalities of Input 8, we see that the only essential
thing is that we have some set of objects~typically but not always functions~with ùreasonably
behaving÷ operations for sums, products, derivatives, integrals and boundary values. For the first
two of them, there seems to be a natural choice for specifying what we mean by "reasonable",
namely the ring axioms.

However, we need slightly more. Obviously, the multiplication operators M f +g and M f + Mg

do the same under any ùreasonable÷ interpretation, so we would have to add the interaction equali
ties M f +g = M f + Mg , basically a restatement of distributivity. We can also interpret this interac
tion as saying that we do not really need the indeterminates M f +g as soon as we have M f and Mg .
Generally speaking, it is sufficient to consider only those M f where f is irreducible with respect to
addition; in other words, f should range over a basis of the function domain, which thus turns out
to be an vector space~just as its prototype E . In fact, it must even be an algebra like E is because
we also have an appropriate multiplicative structure on it.

Just as for the algebraic operations (addition, multiplication), there are also natural axioms for

the analytic operations: differentation f # f ’ , the integral action f # Ù *
f , the cointegral action

f # Ù* f , the left boundary action f # f ¬ , and the right boundary action f # f ® . For example,

the essential properties of differentiation alone are the linearity rule and the product rule; adding
them to a ring / algebra gives what is usually called a differential ring / algebra. We have chosen
the name "analytic algebra" because we extend the notion of algebra not only by differentiation but
also by the second fundamental concept of analysis, namely that of integration.

The axioms for integrations and boundary values are formulated in the same spirit as the linear
ity rule and the product rule for differential algebras. In fact, we obtained all of the axioms speci
fied below very naturally by attempting the proof of Theorem 28 without them and adding what is
needed until the proof succeeds (in the Theorema project, we are working on this approach in the
larger context of theorem proving, following what B. Buchberger calls the lazy thinking para
digm). The result of this process is contained in the definition given below. Note that we have used
Convention 10 for suppressing lambda quantification in these axioms. For example, the term
f - f ¬ is to be understood as the function x# f HxL - f ¬ .

11 Definition (Analytic Algebra)

An algebra F is called an analytic algebra iff it has unary linear operations differentiation

’ : F ® F , integral Ù *
: F ® F , cointegral Ù* : F ® F , left boundary value ¬ : F ® C

and right boundary value ® : F ® C , subject to the postulates listed below.

AxiomsA"Analytic Algebra", any@ f , gD,
H f gL’ = f ’ g + f g’ "dm"

Ù *
f ’ = f - f ¬ "ad"

Ù* f ’ = f ® - f "bd"

IÙ *
f M’ = f "da"

IÙ* f M’ = - f "db"

H f gL¬ = f ¬ g¬ "lm"

H f gL® = f ® g® "rm"

E

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

27

For understanding the axioms of an analytic algebra, we observe the following. An analytic
algebra is essentially a differential algebra with two generalized inverses for the derivation ’.
Comparing axioms "ad", "da" with the Moore|Penrose equations in Proposition 3, we see that the
integral is indeed a generalized inverse for ’ , with trivial range projector (since C¥@0, 1D remains
all of C¥@0, 1D under differentiation) and the left boundary action as nullspace projector (note the
lambda convention). For the cointegral, things are similar; the only difference is that now we have
a generalized skew inverse in the sense that the negative cointegral is a generalized inverse for ’ ,
with trivial range projector and right boundary action. So the operations ¬ and ® just serve to
choose among the generalized inverses by fixing the integration constant. Axioms "lm" and "rm"
stipulate that f # Hx# f ¬L and f # Hx# f ®L be homomorphisms in the algebra F .

Having the concept of analytic algebra, we can finally introduce the analytic polynomials as
announced before. Note that the multiplication operators are only indexed over a basis of the given
analytic algebra, thus guaranteeing an economic representation as explained above.

12 Definition (Analytic Polynomials)

Let F be an analytic algebra. Then

CX8D, A, B, L, R< Ü 8M f È f Î F #<\
will be called the ring of analytic polynomials over F , denoted by AnHF L . If F is not
mentioned, it is assumed to be the system E of polyexponentials; the corresponding
polynomial ring is then denoted by An . Similar conventions will be assumed for other
occurrences of F and E in the subsequent text.

á

At this point, we should also mention an alternative way of introducing analytic polynomials.
Looking at equality (34), we could also view the multiplication operators as coefficients instead of

indeterminates; then we would have A f A = HÙ *
fL A - A Ù *

f . Of course, these coefficients do not

commute with the indeterminates, so here we are dealing with the uncommutative polynomials of
PUniRingHF , 8D, A, B, L, R<L ; see Section 5 of the Appendix. But since the coefficients do com
mute with R , we would have to factor out these commutations. Such a formulation by uncommuta
tive polynomials has the advantage that one does not need infinitely many indeterminates8Mf È f Î F#< in the polynomial ring. Nevertheless, we will stick to the formulation of
Definition 12 because the infinitude of 8Mf È f Î F#< does not cause serious problems whereas
uncommutative polynomials are not well studied in the literature.

Equality (34) can now be understood as a polynomial interaction equality, as was desired.

Strictly speaking, though, this formulation is still not correct. The problem is that Ù *
f might not be

in F # anymore even though f was; in fact, this is usually so in the case in the prototype algebra

T . But since F is an analytic algebra, Ù *
 is an operation within F , so we can write Ù *

f as a

linear combination Λ1 f1 + ¼ + Λn fn with f1 , ¼, fn Î F # and Λ1 , ¼, Λn Î C . Hence we can
write Λ1 M f1 + ¼ + Λn M fn instead of the wrong MÙ *

f . This operation can be extended to all of

AnHF L by applying it to all the multiplication indeterminates of a given polynomial and then
expanding the result. In particular, we have MΛ = Λ for multiplication operators induced by con
stant functions x# Λ with Λ Î C . We will refer to this process as the basis expansion in F .

In the actual computations, we do this together with the usual expansion rules for polynomials
like distributivity, namely each time after applying a polynomial equation. In the Compute call,
this is specified by using the special built|in referred to as $BasisExpansion. The other built|in
operations like carrying out integrals and cointegrals are collected in Built|in["Action operators"].

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

28

operations like carrying out integrals and cointegrals are collected in Built|in["Action operators"].
So if one wants to use both of these built|in simplifications, one has to specify the option built|in®

{$BasisExpansion, Built|in["Action operators"]} of the Compute function. See Input 14 below
for an example and Chapter 2 for more details about the computation engine.

Since the multiplication operators occur quite often in a typical computation, we will adopt a
smoother notation for them. In fact, it starts to become boring to see all these M symbols when the
really important information is contained in the indices. Therefore we will lift them to the
"ceiling", using the so|called ceiling brackets.

13 Convention (Ceiling Notation)

The notation ` f p is a shorthand for the indeterminate M f of AnHF L .
á

Within the noncommutative polynomial ring AnHF L , we can now formulate all the interactions
that will be necessary to reduce an arbitrary polynomial to a simplified form that is even canonical
as we will prove in Theorem 28. But first let us review the four phases on an informal basis. In the
first phase, we isolate all differential operators on the far right. Basically, all the interaction stay
the same, but the product rule is now formulated in full generality as

(35)D `fp = `fpD + `f ’p,
where ` f ’p splits again into a linear combination of multiplication operators over F . Intuitively, it
is clear that we can always perform this step successfully because there are no other ùhurdles÷ to
pass by except A , B , f , L , R .

The second phase is also successful in this sense, isolating all boundary operators at the posi
tion next to the differential operators (if there is no differential operator, this is the far right). Let us
see what happens when we move to the right. Now the differential operators are already out of the
way. If we ùhit÷ an integration operator, we can still apply the integration|transport relations (16).

Moving across a multiplication operator ` f p is analogous to moving across Xk or EΛ ; we simply
evaluate the function f at the left or right boundary point, expressed by f ¬ and f ® , respectively.
Now the only remaining possibility is that one boundary operator meets another, which is so trivial
that we have even left it out up to now. For the sake of completeness, though, we will also add it
now as the boundary idempotence relations

(36)

L L = L,

L R = R,

R L = L,

R R = R.

Now we come to the third phase, contracting integral operators. This is where we had to leave
some gaps in the previous reduction systems. So let us analyze this situation carefully. All the
differential and boundary operators are already moved to the far right, so we need only be con
cerned about the interactions between A , B and f . As the cointegral operator is dual and hence
analogous to integral operator, the essential question is how to interrelate integration and multiplica
tion operators. As mentioned before, it is always possible to contract all integrations into a single
one~unlike differentiations. We have seen an example in (34), contracting to integral operators
with a multiplication operator in between. The other three cases with A ` f p B , B ` f p A , B ` f p B are
indeed analogous, as one can see below. The collision of two such integration operators without a
multiplication operator in between, already covered in (18), is subsumed by choosing .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

29

multiplication operator in between, already covered in (18), is subsumed by choosing f = 1.
However, it is still useful to include them as ùoptimized rules÷ for frequently occurring special
cases. Putting these things together, we should now have the intuition that the third phase must also
be successful: Whenever the prefix left of the differential/boundary part contains more than one
integration operator, we use the interactions just described for contracting them. Finally, we are left
with something of the form ` f p A `gp or ` f p B `gp , which can be understood as a suitable integral
operator with the "separated kernel" being f HxL gHΞL as in (26).

The fourth phase takes care of integral operators being ùcancelled÷ by differential operators or
ùswallowed÷ by boundary operators. For this purpose, we can again take over the corresponding
interactions (19) and (20). Besides this, there are analogous interactions for the monomials A ` f p L ,
B ` f p L , A ` f p R , B ` f p R . But we have not yet considered the possibilities A ` f pD and B ` f pD .
Let us consider the first case in detail. According to the standard interpretation of A , we have

(37)A `fpD u = x# à
a

x

fHΞL u’HΞL âΞ

for all u Î C¥@0, 1D . (We are now assuming general boundary points a and b .) Applying again
partial integration, we can rewrite the integral on the right as

(38)

à
a

x

fHΞL u’HΞL âΞ = f HΞL u HΞL DΞ=a
x - à

a

x

f ’ HΞL u HΞL âΞ =

f HxL u HxL - f HaL u HaL - à
a

x

f ’ HΞL u HΞL âΞ,

so we have

(39)A `fpD = -f¬ L + `fp - A `f ’p.
Of course, one can derive an analogous interaction equality for B ` f pD . It is now clear that the
fourth phase is also successful in the following sense: It makes sure that we cannot have a mono
mial containing both a differential and an integration operator. With other words, the operators
represented by such monomials are either differential operators (containing only D) or integral
operators (containing either only A or only B) or algebraic operators (containing neither D nor A
nor B). We will soon make these ideas more precise by proving that the new interaction equalities
lead to normal forms in the sense sketched above.

As before there are also algebraic interactions (again to be applied throughout all phases),
taking care of reduction within F . But now we can formulate them in a single equation that sub
sumes all of the previous interactions for Xi X j , EΛ EΜ and Xi EΛ .

So let us summarize the new collection of interaction equalities in suitable Theorema environ

ments. As we do not use the parametrized indeterminate Xk anymore, we revoke the power conven
tion for X explicitly (just to make sure). In all the equations below, the universal quantifiers for f

and g implicitly range over all functions in F # . After specifying the polynomial equalities, we list
the built|in operations for executing the action operators. Then we set some defaults for the func
tions Compute and ReduceNoncommutativePolynomial, in a manner analogous to what we had
before.

14 Input (Interaction Equalities for Analytic Polynomials)

DoNotUsePowers@XD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

30

System@"Equalities for Algebraic Simplication", any@ f , gD,` f p `gp = ` f gp "MM"

D
SystemA"1. Equalities for Isolating Differential Operators", any@ f D,

D A = 1 "DA"

D B = -1 "DB"

D ` f p = ` f p D + ` f ’p "DM"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. Equalities for Isolating Boundary Operators", any@ f D,

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L ` f p = f ¬ L "LM"

R ` f p = f ® R "RM"

L L = L "LL"

L R = R "LR"

R L = L "RL"

R R = R "RR"

E
SystemA"3. Equalities for Contracting Integration Operators", any@ f D,

A ` f p A = aÙ *
f q A - A aÙ *

f q "AMA"

A ` f p B = aÙ *
f q B + A aÙ *

f q "AMB"

B ` f p A = aÙ* f q A + B aÙ* f q "BMA"

B ` f p B = aÙ* f q B - B aÙ* f q "BMB"

A A = aÙ *
1q A - A aÙ *

1q "AA"

A B = aÙ *
1q B + A aÙ *

1q "AB"

B A = aÙ* 1q A + B aÙ* 1q "BA"

B B = aÙ* 1q B - B aÙ* 1q "BB"

E

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

31

SystemA"4. Equalities for Absorbing Integration Operators", any@ f D,

A ` f pD = - f ¬ L + ` f p- A ` f ’p "AMD"

B ` f pD = f ® R - ` f p- B ` f ’p "BMD"

A D = -L + 1 "AD"

B D = R - 1 "BD"

A ` f p L = aÙ *
f q L "AML"

B ` f p L = aÙ* f q L "BML"

A ` f p R = aÙ *
f q R "AMR"

B ` f p R = aÙ* f q R "BMR"

A L = aÙ *
1q L "AL"

B L = aÙ* 1q L "BL"

A R = aÙ *
1q R "AR"

B R = aÙ* 1q R "BR"

E
Built|inA"Action Operators",

ÔLeftBoundaryValue ® LeftBoundaryValue

ÔRightBoundaryValue ® RightBoundaryValue

ÔDerivative1 ® Derivative1

ÔIndefiniteIntegral ® IndefiniteIntegral

ÔIndefiniteCointegral ® IndefiniteCointegral

E

SetOptions@Compute,
by ® ReduceNoncommutativePolynomial,
using ® 8

System@"Equalities for Algebraic Simplication"D,
System@"1. Equalities for Isolating Differential Operators"D,
System@"2. Equalities for Isolating Boundary Operators"D,
System@"3. Equalities for Contracting Integration Operators"D,
System@"4. Equalities for Absorbing Integration Operators"D<,

built|in ® 8$BasisBuiltin, Built|in@"Action Operators"D<D;
SetOptions@ReduceNoncommutativePolynomial,

ReductionPhases ® 8
"1. Equalities for Isolating Differential Operators",
"2. Equalities for Isolating Boundary Operators",
"3. Equalities for Contracting Integration Operators",
"4. Equalities for Absorbing Integration Operators"<,

Indeterminates ® 8D, L, R, A, B, `�p<, inNotebook ® "None"D;
á

We will also refer to the above collection as the system of Green’s equalities.
As a first example, let us see how Computation 6 looks like in the new ring An . Then let us try

the problematic case that forced us to introduce the multiplication operators. In this example, the

built|in knowledge about integration leads to the evaluation of the indefinite integral as

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

32

built|in knowledge about integration leads to the evaluation of the indefinite integral Ù x3 ã2 x â x as

ã2 x I- 3�����
8

+ 3 x��������
4

- 3 x2

�����������
4

+ x3

�������
2
M .

15 Computation (Reduction of the Green’s Operator as an Analytic Polynomial)

Compute@H1 - `1 - xp L - `xp RL A2 D
-A `xp- `xp B + `xp A `xp+ `xp B `xp
á

16
Computation (Reduction of an Integral Operator with Hybrid Polyexponential
Kernel)

Compute@A `x3 ã2 x p AD
3
������
8

 A `ã2 x p-
3
������
4

 A `ã2 x xp+
3
������
4

 A `ã2 x x2 p-
1
������
2

 A `ã2 x x3 p-
3
������
8

 `ã2 x p A +
3
������
4

 `ã2 x xp A -
3
������
4

 `ã2 x x2 p A +

1
������
2

 `ã2 x x3 p A
á

The polynomial interaction equalities induce a rewrite system, and our first claim is that it is
noetherian. This means that the chain of computation steps terminates for any input in AnHF L .

17 Theorem (Termination of the Reduction System for Analytic Polynomials)

The reduction system generated by orienting the interaction equalities in Input 14 from left
to right is a noetherian relation on AnHF L .
Let us first clarify the signature and the reduction relation. We have a term rewriting
system with a flat and commutative flexible|arity symbol + , a flat flexible|arity symbol × ,
a nullary operation for each coefficient in C as constructor of the corresponding constant
polynomial, and a nullary operation for each indeterminate in
X = 8D, A, B, L, R< Ü 8` f p È f Î F #< as a constructor of the corresponding ùsolitary÷
polynomial. Since + does not occur on the left|hand side of any rule, we need not worry
about its flatness nor associativity. We will take care of the associativity of × by applying
an associative matcher. Moreover, we have a ground term rewriting system, because f
acts only as an external variable (it cannot be instantiated by a polynomial). In other
words, there are infinitely many rewrite rules for each rule of Input 14 that contains a
multiplication operator ` f p ; every instantiation of f over F # gives rise to one rule.
Whenever we speak of "a rule", we actually mean the whole family of rules arising from
these instantiations.

We will first assume that we do not distinguish basis polynomials, i.e. we will work with

the indeterminates X
��

= 8D, A, B, L, R< Ü 8` f p È f Î F < and we do all reduction without
basis expansion. We must show that there is no infinite chain of such reductions, and we
do this by an indirect proof.

So assume there were such an infinite reduction chain p1 ® p2 ® p3 ® ¼ in C XX��\ . Each
of the rules "DA", "DB", "DL", "DR", "AMD", "BMD", "AD", "BD" of Input 14 decrease
the number of occurrences of D in a polynomial (which is a kind of differential weight of
the corresponding operator), and it is never increased by any rule. Hence there can only be
finitely many applications of these rules in the initial part of the chain

; taking this initial part out, we are left with another infinite reduction

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

33

p1 ® p2 ® p3 ® ¼ ; taking this initial part out, we are left with another infinite reduction
chain, which we might as well denote by p1 ® p2 ® p3 ® ¼ again, and this chain does
not use the rules just mentioned.

Next we consider the number of occurrences of either A or B , so to say the integral
weight; the rules "LA", "RA", "AMA", "AMB", "BMA", "BMB", "AA", "AB", "BA",
"BB", "AL", "BL", "AR", "BR", "AML", "BML", "AMR", "BMR" all decrease the
integral weight, which is again never increased by any rule. Hence we may disregard these
rules as well, assuming that the reduction chain p1 ® p2 ® p3 ® ¼ applies only the
remaining rules. Finally, let us consider the number of occurrences of either L or R , which
could be called the boundary weight; the rules "RA", "LB", "LL", "LR", "RL", "RR" all
decrease the boundary weight, and once again it is never increased by any rule. So let us
also disregard these rules in p1 ® p2 ® p3 ® ¼ .

The product rule "DM" can be discarded on grounds of positioning: Let ∆HwL denote the

position of the leftmost occurrence of D in a word w Î X
��*

, and let ∆HpL =ÚwÎsuppHpL ∆HwL
be what could be called the cumulative differential position of a polynomial p . Obviously,
each application of the rule "DM" decreases the cumulative differential position by 1, and
this cannot go on forever since ∆ ranges over N and is never increased by any other rule. A
similar argument based on a ùcumulative boundary position÷ allows to discard the rules
"LM" and "RM".

Hence we are only left with the rule "MM". But this rule always decrease the total length
of a polynomial, defined as the sum of the lengths of all words in its support. Hence it can
also not be applied infinitely often, and the original assumption that we had an infinite
reduction chain is falsified.

For concluding the proof, we must show that basis expansion does not spoil anything; but
this is trivial. Assume we had an infinite reduction p1 ® p2 ® p3 ® ¼ , this time in C XX\ .
Then some of the reduction steps will be reductions in C XX��\ , whereas the rest are basis
expansions. The former is finite by what we have proved above, whereas the latter is finite
as well because basis expansion is clearly noetherian.

Let us also point out an alternative, more algebraic way of proving the noetherianity of the

reduction on C XX��\ ; I learned this proof from Ralf Hemmecke. Let W = 8D, A, B, L, R, M<
the set of ùreduced indeterminates÷, containing only one ùgeneric÷ multiplication operator
M . We order W by D > A > B > L > R > M and the word monoid W* by the induced
graded lexicographic ordering, also denoted by > . The ordering > is clearly total and
noetherian on W* . Moreover, it is easily verified that > is monotonic with respect to the
multiplication (being the concatenation of words) on W* , so have got a well|ordered
monoid.

Using Theorem 4.69 of [3], the ordering on W* induces a well|ordering on its finite
subsets PfinHW*L defined recursively by A � Æ for all A Î PfinHW*L and

Æ � B,

A � B � max> A > max> B Þ Hmax> A = max> B ß A’ � B’L
for all A, B Î PfinHW*L \ 8Æ< . Here we have written S ’ for S \ 8max> S< , with S being any
element of PfinHW*L \ 8Æ< . As usual, the strict part of � will be denoted by � .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

34

Then we define a mapping v : C XX��\® PfinHW*L by vHpL = suppHp� L , where supp is the

polynomial support and � : C XX��\® C XW\ is the homomorphic extension of the map

X
��

® W sending every ` f p to M and fixing all other elements. This gives rise to a strict

partial order on C XX��\ defined by pp q � vHpL � vHqL . By the well|orderedness of � , the
new ordering p is noetherian. Therefore it suffices to prove that all the reductions are

compatible with p in the sense that p ® p’ implies pp p’ for all p, p’ Î C XX��\ .
Looking the reduction rules of Input 14, we can easily verify that they respect the ordering

p , meaning that for every rule w = p one has wp p , where w Î X
��*

 and p Î C XX��\ . This
immediately carries over to reductions. Assume we have

p1 + Λ w1 w w2 + p2 ® p1 + Λ w1 p w2 + p2 ,

via the rule w = p , where p1 , p2 , p Î C XX��\ and w1 , w2 , w Î X
��*

 and Λ Î C´ such that
v1 > w1 w w2 > v2 for all v1 Î suppHp1L and v2 Î suppHp2L . The argument to be used here
is closely analogous to Lemma 5.20(iv) of [3], so let us only sketch the idea: Since all the
words in p1 remain untouched, it suffices to show Λ w1 w w2 + p2 p Λ w1 p w2 + p2 . But
this is clear because all the words in Λ w1 p w2 and p2 are smaller than w1 w w2 with
respect to > , and some of them may even cancel out.

á

The crucial fact about the reduction system of Input 14 is that we can use it for computing the
Green’s function. This is guaranteed by the fact that the normal forms (and we have just proved
that a normal form always exists!) are of an appropriate shape, as we will show now. In the next
step, we will prove that the normal forms are even canonical, but note that we do not really need
this for the application of computing Green’s functions. It is a kind of mathematical luxury, imply
ing that we are working in a "beautiful" structure that may be characterized as a suitable quotient
via Proposition 31.

18 Definition (Normal Form of Analytic Polynomials)

A polynomial of AnHF L is said to be in normal form iff all its monomials are produced by
the rule for M in the following grammar:

Production Rule Name

M : :=
AIA ÈAD ÈABD Monomial Operator

I : := A È B Integral Operator

A : := 1 È ` f p Algebraic Operator

B : := L È R Boundary Operator

D : := 1 È DD Differential Operator

We denote the set of these normal forms by GrHF L , and we call them the Green’s
polynomials over F .

á

Observe that they really provide a solution to the problem of finding Green’s functions (see
Theorem 50 for the precise proof): Assuming that we have somehow computed an analytic polyno
mial representing the Green’s operator for a given BVP (and in Definition 47 we will show how to

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

35

mial representing the Green’s operator for a given BVP (and in Definition 47 we will show how to
do this algorithmically), the resulting normal form G will consist only of monomials of type AIA
since it is clear that G cannot involve differential or boundary operators but must contain integra
tion operators. As explained before, the terms where I is A give one branch of the corresponding
Green’s function, those where I is B give the other branch; the second A in AIA involves the
bound variable of the integral quantifier (written as Ξ in Equation 4), whereas the first A involves
the free variable (written as x).

19 Theorem (Normal Form of Analytic Polynomials)

The normal forms with respect to the reduction system induced by Input 14 on AnHF L are
precisely the Green’s polynomials GrHF L .
It is clearly sufficient to consider only the words (the monomials without the coefficient)
because a polynomial is irreducible iff all its words are.

First assume p Î GrHF L ; we must show that p is irreducible. Consider the case AIA :
There is no rule for reducing any of the polynomials ` f p A `gp , ` f p B `gp , A `gp , B `gp ,
` f p A , ` f p B , A , B . Studying the case AD , it suffices to observe that there is no rule for
reducing either of ` f p D , ` f p , D , 1. For treating the case ABD , we need only consider the
polynomials ` f p L D , ` f p R D , L D , R D , ` f p L , ` f p R , L , R , and once again there is no
rule for reducing them. Hence we know that GrHF L does indeed contain only normal
forms.

Now assume we have a noncommutative polynomial p Ï GrHF L ; we must show that p is
reducible. Let us first observe that p ¹ 1 since 1 Î GrHF L . We will now proceed by case
distinction on the initial letter of p , ranging over the possible indeterminates
8D, A, B, L, R< Ü 8`fp È f Î F #< . This proof will realize the intuition behind the reduction
process, as it was outlined before.

Assume the first letter of p is D , say p = D p’ . Then there must be some first letter Λ ¹ D
in p’; otherwise p would a Green’s polynomial of type D . Hence DΛ occurs as a subword
of p , and this subword may be one of D A , D B , D L , D R , D ` f p ; all of these are
reducible by the rules with the same name (subject to the natural convention that the
indeterminates for multiplication operators are represented by an "M"). Observe that all of
these rules belong to the "first phase".

Assume the first letter of p is a boundary operator B , say p = B p’ . If p’ were 1, the
given word p would be a Green’s polynomial of type ABD ; so we know that p’ ¹ 1.
Furthermore, we may assume that p’ does not start with D . For if it does, by what we
have proved before, p’ is either reducible or in GrHF L . In the first case, p is reducible as
well. In the second case, p’ can only be of type D and hence p of type ABD ,
contradicting the assumption p Ï GrHF L . Hence p starts with one of L A , L B , L L , L R ,
L ` f p R A , R B , R L , R R , R ` f p ; and they can all be reduced by rules with corresponding
names. Observe again that these rules belong to the "second phase" of reduction.

Assume the first letter of p is an integral operator I , say p = I p’ . Again p’ must start
with some other letter Λ ; otherwise p would be a Green’s polynomial of type AIA . Let
us first assume that Λ is no ` f p . Then the first two letters of p are one of A D , A A , A B ,
A L , A R , B D , B A , B B , B L , B R , all of which are reducible by the rules with
corresponding names. Now assume that is an . In this case, it must be followed by a

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

36

corresponding names. Now assume that Λ is an ` f p . In this case, it must be followed by a
letter Λ’; otherwise p = I ` f p would again be a Green’s polynomial of type AIA . If Λ’ is
another `gp , we can reduce I ` f p `gp and hence p by the rule "MM". In the remaining
cases, the first three letters of p must be among A ` f p D , A ` f p A , A ` f p B , A ` f p L ,
A ` f p R , B ` f p D , B ` f p A , B ` f p B , B ` f p L , B ` f p R ; and once again they can all be
reduced by the rules with corresponding names.

Finally, assume the first letter of p is an ` f p , say p = ` f p p’ . If p’ is 1, again p would be
a Green’s polynomial, namely of type AD . Hence p’ starts with some first letter Λ . If Λ is
D , we know from before that p’ (and hence p) is either reducible or a Green’s
polynomial, which can only be of type D . But in the latter case, p would be a Green’s
polynomial of type AD , contradicting the assumption on p . If Λ is a B , we may again
assume that p’ is a Green’s polynomial. In this case, p’ can only be of the form BD , so p
would be a Green’s polynomial of type ABD , once again contradicting the assumption on
p . If Λ is an I , we may assume as before that p’ is a Green’s polynomial. This time we
can infer that p’ is then of the form AIA , so it is either `gp IA or IA . Accordingly, p
is either ` f p `gp IA or ` f p IA . In the former case, we may use the reduction rule "MM",
whereas the latter is not possible because it means that p is a Green’s polynomial of type
AIA . So the only remaining case it that Λ is another `gp , and hence p starts with the
` f p `gp , which is of course reducible by the rule "MM" again.

This concludes the proof that all normal forms are Green’s polynomials. As we have also
proved the converse, this means that the normal forms and GrHF L actually coincide, as
was claimed.

á

As announced before, the normal forms of the reduction system in Input 14 are even unique.
For proving this, it is clearly sufficient to prove that the given reduction system is confluent; see
[1]. So we must show that whenever a reduction splits in two possible paths t1 ¬ t ® t2 , the result
ing terms t1 and t2 have a common successor; they "flow together". Looking at equations of Input
14, we can see that many of them depend heavily on the algebraic structure of F . Therefore we
should expect that the confluence proof must have recourse to the axioms of analytic algebras in
Definition 11; a few first attempts will immediately confirm this expectation.

As a consequence, we will need two different kinds of computation for establishing confluence:
on the one hand, the reductions of Input 14; on the other hand, the axioms of Definition 11.
Whereas the former are already oriented (they are "rewrite rules" rather than plain "equalities"), the
latter might have to be used in both directions. For a computer|generated confluence proof, though,
we would prefer a completely deterministic procedure. Hence we will try to replace the axioms of
analytic algebras suitable rewrite rules. In fact, one can find these rules quite easily by just trying
out the confluence proof until it gets stuck ("lazy thinking paradigm"). Let us start with some first
results about resolving combinations of integral and boundary actions.

20 Lemma (Boundary Integrals)

Let F be an analytic algebra. Then the equalities listed below are fulfilled.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

37

LemmaA"Boundary Integrals", any@ f , gD,
IÙ *

f M¬ = 0 "la"

IÙ *
f M® = Ù *

f + Ù* f "ra"

IÙ* f M¬ = Ù *
f + Ù* f "lb"

IÙ* f M® = 0 "rb"

E

Axiom "ad" allows to eliminate the left boundary action, giving f ¬ = Ù *
f ’ - f .

Substituting this in the left|hand side of equality "la", we get

Ù *HÙ *
f L’ - Ù *

f = Ù *
f - Ù *

f = 0 as claimed, the first equality coming from axiom "da".

For deducing equality "ra", we eliminate the right boundary action by axiom "bd", yielding

f ® = Ù* f ’ + f . Again, this is substituted in the left|hand side of equality "ra", and we

obtain Ù*HÙ *
f L’ + Ù *

f = Ù* f + Ù *
f = Ù *

f + Ù* f as claimed, using again axiom "da" in the

first equality. Equalities "lb" and "rb" are deduced analogously.

á

The next group of results deals with combinations among the integration actions. It will be
convenient to introduce a parsing convention for iterated integrals in order to avoid some
parentheses.

21 Convention (Precedence of Integral Operators)

The term Ù *
S T is to be parsed as Ù *HS TL rather than HÙ *

SL T , where S and T are

arbitrary terms. Similar conventions apply for the other integral operators.

á

Let us now state the equalities describing the essential interactions between the integration
actions (compare them to the interaction rules "AMA", "AMB", "BMA", "BMB"). Basically, these
equalities express partial integration in analytic algebras.

22 Lemma (Integration Laws)

Let F be an analytic algebra. Then the equalities listed below are fulfilled.

LemmaA"Integration Laws", any@ f , gD,
Ù *

f IÙ *
gM+ Ù *

g IÙ *
f M = IÙ *

f M IÙ *
gM "a:a"

Ù *
f IÙ* gM- Ù *

g IÙ *
f M = IÙ *

f M IÙ* gM "a:b"

Ù* f IÙ *
gM- Ù* g IÙ* f M = IÙ* f M IÙ *

gM "b:a"

Ù* f IÙ* gM+ Ù* g IÙ* f M = IÙ* f M IÙ* gM "b:b"

E

Equality "a:a" follows from the product rule of differentiation: Substituting Ù *
f for F and

Ù *
g for G in F ’ G + G’ F = HF GL’ yields f Ù *

g + g Ù *
f = HHÙ *

f L HÙ *
gLL’ upon using

axiom "da". Applying Ù *
 on this equality yields "a:a", using axioms "ad", "lm" and

equality "la" for simplifying the right|hand side. The other equalities are deduced
analogously.

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

38

Looking at the axioms of analytic algebras and the equalities derived up to now, we can see a
certain symmetry between the integral and cointegral actions (as operators in the Hilbert space

L2@a, bD , they are in fact duals of each other). Such a symmetry is nice for axiomatization and
abstract proofs but it does suitable for rewriting. Using these symmetries, we will eliminate one in
favor of the other. In order to do so, we will now introduce the definite integral as the crucial link
between integral and cointegral action.

23 Definition (Definite Integral)

Let F be an analytic algebra and fix an arbitrary f Î F . Then Ù *
f + Ù* f is called the

definite integral of f and is denoted by � f .

á

Now we can establish the essential properties of the definite integral. In the next step, we will
have recourse to these properties for eliminating the cointegral in favor of the integral action (but
we might as well do the opposite).

24 Lemma (Properties of the Definite Integral)

Let F be an analytic algebra. Then the definite integral is a constant, and the equalities
listed below are fulfilled.

LemmaA"Properties of the Definite Integral", any@ f , gD,
� f ’ = f ® - f ¬ "cd"

� f = IÙ *
f M® "ra"

� f IÙ *
gM+ � g IÙ *

f M = H� f L H� gL "c:a"

� f IÙ* gM+ � g IÙ* f M = H� f L H� gL "c:b"

E

Equality "cd" follows by summing axioms "ad" and "bd", and equality "ra" as in
Lemma 20, just using the definition of the definite integral. Note that equality "ra" implies
that definite integrals are constant by the axiom "lr:".

Summing equalities "a:a" and "b:a" yields for � f HÙ *
gL the term

H� f L HÙ *
gL + Ù*gIÙ* f M- Ù *

gHÙ *
f L . Replacing Ù* f by � f - Ù *

f in this term yields

H� f L H� gL - � gHÙ *
f L , using the fact that definite integrals are constant. Hence we have

� f HÙ *
gL = H� f L H� gL - � gHÙ *

f L , which is equivalent to equality "c:a". By an analogous

deduction, one can derive equality "c:b".

á

Finally, we can formulate all the rewrite rules to be used in the confluence proof (we write them
as equalities again, but of course they are understood as oriented from left to right). We have split
them in three groups. Let us start with the first group treating the basic interaction laws between
the action operators.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

39

25 Input (Interaction Laws)

AssumptionsA"Interaction Laws", any@ f , gD,
H f gL’ = f ’ g + f g’ "dm"

H f 2 L’ = 2 f f ’ "ds"

IÙ *
f M’ = f "da"

Ù *
f ’ = f - f ¬ "ad"

� f ’ = f ® - f ¬ "cd"

IÙ *
f M¬ = 0 "la"

IÙ *
f M® = � f "ra"

Ù* f = � f - Ù *
f "b"

E

The rules "dm", "da", "ad" are axioms. Rule "ds" is just a special case of rule "dm" (it is
used only for making the computer|generated reduction process easier to implement). Rule
"cd" was derived in Lemma 24, rules "la" and "ra" in Lemma 20. Finally, rule "b" is

simply the definition of the definite integral � , now used for eliminating the cointegral in
favor of the integral action.

á

The next group of rewrite rules deals with integration. They are basically "eliminated" versions
of the integration laws of Lemma 22.

26 Input (Integration Laws)

AssumptionsA"Integration Laws", any@ f D,

Ù * Ù *
1 = 1�����

2
 IÙ *

1M2 "aa1"

� Ù *
1 = 1�����

2
 H� 1L2 "ca1"

Ù *
f IÙ *

f M = 1�����
2

 IÙ *
f M2 "ama"

� f IÙ *
f M = 1�����

2
 H� f L2 "cma"

Ù * Ù *
f = IÙ *

1M IÙ *
f M- Ù * IÙ *

1M f "aa"

� Ù *
f = H� 1L H� f L- � IÙ *

1M f "ca"

E

Rules "ama" and "cma" follow immediately from rule "a:a" in Lemma 22 and rule "c:a" in
Lemma 24, respectively, by substituting f for both f and g . Rules "aa" and "ca" follow in
the same way by substituting 1 for f and f for g . Rules "aa1" and "ca1" are just trivial
special cases of rules "aa" and "ca", respectively, just added for ease of implementation.

á

The last group of rewrite rules are essentially repetitions of axioms.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

40

27 Input (Boundary Laws)

AssumptionsA"Boundary Laws", any@ f , gD,
H f gL¬ = f ¬ g¬ "lm"

H f 2 L¬ = H f ¬ L2 "ls"

H f gL® = f ® g® "rm"

H f 2 L® = H f ® L2 "rs"

E

Rules "lm" and "rm" are axioms, and their companions "ls" and "rs" trivial special cases,
again added for making the implementation easier.

á

Now we are finally ready for the confluence proof itself.

28 Theorem (Confluence of the Reduction System for Analytic Polynomials)

The reduction system generated by orienting the interaction equalities in Input 14 from left
to right is confluent.

