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Zusammenfassung

Obwohl  Randwertprobleme  (RWP)  wohl  zu  den  wichtigsten  Problemtypen  aus  Physik,  Chemie
oder auch Finanzwissenschaft gehören, ist ihre Behandling im Symbolic Computation noch ziem
lich dürftig. Bislang werden noch die einfachsten RWP gewöhnlich entweder numerisch oder per
Hand gelöst, allenfalls auf ad|hoc Basis unterstützt durch Computeralgebra|Pakete. Wohl hat man
im Symbolic  Computation diverse  Werkzeuge  zum Lösen  von  Differentialgleichungen, aber  ihre
Anwendung auf RWP ist weitgehend unbefriedigend.

In dieser Dissertation legen wir eine neue Methode zur Lösung von RWP für lineare gewöhnli
che  Differentialgleichungen mit  konstanten  Koeffizienten  vor.  Im  Unterschied  zu  den  bisherigen
Methoden,  die  vermittels  der  Greenschen  Funktion  alles  auf  die  Funktionsebene  zurückführen,
fungiert  unser  Verfahren  ganz  auf  Operatorebene.  Die  nötigen  Operatoren  werden  in  unserer
Methode als nichtkommutative Polynome repräsentiert, wobei Basisoperatoren wie Differentation,
Integration und Randauswertung als Unbestimmte auftreten.

Der  entscheidende  Schritt  zur  Lösung  des  RWP  besteht  darin,  den  gesuchten  Greenschen
Operator  als  eine  geeignete  Moore|Penrose|Schiefinverse  aufzufassen.  Um  die  daraus  hervorge
henden Gleichungen nach dem Greenschen Operator aufzulösen, wird eine sorgfältig zusammenges
tellte nichtkommutative Gröbnerbasis verwendet, welche die wesentlichen Interaktionen zwischen
den Basisoperatoren widerspiegelt.

Wir haben unser Verfahren implementiert als Mathematica Paket, eingebettet in das in B. Buch
bergers Gruppe entwickelte Theorema System. Ein Teil der Dissertation kann auch als Bedienung
sanleitung für diese Implementierung gelten.

Abstract

Although boundary value problems (BVPs) are among the most important problem types coming
from  physics,  chemistry  and  even  finance,  their  coverage  in  symbolic  computation  is  still  rather
weak. Up to now, even the simplest BVPs are usually solved either numerically or by some hand|
crafted  calculations,  possibly  supported  by  some  computer  algebra  package  in  an  ad|hoc  way.
Symbolic computation does have several tools for solving differential equations, but their applica
tion to BVPs is largely unsatisfactory.

In this thesis, we present a new method for solving BVPs for linear ordinary differential equa
tions with  constant  coefficients.  Unlike existing methods that  reduce everything to  the  functional
level  via  the  Green’s  function,  our  approach  works  on  the  level  of  operators  throughout.  Our
method  proceeds  by  representing  the  operators  needed  as  noncommutative  polynomials  using  as
indeterminates basic operators like differentation, integration, and boundary evaluation.

The crucial step for solving the BVP is to understand the desired Green’s operator as a suitable
oblique  Moore|Penrose inverse.  The  resulting equations are  then  solved for  the  Green’s  operator
using  a  carefully  compiled  noncommutative  Gröbner  basis  that  reflects  the  essential  interactions
between the basic operators.

We  have  implemented  our  method  as  a  Mathematica  package  embedded  into  the  Theorema
system  developed  in  B. Buchberger’s  group.  Part  of  the  thesis  may  also  be  regarded  as  a  user’s
manual for this implementation.
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Preface

The present  PhD thesis has  grown out  of  a  cooperation between the  group of  B. Buchberger and
the group of Heinz W. Engl at the Johannes Kepler University of Linz; see the Prolog for a short
overview of its genesis. Its main thrust is to extract the algorithmic power contained in the concept
of Moore|Penrose inverse. This line of thought is also reflected in the outline of its contents:

Chapter 1  constitutes  the  theoretical  basis  of  the  thesis.  It  develops  the  crucial  concept  of  the
Green’s polynomials (together with their algorithmic incarnation: the system of Green’s identities),
following  the  idea  of  representing  the   Green’s  operator  of  a  BVP as  a  suitable  oblique  Moore|
Penrose  inverse.  Using  this  methodology,  everything  is  reduced  to  the  problem of  determining a
suitable nullspace projector for the Moore|Penrose inverse and a right inverse of the given differen
tial operator. These two subproblems are readily solved by two concise formulae, thus turning the
whole approach into an overall algorithm for solving BVPs. The chapter concludes with the correct
ness proof of this algorithm.

We have also implemented our algorithm as a Mathematica package, embedded into the Theo
rema system developed in B. Buchberger’s group. Chapter 2 is a user’s manual for this implementa
tion,  which  we  have  called  the  Green’s  suite.  After  a  short  overview  of  the  general  Theorema
environment  and  the  global  setup  of  our  package,  we  describe  its  three  main  components:  the
reductor for noncommutative polynomials, the matrix evaluator, and the Green’s evaluator.

We  round  up  with  a  concise  description  of  the  most  important  implementation  issues  in
Chapter 3. Unlike the previous chapter, which is explicitly written for a user of our system, the last
chapter  is  intended  to  provide  some  background  material  potentially  valuable  for  a  programmer
building on our implementation of the Green’s suite. We follow the same structure as in the previ
ous  chapter,  describing  first  a  couple  of  general  issues  related  to  Theorema  programming,  then
some overall aspects of  how the Green’s suite is organized, and finally implementation details of
the polynomial reductor, the matrix evaluator, and the Green’s evaluator.

Since  noncommutative polynomials  are  the  main  fabric  from which  we  have  woven  the  rele
vant structures, the interested reader might be curious how such these objects can be introduced in
a rigorous manner~following a uniform paradigm. We have therefore prepared a fairly comprehen
sive  appendix  on  the  concept  of  polynomial,  written  from  a  dedicated  logical  viewpoint.  In  our
formulation, we use the notion of categories and functors in the sense introduced by B. Buchberger
for automated theorem proving and computer|supported formalization. It turns out that such a view
establishes a lucid connection between the general polynomial concept and Gödel’s completeness
proof~a synopsis of two themes not often seen together. And a beautiful dejà|vu of some topics
that  got  me  started  in  B. Buchberger’s  group  (and  I  hope  this  dejà|vu  will  not  be  the  last  of  its
type).

The  thesis  is  framed  by  a  Prolog  sketching  the  interesting  genesis  of  its  main  ideas  and  an
Epilog suggesting various lines of future research.

Before  going  into  the  actual  subject  matter,  we  should  fix  a  few  issues  of  convention  and
notation. First of all,  the reader may have noticed that we use the definite article with words like
"Green’s function", "Green’s operator" or "Green’s polynomials". In the literature, there seems to
be  some  disagreement  on  whether  one  should  say  just  "Green’s  function"  or  "the  Green’s  func
tion".  For  example,  [63]  uses  the  first  variant,  whereas  [45]  uses  the  second.  But  as  soon  as  an
adjective is adjoined to these terms, the definite article is unavoidable anyway (for both authors),
as  in  the  phrase  "the  modified  Green’s  function".  Therefore  we  have  decided  to  use  the  definite
article throughout.

Regarding single  and  double  quotes,  we  tried to  be  consistent with the  following convention:
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Regarding single  and  double  quotes,  we  tried to  be  consistent with the  following convention:
We use double quotes of actually quoting a phrase, whereas single quotes are reserved for relativiz
ing  something  (meaning  that  one  ùabuses÷  a  certain  phrase  as  a  kind  of  metaphor  or  one  is  not
ùdeadly serious÷ about it).

The numbering scheme used in formal units like "Definition" or "Lemma" was only necessary
in Chapter 1, where we have numbered everything in one sequence. All formal units are ended by
a á sign. The formal unit "Input" is used for Theorema input that is sent verbatim to the Mathemat
ica kernel: so if you have the text as a notebook rather than on paper, you can evaluate these cells
by selecting their cell brackets and pressing ÷�ó. Analogously, the formal unit "Computation"
represents Theorema computations carried by the Mathematica kernel. The text above the horizon
tal line is verbatim input; the text below verbatim output.

About formal issues we need not say much since we will work in a very normal setting, using
only standard notation unless explained otherwise. Thus the reader may assume first|order predi
cate  logic  with  Zermelo|Fraenkel  set  theory  as  the  underlying  foundation  system  (possibly
enhanced by logical sorts as in Section 3 of the Appendix). Free variables are understood as univer
sally quantified. Let F  be a formula and T  a term (typically containing x  as a free variable). Then
the  notation Fx¬T  denotes  F  with  all  free  occurrences of  the  variable x  replaced by  the  term T .
Furthermore, we use x# T  for the lambda quantifier on T , usually expressed as Λx  T  or Λ x . T  in
computer science texts.

The  set  of  natural  numbers  is  understood  to  include  zero  and  is  denoted  by  N ;  the  positive
natural numbers are denoted by N´  (if A  is any monoid, its unit group A´  is given by the set of all
its invertible elements). Unless otherwise specified, the range of k, l, m, n  is N , that of x, y, z  is R .

Following [46], we write f *HXL  and f*HXL  for denoting the direct and inverse image of a set X
under a function f , respectively. As usual in mathematics~especially in operator theory~we will
sometimes omit the parentheses used for function application when the context excludes ambiguity.

Unless otherwise specified, a vector space (in particular, an algebra) A  is assumed to have C  as
its field of scalars. Accordingly, we mean "C|linear" when we say "linear".

Moreover, we will always conceive a vector space A  as containing a specific basis, which will
be denoted by A# . In formal terms, this means the following: Whereas a complex vector space is
usually  understood as  a  carrier  set  V  with  vector  addition + : V ´ V ® V ,  the  zero  vector  0 Î V ,
the negative vector - : V ® V , and scalar multiplication × : C´ V ® V , we add to this signature an
additional operation #  : N® V ,  yielding the chosen sequence of basis vectors. (Strictly speaking,
we should call A  a "based vector space" or a "based algebra", but we will refrain from doing so in
order to keep the language simple.)

The transpose of a matrix A  is written as A§ .

The reflexive|transitive closure of ®  is denoted by ®
*

, the symmetric one by « , the reflexive|

symmetric|transitive one by «
*

.
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Prolog: Genesis of the Green’s Polynomials

The  ideas  presented  in  this  PhD  thesis  emerged  in  the  stimulating  atmosphere  of  the  so|called
Hilbert seminars held in Linz and Hagenberg between October 2001 and June 2002. These semi
nars  were  organized  by  B. Buchberger  and  Heinz  W. Engl  in  the  frame  of  a  special  research
project (in German "Spezialforschungsbereich", abbreviated SFB) founded in 1998 at the Johannes
Kepler University of Linz. This project~associated with the FWF grant F13~joins several insti
tutes with the explicit goal of establishing bridges between "symbolic mathematics" and "numeric
mathematics", two firmly established key disciplines of modern mathematics~both highly algorith
mic in spirit and yet so different in character. It is the conviction of this SFB that both disciplines
contain a rich potential of interaction, and this vision has already triggered quite some interesting
cooperation  projects  between  various  symbolic  and  numeric  groups  at  the  Johannes  Kepler
University.

Embedded into this context, the Hilbert seminars served as a unique instrument for establishing
a fundamentally new link between symbolic methodology and numeric heritage; it is the object of
this Prolog to describe the nature and genesis of this link.

The idea of the seminars was to explore the topic of operator theory both from a symbolic and
numeric viewpoint. For this purpose, the two principal investigators started with some fundamental
lectures  providing  the  necessary  background  as  seen  from their  respective  field~Heinz  W. Engl
from the numeric side and B. Buchberger from the symbolic side.

On the numeric side, Heinz W. Engl gave a series of lectures about the following topics:

è Ill|posed problems and their intrinsic numeric difficulties.

è The usage of Tikhanov regularization for mastering these difficulties.

è The  Moore|Penrose  inverse  as  a  convenient  conceptual  frame  for  "solving  ill|posed
problems".

è Regularization in the light of singular value decomposition.

On the symbolic side, B. Buchberger focused on the following points in his lectures:

è The  necessity  of  a  rigorous  formal  language  for  representing  problems  in  the  sense  of
symbolic computation.

è The role of predicate logic as the universal linguistic frame for both symbolic and numeric
mathematics.

è The  usage  of  computer|supported  tools  like  Theorema  once  a  problem  has  a  rigorous
formulation.

After  these  initial  lectures,  the  groups  focused  on  the  following  two  relevant  papers.  Heinz
W. Engl suggested the study of [27], exploring a the concept of the oblique Moore|Penrose inverse
from a minimization viewpoint. After a presentation of the main points of this paper, delivered by
Benjamin  Hackl  on  January  23  in  2002,  the  group  discussed  potential  connections  to  symbolic
methods. The other paper [34],  together with the companion papers [67] and [35],  was suggested
by B. Buchberger and presented by Teimuraz Kutsia also on January 23; it discusses the usage of
noncommutative Gröbner bases for simplifying operator expressions arising in control theory.

Both  of  these  papers  contained some crucial  ingredients  preparing the  results  exposed  in  this
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Both  of  these  papers  contained some crucial  ingredients  preparing the  results  exposed  in  this
PhD thesis:

è The first paper opened the view for the oblique Moore|Penrose inverse  and its additional
freedom  available  in  it  by  the  choice  of  nullspace  and  range  projectors.  This  particular
concept of generalized inverse also provided a convenient equational characterization that
is in a sense more fundamental than the more common standard Moore|Penrose inverse in
Hilbert spaces (corresponding to orthogonal projectors), where the projector equalities are
usually replaced by the more abstract self|adjointness conditions for the square operators.

è The  second  paper  showed  a  simple  way  of  applying  noncommutative  Gröbner  bases  for
manipulating  operators.  However,  they  do  not  consider  solving  any  operator  equations,
they are only interested in transforming compound operators (often covering several pages)
into simpler forms by applying certain given operator equalities. Since Gröbner bases were
discovered  by  B. Buchberger  in  his  PhD thesis  [17]  (see  also  the  journal  version  [7]  and
the survey article [13]), this line of research was naturally all the more attractive.

The fundamental insight needed for putting these two things together is the following chain of
thoughts: It is well known that noncommutative Gröbner bases~just as their commutative compan
ions~may  not  only  be  used  for  simplifying  terms  but  also  for  solving  equations.  The  simplest
equation on the operator level is a BVP, so maybe we could use noncommutative Gröbner bases on
them? But usually one sees a BVP as an inversion problem for a differential operator that is made
bijective by incorporating the boundary conditions into its domain~but this elegant trick does not
have  any immediate computational content.  Therefore the crucial idea is  to  remove the boundary
conditions from the  artificial domain of  the  differential operator  and  search for  a  Moore|Penrose
inverse instead (see the explanation after Equation 2 in Chapter 1).

It turned out that this scheme actually works: As we show in detail in Chapter 1, the additional
freedom available in the choice of the projectors for the Moore|Penrose inverse is always sufficient
for taking care of the boundary conditions. Various basic operations like differentiation, integration
and  boundary  evaluation  are  represented  by  polynomial  indeterminates.  The  Moore|Penrose
equations can be augmented by suitable noncommutative polynomial equalities for describing the
algebraic essence of the various relations between the basic operations. Finding the Green’s opera
tor corresponds to solving the resulting noncommutative polynomial system. This is essentially the
procedure presented by the author in the Hilbert Seminar on March 20, 2002; in a polished form, it
is published in the journal paper [57].

In the course of further research, extensive simplifications to the strategy described above were
found.  In  particular,  it  turned  out  that  only  one  of  the  four  Moore|Penrose  equations  is  actually
needed, and the expensive computation of noncommutative Gröbner bases can be avoided using a
carefully selected precomputed one. This new approach was presented in a poster  at ISSAC’2003,
to  be  published as  an  extended  abstract  in  [60].  In  the  present  PhD thesis,  it  is  for  the  first  time
described in  full  detail~the key  concept  is  a  certain noncommutative polynomial algebra,  which
we have called the Green’s algebra~see Proposition 31 in Chapter 1.
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1 The Algebra of Green’s Polynomials

In  this  chapter,  we  will  present  the  core  results  of  the  PhD  thesis~a  new  method  for  solving
regular  BVPs  for  linear  differential  equations  with  constant  coefficients  (see  Definition 7  for  the
precise specification). We will first motivate our idea in Section 1 by the simple example of steady
heat conduction in a rod. Following these traces, Section 2 develops the main tools used for attack
ing BVPs in our sense~most importantly, the system of Green’s equalities given in Input 14 and
their associated algebra of Green’s polynomials introduced in Proposition 31. With these tools, it is
possible to design a complete algorithm for solving BVPs: The first step is to right|invert the given
differential operators as described in Section 3. The right inverse so obtained is then multiplied by
a  certain  nullspace  projector,  whose  computation  is  discussed  in  Section 4.  Finally,  we  put  all
things  together  in  Section 5,  concluding  the  chapter  with  the  correctness  proof  for  the  overall
algorithm of solving BVPs.

1.1 The Example of Steady Heat Conduction in a Rod

Before  going  to  the  relevant  definitions  and  theorems,  let  us  give  a  ùclassical÷  example  of  what
type  of  problems  we  have  in  mind  and  how  we  go  about  to  solve  them.  In  this  chapter,  we  are
concerned with BVPs for ordinary linear differential operators with constant coefficients (we will
henceforth refer to such problems simply as BVPs). One of the simplest and yet non|trivial prob
lems of  this type is  exemplified by the one|dimensional heat  equation with constant conductivity
and  fixed  temperature  at  both  ends.  One  sees  this  example  or  some  minor  variant  in  almost  any
introductory chapter  on  linear  BVPs;  see  e. g.  page 42  in  [63]  or  page 13  in  [33].  Using  suitable
units, this BVP can be formulated thus:

Given f Î C@0, 1D ,
find u Î C2@0, 1D
such that

(1)
u’’ = f ,
u H0L = u H1L = 0 .

The  proper  topological  setting  for  this  problem  is  to  consider  both  C@0, 1D  and  C2@0, 1D  as
Banach  spaces  with  the  Chebyshev  norm  ° × ´¥ .  The  differentiation  operator  D : u# u’  is  then

conceived  as  a  partial  function  on  C@0, 1D  with  dense  domain  C1@0, 1D .  For  the  example  above,

this means that D2  operates on C@0, 1D  with dense domain C2@0, 1D . Note that D2  is a closed and
discontinuous operator in this view, but this is all one needs for applying the crucial Propositions 2

and 3 cited below. One could think it is preferable to take C2@0, 1D  with its canonical norm: Then

the operator D2  would be total, and it would even be continuous, not just closed. But the drawback

of this setting is that C2@0, 1D  is not the ùnatural÷ domain for the operator D2  as it is usually used in

Sturm|Liouville theory. If the elements of C2@0, 1D  are obtained from measurements, the data error
is typically estimated in the norm of C@0, 1D , and it would not be reasonable to ask for estimates in

the norm of C2@0, 1D , as this would involve the unstable process of differentiating data; see [26] for
details.

For  our  purposes,  though,  we  can  us  ignore  all  topological  notions  by  assuming  that   and
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For  our  purposes,  though,  we  can  us  ignore  all  topological  notions  by  assuming  that  f  and
hence u  are in C¥@0, 1D , which we shall view as a "naked" vector space without any topology. Of
course,  allowing  only  smooth  right|hand  sides  f  is  rather  restrictive:  as  explained  above,  the
natural assumption would be that f  is  just  continuous. But actually even this is  too restricted for
practical purposes, where one typically deals with weak solutions living in various Sobolev spaces.
And if one wants to include those, it turns out to be more efficient to change over to the completely
distributional setting C0

-¥ @0, 1D  subsuming all the Sobolev spaces one can ask for; we will do this
in Definition 37. In fact, both C¥@0, 1D  and C0

-¥@0, 1D  have a slightly unusual topology: they are
locally convex vector spaces that cannot be made into Banach spaces in any natural way. For the
purpose of solving BVPs symbolically, however, these topologies are not relevant.

Of  course  one  may  always  prove  topology|related  statements  in  an  independent  effort.  For
example,  it  is  not  difficult  to  show  within  the  distributional  setting  that  restricting  f  to  C@0, 1D
leads  to  u  always  being  in  C2@0, 1D ;  this  corresponds  to  the  classical  solution  concept  described
above.  The  point  we  want  to  make here  is  that  distributions allow us  to  separate the  topological
side from the algebraic one, and we want to focus on the latter. The only topology we need here is
for  defining differentiation and  integration; but  having done  so,  we  can  immediately "forget" the
topology and view these operators as plain linear transformations as explained above.

Using  the  smooth  setting,  all  the  operators  involved  will  have  the  type  C¥@0, 1D® C¥@0, 1D .
Besides  this,  we  note  that  the  BVP  (1)  is  regular  in  the  sense  that  it  has  precisely  one  solution
(throughout this thesis we will deal only with regular problems). Now solving a problem like (1)
means that one can assign a solution u Î C¥@0, 1D  to each so|called forcing function f Î C¥@0, 1D .
In other words, the solution "is" an operator G : C¥@0, 1D® C¥@0, 1D ,  usually named the Green’s
operator. But not only the solution, also the relevant data for this problem are encoded in operators:

è The  differential  equation  u’’ = f  is  formed  by  the  operator  D2 = u# u’’.  The  forcing
function f  occurring on its right|hand, however, does not contain any significant informa
tion~it serves only as a placeholder for the functional formulation given in (1). In opera

tor|theoretic  terms,  the  differential  equation  is  simply  D2  G = I ;  applied  to  an  arbitrary
function  f Î C¥@0, 1D ,  this  givens  (1)  because  G f Î C¥@0, 1D  is  the  solution  u  by  the
very definition of G .  We use I  for the identity operator on whatever space is considered;
here this is of course C¥@0, 1D .
è The  boundary  conditions  uH0L = 0  and  uH1L = 0  can  be  formulated  by  the  corresponding

boundary operators. On the left|hand side, this is the left|boundary operator L  mapping u
to the constant function x# uH0L ; on the right|hand side, it is the corresponding operator R
mapping u  to x# uH1L . Using these operators, the boundary conditions can now be written
on the operator level as L G = O  and R G = O ; the functional formulation follows from this
as  before.  Here  we  have  written  O  for  the  null  operator  mapping  every  function  of
C¥@0, 1D  to the null function x# 0.

So the natural interpretation of (1) is clearly situated on the operator level: Given the differen

tial  operator D2  and  the  boundary operators L  and  R ,  find  the  Green’s operator G  for  them, i.e.
find G  such that

(2)

D2  G = I,

L G = O,

R G = O
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In  other  words,  G  should be  a  right inverse  of  D2 ,  and  it  should be annihilated  by L  and R .

Whereas there are many right inverse of D2 , the annihilation constraints are supposed to single out
one particular right inverse~which must then be the uniquely defined Green’s operator. (Observe

that  we  could  also  view  D2  as  an  operator  from 8u Î C¥@0, 1D È uH0L = uH1L = 0<  to  C¥@0, 1D .  In
this  case,  it  is  of  course  invertible,  and  G  is  its  two|sided  rather  than  just  right  inverse.  But  the
problem  with  this  approach  is  that  it  swallows  the  information  contained  in  the  two  boundary
equations  into  the  domain  specification  of  D ,  where  we  lack  any  natural  computational  access.
Therefore such a model is more useful for proving abstract properties about the problem than for
finding its concrete solution.)

The  main  challenge  in  the  equation  system  (2)  is  that  it  does  not  give  us  easy  access  to  the
unknown G . So it may be a good idea to have a look at some other equations analysis offers us for
characterizing  ùalmost  inverse÷  operators  like  the  right  inverse  G  in  our  case.  Now  there  is  one
famous  concept  in  analysis,  which  generalizes  operator  inversion~the  Moore|Penrose  inverse
[72].  Any(!)  linear  operator  between  two  inner  product  spaces  (in  the  topological  setting:  any
bounded  linear  operator  between  two  Hilbert  spaces)  has  a  uniquely  determined  Moore|Penrose
inverse, which is as close to an inverse as possible in the following sense: It maps each point back
to a location with minimal distance to the original point; and among all such locations, it selects the
one with minimal norm. Hence one can view the Moore|Penrose inverse as a two|stage minimizer,
working first on the codomain and then on the domain.

The  concept  of  the  Moore|Penrose inverse,  though sufficiently flexible for  many purposes,  is
still not good enough for us: We need a very specific right inverse fulfilling some particular bound
ary conditions, and chances are that it does not coincide with the unique Moore|Penrose inverse; in
fact,  this suspicion will be confirmed soon.  So we need an even more general concept of  inverse
that  allows  some  freedom for  possibly  incorporating  the  boundary  requirements.  Such  a  concept
exists, and it is rightly called the generalized inverse; see pages 14|16 in [72]. The idea is that we
may change  the  distance measure  both  for  the  codomain  and  the  domain  minimization. Whereas
the  original  minimizers  are  realized  by  orthogonal  projections,  the  modified  ones  use  oblique
projections (generalized inverses in Hilbert spaces are therefore also called oblique inverses). More
generally, one can introduce generalized inverses in plain vector spaces (in the topological setting
typically: Banach spaces [27]), because projection makes sense even when there is no inner prod
uct  and  hence  no  concept  of  angle  and  orthogonality.  So  the  Moore|Penrose  inverse  is  just  the
ùcanonical÷ generalized inverse corresponding to choosing both projectors to be orthogonal.

1 Definition (Generalized Inverse in Vector Spaces)

Let  X  and  Y  be  vector  spaces,  and  let  T  be  a  linear  operator  from  X  to  Y .  Choose
projectors  P  and  Q  onto  N =NHTL  and  R = RHTL ,  respectively,  and  let  M  and  S  be  the
corresponding complements HI - PL*  X  and HI - QL*  Y .  Then the generalized inverse of T

relative to these projectors, denoted by TP,Q
Ö , is defined as the linear extension of HT ÈM L-1

with nullspace S .

á

2 Proposition (Elementary Properties of Generalized Inverses in Vector Spaces)

Using the above notation and assumptions, TP,Q
Ö  is a uniquely defined linear operator from

Y  to X  with nullspace S  and range M .

á
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3 Proposition (Moore|Penrose Equations in Vector Spaces)

Again  using  the  above  notation  and  assumptions,  TP,Q
Ö  is  uniquely  characterized  as  that

linear operator TÖ  from Y  to X  which fulfills the so|called Moore|Penrose equations

(3)

T TÖ  T = T,

TÖ  T TÖ = TÖ ,

TÖ  T = I - P,

T TÖ = Q.

á

Applied to the BVP (2), this means that we try to obtain G  as a generalized inverse HD2LP,Q

Ö
 for

some projectors yet  to  be determined.  We will  therefore write G  for  this generalized inverse and
subsequently show that it is indeed the Green’s operator for the given BVP.

Before  going  on  with  finding G  as  a  generalized inverse,  let  us  also  mention that  there  is  an
alternative approach  that  can  somehow be  considered the  "standard method" of  solving BVPs of
the type we study here. It proceeds by translating the operator problem into a functional setting in
the following way. One can prove that every solution u  of a regular BVP for a linear differential
operator can be represented as

(4)u HxL = à
0

1

g Hx, ΞL f HΞL â Ξ,

where g  is called the Green’s function of the BVP; see e.g. page 189 in [38]. In other words, the
Green’s operator G  is  written as an integral operator having the Green’s function g  as  its kernel.
Instead of searching for the operator  G ,  one can thus search for the (binary!) function  g .  In fact,
there are methods for finding g  for any regular BVP, using some linear algebra on the fundamental
system of  the  homogeneous  differential  equation;  see  for  example  [63],  [37],  [38].  The  common
feature  of  all  these  methods  is  that  they  immediately  work  on  the  level  of  functions  rather  than
operators~which is not the "natural" setting of this problem, as we pointed out above.

The method we want to present here is, to our best knowledge, a new one. It is genuinely based
on operators in the sense that it directly computes the Green’s operator G  rather than the Green’s
function  g ,  which  can  be  extracted  in  a  trivial  post|processing step~if  at  all  desired.  For  BVPs
more complicated than the ones considered here, it  is not clear whether such an extraction would
be  possible;  e.g.  for  nonlinear  problems  it  will  typically  not  be  possible.  Besides  its  conceptual
superiority, our new method might also involve a gain in efficiency, since we solve a linear system
only with numeric rather than functional entries as done in the methods mentioned above.

Now let us go on with the computation of the appropriate generalized inverse for the operator

D2 . Its range is all of C¥@0, 1D , so Q  is the identity I . Now for the nullspace, which is clearly

(5)N = 8x# Α x + Β È Α, Β Î R<
in  our  example  (for  a  more  general  case,  the  determination  of  the  nullspace  involves  solving  a
homogenous  differential  equation).  We  will  try  to  construct  a  projector  P  onto  N  such  that  the
boundary conditions are also incorporated.

We should note some general features here: On the one hand, any linear differential operator is
surjective on C¥@0, 1D ,  so the range projector Q  will always  be trivial. On the other hand, it will
always  be  non|injective,  so  the  nullspace  projector   can  never  be  trivial.  This  is  to  our  best
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always  be  non|injective,  so  the  nullspace  projector  P  can  never  be  trivial.  This  is  to  our  best
advantage as we would have no chance for the boundary conditions otherwise! In the case of (5),
we see that choosing P  amounts to specifying for each u Î C¥@0, 1D  real numbers Α, Β  such thatHP uL HxL = Α x + Β  for all x Î @0, 1D . From Proposition 2 we know that

(6)RHGL = HI - PL*  C¥@0, 1D.
We  want  to  have  uH0L = 0  and  uH1L = 0  for  all  u Î RHGL ,  so  the  counter|projectionsH1 - PL v = v - P v  should vanish at the boundary for all v Î C¥@0, 1D . Hence we must construct a
projector P  such that P v  coincides with v  for all v Î C¥@0, 1D .  Now this is a trivial interpolation
problem:  Given a  function v Î C¥@0, 1D ,  find  a  linear function P v  that  agrees  with v  at  the  grid
points 0, 1 Î @0, 1D . A short calculation leads to

(7)P u = x# H1 - xL u H0L + x u H1L.
We note  again that  we expect  a  similar, though more complicated, interpolation problem for  any
other linear differential operator.

Since we are driving at an operator|theoretic formulation, we prefer to define P  purely in terms
of operators. This can easily be done by introducing the operator X  for multiplying with the inde
pendent variable, defined by

(8)X u = x# x u HxL
for all u Î C¥@0, 1D . Using X , the operator P  can be characterized as

(9)P = H1 - XL L + X R.

By Proposition 3, G  fulfills the Moore|Penrose equations (3); in particular, it is a right inverse

of D2  according to the fourth equation. Furthermore, G  fulfills the boundary conditions due to our
construction of P . On the other hand, we mentioned above that the Green’s operator for a BVP like
(1)  is  uniquely  determined,  so  it  must  indeed  coincide  with  G  as  claimed above.  Finally we  can
now apply the characterization result of Proposition 3 in the other direction, yielding the fact that
G  is uniquely determined by the equations

(10)

D2  G D2 - D2 = O,

G D2  G - G = O,

G D2 + HI - XL L + X R - I = O,

D2  G - I = O,

obtained from (3) by substituting the specific operators P , Q , J , K  obtained by our considerations.
We  call  (10)  the  concrete  Moore|Penrose  equations  for  the  BVP  (1).  Obviously,  the  first  and
second equation are redundant, since they follow from the fourth one (In fact, the first redundancy
is true for any generalized inverse as observed on page 17 in [72].  The second redundancy, how
ever,  is  due  to  the  special  case  of  Q = I  occurring  when  the  operator  to  be  pseudo|inverted is  a
linear differential operator with constant coefficients.)

In order to compute with operators, one needs some algebraization for them. Now the obvious
data  structure  to  use  here  is  of  course  the  noncommutative  polynomial  ring  CXG, D, X, L, R\
because polynomial manipulation is one of the driving forces of computer algebra as pointed out in
Section 1  of  the  Appendix.  In  fact,  all  the  equations  of  (10)  can  be  understood very  naturally  as
polynomial equations exactly in this sense since we can replace the identity operator I  and the null
operator  by the one|polynomial  and by the zero|polynomial ,  respectively (as  is canoni
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operator O  by the one|polynomial 1  and by the zero|polynomial 0,  respectively (as C  is canoni
cally embedded into CXG, D, X, L, R\ , one usually identifies the complex numbers with the corre
sponding constant polynomials).

One remark about the scalar field C  is in order here: In practical computation, we will of course
work  in  some  computable  subfield  like  Q  or  in  some  finite  (algebraic  and/or  transcendental)
extension of Q . For theoretical purposes, though, it is more convenient to formulate all the results
for the ùmother field÷ C .

Interpreting  now  everything  in  the  noncommutative  polynomial  ring  CXG, D, X, L, R\ ,  we
obtain the following formulation

(11)
G D2 + H1 - XL L + X R - 1 = 0,

D2  G - 1 = 0

for the BVP (1).
Note  that  from  now  on,  the  "operators"  G ,  D ,  X ,  L ,  R  are  just  polynomial  indeterminates,

carrying  no  interpretation  whatsoever  on  them,  as  expounded  in  Section 3  of  the  Appendix.  So
they are merely symbols, knowing nothing about differentiation or boundary values~in particular,
they are ignorant of any topology. Hence we must introduce all their ùessential÷ features gently by
adding  suitable  interaction  equalities  that  describe  the  relevant  relations  between  the  operators
represented by the various indeterminates.

Besides  this,  we  cannot  expect  a  solution  for  G  when  working  in  CXG, D, X, L, R\  because
such a solution would be a polynomial in D , X , L , R . But we cannot represent the Green’s opera
tor  using  only  differentiation, multiplication and  boundary  values!  In  fact,  since  G  is  some right

inverse of  D2 ,  so  to  say  its  ùopposite÷,  it  would be  natural  if  it  does  not  contain a  derivative but
rather its opposite~the antiderivative or integral. In other words, we expect G  to come out as an
integration operator, and it should have a suitable Green’s function g  as its kernel. Hence we must
explicitly  add  an  indeterminate,  say  A ,  for  representing  the  antiderivative.  From  the  theory  of
Green’s functions we know that their highest derivatives always have a jump on the diagonal; see
page 194 in [63]. Typically, gHx, ΞL  is given by case distinction as g<Hx, ΞL  for the  lower triangle
x £ Ξ  and g>Hx, ΞL  for the upper triangle x ³ Ξ  with suitable functions g<  and g> ,  so the integral
representing Green’s operator naturally splits into two parts: one going from the left boundary to
the diagonal, the other going from the diagonal to the right boundary. So the corresponding opera
tors are

(12)
A u = x# Ù0x

u HΞL â Ξ,

B u = x# Ùx1
u HΞL â Ξ,

and  we  will  call  them  the  integral  and  cointegral  operators,  respectively.  Note  that  A u  is  the
antiderivative of u  with integration constant chosen such that it vanishes at the left boundary. The
cointegral B u  of u  is similar, but the integration constant is chosen such that it vanishes at the right
boundary, and the sign is inverted. The operators A  and B  are duals of each other.

Having  these  operators  available,  we  should  have  a  good  chance  of  representing  all  Green’s
operators  with  polynomial  functions.  Hence  we  will  adjoin  them  as  new  indeterminates,  thus
working in the noncommutative polynomial ring CXG, D, X, A, B, L, R\ .

Now  we  must  set  up  good  interaction  equalities.  Viewing  all  of  these  equalities  as  oriented
from  left  to  right,  they  form  a  reduction  system  for  simplifying  a  compound  operator  involving
various mixed occurrences of D , X , A , B , L , R . This suggests that we should think of an intuitive
strategy that brings such compound operators more and more towards a canonical form. As we can
always expand polynomials into a sum of monomials, it will suffice to think about what we do to
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always expand polynomials into a sum of monomials, it will suffice to think about what we do to
the words over the alphabet 8G, D, X, A, B, L, R< . Let us try to do this as systematically as possi
ble.

In  the  books,  one  always  sees  differential  operators  in  a  form where  the  Dk  is  moved  to  the
outmost  right  position.  This  suggests  that  we  should  first  study  those  ùinteractions÷  where  the
operator D  is on the left and some other operator is on the right, and that we should try to ùmove÷
D  across  the  operator  on  the  right.  If  this  operator  is  X ,  we  can  obviously  achieve  this  goal  by
virtue of the product rule of differentiation, which is

(13)D X = X D + 1.

in  our  case.  If  we want  to  go  across an integral/cointegral operator A ,  B ,  we can apply the First
Fundamental Theorem of Calculus (often formulated in terms of the "indefinite integral"),

(14)
D A = 1,
D B = -1.

The only remaining case for D  is now the boundary operators L , R . But this is trivial, because the
derivatives of the boundary constants must always vanish, so

(15)
D R = 0,
D L = 0.

Now  that  all  the  letters  D  are  ùisolated÷  on  the  far  right,  thus  giving  an  iterated  differential

operator Dk , we come to the candidates for isolation~the boundary operators L , R . Here the idea
is  similar to  that  of  the  differential operator:  that  it  is  not  economical  to  extract  boundary  values
except at the very end, namely operating directly on the function given as input to the compound
operator.  The  only  difference  is  that  we  do  not  move  it  completely  to  the  right;  it  should  ùstop÷
before D . The reason is that it makes perfect sense to have an operator like L D , meaning "take the
derivative of the left boundary point", whereas we have seen above that D L  simply vanishes. So
let  us  first  see  what  happens  when  a  boundary  operator  on  the  left  ùhits÷  an  integral/cointegral
operator on the right. Obviously, the effect is  either to expand the range of integration to the full
interval or to collapse it to the empty interval. Hence we have the integration|transport relations

(16)

L A = 0,

R A = A + B,

L B = A + B,

R B = 0.

Finally, when they hit an X , they are simply propagated with the corresponding boundary value of
x# x  as  an  additional factor~which is  simply 0  or  1  for  L  and R ,  respectively. This yields the
boundary propagation relations

(17)
L X = 0,
R X = R.

At this stage, the task of simplification is reduced to putting the remaining A ,  B  and X  into a
canonical  order.  We  cannot  solve  this  problem completely in  the  present  setup;  this  will  only  be
done later in this chapter in the frame of a more general noncommutative polynomial ring. But we
can  still  specify  the  most  important  interactions,  namely  how  to  resolve  the  clash  between  two
adjacent  integral/cointegral  operators.  Unlike  for  differential  operators,  one  can  always  reduce
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adjacent  integral/cointegral  operators.  Unlike  for  differential  operators,  one  can  always  reduce
iterated integrations into a single integral operator with a suitable kernel; see the next section for a
more  detailed exposition of  this  idea.  The basic  tool  for  doing this  is  partial  integration, yielding
the integral contraction relations

(18)

A A = X A - A X,

A B = X B + A X,

B A = A + B - X A - B X,

B B = B X - X B.

Assuming that  we have  finished rearranging the  left  part  of  the  word,  we should finally con
sider what to do if an integral/cointegral operator ùbumps into÷ the right part of the word consisting
of the boundary and differential operators (an X  bumping into them does not harm). Obviously, the
integral/cointegral operator and neutralized a differential operator occurring right of it, by virtue of
the Second Fundamental Theorem of Calculus (often formulated in terms of the "definite integral"),

(19)
A D = 1 - L,
B D = R - 1.

The  other  cases,  dealing  with  integrations  ùbumping  into÷  boundary  operators,  are  rather  trivial;
they boil down to integrating constant functions. One obtains thus the boundary integrations

(20)

A L = X L,

B L = L - X L,

A R = X R,

B R = R - X R.

Combining all these equalities (13), (14), (15), (16), (17), (18), (19), (20), we have now assem
bled all the relevant polynomial interaction equalities.

Joining  them  with  the  two  left|over  polynomial  Moore|Penrose  equations  from  (11),  we  can
start  to  solve  for  the  Green’s  operator  G .  Before  doing  so,  however,  it  is  reasonable  to  ask  our
selves whether we can maybe reduce (11) even more, keeping only one of these two equations. In
general, they will of course be independent, but now we have got some additional knowledge from
the  interaction  equalities  that  might  warrant  a  further  reduction.  As  the  information  about  the
boundary  conditions  is  encoded  in  the  nullspace  projector  P = H1 - XL L + X R  occurring  only  in
the third equation, it is clear that the only possible reduction is to infer the fourth equation from the
third. Trying this out, we find that the fourth equation is indeed redundant: Bringing everything to
the left side, the third equation says that

(21)G D2 - 1 + H1 - XL L + X R

is equal to the zero polynomial. We multiply (21) by D2  from the left and by A2  from the right,
then  we  apply  the  reduction  system  induced  by  the  interaction  equalities  on  it.  The  result  is

-1 + G D2 ,  which  must  still  be  equal  to  the  zero polynomial~and this  is  the  fourth Moore|Pen
rose equation.

Instead  of  doing  this  boring  reduction  by  hand,  we  will  let  the  computer  do  the  job.  In
Chapter 2 we give a detailed description of the computer package used here and developed in the
frame of this thesis. For the moment, it is enough to know that we can specify the oriented equali
ties  that  should  be  applied  for  reduction.  We  do  this  in  the  conventional  way  used  in  Theorema
[19], namely by stating the equalities together with a label for identifying them in a suitable environ

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

17



[19], namely by stating the equalities together with a label for identifying them in a suitable environ
ment (the label we have chose is simply the monomial on the left|hand side of the equality). Here
we have used the environment "System" since we are dealing with a system of equations; for other
purposes, one might prefer environments like "Theorem" or "Lemma" (there is no semantic differ
ence  between  environment  names,  so  their  choice  is  just  a  matter  of  style).  After  initializing the
packages,  we  specify  the  equality  systems  to  be  used  and  tell  the  system to  apply  the  reduction
engine  for  noncommutative  polynomials  as  the  default  evaluator,  using  the  specified  interaction
equalities. Besides this, we give the list of indeterminates to the evaluator and instruct it to display
the computational trace immediately after the Compute call rather than in a separate notebook. All
this  is  summarized in  Input 4  below  (remember  that  everything  between  the  caption  and  the  full
square at the end is entered verbatim).

4 Input (Computational Setup for Green’s Operators)

Needs@"Theorema‘"D
Needs@"Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘"D
SystemA"1. First Equalities for Isolating Differential Operators",

D A = 1 "DA"

D B = -1 "DB"

D X = 1 + X D "DX"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. First Equalities for Isolating Boundary Operators",

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L X = 0 "LX"

R X = R "RX"

E
SystemA"3. First Equalities for Contracting Integration Operators",

A A = X A - A X "AA"

A B = X B + A X "AB"

B A = A + B - X A - B X "BA"

B B = B X - X B "BB"

E
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SystemA"4. First Equalities for Absorbing Integration Operators",

A D = -L + 1 "AD"

B D = R - 1 "BD"

A L = X L "AL"

B L = L - X L "BL"

A R = X R "AR"

B R = R - X R "BR"

E
SetOptions@Compute, by ® ReduceNoncommutativePolynomial, using ® 8

System@"1. First Equalities for Isolating Differential Operators"D,
System@"2. First Equalities for Isolating Boundary Operators"D,
System@"3. First Equalities for Contracting Integration Operators"D,
System@"4. First Equalities for Absorbing Integration Operators"D<D;

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8G, D, A, B, X, L, R<, inNotebook ® "Current"D;

á

We  start  the  computation  by  the  generic  Theorema  command  Compute,  applied  to  the  input
polynomial (remember that all the output listed below is fully computer|generated). The reduction
steps are marked by the label of the equality used.

5 Computation (Derivation of the Fourth Moore|Penrose Equation from the Third)

Compute@D2  HG D2 - 1 + H1 - XL L + X RL A2 D;
We compute:

 -D D A  A + D2  L A2 - D2  X L A2 + D2  X R A2 + D2  G D2  A2 =
x
HDAL

 - D A + D2  L A2 - D2  X L A2 + D2  X R A2 + D2  G D2  A2 =
x
HDAL

 -1 + D2  L A2 - D2  X L A2 + D2  X R A2 + D2  G D D A  A =
x
HDAL

 -1 + D2  G D A + D2  L A2 - D2  X L A2 + D2  X R A2 =
x
HDAL

 -1 + D2  G + D2  L A2 - D D X  L A2 + D2  X R A2 =
x
HDXL

 -1 + D2  G - D L A2 + D2  L A2 - D X  D L A2 + D2  X R A2 =
x
HDXL

 -1 + D2  G - 2 D L A2 + D2  L A2 - X D2  L A2 + D D X  R A2 =
x
HDXL

 -1 + D2  G - 2 D L A2 + D R A2 + D2  L A2 - X D2  L A2 + D X  D R A2 =
x
HDXL

 -1 + D2  G - 2 D L  A2 + 2 D R A2 + D2  L A2 - X D2  L A2 + X D2  R A2 =
x
HDLL
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 -1 + D2  G + 2 D R A2 + D D L  A2 - X D2  L A2 + X D2  R A2 =
x
HDLL

 -1 + D2  G + 2 D R A2 - X D D L  A2 + X D2  R A2 =
x
HDLL

 -1 + D2  G + 2 D R  A2 + X D2  R A2 =
x
HDRL

 -1 + D2  G + X D D R  A2 =
x
HDRL

-1 + D2  G �

á

So the four polynomial Moore|Penrose equations really collapse into the single equation

(22)G D2 = 1 - H1 - XL L - X R,

and this is the only place where the unknown G  enters the equation system. Therefore the task of

solving for G  boils down to multiplying (22) by a right inverse of D2  and reducing the correspond
ing  polynomial  on  the  right|hand side  in  a  fashion  analogous  to  that  of  Computation 5.  Observe
that we have thus achieved a significant simplification of  the original task of solving an equation
system with four, three or even two equations: In all these cases, one faces the much more difficult
question  of  somehow  eliminating  the  coupling  between  the  various  occurrences  of  G  in  these
equations.  In  the  second  Moore|Penrose  equation,  there  is  even  a  non|linear  occurrence  of  G ,
which  would  complicate  the  whole  problem considerably:  In  this  case,  we  would  need  tools  for
solving polynomial systems.

But even then we are well within the polynomial approach, and there are powerful (but necessar
ily more complex) methods available for attacking such problems. The most successful is certainly
the computation of Gröbner bases, originally developed for commutative polynomials by B. Buch
berger; see the original PhD thesis [17], the journal version [7], and the concise treatment in [13].
Buchberger’s  algorithm computes  a  Gröbner  basis  for  the  ideal  of  any  given  set  of  polynomials;
using  a  lexicographic  term  ordering,  the  Gröbner  basis  allows  to  read  off  the  solutions  of  the
corresponding polynomial system.

Buchberger’s  algorithm has  a  direct  analog  in  the  noncommutative  setting,  known  as  Mora’s
algorithm [51].  Unlike the commutative case,  it  does not always terminate. But when it does, the
Gröbner basis thus computed enjoys similar properties as the commutative ones. Hence it would be
applicable to our present problem. We followed this strategy in the paper [57] because at that time
we had not yet seen the possibility of reducing everything to one equation. So it seems that we do
not  need  Gröbner  bases,  but  the  real  fact  is  that  we  can  avoid  the  costly  completion  algorithm
(Buchberger’s / Mora’s algorithm) while there is still a Gröbner basis behind the scenes. The point
is just that it does not change; it need not be "completed". See the remarks after Definition 30 for
more details.

Now finding a right inverse is next to trivial in our case: Equation (14) tells us that D  has the

right inverse A , so D2  has the right inverse A2 . Multiplying (22) by this right inverse, we obtain~
more or less~the desired Green’s operator

(23)G = H1 - H1 - XL L - X RL A2 ,
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just  that  it  is  ùin  a  slightly unusual  form÷.  In  particular, this is  not  yet  a  (single) integral operator
with a  Green’s function as  its  kernel.  Let  us therefore apply the reduction system induced by the
interaction equalities for trying to get a better representation for G . Again, we prefer to resort to the
automatic evaluator implemented in the frame of this thesis.

6 Computation (Reduction of the Green’s Operator)

Compute@H1 - H1 - XL L - X RL A2 D;
We compute:

 A2 - L A  A + X L A2 - X R A2 =
x
HLAL

 A2 + X L A  A - X R A2 =
x
HLAL

 A2 - X R A  A =
x
HRAL

 A2 - X A2 - X B A =
x
HAAL

 -A X + X A - X A2 - X B A =
x
HAAL

 -A X + X A - X2  A + X A X - X B A =
x
HBAL

-A X - X B + X A X + X B X �

á

The computation yields the Green’s operator in the canonical form

(24)G = -A X - X B + X A X + X B X,

and we could already regard this as the final answer. If we prefer to see the Green’s function, we
collect in (24) the terms belonging to the same integration operator, giving

(25)G = HX - 1L A X + X B HX - 1L.
Now  we  simply  unfold  the  definition  of  the  operators  A, B, X  as  they  are  applied  to  a  function
f Î C@0, 1D , evaluated at a point x Î @0, 1D , so

(26)

Gf HxL = Hx - 1L à
0

x

Ξ f HΞL â Ξ + x à
x

1HΞ - 1L f HΞL â Ξ =

à
0

xHx - 1L Ξ f HΞL â Ξ + à
x

1

x HΞ - 1L f HΞL â Ξ.

Writing this as a single integral such that (4) holds, we must pack both integrands into one func
tion, which we define by the corresponding case distinction
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(27)g Hx, ΞL = : Hx - 1L Ξ Ü 0 £ Ξ £ x £ 1,

x HΞ - 1L Ü 0 £ x £ Ξ £ 1.

It should be noted that the procedure of transforming G  in (24) into the corresponding Green’s
function g  in (27) is completely mechanical: The monomials with A  go into the first branch of g ,
those with B  into the second branch; the occurrences of X  before the integration operators become
x ,  those  after  the  integration  operators  become  Ξ .  In  fact,  such  a  "mechanical  procedure"  could
readily be implemented; see the discussion towards the end of Section 2 of Chapter 2.

1.2 The Green’s Polynomials

The goal of  this section is to generalize the solution strategy used for the example of steady heat
conduction  in  a  rod.  We  want  to  treat  any  regular  BVPs  for  linear  differential  operators  with
constant coefficients. Let us make this precise by the following definition.

7 Definition (Regular BVP)

Let @a, bD  be a finite interval in R ,  and let T  be an n|th order linear differential operator
with constant coefficients

T u = c0  u + c1  u’ + c2  u’’ + ¼ + cn-1  uHn-1L + uHnL

operating  on  the  Banach  space  HC¥@a, bD, ° × ´¥L .  Let  B1 , ¼, Bn  be  boundary  operators
defined on the same domain, say

Bi u = pi,0  uHnL  HaL + ¼ + pi,n-1  u’ HaL + pi,n  u HaL +

qi,0  uHnL  HbL + ¼ + qi,n-1  u’ HbL + qi,n  u HbL ,
with coefficients pi,0 , ¼, pi,n , qi,0 , ¼, qi,n Î R  for each i = 1, ¼, n .  The boundary value
problem induced by T  and B1 , ¼, Bn  is to find for each forcing function f Î C¥@a, bD  a
function u Î C¥@a, bD  such that

T u = f ,
B1  u = ¼ = Bn  u = 0.

We  call  the  BVP  regular  iff  it  has  a  unique  solution  u Î C¥@a, bD  for  each  forcing
function f Î C¥@a, bD .
á

This  BVP  is  actually  inhomogeneous  in  the  differential  equation  and  homogeneous  in  the
boundary conditions (a so|called semi|inhomogeneous problem). But we can always decompose a
fully inhomogeneous problem into such a semi|inhomogeneous one and a rather trivial BVP with
homogeneous  differential  equation  and  inhomogeneous  boundary  conditions  (a  so|called  semi|
homogeneous  problem);  see  page 43  in  [63].  Hence  we  have  not  lost  any  essential  generality  in
Definition 7 by assuming homogeneous boundary conditions.

Applying  the  solution  strategy  used  in  the  example  of  steady  heat  conduction,  we  must  first
compute a  suitable projector P  onto NHTL  such that  the boundary conditions will  be  fulfilled for

TP,I
Ö . From the theory of ordinary differential equations we know that one can obtain a fundamental

system for a linear differential operator with constant coefficients by taking the functions x# ãΛx ,

x# x ãΛx ,  ¼,  x# xk-1 ãΛx  for  each  k|fold  root  Λ Î C  of  the  characteristic  equation  for  T ;  see
page 89 in [21]. They form the basis of a function algebra that will be dubbed the polyexponential
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page 89 in [21]. They form the basis of a function algebra that will be dubbed the polyexponential
functions  because  they  are  a  mixture  of  "ordinary  polynomial  functions"  (having  the  functions

x# xk  as a basis) and "exponential polynomials" (having the functions x# ãΛx  as a basis). For the
sake of brevity, we will usually refer to them as the "polyexponentials", and we will denote them
by E .

Then  we  must  introduce  new  indeterminates  for  the  multiplication  operators  induced  by  the

powers x# xk  (where k  runs through N* ) and by the exponentials x# ãΛx  (where Λ  runs through
C* ).  The resulting noncommutative polynomial ring will have infinitely many indeterminates, but
this is no problem since each individual polynomial can contain only finitely many of them. So we
will work in the structure

(28)CX8D, A, B, L, R< Ü 8Xk È k Î N*< Ü 8EΛ È Λ Î C*<\,
where Xk  denotes the corresponding multiplication operator mapping each u Î C¥@a, bD  to

(29)Xk  u = x# xk  u HxL,
and likewise EΛ  denotes the operator mapping u Î C¥@a, bD  to

(30)EΛ  u = x# ãΛx  u HxL.
Of course we must now add some interaction relations describing that powers and exponentials

may be contracted and that we may always order them such that the exponentials come first. We
call them algebraic interaction equalities as they do not refer to any analysis concepts like differen
tiation or integration. Besides these new interactions, we have to make some obvious modifications
in the isolation equalities (still assuming a = 0 and b = 1 to simplify things for the moment).

Before specifying the interaction equalities, we tell the system that we want to use the powers

of X  as indeterminates: For example, when X3  appears in a polynomial, this is one atomic indeter

minate; whereas D3  is understood as a shorthand for D D D .
Then  we  list  all  the  interactions  we  need,  plus  some  built|in  knowledge:  The  addition  and

subtraction  appearing  in  the  parameters  of  Xk  and  EΛ  are  not  the  same  as  the  plus  and  minus
connecting  the  polynomials!  The  former  should  be  left  untouched  by  Mathematica,  whereas  the

latter  are  to  be  executed  in  the  expected  manner.  Thus  we  want  to  have  X2Å3  simplify  to  X5 .
Therefore  we  use  circled  operator  symbols  for  those  operations  that  should  be  carried  out  by
Mathematica, and we tell the system explicitly that Å  and �  should be the Mathematica functions
Plus and Minus, respectively. This is the meaning of the environment Built|in["Arithmetic"].

Having specified all the explicit and implicit knowledge, we must fix some additional technicali
ties.  First we instruct the Compute command to use the new set of interaction equalities, then we
tell  the  evaluator  the  names  of  the  current  indeterminates and  some abbreviations (see  Chapter 2
for  details).  The  option  ReductionPhases  of  the  function  ReduceNoncommutativePolynomial
specifies the order in which the systems given below are to be applied; the algebraic equalities are
not mentioned, meaning that they are to be used throughout all the phases. As we do not want to
see the long and tedious trace, we set the corresponding option to "None" this time.

8 Input (Modified Interaction Equalities for Exponential Polynomials)

UsePowers@XD
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SystemA"First Equalities for Algebraic Simplication", any@i, j, Λ, ΜD,
Xi  X j = XiÅ j "XX"

EΛ  EΜ = EΛÅΜ "EE"

Xi  EΛ = EΛ  Xi "XE"

E
SystemA"1. First Equalities for Isolating Differential Operators", any@i, ΛD,

D A = 1 "DA"

D B = -1 "DB"

D Xi = i Xi�1 + Xi  D "DX"

D EΛ = Λ EΛ + EΛ  D "DE"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. First Equalities for Isolating Boundary Operators", any@i, ΛD,

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L Xi = 0 "LX"

R Xi = R "RX"

L EΛ = L "RE"

R EΛ = E R "RE"

E
SystemA"3. First Equalities for Contracting Integration Operators",

A A = X A - A X "AA"

A B = X B + A X "AB"

B A = A + B - X A - B X "BA"

B B = B X - X B "BB"

E
SystemA"4. First Equalities for Absorbing Integration Operators",

A D = -L + 1 "AD"

B D = R - 1 "BD"

A L = X L "AL"

B L = L - X L "BL"

A R = X R "AR"

B R = R - X R "BR"

E
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Built|inA"Arithmetic",

Å ® Plus

�® Minus
E

SetOptions@Compute,
by ® ReduceNoncommutativePolynomial,
using ® 8

System@"First Equalities for Algebraic Simplication"D,
System@"1. First Equalities for Isolating Differential Operators"D,
System@"2. First Equalities for Isolating Boundary Operators"D,
System@"3. First Equalities for Contracting Integration Operators"D,
System@"4. First Equalities for Absorbing Integration Operators"D<,

built|in ® Built|in@"Arithmetic"DD;
SetOptions@ReduceNoncommutativePolynomial,

ReductionPhases ® 8
"1. First Equalities for Isolating Differential Operators",
"2. First Equalities for Isolating Boundary Operators",
"3. First Equalities for Contracting Integration Operators",
"4. First Equalities for Absorbing Integration Operators"<,

Indeterminates ® 8X� , D, L, R, E� , A, B<, Units ® 8X0 , E0 <, inNotebook ® "None"D;
á

Using the reduction system resulting from orienting these equalities from left to right, we obtain
a  fairly universal  method for  simplifying a  polynomial in  (28).  For  example,  we can easily com
pute the fifth Legendre polynomial, whose Rodriguez formula is given by

P3  HxL =
1

������������������
23  3!

 ¶x
3 Hx2 - 1L3

The analytic polynomial corresponding to (30) is

(31)D3  HX2 - 1L3
times the normalization factor, and we can simplify (31) in the usual way for getting its expanded
version. (We have left out the normalization factor only because it clutters the output.)

9 Computation (Sample Reduction of an Analytic Polynomial)

ComputeAD3  HX2 - 1L3 E
-72 X + 18 D + 120 X3 - 108 X2  D + 90 X4  D - 36 X3  D2 - D3 + 18 X D2 + 18 X5  D2 + 3 X2  D3 - 3 X4  D3 +

X6  D3

á

The  polynomial  (31)  is  of  course  much  more  complex  than  the  ordinary  Legendre  polynomial
since  it  represents  a  differential  operator  obtained  by  operating  ¶x  not  only  on  the  coefficient

function Hx2 - 1L3  but also ùacross÷ it. However, we get back the original Legendre polynomial~in
expanded form~by formally substituting D ¬ 0 and dividing by 48, thus obtaining

P3  HxL =
1
������
2
H5 x3 - 3 xL.

Having the new polynomial ring (28), we should try to close the gaps mentioned after (17). The
overall strategy explained there still works in the new polynomial ring: We carry out the reduction
in  four  phases~first  isolating the  differential  operators,  second  isolating the  boundary  operators,
third contracting the integration operators, and fourth absorbing them into each other (the algebraic
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third contracting the integration operators, and fourth absorbing them into each other (the algebraic
interactions may be  used  in  any  phase).  But  now we face  a  problem that  may  occur  in  the  third
phase: How can we contract two integration operators, for example an A  and another A  if there are

some  algebraic  operators  EΛ  and  Xk  in  between?  Merging  these  intermediate  operators  yields  a
single  multiplication operator  M f  induced  by  some basis  polyexponential  f .  Let  us  see  how we
can absorb the two integral operators into one by using partial integration. For any u Î C¥@a, bD ,
we have

(32)HA Mf  AL u = x# à
a

x

fHΞL Au HΞL âΞ

according  to  the  standard  interpretation  of  the  indeterminates  A  and  M f  as  operators  on  the
Banach  space  C¥@a, bD .  Applying  partial  integration  to  this  integral,  we  have  to  choose  some
antiderivative of f . In particular, we may choose A f , the antiderivative normed to be 0  at a . Note,
however, that A f  is simply another polyexponential, not to be confused with the noncommutative

polynomial  A M f .  Let  us  therefore  write  Ù *
f  for  this  operation  of  A  on  f  and  let  us  call  it  the

integral action.  Likewise we will write Ù* f  for the corresponding operation of B  on f  and call it

the cointegral action.  We will  clarify these issues in  greater  detail  below in Definition 11.  Using

the antiderivative Ù *
f  of f , partial integration yields

(33)à
0

x

fHΞL Au HΞL âΞ = Jà
*

fN HΞL Au HΞL E
Ξ=a

x

- à
a

xJà
*

fN HΞL u HΞL âΞ,

so the operator in (32) is

(34)A Mf A = MÙ *
f  A - A MÙ *

f ,

where  f  and  accordingly  Ù *
f  are  some  concrete  polyexponentials.  From  (34)  we  can  extract

polynomial equalities by substituting the three possible cases for M f , namely Xk  for pure polynomi

als and EΛ  for pure exponentials and EΛ  Xk  for proper polyexponentials. So the only problem is to

evaluate  the  integrals of  x# xk  and  x# ãΛx  and  x# ãΛx  xk ,  respectively.  Now the  first  two are
trivial,  but  looking up  integration tables  for  the  third reveals  some recursion formulae. Therefore
we  conclude  that  we  can  always  carry  out  the  reduction  (34)  from left  to  right  for  any  concrete

exponential polynomial like A E3  X4  A , but we cannot write down a closed formula for the generic

instance EΛ  Xk .
How can we solve this problem? Well, why not take (34) itself as the new interaction equality!

In other words, we can generalize the polynomial ring once more such that it includes all multiplica
tion operators M f  induced by functions f  out of a certain reasonable class F  that can be adapted;
the default choice for F  will be the polyexponentials. Of course, then we do not need the indetermi

nate Xk  and EΛ  anymore; they are subsumed by Mx#xk  and Mx#ãΛx , respectively. Since it starts to
get tedious by now, let us introduce a convenient agreement for getting rid of all these cumbersome

lambda quantifiers. So from now on, we will speak of the functions xk  and ãΛx , and so their corre
sponding indeterminates are Mxk  and MãΛx .

10 Convention (Implicit Lambda Quantification)

If a term T  appears where we should have a function, it should be understood as x# T .

á
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The polyexponentials E  constitute just one out of various conceivable ùfunction domains÷ that
can be used for multiplication operators, but in the frame of this thesis we will not consider other
possibilities.  Going  through  the  interaction  equalities  of  Input 8,  we  see  that  the  only  essential
thing  is  that  we  have  some  set  of  objects~typically but  not  always  functions~with ùreasonably
behaving÷  operations  for  sums,  products,  derivatives,  integrals and  boundary  values.  For  the  first
two  of  them,  there  seems  to  be  a  natural  choice  for  specifying  what  we  mean  by  "reasonable",
namely the ring axioms.

However,  we  need slightly more.  Obviously,  the  multiplication operators M f +g  and  M f + Mg

do the same under any ùreasonable÷ interpretation, so we would have to add the interaction equali
ties M f +g = M f + Mg ,  basically a  restatement of  distributivity. We can also interpret this interac
tion as saying that we do not really need the indeterminates M f +g  as soon as we have M f  and Mg .
Generally speaking, it is sufficient to consider only those M f  where f  is irreducible with respect to
addition; in other words, f  should range over a basis of the function domain, which thus turns out
to be an vector space~just as its prototype E . In fact, it must even be an algebra like E  is because
we also have an appropriate multiplicative structure on it.

Just as for the algebraic operations (addition, multiplication), there are also natural axioms for

the  analytic  operations:  differentation f # f ’ ,  the  integral  action f # Ù *
f ,  the  cointegral  action

f # Ù* f ,  the left boundary action f # f ¬ ,  and the right boundary action f # f ® .   For example,

the  essential  properties of  differentiation alone  are  the  linearity rule  and  the  product  rule;  adding
them to a ring / algebra gives what is usually called a differential ring / algebra. We have chosen
the name "analytic algebra" because we extend the notion of algebra not only by differentiation but
also by the second fundamental concept of analysis, namely that of integration.

The axioms for integrations and boundary values are formulated in the same spirit as the linear
ity rule and the product rule for differential algebras. In fact, we obtained all of the axioms speci
fied below very naturally by attempting the proof of Theorem 28 without them and adding what is
needed until the proof succeeds (in the Theorema project, we are working on this approach in the
larger  context  of  theorem  proving,  following  what  B. Buchberger  calls  the  lazy  thinking  para
digm). The result of this process is contained in the definition given below. Note that we have used
Convention 10  for  suppressing  lambda  quantification  in  these  axioms.  For  example,  the  term
f - f ¬  is to be understood as the function x# f HxL - f ¬ .

11 Definition (Analytic Algebra)

An algebra F  is called an analytic algebra iff it has unary linear operations differentiation

’ : F ® F ,  integral  Ù *
: F ® F ,  cointegral  Ù* : F ® F ,  left  boundary  value  ¬ : F ® C

and right boundary value ® : F ® C , subject to the postulates listed below. 

AxiomsA"Analytic Algebra", any@ f , gD,
H f gL’ = f ’ g + f g’ "dm"

Ù *
f ’ = f - f ¬ "ad"

Ù* f ’ = f ® - f "bd"

IÙ *
f M’ = f "da"

IÙ* f M’ = - f "db"

H f gL¬ = f ¬  g¬ "lm"

H f gL® = f ®  g® "rm"

E

á
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For  understanding  the  axioms  of  an  analytic  algebra,  we  observe  the  following.  An  analytic
algebra  is  essentially  a  differential  algebra  with  two  generalized  inverses  for  the  derivation ’.
Comparing axioms "ad", "da" with the Moore|Penrose equations in Proposition 3, we see that the
integral is indeed a generalized inverse for ’ ,  with trivial range projector (since C¥@0, 1D  remains
all of C¥@0, 1D  under differentiation) and the left boundary action as nullspace projector (note the
lambda convention). For the cointegral, things are similar; the only difference is that now we have
a generalized skew  inverse in the sense that the negative  cointegral is  a  generalized inverse for ’ ,
with  trivial  range  projector  and  right  boundary  action.  So  the  operations ¬  and ®  just  serve  to
choose among the generalized inverses by fixing the integration constant. Axioms "lm" and "rm"
stipulate that f # Hx# f ¬L  and f # Hx# f ®L  be homomorphisms in the algebra F .

Having  the  concept  of  analytic  algebra,  we  can  finally  introduce  the  analytic  polynomials  as
announced before. Note that the multiplication operators are only indexed over a basis of the given
analytic algebra, thus guaranteeing an economic representation as explained above.

12 Definition (Analytic Polynomials)

Let F  be an analytic algebra. Then

CX8D, A, B, L, R< Ü 8M f È f Î F #<\
will  be  called  the  ring  of  analytic  polynomials  over  F ,  denoted  by  AnHF L .  If  F  is  not
mentioned,  it  is  assumed  to  be  the  system  E  of  polyexponentials;  the  corresponding
polynomial  ring  is  then  denoted  by  An .  Similar  conventions  will  be  assumed  for  other
occurrences of F  and E  in the subsequent text.

á

At this  point,  we should also mention an alternative way of  introducing analytic polynomials.
Looking at equality (34), we could also  view the multiplication operators as coefficients instead of

indeterminates; then we would have A f A = HÙ *
fL A - A Ù *

f . Of course, these coefficients do not

commute with the indeterminates, so here we are dealing with the uncommutative polynomials of
PUniRingHF , 8D, A, B, L, R<L ;  see  Section 5  of  the  Appendix.  But  since  the  coefficients  do  com
mute with R , we would have to factor out these commutations. Such a formulation by uncommuta
tive  polynomials  has  the  advantage  that  one  does  not  need  infinitely  many  indeterminates8Mf È f Î F#<  in  the  polynomial  ring.  Nevertheless,  we  will  stick  to  the  formulation  of
Definition 12  because  the  infinitude  of  8Mf È f Î F#<  does  not  cause  serious  problems  whereas
uncommutative polynomials are not well studied in the literature.

Equality  (34)  can  now  be  understood  as  a  polynomial  interaction  equality,  as  was  desired.

Strictly speaking, though, this formulation is still not correct. The problem is that Ù *
f  might not be

in F #  anymore even though f  was; in fact, this is usually so in the case in the prototype algebra

T .  But  since  F  is  an  analytic  algebra,  Ù *
 is  an  operation  within  F ,  so  we  can  write  Ù *

f  as  a

linear  combination  Λ1  f1 + ¼ + Λn  fn  with  f1 , ¼, fn Î F #  and  Λ1 , ¼, Λn Î C .  Hence  we  can
write  Λ1  M f1 + ¼ + Λn  M fn  instead  of  the  wrong  MÙ *

f .  This  operation  can  be  extended  to  all  of

AnHF L  by  applying  it  to  all  the  multiplication  indeterminates  of  a  given  polynomial  and  then
expanding the  result.  In  particular,  we  have  MΛ = Λ  for  multiplication operators  induced by  con
stant functions x# Λ  with Λ Î C . We will refer to this process as the basis expansion in F .

In the actual computations, we do this together with the usual expansion rules for polynomials
like  distributivity,  namely  each  time  after  applying  a  polynomial  equation.  In  the  Compute  call,
this  is  specified  by  using  the  special  built|in  referred  to  as  $BasisExpansion.  The  other  built|in
operations like carrying out integrals and cointegrals are collected in Built|in["Action operators"].
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operations like carrying out integrals and cointegrals are collected in Built|in["Action operators"].
So if one wants to use both of these built|in simplifications, one has to specify the option built|in®

{$BasisExpansion,  Built|in["Action  operators"]}  of  the  Compute  function.  See  Input 14  below
for an example and Chapter 2 for more details about the computation engine.

Since the  multiplication operators  occur  quite  often  in  a  typical  computation,  we  will  adopt  a
smoother notation for them. In fact, it starts to become boring to see all these M  symbols when the
really  important  information  is  contained  in  the  indices.  Therefore  we  will  lift  them  to  the
"ceiling", using the so|called ceiling brackets.

13 Convention (Ceiling Notation)

The notation ` f p  is a shorthand for the indeterminate M f  of AnHF L .
á

Within the noncommutative polynomial ring AnHF L , we can now formulate all the interactions
that will be necessary to reduce an arbitrary polynomial to a simplified form that is even canonical
as we will prove in Theorem 28. But first let us review the four phases on an informal basis. In the
first  phase,  we  isolate all  differential operators  on  the  far  right.  Basically, all  the  interaction stay
the same, but the product rule is now formulated in full generality as

(35)D `fp = `fpD + `f ’p,
where ` f ’p  splits again into a linear combination of multiplication operators over F . Intuitively, it
is  clear that  we can always  perform this step successfully because there are no other ùhurdles÷  to
pass by except A , B , f , L , R .

The second phase  is also successful in this sense, isolating all boundary operators at the posi
tion next to the differential operators (if there is no differential operator, this is the far right). Let us
see what happens when we move to the right. Now the differential operators are already out of the
way. If we ùhit÷ an integration operator, we can still apply the integration|transport relations (16).

Moving across a  multiplication operator ` f p  is  analogous to moving across Xk  or  EΛ ;  we simply
evaluate the function f  at the left or right boundary point, expressed by f ¬  and f ® , respectively.
Now the only remaining possibility is that one boundary operator meets another, which is so trivial
that we have even left it out up to now. For the sake of completeness, though, we will also add it
now as the boundary idempotence relations

(36)

L L = L,

L R = R,

R L = L,

R R = R.

Now we come to the third phase, contracting integral operators. This is where we had to leave
some  gaps  in  the  previous  reduction  systems.  So  let  us  analyze  this  situation  carefully.  All  the
differential  and  boundary  operators  are  already  moved  to  the  far  right,  so  we  need  only  be  con
cerned  about  the  interactions between  A ,  B  and  f .  As  the  cointegral  operator  is  dual  and  hence
analogous to integral operator, the essential question is how to interrelate integration and multiplica
tion operators. As mentioned before, it is always possible to contract all integrations into a single
one~unlike  differentiations.  We  have  seen  an  example  in  (34),  contracting  to  integral  operators
with a multiplication operator in between. The other three cases with A ` f p B , B ` f p A , B ` f p B  are
indeed analogous, as one can see below. The collision of two such integration operators without a
multiplication  operator  in  between,  already  covered  in  (18),  is  subsumed  by  choosing  .
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multiplication  operator  in  between,  already  covered  in  (18),  is  subsumed  by  choosing  f = 1.
However,  it  is  still  useful  to  include  them  as  ùoptimized  rules÷  for  frequently  occurring  special
cases. Putting these things together, we should now have the intuition that the third phase must also
be  successful:  Whenever  the  prefix  left  of  the  differential/boundary part  contains  more  than  one
integration operator, we use the interactions just described for contracting them. Finally, we are left
with something of the form ` f p A `gp  or ` f p B `gp ,  which can be understood as a suitable integral
operator with the "separated kernel" being f HxL gHΞL  as in (26).

The fourth phase  takes care of integral operators being ùcancelled÷ by differential operators or
ùswallowed÷  by  boundary  operators.  For  this  purpose,  we  can  again  take  over  the  corresponding
interactions (19) and (20). Besides this, there are analogous interactions for the monomials A ` f p L ,
B ` f p L ,  A ` f p R ,  B ` f p R .  But  we  have  not  yet  considered  the  possibilities A ` f pD  and  B ` f pD .
Let us consider the first case in detail. According to the standard interpretation of A , we have

(37)A `fpD u = x# à
a

x

fHΞL u’HΞL âΞ

for  all  u Î C¥@0, 1D .  (We  are  now  assuming  general  boundary  points  a  and  b .)  Applying  again
partial integration, we can rewrite the integral on the right as

(38)

à
a

x

fHΞL u’HΞL âΞ = f HΞL u HΞL DΞ=a
x - à

a

x

f ’ HΞL u HΞL âΞ =

f HxL u HxL - f HaL u HaL - à
a

x

f ’ HΞL u HΞL âΞ,

so we have

(39)A `fpD = -f¬  L + `fp - A `f ’p.
Of  course,  one  can  derive  an  analogous  interaction equality  for  B ` f pD .  It  is  now  clear  that  the
fourth phase is also successful in the following sense: It makes sure that we cannot have a mono
mial  containing  both  a  differential  and  an  integration  operator.  With  other  words,  the  operators
represented  by  such  monomials  are  either  differential  operators  (containing  only  D)  or  integral
operators (containing either only A  or only B) or algebraic operators (containing neither D  nor A
nor B). We will soon make these ideas more precise by proving that the new interaction equalities
lead to normal forms in the sense sketched above.

As  before  there  are  also  algebraic  interactions  (again  to  be  applied  throughout  all  phases),
taking care of reduction within F .  But now we can formulate them in a single equation that sub
sumes all of the previous interactions for Xi  X j , EΛ  EΜ  and Xi  EΛ .

So let us summarize the new collection of interaction equalities in suitable Theorema environ

ments. As we do not use the parametrized indeterminate Xk  anymore, we revoke the power conven
tion for X  explicitly (just to make sure). In all the equations below, the universal quantifiers for f

and g  implicitly range over all functions in F # . After specifying the polynomial equalities, we list
the built|in operations for executing the action operators. Then we set some defaults for the func
tions  Compute  and  ReduceNoncommutativePolynomial,  in  a  manner  analogous  to  what  we  had
before.

14 Input (Interaction Equalities for Analytic Polynomials)

DoNotUsePowers@XD
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System@"Equalities for Algebraic Simplication", any@ f , gD,` f p `gp = ` f gp "MM"

D
SystemA"1. Equalities for Isolating Differential Operators", any@ f D,

D A = 1 "DA"

D B = -1 "DB"

D ` f p = ` f p D + ` f ’p "DM"

D L = 0 "DL"

D R = 0 "DR"

E
SystemA"2. Equalities for Isolating Boundary Operators", any@ f D,

L A = 0 "LA"

R A = A + B "RA"

L B = A + B "LB"

R B = 0 "RB"

L ` f p = f ¬  L "LM"

R ` f p = f ®  R "RM"

L L = L "LL"

L R = R "LR"

R L = L "RL"

R R = R "RR"

E
SystemA"3. Equalities for Contracting Integration Operators", any@ f D,

A ` f p A = aÙ *
f q A - A aÙ *

f q "AMA"

A ` f p B = aÙ *
f q B + A aÙ *

f q "AMB"

B ` f p A = aÙ* f q A + B aÙ* f q "BMA"

B ` f p B = aÙ* f q B - B aÙ* f q "BMB"

A A = aÙ *
1q A - A aÙ *

1q "AA"

A B = aÙ *
1q B + A aÙ *

1q "AB"

B A = aÙ* 1q A + B aÙ* 1q "BA"

B B = aÙ* 1q B - B aÙ* 1q "BB"

E
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SystemA"4. Equalities for Absorbing Integration Operators", any@ f D,

A ` f pD = - f ¬  L + ` f p- A ` f ’p "AMD"

B ` f pD = f ®  R - ` f p- B ` f ’p "BMD"

A D = -L + 1 "AD"

B D = R - 1 "BD"

A ` f p L = aÙ *
f q L "AML"

B ` f p L = aÙ* f q L "BML"

A ` f p R = aÙ *
f q R "AMR"

B ` f p R = aÙ* f q R "BMR"

A L = aÙ *
1q L "AL"

B L = aÙ* 1q L "BL"

A R = aÙ *
1q R "AR"

B R = aÙ* 1q R "BR"

E
Built|inA"Action Operators",

ÔLeftBoundaryValue ® LeftBoundaryValue

ÔRightBoundaryValue ® RightBoundaryValue

ÔDerivative1 ® Derivative1

ÔIndefiniteIntegral ® IndefiniteIntegral

ÔIndefiniteCointegral ® IndefiniteCointegral

E

SetOptions@Compute,
by ® ReduceNoncommutativePolynomial,
using ® 8

System@"Equalities for Algebraic Simplication"D,
System@"1. Equalities for Isolating Differential Operators"D,
System@"2. Equalities for Isolating Boundary Operators"D,
System@"3. Equalities for Contracting Integration Operators"D,
System@"4. Equalities for Absorbing Integration Operators"D<,

built|in ® 8$BasisBuiltin, Built|in@"Action Operators"D<D;
SetOptions@ReduceNoncommutativePolynomial,

ReductionPhases ® 8
"1. Equalities for Isolating Differential Operators",
"2. Equalities for Isolating Boundary Operators",
"3. Equalities for Contracting Integration Operators",
"4. Equalities for Absorbing Integration Operators"<,

Indeterminates ® 8D, L, R, A, B, `�p<, inNotebook ® "None"D;
á

We will also refer to the above collection as the system of Green’s equalities.
As a first example, let us see how Computation 6 looks like in the new ring An . Then let us try

the problematic case that  forced us  to introduce the multiplication operators.  In  this example, the

built|in knowledge about integration leads to the evaluation of the indefinite integral  as
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built|in knowledge about integration leads to the evaluation of the indefinite integral Ù x3  ã2 x  â x  as

ã2 x I- 3�����
8

+ 3 x��������
4

- 3 x2

�����������
4

+ x3

�������
2
M .