As for the termination proof, we will first give the proof without considering basis

expansion; so let X and X
��

 be as before. By Lemma 1.2 of [4], it suffices to prove that all
ambiguities of the reduction system are resolvable. In general, one has to consider both
overlap and inclusion ambiguities. Inspecting Input 14, however, we can see that there are
no inclusion ambiguities, so we can concentrate on the overlap ambiguities, i.e. a pair of

rules w w1 ® p1 and w2 w ® p2 with w, w1 , w2 Î X
��*

 and p1 , p2 Î C XX��\ . We must show
that the corresponding S|polynomials w2 p1 - p2 w1 reduce to 0.

This is done in Computation 29, which uses the rewrite rules of Inputs 25, 26, 28 derived
before. Note that everything is generated automatically, only that we do not have space
enough for listing all of the 233 reductions because they cover approximately 2000 lines.
But the computation module checks whether they all come out to zero. Since this is the
case, we may conclude (trusting the implementation or reading 2000 lines of proof!) that
the given reduction system is indeed confluent.

á

29 Computation (S|Polynomial Reduction)

ProveConfluence[]

The rules DA and AMA yield the S|polynomial:

 ` f p A - D aÙ *
 f q A + D A aÙ *

 f q =
x
H¼L

 ` f p A - D aÙ *
 f q A + D A aÙ *

 f q =
x
HDAL

 aÙ *
 f q+ ` f p A - D aÙ *

 f q A =
x
HDML

 aÙ *
 f q+ ` f p A - b IÙ *

 f M’ r A - aÙ *
 f q D A =

x
HdaL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

41

 aÙ *
 f q- aÙ *

 f q D A =
x
HDAL

0 �

 ¼

The rules RA and AMA yield the S|polynomial:

 A ` f p A + B ` f p A - R aÙ *
 f q A + R A aÙ *

 f q =
x
H¼L

 A ` f p A + B ` f p A - R aÙ *
 f q A + R A aÙ *

 f q =
x
HRAL

 A aÙ *
 f q+ B aÙ *

 f q+ A ` f p A + B ` f p A - R aÙ *
 f q A =

x
HRML

 A aÙ *
 f q+ B aÙ *

 f q- IÙ *
 f M® R A + A ` f p A + B ` f p A =

x
HraL

 A aÙ *
 f q+ B aÙ *

 f q- H� f L R A + A ` f p A + B ` f p A =
x
HRAL

 -H� f L A - H� f L B + A aÙ *
 f q+ B aÙ *

 f q+ A ` f p A + B ` f p A =
x

HAMAL

 -H� f L A - H� f L B + B aÙ *
 f q+ aÙ *

 f q A + B ` f p A =
x

HBMAL

 -H� f L A - H� f L B + B aÙ *
 f q+ B b Ù* f r+ aÙ *

 f q A + b Ù* f r A =
x
HbL

0 �

 ¼

The rules BR and RR yield the S|polynomial:

 -B R + aÙ* 1q R2 =
x
H¼L

 -B R + b Ù* 1 r R2 =
x
HbL

 -B R + H� 1L R2 - aÙ *
1q R2 =

x
HRRL

 H� 1L R - B R - aÙ *
1q R2 =

x
HRRL

 H� 1L R - B R - aÙ *
1q R =

x
HBRL

 H� 1L R - b Ù* 1 r R - aÙ *
1q R =

x
HbL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

42

0 �

´ Computed 233 S|polynomials in 129 seconds.

´ Reduced them in 3144 seconds.

´ All of them reduced to zero!

á

Note that the action operators are "used" in a quite different way in this confluence proof. In a

concrete reduction like Computation 16, operators such as Ù *
 are simply evaluated when used on a

function such as ã2 x . In the abstract reductions of Computation 29, however, we are only referring
to some properties guaranteed by the axioms.

Having a convergent reduction system on AnHF L , we can now transfer its algebraic structure
to the normal forms GrHF L as announced before: This means that the confluence result provides us
with an algebraic term model of certain operators on C¥@a, bD , identifying by the equalities in
Input 14 "all" those terms that represent the same operator on C¥@a, bD . Of course, by "all terms"
we mean all those whose identification seems relevant to our present purposes.

30 Definition (Green’s Ideal)

Let F be an analytic algebra. Then An0HF L denotes the two|sided ideal of AnHF L
generated by the reduction system of Input 14. In other words, An0HF L consists of all
linear combinations of the polynomials p Hl - rL q , where l = r is a rule of the reduction
system and p, q are from GrHF L . We call An0HF L the Green’s ideal over F .

á

Now the fact that the reduction system of Input 14 is confluent can also be expressed in a well|
known ring|theoretic language: The corresponding set of polynomials (consisting of all l - r for
every rule l = r in Input 14) is a non|commutative Gröbner basis for An0HF L ; see Theorem 8 of
[66]. This leads us back to our observations after Equation 22, once again emphasizing the central
role played by the concept of Gröbner basis. In fact, it is now clear why we could avoid the costly
computation of a noncommutative Gröbner basis for the problems considered here: We already
have one, and it need not be changed for different instances of BVPs because by our construction
using right inversion and the nullspace projector, everything boils down to reducing H1 - PL Tì
with respect to the fixed Gröbner basis; see Input 47 for the final formulation.

It is in this ring|theoretic context that we can formulate the announced result about the alge
braic structure induced by the identifications made in Input 14.

31 Proposition (Green’s Factor Algebra)

Let F be an analytic algebra. Then the Green’s polynomials GrHF L constitute an algebra
isomorphic to the factor algebra AnHF L �An0HF L , which we call the Green’s algebra.

By Theorem 1.2 of [4].

á

Having a confluent reduction system, the ideal membership problem is also settled. We will not
need this result in the context of solving BVP; we mention it here just because it is one of the first
questions a ring theorist would ask.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

43

32 Definition (Ideal Membership)

Let F be an analytic algebra. Two polynomials f , g Î GrHF L are congruent to each other
with respect to the Green’s ideal An0HF L iff f - g ÎAn0HF L ; this will be denoted by
f ºF g .

á

33 Proposition (Congruence and Reduction)

Let F be an analytic algebra. Then we have f ºF g iff f «
*
F g for any f , g ÎAnHF L ,

where ®F denotes the reduction induced by the system of Input 14.

The proof is completely analogous to that of Lemma 5.26 in [3], which refers to the
commutative case. The only difference is that for reducing a noncommutative polynomial
one has to multiply from both sides. Observe also that we do not need the confluence
property enjoyed by the system of Input 14; the statement is true for any (commutative as
well as noncommutative) polynomial reduction system.

á

34 Proposition (Ideal Membership)

Let F be an analytic algebra. Then for any f ÎAnHF L , we have f ÎAn0HF L iff f ®
*
F 0.

If f ÎAn0HF L , then f ºF 0 by the definition of ideal congruence. By Proposition 33, this

implies f «
*
F 0. But we know from Theorem 28 that ®F is confluent and hence Church|

Rosser by Theorem 8.1.2 in [70]. This means that f and 0 have a common successor
(possibly including themselves). But 0 has no proper successor, so the common successor

must be 0 and f ®
*
F 0.

Conversely, assume f ®
*
F 0. Then a fortiori f «

*
F 0 and so by Proposition 33 also

f ºF 0, which is again equivalent to f ÎAn0HF L by the definition of ideal membership.

á

We have not yet spoken much about the relation between the algebraic structures AnHF L and
GrHF L and the ùreal÷ operators modeled by them. Let us first make precise what we mean by this
"modeling".

35 Definition (Operator Model)

Let F be an analytic algebra, A an algebra containing F , and L a subalgebra of the
algebra of linear operators on A . Given a mapping i : 8D, A, B, L, R<® L , extend it to a
mapping i`p on 8D, A, B, L, R< Ü 8` f p È f Î F < by setting i`pH` f pL HaL = f a for all a ÎA .
Then let I be the homomorphic extension of i`p to all of AnHF L . We call I the
interpretation induced by i and L the operator model (or briefly model) of AnHF L under
I .

á

Now we can make it clear what we mean by the ùreal÷ operators working on C¥@a, bD .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

44

36 Definition (Smooth Model)

Let S be the algebra of all linear operators on the space C¥@a, bD of smooth functions on a
finite real interval @a, bD . More precisely, we regard all operators in the Banach space
C@a, bD with Chebyshev norm ° × ´ , being defined on the dense subset C¥@a, bD . Now
define a mapping sm : 8D, A, B, L, R<® S by giving the usual definitions

sm HDL = u# u’,

sm HAL = u#
i
kjjjx# àa

x

u HΞL â Ξ
y
{zzz,

sm HBL = u#
i
k
jjjjx# à

x

b

u HΞL â Ξ
y
{
zzzz,

sm HLL = u# Hx# u HaLL,
sm HRL = u# Hx# u HbLL,

where u ranges over C¥@a, bD and x ranges over @a, bD . Let Sm be the interpretation
induced by sm , which we will call the smooth interpretation; its image Sm*HGrL will be
called the smooth model.

á

Note that Sm*HGrL carries no topology. In fact, we will not need any topological notions pertain
ing to the operator algebras used as models for GrHF L . The function space C¥@a, bD , though, will
be used with the topology induced by the Chebyshev norm ° × ´¥ , thus making it into a Banach

algebra. We view C¥@a, bD as 8u Î C¥Ha, bL È "nÎN uHnL Î C@a, bD< .
The restriction to smooth functions is quite severe, though. In Definition 7, we have imposed

the smoothness condition not only on the solution function u (thus considering classical solutions)
but also on the forcing function f (which is unnecessary even for classical solutions). Besides this,
there is a need for more general solutions. In practical examples coming from physics, one often
deals with weak solutions; and for studying notions like the fundamental solution of a differential
equation, one even needs singular distributions. Therefore it makes sense to introduce a distribu
tional model of GrHF L that will take care of all these desires.

It is actually amazing to see how easily one can switch from the smooth to the distributional
setting, which demonstrates the power of the algebraic approach of handling BVPs: The Green’s
algebra is completely ùignorant÷ of any setting we have in mind for them~the only essential thing
is that the setting ultimately chosen must respect the Green’s equalities in the sense of the upcom
ing Definition 38.

37 Definition (Distributional Model)

Let D be the algebra of all linear operators on the space C0
-¥@a, bD of boundary|valued

distributions on a finite real interval @a, bD . Define a mapping dis : 8D, A, B, L, R<®D by
the corresponding formulae of Definition 36, where u now ranges over C0

-¥@a, bD and x
ranges over @a, bD again; of course, now all of these operations are to be understood in the
distributional sense. Let Dis be the interpretation induced by dis , which we will call the
distributional interpretation; its image Dis*HGrL will be called the distributional model.

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

45

For more about distributions, consult pages 86|184 in [63] or [43], all following the standard
approach due to Laurent Schwartz. For our purposes, however, it seems more natural to follow the
alternative but equivalent approach of Sebastião Silva [62], defining C-¥@a, bD as an inductive
limit along the (up|to|isomorphism) inclusion chain

C¥ @a, bD Í ¼ Í C2 @a, bD Í C1 @a, bD Í C@a, bD Í C-1 @a, bD Í C-2 @a, bD Í ¼ Í C-¥ @a, bD.
The only subtle point is the boundary values. For a typical distribution, one cannot speak of its

"value". Hence we must define what it means that a distribution u Î C-¥@a, bD has a value U Î C
at a point x Î @a, bD . Using Silva’s approach as suggested by [22], every u Î C-¥@a, bD is vHnL for
some v Î C@a, bD and n Î N , and we say that u has the value U at x iff

lim
Ξ®x

v HΞL

��������������������������HΞ - xLn =
U
���������
n!

,

where one must use a left|sided or right|sided limit in case x is a or b , respectively. Following the
Schwartz approach, one might also use the condition [52] that

"
DÎC¥ @a,bDN

HD ® ∆x Þ uëD ® UL,
where ∆x is the delta distribution concentrated at x (note that the first convergence in this implica
tion takes place in the topology of C-¥@a, bD , whereas the second is the usual notion of conver
gence for real sequences). The space C0

-¥@a, bD used in Definition 37 consists of all those

u Î C-¥@a, bD such that for all n Î N the derivatives uHnL have a value at both a and b .
Now the crucial property about these operator models is that they respect the equalities speci

fied in Input 14. Let us make this precise by a definition and two subsequent lemmata.

38 Definition (Faithful Model)

Let F be an analytic algebra and I : GrHF L® L an interpretation in some operator model
L . Then I is called faithful iff IHlL = IHrL for all equations l = r of Input 14; in this case,
we also say that the model L is faithful under the given interpretation I .

á

39 Lemma (Faithfulness of the Smooth Model)

The smooth interpretation Sm as specified in Definition 36 is faithful.

This can be verified by routine calculations. In fact, we have derived the equalities of
Input 14 by looking at what happens in Sm*HGrL , and the arguments needed for the
verification are essentially contained in Section 1.

á

40 Lemma (Faithfulness of the Distributional Model)

The distributional interpretation Dis as specified in Definition 37 is faithful.

The arguments used for the smooth case basically carry over to the distributional setting
by simple continuity arguments.

á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

46

1.3 Inverting Differential Operators

When we solved the BVP of the classical example G D2 = 1 - P , it was clear how to "solve" for

the unknown Green’s operator G . Postmultiplying by A2 , we obtained the solution G = H1 - PL A2 .

As there are many other right inverses of D2 besides the "canonical" A2 , there are many solutions

G of D2 G = 1. When premultiplying them by 1 - P , however, they must all coincide because we

know that the solution of G D2 = 1 - P is unique.

But what can we do if we have a more complicated differential operator like T = D2 - 3 D + 7

instead of the operator D2 above? As explained at the beginning of the chapter, we restrict our
selves to linear differential operators with constant coefficients. Now every such differential
operator is essentially a polynomial in C@xD , just with D figuring as the indeterminate x . And this is
also the key to the solution of our problem: We know that any polynomial splits into linear factors
over C .

For example, we can write the differential operator above as T = HD - ΑL HD - Α��L , where

Α = 1�����
2
I3 + ä

�!!!!!!!
19 M and Α�� is its complex conjugate. So in order to right|invert T we have to solve

the equation SHD - ΑL HD - Α��L = 1 for S . This is easy as soon as we know how to right|invert a
linear differential operator with constant coefficient of order one, because then we can do it in two
stages. Writing a superscript ì for the right inverse, we have first Tì HD - ΑL = HD - Α��Lì and then
Tì = HD - Α��Lì HD - ΑLì .

So everything boils down to right|inverting differential operators of the shape D - Λ , where Λ
is some complex number. But this is almost trivial. A little bit of experimentation leads to

HD - ΛLì = `ãΛxp A `ã-Λxp . Therefore we arrive at the following formula for right|inverting an
arbitrary linear differential operator with constant coefficients (more precisely, an analytic polyno
mial containing only D as an indeterminate).

41 Input (Differential|Operator Right Inverse)

FormulaA"Differential|Operator Right Inverse", any@TD,
Tì = ä

i=1,¼,n

aãΛ
`

i x q A aã-Λ
`

i x q
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Ap = poly@TD, n = deg@pD, Λ

`
= rad@pDE

E
á

Everything in this formula is Theorema input, which is used as it is for computation; actually, it
is part of the algorithm computing the Green’s function for a given BVP. We think that this demon
strates a really beautiful point about the usage of integrated mathematical assistants like Theorema:
The formula above might as well be written on paper in some specialized analysis textbook, but
there it would only be dead text. This is not the case here~we can simply select the cell and press
÷�ó, and the system will know the formula so that we can immediately use it as shown in
Computation 42 below.

For fully understanding the meaning of the above formula, some comments are in order:

è The construct T È @x1 = T1 , ¼, xn = TnD is a notation for the substitution quantifier, usually
verbalized as "T where x1 is T1 , ¼, and xn is Tn " in prefix reading and as "let x1 be T1 ,
¼, and xn be Tn in T " in postfix reading. Here x1 , ¼, xn are variables and T, T1 , ¼, Tn

are terms; of course, T will typically contain free occurrences of the variables x1 , ¼, xn .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

47

è The functions poly, deg, rad are provided to Theorema as built|ins; they are implemented
in Mathematica and explicitly specified as external functions.

è The function poly is used for computing the characteristic polynomial in C@xD . For exam

ple, p = poly@TD = x2 - 3 x + 7 for the differential operator mentioned above.

è The function deg yields the degree of a polynomial in C@xD . In the previous example, this
gives n = deg@pD = 2.

è The function rad returns all the roots of a polynomial in C@xD , repeating some values in
case of multiplicities. The result is represented as a vector. For the example above, we have

Λ
`

= rad@pD = XΑ, Α��\ with Α and Α�� as explained before. For the polynomial

q = Hx - 1L2 = x2 - 2 x + 1, however, we obtain rad@qD = X1, 1\ . So the length of Λ
`

 is
always n .

è Using these auxiliary constructions, the body for the term representing Tì is just the multi|

stage iteration of the simple formula HD - ΛLì = `ãΛxp A `ã-Λxp as explained before (note

that Λ
`

i is the i|th component of the vector Λ
`

). Using this formula, it is clear that we have
indeed T Tì = 1 for an arbitrary linear differential operator with constant coefficients.

Let us do some small examples using the above definition. We have made a special evaluator
for doing various of computations related with searching the Green’s function of a BVP. Hence
this program is called the Green’s evaluator. Basically it just unfolds definitions (such as the one in
Input 41), it does some linear algebra when necessary (see Computation 43), and it performs
polynomial reduction (as specified in Input 14). See Chapter 2 for details on the implementation.

42 Computation (Examples of Right Inversion)

ComputeAHD2 Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
A2

ComputeAHD2 Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
-A `xp+ `xp A
ComputeAH3 D2 + 2 D - 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
`ã-x p A aã 4

������3 x q A aã-
1
������3 x q

ComputeAH3 D2 + 2 D - 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
3
������
4

 aã 1
������3 x q A aã-

1
������3 x q-

3
������
4

 `ã-x p A `ãx p
ComputeAHD2 + 2 D + 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
`ã-x p A2 `ãx p
ComputeAHD2 + 2 D + 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
`ã-x xp A `ãx p- `ã-x p A `ãx xp
á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

48

1.4 Computing the Nullspace Projector

The only missing link for a fully algorithmic treatment of BVP for linear differential operators with
constant coefficients (briefly called "differential operators" in the sequel) is the computation of the
nullspace projector. For this purpose, let us generalize the procedure followed around Equation (6).
We will restrict our attention to the smooth model Sm , so for any p ÎAn we will abbreviate
SmHpL by p�� . Now we are given a BVP as specified in Definition 7, determined by a differential

operator T��� of order n together with n boundary operators B1����, ¼, Bn���� . (Note that according to their
specifications, both differential and boundary operators can always be written as interpretations of
analytic polynomials.)

We want to find an analytic polynomial P whose interpretation P�� is a projector onto NHT���L with
counter|image 81 - P�������� v È v Î C¥@a, bD< fulfilling the boundary conditions induced by B1����, ¼, Bn���� .
As we have seen in Section 1, the computation of the nullspace projector is basically an interpola
tion problem leading to some trivial linear algebra in Cn . Hence it makes sense to formulate every
thing in terms of vectors and matrices. For this purpose, we will keep the following convention
within this section: All the matrices (including vectors which will be understood as row matrices or
column matrices) are written with a hat on them, no matter whether their entries are numbers,
functions or operators.

Having a fundamental system u1 , ¼, un for the given differential operator T��� , let us write ù for
the "fundamental vector" Hu1 , ¼, unL§ . For writing the given boundary operators B1����, ¼, Bn���� in

terms of a matrix operator, we introduce the operator|valued vector Dn

`
= H1, D, ¼, Dn-1L§ . We

will call Dn
`

 the Wronski operator because it yields the Wronskian matrix ẁ when applied to the

fundamental vector, so ẁ = Dn
`

���� ù
§

.

Now the vector boundary operator HB1����, ¼, Bn����L§ can be written as L�� l
`
Dn

`
���� + R��� r̀ Dn

`
���� for suitable

matrices l
`
, r̀ Î Rn´n . In fact, using the notation of Definition 7, these matrices are given by

(40)l
`

=

i
k
jjjjjjjj

p1,n p1,n-1 º p1,0

» » ¸ »

pn,0 pn,n-1 º pn,0

y
{
zzzzzzzz,

(41)r̀ =

i
k
jjjjjjjj

q1,n q1,n-1 º q1,0

» » ¸ »

qn,0 qn,n-1 º qn,0

y
{
zzzzzzzz.

We are searching a specific nullspace projector, i. e. a linear operator P�� such that
P�� v =Úi=1

n ΑiHvL ui for all v Î C¥ @a, bD , where the Α1 , ¼, Αn are suitable complex numbers
depending on the argument v . Our goal is to ensure B1����Hv - P�� vL = ¼ = Bn����Hv - P�� vL = 0 for all

v Î C¥@a, bD . Hence we have to make sure that IL�� l
`
Dn

`
���� + R��� r̀ Dn

`
����M P�� v = IL�� l

`
Dn

`
���� + R��� r̀ Dn

`
���� M v or

â
i=1

n
 Αi HvL IL�� l

`
Dn

`
���� + R��� r̀ Dn

`

����M ui = IL�� l
`
Dn

`
+ R��� r̀ Dn

`

����M v.

Collecting the unknown coefficients a1HvL, ¼, anHvL into the vector ᾺHvL = HΑ1HvL, ¼, ΑnHvLL§
and assembling the system matrix s̀ with IL�� l

`
Dn

`

���� + R��� r̀ Dn

`

����M u1 , ¼, IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M un as its col

umns, we are left with the matrix equation s̀ ᾺHvL = IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v . Looking a bit closer, one

sees that s̀ is actually l
`
ẁ

¬
+ r̀ ẁ

®
, where ẁ

¬
= ẁx¬a and ẁ

®
= ẁx¬b are the usual boundary

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

49

actions on the Wronskian matrix. Substituting ᾺHvL = Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v into the

ansatz P�� v =Úi=1
n ΑiHvL ui = ù

§
 ᾺHvL , we obtain

P�� v = ù
§

 Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v.

Finally, we can now abstract from the argument v , and we see that P�� is indeed the interpretation of
a corresponding analytic polynomial, namely

(42)P = `ù§p Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL l
`
Dn

`
+ R r̀ Dn

` M;
we call this the nullspace|projector formula.

We will now summarize this result in a Theorema formula that is actually used in the corre
sponding part of the Green’s function computation.

43 Input (Nullspace Projector)

DefinitionA"Wronski Operator", any@nD,
Dn

`
= XDi È i = 0, ¼, n - 1\

E
FormulaA"Nullspace Projector", anyAẁ, l

`
, r̀E,

Proj
ẁ
Al`, r̀E = `ẁ1 p Il` ẁ

¬
+ r̀ ẁ

® M-1
 IL l

`
 Dn

`
+ R r̀ Dn

` M Ë @n = dim@ẁDD
E
á

A few remarks about this definition:

è The Wronski operator is defined by using the vector quantifier. The constructXT È i = i0 , ¼, i1\ generates the vector HTi¬i0 , ¼, Ti¬i1 L , where T is an arbitrary term
(usually containing the free occurrences of the variable i), i is some variable, i0 and i1 are

natural numbers. For example, Xi2 È i = 3, ¼6\ is H9, 16, 25, 36L , and

D3
`

= XDi È i = 0, ¼, 2\ is HI, D, D2L .
è The nullspace projector is computed just as in Equation 42. The only difference is that we

have eliminated the need for the fundamental vector ù as it can be obtained by taking the
first row ẁ1 of the Wronski matrix ẁ . In this way, the only argument needed besides the

boundary matrices l
`

 and r̀ is the Wronski matrix ẁ . It is also used for determining the
degree n of the given differential operator T because we know that ẁ must be an n ´ n
matrix; we use the built|in function dim for this purpose. The degree n is needed for

specifying the appropriate Wronski operator Dn
`

.

è We use the function Proj for denoting the nullspace projector so computed. We view it as

depending directly on the boundary conditions (specified through the arguments l
`

 and r̀)
and indirectly on the differential operator (specified through the parameter ẁ). Having the
function Proj available, we can use it in the subsequent formula for computing the Green’s
operator.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

50

Let us now see some short examples, using the Green’s evaluator again. In the first example,
we will just recompute the classical nullspace projector obtained in Equation (7) by an ad|hoc
procedure.

44 Computation (Nullspace Projector for Classical Heat Conduction)

KnowledgeBaseA"Heat|Conduction Classical Boundary Matrices",

l
`

=
i
kjjj

1 0

0 0

y
{zzz

r̀ =
i
kjjj

0 0

1 0

y
{zzz

E
KnowledgeBaseA"Heat|Conduction Wronskian",

ẁ =
i
kjjj

1 x

0 1

y
{zzz

E
KnowledgeBaseA"Classical Heat Conduction",

KnowledgeBase@"Heat|Conduction Classical Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Classical Heat Conduction"DE
L - `xp L + `xp R
á

Now let us make sure that we can also impose initial conditions instead of boundary conditions,
and we can of course prescribe values for the function as well as its derivative in so|called hybrid
conditions.

45 Computation (Nullspace Projector for Modified Boundary Conditions)

KnowledgeBaseA"Heat|Conduction Hybrid Boundary Matrices",

l
`

=
i
kjjj

0 1

0 0

y
{zzz

r̀ =
i
kjjj

0 0

1 0

y
{zzz

E
KnowledgeBaseA"Hybrid Heat Conduction",

KnowledgeBase@"Heat|Conduction Hybrid Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

KnowledgeBaseA"Heat|Conduction Initial Boundary Matrices",

l
`

=
i
kjjj

1 0

0 1

y
{zzz

r̀ =
i
kjjj

0 0

0 0

y
{zzz

E

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

51

KnowledgeBaseA"Initial Heat Conduction",

KnowledgeBase@"Heat|Conduction Initial Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Hybrid Heat Conduction"DE
R - L D + `xp L D

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Initial Heat Conduction"DE
L + `xp L D

á

Finally let us do a slightly more complicated computation, taken from Example 2 in Krall’s
book [40] on page 109. It describes damped oscillations, and we will return to this example later
for computing its Greens’ function.

46 Computation (Nullspace Projector for Damped Oscillations)

KnowledgeBaseA"Damped|Oscillations Wronskian",

ẁ =
i
kjjj

ã-x x ã-x

-ã-x ã-x - x ã-x

y
{zzz

E
KnowledgeBaseA"Damped Oscillations",

KnowledgeBase@"Heat|Conduction Classical Boundary Matrices"D
KnowledgeBase@"Damped|Oscillations Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator, EvaluatorOptions ® 8BoundaryPoints ® 80, Π<<,
using ® KnowledgeBase@"Damped Oscillations"DE
`ã-x p L - Π-1 `ã-x xp L + HãΠ Π-1 L `ã-x xp R
á

1.5 Finding the Green’s Operator

We are now approaching the summit of this chapter and the whole thesis. We have assembled
all the components for computing the Green’s operator of an arbitrary linear differential operator
with constant coefficients, so we just need to put them together. This is done in the following
Theorema formula, which is immediately executable for computations as we will demonstrate soon.

47 Input (Green’s Operator)

FormulaA"Green Operator", any@T , BD,
Green@T , BD = H1 - PL Tì É Aẁ = wron@TD, l

`
= left@T , BD, r̀ = right@T , BD, P = Proj

ẁ
Al`, r̀EE

E
á

Again we add a few comments on this formula:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

52

è We refer to three built|in functions wron, left, and right for computing the Wronski
matrix, the left and the right boundary matrix respectively. The latter two are rather trivial
rearrangements of the coefficients occurring in the boundary operators B = XB1 , ¼, Bn\ as
explained in Equations (40) and (41); the former uses Mathematica’s function DSolve for
solving differential equations.

è Having available the Wronski matrix ẁ and the left and right boundary matrices l
`
 and r̀ ,

we use the formula of Input 43 for computing the corresponding nullspace projector P .

è Furthermore, we use the formula of Input 41 for computing the according right inverse Tì

of the given differential operator T .

è Finally, the polynomial for the corresponding Green’s operator is simply computed asH1 - PL Tì . We denote it by Green@T, BD , meaning the Green’s operator for the differential
operator T and the boundary operators in B .

Let us try out how it works: Now we can do the classical example treated in an ad|hoc manner
in Section 1 in a very general context, and everything works in one stroke.

48 Computation (Classical Heat Conduction)

Compute@Green@D2 , XL, R\D,
by ® GreenEvaluatorD

-A `xp- `xp B + `xp A `xp+ `xp B `xp
á

Of course we can do the same with any other BVP that is in the scope outlined at the beginning
of this chapter. In particular, we can now do the whole computation for the example with the
damped oscillations in Krall’s book [40] on page 109.

49 Computation (Damped Oscillations)

Compute@Green@D2 + 2 D + 1, XL, R\D,
by ® GreenEvaluator, EvaluatorOptions ® 8BoundaryPoints ® 80, Π<<D

-`ã-x p A `ãx xp+ Π-1 `ã-x xp A `ãx xp- `ã-x xp B `ãx p+ Π-1 `ã-x xp B `ãx xp
á

We will conclude this chapter with the most crucial theorem of the whole thesis: the correct
ness statement for our algorithm computing the Green’s operator. We formulate it here for the
smooth setting introduced at the beginning of Section 2, but one may give a completely analogous
proof for the distributional setting, just replacing C¥@a, bD by C-¥@a, bD and Sm by Dis and
appealing to Lemma 40 instead of Lemma 39.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

53

50 Theorem (Correctness of the Formula for the Green’s Operator)

Assume we have a BVP on the real interval @a, bD given by a differential operator T��� and
boundary operators B1����, ¼, Bn���� , subject to the conditions specified in Definition 7. (For
any p ÎAn we abbreviate SmHpL by p�� .)

Let G ÎAn be the result of computing Green@T, BD according to the definition in

Inputs 41, 43, 47, and let G’ Î Gr be the normal form of G with respect to the reduction

system in Input 14. Then G’ represents the Green’s function for the given BVP.

Computing the analytic polynomial P according to Input 43, we get an operator
P�� : C¥@a, bD® C¥@a, bD that projects everything onto NHTL by its construction. Since T���
is always surjective, 1�� is the only possible projector onto RHT���L . (Note that P�� will usually
not be bounded, so we cannot use the Banach|space theory of generalized inverses. In
fact, we do not need it, because it is sufficient to work in the naked vector space C¥@a, bD
with the corresponding Moore|Penrose theory expressed in Definition 1 and
Propositions 2, 3; confer the comments made there for more explanations. So T��� and
B1����, ¼, Bn���� as well as P�� are plain linear operators.)

By Proposition 2, there is a uniquely determined generalized inverse T���P��,1��
Ö , which we will

write G��� for some analytic polynomial G yet to be determined. Now G��� is also
characterized uniquely by the four corresponding Moore|Penrose equations, according to
Proposition 3. But as mentioned after Equation 10, the first Moore|Penrose equation is
always redundant and the second is as well in our case, due to the trivial range projector.
We will now show that the fourth equation also follows from the third equation, as we did
for the concrete example in Computation 5. The third equation reads G���T��� = 1 - P�������� , which
gives TGTTì������������ = TTì - TPTì������������������� upon premultiplying by T��� and postmultiplying by Tì����� .
Here Tì is the right inverse of T given by the formula in Input 41. Since TTì = 1 by
construction of Tì , Lemma 39 yields TTì������� = 1�� . Moreover we have TP����� = 0�� , because P��
projects onto the nullspace of T��� . Therefore we obtain TG����� = 1�� , which is indeed the fourth
Moore|Penrose equation for our problem.

The problem is now reduced to finding the operator G��� uniquely characterized by
G���T��� = 1 - P�������� . Since TTì������� = 1�� , postmultiplying by Tì����� implies G��� = H1 - PL Tì��������������� . Hence we

may choose G = H1 - PL Tì , and the interpretation G��� will be the desired generalized
inverse. For any f Î C¥@a, bD , the image u = G��� f fulfills the given differential equation
T��� u = 0 because of the fourth Moore|Penrose equation. By the analog of Proposition 2, the
range of G��� is the counter|image of P�� , which fulfills the boundary conditions by the
construction of P . Therefore G��� f fulfills the given BVP for any f Î C¥@a, bD , and G��� must

coincide with the desired Green’s operator due to the regularity assumption. Since G ®
*

G’
in the sense of the reduction system of Input 14, Lemma 39 implies that G��� = G’���� , so G’
does indeed represent the Green’s operator as claimed.

The only claim left to prove is that G’ also represents the Green’s function in the sense
explained after Equation 26. But this follows from Theorems 17 and 19 in conjunction
with Definition 18: It is clear that G = H1 - PL Tì cannot contain any occurrence of D ,
because the monomials of 1 - P have at most n - 1 occurrences of D at their end while
Tì is one monomial containing n occurrences of A . Using rules "DM" and "DA" of Input
14, the reduction will eventually in each monomial eliminate all occurrences of D and
leave one occurrence of A . Hence G’ consists only of monomials having the form AIA
in the language of Definition 18. Now this can readily be translated into the corresponding

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

54

in the language of Definition 18. Now this can readily be translated into the corresponding
Green’s function as in Equation 27. Iterating over all monomials, we add gx¬Ξ f to the
first branch for a monomial ` f p A `gp and gx¬Ξ f to the second branch for a monomial` f p B `gp . Monomials of the form I `gp are of course treated like `1p I `gp , and those of
the form ` f p I like ` f p I `1p .
á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

55

2 A User’s Manual for the Green’s Package

In the previous chapter we have presented the mathematical background of our new approach to
solving regular BVPs for linear differential operators with constant coefficients. In the course of
our PhD work, we have also implemented this method in the frame of the Theorema system,
providing a collection of useful solving/computing tools that we have named the Green’s suite.
Everything is integrated smoothly into the general environment of Theorema, and the end user may
solve a given BVP in a single call (see Section 5 of Chapter 1). In the present chapter, we want to
present this suite of packages from the user’s point of view; for implementation details, see the
Chapter 3.

The structure of this chapter follows that of the Green’s suite itself: In Section 1, we start out
by a gentle introduction to the most important features of Theorema, as far as they are relevant to
our present purposes. The discussion of the actual Green’s suite is started in Section 2, where we
present the overall architecture of the system. The remaining sections describe the three main
components of the Green’s suite: the polynomial reductor in Section 3, the matrix evaluator in
Section 4, and finally the Green’s evaluator in Section 5.

2.1 The Theorema Environment

As mentioned before, we have based our implementation on Theorema, which is designed a
general|purpose tool for the working mathematician~supporting especially all tasks of proving,
solving and simplifying. For a detailed description of the philosophy and capabilities of Theorema,
we refer to [19] and [69]. For our present purposes, it will be sufficient to highlight only those
features of the system that are relevant for a user who wants to solve BVPs by the Green’s suite.

First of all, the user has to start up Mathematica, the (current) platform running the Theorema
environment and the Green’s suite. The latter two are then invoked through the following calls:

Needs@"Theorema‘"D
Needs@"Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘"D

As soon as loading is finished, the user will notice that the usual prompt "In[2]:=" is replaced
by "TS_In[2]:=", where "TS" stands for "Theorema Standard|Session". This means that all input is
interpreted as in plain Mathematica, only that certain additional commands are available. In particu
lar, there are three high|level commands "Prove", "Compute" and "Solve" for assisting in the three
main activities of mathematics. (In fact, the last of these is not yet supported in the current version
of Theorema.)

For example (this material is taken from the online documentation of the NNEqIndProver of
Theorema), if one wants to prove the exponential law for natural numbers, one must first specify
this fact as a Theorema formula. This is done by entering an expression of the form
key@label, any@x1 , ¼, xnD, formulaD , where key is an environment keyword, label a string used
for referencing the formula, the x1 , ¼, xn are free variables, and finally formula is of course the
actual mathematical statement written in a very natural version of predicate logic. In our case, we
would say:

Proposition@"Add Exponents", any@p, n, mD,
mn+p = mn mp D

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

56

Here we have used "Proposition" as the environment keyword. This corresponds to a common
practice in mathematical textbooks: The running text of informal explanations is typically inter
rupted by some formal text written as "Proposition: ¼" or similarly. Other possibilities for the
environment keyword can be found out as follows:

$TmaEnvironmentPatterns

Definition ÈDefinitions È Theorem È Theorems È Lemma È Lemmata ÈAxiom ÈAxioms ÈCorollary È
Corollaries È Proposition È Propositions È Theory È Theories ÈKnowledgeBase ÈKnowledgeBases È
Algorithm ÈAlgorithms ÈAssumption ÈAssumptions È Formula È Formulae È System È Systems

There is no logical difference between these keywords; they are only provided for reasons of
style. Note that, on this level, not even "Axiom" is logically distinguished from "Theorem" and
analogous names for mathematical statements. The reason is that a formula may well serve as a
definition at one time although it is proved as a normal mathematical theorem at some other time;
the axioms of the real numbers are an example, because they may be proved if one selects a spe
cific construction like Dedekind cuts for them. Similar remarks hold true for the environment
"Definition". The actual role of a formula is specified in the proof call~whether it is to be proved
or to be used as an assumption.