15 Computation (Reduction of the Green’s Operator as an Analytic Polynomial)

Compute@H1 - `1 - xp L - `xp RL A2 D
-A `xp- `xp B + `xp A `xp+ `xp B `xp
á

16
Computation  (Reduction  of  an  Integral  Operator  with  Hybrid  Polyexponential
Kernel)

Compute@A `x3  ã2 x p AD
3
������
8

 A `ã2 x p-
3
������
4

 A `ã2 x  xp+
3
������
4

 A `ã2 x  x2 p-
1
������
2

 A `ã2 x  x3 p-
3
������
8

 `ã2 x p A +
3
������
4

 `ã2 x  xp A -
3
������
4

 `ã2 x  x2 p A +

1
������
2

 `ã2 x  x3 p A
á

The  polynomial  interaction equalities induce  a  rewrite  system,  and  our  first  claim is  that  it  is
noetherian. This means that the chain of computation steps terminates for any input in AnHF L .

17 Theorem (Termination of the Reduction System for Analytic Polynomials)

The reduction system generated by orienting the interaction equalities in Input 14 from left
to right is a noetherian relation on AnHF L .
Let  us  first  clarify  the  signature  and  the  reduction  relation.  We  have  a  term  rewriting
system with a flat and commutative flexible|arity symbol + , a flat flexible|arity symbol × ,
a  nullary operation for each coefficient in C  as constructor of the corresponding constant
polynomial,  and  a  nullary  operation  for  each  indeterminate  in
X = 8D, A, B, L, R< Ü 8` f p È f Î F #<  as  a  constructor  of  the  corresponding  ùsolitary÷
polynomial. Since +  does not occur on the left|hand side of any rule, we need not worry
about its flatness nor associativity. We will take care of the associativity of ×  by applying
an  associative  matcher.  Moreover,  we  have  a  ground  term  rewriting  system,  because  f
acts  only  as  an  external  variable  (it  cannot  be   instantiated  by  a  polynomial).  In  other
words,  there  are  infinitely  many  rewrite  rules  for  each  rule  of  Input  14  that  contains  a
multiplication  operator  ` f p ;  every  instantiation  of  f  over  F #  gives  rise  to  one  rule.
Whenever we speak of "a rule", we actually mean the whole family of rules arising from
these instantiations.

We will first assume that we do not distinguish basis polynomials, i.e. we will work with

the  indeterminates  X
��

= 8D, A, B, L, R< Ü 8` f p È f Î F <  and  we  do  all  reduction  without
basis expansion.  We must show that there is no infinite chain of such reductions, and we
do this by an indirect proof.

So assume there were such an infinite reduction chain p1 ® p2 ® p3 ® ¼  in C XX��\ . Each
of the rules "DA", "DB", "DL", "DR", "AMD", "BMD", "AD", "BD" of Input 14 decrease
the number of occurrences of D  in a polynomial (which is a kind of differential weight of
the corresponding operator), and it is never increased by any rule. Hence there can only be
finitely  many  applications  of  these  rules  in  the  initial  part  of  the  chain

; taking this initial part out, we are left with another infinite reduction
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p1 ® p2 ® p3 ® ¼ ; taking this initial part out, we are left with another infinite reduction
chain,  which we might as  well  denote  by  p1 ® p2 ® p3 ® ¼  again,  and this  chain does
not use the rules just mentioned.

Next  we  consider  the  number  of  occurrences  of  either  A  or  B ,  so  to  say  the  integral
weight;  the  rules  "LA",  "RA",  "AMA",  "AMB",  "BMA",  "BMB",  "AA",  "AB",  "BA",
"BB",  "AL",  "BL",  "AR",  "BR",  "AML",  "BML",  "AMR",  "BMR"  all  decrease  the
integral weight, which is again never increased by any rule. Hence we may disregard these
rules  as  well,  assuming  that  the  reduction  chain  p1 ® p2 ® p3 ® ¼  applies  only  the
remaining rules. Finally, let us consider the number of occurrences of either L  or R , which
could  be  called the  boundary  weight;  the  rules  "RA",  "LB",  "LL",  "LR",  "RL",  "RR" all
decrease the boundary weight,  and once again it is never increased by any rule. So let us
also disregard these rules in p1 ® p2 ® p3 ® ¼ .

The product  rule  "DM" can be  discarded on  grounds of  positioning: Let  ∆HwL  denote the

position of the leftmost occurrence of D  in a word w Î X
��*

,  and let ∆HpL =ÚwÎsuppHpL ∆HwL
be what could be called the cumulative differential position of a polynomial p . Obviously,
each application of the rule "DM" decreases the cumulative differential position by 1, and
this cannot go on forever since ∆  ranges over N  and is never increased by any other rule. A
similar  argument  based  on  a  ùcumulative  boundary  position÷  allows  to  discard  the  rules
"LM" and "RM".

Hence we are only left with the rule "MM". But this rule always decrease the total length
of a polynomial, defined as the sum of the lengths of all words in its support. Hence it can
also  not  be  applied  infinitely  often,  and  the  original  assumption  that  we  had  an  infinite
reduction chain is falsified.

For concluding the proof, we must show that basis expansion does not spoil anything; but
this is trivial. Assume we had an infinite reduction p1 ® p2 ® p3 ® ¼ , this time in C XX\ .
Then  some of  the  reduction steps  will  be  reductions  in  C XX��\ ,  whereas  the  rest  are  basis
expansions. The former is finite by what we have proved above, whereas the latter is finite
as well because basis expansion is clearly noetherian.

Let us also point out an alternative, more algebraic way of proving the noetherianity of the

reduction on C XX��\ ; I learned this proof from Ralf Hemmecke. Let W = 8D, A, B, L, R, M<
the  set  of  ùreduced indeterminates÷, containing only one ùgeneric÷  multiplication operator
M .  We  order  W  by  D > A > B > L > R > M  and  the  word  monoid  W*  by  the  induced
graded  lexicographic  ordering,  also  denoted  by  > .  The  ordering  >  is  clearly  total  and
noetherian on W* .  Moreover,  it  is  easily verified that  >  is  monotonic with respect to  the
multiplication  (being  the  concatenation  of  words)  on  W* ,  so  have  got  a  well|ordered
monoid.

Using  Theorem 4.69  of  [3],  the  ordering  on  W*  induces  a  well|ordering  on  its  finite
subsets PfinHW*L  defined recursively by A � Æ  for all A Î PfinHW*L  and

Æ � B,

A � B � max>  A > max>  B Þ Hmax>  A = max>  B ß A’ � B’L
for  all  A, B Î PfinHW*L \ 8Æ< .  Here we have written S ’  for  S \ 8max>  S< ,  with S  being any
element of PfinHW*L \ 8Æ< . As usual, the strict part of �  will be denoted by � .
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Then  we  define  a  mapping  v : C XX��\® PfinHW*L  by  vHpL = suppHp� L ,  where  supp  is  the

polynomial  support  and  � : C XX��\® C XW\  is  the  homomorphic  extension  of  the  map

X
��

® W  sending  every  ` f p  to  M  and  fixing  all  other  elements.  This  gives  rise  to  a  strict

partial order on C XX��\  defined by pp q � vHpL � vHqL . By the well|orderedness of � , the
new  ordering  p  is  noetherian.  Therefore  it  suffices  to  prove  that  all  the  reductions  are

compatible with p  in the sense that p ® p’ implies pp p’  for all p, p’ Î C XX��\ .
Looking the reduction rules of Input 14, we can easily verify that they respect the ordering

p , meaning that for every rule w = p  one has wp p , where w Î X
��*

 and p Î C XX��\ . This
immediately carries over to reductions. Assume we have

p1 + Λ w1  w w2 + p2 ® p1 + Λ w1  p w2 + p2 ,

via  the  rule  w = p ,  where  p1 , p2 , p Î C XX��\  and  w1 , w2 , w Î X
��*

 and  Λ Î C´  such  that
v1 > w1  w w2 > v2  for all v1 Î suppHp1L  and v2 Î suppHp2L . The argument to be used here
is closely analogous to Lemma 5.20(iv) of [3], so let us only sketch the idea: Since all the
words in p1  remain untouched, it suffices to show Λ w1  w w2 + p2 p Λ w1  p w2 + p2 .  But
this  is  clear  because  all  the  words  in  Λ w1  p w2  and  p2  are  smaller  than  w1  w w2  with
respect to > , and some of them may even cancel out.

á

The crucial fact about the reduction system of Input 14 is that we can use it for computing the
Green’s  function.  This  is  guaranteed by  the  fact  that  the  normal  forms  (and  we  have  just  proved
that a normal form always exists!) are of an appropriate shape, as we will show now. In the next
step, we will prove that the normal forms are even canonical, but note that we do not really need
this for the application of computing Green’s functions. It is a kind of mathematical luxury, imply
ing that we are working in a "beautiful" structure that may be characterized as a suitable quotient
via Proposition 31.

18 Definition (Normal Form of Analytic Polynomials)

A polynomial of AnHF L  is said to be in normal form iff all its monomials are produced by
the rule for M  in the following grammar:

Production Rule Name

M : :=
AIA ÈAD ÈABD Monomial Operator

I : := A È B Integral Operator

A : := 1 È ` f p Algebraic Operator

B : := L È R Boundary Operator

D : := 1 È DD Differential Operator

We  denote  the  set  of  these  normal  forms  by  GrHF L ,  and  we  call  them  the  Green’s
polynomials over F .

á

Observe  that  they  really  provide  a  solution  to  the  problem  of  finding  Green’s  functions  (see
Theorem 50 for the precise proof): Assuming that we have somehow computed an analytic polyno
mial representing the Green’s operator for a given BVP (and in Definition 47 we will show how to
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mial representing the Green’s operator for a given BVP (and in Definition 47 we will show how to
do this algorithmically), the resulting normal form G  will consist only of monomials of type AIA
since it is clear that G  cannot involve differential or boundary operators but must contain integra
tion operators. As explained before, the terms where I  is A  give one branch of the corresponding
Green’s function, those where I  is B  give the other branch; the second A  in AIA  involves the
bound variable of the integral quantifier (written as Ξ  in Equation 4), whereas the first A  involves
the free variable (written as x).

19 Theorem (Normal Form of Analytic Polynomials)

The normal forms with respect to the reduction system induced by Input 14 on AnHF L  are
precisely the Green’s polynomials GrHF L .
It  is  clearly sufficient to consider only the words (the monomials without the coefficient)
because a polynomial is irreducible iff all its words are.

First  assume  p Î GrHF L ;  we  must  show  that  p  is  irreducible.  Consider  the  case  AIA :
There  is  no  rule  for  reducing  any  of  the  polynomials  ` f p A `gp ,  ` f p B `gp ,  A `gp ,  B `gp ,
` f p A ,  ` f p B ,  A ,  B .  Studying the case AD ,  it suffices to observe that there is no rule for
reducing either of ` f p D , ` f p , D , 1. For treating the case ABD , we need only consider the
polynomials  ` f p L D ,  ` f p R D ,  L D ,  R D ,  ` f p L ,  ` f p R ,  L ,  R ,  and  once  again  there  is  no
rule  for  reducing  them.  Hence  we  know  that  GrHF L  does  indeed  contain  only  normal
forms.

Now assume we have a noncommutative polynomial p Ï GrHF L ; we must show that p  is
reducible. Let us first observe that p ¹ 1  since 1 Î GrHF L .  We will now proceed by case
distinction  on  the  initial  letter  of  p ,  ranging  over  the  possible  indeterminates
8D, A, B, L, R< Ü 8`fp È f Î F #< .  This proof will realize the intuition behind the reduction
process, as it was outlined before.

Assume the first letter of p  is D , say p = D p’ . Then there must be some first letter Λ ¹ D
in p’; otherwise p  would a Green’s polynomial of type D . Hence DΛ  occurs as a subword
of  p ,  and  this  subword  may  be  one  of  D A ,  D B ,  D L ,  D R ,  D ` f p ;  all  of  these  are
reducible  by  the  rules  with  the  same  name  (subject  to  the  natural  convention  that  the
indeterminates for multiplication operators are represented by an "M"). Observe that all of
these rules belong to the "first phase".

Assume  the  first  letter  of  p  is  a  boundary  operator  B ,  say  p = B p’ .  If  p’  were  1,  the
given  word  p  would  be  a  Green’s  polynomial  of  type  ABD ;  so  we  know  that  p’ ¹ 1.
Furthermore,  we  may  assume  that  p’  does  not  start  with  D .  For  if  it  does,  by  what  we
have proved before, p’  is either reducible or in GrHF L . In the first case, p  is reducible as
well.  In  the  second  case,  p’  can  only  be  of  type  D  and  hence  p  of  type  ABD ,
contradicting the  assumption p Ï GrHF L .  Hence  p  starts  with  one  of  L A ,  L B ,  L L ,  L R ,
L ` f p  R A , R B , R L , R R , R ` f p ; and they can all be reduced by rules with corresponding
names. Observe again that these rules belong to the "second phase" of reduction.

Assume the first letter of  p  is  an integral operator I ,  say p = I p’ .  Again p’  must start
with some other letter Λ ;  otherwise p  would be a Green’s polynomial of type AIA .  Let
us first assume that Λ  is no ` f p . Then the first two letters of p  are one of A D , A A , A B ,
A L ,  A R ,  B D ,  B A ,  B B ,  B L ,  B R ,  all  of  which  are  reducible  by  the  rules  with
corresponding names. Now assume that  is an . In this case, it must be followed by a
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corresponding names. Now assume that Λ  is an ` f p . In this case, it must be followed by a
letter Λ’; otherwise p = I ` f p  would again be a Green’s polynomial of type AIA . If Λ’  is
another  `gp ,  we  can  reduce  I ` f p `gp  and  hence  p  by  the  rule  "MM".  In  the  remaining
cases,  the  first  three  letters  of  p  must  be  among  A ` f p D ,  A ` f p A ,  A ` f p B ,  A ` f p L ,
A ` f p R ,  B ` f p D ,  B ` f p A ,  B ` f p B ,  B ` f p L ,  B ` f p R ;  and  once  again  they  can  all  be
reduced by the rules with corresponding names.

Finally, assume the first letter of p  is an ` f p , say p = ` f p p’ . If p’  is 1, again p  would be
a Green’s polynomial, namely of type AD . Hence p’  starts with some first letter Λ . If Λ  is
D ,  we  know  from  before  that  p’  (and  hence  p)  is  either  reducible  or  a  Green’s
polynomial,  which  can  only  be  of  type  D .  But  in  the  latter  case,  p  would  be  a  Green’s
polynomial  of  type  AD ,  contradicting the  assumption on  p .  If  Λ  is  a  B ,  we  may  again
assume that p’  is a Green’s polynomial. In this case, p’  can only be of the form BD , so p
would be a Green’s polynomial of type ABD , once again contradicting the assumption on
p .  If Λ  is an I ,  we may assume as before that p’  is a Green’s polynomial. This time we
can infer that p’  is then of the form AIA , so it is either `gp IA  or IA . Accordingly, p
is either ` f p `gp IA  or ` f p IA . In the former case, we may use the reduction rule "MM",
whereas the latter is not possible because it means that p  is a Green’s polynomial of type
AIA .  So  the  only  remaining  case  it  that  Λ  is  another  `gp ,  and  hence  p  starts  with  the
` f p `gp , which is of course reducible by the rule "MM" again.

This concludes the proof that all normal forms are Green’s polynomials. As we have also
proved  the  converse,  this  means  that  the  normal  forms  and  GrHF L  actually  coincide,  as
was claimed.

á

As announced  before,  the  normal  forms of  the  reduction system in  Input  14  are  even unique.
For proving this,  it  is  clearly sufficient to  prove that  the given reduction system is confluent; see
[1]. So we must show that whenever a reduction splits in two possible paths t1 ¬ t ® t2 , the result
ing terms t1  and t2  have a common successor; they "flow together". Looking at equations of Input
14,  we can see  that  many of  them depend heavily on the algebraic structure of  F .  Therefore we
should expect  that  the confluence proof must have recourse to the axioms of  analytic algebras in
Definition 11; a few first attempts will immediately confirm this expectation.

As a consequence, we will need two different kinds of computation for establishing confluence:
on  the  one  hand,  the  reductions  of  Input  14;  on  the  other  hand,  the  axioms  of  Definition 11.
Whereas the former are already oriented (they are "rewrite rules" rather than plain "equalities"), the
latter might have to be used in both directions. For a computer|generated confluence proof, though,
we would prefer a completely deterministic procedure. Hence we will try to replace the axioms of
analytic algebras suitable rewrite rules. In fact, one can find these rules quite easily by just trying
out the confluence proof until it gets stuck ("lazy thinking paradigm"). Let us start with some first
results about resolving combinations of integral and boundary actions.

20 Lemma (Boundary Integrals)

Let F  be an analytic algebra. Then the equalities listed below are fulfilled.
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LemmaA"Boundary Integrals", any@ f , gD,
IÙ *

f M¬ = 0 "la"

IÙ *
f M® = Ù *

f + Ù* f "ra"

IÙ* f M¬ = Ù *
f + Ù* f "lb"

IÙ* f M® = 0 "rb"

E

Axiom  "ad"  allows  to  eliminate  the  left  boundary  action,  giving  f ¬ = Ù *
f ’ - f .

Substituting  this  in  the  left|hand  side  of  equality  "la",  we  get

Ù *HÙ *
f L’ - Ù *

f = Ù *
f - Ù *

f = 0  as  claimed,  the  first  equality coming from axiom "da".

For deducing equality "ra", we eliminate the right boundary action by axiom "bd", yielding

f ® = Ù* f ’ + f .  Again,  this  is  substituted  in  the  left|hand  side  of  equality  "ra",  and  we

obtain Ù*HÙ *
f L’ + Ù *

f = Ù* f + Ù *
f = Ù *

f + Ù* f  as claimed, using again axiom "da" in the

first equality. Equalities "lb" and "rb" are deduced analogously.

á

The  next  group  of  results  deals  with  combinations  among  the  integration  actions.  It  will  be
convenient  to  introduce  a  parsing  convention  for  iterated  integrals  in  order  to  avoid  some
parentheses.

21 Convention (Precedence of Integral Operators)

The  term  Ù *
S T  is  to  be  parsed  as  Ù *HS TL  rather  than  HÙ *

SL T ,  where  S  and  T  are

arbitrary terms. Similar conventions apply for the other integral operators.

á

Let  us  now  state  the  equalities  describing  the  essential  interactions  between  the  integration
actions (compare them to the interaction rules "AMA", "AMB", "BMA", "BMB"). Basically, these
equalities express partial integration in analytic algebras.

22 Lemma (Integration Laws)

Let F  be an analytic algebra. Then the equalities listed below are fulfilled.

LemmaA"Integration Laws", any@ f , gD,
Ù *

f  IÙ *
gM+ Ù *

g IÙ *
f M = IÙ *

f M IÙ *
gM "a:a"

Ù *
f  IÙ* gM- Ù *

g IÙ *
f M = IÙ *

f M IÙ* gM "a:b"

Ù* f  IÙ *
gM- Ù* g IÙ* f M = IÙ* f M IÙ *

gM "b:a"

Ù* f  IÙ* gM+ Ù* g IÙ* f M = IÙ* f M IÙ* gM "b:b"

E

Equality "a:a" follows from the product rule of differentiation: Substituting Ù *
f  for F  and

Ù *
g  for  G  in  F ’ G + G’ F = HF GL’  yields  f  Ù *

g + g Ù *
f = HHÙ *

f L HÙ *
gLL’  upon  using

axiom  "da".  Applying  Ù *
 on  this  equality  yields  "a:a",  using  axioms  "ad",  "lm"  and

equality  "la"  for  simplifying  the  right|hand  side.  The  other  equalities  are  deduced
analogously.

á
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Looking at the axioms of analytic algebras and the equalities derived up to now, we can see a
certain  symmetry  between  the  integral  and  cointegral  actions  (as  operators  in  the  Hilbert  space

L2@a, bD ,  they  are  in  fact  duals  of  each  other).  Such  a  symmetry  is  nice  for  axiomatization  and
abstract proofs but it does suitable for rewriting. Using these symmetries, we will eliminate one in
favor of the other. In order to do so, we will now introduce the definite integral as the crucial link
between integral and cointegral action.

23 Definition (Definite Integral)

Let  F  be  an  analytic  algebra  and  fix  an  arbitrary  f Î F .  Then  Ù *
f + Ù* f  is  called  the

definite integral of f  and is denoted by � f .

á

Now we can establish the essential properties of the definite integral. In the next step, we will
have recourse to these properties for eliminating the cointegral in favor of the integral action (but
we might as well do the opposite).

24 Lemma (Properties of the Definite Integral)

Let  F  be  an  analytic  algebra.  Then  the  definite  integral  is  a  constant,  and  the  equalities
listed below are fulfilled.

LemmaA"Properties of the Definite Integral", any@ f , gD,
� f ’ = f ® - f ¬ "cd"

� f = IÙ *
f M® "ra"

� f  IÙ *
gM+ � g IÙ *

f M = H� f L H� gL "c:a"

� f  IÙ* gM+ � g IÙ* f M = H� f L H� gL "c:b"

E

Equality  "cd"  follows  by  summing  axioms  "ad"  and  "bd",  and  equality  "ra"  as  in
Lemma 20, just using the definition of the definite integral. Note that equality "ra" implies
that definite integrals are constant by the axiom "lr:".

Summing  equalities  "a:a"  and  "b:a"  yields  for  � f HÙ *
gL  the  term

H� f L HÙ *
gL + Ù*gIÙ* f M- Ù *

gHÙ *
f L .  Replacing  Ù* f  by  � f - Ù *

f  in  this  term  yields

H� f L H� gL - � gHÙ *
f L ,  using  the  fact  that  definite  integrals  are  constant.  Hence  we  have

� f HÙ *
gL = H� f L H� gL - � gHÙ *

f L ,  which  is  equivalent  to  equality  "c:a".  By  an  analogous

deduction, one can derive equality "c:b".

á

Finally, we can formulate all the rewrite rules to be used in the confluence proof (we write them
as equalities again, but of course they are understood as oriented from left to right). We have split
them in  three groups.  Let  us  start  with the first group treating the basic interaction laws between
the action operators.
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25 Input (Interaction Laws)

AssumptionsA"Interaction Laws", any@ f , gD,
H f gL’ = f ’ g + f g’ "dm"

H f 2 L’ = 2 f f ’ "ds"

IÙ *
f M’ = f "da"

Ù *
f ’ = f - f ¬ "ad"

� f ’ = f ® - f ¬ "cd"

IÙ *
f M¬ = 0 "la"

IÙ *
f M® = � f "ra"

Ù* f = � f - Ù *
f "b"

E

The rules "dm", "da", "ad" are axioms. Rule "ds" is just a special case of rule "dm" (it is
used only for making the computer|generated reduction process easier to implement). Rule
"cd"  was  derived  in  Lemma 24,  rules  "la"  and  "ra"  in  Lemma 20.  Finally,  rule  "b"  is

simply the definition of the definite integral � , now used for eliminating the cointegral in
favor of the integral action.

á

The next group of rewrite rules deals with integration. They are basically "eliminated" versions
of the integration laws of Lemma 22.

26 Input (Integration Laws)

AssumptionsA"Integration Laws", any@ f D,

Ù * Ù *
1 = 1�����

2
 IÙ *

1M2 "aa1"

� Ù *
1 = 1�����

2
 H� 1L2 "ca1"

Ù *
f  IÙ *

f M = 1�����
2

 IÙ *
f M2 "ama"

� f  IÙ *
f M = 1�����

2
 H� f L2 "cma"

Ù * Ù *
f = IÙ *

1M IÙ *
f M- Ù * IÙ *

1M f "aa"

� Ù *
f = H� 1L H� f L- � IÙ *

1M f "ca"

E

Rules "ama" and "cma" follow immediately from rule "a:a" in Lemma 22 and rule "c:a" in
Lemma 24, respectively, by substituting f  for both f  and g . Rules "aa" and "ca" follow in
the same way by substituting 1  for  f  and f  for  g .  Rules "aa1" and "ca1" are just  trivial
special cases of rules "aa" and "ca", respectively, just added for ease of implementation.

á

The last group of rewrite rules are essentially repetitions of axioms.
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27 Input (Boundary Laws)

AssumptionsA"Boundary Laws", any@ f , gD,
H f gL¬ = f ¬  g¬ "lm"

H f 2 L¬ = H f ¬ L2 "ls"

H f gL® = f ®  g® "rm"

H f 2 L® = H f ® L2 "rs"

E

Rules "lm" and "rm" are axioms, and their companions "ls" and "rs" trivial special cases,
again added for making the implementation easier.

á

Now we are finally ready for the confluence proof itself.

28 Theorem (Confluence of the Reduction System for Analytic Polynomials)

The reduction system generated by orienting the interaction equalities in Input 14 from left
to right is confluent.

As  for  the  termination  proof,  we  will  first  give  the  proof  without  considering  basis

expansion; so let X  and X
��

 be as before. By Lemma 1.2 of [4], it suffices to prove that all
ambiguities  of  the  reduction  system  are  resolvable.  In  general,  one  has  to  consider  both
overlap and inclusion ambiguities. Inspecting Input 14, however, we can see that there are
no inclusion ambiguities, so we can concentrate on the overlap ambiguities, i.e.  a  pair of

rules w w1 ® p1  and w2  w ® p2  with w, w1 , w2 Î X
��*

 and p1 , p2 Î C XX��\ .  We must show
that the corresponding S|polynomials w2  p1 - p2  w1  reduce to 0.

This is done in Computation 29, which uses the rewrite rules of Inputs 25, 26, 28 derived
before.  Note  that  everything  is  generated  automatically,  only  that  we  do  not  have  space
enough for listing all of the 233 reductions because they cover approximately 2000 lines.
But  the  computation module  checks  whether  they  all  come  out  to  zero.  Since  this  is  the
case,  we may conclude (trusting the implementation or reading 2000 lines of proof!) that
the given reduction system is indeed confluent.

á

29 Computation (S|Polynomial Reduction)

ProveConfluence[]

The rules DA and AMA yield the S|polynomial: 

 ` f p A - D aÙ *
 f q A + D A aÙ *

 f q =
x
H¼L

 ` f p A - D aÙ *
 f q A + D A  aÙ *

 f q =
x
HDAL

 aÙ *
 f q+ ` f p A - D aÙ *

 f q  A =
x
HDML

 aÙ *
 f q+ ` f p A - b IÙ *

 f M’ r A - aÙ *
 f q D A =

x
HdaL
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 aÙ *
 f q- aÙ *

 f q D A =
x
HDAL

0 �

 ¼

The rules RA and AMA yield the S|polynomial: 

 A ` f p A + B ` f p A - R aÙ *
 f q A + R A aÙ *

 f q =
x
H¼L

 A ` f p A + B ` f p A - R aÙ *
 f q A + R A  aÙ *

 f q =
x
HRAL

 A aÙ *
 f q+ B aÙ *

 f q+ A ` f p A + B ` f p A - R aÙ *
 f q  A =

x
HRML

 A aÙ *
 f q+ B aÙ *

 f q- IÙ *
 f M®  R A + A ` f p A + B ` f p A =

x
HraL

 A aÙ *
 f q+ B aÙ *

 f q- H� f L R A + A ` f p A + B ` f p A =
x
HRAL

 -H� f L A - H� f L B + A aÙ *
 f q+ B aÙ *

 f q+ A ` f p A + B ` f p A =
x

HAMAL

 -H� f L A - H� f L B + B aÙ *
 f q+ aÙ *

 f q A + B ` f p A =
x

HBMAL

 -H� f L A - H� f L B + B aÙ *
 f q+ B b Ù*  f r+ aÙ *

 f q A + b Ù*  f r A =
x
HbL

0 �

 ¼

The rules BR and RR yield the S|polynomial: 

 -B R + aÙ* 1q R2 =
x
H¼L

 -B R + b Ù* 1 r R2 =
x
HbL

 -B R + H� 1L R2 - aÙ *
1q R2 =

x
HRRL

 H� 1L R - B R - aÙ *
1q R2 =

x
HRRL

 H� 1L R - B R - aÙ *
1q R =

x
HBRL

 H� 1L R - b Ù* 1 r R - aÙ *
1q R =

x
HbL
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0 �

´ Computed 233 S|polynomials in 129 seconds.

´ Reduced them in 3144 seconds.

´ All of them reduced to zero!

á

Note that the action operators are "used" in a quite different way in this confluence proof. In a

concrete reduction like Computation 16, operators such as Ù *
 are simply evaluated when used on a

function such as ã2 x . In the abstract reductions of Computation 29, however, we are only referring
to some properties guaranteed by the axioms.

Having a convergent reduction system on AnHF L ,  we can now transfer its algebraic structure
to the normal forms GrHF L  as announced before: This means that the confluence result provides us
with  an  algebraic  term  model  of  certain  operators  on  C¥@a, bD ,  identifying  by  the  equalities  in
Input 14 "all" those terms that represent the same operator on C¥@a, bD .  Of course, by "all terms"
we mean all those whose identification seems relevant to our present purposes.

30 Definition (Green’s Ideal)

Let  F  be  an  analytic  algebra.  Then  An0HF L  denotes  the  two|sided  ideal  of  AnHF L
generated  by  the  reduction  system  of  Input 14.  In  other  words,  An0HF L  consists  of  all
linear  combinations  of  the  polynomials  p Hl - rL q ,  where  l = r  is  a  rule  of  the  reduction
system and p, q  are from GrHF L . We call An0HF L  the Green’s ideal over F .

á

Now the fact that the reduction system of Input 14 is confluent can also be expressed in a well|
known  ring|theoretic  language:  The  corresponding  set  of  polynomials  (consisting  of  all  l - r  for
every rule l = r  in  Input 14)  is  a  non|commutative Gröbner basis  for  An0HF L ;  see Theorem 8 of
[66]. This leads us back to our observations after Equation 22, once again emphasizing the central
role played by the concept of Gröbner basis. In fact, it is now clear why we could avoid the costly
computation  of  a  noncommutative  Gröbner  basis  for  the  problems  considered  here:  We  already
have one, and it need not be changed for different instances of BVPs because by our construction
using  right  inversion  and  the  nullspace  projector,  everything  boils  down  to  reducing  H1 - PL Tì
with respect to the fixed Gröbner basis; see Input 47 for the final formulation.

It  is  in  this  ring|theoretic context  that  we  can  formulate the  announced  result  about  the  alge
braic structure induced by the identifications made in Input 14.

31 Proposition (Green’s Factor Algebra)

Let F  be an analytic algebra. Then the Green’s polynomials GrHF L  constitute an algebra
isomorphic to the factor algebra AnHF L �An0HF L , which we call the Green’s algebra.

By Theorem 1.2 of [4].

á

Having a confluent reduction system, the ideal membership problem is also settled. We will not
need this result in the context of solving BVP; we mention it here just because it is one of the first
questions a ring theorist would ask.
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32 Definition (Ideal Membership)

Let F  be an analytic algebra. Two polynomials f , g Î GrHF L  are congruent to each other
with  respect  to  the  Green’s  ideal  An0HF L  iff  f - g ÎAn0HF L ;  this  will  be  denoted  by
f ºF g .

á

33 Proposition (Congruence and Reduction)

Let  F  be  an  analytic  algebra.  Then  we  have  f ºF g  iff  f «
*
F g  for  any  f , g ÎAnHF L ,

where ®F  denotes the reduction induced by the system of Input 14.

The  proof  is  completely  analogous  to  that  of  Lemma  5.26  in   [3],  which  refers  to  the
commutative case. The only difference is that for reducing a noncommutative polynomial
one  has  to  multiply  from  both  sides.  Observe  also  that  we  do  not  need  the  confluence
property enjoyed by the system of Input 14; the statement is true for any (commutative as
well as noncommutative) polynomial reduction system.

á

34 Proposition (Ideal Membership)

Let F  be an analytic algebra. Then for any f ÎAnHF L , we have f ÎAn0HF L  iff f ®
*
F 0.

If f ÎAn0HF L , then f ºF 0  by the definition of ideal congruence. By Proposition 33, this

implies f «
*
F 0. But we know from Theorem 28 that ®F  is confluent and hence Church|

Rosser  by  Theorem 8.1.2  in  [70].  This  means  that  f  and  0  have  a  common  successor
(possibly including themselves). But 0  has no proper successor, so the common successor

must be 0 and f ®
*
F 0.

Conversely,  assume  f ®
*
F 0.  Then  a  fortiori  f «

*
F 0  and  so  by  Proposition 33  also

f ºF 0, which is again equivalent to f ÎAn0HF L  by the definition of ideal membership.

á

We have not yet  spoken much about the relation between the algebraic structures AnHF L  and
GrHF L  and the ùreal÷ operators modeled by them. Let us first make precise what we mean by this
"modeling".

35 Definition (Operator Model)

Let  F  be  an  analytic  algebra,  A  an  algebra  containing  F ,  and  L  a  subalgebra  of  the
algebra of linear operators on A . Given a mapping  i : 8D, A, B, L, R<® L , extend it to a
mapping i`p  on  8D, A, B, L, R< Ü 8` f p È f Î F <  by  setting i`pH` f pL HaL = f a  for  all  a ÎA .
Then  let  I  be  the  homomorphic  extension  of  i`p  to  all  of  AnHF L .  We  call  I  the
interpretation induced by i  and L  the operator model (or briefly model) of AnHF L  under
I .

á

Now we can make it clear what we mean by the ùreal÷ operators working on C¥@a, bD .
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36 Definition (Smooth Model)

Let S  be the algebra of all linear operators on the space C¥@a, bD  of smooth functions on a
finite  real  interval  @a, bD .  More  precisely,  we  regard  all  operators  in  the  Banach  space
C@a, bD  with  Chebyshev  norm  ° × ´ ,  being  defined  on  the  dense  subset  C¥@a, bD .  Now
define a mapping sm : 8D, A, B, L, R<® S  by giving the usual definitions

sm HDL = u# u’,

sm HAL = u#
i
kjjjx# àa

x

u HΞL â Ξ
y
{zzz,

sm HBL = u#
i
k
jjjjx# à

x

b

u HΞL â Ξ
y
{
zzzz,

sm HLL = u# Hx# u HaLL,
sm HRL = u# Hx# u HbLL,

where  u  ranges  over  C¥@a, bD  and  x  ranges  over  @a, bD .  Let  Sm  be  the  interpretation
induced by sm ,  which we will call  the smooth interpretation; its image Sm*HGrL  will be
called the smooth model.

á

Note that Sm*HGrL  carries no topology. In fact, we will not need any topological notions pertain
ing to the operator algebras used as models for GrHF L . The function space C¥@a, bD , though, will
be  used  with  the  topology  induced  by  the  Chebyshev  norm ° × ´¥ ,  thus  making  it  into  a  Banach

algebra. We view C¥@a, bD  as 8u Î C¥Ha, bL È "nÎN uHnL Î C@a, bD< .
The  restriction to  smooth functions is  quite  severe,  though.  In  Definition 7,  we  have  imposed

the smoothness condition not only on the solution function u  (thus considering classical solutions)
but also on the forcing function f  (which is unnecessary even for classical solutions). Besides this,
there is  a  need for  more general  solutions. In  practical examples coming from physics,  one often
deals with weak solutions; and for studying notions like the fundamental solution of a differential
equation,  one  even needs  singular distributions. Therefore it  makes sense to introduce a  distribu
tional model of GrHF L  that will take care of all these desires.

It  is  actually  amazing to  see  how easily  one  can  switch  from the  smooth  to  the  distributional
setting, which demonstrates the  power  of  the  algebraic approach of  handling BVPs: The Green’s
algebra is completely ùignorant÷ of any setting we have in mind for them~the only essential thing
is that the setting ultimately chosen must respect the Green’s equalities in the sense of the upcom
ing Definition 38.

37 Definition (Distributional Model)

Let  D  be  the  algebra  of  all  linear  operators  on  the  space  C0
-¥@a, bD  of  boundary|valued

distributions on a finite real interval @a, bD . Define a mapping dis : 8D, A, B, L, R<®D  by
the  corresponding formulae of  Definition 36,  where  u  now ranges  over  C0

-¥@a, bD  and  x
ranges over @a, bD  again; of course, now all of these operations are to be understood in the
distributional sense.  Let Dis  be the interpretation induced by dis ,  which we will call  the
distributional interpretation; its image Dis*HGrL  will be called the distributional model.

á
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For  more  about  distributions, consult  pages  86|184 in  [63]  or  [43],  all  following the  standard
approach due to Laurent Schwartz. For our purposes, however, it seems more natural to follow the
alternative  but  equivalent  approach  of  Sebastião  Silva [62],  defining  C-¥@a, bD  as  an  inductive
limit along the (up|to|isomorphism) inclusion chain

C¥ @a, bD Í ¼ Í C2 @a, bD Í C1 @a, bD Í C@a, bD Í C-1 @a, bD Í C-2 @a, bD Í ¼ Í C-¥ @a, bD.
The only subtle point is the boundary values. For a typical distribution, one cannot speak of its

"value". Hence we must define what it means that a distribution u Î C-¥@a, bD  has a value U Î C
at a point x Î @a, bD .  Using Silva’s approach as suggested by [22], every u Î C-¥@a, bD  is vHnL  for
some v Î C@a, bD  and n Î N , and we say that u  has the value U  at x  iff

lim
Ξ®x

 
v HΞL

��������������������������HΞ - xLn =
U
���������
n!

,

where one must use a left|sided or right|sided limit in case x  is a  or b , respectively. Following the
Schwartz approach, one might also use the condition [52] that

"
DÎC¥ @a,bDN

HD ® ∆x Þ uëD ® UL,
where ∆x is the delta distribution concentrated at x  (note that the first convergence in this implica
tion takes  place  in  the  topology of  C-¥@a, bD ,  whereas  the  second is  the  usual  notion of  conver
gence  for  real  sequences).  The  space  C0

-¥@a, bD  used  in  Definition 37  consists  of  all  those

u Î C-¥@a, bD  such that for all n Î N  the derivatives uHnL  have a value at both a  and b .
Now the crucial property about these operator models is that they respect the equalities speci

fied in Input 14. Let us make this precise by a definition and two subsequent lemmata.

38 Definition (Faithful Model)

Let F  be an analytic algebra and I : GrHF L® L  an interpretation in some operator model
L .  Then I  is  called faithful  iff IHlL = IHrL  for all  equations l = r  of  Input 14; in this case,
we also say that the model L  is faithful under the given interpretation I .

á

39 Lemma (Faithfulness of the Smooth Model)

The smooth interpretation Sm  as specified in Definition 36 is faithful.

This  can  be  verified  by  routine  calculations.  In  fact,  we  have  derived  the  equalities  of
Input  14  by  looking  at  what  happens  in  Sm*HGrL ,  and  the  arguments  needed  for  the
verification are essentially contained in Section 1.

á

40 Lemma (Faithfulness of the Distributional Model)

The distributional interpretation Dis  as specified in Definition 37 is faithful.

The  arguments used  for  the  smooth case  basically carry  over  to  the  distributional setting
by simple continuity arguments.

á
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1.3 Inverting Differential Operators

When we solved the BVP of the classical example  G D2 = 1 - P ,  it  was clear how to "solve" for

the unknown Green’s operator G . Postmultiplying by A2 , we obtained the solution G = H1 - PL A2 .

As there are many other right inverses of D2  besides the "canonical" A2 , there are many solutions

G  of D2  G = 1. When premultiplying them by 1 - P , however, they must all coincide because we

know that the solution of G D2 = 1 - P  is unique.

But what can we do if we have a more complicated differential operator like T = D2 - 3 D + 7

instead of  the  operator  D2  above?  As  explained at  the  beginning  of  the  chapter,  we  restrict  our
selves  to  linear  differential  operators  with  constant  coefficients.  Now  every  such  differential
operator is essentially a polynomial in C@xD , just with D  figuring as the indeterminate x . And this is
also the key to the solution of our problem: We know that any polynomial splits into linear factors
over C .

For  example,  we  can  write  the  differential  operator  above  as  T = HD - ΑL HD - Α��L ,  where

Α = 1�����
2
I3 + ä

�!!!!!!!
19 M  and Α��  is its complex conjugate. So in order to right|invert T  we have to solve

the  equation  SHD - ΑL HD - Α��L = 1  for  S .  This  is  easy  as  soon  as  we  know  how  to  right|invert  a
linear differential operator with constant coefficient of order one, because then we can do it in two
stages. Writing a superscript ì for the right inverse, we have first Tì HD - ΑL = HD - Α��Lì  and then
Tì = HD - Α��Lì  HD - ΑLì .

So everything boils down to right|inverting differential operators of the shape D - Λ ,  where Λ
is  some  complex  number.  But  this  is  almost  trivial.  A  little  bit  of  experimentation  leads  to

HD - ΛLì = `ãΛxp A `ã-Λxp .  Therefore  we  arrive  at  the  following  formula  for  right|inverting  an
arbitrary linear differential operator with constant coefficients (more precisely, an analytic polyno
mial containing only D  as an indeterminate).

41 Input (Differential|Operator Right Inverse)

FormulaA"Differential|Operator Right Inverse", any@TD,
Tì = ä

i=1,¼,n

aãΛ
`

i  x q A aã-Λ
`

i  x q
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Ap = poly@TD, n = deg@pD, Λ

`
= rad@pDE

E
á

Everything in this formula is Theorema input, which is used as it is for computation; actually, it
is part of the algorithm computing the Green’s function for a given BVP. We think that this demon
strates a really beautiful point about the usage of integrated mathematical assistants like Theorema:
The  formula above  might  as  well  be  written on  paper  in  some specialized analysis  textbook,  but
there it would only be dead text. This is not the case here~we can simply select the cell and press
÷�ó,  and  the  system  will  know  the  formula  so  that  we  can  immediately  use  it  as  shown  in
Computation 42 below.

For fully understanding the meaning of the above formula, some comments are in order:

è The construct T È @x1 = T1 , ¼, xn = TnD  is a notation for the substitution quantifier, usually
verbalized as "T  where x1  is T1 , ¼, and xn  is Tn " in prefix reading and as "let x1  be T1 ,
¼, and xn  be Tn  in T " in postfix reading. Here x1 , ¼, xn  are variables and T, T1 , ¼, Tn

are terms; of course, T  will typically contain free occurrences of the variables x1 , ¼, xn .
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è The functions poly, deg, rad  are provided to Theorema as built|ins; they are implemented
in Mathematica and explicitly specified as external functions.

è The function poly  is used for computing the characteristic polynomial in C@xD . For exam

ple, p = poly@TD = x2 - 3 x + 7 for the differential operator mentioned above.

è The function deg  yields the degree of a polynomial in C@xD . In the previous example, this
gives n = deg@pD = 2.

è The  function  rad  returns  all  the  roots  of  a  polynomial  in  C@xD ,  repeating  some values  in
case of multiplicities. The result is represented as a vector. For the example above, we have

Λ
`

= rad@pD = XΑ, Α��\  with  Α  and  Α��  as  explained  before.  For  the  polynomial

q = Hx - 1L2 = x2 - 2 x + 1,  however,  we  obtain  rad@qD = X1, 1\ .  So  the  length  of  Λ
`

 is
always n .

è Using these auxiliary constructions, the body for the term representing Tì  is just the multi|

stage  iteration  of  the  simple formula HD - ΛLì = `ãΛxp A `ã-Λxp  as  explained before  (note

that Λ
`

i  is the i|th component of the vector Λ
`

). Using this formula, it is clear that we have
indeed T Tì = 1 for an arbitrary linear differential operator with constant coefficients.

Let us do some small examples using the above definition. We have made a special evaluator
for  doing  various  of  computations  related  with  searching  the  Green’s  function  of  a  BVP.  Hence
this program is called the Green’s evaluator. Basically it just unfolds definitions (such as the one in
Input 41),  it  does  some  linear  algebra  when  necessary  (see  Computation 43),  and  it  performs
polynomial reduction (as specified in Input 14). See Chapter 2 for details on the implementation.

42 Computation (Examples of Right Inversion)

ComputeAHD2 Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
A2

ComputeAHD2 Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
-A `xp+ `xp A
ComputeAH3 D2 + 2 D - 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
`ã-x p A aã 4

������3  x q A aã-
1
������3  x q

ComputeAH3 D2 + 2 D - 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
3
������
4

 aã 1
������3  x q A aã-

1
������3  x q-

3
������
4

 `ã-x p A `ãx p
ComputeAHD2 + 2 D + 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® False<E
`ã-x p A2  `ãx p
ComputeAHD2 + 2 D + 1Lì , by ® GreenEvaluator, EvaluatorOptions ® 8ReduceAfterwards ® True<E
`ã-x  xp A `ãx p- `ã-x p A `ãx  xp
á
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1.4 Computing the Nullspace Projector

The only missing link for a fully algorithmic treatment of BVP for linear differential operators with
constant coefficients (briefly called "differential operators" in the sequel) is the computation of the
nullspace projector. For this purpose, let us generalize the procedure followed around Equation (6).
We  will  restrict  our  attention  to  the  smooth  model  Sm ,  so  for  any  p ÎAn  we  will  abbreviate
SmHpL  by  p�� .  Now we are  given a  BVP as  specified in  Definition 7,  determined by  a  differential

operator T���  of order n  together with n  boundary operators B1����, ¼, Bn���� . (Note that according to their
specifications, both differential and boundary operators can always be written as interpretations of
analytic polynomials.)

We want to find an analytic polynomial P  whose interpretation P��  is a projector onto NHT���L  with
counter|image  81 - P�������� v È v Î C¥@a, bD<  fulfilling  the  boundary  conditions  induced  by  B1����, ¼, Bn���� .
As we have seen in Section 1, the computation of the nullspace projector is basically an interpola
tion problem leading to some trivial linear algebra in Cn . Hence it makes sense to formulate every
thing  in  terms  of  vectors  and  matrices.  For  this  purpose,  we  will  keep  the  following  convention
within this section: All the matrices (including vectors which will be understood as row matrices or
column  matrices)  are  written  with  a  hat  on  them,  no  matter  whether  their  entries  are  numbers,
functions or operators.

Having a fundamental system u1 , ¼, un  for the given differential operator T��� , let us write ù  for
the  "fundamental  vector"  Hu1 , ¼, unL§ .  For  writing  the  given  boundary  operators  B1����, ¼, Bn����  in

terms  of  a  matrix  operator,  we  introduce  the  operator|valued vector  Dn

`
= H1, D, ¼, Dn-1L§ .  We

will call Dn
`

 the Wronski operator  because it  yields the Wronskian matrix ẁ  when applied to the

fundamental vector, so ẁ = Dn
`

���� ù
§

.

Now the vector boundary operator HB1����, ¼, Bn����L§  can be written as L�� l
`
Dn

`
���� + R��� r̀ Dn

`
����  for suitable

matrices l
`
, r̀ Î Rn´n . In fact, using the notation of Definition 7, these matrices are given by

(40)l
`

=

i
k
jjjjjjjj

p1,n p1,n-1 º p1,0

» » ¸ »

pn,0 pn,n-1 º pn,0

y
{
zzzzzzzz,

(41)r̀ =

i
k
jjjjjjjj

q1,n q1,n-1 º q1,0

» » ¸ »

qn,0 qn,n-1 º qn,0

y
{
zzzzzzzz.

We  are  searching  a  specific  nullspace  projector,  i.  e.  a  linear  operator  P��  such  that
P�� v =Úi=1

n ΑiHvL ui  for  all  v Î C¥ @a, bD ,  where  the  Α1 , ¼, Αn  are  suitable  complex  numbers
depending  on  the  argument  v .  Our  goal  is  to  ensure  B1����Hv - P�� vL = ¼ = Bn����Hv - P�� vL = 0  for  all

v Î C¥@a, bD . Hence we have to make sure that IL�� l
`
Dn

`
���� + R��� r̀ Dn

`
����M P�� v = IL�� l

`
Dn

`
���� + R��� r̀ Dn

`
���� M v  or

â
i=1

n
 Αi  HvL IL�� l

`
Dn

`
���� + R��� r̀ Dn

`

����M ui = IL�� l
`
Dn

`
+ R��� r̀ Dn

`

����M v.

Collecting the  unknown coefficients a1HvL, ¼, anHvL  into  the  vector  ᾺHvL = HΑ1HvL, ¼, ΑnHvLL§
and  assembling  the  system  matrix  s̀  with  IL�� l

`
Dn

`

���� + R��� r̀ Dn

`

����M u1 , ¼, IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M un  as  its  col

umns,  we  are  left  with  the  matrix  equation  s̀ ᾺHvL = IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v .  Looking  a  bit  closer,  one

sees  that  s̀  is  actually  l
`
ẁ

¬
+ r̀ ẁ

®
,  where  ẁ

¬
= ẁx¬a  and  ẁ

®
= ẁx¬b  are  the  usual  boundary
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actions  on  the  Wronskian  matrix.  Substituting  ᾺHvL = Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v  into  the

ansatz P�� v =Úi=1
n ΑiHvL ui = ù

§
 ᾺHvL , we obtain

P�� v = ù
§

 Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL�� l
`
Dn

`

���� + R��� r̀ Dn

`

����M v.

Finally, we can now abstract from the argument v , and we see that P��  is indeed the interpretation of
a corresponding analytic polynomial, namely

(42)P = `ù§p Il` ẁ
¬

+ r̀ ẁ
®M-1

 IL l
`
Dn

`
+ R r̀ Dn

` M;
we call this the nullspace|projector formula.

We  will  now summarize  this  result  in  a  Theorema  formula  that  is  actually  used  in  the  corre
sponding part of the Green’s function computation.

43 Input (Nullspace Projector)

DefinitionA"Wronski Operator", any@nD,
Dn

`
= XDi È i = 0, ¼, n - 1\

E
FormulaA"Nullspace Projector", anyAẁ, l

`
, r̀E,

Proj
ẁ
Al`, r̀E = `ẁ1 p Il` ẁ

¬
+ r̀ ẁ

® M-1
 IL l

`
 Dn

`
+ R r̀ Dn

` M Ë @n = dim@ẁDD
E
á

A few remarks about this definition:

è The  Wronski  operator  is  defined  by  using  the  vector  quantifier.  The  constructXT È i = i0 , ¼, i1\  generates  the  vector  HTi¬i0 , ¼, Ti¬i1 L ,  where  T  is  an  arbitrary  term
(usually containing the free occurrences of the variable i), i  is some variable, i0  and i1  are

natural  numbers.  For  example,  Xi2 È i = 3, ¼6\  is  H9, 16, 25, 36L ,  and

D3
`

= XDi È i = 0, ¼, 2\  is HI, D, D2L .
è The nullspace projector is computed just as in Equation 42. The only difference is that we

have eliminated the need for the fundamental vector ù  as it can be obtained by taking the
first row ẁ1  of the Wronski matrix ẁ .  In this way, the only argument needed besides the

boundary  matrices  l
`

 and  r̀  is  the  Wronski  matrix  ẁ .  It  is  also  used  for  determining  the
degree  n  of  the  given  differential  operator  T  because  we  know  that  ẁ  must  be  an  n ´ n
matrix;  we  use  the  built|in  function  dim  for  this  purpose.  The  degree  n  is  needed  for

specifying the appropriate Wronski operator Dn
`

.

è We use the function Proj  for denoting the nullspace projector so computed. We view it as

depending directly on  the  boundary  conditions (specified through the  arguments l
`

 and  r̀ )
and indirectly on the differential operator (specified through the parameter ẁ). Having the
function Proj  available, we can use it in the subsequent formula for computing the Green’s
operator.
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Let  us  now see  some short  examples,  using the  Green’s evaluator again.  In  the  first  example,
we  will  just  recompute  the  classical  nullspace  projector  obtained  in  Equation  (7)  by  an  ad|hoc
procedure.

44 Computation (Nullspace Projector for Classical Heat Conduction)

KnowledgeBaseA"Heat|Conduction Classical Boundary Matrices",

l
`

=
i
kjjj

1 0

0 0

y
{zzz

r̀ =
i
kjjj

0 0

1 0

y
{zzz

E
KnowledgeBaseA"Heat|Conduction Wronskian",

ẁ =
i
kjjj

1 x

0 1

y
{zzz

E
KnowledgeBaseA"Classical Heat Conduction",

KnowledgeBase@"Heat|Conduction Classical Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Classical Heat Conduction"DE
L - `xp L + `xp R
á

Now let us make sure that we can also impose initial conditions instead of boundary conditions,
and we can of course prescribe values for the function as well as its derivative in so|called hybrid
conditions.

45 Computation (Nullspace Projector for Modified Boundary Conditions)

KnowledgeBaseA"Heat|Conduction Hybrid Boundary Matrices",

l
`

=
i
kjjj

0 1

0 0

y
{zzz

r̀ =
i
kjjj

0 0

1 0

y
{zzz

E
KnowledgeBaseA"Hybrid Heat Conduction",

KnowledgeBase@"Heat|Conduction Hybrid Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

KnowledgeBaseA"Heat|Conduction Initial Boundary Matrices",

l
`

=
i
kjjj

1 0

0 1

y
{zzz

r̀ =
i
kjjj

0 0

0 0

y
{zzz

E
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KnowledgeBaseA"Initial Heat Conduction",

KnowledgeBase@"Heat|Conduction Initial Boundary Matrices"D
KnowledgeBase@"Heat|Conduction Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Hybrid Heat Conduction"DE
R - L D + `xp L D

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator,

using ® KnowledgeBase@"Initial Heat Conduction"DE
L + `xp L D

á

Finally  let  us  do  a  slightly  more  complicated  computation,  taken  from  Example  2  in  Krall’s
book [40]  on page 109.  It  describes damped oscillations, and we will return to this example later
for computing its Greens’ function.

46 Computation (Nullspace Projector for Damped Oscillations)

KnowledgeBaseA"Damped|Oscillations Wronskian",

ẁ =
i
kjjj

ã-x x ã-x

-ã-x ã-x - x ã-x

y
{zzz

E
KnowledgeBaseA"Damped Oscillations",

KnowledgeBase@"Heat|Conduction Classical Boundary Matrices"D
KnowledgeBase@"Damped|Oscillations Wronskian"D E

ComputeAProj
ẁ
Al`, r̀E,

by ® GreenEvaluator, EvaluatorOptions ® 8BoundaryPoints ® 80, Π<<,
using ® KnowledgeBase@"Damped Oscillations"DE
`ã-x p L - Π-1  `ã-x  xp L + HãΠ  Π-1 L `ã-x  xp R
á

1.5 Finding the Green’s Operator

We are now approaching the summit of this chapter and the whole thesis. We have assembled
all  the  components for  computing the Green’s operator of  an arbitrary linear differential operator
with  constant  coefficients,  so  we  just  need  to  put  them  together.  This  is  done  in  the  following
Theorema formula, which is immediately executable for computations as we will demonstrate soon.

47 Input (Green’s Operator)

FormulaA"Green Operator", any@T , BD,
Green@T , BD = H1 - PL Tì É Aẁ = wron@TD, l

`
= left@T , BD, r̀ = right@T , BD, P = Proj

ẁ
Al`, r̀EE

E
á

Again we add a few comments on this formula:
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è We  refer  to  three  built|in  functions  wron,  left,  and  right  for  computing  the  Wronski
matrix, the left and the right boundary matrix respectively. The latter two are rather trivial
rearrangements of the coefficients occurring in the boundary operators B = XB1 , ¼, Bn\  as
explained in Equations (40) and (41); the former uses Mathematica’s function DSolve for
solving differential equations.

è Having available the Wronski matrix ẁ  and the left and right boundary matrices l
`
 and r̀ ,

we use the formula of Input 43 for computing the corresponding nullspace projector P .

è Furthermore, we use the formula of Input 41 for computing the according right inverse Tì

of the given differential operator T .

è Finally,  the  polynomial  for  the  corresponding  Green’s  operator  is  simply  computed  asH1 - PL Tì . We denote it by Green@T, BD , meaning the Green’s operator for the differential
operator T  and the boundary operators in B .

Let us try out how it works: Now we can do the classical example treated in an ad|hoc manner
in Section 1 in a very general context, and everything works in one stroke.

48 Computation (Classical Heat Conduction)

Compute@Green@D2 , XL, R\D,
by ® GreenEvaluatorD

-A `xp- `xp B + `xp A `xp+ `xp B `xp
á

Of course we can do the same with any other BVP that is in the scope outlined at the beginning
of  this  chapter.  In  particular,  we  can  now  do  the  whole  computation  for  the  example  with  the
damped oscillations in Krall’s book [40] on page 109.

49 Computation (Damped Oscillations)

Compute@Green@D2 + 2 D + 1, XL, R\D,
by ® GreenEvaluator, EvaluatorOptions ® 8BoundaryPoints ® 80, Π<<D

-`ã-x p A `ãx  xp+ Π-1  `ã-x  xp A `ãx  xp- `ã-x  xp B `ãx p+ Π-1  `ã-x  xp B `ãx  xp
á

We will conclude this chapter with the most crucial theorem of the whole thesis: the correct
ness  statement  for  our  algorithm  computing  the  Green’s  operator.  We  formulate  it  here  for  the
smooth setting introduced at the beginning of Section 2, but one may give a completely analogous
proof  for  the  distributional  setting,  just  replacing  C¥@a, bD  by  C-¥@a, bD  and  Sm  by  Dis  and
appealing to Lemma 40 instead of Lemma 39.
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50 Theorem (Correctness of the Formula for the Green’s Operator)

Assume we have a BVP on the real interval @a, bD  given by a differential operator T���  and
boundary  operators  B1����, ¼, Bn���� ,  subject  to  the  conditions  specified  in  Definition 7.  (For
any p ÎAn  we abbreviate SmHpL  by p�� .)

Let  G ÎAn  be  the  result  of  computing  Green@T, BD  according  to  the  definition  in

Inputs 41, 43, 47, and let G’ Î Gr  be the normal form of G  with respect to the reduction

system in Input 14. Then G’  represents the Green’s function for the given BVP.

Computing  the  analytic  polynomial  P  according  to  Input 43,  we  get  an  operator
P�� : C¥@a, bD® C¥@a, bD  that projects everything onto NHTL  by its  construction. Since T���
is always surjective, 1��  is the only possible projector onto RHT���L . (Note that P��  will usually
not  be  bounded,  so  we  cannot  use  the  Banach|space  theory  of  generalized  inverses.  In
fact, we do not need it, because it is sufficient to work in the naked vector space C¥@a, bD
with  the  corresponding  Moore|Penrose  theory  expressed  in  Definition 1  and
Propositions 2, 3;  confer  the  comments  made  there  for  more  explanations.  So  T���  and
B1����, ¼, Bn����  as well as P��  are plain linear operators.)

By Proposition 2, there is a uniquely determined generalized inverse T���P��,1��
Ö ,  which we will

write  G���  for  some  analytic  polynomial  G  yet  to  be  determined.  Now  G���  is  also
characterized uniquely by the four corresponding Moore|Penrose equations, according to
Proposition 3.  But  as  mentioned  after  Equation 10,  the  first  Moore|Penrose  equation  is
always redundant and the second is as well in our case, due to the trivial range projector.
We will now show that the fourth equation also follows from the third equation, as we did
for  the  concrete  example in  Computation 5.  The  third equation reads  G���T��� = 1 - P�������� ,  which
gives  TGTTì������������ = TTì - TPTì�������������������  upon  premultiplying  by  T���  and  postmultiplying  by  Tì����� .
Here  Tì  is  the  right  inverse  of  T  given  by  the  formula  in  Input 41.  Since  TTì = 1  by
construction  of  Tì ,  Lemma 39  yields  TTì������� = 1�� .  Moreover  we  have  TP����� = 0�� ,  because  P��
projects onto the nullspace of T��� . Therefore we obtain TG����� = 1�� , which is indeed the fourth
Moore|Penrose equation for our problem.

The  problem  is  now  reduced  to  finding  the  operator  G���  uniquely  characterized  by
G���T��� = 1 - P�������� .  Since  TTì������� = 1�� ,  postmultiplying  by  Tì�����  implies  G��� = H1 - PL Tì��������������� .  Hence  we

may  choose  G = H1 - PL Tì ,  and  the  interpretation  G���   will  be  the  desired  generalized
inverse.  For  any  f Î C¥@a, bD ,  the  image  u = G��� f  fulfills  the  given  differential  equation
T��� u = 0  because of the fourth Moore|Penrose equation. By the analog of Proposition 2, the
range  of  G���  is  the  counter|image  of  P�� ,  which  fulfills  the  boundary  conditions  by  the
construction of P . Therefore G��� f  fulfills the given BVP for any f Î C¥@a, bD , and G���  must

coincide with the desired Green’s operator due to the regularity assumption. Since G ®
*

G’
in  the  sense  of  the  reduction system of  Input  14,  Lemma 39  implies that  G��� = G’���� ,  so  G’
does indeed represent the Green’s operator as claimed.

The  only  claim left  to  prove is  that  G’  also  represents the  Green’s function  in  the  sense
explained  after  Equation 26.  But  this  follows  from  Theorems 17  and 19  in  conjunction
with  Definition 18:  It  is  clear  that  G = H1 - PL Tì  cannot  contain  any  occurrence  of  D ,
because  the  monomials of  1 - P  have  at  most  n - 1  occurrences of  D  at  their  end while
Tì  is one monomial containing n  occurrences of A . Using rules "DM" and "DA" of Input
14,  the  reduction  will  eventually  in  each  monomial  eliminate  all  occurrences  of  D  and
leave one occurrence of A . Hence G’  consists only of monomials having the form AIA
in the language of Definition 18. Now this can readily be translated into the corresponding
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in the language of Definition 18. Now this can readily be translated into the corresponding
Green’s  function  as  in  Equation 27.  Iterating  over  all  monomials,  we  add  gx¬Ξ  f  to  the
first  branch  for  a  monomial  ` f p A `gp  and  gx¬Ξ  f  to  the  second  branch  for  a  monomial` f p B `gp .  Monomials of  the form I `gp  are  of  course treated like `1p I `gp ,  and those of
the form ` f p I  like ` f p I `1p .
á
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2 A User’s Manual for the Green’s Package

In  the  previous chapter  we  have  presented the  mathematical background of  our  new approach to
solving  regular  BVPs  for  linear  differential  operators  with  constant  coefficients.  In  the  course  of
our  PhD  work,  we  have  also  implemented  this  method  in  the  frame  of  the  Theorema  system,
providing  a  collection  of  useful  solving/computing  tools  that  we  have  named  the  Green’s  suite.
Everything is integrated smoothly into the general environment of Theorema, and the end user may
solve a given BVP in a single call (see Section 5 of Chapter 1). In the present chapter, we want to
present  this  suite  of  packages  from  the  user’s  point  of  view;  for  implementation details,  see  the
Chapter 3.

The structure  of this chapter follows that of the Green’s suite itself: In Section 1,  we start out
by a gentle introduction to the most important features of Theorema, as far as they are relevant to
our present purposes. The discussion of the actual Green’s suite is started in Section 2,  where we
present  the  overall  architecture  of  the  system.  The  remaining  sections  describe  the  three  main
components  of  the  Green’s  suite:  the  polynomial  reductor  in  Section 3,  the  matrix  evaluator  in
Section 4, and finally the Green’s evaluator in Section 5.

2.1 The Theorema Environment

As  mentioned  before,  we  have  based  our  implementation  on  Theorema,  which  is  designed  a
general|purpose  tool  for  the  working  mathematician~supporting especially  all  tasks  of  proving,
solving and simplifying. For a detailed description of the philosophy and capabilities of Theorema,
we  refer  to  [19]  and  [69].  For  our  present  purposes,  it  will  be  sufficient  to  highlight  only  those
features of the system that are relevant for a user who wants to solve BVPs by the Green’s suite.

First of all, the user has to start up Mathematica,  the (current) platform running the Theorema
environment and the Green’s suite. The latter two are then invoked through the following calls:

Needs@"Theorema‘"D
Needs@"Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘"D

As soon as loading is finished, the user will notice that the usual prompt "In[2]:=" is replaced
by "TS_In[2]:=", where "TS" stands for "Theorema Standard|Session". This means that all input is
interpreted as in plain Mathematica, only that certain additional commands are available. In particu
lar, there are three high|level commands "Prove", "Compute" and "Solve" for assisting in the three
main activities of mathematics. (In fact, the last of these is not yet supported in the current version
of Theorema.)

For example (this material is taken from the online documentation of the NNEqIndProver  of
Theorema),  if one wants to prove the exponential law for natural numbers, one must first specify
this  fact  as  a  Theorema  formula.  This  is  done  by  entering  an  expression  of  the  form
key@label, any@x1 , ¼, xnD, formulaD ,  where  key  is  an  environment  keyword,  label  a  string used
for referencing the formula, the x1 , ¼, xn  are free variables, and finally formula is of course the
actual mathematical statement written in a very natural version of predicate logic. In our case, we
would say:

Proposition@"Add Exponents", any@p, n, mD,
mn+p = mn  mp D
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Here we have used "Proposition" as the environment keyword. This corresponds to a common
practice  in  mathematical  textbooks:  The  running  text  of  informal  explanations  is  typically  inter
rupted  by  some  formal  text  written  as  "Proposition:  ¼"  or  similarly.  Other  possibilities  for  the
environment keyword can be found out as follows:

$TmaEnvironmentPatterns

Definition ÈDefinitions È Theorem È Theorems È Lemma È Lemmata ÈAxiom ÈAxioms ÈCorollary È
Corollaries È Proposition È Propositions È Theory È Theories ÈKnowledgeBase ÈKnowledgeBases È
Algorithm ÈAlgorithms ÈAssumption ÈAssumptions È Formula È Formulae È System È Systems

There  is  no  logical  difference between  these  keywords;  they  are  only  provided  for  reasons  of
style.  Note  that,  on  this  level,  not  even  "Axiom"  is  logically distinguished from "Theorem"  and
analogous  names  for  mathematical  statements.  The  reason  is  that  a  formula  may  well  serve  as  a
definition at one time although it is proved as a normal mathematical theorem at some other time;
the axioms of the real numbers are an example, because they may be proved if one selects a spe
cific  construction  like  Dedekind  cuts  for  them.  Similar  remarks  hold  true  for  the  environment
"Definition". The actual role of a formula is specified in the proof call~whether it is to be proved
or to be used as an assumption.

The above proposition has the label "Add Exponents". Just as the environment label, there is no
logical significance to such labels. They are merely used for referring to formulae. For example, in
a  proof,  a  certain  step  may  be  justified  by  saying:  Using  (Proposition  (Add  Exponents)),  this
implies¼  In  fact,  the  environment  keyword  and  the  environment  label  may  be  thought  of  as
making up a compound label; in our example, this is just (Proposition (Add Exponents)).

The free variables are p, n, m  in the sample proposition considered above. Logically, they are
universally  quantified  (this  corresponds  to  the  common  practice  in  logic  of  taking  the  universal
closure of formulae with free variables). Hence one may specify the same mathematical statement
by the following equivalent characterization:

PropositionA"Add Exponents",

"
p,n,m

mn+p = mn  mp E
Here we have no free variables, but the formula contains a corresponding universal quantifier.

So the difference between these two versions is again just a question of style, similar to mathemati
cal textbooks. One may either say

(1) Now for any p, n, m , we have

mn+p = mn  mp .

Or one says the following:

(2) Now we have

"
p,n,m

mn+p = mn  mp .
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These issues are irrelevant on the logical level of theorems, but they are crucial for their natural
presentation. For example, it is usually considered better style to avoid universal quantifiers when
their scope is the whole formula, thus preferring version (1) over version (2) above.

Having specified the proof goal, one must also provide the relevant knowledge base to be used
in the proof. Obviously, this must include the definition of exponentiation itself. In our case, it is
this:

DefinitionA"Exponentiation", any@m, nD,
m0 := 0+ "exp 0"

mn+
:= mn m "exp ."

E
Note that we have added the formula labels here, namely "exp 0" and "exp ." in addition to the

overall environment label "Exponentiation". This is useful for referring to the first or second clause
on an individual basis, thus giving rise to a hierarchic compound label consisting of three compo
nents~the  environment  keyword,  the  environment  label,  the  formula  label.  For  example,  the

formula m0 := 0+  would be referenced by (Definition (Exponentiation: exp 0)).
The usage of the ":=" sign instead of the normal "=" sign is a message on the meta level, signify

ing definitional equalities. This can be used as a hint for some provers, because definitions~unlike
other  equalities~are  often  used  only  from  left  to  right.  From  the  logical  viewpoint,  a = b  is  of
course the same as a := b .

Now one could add the definitions of addition and multiplication (which are used in exponentia
tion) in an analogous manner. In Theorema, however, we consider it more appropriate to build up
mathematical theories in a layered approach; see [18] for a detailed account. Hence we prove some
crucial properties of addition and multiplication beforehand, and we collect them all in an appropri
ate knowledge base:

TheoryA"Properties of +, *",

Definition@"Multiplication"D
Proposition@"Multiplication from Left"D
Proposition@"Left Distributivity"D
Proposition@"Right Distributivity"D
Proposition@"Multiplication of One from Left"D
Proposition@"Multiplication of One from Right"D
Proposition@"Multiplication of Zero from Left"D
Theory@"Addition"D

E

The  construct  Theory  is  used  here  for  aggregating formulae into  a  common pool.  It  contains
the definition of multiplication:

DefinitionA"Multiplication", any@m, nD,
m * 0 = 0 " *0"

m * n+ = Hm * nL+ m " * ^+"
E

Then  we  have  included  six  crucial  properties  of  multiplication,  contained  in  the  following
propositions:

Proposition@"Multiplication from Left", any@m, nD,
m+ * n = Hm * nL+ nD

Proposition@"Left Distributivity", any@m, n, pD,
m * Hn + pL = m * n + m * pD
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Proposition@"Right Distributivity", any@m, n, pD,Hm + nL * p = m * p + n * pD
Proposition@"Multiplication of One from Left", any@mD,

0+ * m = mD
Proposition@"Multiplication of One from Right", any@mD,

m * 0+ = mD
Proposition@"Multiplication of Zero from Left", any@nD,

0 * n = 0D
Finally,  we  have  added  the  whole  theory  of  addition,  which  comes  from  an  even  earlier

"exploration layer".  It  is  again  made  up  of  a  definition and  two propositions,  thus  demonstrating
the nesting capability of the Theory construct:

TheoryA"Addition",

Definition@"Addition"D
Proposition@"Addition of Zero from Left"D
Proposition@"Addition from Left"D

E

This is the definition of addition:

DefinitionA"Addition", any@m, nD,
m + 0 = m " +0"

m + n+ = Hm + nL+ " + succ"
E

And here are the two propositions added to it for making up the theory of addition:

Proposition@"Addition of Zero from Left", any@nD,
0 + n = n "0 + "D

Proposition@"Addition from Left", any@m, nD,
m+ + n = Hm + nL+ D

Besides this knowledge, there are four additional properties that are so crucial that one wants to
treat  them in  a  special  way:  associativity and  commutativity of  both  addition  and  multiplication.
The reason is that it would be extremely tedious to mention each use of these properties explicitly
(although  it  is  of  course  possible),  and  using  them  without  explicit  reference  allows  a  highly
efficient implementation via controlled delegation to Mathematica. We can specify such a property
of an operation ë  in Theorema by the following item:

Property@ë ® 8Associative, Commutative<D
Of course, one may leave out either of the properties "Associative" or "Commutative" if this is

desired.  The  important  point  is  that  one  has  to  add  these  items  to  the  implicit  knowledge  base,
which is  specified via  the  option built|in  of  the  Prove  command.  All  the  other  knowledge gath
ered  above  would  of  course  go  into  the  explicit  knowledge  base,  specified by  the  corresponding
option using. Hence we will have to use the options

using ® 8Definition@"Exponentiation"D, Theory@"Properties of +, *"D<
and

built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<
for specifying all the relevant knowledge.

Now we have  specified all  the  logical  ingredients for  the  proof  task:  the goal  formula and all
the assumptions that  may be used.  The next  thing to fix is  the special prover  to  be  applied. This
leads us  to  another  major design feature of  Theorema.  Unlike other  proving communities, we do
not believe in a monolithic prover that takes care of the whole of mathematics. In our opinion, such
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not believe in a monolithic prover that takes care of the whole of mathematics. In our opinion, such
a prover would not be a reasonable goal: Just compare the notion of such a universal prover to a
universal solver for all of mathematics~taking care of linear equation systems, partial differential
equations,  combinatory  logic,  ¼  at  the  same  time.  Nobody  would  consider  it  realistic  to  design
such a universal solver. So why should one aspire to have an analogous thing for proving, which is
even more complex than solving? (Note that one can regard solving as the special case of construc
tively proving formulae having the form $x Sx = Tx , where x  is one or more variables and Tx , Sx

are terms normally containing some of the variables x .)
Hence  there  is  no  such  thing  as  "the  Theorema  prover".  Every  mathematical  domain  comes

with its own natural provers that are special to this domain (which is usually characterized through
a set of axioms). Of course, one may also consider the absolutely general domain (characterized by
the empty set of axioms), which is covered in Theorema by the PredicateProver. However, we do
not give particular preference to any domain of mathematics, thus putting the predicate prover on
an equal basis with, say, the prover for natural numbers called NNEqIndProver. And the latter is
exactly what we need for our problem, hence we have to say by ® NNEqIndProver, where by is
the option used for selecting the special prover. The crucial point about this prover is of course that
it assumes the inductive domain of natural numbers~thus presupposing the corresponding induc
tion axioms, which are used in the from of suitable inference rules.

Each  special  prover  accepts  a  certain number  of  options  for  controlling its  behavior;  they  are
specified by the option ProverOptions given to the Prove command. For seeing which options are
supported by NNEqIndProver and which default values are used, we can issue the following call:

Options@NNEqIndProverD
8ConstOrder ® 88SuperPlus, +, *<<, NNRepr ® Nondecimal,

SpecialSimplification ® True, TermOrder ® RPLexOrder<
Here  we  can  see  that  the  order  of  the  constant  symbols  can  be  specified,  and  the  setting  is

already close to what we need: In the goal formula and the assumptions, the only function symbols
besides =  and :=  is SuperPlus (the successor function, signified by a superscript plus symbol, e.g.
in  m+ ),  + ,  * ,  and  Power  (the  exponentiation function,  signified by  all  other  superscripts,  e.g.  in
mn ). Hence we will simply append the Power function to the default list given above.

The other options may be left on their default values: The option NNRepr controls the represen
tation of natural numbers; for example, 3  is represented as 0+++  with the default setting "Nondeci
mal" and as 0 + 1 + 1 + 1  if the setting is changed to "Decimal". Activating the option SpecialSim
plification  allows  the  prover  to  contract  several  simplifications  into  one  step,  thus  making  the
proof much more compact; the option is activated by default. Finally, the option TermOrder is a
kind  of  strategy  used  in  equational  proving,  which  usually  need  not  be  changed  from its  default
value.

Actually, all this information is also available online if one asks for it in the usual Mathematica
way:

?? ConstOrder

´ Option that specifies the order of the constants in the rewrite process.

?? NNRepr

´
Option for the NIP prover, to be used in a Prove call, that specifies which

inductive representation to use for natural numbers. If ‘Nondecimal‘, they are
constructed from 0 and SuperPlus, if ‘Decimal‘ they are constructed from 0 and +1.

?? SpecialSimplification

´
Option for simplification: if True, then it performs

in one step simplification with respect to built-in knowledge.
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Finally, we will provide some specification about the proof presentation. By default, the prover
shows everything that it did, including also failed proof attempts. This may be very interesting for
intermediate analysis, but usually one wants to see a polished proof in the end. In Theorema,  this
can  be  accomplished  by  using  proof  simplification.  The  corresponding  option  is  transformBy,
which  specifies  the  proof  transformer to  be  used  as  a  postprocessor  to  the  prover.  Besides  proof
simplification,  this  could  also  be  e.g.  a  failure  analyzer  or  a  conjecture  generator.  In  our  case,
however, all we want to have is plain proof simplification, so we use the standard transformer for
this purpose, called ProofSimplifier. It accepts some options controlling the kind of simplification
one desires. For seeing the possibilities, we can say this:

Options@ProofSimplifierD
8branches ® All, steps ® All, substitutions ® All<

The option branches  specifies which branches of the proof tree one wants to see. The default
setting is to show everything, including the failed branches. We want to see only the proved ones,
which  can  be  accomplished  by  setting  this  option  to  the  value  "Proved"  (one  can  also  set  it  to
"Disproved" if the prover is used for refuting formulae, and one can even set it to "Failed" if one
wants  to  analyze just  the failed proof attempts). The option steps  could be employed for  making
the proof output more compact by condensing certain combinations of proof steps (see the Theo
rema  documentation  for  details,  e.g.  by  saying  "??  Essential",  "??  Combined",  "??  Useful",  "??
Lifted",  "??  LiftedParallel" as  to  be  expected  from the  output  below);  we  will  not  make  use  this
possibility. Finally, the option substitutions can be used for restricting the substitutions generated
by certain provers to the "Useful" ones; this is not needed in our case. Again, one can get all the
essential information in the following online documentation:

?? branches

´
Option of ProofSimplifier with possible values: Proved, Pending,

Failed, Disproved and list combinations of these. All HdefaultL means list of all.

?? steps

´
Option of ProofSimplifier with possible values: All, Essential,

Combined, Useful, Lifted, LiftedParallel and list combinations of these.

?? substitutions

´ Option of ProofSimplifier with possible values: All, Useful.

Now we have all the relevant data for issuing the prove call necessary in our example:

Prove@Proposition@"Add Exponents"D,
using ® 8Definition@"Exponentiation"D, Theory@"Properties of +, *"D<,
built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<,
by ® NNEqIndProver, ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

What  we  get  is  the  following  induction  proof  of  the  goal  formula  (note  that  everything  is
produced completely automatically up to the á symbol!):

We prove (Proposition (Add Exponents)) by induction on p .

Induction Base: 

(1) "
n,m
Hmn+0 = mn  m0 L .

We take in (1) all variables arbitrary but fixed and prove:
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(4) m1
n1 +0 = m1

n1  m1
0 .

A proof by simplification of (4) works.

Simplification of the lhs term:

m1
n1 +0  = by (Definition (Addition):  +0)

m1
n1 t

Simplification of the rhs term:

m1
n1  m1

0  = by (Definition (Exponentiation): exp 0)

m1
n1  0+  = by (Definition (Multiplication):  * ^+)

m1
n1  0 + m1

n1  = by (Definition (Multiplication):  *0)

0 + m1
n1  = by (Special Simpl)

m1
n1 + 0  = by (Definition (Addition):  +0)

m1
n1 t

Induction Step:

Induction Hypothesis:

(2) "
n,m
Hmn+ p1 = mn  mp1 L

Induction Conclusion:

(3) "
n,m
Hmn+ p1

+
= mn  mp1

+ L .
We take in (3) all variables arbitrary but fixed and prove:

(5) m2
n2 + p1

+
= m2

n2  m2
p1

+
.

A proof by simplification of (5) works.

Simplification of the lhs term:

m2
n2 + p1

+
 = by (Definition (Addition):  + succ)

m2
Hn2 + p1 L+  = by (Definition (Exponentiation): exp .)

m2
n2 + p1  m2  = by (2)

Hm2
n2  m2

p1 L m2  = by (Special Simpl )

m2  Hm2
n2  m2

p1 Lt
Simplification of the rhs term:

m2
n2  m2

p1
+

 = by (Definition (Exponentiation): exp .)

m2
n2  Hm2

p1  m2 L  = by (Special Simpl )

m2  Hm2
n2  m2

p1 Lt
á
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Of course,  the  prover did not  use  all  the available knowledge;  in  fact,  we have only used the
definitions and some special simplification. This is very similar to the situation of human proving:
In  a  typical  situation,  we  do  not  know in  advance  which  formulae  will  ultimately turn  out  to  be
necessary. (Of course, we could make the work of the prover easier by preselecting those formulae
that will actually be used for the proof.)