The above proposition has the label "Add Exponents". Just as the environment label, there is no
logical significance to such labels. They are merely used for referring to formulae. For example, in
a proof, a certain step may be justified by saying: Using (Proposition (Add Exponents)), this
implies¼ In fact, the environment keyword and the environment label may be thought of as
making up a compound label; in our example, this is just (Proposition (Add Exponents)).

The free variables are p, n, m in the sample proposition considered above. Logically, they are
universally quantified (this corresponds to the common practice in logic of taking the universal
closure of formulae with free variables). Hence one may specify the same mathematical statement
by the following equivalent characterization:

PropositionA"Add Exponents",

"
p,n,m

mn+p = mn mp E
Here we have no free variables, but the formula contains a corresponding universal quantifier.

So the difference between these two versions is again just a question of style, similar to mathemati
cal textbooks. One may either say

(1) Now for any p, n, m , we have

mn+p = mn mp .

Or one says the following:

(2) Now we have

"
p,n,m

mn+p = mn mp .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

57

These issues are irrelevant on the logical level of theorems, but they are crucial for their natural
presentation. For example, it is usually considered better style to avoid universal quantifiers when
their scope is the whole formula, thus preferring version (1) over version (2) above.

Having specified the proof goal, one must also provide the relevant knowledge base to be used
in the proof. Obviously, this must include the definition of exponentiation itself. In our case, it is
this:

DefinitionA"Exponentiation", any@m, nD,
m0 := 0+ "exp 0"

mn+
:= mn m "exp ."

E
Note that we have added the formula labels here, namely "exp 0" and "exp ." in addition to the

overall environment label "Exponentiation". This is useful for referring to the first or second clause
on an individual basis, thus giving rise to a hierarchic compound label consisting of three compo
nents~the environment keyword, the environment label, the formula label. For example, the

formula m0 := 0+ would be referenced by (Definition (Exponentiation: exp 0)).
The usage of the ":=" sign instead of the normal "=" sign is a message on the meta level, signify

ing definitional equalities. This can be used as a hint for some provers, because definitions~unlike
other equalities~are often used only from left to right. From the logical viewpoint, a = b is of
course the same as a := b .

Now one could add the definitions of addition and multiplication (which are used in exponentia
tion) in an analogous manner. In Theorema, however, we consider it more appropriate to build up
mathematical theories in a layered approach; see [18] for a detailed account. Hence we prove some
crucial properties of addition and multiplication beforehand, and we collect them all in an appropri
ate knowledge base:

TheoryA"Properties of +, *",

Definition@"Multiplication"D
Proposition@"Multiplication from Left"D
Proposition@"Left Distributivity"D
Proposition@"Right Distributivity"D
Proposition@"Multiplication of One from Left"D
Proposition@"Multiplication of One from Right"D
Proposition@"Multiplication of Zero from Left"D
Theory@"Addition"D

E

The construct Theory is used here for aggregating formulae into a common pool. It contains
the definition of multiplication:

DefinitionA"Multiplication", any@m, nD,
m * 0 = 0 " *0"

m * n+ = Hm * nL+ m " * ^+"
E

Then we have included six crucial properties of multiplication, contained in the following
propositions:

Proposition@"Multiplication from Left", any@m, nD,
m+ * n = Hm * nL+ nD

Proposition@"Left Distributivity", any@m, n, pD,
m * Hn + pL = m * n + m * pD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

58

Proposition@"Right Distributivity", any@m, n, pD,Hm + nL * p = m * p + n * pD
Proposition@"Multiplication of One from Left", any@mD,

0+ * m = mD
Proposition@"Multiplication of One from Right", any@mD,

m * 0+ = mD
Proposition@"Multiplication of Zero from Left", any@nD,

0 * n = 0D
Finally, we have added the whole theory of addition, which comes from an even earlier

"exploration layer". It is again made up of a definition and two propositions, thus demonstrating
the nesting capability of the Theory construct:

TheoryA"Addition",

Definition@"Addition"D
Proposition@"Addition of Zero from Left"D
Proposition@"Addition from Left"D

E

This is the definition of addition:

DefinitionA"Addition", any@m, nD,
m + 0 = m " +0"

m + n+ = Hm + nL+ " + succ"
E

And here are the two propositions added to it for making up the theory of addition:

Proposition@"Addition of Zero from Left", any@nD,
0 + n = n "0 + "D

Proposition@"Addition from Left", any@m, nD,
m+ + n = Hm + nL+ D

Besides this knowledge, there are four additional properties that are so crucial that one wants to
treat them in a special way: associativity and commutativity of both addition and multiplication.
The reason is that it would be extremely tedious to mention each use of these properties explicitly
(although it is of course possible), and using them without explicit reference allows a highly
efficient implementation via controlled delegation to Mathematica. We can specify such a property
of an operation ë in Theorema by the following item:

Property@ë ® 8Associative, Commutative<D
Of course, one may leave out either of the properties "Associative" or "Commutative" if this is

desired. The important point is that one has to add these items to the implicit knowledge base,
which is specified via the option built|in of the Prove command. All the other knowledge gath
ered above would of course go into the explicit knowledge base, specified by the corresponding
option using. Hence we will have to use the options

using ® 8Definition@"Exponentiation"D, Theory@"Properties of +, *"D<
and

built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<
for specifying all the relevant knowledge.

Now we have specified all the logical ingredients for the proof task: the goal formula and all
the assumptions that may be used. The next thing to fix is the special prover to be applied. This
leads us to another major design feature of Theorema. Unlike other proving communities, we do
not believe in a monolithic prover that takes care of the whole of mathematics. In our opinion, such

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

59

not believe in a monolithic prover that takes care of the whole of mathematics. In our opinion, such
a prover would not be a reasonable goal: Just compare the notion of such a universal prover to a
universal solver for all of mathematics~taking care of linear equation systems, partial differential
equations, combinatory logic, ¼ at the same time. Nobody would consider it realistic to design
such a universal solver. So why should one aspire to have an analogous thing for proving, which is
even more complex than solving? (Note that one can regard solving as the special case of construc
tively proving formulae having the form $x Sx = Tx , where x is one or more variables and Tx , Sx

are terms normally containing some of the variables x .)
Hence there is no such thing as "the Theorema prover". Every mathematical domain comes

with its own natural provers that are special to this domain (which is usually characterized through
a set of axioms). Of course, one may also consider the absolutely general domain (characterized by
the empty set of axioms), which is covered in Theorema by the PredicateProver. However, we do
not give particular preference to any domain of mathematics, thus putting the predicate prover on
an equal basis with, say, the prover for natural numbers called NNEqIndProver. And the latter is
exactly what we need for our problem, hence we have to say by ® NNEqIndProver, where by is
the option used for selecting the special prover. The crucial point about this prover is of course that
it assumes the inductive domain of natural numbers~thus presupposing the corresponding induc
tion axioms, which are used in the from of suitable inference rules.

Each special prover accepts a certain number of options for controlling its behavior; they are
specified by the option ProverOptions given to the Prove command. For seeing which options are
supported by NNEqIndProver and which default values are used, we can issue the following call:

Options@NNEqIndProverD
8ConstOrder ® 88SuperPlus, +, *<<, NNRepr ® Nondecimal,

SpecialSimplification ® True, TermOrder ® RPLexOrder<
Here we can see that the order of the constant symbols can be specified, and the setting is

already close to what we need: In the goal formula and the assumptions, the only function symbols
besides = and := is SuperPlus (the successor function, signified by a superscript plus symbol, e.g.
in m+), + , * , and Power (the exponentiation function, signified by all other superscripts, e.g. in
mn). Hence we will simply append the Power function to the default list given above.

The other options may be left on their default values: The option NNRepr controls the represen
tation of natural numbers; for example, 3 is represented as 0+++ with the default setting "Nondeci
mal" and as 0 + 1 + 1 + 1 if the setting is changed to "Decimal". Activating the option SpecialSim
plification allows the prover to contract several simplifications into one step, thus making the
proof much more compact; the option is activated by default. Finally, the option TermOrder is a
kind of strategy used in equational proving, which usually need not be changed from its default
value.

Actually, all this information is also available online if one asks for it in the usual Mathematica
way:

?? ConstOrder

´ Option that specifies the order of the constants in the rewrite process.

?? NNRepr

´
Option for the NIP prover, to be used in a Prove call, that specifies which

inductive representation to use for natural numbers. If ‘Nondecimal‘, they are
constructed from 0 and SuperPlus, if ‘Decimal‘ they are constructed from 0 and +1.

?? SpecialSimplification

´
Option for simplification: if True, then it performs

in one step simplification with respect to built-in knowledge.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

60

Finally, we will provide some specification about the proof presentation. By default, the prover
shows everything that it did, including also failed proof attempts. This may be very interesting for
intermediate analysis, but usually one wants to see a polished proof in the end. In Theorema, this
can be accomplished by using proof simplification. The corresponding option is transformBy,
which specifies the proof transformer to be used as a postprocessor to the prover. Besides proof
simplification, this could also be e.g. a failure analyzer or a conjecture generator. In our case,
however, all we want to have is plain proof simplification, so we use the standard transformer for
this purpose, called ProofSimplifier. It accepts some options controlling the kind of simplification
one desires. For seeing the possibilities, we can say this:

Options@ProofSimplifierD
8branches ® All, steps ® All, substitutions ® All<

The option branches specifies which branches of the proof tree one wants to see. The default
setting is to show everything, including the failed branches. We want to see only the proved ones,
which can be accomplished by setting this option to the value "Proved" (one can also set it to
"Disproved" if the prover is used for refuting formulae, and one can even set it to "Failed" if one
wants to analyze just the failed proof attempts). The option steps could be employed for making
the proof output more compact by condensing certain combinations of proof steps (see the Theo
rema documentation for details, e.g. by saying "?? Essential", "?? Combined", "?? Useful", "??
Lifted", "?? LiftedParallel" as to be expected from the output below); we will not make use this
possibility. Finally, the option substitutions can be used for restricting the substitutions generated
by certain provers to the "Useful" ones; this is not needed in our case. Again, one can get all the
essential information in the following online documentation:

?? branches

´
Option of ProofSimplifier with possible values: Proved, Pending,

Failed, Disproved and list combinations of these. All HdefaultL means list of all.

?? steps

´
Option of ProofSimplifier with possible values: All, Essential,

Combined, Useful, Lifted, LiftedParallel and list combinations of these.

?? substitutions

´ Option of ProofSimplifier with possible values: All, Useful.

Now we have all the relevant data for issuing the prove call necessary in our example:

Prove@Proposition@"Add Exponents"D,
using ® 8Definition@"Exponentiation"D, Theory@"Properties of +, *"D<,
built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<,
by ® NNEqIndProver, ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

What we get is the following induction proof of the goal formula (note that everything is
produced completely automatically up to the á symbol!):

We prove (Proposition (Add Exponents)) by induction on p .

Induction Base:

(1) "
n,m
Hmn+0 = mn m0 L .

We take in (1) all variables arbitrary but fixed and prove:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

61

(4) m1
n1 +0 = m1

n1 m1
0 .

A proof by simplification of (4) works.

Simplification of the lhs term:

m1
n1 +0 = by (Definition (Addition): +0)

m1
n1 t

Simplification of the rhs term:

m1
n1 m1

0 = by (Definition (Exponentiation): exp 0)

m1
n1 0+ = by (Definition (Multiplication): * ^+)

m1
n1 0 + m1

n1 = by (Definition (Multiplication): *0)

0 + m1
n1 = by (Special Simpl)

m1
n1 + 0 = by (Definition (Addition): +0)

m1
n1 t

Induction Step:

Induction Hypothesis:

(2) "
n,m
Hmn+ p1 = mn mp1 L

Induction Conclusion:

(3) "
n,m
Hmn+ p1

+
= mn mp1

+ L .
We take in (3) all variables arbitrary but fixed and prove:

(5) m2
n2 + p1

+
= m2

n2 m2
p1

+
.

A proof by simplification of (5) works.

Simplification of the lhs term:

m2
n2 + p1

+
 = by (Definition (Addition): + succ)

m2
Hn2 + p1 L+ = by (Definition (Exponentiation): exp .)

m2
n2 + p1 m2 = by (2)

Hm2
n2 m2

p1 L m2 = by (Special Simpl)

m2 Hm2
n2 m2

p1 Lt
Simplification of the rhs term:

m2
n2 m2

p1
+

 = by (Definition (Exponentiation): exp .)

m2
n2 Hm2

p1 m2 L = by (Special Simpl)

m2 Hm2
n2 m2

p1 Lt
á

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

62

Of course, the prover did not use all the available knowledge; in fact, we have only used the
definitions and some special simplification. This is very similar to the situation of human proving:
In a typical situation, we do not know in advance which formulae will ultimately turn out to be
necessary. (Of course, we could make the work of the prover easier by preselecting those formulae
that will actually be used for the proof.)

Using the proposition just proved, we could now go on proving another proposition about
exponentiation, thus continuing this exploration layer. For example, it is very natural to ask about
the products of powers with the same exponents:

Proposition@"Multiply Terms with Same Exponents", any@n, p, mD,
mn * pn = Hm * pLn D

Prove@Proposition@"Multiply Terms with Same Exponents"D,
using ® 8Proposition@"Add Exponents"D, Definition@"Exponentiation"D, Theory@"Properties of +, *"D<,
built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<,
by ® NNEqIndProver, ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

This produces a fairly similar induction proof, again using only the definitions (in particular,
not using the proposition proved just before).

We prove (Proposition (Multiply Terms with Same Exponents)) by induction on n .

Induction Base:

(1) "
p,m
Hm0 p0 = Hm pL0 L .

We take in (1) all variables arbitrary but fixed and prove:

(4) m1
0 p1

0 = Hm1 p1 L0 .

A proof by simplification of (4) works.

Simplification of the lhs term:

m1
0 p1

0 = by (Definition (Exponentiation): exp 0)

0+ p1
0 = by (Definition (Exponentiation): exp 0)

0+ 0+ = by (Definition (Multiplication): * ^+)

0+ 0 + 0+ = by (Definition (Multiplication): *0)

0 + 0+ = by (Special Simpl)

0+ + 0 = by (Definition (Addition): +0)

0+ t
Simplification of the rhs term:

Hm1 p1 L0 = by (Definition (Exponentiation): exp 0)

0+ t
Induction Step:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

63

Induction Hypothesis:

(2) "
p,m
Hmn1 pn1 = Hm pLn1 L

Induction Conclusion:

(3) "
p,m
Imn1

+
 pn1

+
= Hm pLn1

+ M .
We take in (3) all variables arbitrary but fixed and prove:

(5) m2
n1

+
 p2

n1
+

= Hm2 p2 Ln1
+

.

A proof by simplification of (5) works.

Simplification of the lhs term:

m2
n1

+
 p2

n1
+

 = by (Definition (Exponentiation): exp .)

Hm2
n1 m2 L p2

n1
+

 = by (Definition (Exponentiation): exp .)

Hm2
n1 m2 L Hp2

n1 p2 L = by (Special Simpl)

m2 Hp2 Hm2
n1 p2

n1 LLt
Simplification of the rhs term:

Hm2 p2 Ln1
+

 = by (Definition (Exponentiation): exp .)

Hm2 p2 Ln1 Hm2 p2 L = by (2)

Hm2
n1 p2

n1 L Hm2 p2 L = by (Special Simpl)

m2 Hp2 Hm2
n1 p2

n1 LLt
á

Finally, let us do one more proof in this exploration layer of exponentation.

Proposition@"Multiply Exponents", any@n, p, mD,
mn*p = Hmn Lp D

Prove@Proposition@"Multiply Exponents"D,
using ® 8

Proposition@"Add Exponents"D,
Proposition@"Multiply Terms with Same Exponents"D,
Definition@"Exponentiation"D,
Theory@"Properties of +, *"D<,

by ® NNEqIndProver , ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

This produces the following induction proof:

We prove (Proposition (Multiply Exponents)) by induction on n .

Induction Base:

(1) "
p,m
Hm0 p = Hm0 Lp L .

We take in (1) all variables arbitrary but fixed:

(4) m1
0 p1 = Hm1

0 Lp1

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

64

and simplify it.

Simplification of the lhs term:

m1
0 p1 = by (Proposition (Multiplication of Zero from Left))

m1
0 = by (Definition (Exponentiation): exp 0)

0+ t
Simplification of the rhs term:

Hm1
0 Lp1 = by (Definition (Exponentiation): exp 0)

H0+ Lp1 t
Hence, it is sufficient to prove:

(5) "
p
H0+ = H0+ Lp L .

We prove (5) by induction on p .

Induction Base:

(6) 0+ = H0+ L0 .

A proof by simplification of (6) works.

Simplification of the lhs term:

0+ t
Simplification of the rhs term:

H0+ L0 = by (Definition (Exponentiation): exp 0)

0+ t
Induction Step:

Induction Hypothesis:

(7) 0+ = H0+ Lp2

Induction Conclusion:

(8) 0+ = H0+ Lp2
+

.

A proof by simplification of (8) works.

Simplification of the lhs term:

0+ t
Simplification of the rhs term:

H0+ Lp2
+

 = by (Definition (Exponentiation): exp .)

H0+ Lp2 0+ = by (7)

0+ 0+ = by (Definition (Multiplication): * ^+)

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

65

0+ 0 + 0+ = by (Definition (Multiplication): *0)

0 + 0+ = by (Definition (Addition): + succ)

H0 + 0L+ = by (Definition (Addition): +0)

0+ t
Induction Step:

Induction Hypothesis:

(2) "
p,m
Hmn1 p = Hmn1 Lp L

Induction Conclusion:

(3) "
p,m
Imn1

+ p = Hmn1
+ Lp M .

We take in (3) all variables arbitrary but fixed and prove:

(9) m2
n1

+ p3 = Hm2
n1

+ Lp3 .

A proof by simplification of (9) works.

Simplification of the lhs term:

m2
n1

+ p3 = by (Proposition (Multiplication from Left))

m2
n1 p3 + p3 = by (Proposition (Add Exponents))

m2
n1 p3 m2

p3 t
Simplification of the rhs term:

Hm2
n1

+ Lp3 = by (Definition (Exponentiation): exp .)

Hm2
n1 m2 Lp3 = by (Proposition (Multiply Terms with Same Exponents))

Hm2
n1 Lp3 m2

p3 = by (2)

m2
n1 p3 m2

p3 t
á

This time we used some explicit non|definitional knowledge: The proposition about multiplying
with zero from the left, and the proposition about the product of powers with the same exponent
proved in the beginning. Note, however, that we have not put any a|priori information about this to
the prover~it got the full knowledge base just as in the other two prove calls, containing numerous
other assumptions that turned out to be unnecessary for this particular proof.

Analyzing the internal setup of the prover NNEqIndProver, we can see that it actually could
use three different "types of reasoning":

è Some custom|tailored inference rules for the special predicate = , called rewrite rules. In
particular, the proof of a formula S = T is accomplished by transforming both S and T to
their normal form and then checking whether these coincide. The transformations to
normal form are announced by the words "Simplification of the lhs/rhs term" in the above
proofs. They make implicit use of the symmetry and replacement axioms for equality.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

66

è The usual inference rules of predicate logic, which are valid in any domain, not only in the
realm of natural numbers. Hence the above|mentioned universal proof engine Predicate
Prover consists of only this basic prover. These rules were unnecessary in the above
proofs. In fact, we would have to use the prover NNIndProver if we needed them as well.

è Finally, the decisive inference rule used in all three proofs above is induction: For proving
a goal of the form "n Fn , where Fn is a formula typically containing a free occurrence of
the variable n , it suffices to prove Fn¬0 and to prove Fn¬m+ under the assumption of
Fn¬m , where m is an arbitrary but fixed natural number.

In order to make things a bit more general, let us now analyze the internal structure of the
prover NNIndProver rather than the prover NNEqIndProver used for the proofs above. As just
explained, it is composed of three sets of reasoning rules~rewrite logic, predicate logic, induction.
In Theorema, this is realized by composing the so|called user prover NNIndProver from the three
corresponding blocks, called basic provers. The basic prover of rewrite logic is called Simplifier,
the natural|numbers induction prover is called NIP, and the predicate|logic prover using a kind of
natural deduction calculus is called PND. This could be seen in the implementation of the user
prover NNIndProver, which contains the following crucial command:

AddConstraints@·nonExclusive@True, SimplifierD,
·nonExclusive@True, NIPD,
·nonExclusive@True, PNDDD

This command joins the three basic provers to make up the corresponding user prover. How
ever, we will not enter into any implementation issues here, since we just want to provide a rough
overview of the general Theorema environment. We have only mentioned it here, because we will
encounter an analogous structure in the Green’s evaluator to be described in the next section.

In fact, recent discussions within the Theorema group drive towards a prover setup that will
allow an even greater level of flexibility, changing between proving / solving / computing situa
tions on a per|rule basis. As these discussions are still under way and the current Theorema system
has the setup of user provers and basic provers as described above, we have built the Green’s suite
along these lines of the user reasoner / basic reasoner setup. (The notion of reasoning subsumes
proving, solving, computing~the three fundamental activities of mathematics.)

2.2 The Overall Design of the Green’s Suite

We have organized the Green’s suite as a one user evaluator named GreenEvaluator appeal
ing to three basic evaluators named ReduceNoncommutativePolynomial, EvaluateMatrices,
EvaluateStandard~just like the user prover NNIndProver is made up of the three basic provers
Simplifier, NIP, PND. Let us briefly describe the three basic evaluators involved in the Green’s
suite:

è The basic evaluator ReduceNoncommutativePolynomial is used for reducing a noncom
mutative polynomial to its normal form with respect to a given system of noncommutative
polynomial equalities. For example, reducing A D - D A with respect to the equalities
A D = 1, D A = 1 - L would yield the result 2 - L .

è The most important matrix operations like addition, multiplication and inversion are
carried out by the basic evaluator EvaluateMatrices.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

67

è Unlike the other two basic evaluators, EvaluateStandard is already provided by the
standard Theorema environment (hence one can find its description in the online documen
tation so that we will not describe it here). Its main purpose is unfolding definitions. For
example, it will unfold the term 1 + Dì into 1 + A , using the definition of H¼Lì as right
inversion; see Input 41 of Chapter 1.

We will describe the two basic evaluators ReduceNoncommutativePolynomial and Evaluate
Matrices in the next two sections from a generic point of view, meaning that we will not yet
consider the particular purpose we have in mind when using them for solving BVPs. In fact, the
idea of basic evaluator is to be an independent unit of reasoning that provides custom|tailored
evaluation for certain specific domains~in this case, polynomials and matrices (whereas the
evaluator EvaluateStandard works for the general domain just like the predicate prover PND for
proof tasks in the general domain).

Having these general components (as well as many other basic provers and evaluators and
solvers), one can imagine constructing a lot of custom|tailored methods by specializing them to the
particular problem one has in mind~each specialization corresponding to a user provers, a user
evaluator or a user solver. The GreenEvaluator is but one of them, and we will describe its spe
cific structure in the last section.

The GreenEvaluator is the first example of such a user evaluator, constructed in parallel to the
notion of user provers. Hence it will not come as a surprise that there a number of issues that have
not yet been straightened out completely. Let us mention the most important ones.

What proof objects are to proving, trace objects are to computing: A record containing all the
relevant information about how and why a certain step was done. But whereas there is a clear and
stabilized structure for proof objects in Theorema, this is not yet the case for trace objects. For
example, there is no meta|evaluator that would take care of assembling trace objects from various
basic evaluators just as the meta|prover does for proof objects coming from various basic provers.
While we do provide tracing for the basic evaluator ReduceNoncommutativePolynomial (which
will be described below) and the standard Theorema system does it for the basic evaluator Evalu
ateStandard, we do not yet have tracing support for the basic evaluator EvaluateMatrices. Hence
there is also no trace for the overall computing procedure effected by the user evaluator GreenEval
uator.

For practical purposes, it is very important to have an intuitive and natural notation for the key
concepts used. As this is also an important guideline for the Theorema framework in general, we
have tried to pay close attention to this issue. The reader may convince herself in the subsequent
sections that she does not have to use ugly|looking or even ASCII syntax for input and output. We
have accomplished this via the usual mechanism of MakeExpression and MakeBoxes as it is
provided by Mathematica and extensively used in the whole of Theorema. However, we have not
yet constructed a uniform and user|transparent framework for handling notation in Theorema. This
means that as soon as a certain prover or evaluator is loaded, one "buys" all the notation it pro
vides, and there is no way to undo this (except reloading Theorema of course). For example, the

notation à + b
`
 denotes matrix addition as soon as EvaluateMatrices is loaded.

In relation with the basic evaluator ReduceNoncommutativePolynomial, there is also a
relevant prover for establishing the confluence of certain polynomial rewrite systems. We have also
implemented some ad|hoc functions doing this job, and we have used this in Computation 29 of
Chapter 1 (reducing 233 S|polynomials by hand would really not be fun at all). However, this
prover is not yet integrated in the usual framework of Theorema provers, so we will not describe it
in detail here. We will rather regard it as a convenient "tool for proving confluence", and as such
we will describe it briefly in Section 3.

The user evaluator named GreenEvaluator is actually a prime example of where we would

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

68

The user evaluator named GreenEvaluator is actually a prime example of where we would
like to apply the flexible concept of rule|based integration for proving / solving / computing
situations briefly mentioned at the close of Section 1. As stated at the outset of this thesis, our main
concern is to solve(!) BVPs. But still our main tool for doing this is the evaluator(!) named Green
Evaluator. The reason for this is of course that we reduce the problem of solving(!) a certain
equation for a function to computing(!) a related operator for this problem (here "computing" and
"evaluating" may be regarded as synonymous~see the discussion at the beginning of Section 3);
see the motivation given in Section 1 of Chapter 1. Still it would be very natural to add one more
reasoning rule that expresses just this transition of the solve situation to the corresponding compute
situation such that one could issue a call like

Solve@u’’ = f ß u@0D = 0 ß u@1D = 0,
for@uD, given@ f D, by ® GreenSolverD

rather than the corresponding call

Compute@Green@D2 , XL, R\D,
by ® GreenEvaluatorD

to be used now (see the Section 5 for a detailed description of what the call above means).
Finally, let us make one linguistic remark: We have called the basic evaluator for noncommuta

tive polynomials by the name ReduceNoncommutativePolynomial rather than EvaluateNoncom
mutativePolynomial for the following reason: Although we could identify the terms "reduce",
"evaluate", "simplify", "transform", "normalize", and "compute" as synonymous on logical
grounds (meaning nothing else than applying rewrite rules until they are saturated), one can
observe certain usage distinctions in common language:

è For polynomials, evaluation is already preoccupied for the evaluation homomorphism

carrying e.g. eval@x2 + 3, 2D to 7; this is why we have avoided it in the name for our basic
evaluator. In a more general sense, evaluation is usually associated with unfolding defini
tions. Therefore it is an appropriate name for EvaluateStandard as well as EvaluateMatri
ces.

è The term computing is the most general in our opinion. Some people would restrict it to
ground terms, because this is a very typical usage of this word, e.g. when one says that
computing 3 + 7 gives 10. However, we think that it is also often applied in a more compre
hensive sense, e.g. in the phrases "symbolic computation" or "computing all the solutions
of a given differential equation".

è If one uses the term simplifying, the emphasis is obviously on making the given term
simpler. This may be so with respect to some (maybe implicit) term ordering or in the
sense of canonicality (a canonical form is in a sense always the simplest form possible).
Hence it does not really cover the more general case of applying an arbitrary system of
rewrite rules, since such a system may neither be orientable with respect to some term
ordering nor admit canonical forms.

è The term transformation denotes a very general concept that may apply to all of reasoning,
including transitions between proving / solving / computing situations. However, we will
use this term below only for a slight generalization that subsumes what we call normaliza
tion and reduction of polynomials.

è Somewhat more precise, the term normalizing refers explicitly to obtaining the normal
form (which may or may not be the canonical form, depending on whether the rewrite
system is confluent). In principle, we could use this term, because the results we obtain are

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

69

system is confluent). In principle, we could use this term, because the results we obtain are
indeed normal forms of the rewrite system induced by the polynomial axioms and the
given polynomial equalities. However, this could be misleading, because normalizing a
polynomial usually refers to the much narrower process of just expanding the polynomial
according to the polynomial axioms.

è Finally, there is the term reducing. Although it does suggest decreasing some(!) measure
similar to the term "simplifying", where this measure is obviously the complexity (thus
increasing the simplicity), its scope is usually much wider: Any(!) application of rewrite
rules can be considered as a reduction, namely regarding the number of redexes. This is in
fact the usual term (more precisely, it is Β|reduction) used in lambda calculus, which is in
a sense the general theory of rewriting. Hence we can also apply it to the rewrite system
that is generated by the given polynomial equalities~based on the usual polynomial
axioms. (Note that we have avoided the term "rewriting" itself because it is too technical,
although one could regard it as synonymous to "reducing".)

2.3 The Reductor for Noncommutative Polynomials

The basic evaluator ReduceNoncommutativePolynomial is a general|purpose tool for reducing a
noncommutative polynomial to its normal form with respect to some given system of polynomial
equalities. It operates on R XX È X Î X\ , where X is some set of indeterminates that must be speci
fied and R is some ring containing C . (Typically one deals with rings of complex functions, where
the complex numbers are naturally embedded as constant functions.)

Using the approach outlined in Section 4 of the Appendix, it applies two kinds of polynomial
transformations:

è Those following certain polynomial axioms like XHY + ZL® X Y + X Z , which we will
subsume under the heading polynomial normalization.

è Those using a certain polynomial equality from the given system like X Y = Y + Z for
obtaining X Y + X Z ® HY + ZL + X Z . We will call this process polynomial reduction.
Obviously these are the core steps for a transformation chain; the interspersed normaliza
tion steps should rather be regarded as "low|level" computations getting the data structures
straight. Hence the name ReduceNoncommutativePolynomial.

Let us now see how this looks like in Theorema. Assuming the Green’s suite is already loaded
as explained above, we set the evaluator ReduceNoncommutativePolynomial as the default one
so that we do not have to mention it explicitly all the time. Besides this, we must also deactivate
the option UseFlattenedDefaults, which is activated by default; see the online help listed above.
(The reason is that whereas it is usually preferable to transform equalities into Mathematica rewrite
rules once and for all at the beginning of a computation, we cannot do this now because polyno
mial equalities have to be treated in a specialized way.)

SetOptions@Compute, by ® ReduceNoncommutativePolynomial, UseFlattenedDefaults ® FalseD;

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

70

?? UseFlattenedDefaults

´

An option for ‘Compute‘. ‘True‘ means that the flattened default knowledge bases are joined to the
respective lists of transformation rules that are obtained from the knowledge bases given
in the options ‘using®‘ and ‘built|in®‘. ‘False‘ means that the default knowledge bases in
their original structure as environments are adjoined to the given knowledge bases and
are then flattened. It may lead to unexpected results if the default evaluator is changed
between the moment you specify default knowledge and the moment you call ‘Compute‘.

We will start with some trivial examples involving only normalization in C XX, Y, Z\ . So for
the moment let us fix X, Y, Z as the indeterminates. And let us produce no tracing information as
there is nothing essential to show without proper reductions. We do this by setting the correspond
ing options of the basic evaluator:

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8X, Y , Z<, inNotebook ® "None"D;

So here are some examples involving only normalization:

Compute@X HY + ZLD
X Y + X Z

Compute@HX + YL HY + ZL HZ + XL- X Y ZD
X Y X + X Z2 + X Z X + Y2 Z + Y2 X + Y Z2 + Y Z X

Compute@HX - Y - 1L HX + Y - 1LD
1 - 2 X + X2 + X Y - Y X - Y2

Note the lack of commutation in the previous example~in commutative polynomials, the terms
X Y and -Y X would cancel. And this is indeed the case if we use identifiers that are not declared
as indeterminates (as X, Y, Z are), because the default assumption is that any identifiers like A, B
represent unknown complex numbers:

Compute@HA - B - 1L HA + B - 1LD
1 - 2 A + A2 - B2

Now let us construct a small system of polynomial equalities:

SystemA"Test Equalities",

X Y = Y + Z "1"

Y Z = Z + X "2"

Z X = X + Y "3"

E
We can use this system for reducing polynomials:

Compute@X Y Z X,
using ® System@"Test Equalities"DD

2 X + 2 Y + X2 + Z Y

Compute@X2 Y2 Z2 ,
using ® System@"Test Equalities"DD

2 X + 2 Z + 2 X Z + 2 Z2 + X2 Z + Y X Z + Z3 + X Z3

In this case, it could be interesting to see some trace information. So let us change the options
again so that tracing is supported, and then let us redo the two examples of above:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

71

SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "Current"D;

Compute@X Y Z X,
using ® System@"Test Equalities"DD

We compute:

 X Y Z X =
x
H¼L

 X Y Z X =
x
H1L

 Y Z X + Z2 X =
x
H2L

 X2 + Z X + Z2 X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Compute@X2 Y2 Z2 ,
using ® System@"Test Equalities"DD

We compute:

 X2 Y2 Z2 =
x
H¼L

 X X Y Y Z2 =
x
H1L

 X Y Y Z2 + X Z Y Z2 =
x
H1L

 Y Y Z Z + Z Y Z2 + X Z Y Z2 =
x
H2L

 Y Z Z + Y X Z + Z Y Z2 + X Z Y Z2 =
x
H2L

 X Z + Z2 + Y X Z + Z Y Z Z + X Z Y Z2 =
x
H2L

 X Z + Z2 + Y X Z + Z3 + Z X Z + X Z Y Z Z =
x
H2L

 X Z + Z2 + Y X Z + Z3 + Z X Z + X Z3 + X Z X Z =
x
H3L

 2 X Z + Y Z + Z2 + Y X Z + Z3 + X Z3 + X Z X Z =
x
H2L

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

72

 X + Z + 2 X Z + Z2 + Y X Z + Z3 + X Z3 + X Z X Z =
x
H3L

 X + Z + 2 X Z + Z2 + X2 Z + X Y Z + Y X Z + Z3 + X Z3 =
x
H1L

 X + Z + 2 X Z + Y Z + 2 Z2 + X2 Z + Y X Z + Z3 + X Z3 =
x
H2L

2 X + 2 Z + 2 X Z + 2 Z2 + X2 Z + Y X Z + Z3 + X Z3 �

2 X + 2 Z + 2 X Z + 2 Z2 + X2 Z + Y X Z + Z3 + X Z3

The trace consists of a sequence of terms, each being a reduced version of the previous one.
The equality used for reducing is shown above the equality sign; the initial step marked by "(¼)"
is just a rearrangement of the input term so that one can see how a certain rewrite rule affects it.
Furthermore, we can see that the redexes are framed in each step so that we have an easy time
following the whole computation. The end of the trace is marked by � just as with proofs. The last
line after the final trace term is the result of the computation; unlike all the previous text lines it is
available as a regular Mathematica expression. This means for example that we can assign it to a
variable like this:

result = Compute@X Y Z X,
using ® System@"Test Equalities"DD

We compute:

 X Y Z X =
x
H¼L

 X Y Z X =
x
H1L

 Y Z X + Z2 X =
x
H2L

 X2 + Z X + Z2 X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Now the variable result contains the polynomial 2 X + 2 Y + X2 + Y Z , which we could use in
subsequent calculations like this:

Compute@X Hresult - 2 X - 2 YL Y ,
using ® System@"Test Equalities"DD

We compute:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

73

 X H2 X + 2 Y + X2 + Z Y - 2 X - 2 YL Y =
x
H¼L

 X2 X Y + X Z Y2 =
x
H1L

 X X Y + X2 Z + X Z Y2 =
x
H1L

 X Y + X Z + X2 Z + X Z Y2 =
x
H1L

Y + Z + X Z + X2 Z + X Z Y2 �

Y + Z + X Z + X2 Z + X Z Y2

Before passing to the more advanced features of the polynomial reductor, let us just mention
some minor options that influence the formatting of the resulting polynomial and the generated
trace information. We can do this systematically by looking at the following subset of ReduceNon
commutativePolynomial options:

Options@ReduceNoncommutativePolynomialD
8Indeterminates ® 8X, Y , Z<, Units ® 8<, ReductionPhases ® Automatic,

HiddenReductions ® Automatic, TermOrdering ® Ascending, inNotebook ® Current,
FrameRedex ® True, CompactLabels ® True, TraceCaption ® We compute:<

?? TermOrdering

´

Option of ReduceNoncommutativePolynomial, with default setting "Ascending", specifying an ascending
graded term ordering. Other possible settings are "Descending" and "Lexicographic", specifying a
descending graded and a purely lexicographic term ordering, respectively. In all cases, the ordering
of the indeterminates is taken from the order in which they appear in the option "Indeterminetes".

?? inNotebook

´ An option for StaticWriter that specifies, in which notebook the pretty|print output should go.

?? FrameRedex

´
Option of ReduceNoncommutativePolynomial, with default setting True. This option determines

whether or not the redex of polynomial forms in a trace appear with a frame around them.

?? CompactLabels

´

Option of ReduceNoncommutativePolynomial, with default setting True. This option determines whether
equation labels are displayed more compactly. If set to True, the environment part of the label
is cut off, leaving only the pure equation label, which is placed above the equality symbol.
Otherwise, the long label is placed alongside each polynomial form in the equation chain.

?? TraceCaption

´
Option of ReduceNoncommutativePolynomial, with default setting "We compute:". This

option specifies the string used as a caption in the trace provided for a reduction process.

As the online documentation listed above contains already all the essential explanations, it will
be sufficient to just demonstrate these options in a few examples. First of all, let us switch off
tracing and change the term ordering to a descending and to a lexicographic one:

Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TermOrdering ® "Descending", inNotebook ® "None"<D

X2 + Z Y + 2 X + 2 Y

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

74

Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TermOrdering ® "Lexicographic", inNotebook ® "None"<D

X2 + 2 X + 2 Y + Z Y

The next option mentioned above was already used in the examples: It is for controlling where
the trace goes to. The default behavior is to produce a new notebook~just as for proofs made by
the Prove command. By setting this option to "Current", the trace is put into the current notebook;
by setting it to "None", it is simply discarded. Finally, one may set it to the name of some external
file for piping the output into it. See the general Theorema documentation for more information.

Some people may find it too much seeing all these frames around the redexes. They can switch
it off in the following way:

Compute@X Y Z X,
using ® System@"Test Equalities"D, EvaluatorOptions ® 8FrameRedex ® False<D

We compute:

 X Y Z X =
x
H¼L

 X Y Z X =
x
H1L

 Y Z X + Z2 X =
x
H2L

 X2 + Z X + Z2 X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

The option about compact labels has to do with the labels set above the equality signs in the
trace. The point is that although it is very convenient to see only compact labels like "(1)" there,
this may lose important information sometimes. The full name of the label would be (System
("Test Equalities"): 1), which does not look very good above the equality sign. It may be neces
sary, however, if one has two polynomial systems, each of them containing labels with the names
"(1)". Usually, it is better to avoid such duplications, but if one insists on them, one may deactivate
the option for compact labels thus:

Compute@X Y Z X,
using ® System@"Test Equalities"D, EvaluatorOptions ® 8CompactLabels ® False<D

We compute:

 X Y Z X @ @by H¼LD
 X Y Z X @ @by HTest Equalities : 1LD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

75

 Y Z X + Z2 X @ @by HTest Equalities : 2LD
 X2 + Z X + Z2 X @ @by HTest Equalities : 3LD
 X + Y + X2 + Z Z X @ @by HTest Equalities : 3LD
 X + Y + X2 + Z X + Z Y @ @by HTest Equalities : 3LD
2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Finally, let us mention the option setting the trace caption. This is only a minor detail whose
significance will become clear in the description of the confluence tools provided below. The trace
caption is simply the introductory sentence at the beginning of a trace; per default, it reads "We
compute:" as one can see in all the examples above. Let us change it to something slightly more
exciting, just for a whimsical test:

Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TraceCaption ® "Hey, this is really easy for me; I just go as follows:"<D

Hey, this is really easy for me; I just go as follows:

 X Y Z X =
x
H¼L

 X Y Z X =
x
H1L

 Y Z X + Z2 X =
x
H2L

 X2 + Z X + Z2 X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Let us now proceed to a much more interesting feature, concerning the usage of parametrized
indeterminates and thereby noncommutative polynomial rings with infinitely many indeterminates.
As we have seen in Chapter 1, one often needs a whole series of indeterminates like the powers

X0 , X1 , X2 , X3 , ¼ or the multiplication operators M f , alternatively written as ` f p , for each f in
an analytic algebra. We will start with the first example, because it is easier to survey the parame

ter space N . In order to avoid confusion with actual powers like X2 occurring in the trace above,
we will start with another example that uses subscripts rather than superscripts; we will later return
to power notation. We will consider the noncommutative polynomial ring generated by the indeter
minates X1 , X2 , X3 , ¼, X¥ We communicate these parametrized indeterminates to the reductor in
the following way (the square is entered as �sq� and serves as a kind of template for the parameters

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

76

the following way (the square is entered as �sq� and serves as a kind of template for the parameters
to be filled in):

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8X� <D;

Now we will set up a simple polynomial equation that mimics the behavior of Xn as the multipli

cation operator induced by x# 10x�n . For this purpose, we must actually specify a whole series of
equalities, parametrized by the subscripts ranging over 1, 2, 3, ¼, ¥ . (Note that Theorema does
not use explicit typing, so the domain for n and m is not stated. The implicit assumption is that it
will only be used in the range intended.)

FormulaA"Subscript Equalities", any@m, nD,
X¥ = 1 "1"

Xm Xn = XHm+nL�HmnL "2"
E

Compute@X3 X2 X¥ X10 ,
using ® Formula@"Subscript Equalities"D,
EvaluatorOptions ® 8FrameRedex ® False<D

We compute:

 X3 X2 X¥ X10 =
x
H¼L

 X3 X2 X¥ X10 =
x
H1L

 X3 X2 X10 =
x
H2L

 X 3+2
���������������3 2

 X10 =
x
H2L

X 3+2
���������������
3 2 +10

�����������������������������3+2
���������������
3 2 10

�

X 3+2
���������������
3 2 +10

�����������������������������3+2
���������������
3 2 10

The computation is obviously correct, but of course one would expect a bit more. It should
evaluate the subscript H3 - 12L � H3 * H-12LL to 1 �4 etc, so why is this not done? The answer is
simply that it was not allowed to use any knowledge about the symbols + and - occurring in
subscripts. In Theorema, the general assumption is that all knowledge to be exploited must be
explicitly specified. In this way, we can always be sure that no assumptions are used unexpectedly
so that all proofs and computations are correct with respect to the explicitly given knowledge base.
In the case of the polynomial reductor, the only internal knowledge is the axioms of noncommuta
tive polynomials (see the Appendix); all other knowledge is considered external and must hence be
specified.

In Theorema, the usual way of doing this is via so|called built|ins; see the online documenta
tion for details. In our case, the most efficient way is to rewrite the subscript equalities in terms of a
new operation ë denoting the "harmonic sum" of two nonzero naturals:

FormulaA"Subscript Equalities", any@m, nD,
X¥ = 1 "1"

Xm Xn = Xmën "2"
E

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

77

Then we implement the operation ë in the obvious way by using the arithmetic operations of
Mathematica, and we package it into a special Theorema environment signified by the environ
ment keyword Built|in thus:

HarmonicSum@m_, n_D := 1�ikjj
1

��������
m

+
1
������
n

y
{zz

Built|in@"Arithmetic",
ë ® HarmonicSumD

Now we can compute the above polynomial in the way we expected it. Note that we have to
specify built|ins via the option built|in rather than using, which we still apply to the normal
knowledge base containing the formula with the subscript equalities. The difference between these
two options is that the former calls Mathematica implementations, whereas the latter is only used
in the sense of predicate logic (in the case of equalities as here, this boils down to substitution and
replacement). Let us see what we get:

Compute@X3 X2 X¥ X10 ,
using ® Formula@"Subscript Equalities"D, built|in ® Built|in@"Arithmetic"DD

We compute:

 X3 X2 X¥ X10 =
x
H¼L

 X3 X2 X¥ X10 =
x
H1L

 X3 X2 X10 =
x
H2L

 X 6
������5

 X10 =
x
H2L

X 15
����������14

�

X 15
����������14

This time we are satisfied with the result. So let us now look at the case of powers, as
announced before. We have already encountered a noncommutative polynomial ring containing

X0 , X1 , X2 , X3 , ¼ when producing the Legendre polynomial in Computation 9 of Chapter 1. Let
us study this is in a bit more detail. The first point to note is that one should not confuse the parame

trized indeterminate X2 with the product X X of two instances of the indeterminate X . In order to
communicate this difference to the reductor, we have to issue the following command:

UsePowers@XD
This tells the reductor to use the indeterminate X as a power, meaning that X2 will not be

interpreted as X X . Now we introduce the superscripted variable X as an indeterminate. We can
compute with the polynomials of C XXi È i Î N\ as expected, but we must be very careful to under
stand the power notation in the appropriate way.

ComputeAHX2 + 1L2 ,

EvaluatorOptions ® 8Indeterminates ® 8X� <, inNotebook ® "None"<E
1 + 2 X2 + X2 2

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

78

Here the monomial X2 2
 is a shortcut for X2 X2 . Internally, this is clearly distinguished as one

can see using the in the Mathematica InputForm:

InputForm@%D
ÔPlus[1, ÔTimes[2, ÔPseudoPower[X, 2]],
 ÔPower[ÔPseudoPower[X, 2], 2]]

This means that the given polynomial is a sum (ÔPlus) having the summands 1 and
ÔTimes@2, ÔPseudoPoser@X, 2DD and ÔPower@ÔPseudoPower@X, 2D, 2D . The former represents
a product (ÔTimes) of 2 and ÔPseudoPower@X, 2D , whereas the latter is the square

(ÔPower@¼, 2D) of ÔPseudoPoser@X, 2D . So we can see that the indeterminate X2 has the inter
nal representation ÔPseudoPower@X, 2D . We have called these expressions pseudo powers,
because it looks like a power but it is not.

Note that the internal name of all symbols within Theorema formulae have a leading Ô in order
to keep them out of the Mathematica namespace. For example, the symbol + is ÔPlus in a Theo
rema formula but Plus otherwise. We can see this in the following example, where we compare the
first formula of the test equalities considered above with the analogous Mathematica expression:

System@"Test Equalities"DP4, 1, 2T �� InputForm

ÔEqual[ÔTimes[X, Y], ÔPlus[Y, Z]]

FullForm@X Y � Y ZD
Equal@Times@X, YD, Times@Y , ZDD

For making the difference even clearer let us do the same computation as before in the polyno
mial ring C XX\ @ C@XD . We undo the declaration for using power notation, and then we start the
computation with the corresponding setting for the indeterminates.

DoNotUsePowers@XD
ComputeAHX2 + 1L2 ,

EvaluatorOptions ® 8Indeterminates ® 8X<, inNotebook ® "None"<E
1 + 2 X2 + X4

InputForm@%D
ÔPlus[1, ÔTimes[2, ÔPower[X, 2]], ÔPower[X, 4]]

Now the result is different, because X2 2
 was understood as ÔPower@ÔPower@X, 2D, 2D , which

gives of course ÔPower@X, 4D , where ÔPower is the real power (rather than the pseudo power)
used for abbreviating iterated multiplication.

As a next step, we want to mimic the algebraic laws used above for reducing HX2 + 1L2 to

1 + 2 X2 + X4 so that we get an analogous result in the polynomial ring C XXn È n Î N\ . But before
doing so, let us ask ourselves why we would take these troubles. Why not simply use the real
powers as above? The answer is that the commutation between multiples of X and the differentia
tion indeterminate D is not be very efficient in this setup. Of course, one can do it using the follow
ing simplistic product rule:

Formula@"Simplistic Product Rule",
D X = X D + 1 "DX" D

Compute@D X6 ,
using ® Formula@"Simplistic Product Rule"D,
EvaluatorOptions ® 8Indeterminates ® 8D, X<<D

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

79

We compute:

 D X6 =
x
H¼L

 D X X5 =
x
HDXL

 X5 + X D X X4 =
x
HDXL

 2 X5 + X2 D X X3 =
x
HDXL

 3 X5 + X3 D X X2 =
x
HDXL

 4 X5 + X4 D X X =
x
HDXL

 5 X5 + X5 D X =
x
HDXL

6 X5 + X6 D �

6 X5 + X6 D

Obviously this is not a very useful way of handling the product rule. So having the atomic
indeterminate X makes multiplication trivial, but only at the cost of making differentiation compli
cated. Therefore let us move to the ring C XXn È n Î N\ again, and let us fix the X� family of
indeterminates together with the differentiation indeterminate D .

UsePowers@XD
SetOptions@ReduceNoncommutativePolynomial,

Indeterminates ® 8D, X� <D;
Formula@"Product Rule", any@nD,

D Xn = Xn D + nXn�1 "DX" D
As explained before, we must explicitly state all external knowledge. That is why we have used

the symbol � for denoting subtraction on the natural numbers. We must provide its implementa
tion, and the most natural choice is of course the Mathematica command Minus. Having done so,
the computation from above does indeed become a trivial one|step shot as expected:

Built|in@"Arithmetic",

�® MinusD
SetOptions@ReduceNoncommutativePolynomial,

inNotebook ® "None"D;
Compute@D X6 ,

using ® Formula@"Product Rule"D, built|in ® Built|in@"Arithmetic"DD
6 X5 + X6 D

But now multiplication is of course not possible any more:

Compute@X2 X3 ,
using ® Formula@"Product Rule"D, built|in ® Built|in@"Arithmetic"D,
EvaluatorOptions ® 8inNotebook ® "None"<D

X2 X3

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

80

Unless we provide the corresponding laws:

Formula@"Power Law", any@m, nD,
Xm Xn = XmÅn "XX" D

Here we have used the symbol Å for denoting addition on the natural numbers. We extend the
implementation of arithmetic in the obvious way, and the computation from above becomes indeed
feasible.

Built|inA"Arithmetic",

Å ® Plus

�® Minus
E

SetOptions@Compute,
using ® 8Formula@"Power Law"D, Formula@"Product Rule"D<, built|in ® Built|in@"Arithmetic"DD;

Compute@X2 X3 D
X5

We have forgotten one more equality needed in this context: What happens when D X is

reduced? The product rule will produce a "power" X0 , which cannot be recognized as being the
same as 1 if it stands by itself:

Compute@D XD
X0 + X D

We could fix this problem by adding the equality X0 = 1. But there is a shortcut to this: Since
equalities saying that some indeterminate is equal to 1 for a certain choice of the parameter, there
is a special option telling the reductor that such an indeterminate acts as a unit. We will add this
option globally, since we will need it again afterwards:

?? Units

´

Option of ReduceNoncommutativePolynomial, with default setting 8<. The option value is interpreted

as a list of polynomial forms to be regarded as equal to 1. For example, setting Units®8X0 <
makes X0 reduce to 1 anywhere during the rewriting process. In effect, this options amounts

to adding the corresponding equation X0 =1 to the ubiquitous hidden knowledge base.

SetOptions@ReduceNoncommutativePolynomial,

Units ® 8X0 <D;
Compute@D XD
1 + X D

The option Units takes a list of specialized indeterminates that are to be considered as units.

The corresponding reductions like X0 ® 1 are not traced, however, just like hidden reduction rules
(see the explanation below).

We have not yet considered an example where both formulae~the product rule and the power
law~are needed. But there are of course plenty of such examples, and the Legendre operator of
Computation 9 of Chapter 1 are a case in point. Let us here look at a slightly more representative
example, which necessitates several XX steps between the DX steps. For this purpose, we reacti
vate the tracing option globally, and we set two other options locally which we will explain
immediately.

SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "Current"D;

Compute@D X2 D2 X3 ,
EvaluatorOptions ® 8ReductionPhases ® 8<, HiddenReductions ® 8<<D

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

81

We compute:

 D X2 D2 X3 =
x
H¼L

 D X2 D2 X3 =
x
HDXL

 2 X D D X3 + X2 D3 X3 =
x
HDXL

 6 X D X2 + 2 X D X3 D + X2 D3 X3 =
x
HDXL

 12 X2 + 6 X X2 D + 2 X D X3 D + X2 D3 X3 =
x
HXXL

 12 X2 + 6 X X2 D + 2 X D X3 D + X2 D3 X3 =
x
HXXL

 12 X2 + 6 X3 D + 2 X D X3 D + X2 D3 X3 =
x
HDXL

 12 X2 + 6 X3 D + 6 X X2 D + 2 X X3 D2 + X2 D3 X3 =
x
HXXL

 12 X2 + 12 X3 D + 2 X X3 D2 + X2 D3 X3 =
x
HXXL

 12 X2 + 12 X3 D + 2 X4 D2 + X2 D2 D X3 =
x
HDXL

 12 X2 + 12 X3 D + 2 X4 D2 + 3 X2 D D X2 + X2 D2 X3 D =
x
HDXL

 12 X2 + 12 X3 D + 2 X4 D2 + 6 X2 D X + 3 X2 D X2 D + X2 D2 X3 D =
x
HDXL

 12 X2 + 12 X3 D + 6 X2 X0 + 2 X4 D2 + 6 X2 X D + 3 X2 D X2 D + X2 D2 X3 D =
x
HXXL

 18 X2 + 12 X3 D + 2 X4 D2 + 6 X2 X D + 3 X2 D X2 D + X2 D2 X3 D =
x
HXXL

 18 X2 + 18 X3 D + 2 X4 D2 + 3 X2 D X2 D + X2 D2 X3 D =
x
HDXL

 18 X2 + 18 X3 D + 2 X4 D2 + 6 X2 X D + 3 X2 2
 D2 + X2 D2 X3 D =

x
HXXL

 18 X2 + 24 X3 D + 2 X4 D2 + 3 X2 2
 D2 + X2 D2 X3 D =

x
HXXL

 18 X2 + 24 X3 D + 5 X4 D2 + X2 D D X3 D =
x
HDXL

 18 X2 + 24 X3 D + 5 X4 D2 + 3 X2 D X2 D + X2 D X3 D2 =
x
HDXL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

82

 18 X2 + 24 X3 D + 5 X4 D2 + 6 X2 X D + 3 X2 2
 D2 + X2 D X3 D2 =

x
HXXL

 18 X2 + 30 X3 D + 5 X4 D2 + 3 X2 2
 D2 + X2 D X3 D2 =

x
HXXL

 18 X2 + 30 X3 D + 8 X4 D2 + X2 D X3 D2 =
x
HDXL

 18 X2 + 30 X3 D + 8 X4 D2 + 3 X2 2
 D2 + X2 X3 D3 =

x
HXXL

 18 X2 + 30 X3 D + 11 X4 D2 + X2 X3 D3 =
x
HXXL

18 X2 + 30 X3 D + 11 X4 D2 + X5 D3 �

18 X2 + 30 X3 D + 11 X4 D2 + X5 D3

Looking at the trace above, we have the feeling that the "boring" XX steps are somehow distract
ing from the "actually important" DX steps; and this becomes even more prominent when consider
ing the full set of Green’s identities explicated repeatedly in Chapter 1. Somehow one considers
the steps for contracting Xm Xn to XmÅn as a low|level operation that is not in focus here; in fact,
we introduced it only for technical reasons as explained above. That is why the evaluator provides
an option for hiding such uninteresting steps, which are called hidden reductions. In the Compute
call above, we have explicitly asked for having no hidden reductions by setting the option Hidden
Reductions to the value 8< . Let us now set it to the reductions specified in the formula with the
label "Product Law". Naturally, this is done by listing just the string containing the label in the list
that was formerly empty (we assume that the string is not reused across different environment
labels in one and the same call as this would be really bad style):

Compute@D X2 D2 X3 ,
EvaluatorOptions ® 8ReductionPhases ® 8<, HiddenReductions ® 8"Power Law"<<D

We compute:

 D X2 D2 X3 =
x
H¼L

 D X2 D2 X3 =
x
HDXL

 2 X D D X3 + X2 D3 X3 =
x
HDXL

 6 X D X2 + 2 X D X3 D + X2 D3 X3 =
x
HDXL

 12 X2 + 6 X3 D + 2 X D X3 D + X2 D3 X3 =
x
HDXL

 12 X2 + 12 X3 D + 2 X4 D2 + X2 D2 D X3 =
x
HDXL

 12 X2 + 12 X3 D + 2 X4 D2 + 3 X2 D D X2 + X2 D2 X3 D =
x
HDXL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

83

 12 X2 + 12 X3 D + 2 X4 D2 + 6 X2 D X + 3 X2 D X2 D + X2 D2 X3 D =
x
HDXL

 18 X2 + 18 X3 D + 2 X4 D2 + 3 X2 D X2 D + X2 D2 X3 D =
x
HDXL

 18 X2 + 24 X3 D + 5 X4 D2 + X2 D D X3 D =
x
HDXL

 18 X2 + 24 X3 D + 5 X4 D2 + 3 X2 D X2 D + X2 D X3 D2 =
x
HDXL

 18 X2 + 30 X3 D + 8 X4 D2 + X2 D X3 D2 =
x
HDXL

18 X2 + 30 X3 D + 11 X4 D2 + X5 D3 �

18 X2 + 30 X3 D + 11 X4 D2 + X5 D3

Now this is much more compact to read; the trivial "algebraic" steps are suppressed. Let us now
add two more indeterminates L, R denoting left and right boundary values on the interval @0, 1D .

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8D, X� , L, R<D;

A typical collection of identities for dealing with these boundary operators is as following. The
differentiation of any constant gives zero, hence D L and D R does as well; we add these identities
to the product rule, because they are all instances of the more general law of differentiating "across
a function" (which is either a simple power as in Xn or a constant function as in L and R). Further
more, the left and right boundary value of x# xn is 0 and 1, respectively, hence we have
L Xn = 0, R Xn = Xn ; we will package this in a system by itself.

SystemA"Product Laws", any@nD,
D Xn = Xn D + nXn�1 "DX"

D L = 0 "DL"

D R = 0 "DR"

E

SystemA"Boundary Laws", any@nD,
L Xn = 0 "LX"

R Xn = R "RX"

L L = L "LL"

L R = R "LR"

R L = L "RL"

R R = R "RR"

E

Now we could of course throw all of these identities in one big pot, and for those few identities
considered here it would actually not do much harm. But for enhancing clarity as well as effi
ciency, it is more advisable~especially for bigger systems like the Green’s identities~to collect
the identities into blocks that are to be used in succeeding reduction phases. We have explained
this in some detail after Convention 13 in Chapter 1. Even in the toy example considered here, it is
still reasonable to apply the product laws in a first phase (with the "operational goal" of pushing
the differential operators to the very right) and the boundary laws in a second phase (with the
"operational goal" of pushing the boundary operators as far right as possible); the "algebraic"
reductions due to the power law should of course be applied throughout. We call equalities belong
ing to a certain phase (like the product and boundary laws in our example) "phase equalities" and

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

84

ing to a certain phase (like the product and boundary laws in our example) "phase equalities" and
those to be applied throughout "ubiquitous equalities" (like the power law in our example). In the
Compute call, this is handled via the option ReductionPhases, which takes the list of all the labels
belonging to phase equalities. In our example, we would thus say (making the ubiquitous reduc
tions from the power law hidden as before):

SetOptions@Compute,
using ® 8System@"Product Laws"D, System@"Boundary Laws"D, Formula@"Power Law"D<D;

SetOptions@ReduceNoncommutativePolynomial,
HiddenReductions ® 8"Power Law"<, ReductionPhases ® 8"Product Laws", "Boundary Laws"<D;

Note that the labels in the list after ReductionPhases are processed in the order they are given,
meaning that "Product Laws" makes up the first phase and "Boundary Laws" the second. Of
course, some labels might also repeat, if a certain phase should be entered more than once. Inciden
tally, we could have left out the specification of the hidden reductions above, because the default
setting is to hide exactly the ubiquitous reductions as this is the usual situation. This is also
explained in the official online documentation:

?? HiddenReductions

´

Option of ReduceNoncommutativePolynomial, with default setting Automatic. The
option value is interpreted as a list of labels referring to those environments that should
be used without tracing. The automatic setting means that exactly the ubiquitous
reductions are hidden - those polynomial rules that are not specified as reduction phases.

?? ReductionPhases

´

Option of ReduceNoncommutativePolynomial, with default setting Automatic. The option value is
interpreted as a list of labels referring to those environments that should be used as subsequent
reduction phases in the order specified by this option. The automatic setting means that all
the environments are taken as reduction phases in the order in which they are specified.

Before concluding the description of the reductor and its options, let us do a small computation
in the setup introduced above.

Compute@R X2 HD X3 R X2 - R HX2 + 1LL+ L D XD
We compute:

 R X2 HD X3 R X2 - R HX2 + 1LL+ L D X =
x
H¼L

 L D X - R X2 R - R X2 R X2 + R X2 D X3 R X2 =
x
HDXL

 L + L X D - R X2 R - R X2 R X2 + R X2 D X3 R X2 =
x
HDXL

 L + L X D - R X2 R - R X2 R X2 + 3 R X4 R X2 + R X5 D R X2 =
x
HDRL

 L + L X D - R X2 R - R X2 R X2 + 3 R X4 R X2 =
x
HLXL

 L - R X2 R - R X2 R X2 + 3 R X4 R X2 =
x
HRXL

 L - R2 - R X2 R X2 + 3 R X4 R X2 =
x
HRXL

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

85

 L - R2 - R R X2 + 3 R X4 R X2 =
x
HRXL

 L - 2 R2 + 3 R X4 R X2 =
x
HRXL

 L - 2 R2 + 3 R R X2 =
x
HRXL

 L + R2 =
x
HRRL

L + R �

L + R

This finishes the presentation of the evaluator itself. As mentioned above, there is also a small
add|on toolbox, which we have called the confluence tools (comprising the function described here
and that described in Section 5), because they can help proving the confluence of some reduction
systems; and this is of course what we did in the proof of Theorem 28 in Chapter 1. Note that we
do not regard these tools as a ready|to|go package like the reductor or the Green’s evaluator~it
was only designed for supporting this proof. Hence its usage is somewhat more technical and
demands some knowledge of Mathematica and Theorema programming. The way the function
described here was actually used is only through a special interface function named ProveConflu
ence within the Green’s evaluator, which will be described in Section 5. The idea of the ProveCon
fluence function is to adapt the generic computation of S|polynomials to the special situation of
the Green’s identities.

The main function to be considered here is called SPolynomials, since it determines all the rule
overlaps and computes their S|polynomials. The interface to this function is very similar to that of
the basic evaluator ReduceNoncommutativePolynomial itself; in fact, it follows the standard of
all Theorema provers and evaluators: It accepts a visible, a hidden, and a built|in database as well
as some options that are identical with those of ReduceNoncommutativePolynomial.

Note that for provers and evaluators, the user normally does not see their own interface,
because they are only called indirectly through the Prove and Compute functions. Such a generic
procedure would not be appropriate for determining the S|polynomials, though, and that is why for
the moment we prefer to address the function SPolynomials by its own interface or rather by the
function ProveConfluence described in Section 5. In a later version of Theorema we might have a
clear standard for such "extra calculations", much in the sense of integrating proving and comput
ing as explained in the Section 1.

But for getting some basic understanding about its functionality, let us prove confluence for the
toy example above using only the function SPolynomials directly. The most important point is to
generate the knowledge base to be used, in our case containing the power, product and boundary
laws. The most convenient way to do so is via the global Theorema knowledge base. First we clear
the knowledge base (it should actually be empty, but we want to be sure) by the command Use,
then we add the three environments needed using the command UseAlso. The result will be avail
able via the internal Theorema slot $TmaUserKB[·kb], so we save this value to an auxiliary
variable kb, and then we clear up the global knowledge base again:

Use@D
UseAlso@Formula@"Power Law"DD
UseAlso@System@"Product Laws"DD
UseAlso@System@"Boundary Laws"DD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

86

kb = Theorema‘Language‘Semantics‘UserLanguage‘Private‘$TmaUserKB@·kbD;
Use@D

Now we can use the function SPolynomials using the auxiliary variable kb for the visible
knowledge base in the first argument. We do no hidden knowledge, so we use the generic Theo
rema template EmptyEnvironment for providing an empty environment; and the list of built|ins
is empty as well (note that, unlike the proper knowledge bases like those before, the built|ins are
always stored as lists in Theorema). Then we feed in some options, analogous to what we would
use for calling Compute for the reduction system under investigation.

SPolynomials@kb, EmptyEnvironment@·kb, "None"D, 8<,
Indeterminates ® 8D, X� , L, R<, Units ® 8X0 <, ReductionPhases ® 8<, HiddenReductions ® 8<D
88LL, LX, L Xn <, 8LL, LL, 0<, 8LL, LR, 0<, 8LR, RX, -L R + R Xn <, 8LR, RL, -L2 + R L<, 8LR, RR, -L R + R2 <,
8RL, LX, L Xn <, 8RL, LL, L2 - R L<, 8RL, LR, L R - R2 <, 8RR, RX, R Xn - R2 <, 8RR, RL, 0<, 8RR, RR, 0<,8DL, LX, 0<, 8DL, LL, -D L<, 8DL, LR, -D R<, 8DR, RX, -D R<, 8DR, RL, -D L<, 8DR, RR, -D R<<

spolys = Select@%PAll, 3T, # =!= 0 &D
8L Xn , -L R + R Xn , -L2 + R L, -L R + R2 , L Xn ,

L2 - R L, L R - R2 , R Xn - R2 , -D L, -D R, -D R, -D L, -D R<
The result returned by SPolynomials is a list containing one triple for each overlap: The first

two elements of each triple signify the rules involved in the overlap, whereas the third is the S|
polynomial produced from them. For example, the first triple in the list tells us that the rules LL
and LX overlapped (namely on the monomial L L Xn), and they yield the S|polynomial L Xn

(because reducing L L Xn by the rules LL and LX yields L Xn and 0, respectively, with the differ
ence being L Xn).

Now some of these S|polynomials came out to zero immediately, whereas the others are easily
seen to reduce to zero. For doing this automatically, we produce the list of all the S|polynomials
from the list of triples by %PAll, 3T , and then we select the sublist of nonzero entries from the
resulting list by saying Select@¼, # =!= 0 &D . This list of nonzero S|polynomials is stored in an
auxiliary variable spolys.

Finally, we reduce all of these nonzero S|polynomials by mapping the Compute function over
them.

SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "None"D;

Compute �� spolys

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
All of them came out to zero, as we expected. The function ProveConfluence to be described

in Section 5 can be thought of as a kind of elaborate interface automating the hand|crafted proce
dure carried out above. Moreover, it provides some support for using axioms about the parameter
domain~a crucial feature for the successful application of the confluence tools to the proof of
Theorem 28 in Chapter 1.

2.4 The Matrix Evaluator

The matrix evaluator EvaluateMatrices provides the following (mostly partial) operations on the
graded matrix ring Üm,n=1

¥ Rm´n over some base ring R containing C :

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

87

è Constructor: If mn complex numbers c11 , ¼, c1n , ¼, cn1 , ¼, cnn are given, the m ´ n
matrix

i
k
jjjjjjj

c11 ¼ c1n

» ¸ »

cn1 ¼ cnn

y
{
zzzzzzz

may be formed in the usual Mathematica manner of grids, using âÖ, for creating columns
and âÖç for creating rows.

è Selector: If M is an m ´ n matrix and 1 < i < m , the selector Mi returns the i|th row of M ,
being itself a 1 ´ n matrix (hence a row matrix).

è Quantifier: If T is some term typically containing a free occurrence of n , we can create a
HB - A + 1L´ 1 (hence a column vector) with entries Tn¬A , Tn¬A+1 , ¼, Tn¬B-1 , Tn¬B byXT È n = A, ¼, B\ . Note the similarity to the set quantifier 8T È n = A, ¼, B< , which would
collect all the entries in an unordered and repetition|free way.

è Dimension: If M is an n ´ n matrix, dim@MD is n . (If M is not a square matrix, this function
should not be used; it would return the number of columns of M .)

è Addition: If M1 and M2 are both m ´ n matrices, their sum may simply be formed as
M1 + M2 . Note that M1 - M2 is of course M1 + H-1L M2 , where the premultiplier -1 is to
be understood as a scalation (see below).

è Scalation: If M is an m ´ n matrix with entries m11 , ¼, m1n , ¼, mn1 , ¼, mnn and c is a
complex number, the matrix M may be scaled by c to a matrix having entries
cm11 , ¼, cm1n , ¼, cmn1 , ¼, cmnn . This matrix may be denoted by either cm or by mc .

è Multiplication: If M1 is an m ´ n and M2 an n ´ k matrix, their product may simply be
specified as M1 M2 . Note that the "multiplication symbol" (which can be either the explicit
operator symbol * or simply juxtaposition) is overloaded~it denotes ordinary multiplica
tion if both operands are scalars, scalation if one of them is a scalar and the other one a
matrix, matrix multiplication if they are both matrices.

è Inversion: If M is a regular n ´ n , its inverse is denoted by M-1 . Note again the overload
ing involved in this notation; for normal complex numbers, the ordinary reciprocal is of
course used instead.

Let us now do some examples. First, let us construct a generic 2 ´ 2 matrix and analyze its
internal form:

M =
i
kjjj

a b

c d

y
{zzz

i
kjjj

a b

c d

y
{zzz

InputForm@MD
ÔMatrix[ÔTuple[ÔTuple[a, b], ÔTuple[c, d]]]

Obviously matrices are regarded as tuples containing tuples of the same length, but they are
again packed into a container named ÔMatrix in order to ensure that the type information is not
lost.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

88

lost.
Now let us select the first row and its second row.

SetOptions@Compute, by ® EvaluateMatricesD;
Compute@M1 D
H a b L
Compute@M2 D
H c d L

Let us now construct a column vector by the quantifier:

Compute@XSn È n = 2, ¼, 4\D
i

k
jjjjjjjjjj

S2

S3

S4

y

{
zzzzzzzzzz

We convince ourselves that M is indeed a 2 ´ 2 matrix, i.e. it has dimension 2:

Compute@dim@MDD
2

Let us now add M to itself, triple it, multiply it by itself, and finally invert is:

Compute@M + MD
i
kjjj

a + a b + b

c + c d + d

y
{zzz

Compute@3 MD
i
kjjj

3 a 3 b

3 c 3 d
y
{zzz

Compute@M MD
i
kjjj

a a + b c a b + b d

c a + d c c b + d d
y
{zzz

Compute@M-1 D
i
k
jjjjj d H-1 b c + a dL-1 -1 b H-1 b c + a dL-1

-1 c H-1 b c + a dL-1 a H-1 b c + a dL-1

y
{
zzzzz

As we can see from the examples above, no special knowledge is assumed about the base ring
R . In particular, we do not presuppose that R is commutative. This is important for using the
matrix evaluator for working with operator matrices as applied in the Green’s evaluator; see
Section 5.

The overloading mechanism described above is trivial as long as one deals with concrete
matrices. This was the case in all the examples above. Consider the following typical situation:

ComputeAikjjj
r s

t u

y
{zzz+
i
kjjj

1 2

3 4

y
{zzzE

i
kjjj

r + 1 s + 2

t + 3 u + 4

y
{zzz

Here it is clear that the symbol + denotes matrix addition, because both the left and the right
operands are readily recognized as matrices: The constructor used for building them necessarily
returns a matrix. But now let us think about the slightly more complicated situation of Input 43.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

89

returns a matrix. But now let us think about the slightly more complicated situation of Input 43.
We had the following formulae there:

DefinitionA"Wronski Operator", any@nD,
Dn

`
= XDi È i = 0, ¼, n - 1\

E
FormulaA"Nullspace Projector", anyAẁ, l

`
, r̀E,

Proj
ẁ
Al`, r̀E = `ẁ1 p Il` ẁ

¬
+ r̀ ẁ

® M-1
 IL l

`
 Dn

`
+ R r̀ Dn

` M Ë @n = dim@ẁDD
E

How can we know that the symbol + in the subterm l
`
ẁ

¬
+ r̀ ẁ

®
 is supposed to denote matrix

addition, the next operation matrix inversion, etc? The answer is that we have introduced the
following typing convention: All variables carrying a hat are considered as matrices (including row
and column vectors), all other variables as scalars. Using this scheme, it is fairly straightforward to
set up a corresponding type inference, which goes roughly as follows. Since ẁ is a matrix, so are

ẁ
¬

 and ẁ
®

 as well as the products l
`
ẁ

¬
 and r̀ ẁ

®
; hence l

`
ẁ

¬
+ r̀ ẁ

®
 is their matrix sum, being

itself a matrix again. Therefore Il` ẁ
¬

+ r̀ ẁ
®M-1

 will be understood as matrix inversion, etc.