Using  the  proposition  just  proved,  we  could  now  go  on  proving  another  proposition  about
exponentiation, thus continuing this exploration layer. For example, it is very natural to ask about
the products of powers with the same exponents:

Proposition@"Multiply Terms with Same Exponents", any@n, p, mD,
mn * pn = Hm * pLn D

Prove@Proposition@"Multiply Terms with Same Exponents"D,
using ® 8Proposition@"Add Exponents"D, Definition@"Exponentiation"D, Theory@"Properties of +, *"D<,
built|in ® 8Property@+ ® 8Associative, Commutative<D, Property@* ® 8Associative, Commutative<D<,
by ® NNEqIndProver, ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

This  produces  a  fairly  similar  induction  proof,  again  using  only  the  definitions (in  particular,
not using the proposition proved just before).

We prove (Proposition (Multiply Terms with Same Exponents)) by induction on n .

Induction Base: 

(1) "
p,m
Hm0  p0 = Hm pL0 L .

We take in (1) all variables arbitrary but fixed and prove:

(4) m1
0  p1

0 = Hm1  p1 L0 .

A proof by simplification of (4) works.

Simplification of the lhs term:

m1
0  p1

0  = by (Definition (Exponentiation): exp 0)

0+  p1
0  = by (Definition (Exponentiation): exp 0)

0+  0+  = by (Definition (Multiplication):  * ^+)

0+  0 + 0+  = by (Definition (Multiplication):  *0)

0 + 0+  = by (Special Simpl)

0+ + 0  = by (Definition (Addition):  +0)

0+ t
Simplification of the rhs term:

Hm1  p1 L0  = by (Definition (Exponentiation): exp 0)

0+ t
Induction Step:
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Induction Hypothesis:

(2) "
p,m
Hmn1  pn1 = Hm pLn1 L

Induction Conclusion:

(3) "
p,m
Imn1

+
 pn1

+
= Hm pLn1

+ M .
We take in (3) all variables arbitrary but fixed and prove:

(5) m2
n1

+
 p2

n1
+

= Hm2  p2 Ln1
+

.

A proof by simplification of (5) works.

Simplification of the lhs term:

m2
n1

+
 p2

n1
+

 = by (Definition (Exponentiation): exp .)

Hm2
n1  m2 L p2

n1
+

 = by (Definition (Exponentiation): exp .)

Hm2
n1  m2 L Hp2

n1  p2 L  = by (Special Simpl )

m2  Hp2  Hm2
n1  p2

n1 LLt
Simplification of the rhs term:

Hm2  p2 Ln1
+

 = by (Definition (Exponentiation): exp .)

Hm2  p2 Ln1  Hm2  p2 L  = by (2)

Hm2
n1  p2

n1 L Hm2  p2 L  = by (Special Simpl )

m2  Hp2  Hm2
n1  p2

n1 LLt
á

Finally, let us do one more proof in this exploration layer of exponentation. 

Proposition@"Multiply Exponents", any@n, p, mD,
mn*p = Hmn Lp D

Prove@Proposition@"Multiply Exponents"D,
using ® 8

Proposition@"Add Exponents"D,
Proposition@"Multiply Terms with Same Exponents"D,
Definition@"Exponentiation"D,
Theory@"Properties of +, *"D<,

by ® NNEqIndProver , ProverOptions ® 8ConstOrder ® 88SuperPlus, +, * , Power<<<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® Proved<D

� ProofObject �

This produces the following induction proof:

We prove (Proposition (Multiply Exponents)) by induction on n .

Induction Base: 

(1) "
p,m
Hm0 p = Hm0 Lp L .

We take in (1) all variables arbitrary but fixed:

(4) m1
0 p1 = Hm1

0 Lp1
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and simplify it.

Simplification of the lhs term:

m1
0 p1  = by (Proposition (Multiplication of Zero from Left))

m1
0  = by (Definition (Exponentiation): exp 0)

0+ t
Simplification of the rhs term:

Hm1
0 Lp1  = by (Definition (Exponentiation): exp 0)

H0+ Lp1 t
Hence, it is sufficient to prove:

(5) "
p
H0+ = H0+ Lp L .

We prove (5) by induction on p .

Induction Base: 

(6) 0+ = H0+ L0 .

A proof by simplification of (6) works.

Simplification of the lhs term:

0+ t
Simplification of the rhs term:

H0+ L0  = by (Definition (Exponentiation): exp 0)

0+ t
Induction Step:

Induction Hypothesis:

(7) 0+ = H0+ Lp2

Induction Conclusion:

(8) 0+ = H0+ Lp2
+

.

A proof by simplification of (8) works.

Simplification of the lhs term:

0+ t
Simplification of the rhs term:

H0+ Lp2
+

 = by (Definition (Exponentiation): exp .)

H0+ Lp2  0+  = by (7)

0+  0+  = by (Definition (Multiplication):  * ^+)
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0+  0 + 0+  = by (Definition (Multiplication):  *0)

0 + 0+  = by (Definition (Addition):  + succ)

H0 + 0L+  = by (Definition (Addition):  +0)

0+ t
Induction Step:

Induction Hypothesis:

(2) "
p,m
Hmn1  p = Hmn1 Lp L

Induction Conclusion:

(3) "
p,m
Imn1

+  p = Hmn1
+ Lp M .

We take in (3) all variables arbitrary but fixed and prove:

(9) m2
n1

+  p3 = Hm2
n1

+ Lp3 .

A proof by simplification of (9) works.

Simplification of the lhs term:

m2
n1

+  p3  = by (Proposition (Multiplication from Left))

m2
n1  p3 + p3  = by (Proposition (Add Exponents))

m2
n1  p3  m2

p3 t
Simplification of the rhs term:

Hm2
n1

+ Lp3  = by (Definition (Exponentiation): exp .)

Hm2
n1  m2 Lp3  = by (Proposition (Multiply Terms with Same Exponents))

Hm2
n1 Lp3  m2

p3  = by (2)

m2
n1  p3  m2

p3 t
á

This time we used some explicit non|definitional knowledge: The proposition about multiplying
with zero from the left,  and the proposition about  the product of  powers with the same exponent
proved in the beginning. Note, however, that we have not put any a|priori information about this to
the prover~it got the full knowledge base just as in the other two prove calls, containing numerous
other assumptions that turned out to be unnecessary for this particular proof.

Analyzing the internal setup of the prover NNEqIndProver,  we can see that it  actually could
use three different "types of reasoning":

è Some custom|tailored inference rules  for  the  special  predicate  = ,  called  rewrite  rules.  In
particular, the proof of a formula S = T  is accomplished by transforming both S  and T  to
their  normal  form  and  then  checking  whether  these  coincide.  The  transformations  to
normal form are announced by the words "Simplification of the lhs/rhs term" in the above
proofs. They make implicit use of the symmetry and replacement axioms for equality.
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è The usual inference rules of predicate logic, which are valid in any domain, not only in the
realm of  natural  numbers.  Hence  the  above|mentioned universal  proof  engine Predicate
Prover  consists  of  only  this  basic  prover.  These  rules  were  unnecessary  in  the  above
proofs. In fact, we would have to use the prover NNIndProver if we needed them as well.

è Finally, the decisive inference rule used in all three proofs above is induction: For proving
a goal of the form "n Fn , where Fn  is a formula typically containing a free occurrence of
the  variable  n ,  it  suffices  to  prove  Fn¬0  and  to  prove  Fn¬m+  under  the  assumption  of
Fn¬m , where m  is an arbitrary but fixed natural number.

In  order  to  make  things  a  bit  more  general,  let  us  now  analyze  the  internal  structure  of  the
prover NNIndProver  rather than the prover NNEqIndProver  used for  the proofs above.  As just
explained, it is composed of three sets of reasoning rules~rewrite logic, predicate logic, induction.
In Theorema, this is realized by composing the so|called user prover NNIndProver from the three
corresponding blocks, called basic provers.  The basic prover of rewrite logic is called Simplifier,
the natural|numbers induction prover is called NIP, and the predicate|logic prover using a kind of
natural  deduction  calculus  is  called  PND.  This  could  be  seen  in  the  implementation  of  the  user
prover NNIndProver, which contains the following crucial command:

AddConstraints@·nonExclusive@True, SimplifierD,
·nonExclusive@True, NIPD,
·nonExclusive@True, PNDDD

This  command joins  the  three basic  provers  to  make up  the  corresponding user  prover.  How
ever, we will not enter into any implementation issues here, since we just want to provide a rough
overview of the general Theorema environment. We have only mentioned it here, because we will
encounter an analogous structure in the Green’s evaluator to be described in the next section.

In  fact,  recent  discussions  within  the  Theorema  group  drive  towards  a  prover  setup  that  will
allow an  even  greater  level  of  flexibility,  changing  between  proving  /  solving  /  computing  situa
tions on a per|rule basis. As these discussions are still under way and the current Theorema system
has the setup of user provers and basic provers as described above, we have built the Green’s suite
along  these  lines  of  the  user  reasoner  /  basic  reasoner  setup.  (The  notion  of  reasoning  subsumes
proving, solving, computing~the three fundamental activities of mathematics.)

2.2 The Overall Design of the Green’s Suite

We have organized the Green’s suite as a one user evaluator named GreenEvaluator  appeal
ing  to  three  basic  evaluators  named  ReduceNoncommutativePolynomial,  EvaluateMatrices,
EvaluateStandard~just like the user prover NNIndProver is made up of the three basic provers
Simplifier,  NIP,  PND.  Let  us  briefly describe the  three basic  evaluators involved in the Green’s
suite:

è The basic evaluator ReduceNoncommutativePolynomial is used for reducing a noncom
mutative polynomial to its normal form with respect to a given system of noncommutative
polynomial  equalities.  For  example,  reducing  A D - D A  with  respect  to  the  equalities
A D = 1, D A = 1 - L  would yield the result 2 - L .

è The  most  important  matrix  operations  like  addition,  multiplication  and  inversion  are
carried out by the basic evaluator EvaluateMatrices.
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è Unlike  the  other  two  basic  evaluators,  EvaluateStandard  is  already  provided  by  the
standard Theorema environment (hence one can find its description in the online documen
tation so  that  we  will  not  describe  it  here).  Its  main purpose  is  unfolding definitions.  For
example, it  will unfold the term 1 + Dì  into 1 + A ,  using the definition of H¼Lì  as right
inversion; see Input 41 of Chapter 1.

We will describe the two basic evaluators ReduceNoncommutativePolynomial and Evaluate
Matrices  in  the  next  two  sections  from  a  generic  point  of  view,  meaning  that  we  will  not  yet
consider the  particular purpose we have  in  mind when using them for  solving BVPs.  In fact,  the
idea  of  basic  evaluator  is  to  be  an  independent  unit  of  reasoning  that  provides  custom|tailored
evaluation  for  certain  specific  domains~in  this  case,  polynomials  and  matrices  (whereas  the
evaluator EvaluateStandard works for the general domain just like the predicate prover PND for
proof tasks in the general domain).

Having  these  general  components  (as  well  as  many  other  basic  provers  and  evaluators  and
solvers), one can imagine constructing a lot of custom|tailored methods by specializing them to the
particular  problem one  has  in  mind~each  specialization corresponding  to  a  user  provers,  a  user
evaluator or a user solver. The GreenEvaluator  is but one of them, and we will describe its spe
cific structure in the last section.

The GreenEvaluator is the first example of such a user evaluator, constructed in parallel to the
notion of user provers. Hence it will not come as a surprise that there a number of issues that have
not yet been straightened out completely. Let us mention the most important ones.

What proof objects are to proving, trace objects are to computing: A record containing all the
relevant information about how and why a certain step was done. But whereas there is a clear and
stabilized  structure  for  proof  objects  in  Theorema,  this  is  not  yet  the  case  for  trace  objects.  For
example, there is no meta|evaluator that would take care of assembling trace objects from various
basic evaluators just as the meta|prover does for proof objects coming from various basic provers.
While we do provide tracing for the basic evaluator ReduceNoncommutativePolynomial (which
will be described below) and the standard Theorema system does it for the basic evaluator Evalu
ateStandard, we do not yet have tracing support for the basic evaluator EvaluateMatrices. Hence
there is also no trace for the overall computing procedure effected by the user evaluator GreenEval
uator.

For practical purposes, it is very important to have an intuitive and natural notation for the key
concepts used. As this is also an important guideline for the Theorema  framework in general, we
have tried to pay close attention to this issue. The reader may convince herself in the subsequent
sections that she does not have to use ugly|looking or even ASCII syntax for input and output. We
have  accomplished  this  via  the  usual  mechanism  of  MakeExpression  and  MakeBoxes  as  it  is
provided by Mathematica and extensively used in the whole of Theorema. However, we have not
yet constructed a uniform and user|transparent framework for handling notation in Theorema. This
means  that  as  soon  as  a  certain  prover  or  evaluator  is  loaded,  one  "buys"  all  the  notation it  pro
vides,  and there is  no way to undo this (except reloading Theorema  of  course).  For example, the

notation à + b
`
 denotes matrix addition as soon as EvaluateMatrices is loaded.

In  relation  with  the  basic  evaluator  ReduceNoncommutativePolynomial,  there  is  also  a
relevant prover for establishing the confluence of certain polynomial rewrite systems. We have also
implemented some ad|hoc functions doing  this  job,  and  we  have  used  this  in  Computation 29  of
Chapter 1  (reducing  233  S|polynomials  by  hand  would  really  not  be  fun  at  all).  However,  this
prover is not yet integrated in the usual framework of Theorema provers, so we will not describe it
in detail here. We will rather regard it as a convenient "tool for proving confluence", and as such
we will describe it briefly in Section 3.

The  user  evaluator  named  GreenEvaluator  is  actually  a  prime  example  of  where  we  would
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The  user  evaluator  named  GreenEvaluator  is  actually  a  prime  example  of  where  we  would
like  to  apply  the  flexible  concept  of  rule|based  integration  for  proving  /  solving  /  computing
situations briefly mentioned at the close of Section 1. As stated at the outset of this thesis, our main
concern is to solve(!) BVPs. But still our main tool for doing this is the evaluator(!) named Green
Evaluator.  The  reason  for  this  is  of  course  that  we  reduce  the  problem  of  solving(!)  a  certain
equation for a function to computing(!) a related operator for this problem (here "computing" and
"evaluating" may be regarded as  synonymous~see the discussion at  the beginning of  Section 3);
see the motivation given in Section 1 of Chapter 1. Still it would be very natural to add one more
reasoning rule that expresses just this transition of the solve situation to the corresponding compute
situation such that one could issue a call like

Solve@u’’ = f ß u@0D = 0 ß u@1D = 0,
for@uD, given@ f D, by ® GreenSolverD

rather than the corresponding call

Compute@Green@D2 , XL, R\D,
by ® GreenEvaluatorD

to be used now (see the Section 5 for a detailed description of what the call above means).
Finally, let us make one linguistic remark: We have called the basic evaluator for noncommuta

tive polynomials by the name ReduceNoncommutativePolynomial rather than EvaluateNoncom
mutativePolynomial  for  the  following  reason:  Although  we  could  identify  the  terms  "reduce",
"evaluate",  "simplify",  "transform",  "normalize",  and  "compute"  as  synonymous  on  logical
grounds  (meaning  nothing  else  than  applying  rewrite  rules  until  they  are  saturated),  one  can
observe certain usage distinctions in common language:

è For  polynomials,  evaluation  is  already  preoccupied  for  the  evaluation  homomorphism

carrying e.g. eval@x2 + 3, 2D  to 7; this is why we have avoided it in the name for our basic
evaluator. In a more general sense, evaluation is usually associated with unfolding defini
tions. Therefore it is an appropriate name for EvaluateStandard as well as EvaluateMatri
ces.

è The  term computing  is  the  most  general  in  our  opinion.  Some people  would  restrict  it  to
ground  terms,  because  this  is  a  very  typical  usage  of  this  word,  e.g.  when  one  says  that
computing 3 + 7 gives 10. However, we think that it is also often applied in a more compre
hensive sense,  e.g.  in the phrases "symbolic computation" or "computing all the solutions
of a given differential equation".

è If  one  uses  the  term  simplifying,  the  emphasis  is  obviously  on  making  the  given  term
simpler.  This  may  be  so  with  respect  to  some  (maybe  implicit)  term  ordering  or  in  the
sense  of  canonicality  (a  canonical  form is  in  a  sense  always  the  simplest  form possible).
Hence  it  does  not  really  cover  the  more  general  case  of  applying  an  arbitrary  system of
rewrite  rules,  since  such  a  system  may  neither  be  orientable  with  respect  to  some  term
ordering nor admit canonical forms.

è The term transformation denotes a very general concept that may apply to all of reasoning,
including transitions between proving /  solving /  computing situations. However,  we will
use this term below only for a slight generalization that subsumes what we call normaliza
tion and reduction of polynomials.

è Somewhat  more  precise,  the  term  normalizing  refers  explicitly  to  obtaining  the  normal
form  (which  may  or  may  not  be  the  canonical  form,  depending  on  whether  the  rewrite
system is confluent). In principle, we could use this term, because the results we obtain are

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

69



system is confluent). In principle, we could use this term, because the results we obtain are
indeed  normal  forms  of  the  rewrite  system  induced  by  the  polynomial  axioms  and  the
given  polynomial  equalities.  However,  this  could  be  misleading,  because  normalizing  a
polynomial usually refers to the much narrower process of just expanding the polynomial
according to the polynomial axioms.

è Finally,  there  is  the  term reducing.  Although it  does  suggest  decreasing some(!)  measure
similar  to  the  term  "simplifying",  where  this  measure  is  obviously  the  complexity  (thus
increasing  the  simplicity),  its  scope  is  usually  much  wider:  Any(!)  application  of  rewrite
rules can be considered as a reduction, namely regarding the number of redexes. This is in
fact the usual term (more precisely, it is Β|reduction) used in lambda calculus, which is in
a  sense the  general  theory of  rewriting. Hence we can also apply it  to  the rewrite system
that  is  generated  by  the  given  polynomial  equalities~based  on  the  usual  polynomial
axioms. (Note that we have avoided the term "rewriting" itself because it is too technical,
although one could regard it as synonymous to "reducing".)

2.3 The Reductor for Noncommutative Polynomials

The basic evaluator ReduceNoncommutativePolynomial is a general|purpose tool for reducing a
noncommutative polynomial  to  its  normal form with respect to  some given system of polynomial
equalities. It operates on R XX È X Î X\ , where X  is some set of indeterminates that must be speci
fied and R  is some ring containing C . (Typically one deals with rings of complex functions, where
the complex numbers are naturally embedded as constant functions.)

Using the approach outlined in Section 4  of  the Appendix,  it  applies two kinds of  polynomial
transformations:

è Those  following  certain  polynomial  axioms  like  XHY + ZL® X Y + X Z ,  which  we  will
subsume under the heading polynomial normalization.

è Those  using  a  certain  polynomial  equality  from  the  given  system  like  X Y = Y + Z  for
obtaining  X Y + X Z ® HY + ZL + X Z .  We  will  call  this  process  polynomial  reduction.
Obviously these are the core steps for a  transformation chain; the interspersed normaliza
tion steps should rather be regarded as "low|level" computations getting the data structures
straight. Hence the name ReduceNoncommutativePolynomial.

Let us now see how this looks like in Theorema. Assuming the Green’s suite is already loaded
as explained above,  we set  the evaluator ReduceNoncommutativePolynomial  as  the default one
so that we do not have to mention it explicitly all the time. Besides this, we must also deactivate
the option UseFlattenedDefaults,  which is  activated by default; see the online help listed above.
(The reason is that whereas it is usually preferable to transform equalities into Mathematica rewrite
rules once and for all  at  the beginning of a computation, we cannot do this now because polyno
mial equalities have to be treated in a specialized way.)

SetOptions@Compute, by ® ReduceNoncommutativePolynomial, UseFlattenedDefaults ® FalseD;
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?? UseFlattenedDefaults

´

An option for ‘Compute‘. ‘True‘ means that the flattened default knowledge bases are joined to the
respective lists of transformation rules that are obtained from the knowledge bases given
in the options ‘using®‘ and ‘built|in®‘. ‘False‘ means that the default knowledge bases in
their original structure as environments are adjoined to the given knowledge bases and
are then flattened. It may lead to unexpected results if the default evaluator is changed
between the moment you specify default knowledge and the moment you call ‘Compute‘.

We  will  start  with  some  trivial  examples  involving  only  normalization in  C XX, Y, Z\ .  So  for
the moment let us fix X, Y, Z  as the indeterminates. And let us produce no tracing information as
there is nothing essential to show without proper reductions. We do this by setting the correspond
ing options of the basic evaluator:

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8X, Y , Z<, inNotebook ® "None"D;

So here are some examples involving only normalization:

Compute@X HY + ZLD
X Y + X Z

Compute@HX + YL HY + ZL HZ + XL- X Y ZD
X Y  X + X Z2 + X Z X + Y2  Z + Y2  X + Y  Z2 + Y  Z X

Compute@HX - Y - 1L HX + Y - 1LD
1 - 2 X + X2 + X Y - Y  X - Y2

Note the lack of commutation in the previous example~in commutative polynomials, the terms
X Y  and -Y X  would cancel. And this is indeed the case if we use identifiers that are not declared
as indeterminates (as X, Y, Z  are), because the default assumption is that any identifiers like A, B
represent unknown complex numbers:

Compute@HA - B - 1L HA + B - 1LD
1 - 2 A + A2 - B2

Now let us construct a small system of polynomial equalities:

SystemA"Test Equalities",

X Y = Y + Z "1"

Y Z = Z + X "2"

Z X = X + Y "3"

E
We can use this system for reducing polynomials:

Compute@X Y Z X,
using ® System@"Test Equalities"DD

2 X + 2 Y + X2 + Z Y

Compute@X2 Y2 Z2 ,
using ® System@"Test Equalities"DD

2 X + 2 Z + 2 X Z + 2 Z2 + X2  Z + Y  X Z + Z3 + X Z3

In this case, it could be interesting to see some trace information. So let us change the options
again so that tracing is supported, and then let us redo the two examples of above:
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SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "Current"D;

Compute@X Y Z X,
using ® System@"Test Equalities"DD

We compute:

 X Y Z X =
x
H¼L

 X Y  Z X =
x
H1L

 Y Z  X + Z2  X =
x
H2L

 X2 + Z X + Z2  X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Compute@X2 Y2 Z2 ,
using ® System@"Test Equalities"DD

We compute:

 X2  Y2  Z2 =
x
H¼L

 X X Y  Y Z2 =
x
H1L

 X Y  Y Z2 + X Z Y Z2 =
x
H1L

 Y Y Z  Z + Z Y Z2 + X Z Y Z2 =
x
H2L

 Y Z  Z + Y X Z + Z Y Z2 + X Z Y Z2 =
x
H2L

 X Z + Z2 + Y X Z + Z Y Z  Z + X Z Y Z2 =
x
H2L

 X Z + Z2 + Y X Z + Z3 + Z X Z + X Z Y Z  Z =
x
H2L

 X Z + Z2 + Y X Z + Z3 + Z X  Z + X Z3 + X Z X Z =
x
H3L

 2 X Z + Y Z + Z2 + Y X Z + Z3 + X Z3 + X Z X Z =
x
H2L
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 X + Z + 2 X Z + Z2 + Y X Z + Z3 + X Z3 + X Z X  Z =
x
H3L

 X + Z + 2 X Z + Z2 + X2  Z + X Y  Z + Y X Z + Z3 + X Z3 =
x
H1L

 X + Z + 2 X Z + Y Z + 2 Z2 + X2  Z + Y X Z + Z3 + X Z3 =
x
H2L

2 X + 2 Z + 2 X Z + 2 Z2 + X2  Z + Y X Z + Z3 + X Z3 �

2 X + 2 Z + 2 X Z + 2 Z2 + X2  Z + Y  X Z + Z3 + X Z3

The trace  consists  of  a  sequence  of  terms,  each  being  a  reduced version of  the  previous one.
The equality used for reducing is shown above the equality sign; the initial step marked by "(¼)"
is just a  rearrangement of the input term so that one can see how a certain rewrite rule affects it.
Furthermore,  we  can  see  that  the  redexes  are  framed  in  each  step  so  that  we  have  an  easy  time
following the whole computation. The end of the trace is marked by � just as with proofs. The last
line after the final trace term is the result of the computation; unlike all the previous text lines it is
available as a regular Mathematica  expression. This means for example that we can assign it to a
variable like this:

result = Compute@X Y Z X,
using ® System@"Test Equalities"DD

We compute:

 X Y Z X =
x
H¼L

 X Y  Z X =
x
H1L

 Y Z  X + Z2  X =
x
H2L

 X2 + Z X + Z2  X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Now the variable result  contains the polynomial 2 X + 2 Y + X2 + Y Z ,  which we could use in
subsequent calculations like this:

Compute@X Hresult - 2 X - 2 YL Y ,
using ® System@"Test Equalities"DD

We compute:
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 X H2 X + 2 Y + X2 + Z Y - 2 X - 2 YL Y =
x
H¼L

 X2  X Y + X Z Y2 =
x
H1L

 X X Y + X2  Z + X Z Y2 =
x
H1L

 X Y + X Z + X2  Z + X Z Y2 =
x
H1L

Y + Z + X Z + X2  Z + X Z Y2 �

Y + Z + X Z + X2  Z + X Z Y2

Before  passing  to  the  more  advanced  features  of  the  polynomial  reductor,  let  us  just  mention
some  minor  options  that  influence  the  formatting  of  the  resulting  polynomial  and  the  generated
trace information. We can do this systematically by looking at the following subset of ReduceNon
commutativePolynomial options:

Options@ReduceNoncommutativePolynomialD
8Indeterminates ® 8X, Y , Z<, Units ® 8<, ReductionPhases ® Automatic,

HiddenReductions ® Automatic, TermOrdering ® Ascending, inNotebook ® Current,
FrameRedex ® True, CompactLabels ® True, TraceCaption ® We compute:<

?? TermOrdering

´

Option of ReduceNoncommutativePolynomial, with default setting "Ascending", specifying an ascending
graded term ordering. Other possible settings are "Descending" and "Lexicographic", specifying a
descending graded and a purely lexicographic term ordering, respectively. In all cases, the ordering
of the indeterminates is taken from the order in which they appear in the option "Indeterminetes".

?? inNotebook

´ An option for StaticWriter that specifies, in which notebook the pretty|print output should go.

?? FrameRedex

´
Option of ReduceNoncommutativePolynomial, with default setting True. This option determines

whether or not the redex of polynomial forms in a trace appear with a frame around them.

?? CompactLabels

´

Option of ReduceNoncommutativePolynomial, with default setting True. This option determines whether
equation labels are displayed more compactly. If set to True, the environment part of the label
is cut off, leaving only the pure equation label, which is placed above the equality symbol.
Otherwise, the long label is placed alongside each polynomial form in the equation chain.

?? TraceCaption

´
Option of ReduceNoncommutativePolynomial, with default setting "We compute:". This

option specifies the string used as a caption in the trace provided for a reduction process.

As the online documentation listed above contains already all the essential explanations, it will
be  sufficient  to  just  demonstrate  these  options  in  a  few  examples.  First  of  all,  let  us  switch  off
tracing and change the term ordering to a descending and to a lexicographic one:

Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TermOrdering ® "Descending", inNotebook ® "None"<D

X2 + Z Y + 2 X + 2 Y
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Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TermOrdering ® "Lexicographic", inNotebook ® "None"<D

X2 + 2 X + 2 Y + Z Y

The next option mentioned above was already used in the examples: It is for controlling where
the trace goes to. The default behavior is to produce a new notebook~just as for proofs made by
the Prove command. By setting this option to "Current", the trace is put into the current notebook;
by setting it to "None", it is simply discarded. Finally, one may set it to the name of some external
file for piping the output into it. See the general Theorema documentation for more information.

Some people may find it too much seeing all these frames around the redexes. They can switch
it off in the following way:

Compute@X Y Z X,
using ® System@"Test Equalities"D, EvaluatorOptions ® 8FrameRedex ® False<D

We compute:

 X Y Z X =
x
H¼L

 X Y Z X =
x
H1L

 Y Z X + Z2  X =
x
H2L

 X2 + Z X + Z2  X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

The  option about  compact  labels  has  to  do  with  the  labels  set  above  the  equality signs  in  the
trace.  The point  is  that  although it  is  very convenient to see only compact labels like "(1)" there,
this  may  lose  important  information  sometimes.  The  full  name  of  the  label  would  be  (System
("Test Equalities"):  1),  which  does  not  look very  good above the  equality sign.  It  may be  neces
sary, however, if one has two polynomial systems, each of them containing labels with the names
"(1)". Usually, it is better to avoid such duplications, but if one insists on them, one may deactivate
the option for compact labels thus:

Compute@X Y Z X,
using ® System@"Test Equalities"D, EvaluatorOptions ® 8CompactLabels ® False<D

We compute:

 X Y Z X  @ @by H¼LD
 X Y  Z X  @ @by HTest Equalities : 1LD
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 Y Z  X + Z2  X  @ @by HTest Equalities : 2LD
 X2 + Z X + Z2  X  @ @by HTest Equalities : 3LD
 X + Y + X2 + Z Z X  @ @by HTest Equalities : 3LD
 X + Y + X2 + Z X + Z Y  @ @by HTest Equalities : 3LD
2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Finally, let  us  mention the option setting the trace caption.  This is  only a  minor detail  whose
significance will become clear in the description of the confluence tools provided below. The trace
caption  is  simply the  introductory sentence  at  the  beginning  of  a  trace;  per  default,  it  reads  "We
compute:" as  one can see in all  the examples above.  Let  us  change it  to something slightly more
exciting, just for a whimsical test:

Compute@X Y Z X,
using ® System@"Test Equalities"D,
EvaluatorOptions ® 8TraceCaption ® "Hey, this is really easy for me; I just go as follows:"<D

Hey, this is really easy for me; I just go as follows:

 X Y Z X =
x
H¼L

 X Y  Z X =
x
H1L

 Y Z  X + Z2  X =
x
H2L

 X2 + Z X + Z2  X =
x
H3L

 X + Y + X2 + Z Z X =
x
H3L

 X + Y + X2 + Z X + Z Y =
x
H3L

2 X + 2 Y + X2 + Z Y �

2 X + 2 Y + X2 + Z Y

Let us now proceed to a much more interesting feature, concerning the usage of parametrized
indeterminates and thereby noncommutative polynomial rings with infinitely many indeterminates.
As  we  have  seen  in  Chapter 1,  one  often  needs  a  whole  series  of  indeterminates like  the  powers

X0 , X1 , X2 , X3 , ¼  or the multiplication operators M f ,  alternatively written as ` f p ,  for each f  in
an analytic algebra. We will start with the first example, because it is easier to survey the parame

ter space N .  In order to avoid confusion with actual powers like X2  occurring in the trace above,
we will start with another example that uses subscripts rather than superscripts; we will later return
to power notation. We will consider the noncommutative polynomial ring generated by the indeter
minates X1 , X2 , X3 , ¼, X¥  We communicate these parametrized indeterminates to the reductor in
the following way (the square is entered as �sq� and serves as a kind of template for the parameters

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

76



the following way (the square is entered as �sq� and serves as a kind of template for the parameters
to be filled in):

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8X� <D;

Now we will set up a simple polynomial equation that mimics the behavior of Xn  as the multipli

cation operator induced by x# 10x�n . For this purpose, we must actually specify a whole series of
equalities,  parametrized by  the  subscripts  ranging  over  1, 2, 3, ¼, ¥ .  (Note  that  Theorema  does
not use explicit typing, so the domain for n  and m  is not stated. The implicit assumption is that it
will only be used in the range intended.)

FormulaA"Subscript Equalities", any@m, nD,
X¥ = 1 "1"

Xm  Xn = XHm+nL�HmnL "2"
E

Compute@X3  X2  X¥  X10 ,
using ® Formula@"Subscript Equalities"D,
EvaluatorOptions ® 8FrameRedex ® False<D

We compute:

 X3  X2  X¥  X10 =
x
H¼L

 X3  X2  X¥  X10 =
x
H1L

 X3  X2  X10 =
x
H2L

 X 3+2
���������������3 2

 X10 =
x
H2L

X 3+2
���������������
3 2 +10

�����������������������������3+2
���������������
3 2  10

�

X 3+2
���������������
3 2 +10

�����������������������������3+2
���������������
3 2  10

The  computation  is  obviously  correct,  but  of  course  one  would  expect  a  bit  more.  It  should
evaluate  the  subscript  H3 - 12L � H3 * H-12LL  to  1 �4  etc,  so  why  is  this  not  done?  The  answer  is
simply  that  it  was  not  allowed  to  use  any  knowledge  about  the  symbols  +  and  -  occurring  in
subscripts.  In  Theorema,  the  general  assumption  is  that  all  knowledge  to  be  exploited  must  be
explicitly specified. In this way, we can always be sure that no assumptions are used unexpectedly
so that all proofs and computations are correct with respect to the explicitly given knowledge base.
In the case of the polynomial reductor, the only internal knowledge is the axioms of noncommuta
tive polynomials (see the Appendix); all other knowledge is considered external and must hence be
specified.

In Theorema,  the usual way of doing this is via so|called built|ins;  see the online documenta
tion for details. In our case, the most efficient way is to rewrite the subscript equalities in terms of a
new operation ë  denoting the "harmonic sum" of two nonzero naturals:

FormulaA"Subscript Equalities", any@m, nD,
X¥ = 1 "1"

Xm  Xn = Xmën "2"
E
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Then we implement the operation ë  in  the obvious way by using the arithmetic operations  of
Mathematica,  and  we  package  it  into  a  special  Theorema  environment  signified  by  the  environ
ment keyword Built|in thus:

HarmonicSum@m_, n_D := 1�ikjj
1

��������
m

+
1
������
n

y
{zz

Built|in@"Arithmetic",
ë ® HarmonicSumD

Now we can compute the  above polynomial in  the  way we expected it.  Note  that  we have to
specify  built|ins  via  the  option  built|in  rather  than  using,  which  we  still  apply  to  the  normal
knowledge base containing the formula with the subscript equalities. The difference between these
two options is that the former calls Mathematica  implementations, whereas the latter is only used
in the sense of predicate logic (in the case of equalities as here, this boils down to substitution and
replacement). Let us see what we get:

Compute@X3  X2  X¥  X10 ,
using ® Formula@"Subscript Equalities"D, built|in ® Built|in@"Arithmetic"DD

We compute:

 X3  X2  X¥  X10 =
x
H¼L

 X3  X2  X¥  X10 =
x
H1L

 X3  X2  X10 =
x
H2L

 X 6
������5

 X10 =
x
H2L

X 15
����������14

�

X 15
����������14

This  time  we  are  satisfied  with  the  result.  So  let  us  now  look  at  the  case  of  powers,  as
announced  before.  We  have  already  encountered  a  noncommutative  polynomial  ring  containing

X0 , X1 , X2 , X3 , ¼  when producing the Legendre polynomial in Computation 9 of Chapter 1. Let
us study this is in a bit more detail. The first point to note is that one should not confuse the parame

trized indeterminate X2  with the product X X  of two instances of the indeterminate X . In order to
communicate this difference to the reductor, we have to issue the following command:

UsePowers@XD
This  tells  the  reductor  to  use  the  indeterminate  X  as  a  power,  meaning  that  X2  will  not  be

interpreted as  X X .  Now we introduce the  superscripted variable  X  as  an  indeterminate. We can
compute with the polynomials of C XXi È i Î N\  as expected, but we must be very careful to under
stand the power notation in the appropriate way.

ComputeAHX2 + 1L2 ,

EvaluatorOptions ® 8Indeterminates ® 8X� <, inNotebook ® "None"<E
1 + 2 X2 + X2 2
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Here the monomial X2 2
 is a shortcut for X2  X2 . Internally,  this is clearly distinguished as one

can see using the in the Mathematica InputForm:

InputForm@%D
ÔPlus[1, ÔTimes[2, ÔPseudoPower[X, 2]], 
 ÔPower[ÔPseudoPower[X, 2], 2]]

This  means  that  the  given  polynomial  is  a  sum  (ÔPlus)  having  the  summands  1  and
ÔTimes@2, ÔPseudoPoser@X, 2DD  and  ÔPower@ÔPseudoPower@X, 2D, 2D .  The  former  represents
a  product  (ÔTimes)  of  2  and  ÔPseudoPower@X, 2D ,  whereas  the  latter  is  the  square

(ÔPower@¼, 2D) of ÔPseudoPoser@X, 2D .  So we can see that the indeterminate X2  has the inter
nal  representation  ÔPseudoPower@X, 2D .  We  have  called  these  expressions  pseudo  powers,
because it looks like a power but it is not.

Note that the internal name of all symbols within Theorema formulae have a leading Ô in order
to keep them out of the Mathematica namespace. For example, the symbol +  is ÔPlus  in a Theo
rema formula but Plus  otherwise. We can see this in the following example, where we compare the
first formula of the test equalities considered above with the analogous Mathematica expression:

System@"Test Equalities"DP4, 1, 2T �� InputForm

ÔEqual[ÔTimes[X, Y], ÔPlus[Y, Z]]

FullForm@X Y � Y ZD
Equal@Times@X, YD, Times@Y , ZDD

For making the difference even clearer let us do the same computation as before in the polyno
mial ring C XX\ @ C@XD .  We undo the declaration for  using power notation, and then we start the
computation with the corresponding setting for the indeterminates.

DoNotUsePowers@XD
ComputeAHX2 + 1L2 ,

EvaluatorOptions ® 8Indeterminates ® 8X<, inNotebook ® "None"<E
1 + 2 X2 + X4

InputForm@%D
ÔPlus[1, ÔTimes[2, ÔPower[X, 2]], ÔPower[X, 4]]

Now the result is different, because X2 2
 was understood as ÔPower@ÔPower@X, 2D, 2D , which

gives of course ÔPower@X, 4D ,  where ÔPower  is the real power  (rather than the pseudo power)
used for abbreviating iterated multiplication.

As  a  next  step,  we  want  to  mimic  the  algebraic  laws  used  above  for  reducing  HX2 + 1L2  to

1 + 2 X2 + X4  so that we get an analogous result in the polynomial ring C XXn È n Î N\ . But before
doing  so,  let  us  ask  ourselves  why  we  would  take  these  troubles.  Why  not  simply  use  the  real
powers as above? The answer is that the commutation between multiples of X  and the differentia
tion indeterminate D  is not be very efficient in this setup. Of course, one can do it using the follow
ing simplistic product rule:

Formula@"Simplistic Product Rule",
D X = X D + 1 "DX" D

Compute@D X6 ,
using ® Formula@"Simplistic Product Rule"D,
EvaluatorOptions ® 8Indeterminates ® 8D, X<<D
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We compute:

 D X6 =
x
H¼L

 D X  X5 =
x
HDXL

 X5 + X D X  X4 =
x
HDXL

 2 X5 + X2  D X  X3 =
x
HDXL

 3 X5 + X3  D X  X2 =
x
HDXL

 4 X5 + X4  D X  X =
x
HDXL

 5 X5 + X5  D X =
x
HDXL

6 X5 + X6  D �

6 X5 + X6  D

Obviously  this  is  not  a  very  useful  way  of  handling  the  product  rule.  So  having  the  atomic
indeterminate X  makes multiplication trivial, but only at the cost of making differentiation compli
cated.  Therefore  let  us  move  to  the  ring  C XXn È n Î N\  again,  and  let  us  fix   the  X�  family  of
indeterminates together with the differentiation indeterminate D .