Finally, let us remark that the base ring R is identified with R1´1 . This saves us from the trouble
of accessing the entries of such 1 ´ 1 matrices via subscripting. For example, multiplying a 1 ´ 2
with a 2 ´ 1 matrix will give a scalar:

a = H r s L;
InputForm@aD

ÔMatrix[ÔTuple[ÔTuple[r, s]]]

b =
i
kjjj

u

v

y
{zzz;

InputForm@bD
ÔMatrix[ÔTuple[ÔTuple[u], ÔTuple[v]]]

Compute@a bD
r u + s v

InputForm@%D
ÔPlus[ÔTimes[r, u], ÔTimes[s, v]]

We can see that the last result is not packed into ÔMatrix anymore, meaning that it is a scalar.
The effect of unpacking is seen even more clearly by using the internal forms:

Compute@ÔMatrix@ÔTuple@ÔTuple@uD, ÔTuple@vDDDD
i
kjjj

u

v

y
{zzz

InputForm@%D
ÔMatrix[ÔTuple[ÔTuple[u], ÔTuple[v]]]

Compute@ÔMatrix@ÔTuple@ÔTuple@uDDDD
u

InputForm@%D
u

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

90

The identification of 1 ´ 1 matrices and scalars is important for the computation of the
nullspace projector effected by the formula given above: It will come out as a scalar in the end for
the following reason. Starting from left, `ẁ1p is an 1 ´ n matrix (namely the first row of the Wron
skian matrix, i.e. the fundamental system written as a row vector). Then it is multiplied by the n ´ n

matrix Il` ẁ
¬

+ r̀ ẁ
®M-1

, thus still being of format 1 ´ n . Finally, L l
`
 Dn

`
+ R r̀ Dn

`
 has format n ´ 1,

since D
`

n does (the Wronski operator yields a column vector because it is defined in terms of the

quantifier construct explained above) and both l
`
 and r̀ are n ´ n , whereas both L and R are scalars.

Hence we have a product of a 1 ´ n and an n ´ 1 matrix, giving a 1 ´ 1 matrix that is identified
with its scalar entry.

2.5 The Green’s Evaluator

The Green’s evaluator is the interface used for solving BVPs by the method explicated in
Chapter 1. It is called GreenEvaluator and can be used in a Compute call just as any other
evaluator. It can do various tasks according to the term transmitted:

è Computing Nullspace Projectors: For obtaining the nullspace projector associated with the

boundary matrices l
`
 and r̀ and the Wronskian matrix ẁ , one must compute ProjẁAl`, r̀E with

a knowledge base containing the appropriate definitions for l
`
, r̀ and ẁ . The computation is

carried out by unfolding the formulae in Input 43. See the examples given there.

è Right Inversion: For obtaining the right inverse of a linear constant|coefficient operator T ,
one must compute Tì with a knowledge base containing some definition of T . The compu
tation is carried out by unfolding the definition of Input 41. See the examples given there.

è Green’s Reduction: The kernel of the Green’s evaluator is of course the interface to the
reductor, specialized to the noncommutative polynomial ring An and the Green’s identities
of Input 14. For carrying out a reduction in this sense, one can simply feed in the polyno
mial to be reduced.

è Miscellaneous Built|ins: Some of the formulae referred to above need external operations
that are delegated to Mathematica. The formula for the right inverse uses three functions
named poly, deg, rad for computing the characteristic polynomial of a differential operator,
the degree of a polynomial and the roots of a polynomial, respectively. In the formula for
the Green’s operator, the functions wron, left and right are used for computing the Wron
skian matrix of a differential operator and the left/right boundary matrix of a system of
boundary operators, respectively. All these external functions are implemented and made
available in the Green’s evaluator.

è Basis Expansion: As explained in Chapter 1 after Definition 12, analytic polynomials have
to be subjected to a process of basis expansion after reduction, otherwise they will in
general not remain analytic polynomials. The Green’s evaluator takes care of this issue
automatically.

è Action Operators: The analytic polynomials are built on an analytic algebra that forms the
parameter domain of the multiplication operators. The operations available on this
domain~differential, integral, cointegral, left and right boundary action~are fully sup
ported by the Green’s evaluator.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

91

è Computing Green’s Operators: This is of course the heart piece, which puts together all
the components listed above. For obtaining the Green’s operator induced by the differential
operator T and the boundary operators B1 , ¼, Bn , one may simply compute
Green@T, XB1 , ¼, Bn\D .
è Properties of Analytic Algebras: They are used for the confluence proof; see the explana

tion below.

The Green’s evaluator needs just two options: The option BoundaryPoints specifies the inter
val on which the BVP is to be solved, the default being the unit interval. In case one wants to see a
nullspace projector, a right inverse or a Green’s operator in its "raw form" (meaning in the latter
case that one will in general not be able to read off the Green’s function), one may deactivate the
option ReduceAfterwards, which is of course activated by default.

Options@GreenEvaluatorD
8BoundaryPoints ® 80, 1<, ReduceAfterwards ® True<
?? BoundaryPoints

´ Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘BoundaryPoints

?? ReduceAfterwards

´ Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘ReduceAfterwards

The Green’s evaluator is also central place for providing the special parsing and formatting
used throughout the Green’s suite. All the special notations are provided both on the input side
(parsing) and on the output side (formatting). The former is done by the Mathematica function
MakeExpression, the latter by the Mathematica function MakeBoxes. The details about these
processes are irrelevant; let us just give the correspondence between the concrete and abstract
syntax:

è Multiplication Operator: An expression of the form ` f p is represented internally as
ÔMultiplicationOperator@ f D .
è Basis Expansion: An expression of the form f # is represented internally as

ÔBasisExpansion@ f D .
è Boundary Action: Expressions of the form f ¬ and f ® are represented internally as

ÔLeftBoundaryValue@ f D and ÔRightBoundaryValue@ f D , respectively.

è Integral and Cointegral Action: Expressions of the form Ù *
f and Ù* f are represented

internally as ÔIndefiniteIntegral@ f D and ÔIndefiniteCoIntegral@ f D , respectively. The
precedence of these operators is adjusted according to Convention 21.

è Definite Integral Action: An expressions of the form � f is represented internally as

ÔDefiniteIntegral@ f D . The precedence of this operator is adjusted according to
Convention 21.

è Right Inverse: An expressions of the form Tì is represented internally as
ÔDifferentialOperatorRightInverse@TD .

Having now finished the description of the essential features provided by the Green’s evaluator,
let us briefly describe the main interface of the confluence tools, the function ProveConfluence in
the Green’s evaluator. As explained above, this function is basically a specialized shell around the
function SPolynomials sketched in Section 3. Since it is supposed to prove the confluence of just

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

92

function SPolynomials sketched in Section 3. Since it is supposed to prove the confluence of just
one system~the Green’s identities hardwired in the Green’s evaluator~there is no need for any
arguments. Hence one can ask for the confluence proof by simply saying:

ProveConfluence@D
The main output from this function is of course: YES or NO, i.e. whether or not all S|polynomi

als have reduced to zero. This is shown at the very end of its output, together with the timing
information, the total number of S|polynomials and the number of nonzero ones (which is hope
fully 0). Besides this cumulative result, it gives the trace for every S|polynomial reduction (where
the caption is now "The rules ¼ and ¼ yield the S|polynomial ¼:" rather than "We compute:"~
see Section 3); see Computation 29 for several full examples. The justifications of the equalities
linking the reduction chains are of a dual nature: They either come from a polynomial equation of
Input 14 or from one of the properties of analytic algebras. In case of problems, the offending S|
polynomials and the rules where they come from are repeated at the end of the computation (which
was very helpful when tuning the Green’s identities and the axioms of analytic algebra).

Fortunately, this last feature of ProveConfluence was not used in the final proof of
Theorem 29¼

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

93

3 Implementation Notes

Whereas the last chapter was oriented towards users of the Green’s suite who may not be inter
ested in any internal issues of implementation, the present chapter wants to address the program
mers. Our goal is to give a rough outline of how the various functions described in the previous
chapter have been realized and to point out some of the subtler points hidden in the code. There
fore it seems most natural to follow the same structure as in the user chapter, commenting first on
some general issues of implementation, then specifically on the noncommutative polynomial
reductor, the matrix evaluator, and the Green’s evaluator.

The structure of this chapter is essentially as that of the previous one. In Section 1, we briefly
discuss some general issues concerning programming in Theorema. Section 2 explains the architec
ture of the Green’s suite from the programmer’s point of view. As in the previous chapter, the
remaining sections describe the three main components of the Green’s suite: the polynomial
reductor in Section 3, the matrix evaluator in Section 4, and finally the Green’s evaluator in
Section 5.

3.1 General Design Principles in Theorema Programming

In its current version, Theorema uses Mathematica for three different~and in principle orthogo
nal~purposes:

è Its front|end is used for convenient input and output of mathematical formulae in natural
syntax. There is hardly any other system in the world that allows so much freedom in
programming all details of parsing and formatting, covering a great portion of the notations
really used by the working mathematician. (Note, however, that Mathematica does not~
yet~officially support custom|tailored lexical analysis, which would be important e.g. for
choosing a now text|like symbol like í to be used as an infix operator.)

è The vast library of mathematical functions provided by the Mathematica kernel as well as
by its add|on packages may be used within proofs and computation if desired. We have
made use of this facility for providing the built|ins of the Green’s evaluator; see Section 5
of Chapter 2. (As explained in Section 1 of Chapter 2, this cannot introduce any inconsis
tency, because nothing is imported by default; the user always has to demand external
knowledge explicitly.)

è Finally, Mathematica is also the implementation platform of Theorema. This is no final
decision, because in essence we use only a few very basic rewrite functions that can be
implemented in other languages like C or Java or ML. The advantage of Mathematica is
that it is a very convenient system for rapid prototyping; its disadvantage is that it is very

slow (for some tasks the slow|down is as much as 103).

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

94

In the present chapter, the only Mathematica aspect important to us is the third. Let us therefore
first state some of the primary design principles of Mathematica programming as we see it in
Theorema. One important aspect is that Mathematica provides some fairly efficient mechanisms
for structuring moderately large amounts of code. In Theorema, we have approximately 150
different files, each containing hundreds of lines of code. The basic unit for structuring this mass is
the Mathematica concept of packages:

è Every file corresponds to one package, having its own namespace that is typically named
as the file. The namespaces~called contexts in Mathematica~are hierarchically orga
nized, and their structure is typically isomorphic to the directory structure of the physical
files underlying the packages.

è A package has a clear interface that defines which of the symbols are to be exported; all
other symbols are only visible inside the package as a kind of local auxiliaries (this is even
true for global variables as long as they are not exported~hence we call such variables
package|global). In C++ terminology, the former symbols would be called "public" and the
former "private".

è The packages are loaded on along their dependency graph. Each package starts by announc
ing its own name together with the names of those packages on which it depends. The
Mathematica package mechanism then makes sure that everything is recursively loaded at
the proper time when the top|level package is loaded; this is what happens when saying:
Needs["Theorema‘"].

è The system is loaded on a dynamical basis. When Theorema is first started, only the
crucial packages are provided. But whenever the user issues a command mentioning
certain autoload keywords like the name of user prover, the system will automatically load
the necessary portion of packages for executing the command specified by the user.

The file structure of Theorema consists of the following key branches:

è The language directory Theorema/Language/ contains all the material related to parsing
and formatting (centered on MakeExpression and MakeBoxes, respectively), the user
language (whose core functions are Prove, Compute, Solve), and the formal text language
(providing most importantly the environments like Theorem, Lemma, Definition). The
language directory has three subdirectories General/, Syntax/, Semantics/.

è The kernel directory Theorema/Kernel/ containing the init file responsible for properly
setting up Theorema. This directory also contains the file with the autoload data mentioned
above.

è The technical directories Theorema/General/ and Theorema/System/ containing various
functions for administering the overall data structures used by the system. The Theorema
developer can also find some practical programs for package synthesis and debugging
there.

è The prover directory Theorema/Provers contains all the basic and user provers of Theo
rema. Each of the former is typically contained in one subdirectory with a corresponding
name (e.g. the PredicateProver resides in the subdirectory PredicateLogic/), whereas the
latter ones are collected in one subdirectory named UserProvers/.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

95

è The evaluator directory Theorema/Evaluators is somewhat analogous to the prover
directory. However, as of now, there was essentially only one basic evaluator and no user
evaluator.

è The user directory Theorema/User/ containing customization files for modifying certain
issues of style according to the taste of a user. This is of course only used in the local
directory structure (see below).

The Theorema file structure as sketched above usually resides in some system|wide location,
which we call the public installation. In addition to this installation available to everyone, a user
may also create her own private installation. The latter has exactly the same structure as the public
installation, and so Mathematica can use the following simple rule for resolving any package in the
Theorema file structure. If a certain package should be loaded, the private installation is checked: if
it contains a package by the name demanded, it is loaded, otherwise the analogous file of the public
installation is taken. This scheme ensures a high degree of flexibility, and it provides a convenient
development platform: As long as a package is not yet worked out completely, it remains in the
private installation; if it is mature for common usage, it can be migrated to the public installation
(which is of course layered through an appropriate versioning mechanism).

3.2 Organization of the Green’s Suite

As suggested by the Theorema file structure explained above, we have distributed the packages of
the Green’s suite in a manner analogous to the user and basic provers of Theorema:

è The basic evaluators ReduceNoncommutativePolynomial and EvaluateMatrices reside
as individual packages in the evaluator directory Theorema/Evaluators/ alongside with
the older basic evaluator EvaluateStandard.

è The user evaluator GreenEvaluator is located as another package within Theorema/Evalu
ators/ in a user evaluator subdirectory named UserEvaluators/.

è It might seem natural to have the notation|related code somewhere under Theorema/
Language/Syntax/. The basic agreement in Theorema was, however, to have only the
universally relevant notation settings in the language subdirectory; all domain|specific
material of this kind should be packaged together with the prover / solver / evaluator using
it. Therefore we have put the corresponding code into the three packages mentioned above.

Besides the three main packages~the polynomial reductor, the matrix evaluator and the
Green’s evaluator~there is one more file named GreenEnvironments in the user evaluator
subdirectory, alongside with the package GreenEvaluator. It contains all the environments that
are needed by the Green’s evaluator, e.g. Formula["Differential|Operator Right Inverse"] in
Input 41 or Formula["Nullspace Projector"] in Input 43 and of course the Green’s system in
Input 14; all in Chapter 1. For a detailed description of how to apply these environments separately
see Section 5 of Chapter 2.

The need of saving environments for later use is new in Theorema. Until now formal text was
only saved in normal Mathematica notebooks, and one had to open these notebooks and evaluate
the corresponding cells for recommitting the environments to the kernel. In case of the Green’s
evaluator, we wanted to provide a more convenient mechanism for providing the necessary environ
ment knowledge to the kernel. Therefore we have implemented a function named SaveEnviron
ment that accepts any environment currently known to the kernel as an argument and makes out of

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

96

ment that accepts any environment currently known to the kernel as an argument and makes out of
it a definition written to an external file such that the same environment knowledge becomes
known to the kernel again as soon as the external file is loaded like a package. For example,
consider the following two cells:

FormulaA"Differential|Operator Right Inverse", any@TD,
Tì = ä

i=1,¼,n

aãΛ
`

i x q A aã-Λ
`

i x q
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Ap = poly@TD, n = deg@pD, Λ

`
= rad@pDE

E
SaveEnvironment@Formula@"Differential|Operator Right Inverse"DD;

When evaluating these two cells, the following will happen: As usual in evaluating environ
ment specifications, the first cell commits the knowledge about Formula["Differential|Operator
Right Inverse"] to the kernel. Evaluating the second cell will then write a definition like this to
some predefined external file:

Formula@"Differential|Operator Right Inverse"D :=
·fml@"Differential|Operator Right Inverse", ·range@·simpleRange@·var@Tma‘TDDD, True, ·

flist@
·lf@"",

ÔEqual@ÔDifferentialOperatorRightInverse@·var@Tma‘TDD,
ÔWithLocalValues@·range@

·locval@Tma‘p, poly@·var@Tma‘TDDD,
·locval@·var@Tma‘nD, deg@Tma‘pDD,
·locval@·var@OverHat@Tma‘ΛDD, rad@Tma‘pDDD,

ÔProductOf@·range@·integerRange@·var@Tma‘iD, 1, ·var@Tma‘nDDD, True, ÔTimes@
ÔMultiplicationOperator@ÔPower@ÔE,

ÔTimes@ÔMatrixSubscript@·var@OverHat@Tma‘ΛDD, ·var@Tma‘iDD, Tma‘xDDD, A,
ÔMultiplicationOperator@ÔPower@ÔE,

ÔTimes@ÔMinus@ÔMatrixSubscript@·var@OverHat@Tma‘ΛDD, ·var@Tma‘iDDD, Tma‘xDDDDDDDDDD
Evaluating this definition has the same effect as evaluating the first of the two cells displayed

above. Hence the environment information will be made available to the kernel when the external
file containing this definition is loaded. Now the structure of the file "GreenEnvironments.nb" is
such that it contains~besides some administrative functions~pairs of cells like the one above, the
first always being an environment specification and the second a corresponding call to SaveEnvi
ronment for writing the definition to the external file, which is defined to be "Green
Environments.m".

The programmer of the Green’s evaluator uses this file as follows: Whenever she wants to
make some changes to the environments to be used by the evaluator, she modifies the correspond
ing specifications in the file "GreenEnvironments.nb" accordingly. Having done so, she simply
evaluates the package initialization (this can be done by the menu command Kernel ® Evaluation
® Evaluate Initialization). This will automatically create a new version of "Green
Environments.m", which is the source file used by the Green’s evaluator.

3.3 Implementation of the Polynomial Reductor

Before going into any details about the implementation, we should answer the following fundamen
tal question: Why should one create a new evaluator in the first place? In principle, one could use
the Theorema all|purpose evaluator EvaluateStandard also for reducing polynomials. This would
be very cumbersome, though, for the following reasons:

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

97

è Handling normalization rules such as polynomial expansion should be internalized both
for efficiency and clarity. Adjoining rules like Ha + bL c ® ac + bc to the reduction rules
coming from polynomial equalities would cause a considerable chaos and slowdown of the
overall computation. Moreover, several axioms such as additive commutativity cannot be
handled in a purely rewrite fashion.

è As explained in Section 3 of Chapter 2, we want to use a multi|level strategy that breaks
the reduction process into several logical units that he have called reduction phases. Such a
strategy is not supported by EvaluateStandard.

è We want to be able to see the complete trace information about a reduction, including all
the redex occurrences operated on in a particular step. The tracing support of EvaluateStan
dard shows only the equality that was used in a particular step~which is precious little
information in long polynomials as those considered in the Green’s evaluator.

Having thus established the necessity of a dedicated evaluator for reducing noncommutative
polynomials, let us now raise one question concerning a fundamental design decision. In Mathemat
ica, rewriting can in principle be done by two different mechanisms: transformation rules or
downvalues with attributes (see the Mathematica book for details about these issues). The latter
method has the obvious advantage of normally being more efficient, but one loses some of the
finer points of tracing and evaluation control. In a previous version of the evaluator, we have
provided an option for deciding between traced computations via transformation rules and untraced
ones via downvalues / attributes. We have eliminated this choice in the current version, using only
transformation rules for the following reasons:

è The straight|forward implementation with downvalues / attributes turned out to be slower
than its counterpart with transformation rules! This was probably due to the attributes used
for associativity and commutativity, since they waste a lot of time in AC matching,
whereas the transformation rules simply keep the polynomials in flat and ordered form
throughout.

è When using the attributes Orderless for enforcing commutativity of addition, it is not
possible to specify any particular term ordering.

è In most cases, we wanted to have trace information such that any supposed speedup by
downvalues / attributes becomes negligible anyway.

Though not as natural as the traditional combination of downvalues with attributes, it might
also be worthwhile to try out an implementation that is fairly similar to the present one but uses
conditional downvalues without any attributes for effecting the transformations now governed by
rules. We have not yet explored this approach, but the gain in speed would probably not be substan
tial.

Let us now describe the overall structure of the computational process carried out by the
reductor. As explained in Section 3 of Chapter 2, we use an approach combining normalization and
reduction steps, which are governed by the following main loop:

è The input term is first fed through a postprocessor ensuring that we have a polynomial
term, meaning an expression generated by the following grammar:

PolTerm:: = PolTerm + PolTerm È PolTerm * PolTerm ÈAtom

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

98

Atom:: = Indeterminate ÈCoefficient

Thus we have to eliminate all symbols foreign to the signature, in particular subtraction
(a - b is rewritten into a + H-1L b with -1 regarded as a complex number) and powers are
either resolved into iterated multiplications or~in case they are actually pseudopowers
(see Section 3 of Chapter 2)~into the appropriate indeterminates. Note that other symbols
outside the signature just specified are understood as unknown complex numbers.

è The polynomial term is then normalized according to the usual axioms of noncommutative
polynomial rings: First of all, domain simplification according to the given built|ins is
carried out. For example, a polynomial like X4�2 might be simplified to X2 , where X� is an
indeterminate. Second, the polynomial term is expanded and its numerical coefficients are
extracted and aggregated in front of the resulting monomial forms. This creates expressions
described by the following grammar (using blank notation for sequence variables~see the
Mathematica book):

PolyForm:: = ÔPlus@Monomial___D
MonForm:: = ÔTimes@NumCoeff, Atoms___D

Here NumCoeff is a complex number constant and Atoms___ stands for a sequence of
atoms as specified before, except that it must not contain complex number constants. If
there is no explicit numerical coefficient in a monomial form, NumCoeff is of course set to
1. Note also that the number of monomial forms may be zero (giving the polynomial form
0), as well as the number of atoms within a monomial (giving the monomial form 1).
Third, like monomial forms within such a polynomial form are collected. For example,
2 X + Y + 7 X is rewritten to 9 X + Y . Fourth, the monomial forms are ordered within the
polynomial form according to the term ordering specified by the user. This finished the
normalization of polynomial terms, and the resulting normal forms will then be polynomial
forms in the stricter sense introduced in Section 4 of the Appendix.

è The polynomial form thus generated is now subjected to reduction. If none of the given
polynomial equalities are applicable, we have a canonical form with respect to the reduc
tion system, and we can go to the next step. Otherwise, we apply the next best reduction
rule that is available in the current phase (which is changed in another loop on top of the
main loop described here). The resulting polynomial term will usually not be in normal
form anymore, hence we go back to the previous step.

è Finally, we pass the canonical form produced by the reduction process to a postprocessor,
which rewrites the canonical polynomial form "in a nice way". For example, we would
normally want to see 1 X + 1 Y as X + Y and the empty addition as 0. Moreover, we
reintroduce the minus symbol at this point, rewriting a polynomial form like X + H-YL to
X - Y . Iterated multiplications are also transformed back into powers now, e.g. producing

X2 Y + 3 Y3 from 1 X X Y + 3 Y Y Y .

Before describing some more detailed implementation issues, let us clarify the steps occurring
in the normalization process a bit further. We start from the identities characterizing the variety of
noncommutative unital rings:

(43)a + Hb + cL = Ha + bL + c

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

99

(44)a + 0 = a

(45)a - a = 0

(46)a + b = b + a

(47)a Hb cL = Ha bL c
(48)a Hb + cL = a b + a c ß Hb + cL a = b a + c a

(49)1 a = a

Since we assume that C is contained in the coefficient ring, the symbols 0, 1, - of the signa
ture become superfluous, and Equalities (44, 45, 49) are absorbed into the computational laws for
complex numbers, combined with the above|described conventions for polynomial forms.
Equalities (43, 47) are already taken care of by using the flat symbols ÔPlus and ÔTimes.
Moreover, Equality (46) is already covered as well, because we order monomial forms within a
polynomial form according to a user|defined term ordering as mentioned above. Hence only
Equality (48) remains to be treated in normalization: It is of course applied from left to right, and
this is exactly what we have called by the popular term polynomial expansion.

The interface to the polynomial reductor package is the function ReduceNoncommutativePoly
nomial. It carries out the following steps:

è The options passed to it are processed in the usual Theorema fashion, assigning their
values to package|global variables.

è The reduction process is initialized by clearing the Theorema computational storage object
and setting up recognizer functions for each indeterminate specified by the user.

è Then the given knowledge bases~the visible, hidden and built|in part~are processed,
building up a suitable representation of the given polynomial equalities, including those
corresponding to the option Units.

è The reduction system contained in this representation is now learned by constructing a
pool of transformation rules for each reduction phase, assigning them to a package|global
variable that is indexed by the strings denoting the phase labels.

è Finally, the computation is carried out in the way explained above. This is done by the
crucial function named DoReduction, which we will describe in some more detail below.

è The result of the computation is then displayed together with the tracing information
unless the latter was suppressed.

The main function for executing the computation is DoReduction, and it proceeds essentially
as follows:

è The given expression is first preprocessed and echoed in the trace.

è It is then normalized and passed to the recursive function DoAllPhases; its result is then
postprocessed, echoed to the trace, and returned to the main interface.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

100

è The function DoAllPhases loops over the list of reduction phases, using the Mathematica
function Fold. For each phase, the function DoPhase is applied to the current polynomial
form and the corresponding phase label.

è Now the phase|looping function DoPhase lets the pool of transformation rules associated
with the given phase operate on the input polynomial form until it stabilizes; this is done by
the Mathematica function FixedPoint. In fact, the operation applied at each step is not just
replacement with respect to the current pool or rules but rather a more comprehensive
function DoRuleAndUbiquitous.

è Naturally, the function DoRuleAndUbiquitous does two things: First it applies the func
tion DoRule with the current phase label, and second the function DoUbiquitous.

è The function DoRule is the actual engine that does the replacement with respect to the
pool of rules associated with the given phase label. It uses the Mathematica function
Replace for this purpose. The result of the rule application is normalized such that all the
intermediate expressions are ensured to be legitimate polynomial forms.

è The function DoUbiquitous is somewhat analogous to DoRule, only that it uses the pool
of rules associated with the ubiquitous "phase" (which is actually represented as a phase
labeled by the empty string), and it does not only one replacement but a whole saturation
cycle. This is effected by operating the Mathematica function FixedPoint on the function
DoRule, instantiated by the ubiquitous rules.

The code implementing this scheme is quite readable and short, so we list it here for illustration
purposes.

Clear@DoReduction, DoAllPhases, DoPhase, DoRuleAndUbiquitous, DoRule, DoUbiquitousD;
DoReduction@poly_D :=

Module@8input, result, output<,
TraceReduction@PostprocessPolynomial�PreprocessPolynomial�poly, "¼"D;
input = NormalizePolynomial�PreprocessPolynomial@polyD;
result = DoAllPhases@inputD;
output = PostprocessPolynomial@resultD;
TraceReduction@outputD;
outputD;

DoAllPhases@poly_D :=
Fold@DoPhase, poly �� DoUbiquitous, $ReductionPhasesD;

DoPhase@poly_, phase_StringD :=
FixedPoint@DoRuleAndUbiquitous@#, phaseD &, polyD;

DoRuleAndUbiquitous@poly_, phase_StringD :=
DoRule@poly, phaseD �� DoUbiquitous;

DoRule@poly_, phase_String: ""D :=
Replace@poly, $RulesOfPhase@phaseDD �� NormalizePolynomial;

DoUbiquitous@poly_D :=
FixedPoint@DoRule, polyD;

The tracing functionality does not show up in this code because it is already built into the
transformation rules. This can be seen by looking at their internal representation. The example
below shows the rule that is generated from the equality "DA" in the Green’s system. (Here we
have entered the private context of the reductor in order to avoid long context paths cluttering the
essential structure of the rule.)

Begin@"Theorema‘Evaluators‘ReduceNoncommutativePolynomial‘Private‘"D;

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

101

$RulesOfPhase@"1. Equalities for Isolating Differential Operators"DP1T �� InputForm

ÔPlus[presum___, ÔTimes[prefac___, ÔD, A, postfac___],
 postsum___] :> (TraceReduction[PostprocessPolynomial[
 ÔPlus[presum, ÔTimes[prefac, FramedExpression[
 ÔTimes[ÔD, A]], postfac], postsum]], "DA"];
 ÔPlus[presum, ÔTimes[prefac, 1, postfac], postsum])

End@D;
As we can see, this rule applies to anything having outermost symbol ÔPlus (which is the case

for all polynomial forms) and containing within it an expression headed by ÔTimes (all sum
mands of a polynomial form are of course monomial forms and hence meet this condition), which
must have at least two factors ÔD and A right next to each other (note that ÔD is the internal
form of the Theorema symbol D , thus protecting it from the Mathematica interpretation of total
derivatives). Any such polynomial form is then replaced by an expression of the formHTraceReduction@¼D; ÔPlus@¼DL , obviously consisting of two parts.

The first part of this expression has the side effect of recording the trace information in some
special|purpose data structure, whereas its result with respect to the replacement is discarded as
indicated by the semicolon in Mathematica. The second part is just the original polynomial except
that it has only one factor 1 instead of the two factors ÔD , A ; so its effect is to replace D A
within a polynomial by 1. Observe that the original polynomial is written to the trace object,
framing the two factors ÔD and A , thus signifying the redex in the trace. Moreover, this polyno
mial is also fed through the postprocessor for making it look nice.

One could also ask here why we do not simply generate a rule of the type

ÔTimes@prefac___, ÔD, A, postfac___D ¦ ÔTimes@prefac, 1, postfacD
instead of the more circumstantial

ÔPlus@presum___, ÔTimes@prefac___, ÔD, A, postfac___D, postsum___D ¦
ÔPlus@presum, ÔTimes@prefac, 1, postfacD, postsumD

encountered in the example above. The reason is that it is much more efficient to take advantage of
our knowledge about the context of the redex. This allows us to use the Mathematica function
Replace rather than the usual ReplaceAll, which is usually denoted by the famous Mathematica /;
or slash|semi command. Whereas applying the former to an arbitrary expression expr means
"replace expr by ¼", the latter means "replace any subexpression of expr by ¼". Clearly the
second task is much more complex and is therefore slower in Mathematica. That is why we prefer
to use Replace, as one can see in the code of DoReduction reproduced above.

Finally let us say something about the implementation of the function SPolynomials used in the
confluence tools. Its setup is completely analogous to the evaluator interface ReduceNoncommuta
tivePolynomial, only that it executes

SPoly �� CriticalWords@visiblekbD
instead of the function DoReduction. The function CriticalWords does what one expects: For
each combination of two equalities in the visible knowledge base visiblekb (including combina
tions an equality with itself), it checks whether they overlap and aggregates a list of triples for all
those that do. These triples contain the name of the first rule, the name of the second rule and the
overlapping monomial form. For example, the monomial forms D A and A D would give the
overlapping monomial form D A D , and reversing roles would give the overlapping monomial
form A D A .

The function SPoly mapped over the list of triples generated by CriticalWords will of course
create the S|polynomial associated with each triple. For example, if we have the triple {"DA",
"AD", } associated with the first overlap example mentioned above, the function SPoly will

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

102

"AD", D A D} associated with the first overlap example mentioned above, the function SPoly will
use the rules "DA" and "AD" on D A D , yielding 1 D and DH1 - LL , respectively. Then it forms
their difference, which is 1 D - DH1 - LL in our case. Finally, this polynomial is put into standard
form, giving D L in this example.

Using the rule "DL", this S|polynomial will of course be reduced to zero!

3.4 Implementation of the Matrix Evaluator

The matrix evaluator is implemented on top of the default evaluator EvaluateStandard. Its outer
most loop consists of the Mathematica construct FixedPoint used to the following operation: First
apply the default evaluator to the current expression, adopting all the given knowledge bases and
the options. Then use a certain pool of transformation rules, called the matrix built|ins, on them
until saturation is achieved; this is done with the Mathematica //. construct. Finally, another transfor
mation rule, called the contraction built|in, is used just once; so this time the Mathematica /.
construct is used for accomplishing the transformations.

The matrix built|ins are in effect just implementations of all the matrix operations listed in
Section 4 of Chapter 2. Operations are only carried out if the involved matrices are given in con
creto. For example, the transformation rule

ÔPlus@matrices___ÔMatrixD ¦ HMapThread@ÔPlus, MatrixToList �� 8matrices<, 2D �� ListToMatrixL
applies only to a sum of concretely given matrices (since they are always wrapped by the
ÔMatrix tag). This is the case when using a constructor of the form

i
kjjj

a b

c d

y
{zzz

explained in Section 4 of Chapter 2 and whenever a matrix is derived from such concrete matrices.
Note that we have to use some pre| and postprocessing functions called MatrixToList and ListTo
Matrix, respectively. This is necessary so that we can draw on the list functions of Mathematica,
namely MapThread in the example above. The pre| and postprocessors mediate between our
internal representation

ÔMatrix@ÔTuple@ÔTuple@a, bD, ÔTuple@c, dDDD
and the plain Mathematica lists

88a, b<, 8c, d<<,
all exemplified by the matrix given above. The purpose of having our own internal representation
is of course to keep control over parsing, evaluating and formatting according to our own will.

The case of multiplication is a bit more subtle. We have to distinguish multiplication of matrix
by matrix, scalar by matrix, and matrix by scalar (the last two cases obviously do not occur for
addition~at least we do not consider them). Accordingly, we have three transformation rules in
the matrix built|ins:

ÔTimes@pre___, a_?ScalarQ, A_ÔMatrix, post___D ¦
ÔTimes@pre, Map@ÔTimes@a, #D &, A, 83<D, postD

ÔTimes@pre___, A_ÔMatrix, a_?ScalarQ, post___D ¦
ÔTimes@pre, Map@ÔTimes@#, aD &, A, 83<D, postD

ÔTimes@pre___, A_ÔMatrix, B_ÔMatrix, post___D ¦
ÔTimes@pre, Inner@ÔTimes, MatrixToList@AD, MatrixToList@BD, ÔPlusD �� ListToMatrix, postD

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

103

The first two rules use the classifier ScalarQ for recognizing scalars; it uses the type inference
mentioned in Section 4 of Chapter 2. They are implemented via the Mathematica function Map,
which "throws" the scalar multiplication onto each entry of the matrix. Since we use the internal
representation with nested tuples and ÔMatrix wrapped around (see above), these entries live at
level 3 of the expression tree; this is the meaning of the last argument of the Map function. Note
that we do not have to change the internal representation into lists since the Map function can deal
with expressions having arbitrary head symbols.

The third rule is again based on the head symbol ÔMatrix restricting application to two
concretely given matrices occurring next to each other within in a product. The matrix product is
implemented using the Mathematica function Inner, which allows us to introduce the Theorema
versions ÔTimes and ÔPlus for the multiplication and addition of entries, respectively. The
function Inner expects plain Mathematica lists, so this time we have to use the pre| and postproces
sors again.

The contraction built|in consists of the sole transformation rule

ÔMatrix@ÔTuple@ÔTuple@a_DDD ¦ a

used for replacing 1 ´ 1 matrices by the single entry they contain.
There are numerous other operations that one could (and should) implement in a matrix evalua

tor. But matrix algebra is clearly not a focal point of interest of the material to be developed here.
We have therefore restricted ourselves to the absolute minimum needed for our purpose of comput
ing Green’s operators.

3.5 Implementation of the Green’s Evaluator

The Green’s evaluator is implemented as a cascade consisting of the following three stages:

è The first module applied to the input expression is named UnfoldDefinitions. This is
essentially a call to the default evaluator EvaluateStandard using the relevant definitions
for the nullspace projector, Wronski operator, differential|operator right inverse and
Green’s operator (see Section 5 of Chapter 2 for details) as well as some built|ins for
executing the operations wron, left, right, poly, deg, rad (again we refer to Section 5 of
Chapter 2 for details) and for expanding product quantifiers.

è The second module applied thereafter is named SimplifyMatrices, and it is basically just a
cover of the matrix evaluator EvaluateMatrices, calling it with no other knowledge than
the action operators listed in Section 5 of Chapter 2. The reason for including the action
operators already at this point is that applying them here will usually result in some consid
erable simplifications in the result of this module. Of course, other simplifications will only
be possible in conjunction with the reduction process effected by the next module.

è The third module finally applied is named SimplifyPolynomial, as it starts the polynomial
reductor on the result of the previous module. The reductor is of course properly supplied
with the necessary options, e.g. specifying the indeterminates via

Indeterminates ® 8A, B, D, L, R, `�p<
The reduction phases are set as discussed in Section 2 of Chapter 1, and trace generation is
suppressed. The Green’s system is specified as the visible knowledge base (unless the
option ReduceAfterwards has been deactivated), and the built|ins are again the action

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

104

option ReduceAfterwards has been deactivated), and the built|ins are again the action
operators as above plus the function effecting basis expansion.

Let us now briefly discuss the built|ins implemented in the Green’s evaluator package.
Basis expansion is accomplished by BasisExpansion, which is a recursively defined function

supposed to expand all multiplication operators occurring in a polynomial form. Its crucial clause
is the following:

BasisExpansion@`ÔPlus@args__DpD :=
BasisExpansion@`#pD & �� ÔPlus@argsD;

In its first instance, this causes the expansion of a given polynomial form to split into expansions of
each of its monomial forms. But more importantly, this will also resolve a multiplication operator

like `x2 + x3p into `x2p + `x3p , thus effecting the additive breakdown into basis elements.
Similarly, constant factors are extracted as follows:

BasisExpansion@`ÔTimes@pre___, Λ_?ConstantQ, post___DpD :=
ÔTimes@Λ, `ÔTimes@pre, postDp �� BasisExpansionD;

This will transform a multiplication operator like `2 x2p to 2 `x2p , thus effecting the homogeneous
breakdown into basis elements. The other definition clauses of this function are essentially special
cases of the two clauses above (dealing e.g. with products and sums having only one argument)
and some clauses for closing the recursion.

The subsidiary function ConstantQ used above for checking constancy is needed for avoiding

expansions like `x x2p transforming to x `x2p . It evaluates to false iff the argument contains an x or
a ·var or an integration operator. The check for ·var is necessary for the confluence proof, because
there we have to deal with multiplication operators ` fp that are induced by an unknown function
f ; the internal form of such function variables is ·var[f].

The action operators are implemented by appealing to Mathematica in a straight|forward way.
The actions for the left and right boundary action, differentiation, indefinite integral and cointegral
are realized by the following definitions:

LeftBoundaryValue@term_D :=
MathematicaSimplify@term �. Symbol@"x"D® $BoundaryPointsP1TD

RightBoundaryValue@term_D :=
MathematicaSimplify@term �. Symbol@"x"D® $BoundaryPointsP2TD;

Derivative1@term_D :=
Mma2Tma@System‘D@Tma2Mma@termD, Symbol@"x"DDD;

IndefiniteIntegral@term_D :=
Mma2Tma@Integrate@Tma2Mma@termD, 8Symbol@"x"D, $BoundaryPointsP1T, Symbol@"x"D<DD;

IndefiniteCointegral@term_D :=
Mma2Tma@Integrate@Tma2Mma@termD, 8Symbol@"x"D, Symbol@"x"D, $BoundaryPointsP2T<DD;

The only tricky point about these functions is that they do not refer directly to the symbol x
denoting the independent variable of functional expressions. The symbol x is instead referenced by
Symbol["x"]. The reason for this slightly unusual way of addressing symbols is that the above
definitions should be applicable within a Theorema computation. Such computations are always

carried out in the protected context Theorema‘Computation‘ in order to ensure an unpolluted
namespace, thus avoiding any unwarranted external knowledge. Any symbols occurring in the
input are then transferred into this context; in particular, the symbol x occurring in the multiplica

tion operators of polynomials will be translated into Theorema‘Computation‘x. If we had simply
used x in the above definitions, Mathematica would have understood this as Tma‘x, because x
lives in the Theorema standard context Tma‘; consequently the definitions would not apply to the
input polynomials. This problem is now avoided by using Symbol["x"], because this expression

denotes the symbol in whatever context it currently occurs~hence yielding Theorema‘

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

105

denotes the symbol x in whatever context it currently occurs~hence yielding Theorema‘
Computation‘x at the time of carrying out the computation. (Obviously we could have used

Theorema‘Computation‘x directly instead of the slightly cryptic Symbol["x"], but this would
fail as soon as the name of the computational context of Theorema changes.)

The polynomial operations poly, deg, poly are realized by the functions CharacteristicPolyno
mialOfDifferentialOperator, DegreeOfPolynomial, RootsOfPolynomial, respectively. The
former simply packs the coefficients of the given differential operator into a Theorema tuple, as
this turns out to be a convenient polynomial representation for the purposes needed here. Conse
quently, the function DegreeOfPolynomial has the trivial implementation given by the Mathemat
ica function Length (minus one, to be precise) used for counting the number of entries in a list
(which may of course also have the head ÔTuple). Finally, the function RootsOfPolynomial uses
the Mathematica command Solve for obtaining the roots of the given polynomial by solving the
corresponding polynomial equation; the result is then packed into a row matrix using the Ô
Matrix format common in the matrix evaluator.

The operation implementing the Wronski matrix denoted by wron is the function WronskiMa
trixOfDifferentialOperator. It first constructs the fundamental system using an auxiliary function
FundamentalSystemOfDifferentialOperator, then applies the Mathematica function D for
differentiating each of its entries up to n - 1 times, where n is the number of fundamental solu
tions; the result is of course represented using the ÔMatrix format again.

The auxiliary function FundamentalSystemOfDifferentialOperator calls the Mathematica
function DSolve, which guarantees to solve any linear differential equation with constant coeffi
cients. The result returned by this command is one function containing n integration constants,
whose names may be chose by the option DSolveConstants. We use a local variable C for this
name, thus obtaining a generic solution with n parameters named C@1D , ¼, C@nD . In order to obtain
the corresponding fundamental system, we create a table whose i|th entry is the generic solution
with C@1D , ¼, C@i - 1D , C@iD , C@i + 1D , ¼, C@nD replaced by 0, ¼, 0, 1, 0, ¼, C@nD , with i run
ning from 1 to n .

The functions left and right used for extracting the left and right boundary matrix for a given
system of boundary operators are implemented by LeftBoundaryMatrixOfBoundaryOperators
and RightBoundaryMatrixOfBoundaryOperators, respectively. They are realized by some
trivial Mathematica book|keeping commands that shuffle the entries around as needed.

Finally, let us say a few words about the implementation of the top interface of the confluence
tools, namely the function ProveConfluence. As explained in Section 5 of Chapter 2, this function
is basically a shell built around SPolynomials. The latter is called with the Green’s system just as
in the main function GreenEvaluator, but it does not get any built|ins except for basis expansion
(note that we still need transformations like `2 fp expanding to 2 ` fp , where f is of course a
function variable here). The resulting S|polynomials are then reduced by an auxiliary function
named ReduceSPolynomial, and some logging information is displayed (see Section 5 of
Chapter 2 for details).

The function ReduceSPolynomial is basically a call to the polynomial reductor ReduceNon
commutativePolynomial, again using most settings like in the main function GreenEvaluator.
The crucial difference is that the properties of analytic algebras as specified in Theorem 28 of
Chapter 1 are given as an additional argument, and again only the rules for basis expansion are
used as built|ins.

And the main result of this theorem was that ReduceSPolynomial returned always the same
polynomial: zero!

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

106

Appendix: The Concept of Polynomial

Polynomials of some particular kind~not the ùusual÷ commutative polynomials~will be the main
building material for the methods presented in this thesis. Therefore we will now take the time for
explaining the concept of polynomial in rather great detail and placing it into its proper mathemati
cal context. For this purpose, we will follow a very frequent historical pattern: The first attempt of
defining polynomials in Section 1 seems confusing and worthless, rather a kind of silly mythology.
Therefore, it is replaced by a succinct and rigorous definition in Section 2, which does away with
all those mysteries and provides a solid basis for effective computer implementation. After some
deeper considerations, though, one is led back to the seemingly mystic old definition, now in the
clear light of modern logic and structure theory; this is what we will show in Section 3. This
provides not only a new appreciation of the old approach but even an alternative way of implemen
tation that may include many other types of polynomials as expounded in Section 4. Finally we
will discuss in Section 5 how to "adjust" the degree of noncommutativity to the level; this is
relevant in Chapter 1.

A.1 A Sloppy Definition

Polynomial computation lies at the heart of algebra and, in particular, computer algebra. Some
people have even gone so far as to characterize computer algebra as the art of polynomial manipula
tion. Now we would not subscribe to this view as a reasonable definition of computer algebra (we
think that the approach in [44] is rather satisfactory; see also page 2 in [70]). We rather understand
this dictum as an observation expressing the ubiquity of polynomials throughout computer algebra
(note also the title of [70], which is the coursebook for computer algebra at our institute). Beyond
any doubt, the polynomials belong to the core notions of this discipline, deeply penetrating its
theoretical foundations as well as the practical machinery of its algorithms. While some people
might hesitate to call it the most fundamental concept of computer algebra, it is at least fair to say
that it shares this role with a few mates like matrix, ideal or algebraic extension.

Given their paramount importance, polynomials ought to be introduced with conceptual clarity
and impeccable rigor. Therefore it is a bit surprising that conventional textbooks of mathematics
are often vague and sloppy when they come to polynomials. In [54] on page 95, the usual polynomi
als over a unital and commutative ring R are introduced thus (we have slightly adapted the words
to our present setting): "The elements of an algebraic ring extension R@ΑD can obviously be

obtained from the formal expressions c0 + c1 x + c2 x2 + ¼ + cn xn with c0 , ¼, cn Î R and n Î N
if one replaces x by the element Α . We call

(50)f HxL = c0 + c1 x + c2 x2 + ¼ + cn xn

a polynomial in x over R ; the symbol x is called its indeterminate." Similar ùdefinitions÷ can be
found in numerous introductory textbooks of mathematics.

What is the problem with the above ùdefinition÷? First of all, the name "formal expression" is
rather mysterious. We will resolve the mystery soon, but for now let us assume that we are naive
and innocent students of mathematics. So we assume that we know what an "expression" like

c0 + c1 x + c2 x2 + ¼ + cn xn means; after all, we have dealt with such expressions numerous
times. Now let us look at the logical structure of the whole statement. The ùvariables÷
R, n, c0 , ¼, cn are to be quantified universally such that we can instantiate them for concrete
examples like , arising from the instantiation , , , . Strictly speak

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

107

examples like 2 + x , arising from the instantiation R ¬ Z , n ¬ 1, c0 ¬ 2, c1 ¬ 1. Strictly speak
ing, this is already problematic: Under the quantifier, we have here a flexible sequence of
ùvariables÷ that expands magically to the number of variables needed for each case. But first|order
predicate logic does not allow such magic (but see for example [41] for a new paradigm that does
allow this ùmagic÷ in a completely rigorous setting). By considering c0 , ¼, cn as variables, we are
dealing with indivisible symbols just like A, B, C, ¼ , so their indices are purely typographic
embellishments like the serifs in "A"~and this is certainly not the intention of the author. What he
really wants to say is, "for any natural number n and any R|valued sequence c having a support of
length n" (the support of a function is that part of its domain where the function maps into a num
ber different from zero). He could even abbreviate this by saying, "for any R|valued sequence c
with finite support"; we will come back to this point presently. In any case, a term like cn is now a
compound of the intended kind: the sequence (function with domain N) c applied to the natural
number n . Understood in this way, equation (50) can be seen as an abbreviation for

(51)f HxL =â
i=0

n

ci xi ,

and the sum quantifier appearing here can be introduced in the usual way (see for example page 58
in [14]). All this could be seen as a meticulous expansion of the above sentence into solemn predi
cate logic, as it is usually expected from the ùmature mathematical reader÷. Still we contend that
formulating the statement in the right way does not take any additional effort, and it makes life a
bit easier (not only for the not|so|mature reader).

So we see that the variables R, n, c are universally quantified, but what about the ùvariable÷ x ,
which is mystically called an indeterminate? It is here that we run into real trouble. On the one
hand, x should be quantified universally such that we can substitute any ùnumber÷ a Î R in (51) for
in order to evaluate f HaL . On the other hand, we want to regard a polynomial like 2 + x as a defi
nite expression; as such, it cannot depend on the value of some ùglobal variable÷ x : If this variable
is set to some fixed number a , all the ùpolynomials÷ are nothing else than numbers, many of them
coinciding (depending on the choice of a)! For example, take 2 + x as above and set a to 0; now it

coincides with 2 - x and 2 + x2 and 2 + 3 x - 7 x2 , etc. This is clearly not what we mean by polyno
mials! Hence the global variable cannot have a fixed value, which means that x should be quanti
fied existentially. But how can we quantify a variable both universally and existentially?!?

There is another problem with the above ùdefinition÷. Consider a typical polynomial computa
tion like

(52)H2 + xL H-2 + xL = -4 + 2 x - 2 x + x2 = -4 + x2 .

What is the intermediate term in this equality chain? Is it a polynomial? Obviously not, since we
cannot have two distinct linear coefficients c1 . But if it is not a polynomial, what is it? A mysteri
ous creature that dissolves itself as soon as the ùreal÷ polynomial appears?

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

108

A.2 A Rigorous Definition

Fortunately, the textbooks of computer algebra usually do not indulge in such mysteries. They
introduce the polynomials over a coefficient ring R , denoted by R@xD , as the ring of all R|valued
sequences with finite support, endowed with appropriate operations for addition, subtraction, and
multiplication (see for example page 672 in [29] or page 17 in [70], where one can find detailed
definitions of the concepts touched in this section). We have already come across these sequences
when we analyzed the logical structure of the mystic ùdefinition÷ given above. The new definition
as we find it in virtually all modern textbooks continues this line of thought to its logical end: The
sequence c in (51) is really the only essential ingredient of a polynomial; all the rest is mystic
accessories!

The definition via sequences is very elegant and terse; we will therefore from now on call it the
succinct definition. One can also paraphrase it as follows: The ring of polynomials R@xD is con

structed as R Å R Å ¼ = RHNL , the direct sum of countably many copies of R , and their multiplica
tion is given by the Cauchy product of sequences. At this point, we cannot resist the temptation of
mentioning the ring of formal power series, typically denoted by R@@xDD : Dropping the finiteness
condition on the sequences, one arrives at R ´ R ´ ¼ = RN , the direct product of countably many
copies of R . Here we encounter the same phenomenon as with the polynomials~the succinct
definition was able to dispel an infamous mystery long associated with power series: How is it
possible that one can derive so many useful identities, even when the involved power series are
divergent? An extreme example is given on page 347 in [32], which is concerned with solving a
recurrence equation. As usually, the procedure starts by encoding the required sequence c in the
coefficients of a suitable power series C Î RN such that we must now solve for C . After some
manipulation, one ends up with the differential equation

(53)C’ HxL = x2 C’’ HxL + 3 x C’ HxL + C HxL
and initial conditions CH0L = C ’ H0L = 1. Using hypergeometric series techniques, one can solve
(53), arriving at

(54)C HxL =â
n=0

¥

n! xn .

From this power series, one can immediately read off the sequence c solving the original recur
rence equation, namely cn = n! . Admittedly, this is not a very impressing problem. But it does
make the point addressed before: The power series C is as divergent as it can be~namely in the
whole complex plane except for the origin! Still it was very useful in solving the recurrence equa
tion¼ Such a situation seemed quite mysterious to the earlier mathematicians, hence they called
this notion "formal power series", meaning that they simply ignored convergence questions; see
page 206 in [32]. The succinct definition clarifies this issue completely~ignoring convergence
means that we are actually not dealing with power series but with plain sequences, together with
some operations that are constructed to imitate those on the corresponding power series: Besides
the ring operations, one can also use differentiation as in (54), integration, division, composition,
etc. So polynomials and power series are merely a convenient language frame for talking about
sequences, and sometimes they behave similar to their functional counterparts. So the only left|
over mystery is maybe this: Is it just coincidence that everything fits together so nicely? We will
find an interesting answer to this question in Section 3.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

109

Of course, everything generalizes smoothly to multivariate polynomials. The only difference is
that we have to consider multisequences instead of sequences, i. e. functions Nn ® R instead of
N® R . So the ring of multivariate polynomials and formal power series, accordingly denoted by

R@x1 , ¼, xnD and R@@x1 , ¼, xnDD , has the carriers RHNn L and RN
n

, respectively; the operations are
defined analogously. For details, see the literature cited above.

It seems that we have now clarified the mysteries addressed in Section 1. So let us try to answer
the two main questions that came up there. The first one is: What is the mystic indeterminate? Let
us first consider the univariate case R@xD . In terms of the succinct definition, x is nothing else than
the sequence X0, 1\ . Within the ring R@xD or R@@xDD , one cannot see much special in the polynomial
x ; only the corresponding compositional structure reveals it as its neutral element. Passing to a
multivariate polynomial ring R@x1 , ¼, xnD , the real meaning of the indeterminates x1 , ¼, xn

becomes clear when we realize that every polynomial splits into a sum of monomials, and every
monomial consists of a coefficient in R and a power product. The latter form a monoid, often
denoted by @x1 , ¼, xnD , and in this monoid, the indeterminates serve as the primitive generators.
So the in|determinates turned out to be very determinate polynomials within the ring! This also
concludes an earlier line of thought: In the logical analysis following (51), we made the statement
that an indeterminate must be either existentially quantified (essentially a constant) or universally
quantified (essentially a free variable). Now we see that the first option is true~indeterminates are
object constants for denoting the ùbasis÷ of @x1 , ¼, xnD .

Having clarified the nature of the indeterminates, we are led to another question associated with

them: How does evaluation work now? Since a polynomial like -4 + x2 is interpreted as a
sequence X-4, 0, 1\ , we cannot just substitute a number like 3 for x . After all, x is not a variable
but just another polynomial! Hence we must interpret evaluation at a number a Î R as another
operation on polynomials, which we will denote by evala . For example, we have

eval3H-4 + x2L = 5. The operation evala is known as evaluation homomorphism, since it turns out
to respect the polynomial ring structure; see for example page 147 in [53]. Analogously, there is an
evaluation homomorphism evala at a Î Rn for a multivariate polynomial ring R@x1 , ¼, xnD .

With the evaluation homomorphism available, we can also clarify the idea of the "functional
counterparts" mentioned above: We can associate with each polynomial p Î R@x1 , ¼, xnD a
function p� : Rn ® R defined by p� HaL = evalaHpL ; this p� is known as the polynomial function associ
ated with (or: induced by) p . We denote the ring of all n|ary polynomial functions over R by
PnHRL ; it is a subring of the ring RR of all n|ary functions on R . At the first glance, one might
think that the structures R@x1 , ¼, xnD and PnHRL are more or less the same, but this is an illusion:
The mapping p# p� is a ring epimorphism, which means that the polynomials are much more fine|

grained than the polynomial functions. Take, for example, R ¬ Z2 . Then polynomials like x + x2

will all collapse into zero functions. In fact, there are only four distinct functions in P2HZ2L , while
there are infinitely many polynomials (as for any coefficient ring).

Hence one can understand the polynomial ring as an algebraic model of polynomial functions,
taking into account only the ring operations (functional addition, zero function, negative function,
functional multiplication, one function) and ignoring all the ùaccidental÷ features arising from
evaluation in the particular coefficient ring. The power of the polynomial concept comes from the
fact that many important ùpatterns÷ become clearer by fading out accidental details of this kind.
Going a bit further in this direction, we could get a first suspicion why the indeterminates might

really be in|determinate: A polynomial in Z2@xD like x + x2 above would not collapse into the zero
function if we think of the x as coming from a ùgeneric÷ ring (we will later call such a ring "free");
such a generic x is like a Joker card~the only thing we know about it is that it lives in some ring.
Seen in this way, it really deserves the name "indeterminate". For more about this issue, we must
again refer to Section 3.

Finally let us also answer the second question asked at the end of Section 1: What is this interme

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

110

Finally let us also answer the second question asked at the end of Section 1: What is this interme
diate term in the equality chain (52)? Obviously, we cannot call it a polynomial according to the
succinct definition. All we could say is that it is the sum of four polynomials, all of which happen
to be monomials, but this is not completely satisfying if one is honest. The point is that the defini
tion of the polynomial operations yield ùfinished÷ polynomials at once. While this may be of
advantage in some situations where we do not want to deal with any ùcomputational details÷, one
could also ask for a more fine|grained polynomial concept that attaches an appropriate meaning
also to such "intermediate terms". The succinct definition clearly does not satisfy this desire; the
intermediate terms remain ùghosts÷. It is therefore high time to move on to the new approach which
we have already advertised so strongly.

A.3 An Alternative and More General Definition

Before starting this new approach, let us cast a glance at the literature. A comprehensive treatment
of the material be found in [42]; see especially pages 1|40. A lucid summary of this rather lengthy
treatment is given in [16], where things are analyzed from the viewpoint of symbolic computation.
The vast majority of computer algebra texts, however, are restricted to what we have called the
succinct definition. Even [50] (note the subtitle!), a recent monograph on polynomials, does not
hint at any alternative definition. For doing full justice to [54], we should also mention that on
page 94 they provide a correct version of the succinct definition along with the rather suspicious
ùdefinition÷ criticized above. (One could actually get the impression that they feel guilty about the
vague description given on page 95, so they try to compensate by adding the succinct definition. If
they had not declared the vague description as their ùofficial÷ definition, one could interpret the
latter as intuitive ideas that are to be formalized in the succinct definition, albeit on a slightly
different path.)

One may wonder why the succinct definition is so fashionable in our days. The reason for this
is very simple: As we will see later, it is somewhat superior in computation when compared to the
alternative definition to be discussed now. Besides this, the old definition requires a considerably
greater technical apparatus that does not pay off as long as one studies only ùordinary÷ polynomi
als. As we will see later, the succinct definition is an optimized specialization of the ùgeneral÷
polynomials, obtained by custom|tailoring the case of the ordinary ones.

As announced at the beginning of this chapter, we will have to consider some of those general
polynomials, in particular several kinds of non|commutative polynomials. It is possible to find
custom|tailored representations for them similar to the succinct definition of ordinary polynomials,
such an approach is rather ad|hoc. The alternative definition provides an elegant conceptual frame
for a uniform description of all those general polynomials~including the ordinary commutative
ones as well as the ùextraordinary÷ non|commutative ones. Furthermore, it establishes a suitable
basis for discussing possible custom|tailored representations.

In the preceding section, we have already encountered some ideas that support the case of the
good old indeterminate. So it should not come as a surprise that the announced alternative
approach is not really new~we will henceforth call it the "old definition"~but in need of careful
formal treatment for putting certain delicate intuitions on a rigorous logical basis.

Let us start by reconsidering the original ideas presented in connection with the ùdefinition÷
(50): The polynomials are regarded as "formal expressions", built up from an "indeterminate",
from numbers, and from the operations + , - , * (or other operations if we consider general polyno
mials). One could respond to this: "Any mathematical theory consists of more or less formal expres

sion, often containing variables and various other operations like sin and Ù . So why do they
mention this fact for the polynomials?" But the difference is that the polynomials are regarded as

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

111

mention this fact for the polynomials?" But the difference is that the polynomials are regarded as
formal expressions. We will make this clear immediately.

As explained above, one may regard the polynomials as functions that have forgotten their
evaluation in the coefficient ring. So we have to construct objects that ùbehave like÷ polynomial
functions over a certain coefficient ring, except for evaluation. Now we come to a very crucial
point, which we will first express in terms of daily life: For communicating various ideas about
politics, philosophy or ethics, we can point at numerous constellations in real life. When it comes
to very subtle and dense ideas, though, it may be necessary for the expert communicators~called
playwrights~to invent some constellations~called dramas~that could also appear in principle
(we are not talking about absurd drama and the like). When the piece is put on stage, people can
point at the constellations depicted there as if they occurred in real life; in fact, the events as such
are real life. Without intending any philosophical implications, we will transfer this principle to
mathematics now: Having the idea of "polynomial functions that have forgotten their evaluation",
we can either search for some known mathematical objects exhibiting these properties (in case of
the ordinary polynomials, the finite sequences of the succinct definition would serve this purpose)
or we can construct appropriate objects by staging their properties. This is what is meant by
formal expressions: they are put on stage.

In mathematics, dramaturgy is studied in model theory and universal algebra; the dramas are
the canonical models and Herbrand models. Before we turn to look at these literary genres a bit
more closely, let us briefly meditate the overall significance of the theatrical viewpoint. Again we
take daily life as our guiding principle: Drama belongs to the fine arts, and some people would
even consider it as the highest form of art. Artists contend that their art comprises, in principle, all
of life. In particular, a (sufficiently powerful) dramatist should be able to depict any aspect of life,
be it ever so subtle. In mathematics, the situation is again similar: In 1930, Kurt Gödel proved(!)
that ùeverything can be put on stage÷, provided that it is ùconsistent with reality÷; see [31]. Reflect
ing objects of immediate experience creates new objects that can in turn be experienced on a
higher level; this ability of reflection appears to be a fundamental function of the human mind,
penetrating the arts as well as mathematics. B. Buchberger calls the reflection step the transition to
the meta level, and he considers it to be the essence of logic and the driving force of mathematical
development; see [15]. In the Theorema group, we will therefore invest some effort into providing
computer support for this key step of mathematical creativity in the near future.

Seeing this central role of model construction~in our metaphor: the art of staging~it will
certainly pay off to consider the introduction of polynomials in the clear light of the general situa
tion. We will do this by reviewing a modern proof of Kurt Gödel’s model existence theorem
mentioned above: Every consistent set of formulae has a model. From this one can easily infer that
every formula that is a consequence of an axiom system is also deducible from the axioms by the
proof calculus; this is known as the Completeness Theorem. The converse statement that every
formula deducible from an axiom system is also a consequence of the axioms is also true and is
considerably easier to prove; it is known as the Soundness Theorem. Combining completeness and
soundness, one sees that the semantic consequence relation and the syntactical deduction relation
actually coincide, which shows the adequacy of the deduction system with respect to the intended
meaning. For the precise formulation and proof, we refer to [28] and [24]. For our purposes, it will
be sufficient to sketch the proof of the model existence theorem. We will first recollect some basic
notions dealing with models.

We are given a set of consistent formulae, which we will call the axiom system F , and we want
to construct a model for this axiom system. In general, we expect F to have many models (the
special case of categorical axiom systems, i. e. those having a unique model, is rather rare). Typi
cally, the collection of all models is so big that it forms a proper class. In the literature, it is called
the model class of the axiom system and denoted by ; see for example page 108 in [24].

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

112

the model class of the axiom system and denoted by ModHFL ; see for example page 108 in [24].
Following B. Buchberger [8], we prefer to call this collection the category described by F and its
elements as the corresponding domains or structures (if there are no predicate symbols, the
domains are also called algebras). In the sequel, we will explain his most important ideas of
formalizing such notions; we will try to realize most of them in the Theorema system during the
next years.

 Although it is not our intention to move to the viewpoint of category theory, we will point out
certain connections here and there (see [47] and [25]). First of all, it is clear that model classes are
indeed categories in the sense of category theory. (Since we are thinking in terms of the ordinary
set|theoretic semantics, the model classes are actually concrete categories, meaning that they are
founded on the category of sets. The viewpoint of category theory would be to abstract away from
the "arbitrariness" of the set category.) Their arrows are naturally given by the homomorphisms in
the sense of model theory; see page 225 in [24]. Of course, one may prefer to use other arrows in
some situations (for example taking continuous functions instead of isometries in the category of
metric spaces), and the salient feature of category theory is that it gives much greater importance to
the arrows of a category rather than to its objects. Since we will not be working in category theory
proper, our emphasis will be different~we regard categories as elementary building blocks for
characterizing mathematical objects.

As an example that will later become important for constructing the ordinary polynomials, we
consider the case when F consists of the axioms for unital commutative rings; this yields the
category of unital commutative rings (with the ring homomorphisms as their natural arrows). In
Theorema, one way of describing this category is by giving the definition (essentially coming from
[8], see also page 71 in [64])

(55)

R : UniCommRing �

i
k
jjjjj +

R
: �

R
´ �

R
® �

R
í 0

R
: �

R
í

-
R

: �
R

® �
R
í *

R
: �

R
´ �

R
® �

R
í 1

R
: �

R
í

"
x,y,z:�

R

 Jx +
R

yN +
R

z = x +
R
Jy +

R
zN í "

x:�
R

 x +
R

0
R

= x í

"
x:�

R

 x +
R
I-

R
xM = 0

R
í "

x,y,z:�
R

 x +
R

y = y +
R

x í

"
x,y,z:�

R

 Jx *
R

yN *
R

z = Jx *
R

yN *
R

z í "
x:�

R

 1
R

*
R

x = x í

"
x,y,z:�

R

 x *
R

y = y *
R

x í

"
x,y,z:�

R

 x *
R
Jy +

R
zN = x *

R
y +

R
x *

R
z
y
{
zzzzz.

First of all, note that we have used the typing predicate ":" for describing that R lies in the class
of all unital commutative rings, denoted by UniCommRing. We could as well use a unary predicate
" ", writing instead of , but the usage of

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

113

"IsUniCommRing", writing IsUniCommRingHRL instead of R : UniCommRing, but the usage of
the binary typing predicate permits a more uniform treatment (one may view this notion of type as
in a sorted logic). The important point is that UniCommRing is a proper class, so we cannot say
R Î UniCommRing, but the predicate ":" is a sufficient substitute since we do not need any nesting.
We call UniCommRing the type of category of unital commutative rings, and we will use italics
for denoting such category types. Informally, category types are usually identified with the actual
categories, so UniCommRing "is" the category of unital rings.

The typing convention is also used for the domain predicate: For example, x : �
R

 means that x

lies in the carrier of R . In this case, we could use x Î �
R

 instead, but using the domain predicate

allows us to overload operators when we regard the domain predicate as an appropriate type (see
below). Furthermore, we note the curried operator symbols: For example, *

R
 is just notation for

RH*L , so that x *
R

y stands for RH*L Hx, yL . We follow the tradition of model theory in bundling the

available operations into a so|called operation object which identifies the particular domain; in our
case, the operation object is R .

Finally, let us mention that one could easily make the above definition even more readable by
realizing a couple of common syntactic conventions (which we will presuppose from now on):
First, the operation object is confused with the carrier (even in heterogeneous structures with more
than one carrier~like vector spaces~one can distinguish a particular one~like the vectors), i. e.
whenever R is on the right|hand side of "Î", it is replaced by í

R
. Second, the operator symbols are

overloaded, e. g. when we encounter x * y with x and y both having the type "lying in the carrier",
it is replaced by x *

R
y . In the type declarations of the operator symbols, we may anyway leave out

the underscript without danger of confusion. Third, we can indicate that all variables in the defini
tion scope are relativized to the carrier by a certain external declaration (in the heterogeneous case,
one may introduce finer|grained declarations~for example denoting vectors by Latin letters and
scalars by Greek ones). Fourth, we will write the operation object for non|operator symbols as a
subscript rather than an underscript. Fifth, one may use juxtaposition for denoting multiplication.
Using these conventions, the above definitions reads

(56)

R : UniCommRing �

H + : R ´ R ® R ß 0R : R ß - : R ® R ß * : R ´ R ® R ß 1R : R ß
Hx + yL + z = x + Hy + zL ß
x + 0R = x ß x + H-xL = 0R ß x + y = y + x ß
Hx yL z = Hx yL z ß 1R x = x ß x y = y x ß
x Hy + zL = x y + x z L.

In an extensive ùformal library÷, one would certainly split such a definition using a suitable
system of hereditary subdefinitions (and we plan to do this in the Theorema formalization project)
describing e. g. semigroups, monoids, groups, commutativity, unitality, distributivity; this will not
be necessary for our present purposes. Besides this, the type declarations of the first line (often
formulated as "closure properties" like additional axioms: the sum of two ring elements is again a
ring element) is naturally separated from the remaining ones. We call the first line the signature
axioms of the domain, the remaining lines its proper axioms. This separation will also be important
for what follows, so let us do it in detail: We agree that we will provide a signature predicate for
each category, which we will verbalize as "like" similar to Mizar e. g. in "group|like" ; see [65].
For example, the signature predicate for the above category would say that R "is like a unital
commutative ring" (for categories with a shorter name like groups this sounds better: the corre

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

114

commutative ring" (for categories with a shorter name like groups this sounds better: the corre
sponding domains would be called "group|like"). We will denote this predicate by

(57)
R : @UniCommRing D�

H + : R ´ R ® R ß 0R : R ß - : R ® R ß * : R ´ R ® R ß 1R : R L.
Furthermore, we will assume that every category definition presupposes the corresponding

signature definition implicitly (otherwise is can hardly make sense). Hence we can now write the
definition in (56) as

(58)

R : UniCommRing �

H Hx + yL + z = x + Hy + zL ß x + 0R = x ß x + H-xL = 0R ß x + y = y + x ß
Hx yL z = Hx yL z ß 1R x = x ß x y = y x ß
x Hy + zL = x y + x z L.

Let us now go back to the proof of the model existence theorem: We are given such a consis
tent axiom system F like the formulae contained in the right|hand side of (58). They describe a
certain category like that of the unital commutative rings in the above example. Our task is to
prove that this category contains at least one domain, i. e. we have to construct one particular
domain out of the information provided in F . As explained before, the crucial idea is to put the
axioms ùon stage÷. So the first task is to clarify the ùcast of the actors÷, i. e. the carrier of the desired
model. Since we should be able to ùsee÷ every object that we can possibly talk about, the most
natural choice is to take the set of all closed terms as a carrier (since we can always reduce the
given axioms to closed formulae); a function symbol works on such a closed term in the natural
way by concatenation. The resulting structure is called the ground term algebra TS induced by the
signature of S , which is determined by the function and constant symbols occurring in the axioms.

For example, if F contains the axioms of unital commutative rings

(59)

Hx + yL + z = x + Hy + zL,
x + 0 = x,

x + H-xL = 0,

x + y = y + x,

Hx yL z = Hx yL z,

1 x = x,

x y = y x,

x Hy + zL = x y + x z,

the signature is given by

(60)+ : R ´ R ® R ß 0 : R ß - : R ® R ß * : R ´ R ® R ß 1 : R .

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

115

We see that (59) is very similar to (58), and (60) is very similar to (57), but we should also under
stand the difference: Now the axioms (59) are universally quantified over the whole universe R ,
and the operation symbols are not bundled into any operation object (model itself is the bundle);
the signature (60) is therefore not part of the axioms but a syntactic declaration on the meta level.
Since we do not consider heterogeneous structures (which could be treated analogously in a sorted
logic), the signature information boils down to specifying the arity of each function symbol (object
constants are regarded as nullary function constants). Hence we can regard S as the (set|theoretic)
function; in the example above it would be

(61)S = 8X+, 2\, X0, 0\, X-, 1\, X * , 2\, X1, 0\<.
Note that we can obtain the set of function symbols in use by taking the domain domHSL of the

signature; for example, we have domHSL = 8+, 0, -, * , 1< in the above example. Given a S of this
form, we can always go back to the corresponding signature definition over some domain D ,
namely

(62)"
fÎdom HSL f : DS HfL ® D,

which we will denote by SigSHDL . Note the meta|level universal quantifier in this formula: upon
substituting a concrete S and D , the formula (62) is supposed to end up in a conjunction of the
form (60). In the current presentation, we could actually be pedantic in using various meta|level
symbols for distinguishing them from the corresponding object|level symbols, e. g. the equality
symbol or the set braces. However, as the context usually eliminates these ambiguities, we will
suppress this distinction for the sake of simple notation.

The carrier set of the desired term algebra over S is supposed to consist of all closed terms and
nothing else. This is an inductive set, which we will call the set of words over S and denote by WS .
This is a generalization of the natural numbers, which can be regarded as words over the signature8X0, 0\, X+ , 1\< , where the superscript|plus denotes the successor function. In the case of natural
numbers, the Peano axioms do achieve the inductive definition (for details see page 204 in [61]):
The ùbasis axioms÷ 0 Î N and "nÎN Hn Î NÞ n+ Î NL ensure that the function symbols of the
signature serve as constructors; the ùequality axioms÷ "nÎN n+ ¹ 0 and "n,mÎN Hn+ = m+ Þ n = mL
banish ambiguity in the term representation; the ùinduction axioms÷
Fn¬0 ß "n HF Þ Fn¬n+ LÞ "n F for all formulae F (particularly those containing a free occurrence
of n) ensure the "nothing else" passage. We can do something completely analogous for specifying
the set of words through

(63)

"
fÎdom HSL "

t1 ,¼,tS HfLÎWS

f
�
 Ht1 , ¼, tS HFLL Î WS ,

"
fÎdom HSL

i
kjjj "

s1 ,¼,sS HfLÎWS

"
t1 ,¼,tS HfLÎWS

f
�
 Hs1 , ¼, sS HfLL = f

�
 Ht1 , ¼, tS HfLLÞ "

i=1,¼,S HfL si = ti
y
{zzz

"
fÎdom HSL

i
kjjj
i
kjjj "

t1 ,¼,tS HfLÎWS

F Þ Ft¬f
�
 Ht1 ,¼,tS HfL L

y
{zzzÞ "

t
F
y
{zzz,

where F runs through all formulae (particularly those containing a free occurrence of t). Here we
have to make a small but crucial remark: The function symbols of the given signature S have to
play a double role: first, they appear as letters in the words just introduced; second, they will be
used for denoting the operations to be defined on the words. We distinguish them by overbarring
the function symbols when they are used as letters. The overbar works like a quote: Consider the

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

116

the function symbols when they are used as letters. The overbar works like a quote: Consider the
situation where sHxL denotes the servant of a person x , and H denotes the Prince of Denmark. In
the ùterm algebra of stage play÷, sHxL will accordingly be defined as the "servant" of an actor x (the
quotes should signify that we really mean the actor who plays the servant of the character embod

ied by the actor x) . Then sHH���L is the "servant" of the actor "the Prince of Denmark", but s�HH���L is
the actor "the servant of the Prince of Denmark". Both descriptions are of course equivalent due to
our definition of s , and this is precisely why we call such a definition natural.