UsePowers@XD
SetOptions@ReduceNoncommutativePolynomial,

Indeterminates ® 8D, X� <D;
Formula@"Product Rule", any@nD,

D Xn = Xn  D + nXn�1 "DX" D
As explained before, we must explicitly state all external knowledge. That is why we have used

the symbol �  for denoting subtraction on the natural numbers. We must provide its implementa
tion, and the most natural choice is of course the Mathematica command Minus. Having done so,
the computation from above does indeed become a trivial one|step shot as expected:

Built|in@"Arithmetic",

�® MinusD
SetOptions@ReduceNoncommutativePolynomial,

inNotebook ® "None"D;
Compute@D X6 ,

using ® Formula@"Product Rule"D, built|in ® Built|in@"Arithmetic"DD
6 X5 + X6  D

But now multiplication is of course not possible any more:

Compute@X2  X3 ,
using ® Formula@"Product Rule"D, built|in ® Built|in@"Arithmetic"D,
EvaluatorOptions ® 8inNotebook ® "None"<D

X2  X3
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Unless we provide the corresponding laws:

Formula@"Power Law", any@m, nD,
Xm  Xn = XmÅn "XX" D

Here we have used the symbol Å  for denoting addition on the natural numbers. We extend the
implementation of arithmetic in the obvious way, and the computation from above becomes indeed
feasible.

Built|inA"Arithmetic",

Å ® Plus

�® Minus
E

SetOptions@Compute,
using ® 8Formula@"Power Law"D, Formula@"Product Rule"D<, built|in ® Built|in@"Arithmetic"DD;

Compute@X2  X3 D
X5

We  have  forgotten  one  more  equality  needed  in  this  context:  What  happens  when  D X  is

reduced?  The  product  rule  will  produce  a  "power" X0 ,  which  cannot  be  recognized as  being  the
same as 1 if it stands by itself:

Compute@D XD
X0 + X D

We could fix this problem by adding the equality X0 = 1. But there is a shortcut to this: Since
equalities saying that some indeterminate is equal to 1  for a certain choice of the parameter, there
is  a  special option telling the reductor that such an indeterminate acts as a  unit.  We will add this
option globally, since we will need it again afterwards:

?? Units

´

Option of ReduceNoncommutativePolynomial, with default setting 8<. The option value is interpreted

as a list of polynomial forms to be regarded as equal to 1. For example, setting Units®8X0 <
makes X0 reduce to 1 anywhere during the rewriting process. In effect, this options amounts

to adding the corresponding equation X0 =1 to the ubiquitous hidden knowledge base.

SetOptions@ReduceNoncommutativePolynomial,

Units ® 8X0 <D;
Compute@D XD
1 + X D

The  option  Units  takes  a  list  of  specialized indeterminates  that  are  to  be  considered as  units.

The corresponding reductions like X0 ® 1  are not traced, however, just like hidden reduction rules
(see the explanation below).

We have not yet considered an example where both formulae~the product rule and the power
law~are needed.  But  there are  of  course plenty of  such examples,  and the  Legendre operator of
Computation 9 of Chapter 1 are a case in point. Let us here look at a slightly more representative
example, which necessitates several XX steps between the DX steps. For this purpose, we reacti
vate  the  tracing  option  globally,  and  we  set  two  other  options  locally  which  we  will  explain
immediately.

SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "Current"D;

Compute@D X2  D2  X3 ,
EvaluatorOptions ® 8ReductionPhases ® 8<, HiddenReductions ® 8<<D
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We compute:

 D X2  D2  X3 =
x
H¼L

 D X2  D2  X3 =
x
HDXL

 2 X D D X3 + X2  D3  X3 =
x
HDXL

 6 X D X2 + 2 X D X3  D + X2  D3  X3 =
x
HDXL

 12 X2 + 6 X X2  D + 2 X D X3  D + X2  D3  X3 =
x
HXXL

 12 X2 + 6 X X2  D + 2 X D X3  D + X2  D3  X3 =
x
HXXL

 12 X2 + 6 X3  D + 2 X D X3  D + X2  D3  X3 =
x
HDXL

 12 X2 + 6 X3  D + 6 X X2  D + 2 X X3  D2 + X2  D3  X3 =
x
HXXL

 12 X2 + 12 X3  D + 2 X X3  D2 + X2  D3  X3 =
x
HXXL

 12 X2 + 12 X3  D + 2 X4  D2 + X2  D2  D X3 =
x
HDXL

 12 X2 + 12 X3  D + 2 X4  D2 + 3 X2  D D X2 + X2  D2  X3  D =
x
HDXL

 12 X2 + 12 X3  D + 2 X4  D2 + 6 X2  D X + 3 X2  D X2  D + X2  D2  X3  D =
x
HDXL

 12 X2 + 12 X3  D + 6 X2  X0 + 2 X4  D2 + 6 X2  X D + 3 X2  D X2  D + X2  D2  X3  D =
x
HXXL

 18 X2 + 12 X3  D + 2 X4  D2 + 6 X2  X  D + 3 X2  D X2  D + X2  D2  X3  D =
x
HXXL

 18 X2 + 18 X3  D + 2 X4  D2 + 3 X2  D X2  D + X2  D2  X3  D =
x
HDXL

 18 X2 + 18 X3  D + 2 X4  D2 + 6 X2  X  D + 3 X2 2
 D2 + X2  D2  X3  D =

x
HXXL

 18 X2 + 24 X3  D + 2 X4  D2 + 3 X2 2
 D2 + X2  D2  X3  D =

x
HXXL

 18 X2 + 24 X3  D + 5 X4  D2 + X2  D D X3  D =
x
HDXL

 18 X2 + 24 X3  D + 5 X4  D2 + 3 X2  D X2  D + X2  D X3  D2 =
x
HDXL
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 18 X2 + 24 X3  D + 5 X4  D2 + 6 X2  X  D + 3 X2 2
 D2 + X2  D X3  D2 =

x
HXXL

 18 X2 + 30 X3  D + 5 X4  D2 + 3 X2 2
 D2 + X2  D X3  D2 =

x
HXXL

 18 X2 + 30 X3  D + 8 X4  D2 + X2  D X3  D2 =
x
HDXL

 18 X2 + 30 X3  D + 8 X4  D2 + 3 X2 2
 D2 + X2  X3  D3 =

x
HXXL

 18 X2 + 30 X3  D + 11 X4  D2 + X2  X3  D3 =
x
HXXL

18 X2 + 30 X3  D + 11 X4  D2 + X5  D3 �

18 X2 + 30 X3  D + 11 X4  D2 + X5  D3

Looking at the trace above, we have the feeling that the "boring" XX steps are somehow distract
ing from the "actually important" DX steps; and this becomes even more prominent when consider
ing  the  full  set  of  Green’s  identities  explicated  repeatedly  in  Chapter 1.  Somehow one  considers
the steps for contracting Xm  Xn  to XmÅn  as a low|level operation that is not in focus here; in fact,
we introduced it only for technical reasons as explained above. That is why the evaluator provides
an option for hiding such uninteresting steps, which are called hidden reductions. In the Compute
call above, we have explicitly asked for having no hidden reductions by setting the option Hidden
Reductions  to  the  value  8< .  Let  us  now set  it  to  the  reductions specified in  the  formula with  the
label "Product Law". Naturally, this is done by listing just the string containing the label in the list
that  was  formerly  empty  (we  assume  that  the  string  is  not  reused  across  different  environment
labels in one and the same call as this would be really bad style):

Compute@D X2  D2  X3 ,
EvaluatorOptions ® 8ReductionPhases ® 8<, HiddenReductions ® 8"Power Law"<<D

We compute:

 D X2  D2  X3 =
x
H¼L

 D X2  D2  X3 =
x
HDXL

 2 X D D X3 + X2  D3  X3 =
x
HDXL

 6 X D X2 + 2 X D X3  D + X2  D3  X3 =
x
HDXL

 12 X2 + 6 X3  D + 2 X D X3  D + X2  D3  X3 =
x
HDXL

 12 X2 + 12 X3  D + 2 X4  D2 + X2  D2  D X3 =
x
HDXL

 12 X2 + 12 X3  D + 2 X4  D2 + 3 X2  D D X2 + X2  D2  X3  D =
x
HDXL
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 12 X2 + 12 X3  D + 2 X4  D2 + 6 X2  D X + 3 X2  D X2  D + X2  D2  X3  D =
x
HDXL

 18 X2 + 18 X3  D + 2 X4  D2 + 3 X2  D X2  D + X2  D2  X3  D =
x
HDXL

 18 X2 + 24 X3  D + 5 X4  D2 + X2  D D X3  D =
x
HDXL

 18 X2 + 24 X3  D + 5 X4  D2 + 3 X2  D X2  D + X2  D X3  D2 =
x
HDXL

 18 X2 + 30 X3  D + 8 X4  D2 + X2  D X3  D2 =
x
HDXL

18 X2 + 30 X3  D + 11 X4  D2 + X5  D3 �

18 X2 + 30 X3  D + 11 X4  D2 + X5  D3

Now this is much more compact to read; the trivial "algebraic" steps are suppressed. Let us now
add two more indeterminates L, R  denoting left and right boundary values on the interval @0, 1D .

SetOptions@ReduceNoncommutativePolynomial,
Indeterminates ® 8D, X� , L, R<D;

A typical collection of identities for dealing with these boundary operators is as following. The
differentiation of any constant gives zero, hence D L  and D R  does as well; we add these identities
to the product rule, because they are all instances of the more general law of differentiating "across
a function" (which is either a simple power as in Xn  or a constant function as in L  and R). Further
more,  the  left  and  right  boundary  value  of  x# xn  is  0  and  1,  respectively,  hence  we  have
L Xn = 0, R Xn = Xn ; we will package this in a system by itself.

SystemA"Product Laws", any@nD,
D Xn = Xn  D + nXn�1 "DX"

D L = 0 "DL"

D R = 0 "DR"

E

SystemA"Boundary Laws", any@nD,
L Xn = 0 "LX"

R Xn = R "RX"

L L = L "LL"

L R = R "LR"

R L = L "RL"

R R = R "RR"

E

Now we could of course throw all of these identities in one big pot, and for those few identities
considered  here  it  would  actually  not  do  much  harm.  But  for  enhancing  clarity  as  well  as  effi
ciency,  it  is  more  advisable~especially for  bigger  systems like the  Green’s identities~to collect
the  identities into  blocks  that  are  to  be  used  in  succeeding reduction phases.  We  have  explained
this in some detail after Convention 13 in Chapter 1. Even in the toy example considered here, it is
still  reasonable to  apply the  product  laws in  a  first  phase  (with the  "operational goal" of  pushing
the  differential  operators  to  the  very  right)  and  the  boundary  laws  in  a  second  phase  (with  the
"operational  goal"  of  pushing  the  boundary  operators  as  far  right  as  possible);  the  "algebraic"
reductions due to the power law should of course be applied throughout. We call equalities belong
ing to a certain phase (like the product and boundary laws in our example) "phase equalities" and
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ing to a certain phase (like the product and boundary laws in our example) "phase equalities" and
those to be applied throughout "ubiquitous equalities" (like the power law in our example). In the
Compute call, this is handled via the option ReductionPhases, which takes the list of all the labels
belonging to  phase  equalities.  In  our  example,  we  would  thus  say  (making the  ubiquitous reduc
tions from the power law hidden as before):

SetOptions@Compute,
using ® 8System@"Product Laws"D, System@"Boundary Laws"D, Formula@"Power Law"D<D;

SetOptions@ReduceNoncommutativePolynomial,
HiddenReductions ® 8"Power Law"<, ReductionPhases ® 8"Product Laws", "Boundary Laws"<D;

Note that the labels in the list after ReductionPhases are processed in the order they are given,
meaning  that  "Product  Laws"  makes  up  the  first  phase  and  "Boundary  Laws"  the  second.  Of
course, some labels might also repeat, if a certain phase should be entered more than once. Inciden
tally, we could have left out the specification of the hidden reductions above, because the default
setting  is  to  hide  exactly  the  ubiquitous  reductions  as  this  is  the  usual  situation.  This  is  also
explained in the official online documentation:

?? HiddenReductions

´

Option of ReduceNoncommutativePolynomial, with default setting Automatic. The
option value is interpreted as a list of labels referring to those environments that should
be used without tracing. The automatic setting means that exactly the ubiquitous
reductions are hidden - those polynomial rules that are not specified as reduction phases.

?? ReductionPhases

´

Option of ReduceNoncommutativePolynomial, with default setting Automatic. The option value is
interpreted as a list of labels referring to those environments that should be used as subsequent
reduction phases in the order specified by this option. The automatic setting means that all
the environments are taken as reduction phases in the order in which they are specified.

Before concluding the description of the reductor and its options, let us do a small computation
in the setup introduced above.

Compute@R X2  HD X3  R X2 - R HX2 + 1LL+ L D XD
We compute:

 R X2  HD X3  R X2 - R HX2 + 1LL+ L D X =
x
H¼L

 L D X - R X2  R - R X2  R X2 + R X2  D X3  R X2 =
x
HDXL

 L + L X D - R X2  R - R X2  R X2 + R X2  D X3  R X2 =
x
HDXL

 L + L X D - R X2  R - R X2  R X2 + 3 R X4  R X2 + R X5  D R  X2 =
x
HDRL

 L + L X  D - R X2  R - R X2  R X2 + 3 R X4  R X2 =
x
HLXL

 L - R X2  R - R X2  R X2 + 3 R X4  R X2 =
x
HRXL

 L - R2 - R X2  R X2 + 3 R X4  R X2 =
x
HRXL
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 L - R2 - R R X2 + 3 R X4  R X2 =
x
HRXL

 L - 2 R2 + 3 R X4  R X2 =
x
HRXL

 L - 2 R2 + 3 R R X2 =
x
HRXL

 L + R2 =
x
HRRL

L + R �

L + R

This finishes the presentation of the evaluator itself. As mentioned above, there is also a small
add|on toolbox, which we have called the confluence tools (comprising the function described here
and that described in Section 5),  because they can help proving the confluence of some reduction
systems; and this is of course what we did in the proof of Theorem 28 in Chapter 1. Note that we
do  not  regard these tools  as  a  ready|to|go package like the  reductor or  the  Green’s evaluator~it
was  only  designed  for  supporting  this  proof.  Hence  its  usage  is  somewhat  more  technical  and
demands  some  knowledge  of  Mathematica  and  Theorema  programming.  The  way  the  function
described here was actually used is only through a special interface function named ProveConflu
ence within the Green’s evaluator, which will be described in Section 5. The idea of the ProveCon
fluence  function is  to  adapt  the  generic  computation of  S|polynomials to  the  special  situation of
the Green’s identities.

The main function to be considered here is called SPolynomials, since it determines all the rule
overlaps and computes their S|polynomials. The interface to this function is very similar to that of
the  basic  evaluator ReduceNoncommutativePolynomial  itself;  in  fact,  it  follows the  standard of
all Theorema provers and evaluators: It accepts a visible, a hidden, and a built|in database as well
as some options that are identical with those of ReduceNoncommutativePolynomial.

Note  that  for  provers  and  evaluators,  the  user  normally  does  not  see  their  own  interface,
because they are only called indirectly through the Prove and Compute functions. Such a generic
procedure would not be appropriate for determining the S|polynomials, though, and that is why for
the moment we prefer to address the function SPolynomials  by its own interface or rather by the
function ProveConfluence described in Section 5. In a later version of Theorema we might have a
clear standard for such "extra calculations", much in the sense of integrating proving and comput
ing as explained in the Section 1.

But for getting some basic understanding about its functionality, let us prove confluence for the
toy example above using only the function SPolynomials  directly. The most important point is to
generate the knowledge base  to be used,  in our case containing the power, product and boundary
laws. The most convenient way to do so is via the global Theorema knowledge base. First we clear
the  knowledge base  (it  should  actually be  empty,  but  we  want  to  be  sure)  by  the  command Use,
then we add the three environments needed using the command UseAlso. The result will be avail
able  via  the  internal  Theorema  slot  $TmaUserKB[·kb],  so  we  save  this  value  to  an  auxiliary
variable kb, and then we clear up the global knowledge base again:

Use@D
UseAlso@Formula@"Power Law"DD
UseAlso@System@"Product Laws"DD
UseAlso@System@"Boundary Laws"DD
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kb = Theorema‘Language‘Semantics‘UserLanguage‘Private‘$TmaUserKB@·kbD;
Use@D

Now  we  can  use  the  function  SPolynomials  using  the  auxiliary  variable  kb  for  the  visible
knowledge  base  in  the  first  argument.  We do no  hidden knowledge,  so  we  use  the  generic  Theo
rema  template EmptyEnvironment  for providing an empty environment; and the list of built|ins
is empty  as  well (note that,  unlike the proper knowledge bases like those before, the built|ins are
always stored as lists  in Theorema). Then we feed in some options, analogous to what we would
use for calling Compute for the reduction system under investigation.

SPolynomials@kb, EmptyEnvironment@·kb, "None"D, 8<,
Indeterminates ® 8D, X� , L, R<, Units ® 8X0 <, ReductionPhases ® 8<, HiddenReductions ® 8<D
88LL, LX, L Xn <, 8LL, LL, 0<, 8LL, LR, 0<, 8LR, RX, -L R + R Xn <, 8LR, RL, -L2 + R L<, 8LR, RR, -L R + R2 <,
8RL, LX, L Xn <, 8RL, LL, L2 - R L<, 8RL, LR, L R - R2 <, 8RR, RX, R Xn - R2 <, 8RR, RL, 0<, 8RR, RR, 0<,8DL, LX, 0<, 8DL, LL, -D L<, 8DL, LR, -D R<, 8DR, RX, -D R<, 8DR, RL, -D L<, 8DR, RR, -D R<<

spolys = Select@%PAll, 3T, # =!= 0 &D
8L Xn , -L R + R Xn , -L2 + R L, -L R + R2 , L Xn ,

L2 - R L, L R - R2 , R Xn - R2 , -D L, -D R, -D R, -D L, -D R<
The result returned by SPolynomials  is  a  list  containing one triple for  each overlap: The first

two  elements  of  each  triple  signify  the  rules  involved  in  the  overlap,  whereas  the  third  is  the  S|
polynomial  produced from them. For  example,  the  first  triple in  the  list tells us  that  the rules LL
and  LX  overlapped  (namely  on  the  monomial  L L Xn ),  and  they  yield  the  S|polynomial  L Xn

(because reducing L L Xn  by the rules LL and LX yields L Xn  and 0, respectively, with the differ
ence being L Xn ).

Now some of these S|polynomials came out to zero immediately, whereas the others are easily
seen to reduce to zero.  For doing this automatically, we produce the list of  all the S|polynomials
from the  list  of  triples  by  %PAll, 3T ,  and  then  we  select  the  sublist  of  nonzero  entries  from the
resulting list  by  saying Select@¼, # =!= 0 &D .  This  list  of  nonzero S|polynomials  is  stored in  an
auxiliary variable spolys.

Finally, we reduce all of these nonzero S|polynomials by mapping the Compute function over
them.

SetOptions@ReduceNoncommutativePolynomial,
inNotebook ® "None"D;

Compute �� spolys

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
All of them came out to zero, as we expected. The function ProveConfluence to be described

in Section 5 can be thought of as a kind of elaborate interface automating the hand|crafted proce
dure carried out above. Moreover, it provides some support for using axioms about the parameter
domain~a  crucial  feature  for  the  successful  application  of  the  confluence  tools  to  the  proof  of
Theorem 28 in Chapter 1.

2.4 The Matrix Evaluator

The matrix evaluator EvaluateMatrices  provides the following (mostly partial) operations on the
graded matrix ring Üm,n=1

¥ Rm´n  over some base ring R  containing C :
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è Constructor:  If  mn  complex  numbers  c11 , ¼, c1n , ¼, cn1 , ¼, cnn  are  given,  the  m ´ n
matrix

i
k
jjjjjjj

c11 ¼ c1n

» ¸ »

cn1 ¼ cnn

y
{
zzzzzzz

may be formed in the usual Mathematica manner of grids, using âÖ, for creating columns
and âÖç for creating rows.

è Selector: If M  is an m ´ n  matrix and 1 < i < m , the selector Mi  returns the i|th row of M ,
being itself a 1 ´ n  matrix (hence a row matrix).

è Quantifier: If T  is some term typically containing a free occurrence of n , we can create a
HB - A + 1L´ 1  (hence a column vector) with entries Tn¬A , Tn¬A+1 , ¼, Tn¬B-1 , Tn¬B  byXT È n = A, ¼, B\ . Note the similarity to the set quantifier 8T È n = A, ¼, B< , which would
collect all the entries in an unordered and repetition|free way.

è Dimension: If M  is an n ´ n  matrix, dim@MD  is n . (If M  is not a square matrix, this function
should not be used; it would return the number of columns of M .)

è Addition:  If  M1  and  M2  are  both  m ´ n  matrices,  their  sum  may  simply  be  formed  as
M1 + M2 . Note that M1 - M2  is of course M1 + H-1L M2 , where the premultiplier -1  is to
be understood as a scalation (see below).

è Scalation:  If  M  is  an  m ´ n  matrix with entries m11 , ¼, m1n , ¼, mn1 , ¼, mnn  and  c  is  a
complex  number,  the  matrix  M  may  be  scaled  by  c  to  a  matrix  having  entries
cm11 , ¼, cm1n , ¼, cmn1 , ¼, cmnn . This matrix may be denoted by either cm  or by mc .

è Multiplication:  If  M1  is  an  m ´ n  and  M2  an  n ´ k  matrix,  their  product  may  simply  be
specified as M1  M2 . Note that the "multiplication symbol" (which can be either the explicit
operator symbol *  or  simply juxtaposition) is overloaded~it denotes ordinary multiplica
tion  if  both  operands  are  scalars,  scalation if  one  of  them is  a  scalar  and  the  other  one  a
matrix, matrix multiplication if they are both matrices.

è Inversion: If M  is a regular n ´ n , its inverse is denoted by M-1 . Note again the overload
ing  involved  in  this  notation;  for  normal  complex  numbers,  the  ordinary  reciprocal  is  of
course used instead.

Let  us  now  do  some  examples.  First,  let  us  construct  a  generic  2 ´ 2  matrix  and  analyze  its
internal form:

M =
i
kjjj

a b

c d

y
{zzz

i
kjjj

a b

c d

y
{zzz

InputForm@MD
ÔMatrix[ÔTuple[ÔTuple[a, b], ÔTuple[c, d]]]

Obviously  matrices  are  regarded  as  tuples  containing  tuples  of  the  same  length,  but  they  are
again packed into a container named ÔMatrix  in order to ensure that the type information is not
lost.
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lost.
Now let us select the first row and its second row.

SetOptions@Compute, by ® EvaluateMatricesD;
Compute@M1 D
H a b L
Compute@M2 D
H c d L

Let us now construct a column vector by the quantifier:

Compute@XSn È n = 2, ¼, 4\D
i

k
jjjjjjjjjj

S2

S3

S4

y

{
zzzzzzzzzz

We convince ourselves that M  is indeed a 2 ´ 2 matrix, i.e. it has dimension 2:

Compute@dim@MDD
2

Let us now add M  to itself, triple it, multiply it by itself, and finally invert is:

Compute@M + MD
i
kjjj

a + a b + b

c + c d + d

y
{zzz

Compute@3 MD
i
kjjj

3 a 3 b

3 c 3 d
y
{zzz

Compute@M MD
i
kjjj

a a + b c a b + b d

c a + d c c b + d d
y
{zzz

Compute@M-1 D
i
k
jjjjj d H-1 b c + a dL-1 -1 b H-1 b c + a dL-1

-1 c H-1 b c + a dL-1 a H-1 b c + a dL-1

y
{
zzzzz

As we can see from the examples above, no special knowledge is assumed about the base ring
R .  In  particular,  we  do  not  presuppose  that  R  is  commutative.  This  is  important  for  using  the
matrix  evaluator  for  working  with  operator  matrices  as  applied  in  the  Green’s  evaluator;  see
Section 5.

The  overloading  mechanism  described  above  is  trivial  as  long  as  one  deals  with  concrete
matrices. This was the case in all the examples above. Consider the following typical situation:

ComputeAikjjj
r s

t u

y
{zzz+
i
kjjj

1 2

3 4

y
{zzzE

i
kjjj

r + 1 s + 2

t + 3 u + 4

y
{zzz

Here it  is  clear that the symbol +  denotes matrix addition, because both the left and the right
operands  are  readily  recognized  as  matrices:  The  constructor  used  for  building  them  necessarily
returns  a  matrix.  But  now let  us  think  about  the  slightly more  complicated situation  of  Input 43.
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returns  a  matrix.  But  now let  us  think  about  the  slightly more  complicated situation  of  Input 43.
We had the following formulae there:

DefinitionA"Wronski Operator", any@nD,
Dn

`
= XDi È i = 0, ¼, n - 1\

E
FormulaA"Nullspace Projector", anyAẁ, l

`
, r̀E,

Proj
ẁ
Al`, r̀E = `ẁ1 p Il` ẁ

¬
+ r̀ ẁ

® M-1
 IL l

`
 Dn

`
+ R r̀ Dn

` M Ë @n = dim@ẁDD
E

How can we know that the symbol +  in the subterm l
`
ẁ

¬
+ r̀ ẁ

®
 is supposed to denote matrix

addition,  the  next  operation  matrix  inversion,  etc?  The  answer  is  that  we  have  introduced  the
following typing convention: All variables carrying a hat are considered as matrices (including row
and column vectors), all other variables as scalars. Using this scheme, it is fairly straightforward to
set up a corresponding type inference, which goes roughly as follows. Since ẁ  is a matrix, so are

ẁ
¬

 and ẁ
®

 as well as the products l
`
ẁ

¬
 and r̀ ẁ

®
; hence l

`
ẁ

¬
+ r̀ ẁ

®
 is their matrix sum, being

itself a matrix again. Therefore Il` ẁ
¬

+ r̀ ẁ
®M-1

 will be understood as matrix inversion, etc.

Finally, let us remark that the base ring R  is identified with R1´1 . This saves us from the trouble
of  accessing the entries of such 1 ´ 1  matrices via subscripting. For example, multiplying a 1 ´ 2
with a 2 ´ 1 matrix will give a scalar:

a = H r s L;
InputForm@aD

ÔMatrix[ÔTuple[ÔTuple[r, s]]]

b =
i
kjjj

u

v

y
{zzz;

InputForm@bD
ÔMatrix[ÔTuple[ÔTuple[u], ÔTuple[v]]]

Compute@a bD
r u + s v

InputForm@%D
ÔPlus[ÔTimes[r, u], ÔTimes[s, v]]

We can see that the last result is not packed into ÔMatrix  anymore, meaning that it is a scalar.
The effect of unpacking is seen even more clearly by using the internal forms:

Compute@ÔMatrix@ÔTuple@ÔTuple@uD, ÔTuple@vDDDD
i
kjjj

u

v

y
{zzz

InputForm@%D
ÔMatrix[ÔTuple[ÔTuple[u], ÔTuple[v]]]

Compute@ÔMatrix@ÔTuple@ÔTuple@uDDDD
u

InputForm@%D
u
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The  identification  of  1 ´ 1  matrices  and  scalars  is  important  for  the  computation  of  the
nullspace projector effected by the formula given above: It will come out as a scalar in the end for
the following reason. Starting from left, `ẁ1p  is an 1 ´ n  matrix (namely the first row of the Wron
skian matrix, i.e. the fundamental system written as a row vector). Then it is multiplied by the n ´ n

matrix  Il` ẁ
¬

+ r̀ ẁ
®M-1

, thus still being of format 1 ´ n . Finally, L l
`
 Dn

`
+ R r̀ Dn

`
 has format n ´ 1,

since D
`

n  does (the Wronski operator yields a column vector because it is defined in terms of the

quantifier construct explained above) and both l
`
 and r̀  are n ´ n , whereas both L  and R  are scalars.

Hence  we  have  a  product  of  a  1 ´ n  and  an  n ´ 1  matrix,  giving  a  1 ´ 1  matrix  that  is  identified
with its scalar entry.

2.5 The Green’s Evaluator

The  Green’s  evaluator  is  the  interface  used  for  solving  BVPs  by  the  method  explicated  in
Chapter 1.  It  is  called  GreenEvaluator  and  can  be  used  in  a  Compute  call  just  as  any  other
evaluator. It can do various tasks according to the term transmitted:

è Computing Nullspace Projectors: For obtaining the nullspace projector associated with the

boundary matrices l
`
 and r̀  and the Wronskian matrix ẁ , one must compute ProjẁAl`, r̀E  with

a knowledge base containing the appropriate definitions for l
`
, r̀  and ẁ . The computation is

carried out by unfolding the formulae in Input 43. See the examples given there.

è Right Inversion: For obtaining the right inverse of a linear constant|coefficient operator T ,
one must compute Tì  with a knowledge base containing some definition of T . The compu
tation is carried out by unfolding the definition of Input 41. See the examples given there.

è Green’s  Reduction:  The  kernel  of  the  Green’s  evaluator  is  of  course  the  interface  to  the
reductor, specialized to the noncommutative polynomial ring An  and the Green’s identities
of Input 14. For carrying out a reduction in this sense, one can simply feed in the polyno
mial to be reduced.

è Miscellaneous Built|ins:  Some of the formulae referred to above need external operations
that  are  delegated to  Mathematica.  The  formula for  the  right  inverse uses  three functions
named poly, deg, rad for computing the characteristic polynomial of a differential operator,
the degree of a polynomial and the roots of a polynomial, respectively. In the formula for
the Green’s operator, the functions wron, left and right are used for computing the Wron
skian  matrix  of  a  differential  operator  and  the  left/right  boundary  matrix  of  a  system  of
boundary  operators,  respectively.  All  these  external  functions  are  implemented and  made
available in the Green’s evaluator.

è Basis Expansion: As explained in Chapter 1 after Definition 12, analytic polynomials have
to  be  subjected  to  a  process  of  basis  expansion  after  reduction,  otherwise  they  will  in
general  not  remain  analytic  polynomials.  The  Green’s  evaluator  takes  care  of  this  issue
automatically.

è Action Operators: The analytic polynomials are built on an analytic algebra that forms the
parameter  domain  of  the  multiplication  operators.  The  operations  available  on  this
domain~differential,  integral,  cointegral,  left  and  right  boundary  action~are  fully  sup
ported by the Green’s evaluator.
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è Computing  Green’s  Operators:  This  is  of  course  the  heart  piece,  which  puts  together  all
the components listed above. For obtaining the Green’s operator induced by the differential
operator  T  and  the  boundary  operators  B1 , ¼, Bn ,  one  may  simply  compute
Green@T, XB1 , ¼, Bn\D .
è Properties of Analytic Algebras:  They are used for the confluence proof; see the explana

tion below.

The Green’s evaluator needs just two options: The option BoundaryPoints specifies the inter
val on which the BVP is to be solved, the default being the unit interval. In case one wants to see a
nullspace projector, a  right inverse or  a  Green’s operator in its  "raw form" (meaning in the latter
case that one will in general not be able to read off the Green’s function), one may deactivate the
option ReduceAfterwards, which is of course activated by default.

Options@GreenEvaluatorD
8BoundaryPoints ® 80, 1<, ReduceAfterwards ® True<
?? BoundaryPoints

´ Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘BoundaryPoints

?? ReduceAfterwards

´ Theorema‘Evaluators‘UserEvaluators‘GreenEvaluator‘ReduceAfterwards

The  Green’s  evaluator  is  also  central  place  for  providing  the  special  parsing  and  formatting
used  throughout  the  Green’s  suite.  All  the  special  notations  are  provided  both  on  the  input  side
(parsing)  and  on  the  output  side  (formatting).  The  former  is  done  by  the  Mathematica  function
MakeExpression,  the  latter  by  the  Mathematica  function  MakeBoxes.  The  details  about  these
processes  are  irrelevant;  let  us  just  give  the  correspondence  between  the  concrete  and  abstract
syntax:

è Multiplication  Operator:  An  expression  of  the  form  ` f p  is  represented  internally  as
ÔMultiplicationOperator@ f D .
è Basis  Expansion:  An  expression  of  the  form  f #  is  represented  internally  as

ÔBasisExpansion@ f D .
è Boundary  Action:  Expressions  of  the  form  f ¬  and  f ®  are  represented  internally  as

ÔLeftBoundaryValue@ f D  and ÔRightBoundaryValue@ f D , respectively.

è Integral  and  Cointegral  Action:  Expressions  of  the  form  Ù *
f  and  Ù* f  are  represented

internally  as  ÔIndefiniteIntegral@ f D  and  ÔIndefiniteCoIntegral@ f D ,  respectively.  The
precedence of these operators is adjusted according to Convention 21.

è Definite  Integral  Action:  An  expressions  of  the  form  � f  is  represented  internally  as

ÔDefiniteIntegral@ f D .  The  precedence  of  this  operator  is  adjusted  according  to
Convention 21.

è Right  Inverse:  An  expressions  of  the  form  Tì  is  represented  internally  as
ÔDifferentialOperatorRightInverse@TD .

Having now finished the description of the essential features provided by the Green’s evaluator,
let us briefly describe the main interface of the confluence tools, the function ProveConfluence in
the Green’s evaluator. As explained above, this function is basically a specialized shell around the
function SPolynomials  sketched in Section 3. Since it is supposed to prove the confluence of just
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function SPolynomials  sketched in Section 3. Since it is supposed to prove the confluence of just
one  system~the Green’s  identities hardwired in  the  Green’s  evaluator~there is  no  need for  any
arguments. Hence one can ask for the confluence proof by simply saying:

ProveConfluence@D
The main output from this function is of course: YES or NO, i.e. whether or not all S|polynomi

als  have  reduced  to  zero.  This  is  shown  at  the  very  end  of  its  output,  together  with  the  timing
information, the  total  number of  S|polynomials and the  number of  nonzero ones (which is  hope
fully 0). Besides this cumulative result, it gives the trace for every S|polynomial reduction (where
the caption is now "The rules ¼ and ¼  yield the S|polynomial ¼:" rather than "We compute:"~
see  Section 3);  see  Computation 29  for  several  full  examples.  The  justifications of  the  equalities
linking the reduction chains are of a dual nature: They either come from a polynomial equation of
Input 14 or from one of the properties of analytic algebras. In case of problems, the offending S|
polynomials and the rules where they come from are repeated at the end of the computation (which
was very helpful when tuning the Green’s identities and the axioms of analytic algebra).

Fortunately,  this  last  feature  of  ProveConfluence  was  not  used  in  the  final  proof  of
Theorem 29¼
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3 Implementation Notes

Whereas  the  last  chapter  was  oriented towards  users  of  the  Green’s  suite  who  may not  be  inter
ested in any internal issues of implementation, the present chapter wants to address the program
mers.  Our  goal  is  to  give  a  rough outline of  how the various functions described in  the  previous
chapter have been realized and to point out some of the subtler points hidden in the code. There
fore it seems most natural to follow the same structure as in the user chapter, commenting first on
some  general  issues  of  implementation,  then  specifically  on  the  noncommutative  polynomial
reductor, the matrix evaluator, and the Green’s evaluator.

The structure  of this chapter is essentially as that of the previous one. In Section 1, we briefly
discuss some general issues concerning programming in Theorema. Section 2 explains the architec
ture  of  the  Green’s  suite  from  the  programmer’s  point  of  view.  As  in  the  previous  chapter,  the
remaining  sections  describe  the  three  main  components  of  the  Green’s  suite:  the  polynomial
reductor  in  Section 3,  the  matrix  evaluator  in  Section 4,  and  finally  the  Green’s  evaluator  in
Section 5.

3.1 General Design Principles in Theorema Programming

In  its  current  version,  Theorema  uses  Mathematica  for  three  different~and in  principle orthogo
nal~purposes:

è Its front|end is used for convenient input and output of mathematical formulae in natural
syntax.  There  is  hardly  any  other  system  in  the  world  that  allows  so  much  freedom  in
programming all details of parsing and formatting, covering a great portion of the notations
really used  by  the  working mathematician. (Note,  however,  that  Mathematica  does  not~
yet~officially support custom|tailored lexical analysis, which would be important e.g. for
choosing a now text|like symbol like í to be used as an infix operator.)

è The vast library of mathematical functions provided by the Mathematica kernel as well as
by  its  add|on  packages  may  be  used  within  proofs  and  computation  if  desired.  We  have
made use of this facility for providing the built|ins of the Green’s evaluator; see Section 5
of Chapter 2.  (As explained in Section 1 of Chapter 2,  this cannot introduce any inconsis
tency,  because  nothing  is  imported  by  default;  the  user  always  has  to  demand  external
knowledge explicitly.)

è Finally,  Mathematica  is  also  the  implementation  platform  of  Theorema.  This  is  no  final
decision,  because  in  essence  we  use  only  a  few  very  basic  rewrite  functions  that  can  be
implemented in  other  languages  like  C or  Java or  ML.  The advantage of  Mathematica  is
that it is a very convenient system for rapid prototyping; its disadvantage is that it is very

slow (for some tasks the slow|down is as much as 103 ).
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In the present chapter, the only Mathematica aspect important to us is the third. Let us therefore
first  state  some  of  the  primary  design  principles  of  Mathematica  programming  as  we  see  it  in
Theorema.  One  important  aspect  is  that  Mathematica  provides  some  fairly  efficient  mechanisms
for  structuring  moderately  large  amounts  of  code.  In  Theorema,  we  have  approximately  150
different files, each containing hundreds of lines of code. The basic unit for structuring this mass is
the Mathematica concept of packages:

è Every file corresponds to one package, having its own namespace that is typically named
as  the  file.  The  namespaces~called  contexts  in  Mathematica~are  hierarchically  orga
nized,  and their structure is  typically isomorphic to the directory structure of the physical
files underlying the packages.

è A package has a  clear interface  that  defines which of  the symbols are to be exported; all
other symbols are only visible inside the package as a kind of local auxiliaries (this is even
true  for  global  variables  as  long  as  they  are  not  exported~hence  we  call  such  variables
package|global). In C++ terminology, the former symbols would be called "public" and the
former "private".

è The packages are loaded on along their dependency graph. Each package starts by announc
ing  its  own  name  together  with  the  names  of  those  packages  on  which  it  depends.  The
Mathematica package mechanism then makes sure that everything is recursively loaded at
the  proper  time when the  top|level package is  loaded; this is  what  happens when saying:
Needs["Theorema‘"].

è The  system  is  loaded  on  a  dynamical  basis.  When  Theorema  is  first  started,  only  the
crucial  packages  are  provided.  But  whenever  the  user  issues  a  command  mentioning
certain autoload keywords like the name of user prover, the system will automatically load
the necessary portion of packages for executing the command specified by the user.

The file structure of Theorema consists of the following key branches:

è The language directory  Theorema/Language/  contains all  the material related to parsing
and  formatting  (centered  on  MakeExpression  and  MakeBoxes,  respectively),  the  user
language (whose core functions are Prove, Compute, Solve), and the formal text language
(providing  most  importantly  the  environments  like  Theorem,  Lemma,  Definition).  The
language directory has three subdirectories General/, Syntax/, Semantics/.

è The  kernel  directory  Theorema/Kernel/  containing  the  init  file  responsible  for  properly
setting up Theorema. This directory also contains the file with the autoload data mentioned
above.

è The technical directories Theorema/General/  and Theorema/System/  containing various
functions for  administering the overall  data structures used by the system. The Theorema
developer  can  also  find  some  practical  programs  for  package  synthesis  and  debugging
there.

è The prover directory Theorema/Provers  contains all the basic and user provers of Theo
rema.  Each of  the former is  typically contained in one subdirectory with a corresponding
name  (e.g.  the  PredicateProver resides  in  the  subdirectory PredicateLogic/),  whereas  the
latter ones are collected in one subdirectory named UserProvers/.
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è The  evaluator  directory  Theorema/Evaluators  is  somewhat  analogous  to  the  prover
directory. However, as of now, there was essentially only one basic evaluator and no user
evaluator.

è The  user  directory  Theorema/User/  containing  customization files  for  modifying certain
issues  of  style  according  to  the  taste  of  a  user.  This  is  of  course  only  used  in  the  local
directory structure (see below).

The  Theorema  file  structure as  sketched  above  usually  resides in  some system|wide location,
which we call  the public installation.  In  addition to this installation available to everyone,  a  user
may also create her own private installation. The latter has exactly the same structure as the public
installation, and so Mathematica can use the following simple rule for resolving any package in the
Theorema file structure. If a certain package should be loaded, the private installation is checked: if
it contains a package by the name demanded, it is loaded, otherwise the analogous file of the public
installation is taken. This scheme ensures a high degree of flexibility, and it provides a convenient
development  platform: As  long  as  a  package  is  not  yet  worked  out  completely,  it  remains in  the
private installation; if it  is mature for common usage, it  can be migrated to the public installation
(which is of course layered through an appropriate versioning mechanism).

3.2 Organization of the Green’s Suite

As suggested by the Theorema file structure explained above, we have distributed the packages of
the Green’s suite in a manner analogous to the user and basic provers of Theorema:

è The  basic  evaluators  ReduceNoncommutativePolynomial  and  EvaluateMatrices  reside
as  individual  packages  in  the  evaluator  directory  Theorema/Evaluators/  alongside  with
the older basic evaluator EvaluateStandard.

è The user evaluator GreenEvaluator is located as another package within Theorema/Evalu
ators/ in a user evaluator subdirectory named UserEvaluators/.

è It  might  seem  natural  to  have  the  notation|related  code  somewhere  under  Theorema/
Language/Syntax/.  The  basic  agreement  in  Theorema  was,  however,  to  have  only  the
universally  relevant  notation  settings  in  the  language  subdirectory;  all  domain|specific
material of this kind should be packaged together with the prover / solver / evaluator using
it. Therefore we have put the corresponding code into the three packages mentioned above.

Besides  the  three  main  packages~the  polynomial  reductor,  the  matrix  evaluator  and  the
Green’s  evaluator~there  is  one  more  file  named  GreenEnvironments  in  the  user  evaluator
subdirectory,  alongside  with  the  package  GreenEvaluator.  It  contains  all  the  environments  that
are  needed  by  the  Green’s  evaluator,  e.g.  Formula["Differential|Operator  Right  Inverse"]  in
Input 41 or  Formula["Nullspace  Projector"]  in  Input 43  and  of  course  the  Green’s  system  in
Input 14; all in Chapter 1. For a detailed description of how to apply these environments separately
see Section 5 of Chapter 2.

The need of saving environments for later use is new in Theorema. Until now formal text was
only saved in normal Mathematica  notebooks, and one had to open these notebooks and evaluate
the  corresponding  cells  for  recommitting  the  environments  to  the  kernel.  In  case  of  the  Green’s
evaluator, we wanted to provide a more convenient mechanism for providing the necessary environ
ment  knowledge  to  the  kernel.  Therefore  we  have  implemented a  function named SaveEnviron
ment that accepts any environment currently known to the kernel as an argument and makes out of
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ment that accepts any environment currently known to the kernel as an argument and makes out of
it  a  definition  written  to  an  external  file  such  that  the  same  environment  knowledge  becomes
known  to  the  kernel  again  as  soon  as  the  external  file  is  loaded  like  a  package.  For  example,
consider the following two cells:

FormulaA"Differential|Operator Right Inverse", any@TD,
Tì = ä

i=1,¼,n

aãΛ
`

i  x q A aã-Λ
`

i  x q
ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Ap = poly@TD, n = deg@pD, Λ

`
= rad@pDE

E
SaveEnvironment@Formula@"Differential|Operator Right Inverse"DD;

When  evaluating  these  two  cells,  the  following  will  happen:  As  usual  in  evaluating  environ
ment  specifications,  the  first  cell  commits  the  knowledge  about  Formula["Differential|Operator
Right  Inverse"]  to  the  kernel.  Evaluating  the  second  cell  will  then  write  a  definition  like  this  to
some predefined external file:

Formula@"Differential|Operator Right Inverse"D :=
·fml@"Differential|Operator Right Inverse", ·range@·simpleRange@·var@Tma‘TDDD, True, ·

flist@
·lf@"",

ÔEqual@ÔDifferentialOperatorRightInverse@·var@Tma‘TDD,
ÔWithLocalValues@·range@

·locval@Tma‘p, poly@·var@Tma‘TDDD,
·locval@·var@Tma‘nD, deg@Tma‘pDD,
·locval@·var@OverHat@Tma‘ΛDD, rad@Tma‘pDDD,

ÔProductOf@·range@·integerRange@·var@Tma‘iD, 1, ·var@Tma‘nDDD, True, ÔTimes@
ÔMultiplicationOperator@ÔPower@ÔE,

ÔTimes@ÔMatrixSubscript@·var@OverHat@Tma‘ΛDD, ·var@Tma‘iDD, Tma‘xDDD, A,
ÔMultiplicationOperator@ÔPower@ÔE,

ÔTimes@ÔMinus@ÔMatrixSubscript@·var@OverHat@Tma‘ΛDD, ·var@Tma‘iDDD, Tma‘xDDDDDDDDDD
Evaluating this definition has the same effect as evaluating the first of the two cells displayed

above. Hence the environment information will be made available to the kernel when the external
file  containing this  definition is  loaded.  Now the  structure of  the  file  "GreenEnvironments.nb" is
such that it contains~besides some administrative functions~pairs of cells like the one above, the
first always being an environment specification and the second a corresponding call to SaveEnvi
ronment  for  writing  the  definition  to  the  external  file,  which  is  defined  to  be  "Green
Environments.m".

The  programmer  of  the  Green’s  evaluator  uses  this  file  as  follows:  Whenever  she  wants  to
make some changes to the environments to be used by the evaluator, she modifies the correspond
ing  specifications  in  the  file  "GreenEnvironments.nb"  accordingly.  Having  done  so,  she  simply
evaluates the package initialization (this can be done by the menu command Kernel ® Evaluation
®  Evaluate  Initialization).  This  will  automatically  create  a  new  version  of  "Green
Environments.m", which is the source file used by the Green’s evaluator.

3.3 Implementation of the Polynomial Reductor

Before going into any details about the implementation, we should answer the following fundamen
tal question: Why should one create a new evaluator in the first place? In principle, one could use
the Theorema all|purpose evaluator EvaluateStandard also for reducing polynomials. This would
be very cumbersome, though, for the following reasons:
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è Handling  normalization  rules  such  as  polynomial  expansion  should  be  internalized  both
for  efficiency  and  clarity.  Adjoining  rules  like  Ha + bL c ® ac + bc  to  the  reduction  rules
coming from polynomial equalities would cause a considerable chaos and slowdown of the
overall  computation.  Moreover,  several  axioms such as  additive commutativity cannot  be
handled in a purely rewrite fashion.

è As explained in Section 3  of  Chapter 2,  we want  to use a  multi|level strategy that  breaks
the reduction process into several logical units that he have called reduction phases. Such a
strategy is not supported by EvaluateStandard.

è We want to be able to see the complete trace information about a reduction, including all
the redex occurrences operated on in a particular step. The tracing support of EvaluateStan
dard  shows  only  the  equality  that  was  used  in  a  particular  step~which is  precious  little
information in long polynomials as those considered in the Green’s evaluator.

Having  thus  established  the  necessity  of  a  dedicated  evaluator  for  reducing  noncommutative
polynomials, let us now raise one question concerning a fundamental design decision. In Mathemat
ica,  rewriting  can  in  principle  be  done  by  two  different  mechanisms:  transformation  rules  or
downvalues  with  attributes  (see  the  Mathematica  book  for  details  about  these  issues).  The  latter
method  has  the  obvious  advantage  of  normally  being  more  efficient,  but  one  loses  some  of  the
finer  points  of  tracing  and  evaluation  control.  In  a  previous  version  of  the  evaluator,  we  have
provided an option for deciding between traced computations via transformation rules and untraced
ones via downvalues / attributes. We have eliminated this choice in the current version, using only
transformation rules for the following reasons:

è The straight|forward implementation with downvalues /  attributes turned out to be slower
than its counterpart with transformation rules! This was probably due to the attributes used
for  associativity  and  commutativity,  since  they  waste  a  lot  of  time  in  AC  matching,
whereas  the  transformation  rules  simply  keep  the  polynomials  in  flat  and  ordered  form
throughout.

è When  using  the  attributes  Orderless  for  enforcing  commutativity  of  addition,  it  is  not
possible to specify any particular term ordering.

è In  most  cases,  we  wanted  to  have  trace  information  such  that  any  supposed  speedup  by
downvalues / attributes becomes negligible anyway.

Though  not  as  natural  as  the  traditional  combination  of  downvalues  with  attributes,  it  might
also  be  worthwhile to  try  out  an  implementation that  is  fairly similar to  the  present  one  but  uses
conditional downvalues without any attributes  for  effecting the transformations now governed by
rules. We have not yet explored this approach, but the gain in speed would probably not be substan
tial.

Let  us  now  describe  the  overall  structure  of  the  computational  process  carried  out  by  the
reductor. As explained in Section 3 of Chapter 2, we use an approach combining normalization and
reduction steps, which are governed by the following main loop:

è The  input  term  is  first  fed  through  a  postprocessor  ensuring  that  we  have  a  polynomial
term, meaning an expression generated by the following grammar:

PolTerm:: = PolTerm + PolTerm È PolTerm * PolTerm ÈAtom
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Atom:: = Indeterminate ÈCoefficient

Thus  we  have  to  eliminate  all  symbols  foreign  to  the  signature,  in  particular  subtraction
(a - b  is rewritten into a + H-1L b  with -1  regarded as a complex number) and powers are
either  resolved  into  iterated  multiplications  or~in  case  they  are  actually  pseudopowers
(see Section 3 of Chapter 2)~into the appropriate indeterminates. Note that other symbols
outside the signature just specified are understood as unknown complex numbers.

è The polynomial term is then normalized according to the usual axioms of noncommutative
polynomial  rings:  First  of  all,  domain  simplification  according  to  the  given  built|ins  is
carried out. For example, a polynomial like X4�2  might be simplified to X2 , where X�  is an
indeterminate. Second, the polynomial term is expanded and its numerical coefficients are
extracted and aggregated in front of the resulting monomial forms. This creates expressions
described by the following grammar (using blank notation for sequence variables~see the
Mathematica book):

PolyForm:: = ÔPlus@Monomial___D
MonForm:: = ÔTimes@NumCoeff, Atoms___D

Here  NumCoeff  is  a  complex  number  constant  and  Atoms___  stands  for  a  sequence  of
atoms  as  specified  before,  except  that  it  must  not  contain  complex  number  constants.  If
there is no explicit numerical coefficient in a monomial form, NumCoeff is of course set to
1. Note also that the number of monomial forms may be zero (giving the polynomial form
0),  as  well  as  the  number  of  atoms  within  a  monomial  (giving  the  monomial  form  1).
Third,  like  monomial  forms  within  such  a  polynomial  form  are  collected.  For  example,
2 X + Y + 7 X  is  rewritten to  9 X + Y .  Fourth,  the  monomial forms are  ordered within the
polynomial  form  according  to  the  term  ordering  specified  by  the  user.  This  finished  the
normalization of polynomial terms, and the resulting normal forms will then be polynomial
forms in the stricter sense introduced in Section 4 of the Appendix.

è The  polynomial  form thus  generated  is  now  subjected  to  reduction.  If  none  of  the  given
polynomial equalities are applicable, we have a canonical form with respect to the reduc
tion system, and we can go to the next  step. Otherwise, we apply the next best reduction
rule that is available in the current phase (which is changed in another loop on top of the
main  loop  described  here).  The  resulting  polynomial  term  will  usually  not  be  in  normal
form anymore, hence we go back to the previous step.

è Finally, we pass the canonical form produced by the reduction process to a postprocessor,
which  rewrites  the  canonical  polynomial  form  "in  a  nice  way".  For  example,  we  would
normally  want  to  see  1 X + 1 Y  as  X + Y  and  the  empty  addition  as  0.  Moreover,  we
reintroduce the minus symbol at  this point,  rewriting a  polynomial form like X + H-YL  to
X - Y .  Iterated multiplications are also transformed back into powers now, e.g. producing

X2  Y + 3 Y3  from 1 X X Y + 3 Y Y Y .

Before describing some more detailed implementation issues, let us clarify the steps occurring
in the normalization process a bit further. We start from the identities characterizing the variety of
noncommutative unital rings:

(43)a + Hb + cL = Ha + bL + c
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(44)a + 0 = a

(45)a - a = 0

(46)a + b = b + a

(47)a Hb cL = Ha bL c
(48)a Hb + cL = a b + a c ß Hb + cL a = b a + c a

(49)1 a = a

Since we assume that C  is contained in the coefficient ring, the symbols 0, 1, -  of the signa
ture become superfluous, and Equalities (44, 45, 49) are absorbed into the computational laws for
complex  numbers,  combined  with  the  above|described  conventions  for  polynomial  forms.
Equalities (43,  47)  are  already  taken  care  of  by  using  the  flat  symbols  ÔPlus  and  ÔTimes.
Moreover,  Equality (46)  is  already  covered  as  well,  because  we  order  monomial  forms  within  a
polynomial  form  according  to  a  user|defined  term  ordering  as  mentioned  above.  Hence  only
Equality (48) remains to be treated in normalization: It is of course applied from left to right, and
this is exactly what we have called by the popular term polynomial expansion.

The interface to the polynomial reductor package is the function ReduceNoncommutativePoly
nomial. It carries out the following steps:

è The  options  passed  to  it  are  processed  in  the  usual  Theorema  fashion,  assigning  their
values to package|global variables.

è The reduction process is initialized by clearing the Theorema computational storage object
and setting up recognizer functions for each indeterminate specified by the user.

è Then  the  given  knowledge  bases~the  visible,  hidden  and  built|in  part~are  processed,
building  up  a  suitable  representation  of  the  given  polynomial  equalities,  including  those
corresponding to the option Units.

è The  reduction  system  contained  in  this  representation  is  now  learned  by  constructing  a
pool of transformation rules for each reduction phase, assigning them to a package|global
variable that is indexed by the strings denoting the phase labels.

è Finally,  the  computation  is  carried  out  in  the  way  explained  above.  This  is  done  by  the
crucial function named DoReduction, which we will describe in some more detail below.

è The  result  of  the  computation  is  then  displayed  together  with  the  tracing  information
unless the latter was suppressed.

The main function for  executing the computation  is  DoReduction,  and  it  proceeds essentially
as follows:

è The given expression is first preprocessed and echoed in the trace.

è It  is  then normalized  and  passed  to  the  recursive function DoAllPhases;  its  result  is  then
postprocessed, echoed to the trace, and returned to the main interface.
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è The function DoAllPhases loops over the list of reduction phases,  using the Mathematica
function Fold.  For each phase, the function DoPhase  is applied to the current polynomial
form and the corresponding phase label.

è Now the phase|looping function DoPhase lets the pool of transformation rules associated
with the given phase operate on the input polynomial form until it stabilizes; this is done by
the Mathematica function FixedPoint. In fact, the operation applied at each step is not just
replacement  with  respect  to  the  current  pool  or  rules  but  rather  a  more  comprehensive
function DoRuleAndUbiquitous.

è Naturally,  the  function DoRuleAndUbiquitous  does  two things:  First  it  applies  the  func
tion DoRule with the current phase label, and second the function DoUbiquitous.

è The  function  DoRule  is  the  actual  engine  that  does  the  replacement  with  respect  to  the
pool  of  rules  associated  with  the  given  phase  label.  It  uses  the  Mathematica  function
Replace  for this purpose. The result of the rule application is normalized such that all the
intermediate expressions are ensured to be legitimate polynomial forms.

è The function DoUbiquitous  is somewhat analogous to DoRule,  only that it  uses the pool
of  rules  associated  with  the  ubiquitous  "phase"  (which  is  actually  represented  as  a  phase
labeled by the empty string), and it does not only one replacement but a whole saturation
cycle. This is effected by operating the Mathematica  function FixedPoint  on the function
DoRule, instantiated by the ubiquitous rules.

The code implementing this scheme is quite readable and short, so we list it here for illustration
purposes.

Clear@DoReduction, DoAllPhases, DoPhase, DoRuleAndUbiquitous, DoRule, DoUbiquitousD;
DoReduction@poly_D :=

Module@8input, result, output<,
TraceReduction@PostprocessPolynomial�PreprocessPolynomial�poly, "¼"D;
input = NormalizePolynomial�PreprocessPolynomial@polyD;
result = DoAllPhases@inputD;
output = PostprocessPolynomial@resultD;
TraceReduction@outputD;
outputD;

DoAllPhases@poly_D :=
Fold@DoPhase, poly �� DoUbiquitous, $ReductionPhasesD;

DoPhase@poly_, phase_StringD :=
FixedPoint@DoRuleAndUbiquitous@#, phaseD &, polyD;

DoRuleAndUbiquitous@poly_, phase_StringD :=
DoRule@poly, phaseD �� DoUbiquitous;

DoRule@poly_, phase_String: ""D :=
Replace@poly, $RulesOfPhase@phaseDD �� NormalizePolynomial;

DoUbiquitous@poly_D :=
FixedPoint@DoRule, polyD;

The  tracing  functionality  does  not  show  up  in  this  code  because  it  is  already  built  into  the
transformation  rules.  This  can  be  seen  by  looking  at  their  internal  representation.  The  example
below shows  the  rule  that  is  generated  from the  equality  "DA" in  the  Green’s  system.  (Here  we
have entered the private context of the reductor in order to avoid long context paths cluttering the
essential structure of the rule.)

Begin@"Theorema‘Evaluators‘ReduceNoncommutativePolynomial‘Private‘"D;
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$RulesOfPhase@"1. Equalities for Isolating Differential Operators"DP1T �� InputForm

ÔPlus[presum___, ÔTimes[prefac___, ÔD, A, postfac___], 
  postsum___] :> (TraceReduction[PostprocessPolynomial[
    ÔPlus[presum, ÔTimes[prefac, FramedExpression[
       ÔTimes[ÔD, A]], postfac], postsum]], "DA"]; 
  ÔPlus[presum, ÔTimes[prefac, 1, postfac], postsum])

End@D;
As we can see, this rule applies to anything having outermost symbol ÔPlus  (which is the case

for  all  polynomial  forms)  and  containing  within  it  an  expression  headed  by  ÔTimes  (all  sum
mands of a polynomial form are of course monomial forms and hence meet this condition), which
must have at  least two factors ÔD  and A  right next  to each other (note that  ÔD  is the internal
form of  the  Theorema  symbol  D ,  thus  protecting  it  from the  Mathematica  interpretation of  total
derivatives).  Any  such  polynomial  form  is  then  replaced  by  an  expression  of  the  formHTraceReduction@¼D; ÔPlus@¼DL , obviously consisting of two parts.

The first part of this expression has the side effect of recording the trace information in some
special|purpose  data  structure,  whereas  its  result  with  respect  to  the  replacement  is  discarded  as
indicated by the semicolon in Mathematica. The second part is just the original polynomial except
that  it  has  only  one  factor  1  instead  of  the  two  factors  ÔD ,  A ;  so  its  effect  is  to  replace  D A
within  a  polynomial  by  1.  Observe  that  the  original  polynomial  is  written  to  the  trace  object,
framing the two factors ÔD  and A , thus signifying the redex in the trace. Moreover, this polyno
mial is also fed through the postprocessor for making it look nice.

One could also ask here why we do not simply generate a rule of the type

ÔTimes@prefac___, ÔD, A, postfac___D ¦ ÔTimes@prefac, 1, postfacD
instead of the more circumstantial

ÔPlus@presum___, ÔTimes@prefac___, ÔD, A, postfac___D, postsum___D ¦
ÔPlus@presum, ÔTimes@prefac, 1, postfacD, postsumD

encountered in the example above. The reason is that it is much more efficient to take advantage of
our  knowledge  about  the  context  of  the  redex.  This  allows  us  to  use  the  Mathematica  function
Replace rather than the usual ReplaceAll, which is usually denoted by the famous Mathematica /;
or  slash|semi  command.  Whereas  applying  the  former  to  an  arbitrary  expression  expr  means
"replace  expr  by  ¼",  the  latter  means  "replace  any  subexpression  of  expr  by  ¼".  Clearly  the
second task is much more complex and is therefore slower in Mathematica. That is why we prefer
to use Replace, as one can see in the code of DoReduction reproduced above.

Finally let us say something about the implementation of the function SPolynomials used in the
confluence tools. Its setup is completely analogous to the evaluator interface ReduceNoncommuta
tivePolynomial, only that it executes

SPoly �� CriticalWords@visiblekbD
instead  of  the  function  DoReduction.  The  function  CriticalWords  does  what  one  expects:  For
each  combination  of  two  equalities  in  the  visible  knowledge  base  visiblekb  (including combina
tions an equality with itself), it checks whether they overlap and aggregates a list of triples for all
those that do. These triples contain the name of the first rule, the name of the second rule and the
overlapping  monomial  form.  For  example,  the  monomial  forms  D A  and  A D  would  give  the
overlapping  monomial  form  D A D ,  and  reversing  roles  would  give  the  overlapping  monomial
form A D A .

The function SPoly  mapped over the list of triples generated by CriticalWords  will of course
create  the  S|polynomial  associated  with  each  triple.  For  example,  if  we  have  the  triple  {"DA",
"AD", } associated with the first overlap example mentioned above, the function SPoly will
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"AD", D A D} associated with the first overlap example mentioned above, the function SPoly will
use  the  rules  "DA" and  "AD" on  D A D ,  yielding  1 D  and  DH1 - LL ,  respectively.  Then  it  forms
their difference, which is 1 D - DH1 - LL  in our case. Finally, this polynomial is put into standard
form, giving D L  in this example.

Using the rule "DL", this S|polynomial will of course be reduced to zero!

3.4 Implementation of the Matrix Evaluator

The matrix evaluator is implemented on top of the default evaluator EvaluateStandard. Its outer
most loop consists of the Mathematica construct FixedPoint used to the following operation: First
apply the default evaluator to the current expression, adopting all the given knowledge bases and
the  options.  Then  use  a  certain  pool  of  transformation rules,  called  the  matrix  built|ins,  on  them
until saturation is achieved; this is done with the Mathematica //. construct. Finally, another transfor
mation  rule,  called  the  contraction  built|in,  is  used  just  once;  so  this  time  the  Mathematica  /.
construct is used for accomplishing the transformations.

The  matrix  built|ins  are  in  effect  just  implementations  of  all  the  matrix  operations  listed  in
Section 4 of Chapter 2.  Operations are only carried out if the involved matrices are given in con
creto.  For example, the transformation rule

ÔPlus@matrices___ÔMatrixD ¦ HMapThread@ÔPlus, MatrixToList �� 8matrices<, 2D �� ListToMatrixL
applies  only  to  a  sum  of  concretely  given  matrices  (since  they  are  always  wrapped  by  the
ÔMatrix  tag). This is the case when using a constructor of the form

i
kjjj

a b

c d

y
{zzz

explained in Section 4 of Chapter 2 and whenever a matrix is derived from such concrete matrices.
Note that we have to use some pre| and postprocessing functions called MatrixToList and ListTo
Matrix,  respectively. This is necessary so that we can draw on the list functions of Mathematica,
namely  MapThread  in  the  example  above.  The  pre|  and  postprocessors  mediate  between  our
internal representation

ÔMatrix@ÔTuple@ÔTuple@a, bD, ÔTuple@c, dDDD
and the plain Mathematica lists

88a, b<, 8c, d<<,
all exemplified by the matrix given above. The purpose of having our own internal representation
is of course to keep control over parsing, evaluating and formatting according to our own will.

The case of multiplication is a bit more subtle. We have to distinguish multiplication of matrix
by  matrix,  scalar  by  matrix,  and  matrix  by  scalar  (the  last  two  cases  obviously  do  not  occur  for
addition~at  least  we  do  not  consider  them).  Accordingly,  we  have  three  transformation rules  in
the matrix built|ins:

ÔTimes@pre___, a_?ScalarQ, A_ÔMatrix, post___D ¦
ÔTimes@pre, Map@ÔTimes@a, #D &, A, 83<D, postD

ÔTimes@pre___, A_ÔMatrix, a_?ScalarQ, post___D ¦
ÔTimes@pre, Map@ÔTimes@#, aD &, A, 83<D, postD

ÔTimes@pre___, A_ÔMatrix, B_ÔMatrix, post___D ¦
ÔTimes@pre, Inner@ÔTimes, MatrixToList@AD, MatrixToList@BD, ÔPlusD �� ListToMatrix, postD
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The  first  two  rules  use  the  classifier  ScalarQ  for  recognizing  scalars;  it  uses  the  type  inference
mentioned in  Section 4  of  Chapter 2.  They  are  implemented via  the  Mathematica  function  Map,
which "throws" the  scalar  multiplication onto each entry of  the  matrix.  Since we use the internal
representation with nested tuples and ÔMatrix  wrapped around (see above), these entries live at
level 3  of the expression tree; this is the meaning of the last argument of the Map function. Note
that we do not have to change the internal representation into lists since the Map function can deal
with expressions having arbitrary head symbols.

The  third  rule  is  again  based  on  the  head  symbol  ÔMatrix  restricting  application  to  two
concretely given matrices occurring next to each other within in a product. The matrix product is
implemented using  the  Mathematica  function Inner,  which  allows us  to  introduce the  Theorema
versions  ÔTimes  and  ÔPlus  for  the  multiplication  and  addition  of  entries,  respectively.  The
function Inner expects plain Mathematica lists, so this time we have to use the pre| and postproces
sors again.

The contraction built|in consists of the sole transformation rule

ÔMatrix@ÔTuple@ÔTuple@a_DDD ¦ a

used for replacing 1 ´ 1 matrices by the single entry they contain.
There are numerous other operations that one could (and should) implement in a matrix evalua

tor. But matrix algebra is clearly not a focal point of interest of the material to be developed here.
We have therefore restricted ourselves to the absolute minimum needed for our purpose of comput
ing Green’s operators.

3.5 Implementation of the Green’s Evaluator

The Green’s evaluator is implemented as a cascade consisting of the following three stages:

è The  first  module  applied  to  the  input  expression  is  named  UnfoldDefinitions.  This  is
essentially a call to the default evaluator EvaluateStandard using the relevant definitions
for  the  nullspace  projector,  Wronski  operator,  differential|operator  right  inverse  and
Green’s  operator  (see  Section 5  of  Chapter 2  for  details)  as  well  as  some  built|ins  for
executing  the  operations  wron,  left,  right,  poly,  deg,  rad  (again  we  refer  to  Section 5  of
Chapter 2 for details) and for expanding product quantifiers.

è The second module applied thereafter is named SimplifyMatrices, and it is basically just a
cover of the matrix evaluator  EvaluateMatrices,  calling it with no other knowledge than
the  action  operators  listed  in  Section 5  of  Chapter 2.  The  reason  for  including  the  action
operators already at this point is that applying them here will usually result in some consid
erable simplifications in the result of this module. Of course, other simplifications will only
be possible in conjunction with the reduction process effected by the next module.

è The third module finally applied is named SimplifyPolynomial, as it starts the polynomial
reductor on the result of the previous module. The reductor is of course properly supplied
with the necessary options, e.g. specifying the indeterminates via

Indeterminates ® 8A, B, D, L, R, `�p<
The reduction phases are set as discussed in Section 2 of Chapter 1, and trace generation is
suppressed.  The  Green’s  system  is  specified  as  the  visible  knowledge  base  (unless  the
option  ReduceAfterwards  has  been  deactivated),  and  the  built|ins  are  again  the  action
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option  ReduceAfterwards  has  been  deactivated),  and  the  built|ins  are  again  the  action
operators as above plus the function effecting basis expansion.

Let us now briefly discuss the built|ins implemented in the Green’s evaluator package.
Basis  expansion is  accomplished by  BasisExpansion,  which  is  a  recursively defined function

supposed to expand all multiplication operators occurring in a polynomial form. Its crucial clause
is the following:

BasisExpansion@`ÔPlus@args__DpD :=
BasisExpansion@`#pD & �� ÔPlus@argsD;

In its first instance, this causes the expansion of a given polynomial form to split into expansions of
each of its monomial forms. But more importantly, this will also resolve a multiplication operator

like `x2 + x3p  into `x2p + `x3p , thus effecting the additive breakdown into basis elements.
Similarly, constant factors are extracted as follows:

BasisExpansion@`ÔTimes@pre___, Λ_?ConstantQ, post___DpD :=
ÔTimes@Λ, `ÔTimes@pre, postDp �� BasisExpansionD;

This will transform a multiplication operator like `2 x2p  to 2 `x2p , thus effecting the homogeneous
breakdown into basis elements. The other definition clauses of this function are essentially special
cases  of  the  two  clauses  above  (dealing  e.g.  with  products  and  sums having  only  one  argument)
and some clauses for closing the recursion.

The subsidiary function ConstantQ used above for checking constancy is needed for avoiding

expansions like `x x2p  transforming to x `x2p . It evaluates to false iff the argument contains an x  or
a ·var or an integration operator. The check for ·var is necessary for the confluence proof, because
there we have to deal with multiplication operators ` fp  that are induced by an unknown function
f ; the internal form of such function variables is ·var[f].

The action operators are implemented by appealing to Mathematica in a straight|forward way.
The actions for the left and right boundary action, differentiation, indefinite integral and cointegral
are realized by the following definitions:

LeftBoundaryValue@term_D :=
MathematicaSimplify@term �. Symbol@"x"D® $BoundaryPointsP1TD

RightBoundaryValue@term_D :=
MathematicaSimplify@term �. Symbol@"x"D® $BoundaryPointsP2TD;

Derivative1@term_D :=
Mma2Tma@System‘D@Tma2Mma@termD, Symbol@"x"DDD;

IndefiniteIntegral@term_D :=
Mma2Tma@Integrate@Tma2Mma@termD, 8Symbol@"x"D, $BoundaryPointsP1T, Symbol@"x"D<DD;

IndefiniteCointegral@term_D :=
Mma2Tma@Integrate@Tma2Mma@termD, 8Symbol@"x"D, Symbol@"x"D, $BoundaryPointsP2T<DD;

The  only  tricky  point  about  these  functions  is  that  they  do  not  refer  directly  to  the  symbol  x
denoting the independent variable of functional expressions. The symbol x  is instead referenced by
Symbol["x"].  The  reason  for  this  slightly  unusual  way  of  addressing  symbols  is  that  the  above
definitions  should  be  applicable  within  a  Theorema  computation.  Such  computations  are  always

carried  out  in  the  protected  context  Theorema‘Computation‘  in  order  to  ensure  an  unpolluted
namespace,  thus  avoiding  any  unwarranted  external  knowledge.  Any  symbols  occurring  in  the
input are then transferred into this context; in particular, the symbol x  occurring in the multiplica

tion operators of polynomials will be translated into Theorema‘Computation‘x. If we had simply
used  x  in  the  above  definitions,  Mathematica  would  have  understood  this  as  Tma‘x,  because  x
lives in the Theorema standard context Tma‘; consequently the definitions would not apply to the
input  polynomials.  This  problem is  now avoided by  using Symbol["x"],  because this  expression

denotes  the  symbol   in  whatever  context  it  currently  occurs~hence  yielding  Theorema‘
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denotes  the  symbol  x  in  whatever  context  it  currently  occurs~hence  yielding  Theorema‘
Computation‘x  at  the  time  of  carrying  out  the  computation.  (Obviously  we  could  have  used

Theorema‘Computation‘x  directly  instead  of  the  slightly  cryptic  Symbol["x"],  but  this  would
fail as soon as the name of the computational context of Theorema changes.)

The polynomial operations poly, deg, poly are realized by the functions CharacteristicPolyno
mialOfDifferentialOperator,  DegreeOfPolynomial,  RootsOfPolynomial,  respectively.  The
former  simply  packs  the  coefficients  of  the  given  differential  operator  into  a  Theorema  tuple,  as
this  turns out  to  be  a  convenient polynomial representation for  the purposes needed here.  Conse
quently, the function DegreeOfPolynomial has the trivial implementation given by the Mathemat
ica  function  Length  (minus  one,  to  be  precise)  used  for  counting  the  number  of  entries  in  a  list
(which may of course also have the head ÔTuple). Finally, the function RootsOfPolynomial uses
the  Mathematica  command Solve  for  obtaining the  roots  of  the  given  polynomial  by  solving the
corresponding  polynomial  equation;  the  result  is  then  packed  into  a  row  matrix  using  the  Ô
Matrix format common in the matrix evaluator.

The operation implementing the Wronski matrix denoted by wron is the function WronskiMa
trixOfDifferentialOperator. It first constructs the fundamental system using an auxiliary function
FundamentalSystemOfDifferentialOperator,  then  applies  the  Mathematica  function  D  for
differentiating each  of  its  entries  up  to  n - 1  times,  where  n  is  the  number  of  fundamental  solu
tions; the result is of course represented using the ÔMatrix format again.

The  auxiliary  function  FundamentalSystemOfDifferentialOperator  calls  the  Mathematica
function DSolve,  which  guarantees  to  solve  any  linear  differential  equation  with  constant  coeffi
cients.  The  result  returned  by  this  command  is  one  function  containing  n  integration  constants,
whose  names  may  be  chose  by  the  option  DSolveConstants.  We  use  a  local  variable  C  for  this
name, thus obtaining a generic solution with n  parameters named C@1D , ¼, C@nD . In order to obtain
the  corresponding fundamental system,  we  create  a  table whose i|th  entry  is  the  generic  solution
with C@1D ,  ¼,  C@i - 1D ,  C@iD ,  C@i + 1D ,  ¼,  C@nD  replaced by 0, ¼,  0, 1, 0, ¼,  C@nD ,  with i  run
ning from 1 to n .

The functions left and right used for extracting the left and right boundary matrix  for a given
system of  boundary  operators  are  implemented by  LeftBoundaryMatrixOfBoundaryOperators
and  RightBoundaryMatrixOfBoundaryOperators,  respectively.  They  are  realized  by  some
trivial Mathematica book|keeping commands that shuffle the entries around as needed.

Finally, let us say a few words about the implementation of the top interface of the confluence
tools, namely the function ProveConfluence. As explained in Section 5 of Chapter 2, this function
is basically a shell built around SPolynomials. The latter is called with the Green’s system just as
in the main function GreenEvaluator, but it does not get any built|ins except for basis expansion
(note  that  we  still  need  transformations  like  `2 fp  expanding  to  2 ` fp ,  where  f  is  of  course  a
function  variable  here).  The  resulting  S|polynomials  are  then  reduced  by  an  auxiliary  function
named  ReduceSPolynomial,  and  some  logging  information  is  displayed  (see  Section 5  of
Chapter 2 for details).

The  function ReduceSPolynomial  is  basically a  call  to  the  polynomial reductor ReduceNon
commutativePolynomial,  again  using  most  settings  like  in  the  main  function  GreenEvaluator.
The  crucial  difference  is  that  the  properties  of  analytic  algebras  as  specified  in  Theorem 28  of
Chapter 1  are  given  as  an  additional  argument,  and  again  only  the  rules  for  basis  expansion  are
used as built|ins.

And  the  main  result  of  this  theorem was  that  ReduceSPolynomial  returned  always  the  same
polynomial: zero!
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Appendix: The Concept of Polynomial

Polynomials of some particular kind~not the ùusual÷ commutative polynomials~will be the main
building material for the methods presented in this thesis. Therefore we will now take the time for
explaining the concept of polynomial in rather great detail and placing it into its proper mathemati
cal context. For this purpose, we will follow a very frequent historical pattern: The first attempt of
defining polynomials in Section 1 seems confusing and worthless, rather a kind of silly mythology.
Therefore, it is replaced by a succinct and rigorous definition in Section 2, which does away with
all  those  mysteries and  provides  a  solid basis  for  effective computer implementation. After  some
deeper considerations, though, one is led back to the seemingly mystic old definition, now in the
clear  light  of  modern  logic  and  structure  theory;  this  is  what  we  will  show  in  Section 3.  This
provides not only a new appreciation of the old approach but even an alternative way of implemen
tation  that  may  include  many  other  types  of  polynomials  as  expounded  in  Section 4.  Finally  we
will  discuss  in  Section 5  how  to  "adjust"  the  degree  of  noncommutativity  to  the  level;  this  is
relevant in Chapter 1.

A.1 A Sloppy Definition

Polynomial  computation  lies  at  the  heart  of  algebra  and,  in  particular,  computer  algebra.  Some
people have even gone so far as to characterize computer algebra as the art of polynomial manipula
tion. Now we would not subscribe to this view as a reasonable definition of computer algebra (we
think that the approach in [44] is rather satisfactory; see also page 2 in [70]). We rather understand
this dictum as an observation expressing the ubiquity of polynomials throughout computer algebra
(note also the title of [70], which is the coursebook for computer algebra at our institute). Beyond
any  doubt,  the  polynomials  belong  to  the  core  notions  of  this  discipline,  deeply  penetrating  its
theoretical  foundations  as  well  as  the  practical  machinery  of  its  algorithms.  While  some  people
might hesitate to call it the most fundamental concept of computer algebra, it is at least fair to say
that it shares this role with a few mates like matrix, ideal or algebraic extension.

Given their paramount importance, polynomials ought to be introduced with conceptual clarity
and  impeccable  rigor.  Therefore  it  is  a  bit  surprising that  conventional  textbooks of  mathematics
are often vague and sloppy when they come to polynomials. In [54] on page 95, the usual polynomi
als over a unital and commutative ring R  are introduced thus (we have slightly adapted the words
to  our  present  setting):  "The  elements  of  an  algebraic  ring  extension  R@ΑD  can  obviously  be

obtained from the formal expressions c0 + c1  x + c2  x2 + ¼ + cn  xn  with c0 , ¼, cn Î R  and n Î N
if one replaces x  by the element Α . We call

(50)f HxL = c0 + c1  x + c2  x2 + ¼ + cn  xn

a  polynomial  in  x  over  R ;  the  symbol  x  is  called  its  indeterminate." Similar ùdefinitions÷  can  be
found in numerous introductory textbooks of mathematics.

What is  the problem with the above ùdefinition÷? First of  all,  the name "formal expression" is
rather mysterious.  We will resolve the mystery soon, but for now let us assume that we are naive
and  innocent  students  of  mathematics.  So  we  assume  that  we  know  what  an  "expression"  like

c0 + c1  x + c2  x2 + ¼ + cn  xn  means;  after  all,  we  have  dealt  with  such  expressions  numerous
times.  Now  let  us  look  at  the  logical  structure  of  the  whole  statement.  The  ùvariables÷
R, n, c0 , ¼, cn  are  to  be  quantified  universally  such  that  we  can  instantiate  them  for  concrete
examples like ,  arising from the instantiation ,  ,  ,  .  Strictly speak
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examples like 2 + x ,  arising from the instantiation R ¬ Z ,  n ¬ 1,  c0 ¬ 2,  c1 ¬ 1.  Strictly speak
ing,  this  is  already  problematic:  Under  the  quantifier,  we  have  here  a  flexible  sequence  of
ùvariables÷ that expands magically to the number of variables needed for each case. But first|order
predicate logic does not allow such magic (but see for example [41] for a new paradigm that does
allow this ùmagic÷ in a completely rigorous setting). By considering c0 , ¼, cn  as variables, we are
dealing  with  indivisible  symbols  just  like  A, B, C, ¼ ,  so  their  indices  are  purely  typographic
embellishments like the serifs in "A"~and this is certainly not the intention of the author. What he
really wants to say is, "for any natural number n  and any R|valued sequence c  having a support of
length n" (the support of a function is that part of its domain where the function maps into a num
ber  different from zero).  He could even abbreviate this by saying,  "for any R|valued sequence c
with finite support"; we will come back to this point presently. In any case, a term like cn  is now a
compound  of  the  intended  kind:  the  sequence  (function  with  domain  N)  c  applied  to  the  natural
number n . Understood in this way, equation (50) can be seen as an abbreviation for

(51)f HxL =â
i=0

n

ci  xi ,

and the sum quantifier appearing here can be introduced in the usual way (see for example page 58
in [14]). All this could be seen as a meticulous expansion of the above sentence into solemn predi
cate  logic,  as  it  is  usually  expected from the  ùmature mathematical reader÷.  Still  we  contend that
formulating the statement in the right way does not take any additional effort, and it makes life a
bit easier (not only for the not|so|mature reader).