We can now construct the term algebra over S by providing the carrier set WS with the natural
operations that are induced by concatenation. For doing this, we will use what we call a functor in
Theorema; see [10], [11]. Let us explain this briefly: Whereas a category describes a domain
implicitly by stating certain axioms that it should fulfill, a functor defines it explicitly in terms of
zero, one or more given domains. Typically, a category contains many domains, but a functor
always constructs exactly one. This is analogous to the difference between relations and functions:
A relation like y ~ x will typically yield many objects y for a fixed x , but a function like y = f HxL
will always yield only one y for a fixed x . Functors that do not take any input domain are called
introduction functors for obvious reasons (of course they may be parametrized like any other
functor, i. e. taking several other input arguments); category theory would see them as functors
from the category of sets. In the comparison to functions and relations, the introduction functors
correspond to the object constants (which we have identified with the nullary function constants).
In Theorema (see [68]), we would specify the functor for constructing the direct product of two
additively written groups G and H by the following construct (indices denote tuple components
here):

DefinitionA"Direct Product of Groups", any@G, HD,
CartesianProduct@G, HD = FunctorAP, any@x, r, s, u, vD,
s = X+ : P�P ® P, 0 : P, - : P ® P\
Î
P
@xD� J Î

G
@x1 Dí Î

H
@x2 DN

Xr, s\+
P
Xu, v\ = Zr +

G
u, s +

H
v^

0
P

= Z0
G

, 0
H
^

-
P
Xr, s\ = Y-

G
r, -

H
s]

EE
Logically, we can express this conveniently by using Hilbert’s Ι|quantifier (introduced in [36];

see also the chapter on the Ι| and ¶|quantifiers on page 27ff of the recent investigation [30]). Using
a notation similar to that of the category predicates presented before, we have

(64)

G Ä H = Ι
P

 J +
P

: P ´ P ® P í 0P : P í -
P

: P ® P í
x : í

P
� Jx1 : í

G
í x2 : í

H
N í Xr, s\ +

P
Xu, v\ = Zr +

G
u, s +

H
v^ í

0P = X0G , 0H\ í -
P
Xr, s\ = Y-

G
r, -

H
s]N.

This means that the direct product of the groups G and H is "such a group P that its addition is
a binary operation, its neutral element a nullary operation, its inverse a unary operations; such that
its carrier predicate is determined by the carrier predicates of the factor groups; and such that the
three operations are defined componentwise as indicated". Since we will not use Theorema for

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

117

three operations are defined componentwise as indicated". Since we will not use Theorema for
manipulating category and functor definitions, we will stick to the traditional notation (64) rather
than the Theorema notation (63). Using this notation and assuming the obvious definitions, we can
now state theorems like

(65)G : Group ßH : Group � G Ä H : Group.

Observe also the philosophy of avoiding domain questions on the input arguments to functors:
In the definition (64), we have not required G or H to be a group, not even a semigroup or a
groupoid; let us call such properties domain restrictions. The definitional also ùworks÷ if we supply
a domain without these properties; of course, the resulting domain G Ä H will not have these
properties either. All that we are saying in (65) is that if both G and H are indeed groups, then so is
G Ä H . The input arguments G and H cannot be ùcompletely messed up÷ (meaning that they do not
provide the appropriate signature), though, as long as we regard the binary copula predicate ":" in it
as a type declaration in the sense of Higher Order Logic; let us call these sanity conditions the
typing restrictions of the functor. Of course, in some borderline cases the distinction between
domain and typing restrictions may be blurred; for example, positivity could be a domain restric
tion expressed by the predicate x > 0 or a typing restriction expressed by the declaration x : R+ . In
most cases, however, there is a very natural difference: The typing restrictions should be kept
ùeasy÷ since they are to be done at ùcompile time÷ (the question of whether a term is well|typed
belongs to syntax checking just as excluding formulae like j ß ß Ψ), whereas the domain restric
tions may be arbitrarily complex like the execution of a program at ùrun time÷ (in general, the task
of checking domain restrictions may become a full|blown theorem|proving job). In particular,
some domain predicates are not even recursive and therefore not at all suitable for typing questions!

Let us also mention some brief remarks about the connections to category theory. Obviously,
the latter has a more restricted notion of functors, namely that they must also respect the arrows in
the involved categories. Let us call such functors respectful (also showing our respect for MacLane
and Eilenberg’s work). In many cases, one does indeed meet such respectful constructions; the
direct product of groups in (64) is a case in point.

Coming back to the construction of the term algebra TS , we can finally specify it by an appropri
ate introduction functor. We have already defined the set of words WS as its carrier. Since we are
reusing each function symbol in S as an ùactor÷ that imitates its action on the desired term algebra
T , the latter can simply take over the signature prescribed in S , giving the signature axioms
SigSHTL . So the only thing left to do is to specify the natural operations on the closed terms by
concatenation, thus completing the definition of the term algebra

(66)

TS = Ι
T

i
kjjjSigS HTLí t : í

T
� t Î WS í

"
fÎdom HSL "

t1 ,¼, tS HfLÎWS

 fT Ht1 , ¼, tS HfLL = f
�
 Ht1 , ¼, tS HfLL y{zzz.

Before dealing with the predicate symbols, we add one final remark about the term algebra. Up
to now, we have only considered ground terms, but it is almost trivial to extend this to terms
containing any variables we like. Suppose we are given a set of variables X , which must of course
be disjoint from domHSL . Then we can describe the corresponding term algebra for S in X , denoted
by TSHXL , simply by regarding the variables in X as new object constants~the only difference is
that we do not include them in the signature of the resulting term algebra. It is a typical feature of
mathematical structures that one abstracts from the practical necessity of having constructors for
denoting the elements. For example, the real numbers R are described as a field; hence, their
signature provides only the constants and , and the corresponding ground terms denote nothing

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

118

signature provides only the constants 0 and 1, and the corresponding ground terms denote nothing
more than the rational numbers. Therefore one usually adjoins a suitable name system (see below),
but the name constants are not regarded as a part of the algebraic signature.

The identification of variables and "new" constants is commonplace in proving: "In order to
prove "x ¼ , take x arbitrary but fixed ¼" (meaning that one considers a constant x0 in place of
the x). Loosely speaking, the important point is not really whether we call an x a constant or a
variable; the crucial question is rather whether we have any knowledge about it. Having no knowl
edge means that we are dealing with variables: this is why one takes an "arbitrary but fixed x" in
the above proof situation. In the case of term algebras, we have not yet introduced any axioms, so
there is no difference. In the presence of other axioms, though, we have to take care that the new
constants are really fresh in the sense that they do not occur in the axioms. If this is the case, we
have essentially added variables, which we might as well call "indeterminates"¼

We will start our consideration of predicate symbols with the most fundamental of all, namely
equality. In fact, we have already used it in (66), since any inductive structure presupposes equal
ity. The equality predicate is in some sense special among all other predicates since it possesses the
same universality as the logical connectives and quantifiers~it always makes sense to ask whether
or not two elements are equal. Hence it is natural to stipulate that a model for a theory containing
the predicate = must interpret it as the ùactual÷ equality relation between the elements of the
universe; such a model is called a normal model. By imposing or not imposing this semantic
restriction, one can choose between treating equality ùinternally÷ (as a logic|internal notion) or
ùexternally÷ (as all the other function and predicate symbols like + or £). On the syntactic side,
making equality internal corresponds to adding suitable equational inference rules or axioms to the
derivability relation; one speaks of a logic with equality in such a case.

The external treatment of equality is straight|forward since it is the same as for any other
predicate symbol; see below for how to handle them. Nevertheless, there are good reasons for
considering normal models: In first|order predicate logic, one cannot characterize equality through
axioms. Of course, one adds appropriate equational axioms (reflexivity and replacement axioms
for each function and predicate symbol) in a logic with equality. But this cannot preclude abnor
mal models: For example, take the group axioms together with an axiom stating that every element
has order three. From group theory we know that there is only one such group up to isomorphism,
namely Z3 . However, there are many non|isomorphic models containing e. g. four elements or
even À1 elements, and we can rightly call them abnormal! Of course, all the elements are grouped
into just three equivalence classes, and we cannot distinguish between their representatives through
any property expressed in our language; as far as the theory is concerned, all the elements in an
equivalence class are therefore ùpractically equal÷. Still we would prefer to have a group that
ùbehaves normally÷, and this is why we speak of normal models.

In fact, every abnormal model can be made normal by collapsing its equivalence classes into
single elements; the normal model is simply the finest congruence on the universe. The fact that
any model can be made normal is also the reason why abnormality makes no problems for reason
ing: In the entailment relation, we may quantify over all models fulfilling the equality axioms
(including all normal models) or over all normal models (that can be expanded into arbitrary
coarser models); this makes no difference. Hence entailment for normal models is equivalent to
deduction in equational logic, just as plain entailment is equivalent to derivability in plain logic
(Gödel’s Completeness Theorem).

Since normal models are definitely preferable and we can always obtain them, it is reasonable
to construct them in the first place. In other words, we now take the option of treating equality
internally in the sequel. Hence we are now in the following situation: We have to construct a
normal model for an axiom system , which contains (possible after some trivial equivalence

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

119

normal model for an axiom system F , which contains (possible after some trivial equivalence
transformation on the axioms) only formulae of the form

"x1
º "xn

$y1
º $ym

"z1
º "zk

$º S = T ,

where S and T are two terms having the free variables x1 , ¼, xn and y1 , ¼, ym and z1 , ¼, zk ,
etc. By the usual technique of Skolemization, we can get rid of the existential formulae at the
expense of adding suitable function symbols to the signature. Agreeing that we abbreviate univer
sal formulae by letting the corresponding variables occur free, we end up with axioms of the form
S = T ; we call them equalities. The categories that can be constructed by such axiom systems are
already very rich in structure; they are called varieties. Their structure is studied carefully in
universal algebra [20]; for example, one famous result by Birkhoff says that one can characterize
varieties as those algebraic categories which are closed under subalgebras, homomorphs and
quotients (see page 75). We call a category algebraic if its signature is purely algebraic (i. e.
consisting of object and function constants alone).

As explained above, we can obtain a normal model by collapsing the supposedly equal ele
ments. Hence we have to construct the term algebra for the given signature and then take the
quotient with respect to the congruence relation induced by the equalities F . For this purpose, we

need each equality S = T in the form of a pair XS��, T
���\ containing the word corresponding to the left|

hand and right|hand side (see after (63) for a discussion of the quoting function x# x��). Let us
assume we have got a meta|level function Eql that does all the preprocessing on F as described

above and then transforms each equality S = T into the word pair XS��, T
���\ ; such a function is easy to

implement but tremendously tedious to describe. Let us now look at the variety of unital commuta
tive rings for seeing an example. Its axiom system F is given by the set of the following formulae
(incorporating implicit universal quantifiers)

(67)

Hx + yL + z = x + Hy + zL,
x + 0 = x,

x + H-xL = 0,

x + y = y + x,

Hx yL z = Hx yL z,

1 x = x,

x y = y x,

x Hy + zL = x y + x z,

which we have already seen in their relativized form in (58); we will soon say a little more about
this relativization. For now, let us just mention that EqlF is the set of the pairs

(68)

XPlus
������

 HPlus
������

 Hx, yL, zL, Plus
������

 Hx, Plus
������

 Hy, zLL\,
XPlus
������

 Hx, 0
��L, x\,

XPlus
������

 Hx, Negative
�������������

 HxLL, 0
��\,

XPlus
������

 Hx, yL, Plus
������

 Hy, xL\,
XTimes
���������

 HTimes
���������

 Hx, yL, zL, Times
���������

 Hx, Times
���������

 Hy, zLL\,
XTimes
���������

 H1��, xL, x\,
XTimes
���������

 Hx, yL, Times
���������

 Hy, xL\,
XTimes
���������

 Hx, Plus
������

 Hy, zLL, Plus
������

 HTimes
���������

 Hx, yL, Times
���������

 Hx, zLL\,

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

120

where we have replaced the operator symbols +, -, * by standard function names
Plus, Negative, Times for making the overbarring more readable. But what is now the meaning of
the variables x, y, z occurring there? They are now ranging over the elements in the word set WS ;
for example, the second word pair in (68) says that for each admissible word x , we want to identify

the words Plus
������Hx, 0

��L and the word x itself. Therefore let us write EqlS,F for the set consisting of all

such word pairs over WS . For arbitrary F , we now define EqvS,F to be the equivalence relation

induced by the word pairs EqvS,F , i. e. the corresponding reflexive, symmetric and transitive

closure. It is easy to see that EqvS,F is actually a congruence, as long as F is consistent (this is

where one needs the hypothesis in Gödel’s Completeness Theorem for the case of equational
axiom systems). Hence we may define all the operations of TS on the congruence classes as usual.
This gives rise to the functor

(69)

FS,F = Ι
F

i
kjjjSigF HSLí x : í

F
� x Î WS �EqvS,F í

"
fÎdom HSL "

t1 ,¼, tS HfLÎWS

 fF HPt1T, ¼, PtS HfLTL = Pf� Ht1 , ¼, tS HfLLT y{zzz,
which does indeed construct the required model for the given signature S and the equational axiom
system F .

For making this statement precise, we have to assert two things: that FS,F has the right syntax
(it fulfills the desired signature specification associated with S) and the right semantics (it fulfills
the equational axioms described in F). The difference is again the relativization incorporated in
passing from the meta to the object level. We have already solved this problem for the signature by
introducing the "corresponding signature definition" in (62), denoted by SigSHDL ; it relativizes the
signature given ùabsolutely÷ in S . Let us then introduce a similar meta|level function for effecting
this relativization on the axioms; we denote it by AxmS,FHDL . Again we skip the actual implementa
tion of such a function since it is quite trivial but dull: The only thing to be done is to replace each
signature constant (this is also true for the general situation which involves object, function and
predicate constants) by the corresponding domain|curried symbol and to restrict all the quantifiers
to the domain. Signature and Axioms make up a category as explained above, so we can combine
the relativization definitions into the definition scheme

(70)
D : @CatS,FD :� SigS HDL,
D : CatS,F :� AxmS,F HDL.

Finally, we can now formulate our result in the following convenient form: For all algebraic
signatures S and for all equational axiom systems F , we have

(71)FS,F : CatS,F .

This result means that FS,F is indeed a normal model for the prescribed category. In logic, such
a structure is called a canonical model; see page 202 in [28]. As for the term algebras, one may
easily add a set X of "variables", thus obtaining a corresponding equivalence EqvS,FHXL and

domain FS,FHXL . In universal algebra, such a structure is called the free algebra in X for the
variety specified by S and F ; see page 66f in [20], where it is also proved that free algebras for a
fixed variety and fixed X¤ are unique up to isomorphism (this is why we can say: "the" free alge
bra ¼). In fact, their description involves an abstract semantic characterization of the model class,
but they prove it equivalent with the syntactic S, F formulation used here (called "equational
classes" by them); see page 75.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

121

classes" by them); see page 75.
Before we continue on the exciting path of Gödel’s Completeness Theorem, let us briefly ask

ourselves what we have achieved so far in terms of the polynomial definition. Obviously, our
preferred category is that of the unital commutative rings. They are described by (55), with S and
F as in (61) and (67), respectively. So what is the free algebra in the variety UniCommRing over
the indeterminates, say, 8x, y<? It is all the terms that we can build from x, y and the signature
constants, subject to the equalities of the variety. For example, FS,F contains terms like

x6 y2 + x2 y + 2 x y or 2 x + 2, where we have used the power notation as an abbreviation, so x6 y2

is actually x x x x x x y y . Furthermore, 2 x y is an abbreviation for x y + x y , etc. So this almost
polynomials over the integers, just that we do not have the actual integers available as coefficients.
Besides this, we cannot simplify a term like H1 + 1L x . This is not the same as x + x , which we have
abbreviated as 2 x . We will soon return to this point of ùinstalling a coefficient algebra÷.

But now let us continue the development of model construction as it is needed for Gödel’s
Completeness Theorem, as soon as we have nonequational axioms in F . In fact, we will not really
need this case for introducing polynomials, so we will treat this point a bit more briefly. It is just
too tempting to walk the whole path to its beautiful conclusion, since there is not so much missing
at this point. In fact, there is only one crucial idea necessary for coping with general formulae: One
has to ùsaturate÷ them in such a way that one can read off how to define the required relations of
the model. Following [28], we find it convenient to distinguish two kinds of saturations:

è First one shows that it is straightforward to construct a model for Hintikka sets; page 112.
Such sets are downward saturated, containing for each formula all the parts that are neces
sary for its proof; somehow one goes downward on their history. For example, if j ß Ψ is
in the set, then j and Ψ should be as well; if $x j is in the set, then jx¬t should also be in
the set for some closed term t . The idea of the model construction is this: Going downward
more and more, one must finally hit atomic formulae with ground terms. Since ground
terms are just the carrier elements of the term algebra, we can define the relation symbols
simply by making it true exactly for those terms that occur in the corresponding atomic
formulae. (Dealing with internal equality, we must of course treat equational atomic
formulae~ground equalities~as we did before, whereas everything else is done on the
representatives and transferred to the congruence classes; see page 202f.)

è Second one constructs a model for a given axiom system F by adding all expressible
formulae that keep F consistent; see page 116f. In this way, F becomes not only down
ward but also upward saturated as we add all the formulae that could be proved as theo
rems or axiomatized as independent formulae; in this sense, we are going upward in their
history. This is done by using an arbitrary enumeration of all formulae (in case of uncount
able languages one even has to appeal to Zorn’s Lemma), so one forces completeness of
the resulting axiom system F* in a rather brutal manner: For an undecidable formula j ,
either j itself or its negation Ø j is adjoined~whichever happens to come first in the
chosen enumeration! In this sense, the constructed model involves some arbitrariness that
was not necessary as long as we had only equational axioms or Hintikka sets. This is also
the reason why the corresponding term algebra in general does not obey the universal
mapping property characteristic for free algebras, not even for purely algebraic axioms:
Not every class of algebras has free algebras; see page 66 in [20].

Having done all this, one ends up with a canonical model for the given signature S and axiom
system F , which we will denote by CS,F . Just as before, the completeness result now reads as
CS,F : CatS,F . We should also mention that one speaks of Herbrand models if equality is treated
externally: In this case, the universe of the model is still the term algebra rather than its equational

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

122

externally: In this case, the universe of the model is still the term algebra rather than its equational
quotient, and one need not deal with representatives of congruence classes.

As a final remark on the general problem of constructing canonical models for axiomatically
specified categories, let us again say a few words about the viewpoint of category theory. There,
the overall tendency is always to get rid of the set category as the underlying material from which
the models are built; everything is formulated in ùarrow|theoretic÷ terms. A good example for this
approach can be found on page 147ff in [23], although this book focuses on "algebraic type the
ory": The signatures are purely algebraic but formulated in a typed language; the Completeness
Theorem gets the name "categorical type theory correspondence". By using a suitable category|
theory version of the construction sketched above, the so|called "classifying category"~correspond
ing to what we have called FS,F above~ for the given "algebraic theory" is constructed. Its main
value is seen in being a syntax|independent representation of the algebraic theory.

Coming back to the polynomials, we must now resolve the problem with the coefficients.
Actually, there are two problems here: one of a syntactic nature, the other of a semantic nature.
The first one is that we do not even have symbols for denoting the coefficients for the desired
polynomials. In the example above, we had the case of Z@x, yD in mind. But what about Q@x, yD?
We cannot possibly write down the term 2.5 x + 4.7 y unless we have constant symbols for all of Q
or whatever coefficient domain we have in mind. The other problem is that we wanted to identify
H1 + 1L x and 2 x ; this is the semantic problem now. In order to cover all cases, we have to add all
the equalities valid in the desired coefficient domain.

In general, we want to define the polynomials for variety described by the signature S and the
equational axioms F ; see page 12 in [42]. Accordingly, the coefficient domain may be any algebra
A in this variety, i. e. we are given any A with A : CatS,F . Of course, the coefficient domain may
be of a much more specific type; for example, as above, it may be a field Q although we construct
the polynomials in the variety of unital commutative rings. The specific nature of the coefficient
domain enters only through the computational laws, allowing identifications like H1 + 1L x and 2 x ,
as in the above example; this is what we meant before by describing polynomials as the model of
polynomial functions. But first let us define the necessary constants for denoting the coefficients of
the polynomial. Since they name each individual in A , we will call them the name constants for A .
Let us denote them by priming the respective individual, e. g. 3’ would be the name of 3. The
name system of A , denoted by NmHAL , is then defined as 8a’ È a Î A< . For reasons of sanity, we
require NmHAL to be distinct from S , whenever a name signature is constructed (this can always be
enforced if necessary). The other thing needed is the collection of all equalities S = T valid in A ,
when S and T range over all the terms over the signature SÜNmHAL . We will call this collection
the operation table of A and denote it by OpHA, SL , since this is common terminology at least for
finite domains A . For uncountable domains coefficient domains like R , such a definition of NmHAL
and OpHA, SL is clearly inconstructive, but one can usually resort to some ùreasonable÷ subdomain
if constructivity is an issue; in the case of R , algebraic number fields could be such a choice.

Now it is easy to describe the polynomials precisely. Let S be a signature and F an axiom
system over S , together forming the variety CatS,F with category type V . Furthermore, let A be a
coefficient domain with A : V , and let X be a set of indeterminates, which must of course be
distinct from SÜNmHAL . Then we define the polynomials for V over A in X as the free algebra in
X for the variety with signature SÜNmHAL and axioms FÜOpHA, SL . The corresponding introduc
tion functor for polynomials is therefore given by

(72)PS,F HA, XL = FSÜNm HAL,FÜOp HAL HXL.
Having introduced a name V for the category type of CatS,F , we can also write PVHA, XL

instead of PS,FHA, XL . For example, we can describe the normal polynomials over a unital commuta
tive ring as the domain , usually denoted by . In the future, we will refer

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

123

tive ring R as the domain PUniCommRingHR, XL , usually denoted by R@XD . In the future, we will refer
to this domain simply as the "commutative polynomials" over the ring R . A bit more specifically,
we might take for X the set 8x, y, z< and for R the ring Z or the field R forming the integer polyno
mials Z@x, y, zD or real polynomials R@x, y, zD , respectively. With finite indeterminate sets like
8x, y, z< , one usually speaks of "polynomials in x, y, z" instead of "polynomials in 8x, y, z<", thus
identifying R@8x, y, z<D with R@x, y, zD .

Actually, the construction (72) is quite general~it yields what universal algebra calls a free
union; see page 13 in [42]. Given two free algebras FS,FHXL and FS’,F’HX ’L , we can construct the

free algebra FSÜS’,FÜF’IXÜ X ’M , where Ü denotes the disjoint union (in a reasonable setting X

and X ’ will be disjoint anyway, so Ü is simply the normal set|theoretic union) as their free union
in the variety CatSÜS’,FÜF’ . Strictly speaking, we should say: this is some free union, but by speak
ing of the free union we mean the particular construction considered here. The signatures S and S’
need not be the same (the corresponding algebras are then called dissimilar), but by merging them
into the (normal!) union SÜ S’ , their common part show up only once in the resulting free union
(this is actually a slight generalization of the usual definition of free union, which is restricted to
similar algebras, but it seems to be a quite natural one~the notion of homomorphism in V remains
the same even though some of its conditions become vacuous in case of a reduced signature).
About the axioms of F and F’ we must of course stipulate compatibility, meaning that not only
must F and F’ themselves be consistent, but even their union FÜ F’.

Let us now introduce the name algebra NSHAL of a given algebra A in a variety CatS,F as
FSÜNmHAL,OpHA,SL . A typical name example would be the number system ¼, -2, -1, 0, 1, 2, ¼ for
the ring of integers. But A could also be the algebra of trigonometric functions; in this case, the
name algebra would include the functions x# sinHxL, x# cosHxL , x# sinH3.75 xL ,
x# sinHxL cosH2 xL , ¼ Now we can make the notion of "installing a coefficient algebra" precise:
We see that PS,FHA, XL is indeed the free union of FS,FHXL and NSHAL .

As mentioned before, mathematical structures usually do not include sufficiently many construc
tors for denoting all the carrier elements. Hence it is customary to eliminate the name|part from the
polynomial signature, retaining only the original signature S . In model theory, the domains arising
from such an elimination are called reducts. As a consequence, we have the nice preservation
property PVHA, XL : V . So the luxury of the name signature was just an intermediate device for
defining polynomials.

Now that we have finished building up polynomials according to the old definition, let us ask
ourselves how the evaluation homomorphism and polynomial functions look like in this setting.
One can actually answer these questions on a very broad basis: For any free algebra, a term can be
evaluated in the most natural way~simply by plugging domain values into the indeterminate.
More precisely, if T is a congruence class of terms from TS,F , represented by some particular term
t possibly (in fact, typically) containing the indeterminate x , and a fitting algebra A : CatS,F , its
evaluation in a carrier point a Î �A is given by the value t

� Èx¬a ; we denote this by evalS,F,AHa, TL
or evalV,AHa, TL if V designates CatS,F . Here we have written t

�
 for the term arising from t by

ùrecurrying÷ the operation domain from TS,F to A , e. g. replacing TS,FH+L by AH+L . Hence t
�

becomes a term denoting an individual of A , as soon as each occurrence of the indeterminate x is
replaced by the value a ; this is what we indicated by writing t

� Èx¬a . Note that the evaluation homo
morphism is well|defined by specifying its values in terms of equivalence classes, because the
equivalence is a congruence.

The case of several indeterminates is analogous, but one must introduce a total ordering on
them for supplying a sequence of input arguments to them (if one wants to consider infinitely
many indeterminates, one actually needs a well|ordering as on page 6 in [42]). Usually one thinks
of V and A as fixed quantities (in programming, one would say "global variables"), so it is sup
pressed in denoting the evaluation homomorphism; one simply writes or even briefer

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

124

pressed in denoting the evaluation homomorphism; one simply writes evalHa, TL or even briefer
evalaHTL . In the special case when T is a polynomial, the evaluation algebra A usually coincides
with the coefficient domain.

The concept of polynomial function is defined in terms of the evaluation homomorphism, so it
stays the same as before: For a polynomial p Î PVHA, 8x1 , ¼, xn<L over the coefficient domain
A : V , its associated polynomial function p� : An ® A is defined by p� HaL = evalVHa, pL . The collec
tion of all such polynomial functions forms an algebra in V , which we denote by PV

n HAL . For the
commutative polynomials, this is just PnHAL according to our previous notation (see Section 2); so
we simply suppress V when it defaults to the variety UniCommRing. Just like PVH_, XL , the con
struction PV

n H_L is again a functor constructing the domain of polynomial functions from a given
evaluation domain in V . Although we will only need it in the polynomial setting, we should also
mention that everything goes through without any change, if one considers an arbitrary free algebra
FV is a variety V . However, the resulting "polynomial functions" in this case are usually called
"derived operations".

We are now finished with the construction of polynomials according to the old definition. This
has taken a considerable portion of time (and paper), but we think that it pays off: We have placed
the ùreal idea÷ of polynomials~in a sense that will become clear soon~into its proper mathemati
cal setting, thereby uncovering some deeper principles of how structures are built up in mathemat
ics. In the next subsection, we will address some algorithmic questions: not surprisingly, this will
lead us back to the succinct definition.

A.4 Computing with Polynomials

Up to now, we have not lost any thought about the algorithmic aspects of the old definition of
polynomials. Let us analyze this in the well|known situation of commutative polynomials. A

polynomial like x2 + 2 is now a congruence class

(73)8x2 + 2 - 1, x3 + x2 - x3 + 2, H3 - 2L x2 + H-H-2LL, ¼<
containing infinitely many terms all representing the same polynomial x2 + 2. This may be a nice
characterization for theoretical investigations, but it is obviously quite useless for practical computa
tions. The succinct definition, where the polynomial is conceived as the finite sequence X1, 0, 2\ , is
very pragmatic compared with the infinite set (73). All the necessary operations can be carried out
with this finitary data structure, and they are actually rather simple to implement. So it seems the
old definition has no chance of surviving in our modern times of emphasized computer implementa
tion? Let us reconsider the situation for a moment.

The formalization of polynomial domains as free algebras was actually following some old
intuitions. Now the old mathematicians have done computations with polynomials for a long time,
without ùhaving÷ any precise definition~neither the old nor the succinct one. So what did they do?
Let us once again look at the computation (52), namely

(74)H2 + xL H-2 + xL = -4 + 2 x - 2 x + x2 = -4 + x2 ,

from a naive and ùinnocent÷ viewpoint: We multiply the polynomials 2 + x and -2 + x by consider
ing them as "formal expressions in an indeterminate x", thus obtaining the formal expression

H2 + xL H-2 + xL , which we "rewrite" first into the formal expression -4 + 2 x - 2 x + x2 and then

into -4 + x2 . The latter "is" then the resulting polynomial. What has happened here? Obviously,
the rewrite steps carried the formal expressions along the congruence EqvS,FHXL induced by the

axioms in the signature of the variety . So the "formal expressions" are nothing

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

125

axioms F in the signature S of the variety UniCommRing. So the "formal expressions" are nothing
else than terms representing the corresponding congruence class. We will call such representing
terms polynomial terms, whatever the variety CatS,F may be. Note, however, that they are called
"polynomials" on page 84 of the Universal Algebra text [20]!

So the basic idea is that one can perform effective computations on the polynomial forms rather
than the polynomials themselves. But how do we decide whether two polynomials are equal then?

Look at the polynomial (73) again: Some computation might yield the polynomial form x2 + 2 - 1

as its result, another computation x2 + 2. How can we know that they represent the same polyno
mial? In other words, the general problem is to find a decision algorithm for the congruence rela
tion EqvS,FHXL in order to decide equality in FS,FHXL . In the literature about rewriting, it is called

the word problem, and there several are well|known instances where it is unsolvable; see page 59
in [1]. Hence we cannot hope to control every kind of polynomial in this way, but it turns out that
there are decision algorithms for many practically interesting polynomial types~of course includ
ing the commutative polynomials.

The fundamental idea is to fix the direction in which each axiom of F is used in the following
way: It should not matter in which order any one of several applicable axioms is used for rewriting
a given term; in the end, one should always come up with the same final term. Rewrite systems of
this type are called convergent, and the two key requirements listed above are called confluence
(the order does not matter) and termination (there is always a final term). See page 9 in [1] for
precise definitions. Basically, one has to do the following: For a fixed axiom system F in a signa
ture S and a set of indeterminates X , one defines a binary reduction relation � on TSHXL which
expresses that some equation with a fixed orientation is used once on a term. Its reflexive, symmet

ric and transitive closure, denoted by �
*

, coincides then with EqvS,FHXL . But what we need for

computational purposes is of course the oriented version: the reflexive and transitive closure, called

the corresponding rewrite relation and denoted by �
*

. The art of rewriting is now to add some~
logically speaking~redundant equality axioms to F such that the corresponding rewrite relation is
indeed convergent.

In fact, there is a well|known algorithm for realizing this so|called completion process for
many practically interesting purposes due to Donald E. Knuth and Peter B. Bendix [39], called the
Knuth|Bendix algorithm (although it may fail on some inputs and run forever on others, so one
should rather call it a procedure). The main idea is that for obtaining a complete system, it suffices
to add oriented equalities~called rewrite rules~for very specific situations, namely when two
earlier rewrite rules overlap on their left|hand sides; the corresponding right|hand sides are then
said to form a critical pair. The fundamental idea of critical pairs lies at the heart of many impor
tant algorithms in computer science, collectively known as critical|pair/completion or briefly CPC
procedures [12]. Besides the Knuth|Bendix algorithm for solving particular word problems, there
are two other famous instances of this idea, both discoveries being independent from Knuth and
Bendix’s: One is Buchberger’s algorithm for computing Gröbner bases [17], the other (though
slightly less in the CPC spirit) is Robinson’s resolution procedure [55].

For our present purposes, we need not resort to sophisticated machinery; let us simply remark
that by inspection, one can find convergent rewrite systems for many practically important types of
polynomials~see [42] for the case of unital commutative rings, groups, lattices, and boolean
algebras, including proofs of their convergence. For example, the rewrite system for the ùclassical÷
commutative polynomials proceeds by expanding the polynomials (this corresponds to using the
distributivity axiom directed ùforward÷ if both operands are non|constant), collecting equal monomi
als (this corresponds to using the distributivity axiom directed ùbackward÷ if either operand is
constant), simplifying the coefficients (using the operation|table axioms in the ùcomputation
direction÷), ordering the monomials and their indeterminates appropriately (using the
associativity/commutativity axioms of addition and multiplication in a direction prescribed by a

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

126

÷

associativity/commutativity axioms of addition and multiplication in a direction prescribed by a
suitable term ordering), and so on. A similar strategy can be applied for unital rings (without
commutativity of multiplication!), whose variety we shall denote by UniRing; the only difference
is that we need not order the indeterminates within monomials. From now on, we will simply
speak of uncommutative polynomials (polynomial terms, polynomial forms) in this case. This
name is a bit ugly, but we will not have to use it often because we will mainly work with the
slightly different notion of noncommutative polynomials to be introduced in Section 5.

Whenever one has a convergent rewrite system �
*

 for a congruence ~ (meaning �
*

 coin
cides with ~), one can rewrite a given term until this process stops (since convergence guarantees
termination); the resulting term is then called the normal form of the input term, and it is unique
due to the confluence property (which is also guaranteed by convergence). Denoting the normal
form of a term t by tx , the corresponding normalization mapping t# tx has two essential proper

ties: First, it preserves the congruence, meaning t ~ tx , because �
*

 is clearly a subrelation of �
*

.
Second, it ùequalizes÷ the congruence, meaning t ~ u Þ tx = ux , because of the uniqueness prop
erty. A mapping with these two properties is called a canonical simplifier for ~ , and the correspond
ing normal forms are then canonical forms for ~ ; see page 12 in [16]: The canonicality require
ment is equivalent to the decidability of the given congruence and hence to the solvability of the
word problem in the free algebra FS,FHXL . Furthermore, the factor domain FS,FHXL is then isomor
phic to the corresponding ample algebra: Its universe is the collection of all the normal forms; its
operations proceed by first applying the operations as in TSHXL and then normalizing the resulting
terms; see page 13 ibidem.

Applied to polynomial terms, this solves the problem of effective computation in all those
cases, where we have a convergent rewrite system. Following [5] on page 58, the normal form of a
given polynomial term will be called its associated polynomial form. Then we can interpret the
above isomorphism as saying that we can basically identify the polynomials with their associated

polynomial forms. For example, the polynomial (73) corresponds to the polynomial form x2 + 2.
Now we can also see the connection to the succinct definition of polynomials: Since we can always
represent a polynomial form in R@XD by the finite multisequence of its coefficients, the ùsuccinct
polynomials÷ turn out to be nothing else than custom|tailored data structure of the corresponding
polynomial forms, including an addition and multiplication that is optimized for this data structure.
It is therefore clear that the succinct concept of polynomials is so well suited for the algorithmic
tasks of today’s computer algebra~limited, though, to the special case of polynomials for the
variety UniCommRing, which is of course the most important type of polynomials occurring in
practice. In the general case, it is highly non|trivial to come up with similar custom|tailored data
structures and optimized operations on them. In the literature, this problem is known as term
indexing.

For us, the most important case will not be the commutative but~in some sense~the uncommu
tative polynomials. So let us briefly consider the problem of indexing for this situation. Taking
away the commutativity for multiplication in the axiom system (67), there are seven axioms for the
variety UniCommRing; we will discuss their use one by one. Obviously, it is still possible to
expand a polynomial into a sum monomials by virtue of the distributivity axiom. By the associativ
ity and commutativity of addition, so we can then collect the monomials in a set, realized as a list
with a fixed term ordering. The law of the additive neutral is realized by simply taking out empty
monomials from this list. Translating -x into H-1L x , the law of the additive inverse becomes
superfluous as it is subsumed by the operation table. The associative law for multiplication tells us
that we can regard the monomials as words, having indeterminates and coefficients as letters (note
that the coefficients do not in general commute with the indeterminates~see the next subsection).
The law of the multiplicative neutral just tells us to discard empty words. Finally, the operation
table may be applied whenever one meets a subterm without indeterminates. Hence we can con

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

127

table may be applied whenever one meets a subterm without indeterminates. Hence we can con
clude that the uncommutative polynomial forms are isomorphic to the data structure of word lists.

Unlike to the situation of commutative polynomials, however, we do not gain anything from
using the isomorphic data structure. All we have to do is to regard addition and multiplication as
flexible operations; see [41]. In this view, the unary versions act as identity functions, so
PlusHAL = A and TimesHAL = A . Furthermore, the nullary versions are the corresponding neutral
elements, so PlusHL = 0 and TimesHL = 1. Obviously it makes no difference whether we understand
a list XA, B, C\ as a data structure like ListHA, B, CL with the flexible constructor "List" or as an
addition PlusHA, B, CL with the flexible constructor "Plus". But note that "Plus" has the additional
role of set union in this case, meaning that it joins two lists and then reorders it according to the
fixed ordering. For the multiplication, the situation is similar. It amounts to the same thing whether
we consider a word A B C as a data structure WordHA, B, CL with the flexible constructor "Word"
or as a multiplication TimesHA, B, CL with the flexible constructor "Times". The difference to the
previous case of lists is that "Times" now acts as concatenation on the words, which does not
involve any reordering of the letters~reflecting the uncommutative nature of this kind of polynomi
als.

Therefore we conclude that the advantages of the succinct definition are lost upon moving from
commutative to uncommutative polynomials: In our opinion, it is more reasonable to carry out the
computations immediately on the uncommutative polynomial forms rather than introducing some
artificial definition similar to what is done for commutative polynomials in computer algebra~
where it clearly does make sense.

A.5 Commutative versus Noncommutative

There is one more subtlety we must take into account. In the upcoming applications of uncommuta
tive polynomials, we will encounter situations where the coefficients are taken from a commutative
ring or even from a field. But for uncommutative polynomials as we defined them, there will be no
commutation between indeterminates and coefficients, even though the coefficients may commute
amongst themselves. In typical situations, we are dealing with the complex field C as a commuta
tive coefficient domain, and the indeterminates X = 8x1 , ¼, xn< will represent differential, integral
and multiplication operators. As a concrete example, let us look at the situation X = 8sin, ¶< , where
sin represents the multiplication operator mapping a function f to the function x# f HxL sin x and
¶ the differentiation operator mapping a function f to its derivative f ’. The corresponding domain
of differential operators is then given by the uncommutative polynomial ring PUniRingHC, 8sin, ¶<L ,
since sin and ¶ obviously do not commute. This is a severe problem because we would like to do
computations like

(75)
H3 ¶ +2 sinL H7 ¶ +4L =

H3 ¶L H7 ¶L + H3 ¶L 4 + H2 sinL H7 ¶L + H2 sinL 4 = 21 ¶2 +12 ¶ +14 sin ¶ +8 sin,

where we have, among others, used the reduction

(76)
H3 ¶L H7 ¶L® 3 H¶H7 ¶LL®

3 HH¶7L ¶L®
!

3 HH7 ¶L ¶L® 3 H7 H¶ ¶LL®
* H3 * 7L H¶ ¶L® 21 H¶ ¶L = 21 ¶2 .

All the steps indicated by ® are just invocations of associativity, the step indicated by ®
*

appeals to the operation table for multiplying complex numbers, and the last equality is merely a

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

128

notational convention. The critical step is the one indicated by ®
!

, where we have made use of the
commutation between ¶ and 7. Of course, we need these commutations between all indeterminates
and all coefficients. Speaking a bit more generally, we are asking for a new type of ùuncommutative
polynomials÷ over a commutative ring R in the indeterminates X , where x r = r x for all indetermi
nates x Î X and all coefficients r Î R . Maybe one only has to adjust the axioms of the variety
UniRing slightly for constructing this new type of ùuncommutative polynomials÷?

A moment’s thought, however, reveals that such ùuncommutative polynomials÷ cannot exist in
the (very broad!) understanding of the polynomial concept outlined in the preceding subsections.
The reason is simply that the indeterminates would not be ùindeterminate÷ anymore; they would
not be fresh constants since the commutations bind special properties to them. For a clear concept
of polynomial, we should keep this requirement such that the term "indeterminate" deserves its
name: Their essential idea is that we know nothing about them~except that they are distinct
anonymous elements of the carrier.

Let us make this point clearer by way of another example. As a coefficient domain, we take C
as before. But the indeterminates should be X = 8sin, c< now, where sin is as before and c is the

ùcubing operator÷ mapping a function f to the cubed function x# f HxL3 . Again we can consider
the uncommutative polynomial ring PUniRingHC, 8sin, c<L , but now it is clear that we would not want
to have a commutation between the indeterminate c and, say, the coefficient 3: The operator c 3

maps f to x# H3 f HxLL3 = 27 f HxL3 , whereas the operator 3 c maps f to x# 3 f HxL3 . Since the
commutations do not work for this particular interpretation of the indeterminates, we cannot expect
that they should work in general; the polynomial ring PUniRingHC, XL cannot ùknow÷ anything about
the particular interpretation we have in mind!

What we can learn from this example is that one typical interpretation of the rings
PUniRingHC, XL is various composition rings (meaning that composition plays the role of the ring
multiplication; see page 306 in [53]) of operators acting on certain complex functions. The special
situation with commutations between indeterminates and coefficients arises when we restrict our
attention to linear operators: In this case, we have xH f + gL = xH f L + xHgL and xHr f L = r xH f L for all
indeterminates x Î X , for all coefficients r Î R , and for all admissible functions f , g we have in
mind. The only interesting information we can extract from the first property to the polynomial

ring is by substituting for f and g functions yH f`L and zHg̀L arising from other operators y, z Î X and

arbitrary admissible functions f
`

 and g̀ . This gives xIyH f`L + zHg̀LM = xIyH f`LM+ xHzHg̀LL for arbitrary

admissible functions f
`

 and g̀ . Since operator composition is just polynomial multiplication in this
interpretation, this amounts to xHy + zL = x y + x z , which is always fulfilled due to the distributive
law of the variety UniRing . The second property means that we require x r = r x for all indetermi
nates x Î X and for all coefficients r Î R .

Since we cannot construct a new type of ùuncommutative polynomials÷ for modelling such
domains of linear operators as are relevant to us, let us consider a different device for enforcing the
desired commutations. In fact, we might have various other desires coming from specific interpreta

tions of the indeterminates, e. g. the property ¶2 sin = -sin in the example presented at the begin

ning of this section. Now equalities like ¶2 sin + sin = 0 or ¶3 - 3 ¶ = 0 are all of the form p = 0,
where p is some uncommutative polynomial. It is a well|known fact from ring theory that one can
always form the quotient ring of all the polynomials with respect to the ideal generated from one
or more such left|hand side polynomials p ; this is true for the commutative and uncommutative
case alike.

It is advantageous to distinguish between ideals associated with fundamental properties like the
commutation ideal QHR, XL = Hr x - x r È x Î X ß r Î RL for an arbitrary uncommutative polynomial

ring PUniRingHR, XL and other more ùaccidental÷ ideals like the above example Á = H¶2 sin + sinL . In
the first case, it seems appropriate to introduce a new name for the resulting domain

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

129

ù ÷

the first case, it seems appropriate to introduce a new name for the resulting domain
PUniRingHR, XL �QHR, XL , which does now indeed provide the desired ùuncommutative polynomials
with indeterminate|coefficient commutations÷. Following the literature, we will call it the ring of
noncommutative polynomials or briefly the noncommutative polynomial ring and denote it by
R XX\ ; see page 527 in [3]. Analogous to the commutative case, we will abbreviate R X8x1 , ¼, xn<\
by R Xx1 , ¼, xn\ , as it is also customary in practice.

Having constructed this new domain, we should again pose the question of term indexing.

Obviously, a noncommutative polynomial like 21 ¶2 +12 ¶ +14 sin ¶ +8 sin occurring as the result
in (75) can be described as a set (or ordered list~see Section 4) containing pairs with a coefficient
and a word whose letters are only indeterminates. In the example, this list would be

(77)8X21, ¶ ¶\, X12, ¶\, X14, sin ¶\, X8, sin\<.
Now we can always view a finite set of pairs as a function with finite domain, if the correspon
dence between both sides of the pairs is unique in some direction. In examples like (77), there will
always be only one coefficient for a given word~simply because the normal form presupposes
that all like monomials are fused. Hence we can view the noncommutative polynomial forms as
finite functions from the word monoid X* to the coefficient ring R . In fact, we can always think of
such a function as defined on the whole of X* by mapping all the missing words to the coefficient
0, and so we will identify the noncommutative polynomial forms with the collection of all func
tions from X* to R having finite support (but with the coefficients written in the left component).
In algebra, the construction of all finitely|supported functions from a given monoid M to a ring R
is known as the monoid ring over R and M ; it is an important tool in representation theory, where
M is usually even equipped with a group structure and is accordingly called the group ring; see
page 246 in [53]. So the support of a polynomial p Î R XX\ is 8w Î X* È pHwL ¹ 0< , and we will
denote it by suppHpL .

Since it is well|known that the word monoid X* is coincides with the free monoid over X , one
often reads the formulation that R XX\ is the monoid ring over R and the free monoid over X ; see
page 527 in [3]. Analogously, one can characterized R@XD as the monoid ring over R and the free
abelian monoid over X ; see page 64 in [3]. The latter is nothing else than the monoid of finite
multisequences, so the polynomials of R@x1 , ¼, xnD are just finitely|supported functions from Nn

to R as described in Section 2. However, one should keep in mind that only R@XD but not R XX\ is a
ùreal÷ polynomial domain in the authoritative sense of the old definition. Having issued this warn
ing, we will from now on follow the common practice of using the name "polynomial" also for the
elements of some quotient PS,F HA, XL �Q of a given polynomial domain PS,FHA, FL . Here F is an
equational axiom system in a signature S , A is an algebra from CatS,F , X is a set of indeterminates,
and Q is a congruence on (for rings: determined by an ideal in) PS,FHA, XL .

We should also mention that one can consider R@XD or R XX\ as an algebra over R , which is
then called the monoid algebra over the free monoid over X or the free abelian monoid over X ,
respectively. Note that the term "algebra" is here used in the narrower sense of what is also known
as "bilinear algebra" [49], namely a ring which is at the same time a compatible module
(compatibility means mixed associativity of multiplication). Considering this algebra structure, one
may also characterize R@XD or respectively R XX\ as the free abelian algebra over X or as the free
algebra over X ; see pages 448ff in [6]. This fact also justifies the parallelism suggested by the
notations R@XD and R XX\ .

As we have now seen that the monoid ring over R and X* provides the appropriate data struc
ture for noncommutative polynomials over R in X , let us now ask ourselves again how this should
be handled in the implementation. Obviously, the only change compared to the uncommutative
polynomials is that the words contain only indeterminates, whereas the coefficient is separated as
an additional component of the pair comprising a monomial. Hence we still need not change

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

130

an additional component of the pair comprising a monomial. Hence we still need not change
anything, as long as we agree that the coefficient should always be the first element~even if it is
1~in the word expressed by TimesH¼L . For example, the noncommutative polynomial in (77)
would be represented as

(78)Plus HTimes H21, ¶ , ¶L, Times H12, ¶L, Times H14, sin, ¶L, Times H8, sinLL,
which is nothing else than the corresponding noncommutative polynomial form

21 ¶2 +12 ¶ +14 sin ¶ +8 sin, the only difference being in the concrete syntax used for writing it. So
also in this case, there is no disadvantage if we carry out the computations in the style of the old
definition, as long as we treat the first letter of each word in a special way that reflects its role as
the coefficient of the monomial.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

131

Epilog: Prospects of Generalization

Judging from the applied point of view, what we have presented in this PhD thesis is of course
not~yet~very exciting. We have only considered a rather narrow and simple class of BVPs,
namely regular ones for differential equations that are simultaneously ordinary, linear, even having
constant coefficients, and having only one unknown. However, we believe that there are some
prospects for generalizing our approach. Naturally, the work necessary for this will become increas
ingly more difficult as one climbs up the ladder of generalizations; but we hope this work will be
rewarded by a proportional increase of deep mathematical substance.

Let us first look at some straight|forward lines of generalization (we have discussed most of
these also in [57]):

è The first restriction that one should try to get rid of is that of constant coefficients, thus
widening the scope to general linear differential operators. It should be possible to find
out how this can be done by comparing with the well|established function|level method of
described e.g. on page 189 in [38]. The only step to be adapted here is the right inversion
of the given differential operator, which obviously does not any more factor into indepen
dent linear factors. But knowing the fundamental system, it may still be possible to succes
sively split off and invert "dependent linear factors" from the right until the given differen
tial operator is exhausted.

è We can view systems of differential equations (together with their boundary conditions)
instead of a single one. In the linear case, the resulting theory is very similar to scalar
BVPs, using a Green’s matrix instead of a Green’s function; see e.g. page 249 in [38]. Our
method should be extensible to this case in a fairly simple manner. In the worst case, we
have to recede to our original approach [57] via Gröbner bases and adapt them to work for
vectors of polynomials rather than single ones. Essentially this amounts to computing
Gröbner bases in modules, which is a routine task for commutative polynomials (see e.g.
pages 485ff in [3]) and should smoothly carry over to noncommutative ones.

è It is certainly a much greater challenge to move from ordinary to partial differential equa
tions. In principle, the algebraization employed in our approach extends in a straight−
forward way, e.g. introducing Dx and Dy instead of the single differentiation D and
analogous operators for integration. Here one might be able to benefit a lot from the alge
braic approach employed in Riquier−Janet theory and from the symmetry methods of Lie
analysis. The treatment of boundary values must of course be adapted. Besides this, the
analog of right inversion will be far more complex for most partial differential operators; it
might be analogous to the elimination techniques used in the holonomic approach [71].

è One of the most difficult generalizations is probably the step towards nonlinear BVPs. The
reason is that our algebraic model does not lend itself easily to describe nonlinear differen
tial operators, and a systematic approach might lead to general rewriting (still with respect
to the polynomial congruence), where one needs substitution in addition to replacement.
Maybe this could be handled by a suitable combination of Gröbner bases and the Knuth−
Bendix algorithm; see [2] and [48].

è In this thesis we have only considered regular BVPs in the sense that there is a unique
solution, and in this case the Moore−Penrose inverse coincides with the actual inverse. If
the BVP is underdetermined, however, one can still search for a so−called modified

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

132

the BVP is underdetermined, however, one can still search for a so−called modified
Green’s function; see page 215f in [63]. Since the modified Green’s function just corre
sponds to a Moore−Penrose inverse, our method should be adaptable to this case in a
natural way.

è As a kind of curiosity, we should also be able to handle certain integro−differential equa
tions. In fact, the Green’s algebra provides a uniform way of expressing integral as well as
differential equations~and their mixtures.

Beyond these rather direct continuations of the research topic treated in this thesis, we believe
that our approach has some intrinsic interest not directly tied to BVPs of any kind. The essence of
our method can be described as solving problems at the operator level via polynomial methods.
This could be a new research paradigm applicable to various problems of a field that might be
called symbolic functional analysis. Up to now, symbolic methods have conquered the following
two "main floors": numbers (computer algebra) and functions (computer analysis); naturally, the
third floor would be: operators (symbolic functional analysis). We have described these ideas in
more detail in [9]; so let us just mention here two examples of problems residing on this third floor:

è Certain problems in potential theory seem to have a flavor that is very similar to that of
BVPs for PDEs, at least when seen from the symbolic viewpoint. It is therefore natural to
ask in how far one could transfer some ideas from BVPs to the potential setting. In particu
lar, one would like to formulate an algebraic setup that allows to express the operator
induced by the potential function (analogous to the Green’s operator induced by the
Green’s function).

è The field of inverse problems opens a whole arena of possible applications for methods of
symbolic functional analysis. Even though one cannot usually expect algebraic solutions
for such problems, the polynomial approach will certainly uncover a great deal about the
solution manifold. In particular, it might be possible to transform the given problem into a
different one possessing more profitable properties.

As the time available for producing and writing a PhD thesis is always terribly short, we do
hope that it will be possible to develop some of these interesting ideas in the future. As a matter of
fact, (good) mathematics is never finished; it always opens new doors.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

133

Curriculum Vitae

Affiliation

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, A|4040 Linz, Austria
Tel. ++43 732 2468 9926
Fax ++43 732 2468 9930
Markus.Rosenkranz@risc.uni−linz.ac.at

Personal Information

Name: Markus Rosenkranz
Date and Place of Birth: September 5, 1971 in Wels / Upper Austria
Nationality: Austrian

Education

1982|1990 Humanistisches Stiftsgymnasium Kremsmünster
Sep 87|Jul 88 High school year in Sacramento / California
Jun 90 Matura (with excellence)

1991|97 Technische Mathematik, Lehramt Mathematik / Physik in
Linz
May 97 Final exam Technische Mathematik (with excellence)
Jan 98 Final exam Lehramt Mathematik / Physik

Oct 97|May 98 Military Service

Career History

Jun 98|Apr 00 Engagements in the field of industrial mathematics
Jun 98|Oct 98 Institute for Industrial Mathematics (Christian|Doppler Lab)
Nov 98|Oct 99 Company MathConsult
Nov 99|Apr 00 Competence Center for Industrial Mathematics

Apr 00|May 00 Translation project for Springer (dynamic geometry)
May 00|Sep 03 PhD student at RISC in the Theorema group

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

134

Career Related Activities

Jun 98 Fluid mechanics seminar with FluentÔ in Darmstadt

Oct 98 Fluid mechanics seminar with FireÔ in Graz

Apr 99 Seminar on finite|element implementations with DiffpackÔ

in Oslo
Sep 99 UniSoftware|Plus seminar for C++
Apr 02 Visiting Young Researcher at Nijmegen University

Academic Degrees

Diploma Degree for Technical Mathematics, Johannes Kepler University of Linz, May 1997.
Title of the Diploma Thesis: Lagrange Inversion.

Master Degree for Pedagogical Mathematics, Johannes Kepler University of Linz, January 1998.
Title of the Diploma Thesis: The Joy of Combinatorics.

Publications

The journal article [57].

The extended abstract [60], which was presented as a poster at ISSAC 2003.

The talks [59], [58], [56].

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

135

Acknowledgements

The work described in this thesis has been carried out in the frame of the Theorema project at the RISC institute, which is
supported most prominently by the "Spezialforschungsbereich for Numerical and Symbolic Scientific Computing" (SFB
F013) at the University of Linz, the "PROVE Project" supported by the regional government of Upper Austria, and the
european union "CALCULEMUS Project" (HPRN|CT|2000|00102).

As described in the Prolog, this PhD thesis is the fruit of an interesting cooperation between a
symbolic group of the University of Linz~led by B. Buchberger~and a numeric group of the
same university~led by Heinz W. Engl~started around October 2001, and I am grateful that both
of these professors are also supervisors of the present thesis. Though very natural from the con
tents point of view, this is not at all easy for them to accommodate in their tight schedules! So I am
all the more grateful to them.

It would only be half of the truth if I mentioned only the issue of supervision in view of B. Buch
berger and Heinz W. Engl. I have also learned a great deal from them about how to do math and
how to manage science. Heinz W. Engl (whom I know especially from my engagements in indus
trial mathematics~see the above curriculum vitae) impressed me by his strong will and conse
quent strategy for settling all kinds of enterprises; besides this, I have always enjoyed his lectures
combining deep substance and formal rigor. Being a PhD student of B. Buchberger for three years,
I had the special pleasure of absorbing a lot of deep "mathematical wisdom" that has significantly
changed my own outlook at mathematics. Moreover, I continue to be amazed by his unbelievable
versatility: discussing deep mathematical theorems, playing a clown for his five|year old daughter,
conducting a meeting with the software park managers~all this within a few hours, sometimes
almost in parallel¼

In fact, I could say similar things about many people that I have come to know at RISC during
the last three years~staff and postdoc and PhD students alike. The atmosphere at RISC is some
how unique (I hope this will not be lost in the next years!), maybe because a considerable number
of RISC people live in Hagenberg and share some of their spare time; maybe because the village
air contributes to a very special research setting (though one must admit that the "village" is expand
ing with awesome speed); maybe it is simply the people working here~who knows? Anyway, I
would really like to thank them all!

Within the larger group of RISC, it was obviously the Theorema group, which was my nearer
academic environment in the past three years. And I have definitely enjoyed being part of them.
Let me try to give a short characterization of this group as I see it (names are obviously ordered
alphabetically):

è Adrian Craciun~the big guy in black, always a smile (or a grin?) on his face. Never short
of some~all too often cynical~jokes!

è Tudor Jebelean~our great and strong pillar, when Bruno is not around (which does
happen sometimes!), taking nearly any calamity from the humorous side, with practical
advice immediately to follow. Sometimes I thought he is predicate logic alive.

è Gabor Kusper~now in Hungary, for the purpose of marrying and leading a software
group and such things; we hope to see him again! His mild nature is liked by everyone.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

136

è Koji Nakagawa~he is our logico|graphic symbol and a Japanese par excellence: Taking
pictures even of the food at mensa, of course using an ultra|tiny Japanese digital camera!
His kind advice for all kinds of software technicalities is always appreciated~e.g. in the
bibliography of this thesis.

è Florina Piroi~the proof object of the group. In fact, she has always proved to be a reliable
friend and a strong core developer of the internal engine used in Theorema. We admire her
joyful spirit and the many practical skills she has in life.

è Nikolaj Popov~my nearest desk|neighbor and my closest friend here. I cannot count how
often he has helped me in all kinds of problems, and many other Theorema members can
say the same of him! And I always enjoy our discussions about our research ideas in
mathematics and computer science.

è Judit Robu~our periodic geometry expert, though we have not seen her for a while now.
When she is here, it is almost canonical and always a pleasure to have lunch together.
Hopefully we will see her again!

è Temur Kutsia~the man with the equality sign in his hands. No, he is really very knowledge
able in equational reasoning, and I am grateful for his help with the proof of Theorem 17 of
Chapter 1~although in the end it did not work this way. And we all appreciate his special
gentle|dry (typically Georgian?) humor.

è Christian Vogt~who has left us all too soon, we really wish you a good time in Innsbruck!
Yes, and I do remember all those exciting discussions we had on the vision of axiomatiza
tion and formalization. I am looking forward to see him again and somehow resume our
discussions.

è Wolfgang Windsteiger~so to say Mathematica in person, at least in our group! Lately, we
could also call him Mr. Set Theory¼ Being the "software director" of our group, his
efforts for a consistent and elegant system are really enormously valuable, and he is never
hesitant to provide help in all issues of Theorema and Mathematica~which was his
greatest problem when he was still sitting in my room!

In addition to the broad general support I enjoyed from all these people, there were also some
specific pieces of advice from which I benefitted considerably. I will try to remember them here
but if I have forgotten any, please forgive me and just add your name silently at this place. So let
me express my special thanks to these people:

è James B. Cooper pointed me to Silva’s definition of distributions and showed me how to
characterize boundary values in this frame; see the explanation after Definition 37 in
Chapter 1.

è Ralf Hemmecke helped me with some issues related to Theorems 17 and 28 of Chapter 1;
see also the proof of the former theorem.

è Erik Hillgarter explained me several things about how differential operators are handled in
Lie analysis.

è Aleksey Kondratyev helped me with the proof of Theorem 33 of Chapter 1.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

137

è Arnold Neumaier showed me how to characterize boundary values in the classical setting
of distributions; see again the explanation after Definition 37 in Chapter 1.

Last but not least, I am of course obliged to my family at home: my mother, sister, grand
mother, in|spe brother|in|law, and~even though he is not with us any more~my father. It is all
too easily overseen what a gift it is to call some place one’s home, and I am indeed very grateful
for this.

Finally and most fundamentally, let me thank God as my wonderful Father, who has given me
my place on Earth and many good gifts of all kinds.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

138

References

[1] Franz Baader, Tobias Nipkow. Term Rewriting and All That, Cambridge University
Press, Cambridge (UK), 1999 edition.

[2] L. Bachmair, H. Ganzinger. Buchberger’s algorithm: A constraint−based completion
procedure. In J.|P. Jouannaud (Editor), First International Conference on Constraints in Compu
tational Logics, volume 845 of Lecture Notes in Computer Science, page 285|301. Springer,
New York, 1994.

[3] Thomas Becker, Volker Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra, series Graduate Texts in Mathematics. Springer, New York, 1993.

[4] George M. Bergman. The Diamond Lemma for Ring Theory. Advances in Mathematics,
29(2):179|218, August 1978. Hardcopy number {19}.

[5] Garret Birkhoff, Saunders MacLane. A Survey of Modern Algebra, The Macmillan
Company, New York, 1958. Revised edition.

[6] Nicolas Bourbaki. Elements of Mathematics Construction: Algebra I, Springer, New
York, 1989.

[7] Bruno Buchberger. An Algorithmic Criterion for the Solvability of Algebraic Systems of
Equations (German). Aequationes Mathematicae, 4:374|383, 1970.

[8] Bruno Buchberger. Categories and Functor Session. Personal communication during a
private seminar, December 2001.

[9] Bruno Buchberger, Heinz W. Engl. Computer Algebra for Pure and Functional Analysis.
An FWF Proposal for a New SFB Project (F1322?), 2003.

[10] Bruno Buchberger. Functor Programming in Mathematica. Colloquium Talk (Univer
sity of Delaware, Department for Information and Systems Sciences, USA), May 24, 1996.

[11] Bruno Buchberger. Functors for Mathematics. Talk at the Conference for Computer
Algebra and Algebraic Geometry (Dagstuhl, Germany), May 26, 1997.

[12] Bruno Buchberger. History and Basic Features of the Critical−Pair/Completion Proce
dure. In Jean|Pierre Jouannaud (Editor), Rewriting Techniques and Applications, Reprinted from
the Journal of Symbolic Computation (Volume 3, Numbers 1 & 2, 1987) page 3|38. Academic
Press, London, 1987.

[13] Bruno Buchberger. Introduction to Gröbner Bases. In Bruno Buchberger, Franz Winkler
(Editors), Gröbner Bases and Applications, volume 251 of London Mathematical Society Lec
ture Note Series, page 3|31. Cambridge University Press, Cambridge (UK), 1998.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

139

[14] Bruno Buchberger, Franz Lichtenberger. Mathematik für Informatiker, Springer, Berlin,
1981.

[15] Bruno Buchberger. Logic, Mathematics, Computer Science: The Accumulated Thinking
Technology of Mankind. Talk given at LCMS’2002.

[16] Bruno Buchberger, Rüdiger Loos. Algebraic Simplification. In Bruno Buchberger, G. E.
Collins, Rüdiger Loos (Editors), Computer Algebra: Symbolic and Algebraic Computation,
Springer, Wien, 1982.

[17] Bruno Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of Zero|
Dimensional Polynomial Ideal (in German). PhD Thesis, Universität Innsbruck, Austria, 1965.

[18] Bruno Buchberger. Theory Exploration with Theorema. Second international Workshop
on Symbolic and Numeric Algorithms for Scientific Computing (SYNACS’00), Timisoara,
Romania, 2000.

[19] Bruno Buchberger, Wolfgang Windsteiger. The Theorema Language: Implementing
Object| and Meta|Level Usage of Symbols. In Proceedings of Calculemus 98 (Eindhoven,
Netherlands), 1998. Available as RISC−Report 98|10, Research Institute for Symbolic Computa
tion, Linz, Austria.

[20] Burris, Sankappanavar. A Course in Universal Algebra, Springer, New York, 1981.
ISBN 0|387|90578|2.

[21] E. A. Coddington, N. Levinson. Theory of Ordinary Differential Equations, McGraw|
Hill Book Company, New York, 1955.

[22] James B. Cooper. Personal communication, June 2003.

[23] Roy L. Crole. Categories for Types, series Cambridge Mathematical Textbooks. Cam
bridge University Press, Cambridge (UK), 1993. ISBN 0|521|45092|6.

[24] H.|D. Ebbinghaus, J. Flum, W. Thomas. Einführung in die mathematische Logik, BI|
Wissenschaftsverlag, Mannheim, 3rd edition, 1992.

[25] Samuel Eilenberg, Norman Earl Steenrod. Foundations of Algebraic Topology, Prince
ton University Press, Princeton, New Jersey (US), 1966.

[26] Heinz W. Engl, M. Hanke, Andreas Neubauer. Regularization of Inverse Problems,
Kluwer, Dordrecht, 1996.

[27] Heinz W. Engl, M. Zuhair Nashed. New Extremal Characterizations of Generalized
Inverses of Linear Operators. Journal of Mathematical Analysis and Applications, 82:566|586,
1981.

[28] Melvin Fitting. First|Order Logic and Autmated Theorem Proving, Springer, New York,
1990.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

140

[29] Joachim von zur Gathen, Jürgen Gerhard. Modern Computer Algebra, Cambridge
University Press, Cambridge (UK), 1999. ISBN 0|521|64176|4.

[30] Martin Giese. Integriertes automatisches und interaktives Beweisen: die Kalkülebene.
Master Thesis, Institut für Logik, Komplexität und Deduktionssysteme, University of Karlsruhe,
Germany, June 1998. Archived under URL[file:///home/marcus/private_html/references/logic/
Giese.IntegriertesAutomatischesUndInteraktivesBeweisen.ps].

[31] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monat
shefte für Mathematik und Physik, 37:305|314, 1930. In: Karel Berka, Lothar Kreiser. Logik|
Texte: Kommentierte Auswahl zur Geschichte der modernen Logik. Akademie|Verlag, Berlin,
third edition, 1983.

[32] R.L. Graham, D.E. Knuth, O. Patashnik. Concrete Mathematics, Addison|Wesley,
Reading, Massachussetts (USA), 1989.

[33] G. Grosche, V. Ziegler, D. Ziegler. Teubner|Taschenbuch der Mathematik 1, Teubner,
Stuttgart, 1996.

[34] J. William Helton, Mark Stankus, John Wavrik. Computer Simplification of Engineering
Systems Formulas. IEEE Trans. Autom. Control, 43(3):302|314, 1998.

[35] J. William Helton, John Wavrik. Rules for Computer Simplification of the Formulas in
Operator Model Theory and Linear Systems. Operator Theory: Advances and Applications,
73:325|354, 1994.

[36] David Hilbert, Paul Bernays. Grundlagen der Mathematik (Volumes 1 & 2), Springer,
Berlin, 1968.

[37] Klaus Jänich. Analysis fuer Physiker und Ingenieure, Springer, Berlin, 1983.

[38] Erich Kamke. Differentialgleichungen: Lösungsmethoden und Lösungen (Volume 1),
Teubner, Stuttgart, tenth edition, 1983.

[39] Donald E. Knuth, Peter B. Bendix. Simple Word Problems in Universal Algebra. In J.
Leech (Editor), Proceedings of the Conference on Computational Problems in Abstract Algebra
(Oxford 1967), page 263|298. 1970. Proceedings by Pergamon Press.

[40] Allan M. Krall. Applied Analysis, D. Reidel Publishing Company, Dordrecht, 1986.

[41] Teimuraz Kutsia. Solving and Proving in Equational Theories with Sequence Variables
and Flexible Arity Symbols. PhD Thesis (available as technical report 02−09), Research Institute
for Symbolic Computation, Johannes Kepler University Linz, Castle of Hagenberg, Austria,
2002.

[42] Hans Lausch, Wilfried Nöbauer. Algebra of Polynomials, North|Holland, Amsterdam,
1973.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

141

[43] J. L. Lions, E. Magenes. Non|homogeneous Boundary Value Problems and Applica
tions: Volume I, Springer, Berlin, 1972.

[44] Rüdiger Loos. Introduction. In Bruno Buchberger, George E. Collins, Rüdiger Loos
(Editors), Computer Algebra: Symbolic and Algebraic Computation, page 1|10. Springer, Wien,
1982 edition.

[45] Warren S. Loud. Some Examples of Generalized Green’s Functions and Generalized
Green’s Matrices. SIAM Review, 12(2):194|210, April 1970.

[46] Saunders MacLane, Garrett Birkhoff. Algebra, The Macmillan Company, New York,
1967.

[47] Saunders MacLane. Categories for the Working Mathematician, volume 5, series Gradu
ate Texts in Mathematics. Springer, New York, second edition, 1998.

[48] C. Marché. Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equa
tions. Journal of Symbolic Computation, 11:1|36, 1996.

[49] Ralph N. McKenzie, George F. McNulty, Walter F. Taylor. Algebras, Lattices, Variet
ies: Volume I, Wadsworth & Brooks/Cole, Monterey, California, 1987.

[50] Maurice Mignotte, Doru Stef+nescu. Polynomials: An Algorithmic Approach, Springer,
New York, 1999. ISBN 981|4021|51|2.

[51] Theo Mora. Gröbner Bases for Non|commutative Polynomial Rings. In Jacques Calmet
(Editor), AAECC|3, number 229 in Lecture Notes of Computer Science, page 353|362. Springer,
Berlin, 1986.

[52] Arnold Neumaier. Evaluation of Distributions. Personal communication, May 2003.

[53] Günter F. Pilz. Algebra: Ein Reiseführer durch die schönsten Gebiete. Lecture notes,
second edition,, Johannes Kepler University of Linz, Universitätsverlag Trauner, Linz, 1989.

[54] Fritz Reinhardt, Heinrich Soeder. dtv Atlas zur Mathematik: Volume 1 and 2, Deutscher
Taschenbuch Verlag (dtv), München, seventh edition, 1987.

[55] John Alan Robinson. A Machine−oriented Logic Based on the Resolution Principle. J.
Assoc. Comp. Mach., 12(1):23|41, 1965.

[56] Markus Rosenkranz, Bruno Buchberger, Heinz W.Engl. Computing the Moore−Penrose−
Inverse by Groebner Bases. Conference on Computational Methods for Inverse Problems Strobl,
Austria, August 27 2002.

[57] Markus Rosenkranz, Bruno Buchberger, Heinz W. Engl. Solving Linear Boundary
Value Problems via Non|Commutative Gröbner Bases. Applic. Anal., to appear:2003. Hardcopy
number {6}.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

142

[58] Markus Rosenkranz, Bruno Buchberger, Heinz W. Engl. Solving Linear Boundary
Value Problems via Non|Commutative Gröbner Bases. In Koji Nakagawa (Editor), Symposium
in Honor of Bruno Buchberger’s 60th Birthday: Logic, Mathematics and Computer Science:
Interactions (LMCS 2002), page 217|230. Johannes Kepler University of Linz, Research Insti
tute for Symbolic Computation, October 20|22, 2002. Proceedings by RISC|Linz, Technical
Report No. 02|60, Castle of Hagenberg, Austria.

[59] Markus Rosenkranz, Bruno Buchberger, Heinz W. Engl. Solving Linear Boundary
Value Problems via Non|Commutative Gröbner Bases. In Dana Petcu, Viorel Negru, Daniela
Zaharie, Tudor Jebelean (Editors), Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’02), page 300|313. University of the West, Timisoara, Romania, October 9−12, 2002.
Proceedings by Editura Mirton, Timisoara, Romania. Hardcopy number {7}.

[60] Markus Rosenkranz. Symbolic Solution of Simple BVPs on the Operator Level: A New
Approach. SIGSAM Bulletin, to appear:2003.

[61] Joseph Shoenfield. Mathematical Logic, Addison|Wesley, Reading, Massachusetts
(USA), 1967.

[62] J. Sebastião e Silva. Integrals and Orders of Growth of Distributions. In Centro de
Calculo Cientifico (Editor), Theory of Distributions (Proceedings of an International Summer
Institute Held in Lisbon), pages 329|388. September 1964. Proceedings by Fundacao Calouste
Gulbenkian, Lisbon. Hardcopy number {21}.

[63] Ivar Stakgold. Green’s Functions and Boundary Value Problems, series Pure and
Applied Mathematics. John Wiley & Sons, New York, 1979.

[64] Elena Tomuta. An Architecture for Combining Provers and its Applications in the
Theorema System. PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler
University Linz, Castle of Hagenberg, Austria, July 1998.

[65] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics (online), 2:1, 1990.
See.

[66] V. Ufnarovski. Introduction to Noncommutative Gröbner Bases Theory. In Bruno
Buchberger, Franz Winkler (Editors), Gröbner Bases and Applications, number 251 in London
Mathematical Society Lecture Notes, page 259|280. Cambridge University Press, Cambridge
(UK), 1998.

[67] John Wavrik. Rewrite Rules and Simplification of Matrix Expressions. Computer
Science Journal of Moldova, 4(2/11):1996.

[68] Wolfgang Windsteiger. Building up Hierarchical Mathematical Domains Using Functors
in Mathematica. In Alessandro Armando, Tudor Jebelean (Editors), Systems for Integrated
Computation and Deduction (Calculemus’99 Workshop in Trento, Italy, July 11|12), Electronic
Notes in Theoretical Computer Science, page 83|101. 1999. Proceedings by Elsevier Science
Publishers, Amsterdam.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

143

[69] Wolfgang Windsteiger. A Set Theory Prover in Theorema: Implementation and Practi
cal Applications. PhD Thesis, Research Institute for Symbolic Computation, Johannes Kepler
University, Linz, Austria, May 2001.

[70] Franz Winkler. Polynomial Algorithms in Computer Algebra, Springer, Wien, 1996.

[71] Doron Zeilberger. A holonomic systems approach to special functions identities. Journal
of Computational and Applied Mathematics, 32:331|368, 1990. Hardcopy number {16}.

[72] Aspects of Generalized Inverses in Analysis and Regularization. In M. Zuhair Nashed
(Editor), Generalized Inverses and Applications: Proceedings of an Advanced Seminar Spon
sored by the Mathematics Research Center, page 193|244. University of Wisconsin|Madison
(October 1973), 1976. Proceedings by Academic Press, New York.

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

144