So we see that the variables R, n, c  are universally quantified, but what about the ùvariable÷ x ,
which  is  mystically  called  an  indeterminate?  It  is  here  that  we  run  into  real  trouble.  On  the  one
hand, x  should be quantified universally such that we can substitute any ùnumber÷ a Î R  in (51) for
in order to evaluate f HaL . On the other hand, we want to regard a polynomial like 2 + x  as a defi
nite expression; as such, it cannot depend on the value of some ùglobal variable÷ x : If this variable
is set to some fixed number a , all the ùpolynomials÷ are nothing else than numbers, many of them
coinciding (depending on the choice of a)! For example, take 2 + x  as above and set a  to 0; now it

coincides with 2 - x  and 2 + x2  and 2 + 3 x - 7 x2 , etc. This is clearly not what we mean by polyno
mials! Hence the global variable cannot have a fixed value, which means that x  should be quanti
fied existentially. But how can we quantify a variable both universally and existentially?!?

There is another problem with the above ùdefinition÷. Consider a typical polynomial computa
tion like

(52)H2 + xL H-2 + xL = -4 + 2 x - 2 x + x2 = -4 + x2 .

What is the intermediate term in this equality chain? Is it  a polynomial? Obviously not,  since we
cannot have two distinct linear coefficients c1 . But if it is not a polynomial, what is it? A mysteri
ous creature that dissolves itself as soon as the ùreal÷ polynomial appears?
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A.2 A Rigorous Definition

Fortunately,  the  textbooks  of  computer  algebra  usually  do  not  indulge  in  such  mysteries.  They
introduce the polynomials over a coefficient ring R ,  denoted by R@xD ,  as the ring of all R|valued
sequences  with finite support,  endowed with  appropriate operations for  addition,  subtraction, and
multiplication (see for  example page  672 in [29]  or  page 17 in [70],  where  one  can find detailed
definitions of the concepts touched in this section). We have already come across these sequences
when we analyzed the logical structure of the mystic ùdefinition÷ given above. The new definition
as we find it in virtually all modern textbooks continues this line of thought to its logical end: The
sequence  c  in  (51)  is  really  the  only  essential  ingredient  of  a  polynomial;  all  the  rest  is  mystic
accessories!

The definition via sequences is very elegant and terse; we will therefore from now on call it the
succinct  definition.  One  can  also  paraphrase  it  as  follows:  The  ring  of  polynomials  R@xD  is  con

structed as R Å R Å ¼ = RHNL , the direct sum of countably many copies of R , and their multiplica
tion is given by the Cauchy product of sequences. At this point, we cannot resist the temptation of
mentioning the  ring  of  formal  power  series,  typically denoted  by  R@@xDD :  Dropping  the  finiteness
condition on the sequences, one arrives at R ´ R ´ ¼ = RN ,  the direct product  of countably many
copies  of  R .  Here  we  encounter  the  same  phenomenon  as  with  the  polynomials~the  succinct
definition  was  able  to  dispel  an  infamous  mystery  long  associated  with  power  series:  How  is  it
possible  that  one  can  derive  so  many  useful  identities,  even  when  the  involved  power  series  are
divergent? An extreme example is  given on page 347 in [32],  which is  concerned with solving a
recurrence  equation.  As  usually,  the  procedure  starts  by  encoding the  required sequence  c  in  the
coefficients  of  a  suitable  power  series  C Î RN  such  that  we  must  now  solve  for  C .  After  some
manipulation, one ends up with the differential equation

(53)C’ HxL = x2  C’’ HxL + 3 x C’ HxL + C HxL
and  initial  conditions  CH0L = C ’ H0L = 1.  Using  hypergeometric  series  techniques,  one  can  solve
(53), arriving at

(54)C HxL =â
n=0

¥

n! xn .

From this  power  series,  one  can  immediately read off  the  sequence c  solving the  original recur
rence  equation,  namely  cn = n! .  Admittedly,  this  is  not  a  very  impressing  problem.  But  it  does
make the point addressed before: The power series C  is as divergent as it can be~namely in the
whole complex plane except for the origin! Still it was very useful in solving the recurrence equa
tion¼  Such a  situation seemed quite  mysterious to  the  earlier  mathematicians, hence  they  called
this  notion  "formal  power  series",  meaning  that  they  simply  ignored  convergence  questions;  see
page  206  in  [32].  The  succinct  definition  clarifies  this  issue  completely~ignoring  convergence
means that  we are actually not  dealing with power series but  with plain sequences,  together with
some operations that  are  constructed to  imitate those on  the  corresponding power  series: Besides
the ring operations, one can also use differentiation as in (54),  integration, division, composition,
etc.  So  polynomials  and  power  series  are  merely  a  convenient  language  frame  for  talking  about
sequences,  and  sometimes  they  behave  similar  to  their  functional  counterparts.  So  the  only  left|
over mystery is maybe this: Is  it  just coincidence that everything fits together so nicely? We will
find an interesting answer to this question in Section 3.
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Of course, everything generalizes smoothly to multivariate polynomials. The only difference is
that  we  have  to  consider  multisequences  instead  of  sequences,  i.  e.  functions  Nn ® R  instead  of
N® R .  So the  ring of  multivariate polynomials and formal power  series,  accordingly denoted by

R@x1 , ¼, xnD  and  R@@x1 , ¼, xnDD ,  has  the  carriers  RHNn L  and  RN
n

,  respectively; the  operations  are
defined analogously. For details, see the literature cited above.

It seems that we have now clarified the mysteries addressed in Section 1. So let us try to answer
the two main questions that came up there. The first one is: What is the mystic indeterminate? Let
us first consider the univariate case R@xD . In terms of the succinct definition, x  is nothing else than
the sequence X0, 1\ . Within the ring R@xD  or R@@xDD , one cannot see much special in the polynomial
x ;  only  the  corresponding  compositional  structure  reveals  it  as  its  neutral  element.  Passing  to  a
multivariate  polynomial  ring  R@x1 , ¼, xnD ,  the  real  meaning  of  the  indeterminates  x1 , ¼, xn

becomes  clear  when  we  realize that  every  polynomial  splits  into  a  sum of  monomials,  and  every
monomial  consists  of  a  coefficient  in  R  and  a  power  product.  The  latter  form  a  monoid,  often
denoted by @x1 , ¼, xnD ,  and in this monoid, the indeterminates serve as the primitive generators.
So  the  in|determinates  turned  out  to  be  very  determinate  polynomials  within  the  ring!  This  also
concludes an earlier line of thought: In the logical analysis following (51), we made the statement
that an indeterminate must be either existentially quantified (essentially a constant) or universally
quantified (essentially a free variable). Now we see that the first option is true~indeterminates are
object constants for denoting the ùbasis÷ of @x1 , ¼, xnD .

Having clarified the nature of the indeterminates, we are led to another question associated with

them:  How  does  evaluation  work  now?  Since  a  polynomial  like  -4 + x2  is  interpreted  as  a
sequence X-4, 0, 1\ , we cannot just substitute a number like 3  for x . After all, x  is not a variable
but  just  another  polynomial!  Hence  we  must  interpret  evaluation  at  a  number  a Î R  as  another
operation  on  polynomials,  which  we  will  denote  by  evala .  For  example,  we  have

eval3H-4 + x2L = 5. The operation evala  is known as evaluation homomorphism, since it turns out
to respect the polynomial ring structure; see for example page 147 in [53]. Analogously, there is an
evaluation homomorphism evala  at a Î Rn  for a multivariate polynomial ring R@x1 , ¼, xnD .

With  the  evaluation  homomorphism available,  we  can  also  clarify  the  idea  of  the  "functional
counterparts"  mentioned  above:  We  can  associate  with  each  polynomial  p Î R@x1 , ¼, xnD  a
function p� : Rn ® R  defined by p� HaL = evalaHpL ; this p�  is known as the polynomial function associ
ated  with  (or:  induced  by)  p .  We  denote  the  ring  of  all  n|ary  polynomial  functions  over  R  by
PnHRL ;  it  is  a  subring  of  the  ring  RR  of  all  n|ary  functions  on  R .  At  the  first  glance,  one  might
think that the structures R@x1 , ¼, xnD  and PnHRL  are more or less the same, but this is an illusion:
The mapping p# p�  is a ring epimorphism, which means that the polynomials are much more fine|

grained than the polynomial functions. Take, for example, R ¬ Z2 .  Then polynomials like x + x2

will all collapse into zero functions. In fact, there are only four distinct functions in P2HZ2L , while
there are infinitely many polynomials (as for any coefficient ring).

Hence one can understand the polynomial ring as an algebraic model of polynomial functions,
taking into account only the ring operations (functional addition, zero function, negative function,
functional  multiplication,  one  function)  and  ignoring  all  the  ùaccidental÷  features  arising  from
evaluation in the particular coefficient ring. The power of the polynomial concept comes from the
fact  that  many  important  ùpatterns÷  become  clearer  by  fading  out  accidental  details  of  this  kind.
Going a  bit  further in  this  direction, we could get  a  first  suspicion why the  indeterminates might

really be in|determinate: A polynomial in Z2@xD  like x + x2  above would not collapse into the zero
function if we think of the x  as coming from a ùgeneric÷ ring (we will later call such a ring "free");
such a generic x  is like a Joker card~the only thing we know about it is that it lives in some ring.
Seen in this way, it really deserves the name "indeterminate". For more about this issue, we must
again refer to Section 3.

Finally let us also answer the second question asked at the end of Section 1: What is this interme
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Finally let us also answer the second question asked at the end of Section 1: What is this interme
diate term  in the equality chain (52)? Obviously, we cannot call  it  a  polynomial according to the
succinct definition. All we could say is that it is the sum of four polynomials, all of which happen
to be monomials, but this is not completely satisfying if one is honest. The point is that the defini
tion  of  the  polynomial  operations  yield  ùfinished÷  polynomials  at  once.  While  this  may  be  of
advantage in some situations where we do not want to deal with any ùcomputational details÷, one
could  also  ask  for  a  more  fine|grained polynomial  concept  that  attaches  an  appropriate  meaning
also  to  such  "intermediate terms".  The  succinct  definition clearly does  not  satisfy this  desire;  the
intermediate terms remain ùghosts÷. It is therefore high time to move on to the new approach which
we have already advertised so strongly.

A.3 An Alternative and More General Definition

Before starting this new approach, let us cast a glance at the literature. A comprehensive treatment
of the material be found in [42]; see especially pages 1|40. A lucid summary of this rather lengthy
treatment is given in [16], where things are analyzed from the viewpoint of symbolic computation.
The  vast  majority  of  computer  algebra  texts,  however,  are  restricted  to  what  we  have  called  the
succinct  definition.  Even  [50]  (note  the  subtitle!),  a  recent  monograph  on  polynomials,  does  not
hint  at  any  alternative  definition.  For  doing  full  justice  to  [54],  we  should  also  mention  that  on
page 94  they  provide  a  correct  version of  the  succinct  definition along with the  rather suspicious
ùdefinition÷ criticized above. (One could actually get the impression that they feel guilty about the
vague description given on page 95, so they try to compensate by adding the succinct definition. If
they  had  not  declared  the  vague  description  as  their  ùofficial÷  definition,  one  could  interpret  the
latter  as  intuitive  ideas  that  are  to  be  formalized  in  the  succinct  definition,  albeit  on  a  slightly
different path.)

One may wonder why the succinct definition is so fashionable in our days. The reason for this
is very simple: As we will see later, it is somewhat superior in computation when compared to the
alternative definition to be discussed now. Besides this, the old definition requires a considerably
greater technical apparatus that does not pay off as long as one studies only ùordinary÷ polynomi
als.  As  we  will  see  later,  the  succinct  definition  is  an  optimized  specialization  of  the  ùgeneral÷
polynomials, obtained by custom|tailoring the case of the ordinary ones.

As announced at the beginning of this chapter, we will have to consider some of those general
polynomials,  in  particular  several  kinds  of  non|commutative  polynomials.  It  is  possible  to  find
custom|tailored representations for them similar to the succinct definition of ordinary polynomials,
such an approach is rather ad|hoc. The alternative definition provides an elegant conceptual frame
for  a  uniform  description  of  all  those  general  polynomials~including the  ordinary  commutative
ones  as  well  as  the  ùextraordinary÷  non|commutative  ones.  Furthermore,  it  establishes  a  suitable
basis for discussing possible custom|tailored representations.

In the preceding section, we have already encountered some ideas that support the case of the
good  old  indeterminate.  So  it  should  not  come  as  a  surprise  that  the  announced  alternative
approach is not really new~we will henceforth call it the "old definition"~but in need of careful
formal treatment for putting certain delicate intuitions on a rigorous logical basis.

Let  us  start  by  reconsidering  the  original  ideas  presented  in  connection  with  the  ùdefinition÷
(50):  The  polynomials  are  regarded  as  "formal  expressions",  built  up  from  an  "indeterminate",
from numbers, and from the operations + , - , *  (or other operations if we consider general polyno
mials). One could respond to this: "Any mathematical theory consists of more or less formal expres

sion,  often  containing  variables  and  various  other  operations  like  sin  and  Ù .  So  why  do  they
mention this fact for the polynomials?" But the difference is that the polynomials are regarded as
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mention this fact for the polynomials?" But the difference is that the polynomials are regarded as
formal expressions. We will make this clear immediately.

As  explained  above,  one  may  regard  the  polynomials  as  functions  that  have  forgotten  their
evaluation  in  the  coefficient  ring.  So  we  have  to  construct  objects  that  ùbehave  like÷  polynomial
functions  over  a  certain  coefficient  ring,  except  for  evaluation.  Now  we  come  to  a  very  crucial
point,  which  we  will  first  express  in  terms  of  daily  life:  For  communicating various  ideas  about
politics, philosophy or ethics, we can point at numerous constellations in real life. When it comes
to very subtle and dense ideas, though, it may be necessary for the expert communicators~called
playwrights~to  invent  some  constellations~called  dramas~that  could  also  appear  in  principle
(we are not talking about absurd drama and the like). When the piece is put on stage, people can
point at the constellations depicted there as if they occurred in real life; in fact, the events as such
are  real  life.  Without  intending  any  philosophical  implications,  we  will  transfer  this  principle  to
mathematics now: Having the idea of "polynomial functions that have forgotten their evaluation",
we can either search for some known mathematical objects exhibiting these properties (in case of
the ordinary polynomials, the finite sequences of the succinct definition would serve this purpose)
or  we  can  construct  appropriate  objects  by  staging  their  properties.  This  is  what  is  meant  by
formal expressions: they are put on stage.

In  mathematics,  dramaturgy  is  studied  in  model  theory  and  universal  algebra;  the  dramas  are
the  canonical  models  and  Herbrand  models.  Before  we  turn  to  look  at  these  literary genres  a  bit
more closely, let us briefly meditate the overall significance of the theatrical viewpoint. Again we
take  daily  life  as  our  guiding  principle:  Drama  belongs  to  the  fine  arts,  and  some  people  would
even consider it as the highest form of art. Artists contend that their art comprises, in principle, all
of life. In particular, a (sufficiently powerful) dramatist should be able to depict any aspect of life,
be it  ever so subtle. In mathematics, the situation is again similar: In 1930, Kurt Gödel proved(!)
that ùeverything can be put on stage÷, provided that it is ùconsistent with reality÷; see [31]. Reflect
ing  objects  of  immediate  experience  creates  new  objects  that  can  in  turn  be  experienced  on  a
higher  level;  this  ability  of  reflection  appears  to  be  a  fundamental  function  of  the  human  mind,
penetrating the arts as well as mathematics. B. Buchberger calls the reflection step the transition to
the meta level, and he considers it to be the essence of logic and the driving force of mathematical
development; see [15]. In the Theorema group, we will therefore invest some effort into providing
computer support for this key step of mathematical creativity in the near future.

Seeing  this  central  role  of  model  construction~in  our  metaphor:  the  art  of  staging~it  will
certainly pay off to consider the introduction of polynomials in the clear light of the general situa
tion.  We  will  do  this  by  reviewing  a  modern  proof  of  Kurt  Gödel’s  model  existence  theorem
mentioned above: Every consistent set of formulae has a model. From this one can easily infer that
every formula that is a consequence of an axiom system is also deducible from the axioms by the
proof  calculus;  this  is  known  as  the  Completeness  Theorem.  The  converse  statement  that  every
formula deducible  from an  axiom system is  also a  consequence of  the  axioms is  also true and is
considerably easier to prove; it is known as the Soundness Theorem. Combining completeness and
soundness,  one sees that  the semantic consequence relation and the syntactical deduction relation
actually coincide, which shows the adequacy of the deduction system with respect to the intended
meaning. For the precise formulation and proof, we refer to [28] and [24]. For our purposes, it will
be sufficient to sketch the proof of the model existence theorem. We will first recollect some basic
notions dealing with models.

We are given a set of consistent formulae, which we will call the axiom system F , and we want
to  construct  a  model  for  this  axiom  system.  In  general,  we  expect  F  to  have  many  models  (the
special case of categorical axiom systems, i. e. those having a unique model, is rather rare). Typi
cally, the collection of all models is so big that it forms a proper class. In the literature, it is called
the model class  of  the  axiom system and denoted by ;  see  for  example page 108 in [24].
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the model class  of  the  axiom system and denoted by ModHFL ;  see  for  example page 108 in [24].
Following B. Buchberger [8], we prefer to call this collection the category described by F  and its
elements  as  the  corresponding  domains  or  structures  (if  there  are  no  predicate  symbols,  the
domains  are  also  called  algebras).  In  the  sequel,  we  will  explain  his  most  important  ideas  of
formalizing such notions; we will  try to realize most of  them in the Theorema  system during the
next years.

 Although it is not our intention to move to the viewpoint of category theory, we will point out
certain connections here and there (see [47] and [25]). First of all, it is clear that model classes are
indeed categories in the sense of category theory. (Since we are thinking in terms of the ordinary
set|theoretic semantics,  the  model  classes  are  actually  concrete  categories,  meaning that  they  are
founded on the category of sets. The viewpoint of category theory would be to abstract away from
the "arbitrariness" of the set category.) Their arrows are naturally given by the homomorphisms in
the sense of model theory; see page 225 in [24]. Of course, one may prefer to use other arrows in
some situations (for example taking continuous functions instead of  isometries in the category of
metric spaces), and the salient feature of category theory is that it gives much greater importance to
the arrows of a category rather than to its objects. Since we will not be working in category theory
proper,  our  emphasis  will  be  different~we  regard  categories  as  elementary  building  blocks  for
characterizing mathematical objects.

As an example that will later become important for constructing the ordinary polynomials, we
consider  the  case  when  F  consists  of  the  axioms  for  unital  commutative  rings;  this  yields  the
category  of  unital  commutative  rings  (with  the  ring  homomorphisms as  their  natural  arrows).  In
Theorema, one way of describing this category is by giving the definition (essentially coming from
[8], see also page 71 in [64])
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First of all, note that we have used the typing predicate ":" for describing that R  lies in the class
of all unital commutative rings, denoted by UniCommRing. We could as well use a unary predicate
" ",  writing   instead  of  ,  but  the  usage  of
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"IsUniCommRing",  writing  IsUniCommRingHRL  instead  of  R : UniCommRing,  but  the  usage  of
the binary typing predicate permits a more uniform treatment (one may view this notion of type as
in a  sorted logic). The important point is  that UniCommRing  is  a  proper class, so we cannot say
R Î UniCommRing, but the predicate ":" is a sufficient substitute since we do not need any nesting.
We call UniCommRing  the type of category of unital commutative rings, and  we will use italics
for denoting such category types. Informally, category types are usually identified with the actual
categories, so UniCommRing "is" the category of unital rings.

The typing convention is also used for the domain predicate: For example, x : �
R

 means that x

lies  in  the  carrier of  R .  In  this  case,  we could use  x Î �
R

 instead,  but  using the  domain predicate

allows us to overload operators when we regard the domain predicate as an appropriate type (see
below).  Furthermore,  we  note  the  curried  operator  symbols:  For  example,  *

R
 is  just  notation  for

RH*L ,  so that x *
R

y  stands for RH*L Hx, yL .  We follow the tradition of model theory in bundling the

available operations into a so|called operation object which identifies the particular domain; in our
case, the operation object is R .

Finally, let us mention that one could easily make the above definition even more readable by
realizing  a  couple  of  common  syntactic  conventions  (which  we  will  presuppose  from  now  on):
First, the operation object is confused with the carrier (even in heterogeneous structures with more
than one carrier~like vector spaces~one can distinguish a particular one~like the vectors), i.  e.
whenever R  is on the right|hand side of "Î", it is replaced by í

R
. Second, the operator symbols are

overloaded, e. g. when we encounter x * y  with x  and y  both having the type "lying in the carrier",
it is replaced by x *

R
y . In the type declarations of the operator symbols, we may anyway leave out

the underscript without danger of confusion. Third, we can indicate that all variables in the defini
tion scope are relativized to the carrier by a certain external declaration (in the heterogeneous case,
one  may  introduce  finer|grained declarations~for example  denoting  vectors  by  Latin  letters  and
scalars by Greek ones).  Fourth, we will write the operation object for non|operator symbols as a
subscript  rather than an underscript. Fifth, one may use juxtaposition for  denoting multiplication.
Using these conventions, the above definitions reads

(56)

R : UniCommRing �

H + : R ´ R ® R ß 0R : R ß - : R ® R ß * : R ´ R ® R ß 1R : R ß
Hx + yL + z = x + Hy + zL ß
x + 0R = x ß x + H-xL = 0R ß x + y = y + x ß
Hx yL z = Hx yL z ß 1R  x = x ß x y = y x ß
x Hy + zL = x y + x z L.

In  an  extensive  ùformal  library÷,  one  would  certainly  split  such  a  definition  using  a  suitable
system of hereditary subdefinitions (and we plan to do this in the Theorema formalization project)
describing e. g. semigroups, monoids, groups, commutativity, unitality, distributivity; this will not
be  necessary  for  our  present  purposes.  Besides  this,  the  type  declarations  of  the  first  line  (often
formulated as "closure properties" like additional axioms: the sum of two ring elements is again a
ring  element)  is  naturally  separated  from the  remaining ones.  We  call  the  first  line  the  signature
axioms of the domain, the remaining lines its proper axioms. This separation will also be important
for what follows, so let us do it in detail: We agree that we will provide a signature predicate for
each category,  which we will verbalize as "like" similar to Mizar e.  g.  in "group|like" ;  see [65].
For  example,  the  signature  predicate  for  the  above  category  would  say  that  R  "is  like  a  unital
commutative  ring"  (for  categories  with  a  shorter  name  like  groups  this  sounds  better:  the  corre
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commutative  ring"  (for  categories  with  a  shorter  name  like  groups  this  sounds  better:  the  corre
sponding domains would be called "group|like"). We will denote this predicate by

(57)
R : @UniCommRing D�

H + : R ´ R ® R ß 0R : R ß - : R ® R ß * : R ´ R ® R ß 1R : R L.
Furthermore,  we  will  assume  that  every  category  definition  presupposes  the  corresponding

signature definition implicitly (otherwise is can hardly make sense). Hence we can now write the
definition in (56) as

(58)

R : UniCommRing �

H Hx + yL + z = x + Hy + zL ß x + 0R = x ß x + H-xL = 0R ß x + y = y + x ß
Hx yL z = Hx yL z ß 1R  x = x ß x y = y x ß
x Hy + zL = x y + x z L.

Let us now go back to the proof of the model existence theorem: We are given such a consis
tent  axiom system F  like  the  formulae contained in  the  right|hand side  of  (58).  They  describe  a
certain  category  like  that  of  the  unital  commutative  rings  in  the  above  example.  Our  task  is  to
prove  that  this  category  contains  at  least  one  domain,  i.  e.  we  have  to  construct  one  particular
domain  out  of  the  information provided  in  F .  As  explained  before,  the  crucial  idea  is  to  put  the
axioms ùon stage÷. So the first task is to clarify the ùcast of the actors÷, i. e. the carrier of the desired
model.  Since  we  should  be  able  to  ùsee÷  every  object  that  we  can  possibly  talk  about,  the  most
natural  choice  is  to  take  the  set  of  all  closed  terms as  a  carrier  (since  we  can  always  reduce  the
given axioms to  closed formulae); a  function symbol  works  on  such a  closed term in  the  natural
way by concatenation. The resulting structure is called the ground term algebra TS  induced by the
signature of S , which is determined by the function and constant symbols occurring in the axioms.

For example, if F  contains the axioms of unital commutative rings

(59)

Hx + yL + z = x + Hy + zL,
x + 0 = x,

x + H-xL = 0,

x + y = y + x,

Hx yL z = Hx yL z,

1 x = x,

x y = y x,

x Hy + zL = x y + x z,

the signature is given by

(60)+ : R ´ R ® R ß 0 : R ß - : R ® R ß * : R ´ R ® R ß 1 : R .
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We see that (59) is very similar to (58), and (60) is very similar to (57), but we should also under
stand  the  difference:  Now the  axioms (59)  are  universally quantified over  the  whole  universe  R ,
and  the operation symbols are not  bundled into any operation object (model itself is  the bundle);
the signature (60) is therefore not part of the axioms but a syntactic declaration on the meta level.
Since we do not consider heterogeneous structures (which could be treated analogously in a sorted
logic), the signature information boils down to specifying the arity of each function symbol (object
constants are regarded as nullary function constants). Hence we can regard S  as the (set|theoretic)
function; in the example above it would be

(61)S = 8X+, 2\, X0, 0\, X-, 1\, X * , 2\, X1, 0\<.
Note that we can obtain the set of function symbols in use by taking the domain domHSL  of the

signature; for example, we have domHSL = 8+, 0, -, * , 1<  in the above example. Given a S  of this
form,  we  can  always  go  back  to  the  corresponding  signature  definition  over  some  domain  D ,
namely

(62)"
fÎdom HSL f : DS HfL ® D,

which we  will  denote  by  SigSHDL .  Note  the  meta|level universal  quantifier in  this  formula: upon
substituting a  concrete  S  and  D ,  the  formula (62)  is  supposed  to  end  up  in  a  conjunction of  the
form (60).  In  the  current  presentation,  we  could  actually be  pedantic  in  using various  meta|level
symbols  for  distinguishing  them  from  the  corresponding  object|level  symbols,  e.  g.  the  equality
symbol  or  the  set  braces.  However,  as  the  context  usually  eliminates  these  ambiguities,  we  will
suppress this distinction for the sake of simple notation.

The carrier set of the desired term algebra over S  is supposed to consist of all closed terms and
nothing else. This is an inductive set, which we will call the set of words over S  and denote by WS .
This is a generalization of the natural numbers, which can be regarded as words over the signature8X0, 0\, X+ , 1\< ,  where  the  superscript|plus  denotes  the  successor  function.  In  the  case  of  natural
numbers, the Peano axioms do achieve the inductive definition (for details see page 204 in [61]):
The  ùbasis  axioms÷  0 Î N  and  "nÎN Hn Î NÞ n+ Î NL  ensure  that  the  function  symbols  of  the
signature serve as constructors; the ùequality axioms÷  "nÎN n+ ¹ 0  and "n,mÎN Hn+ = m+ Þ n = mL
banish  ambiguity  in  the  term  representation;  the  ùinduction  axioms÷
Fn¬0 ß "n HF Þ Fn¬n+ LÞ "n F  for all formulae F  (particularly those containing a free occurrence
of n) ensure the "nothing else" passage. We can do something completely analogous for specifying
the set of words through

(63)

"
fÎdom HSL "

t1 ,¼,tS HfLÎWS

f
�
 Ht1 , ¼, tS HFLL Î WS ,

"
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i
kjjj "
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"
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�
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{zzz
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F Þ Ft¬f
�
 Ht1 ,¼,tS HfL L

y
{zzzÞ "
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F
y
{zzz,

where F  runs through all formulae (particularly those containing a free occurrence of t ). Here we
have to  make a  small but  crucial remark: The function symbols of  the given signature S  have to
play  a  double  role:  first,  they  appear  as  letters in  the  words  just  introduced; second,  they will  be
used for denoting the operations to be defined on the words. We distinguish them by overbarring
the function symbols when they are used as letters. The overbar works like a quote:  Consider the
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the function symbols when they are used as letters. The overbar works like a quote:  Consider the
situation where sHxL  denotes the servant of  a person x ,  and H  denotes the Prince of Denmark. In
the ùterm algebra of stage play÷, sHxL  will accordingly be defined as the "servant" of an actor x  (the
quotes should signify that we really mean the actor who plays the servant of the character embod

ied by the actor x) .  Then sHH���L  is the "servant" of the actor "the Prince of Denmark", but s�HH���L  is
the actor "the servant of the Prince of Denmark". Both descriptions are of course equivalent due to
our definition of s , and this is precisely why we call such a definition natural.

We can now construct the term algebra over S  by providing the carrier set WS  with the natural
operations that are induced by concatenation. For doing this, we will use what we call a functor in
Theorema;  see  [10],  [11].  Let  us  explain  this  briefly:  Whereas  a  category  describes  a  domain
implicitly by stating certain axioms that it should fulfill, a functor defines it explicitly in terms of
zero,  one  or  more  given  domains.  Typically,  a  category  contains  many  domains,  but  a  functor
always constructs exactly one. This is analogous to the difference between relations and functions:
A relation like y ~ x  will typically yield many objects y  for a fixed x , but a function like y = f HxL
will always yield only one y  for a fixed x .  Functors that do not take any input domain are called
introduction  functors  for  obvious  reasons  (of  course  they  may  be  parametrized  like  any  other
functor,  i.  e.  taking  several  other  input  arguments);  category  theory  would  see  them  as  functors
from the  category  of  sets.  In  the  comparison to  functions and  relations,  the  introduction functors
correspond to the object constants (which we have identified with the nullary function constants).
In  Theorema  (see  [68]),  we  would  specify  the  functor  for  constructing the  direct  product  of  two
additively  written  groups  G  and  H  by  the  following  construct  (indices  denote  tuple  components
here):

DefinitionA"Direct Product of Groups", any@G, HD,
CartesianProduct@G, HD = FunctorAP, any@x, r, s, u, vD,
s = X+ : P�P ® P, 0 : P, - : P ® P\
Î
P
@xD� J Î

G
@x1 Dí Î

H
@x2 DN

Xr, s\+
P
Xu, v\ = Zr +

G
u, s +

H
v^

0
P

= Z0
G

, 0
H
^

-
P
Xr, s\ = Y-

G
r, -

H
s]

EE
Logically, we can express this conveniently by using Hilbert’s Ι|quantifier (introduced in [36];

see also the chapter on the Ι| and ¶|quantifiers on page 27ff of the recent investigation [30]). Using
a notation similar to that of the category predicates presented before, we have

(64)

G Ä H = Ι
P

 J +
P

: P ´ P ® P í 0P : P í -
P

: P ® P í
x : í

P
� Jx1 : í

G
í x2 : í

H
N í Xr, s\ +

P
Xu, v\ = Zr +

G
u, s +

H
v^ í

0P = X0G , 0H\ í -
P
Xr, s\ = Y-

G
r, -

H
s]N.

This means that the direct product of the groups G  and H  is "such a group P  that its addition is
a binary operation, its neutral element a nullary operation, its inverse a unary operations; such that
its carrier predicate is determined by the carrier predicates of the factor groups; and such that the
three  operations  are  defined  componentwise  as  indicated".  Since  we  will  not  use  Theorema  for

The Green’s Algebra: A Polynomial Approach to Boundary Value Problems

117



three  operations  are  defined  componentwise  as  indicated".  Since  we  will  not  use  Theorema  for
manipulating category and functor definitions, we will stick to the traditional notation (64) rather
than the Theorema notation (63). Using this notation and assuming the obvious definitions, we can
now state theorems like

(65)G : Group ßH : Group � G Ä H : Group.

Observe also the philosophy of avoiding domain questions on the input arguments to functors:
In  the  definition  (64),  we  have  not  required  G  or  H  to  be  a  group,  not  even  a  semigroup  or  a
groupoid; let us call such properties domain restrictions. The definitional also ùworks÷ if we supply
a  domain  without  these  properties;  of  course,  the  resulting  domain  G Ä H  will  not  have  these
properties either. All that we are saying in (65) is that if both G  and H  are indeed groups, then so is
G Ä H . The input arguments G  and H  cannot be ùcompletely messed up÷ (meaning that they do not
provide the appropriate signature), though, as long as we regard the binary copula predicate ":" in it
as  a  type  declaration  in  the  sense  of  Higher  Order  Logic;  let  us  call  these  sanity  conditions  the
typing  restrictions  of  the  functor.  Of  course,  in  some  borderline  cases  the  distinction  between
domain and typing restrictions may be blurred; for example, positivity could be a domain restric
tion expressed by the predicate x > 0  or a typing restriction expressed by the declaration x : R+ . In
most  cases,  however,  there  is  a  very  natural  difference:  The  typing  restrictions  should  be  kept
ùeasy÷  since  they  are  to  be  done  at  ùcompile  time÷  (the  question of  whether  a  term is  well|typed
belongs to syntax checking just as excluding formulae like j ß ß Ψ),  whereas the domain restric
tions may be arbitrarily complex like the execution of a program at ùrun time÷ (in general, the task
of  checking  domain  restrictions  may  become  a  full|blown  theorem|proving  job).  In  particular,
some domain predicates are not even recursive and therefore not at all suitable for typing questions!

Let  us  also  mention some brief  remarks about  the  connections to  category theory.  Obviously,
the latter has a more restricted notion of functors, namely that they must also respect the arrows in
the involved categories. Let us call such functors respectful (also showing our respect for MacLane
and  Eilenberg’s  work).  In  many  cases,  one  does  indeed  meet  such  respectful  constructions;  the
direct product of groups in (64) is a case in point.

Coming back to the construction of the term algebra TS , we can finally specify it by an appropri
ate introduction functor. We have already defined the set of words WS  as its carrier. Since we are
reusing each function symbol in S  as an ùactor÷ that imitates its action on the desired term algebra
T ,  the  latter  can  simply  take  over  the  signature  prescribed  in  S ,  giving  the  signature  axioms
SigSHTL .  So  the  only  thing  left  to  do  is  to  specify  the  natural  operations  on  the  closed  terms  by
concatenation, thus completing the definition of the term algebra

(66)

TS = Ι
T

 
i
kjjjSigS  HTLí t : í

T
� t Î WS í

"
fÎdom HSL  "

t1 ,¼, tS HfLÎWS

 fT  Ht1 , ¼, tS HfLL = f
�
 Ht1 , ¼, tS HfLL y{zzz.

Before dealing with the predicate symbols, we add one final remark about the term algebra. Up
to  now,  we  have  only  considered  ground  terms,  but  it  is  almost  trivial  to  extend  this  to  terms
containing any variables we like. Suppose we are given a set of variables X , which must of course
be disjoint from domHSL . Then we can describe the corresponding term algebra for S  in X , denoted
by TSHXL ,  simply by regarding the variables in X  as new object constants~the only difference is
that we do not include them in the signature of the resulting term algebra. It is a typical feature of
mathematical structures  that  one  abstracts  from the  practical  necessity  of  having  constructors for
denoting  the  elements.  For  example,  the  real  numbers  R  are  described  as  a  field;  hence,  their
signature provides only the constants  and , and the corresponding ground terms denote nothing
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signature provides only the constants 0  and 1, and the corresponding ground terms denote nothing
more than the rational numbers. Therefore one usually adjoins a suitable name system (see below),
but the name constants are not regarded as a part of the algebraic signature.

The  identification  of  variables  and  "new"  constants  is  commonplace  in  proving:  "In  order  to
prove "x ¼ ,  take x  arbitrary but fixed  ¼" (meaning that one considers a constant  x0  in place of
the  x).  Loosely  speaking,  the  important  point  is  not  really  whether  we  call  an  x  a  constant  or  a
variable; the crucial question is rather whether we have any knowledge about it. Having no knowl
edge means that we are dealing with variables: this is why one takes an "arbitrary but fixed x" in
the above proof situation. In the case of term algebras, we have not yet introduced any axioms, so
there is no difference. In the presence of other axioms, though, we have to take care that the new
constants are really fresh  in the sense that they do not occur in the axioms. If this is the case, we
have essentially added variables, which we might as well call "indeterminates"¼

We will start our consideration of predicate symbols with the most fundamental of all, namely
equality. In fact, we have already used it in (66), since any inductive structure presupposes equal
ity. The equality predicate is in some sense special among all other predicates since it possesses the
same universality as the logical connectives and quantifiers~it always makes sense to ask whether
or not two elements are equal. Hence it is natural to stipulate that a model for a theory containing
the  predicate  =  must  interpret  it  as  the  ùactual÷  equality  relation  between  the  elements  of  the
universe;  such  a  model  is  called  a  normal  model.  By  imposing  or  not  imposing  this  semantic
restriction,  one  can  choose  between  treating  equality  ùinternally÷  (as  a  logic|internal  notion)  or
ùexternally÷  (as  all  the  other  function and  predicate  symbols  like  +  or  £).  On  the  syntactic  side,
making equality internal corresponds to adding suitable equational inference rules or axioms to the
derivability relation; one speaks of a logic with equality in such a case.

The  external  treatment  of  equality  is  straight|forward  since  it  is  the  same  as  for  any  other
predicate  symbol;  see  below  for  how  to  handle  them.  Nevertheless,  there  are  good  reasons  for
considering normal models: In first|order predicate logic, one cannot characterize equality through
axioms.  Of  course,  one  adds  appropriate  equational  axioms  (reflexivity  and  replacement  axioms
for each function and predicate symbol) in a logic with equality. But this cannot preclude abnor
mal models: For example, take the group axioms together with an axiom stating that every element
has order three. From group theory we know that there is only one such group up to isomorphism,
namely  Z3 .  However,  there  are  many  non|isomorphic  models  containing  e.  g.  four  elements  or
even À1  elements, and we can rightly call them abnormal! Of course, all the elements are grouped
into just three equivalence classes, and we cannot distinguish between their representatives through
any  property  expressed in  our  language;  as  far  as  the  theory is  concerned,  all  the  elements in  an
equivalence  class  are  therefore  ùpractically  equal÷.  Still  we  would  prefer  to  have  a  group  that
ùbehaves normally÷, and this is why we speak of normal models.

In  fact,  every abnormal model  can  be  made normal  by  collapsing its  equivalence classes into
single  elements; the  normal  model  is  simply the  finest  congruence  on  the  universe.  The fact  that
any model can be made normal is also the reason why abnormality makes no problems for reason
ing:  In  the  entailment  relation,  we  may  quantify  over  all  models  fulfilling  the  equality  axioms
(including  all  normal  models)  or  over  all  normal  models  (that  can  be  expanded  into  arbitrary
coarser  models);  this  makes  no  difference.  Hence  entailment  for  normal  models  is  equivalent  to
deduction  in  equational  logic,  just  as  plain  entailment  is  equivalent  to  derivability  in  plain  logic
(Gödel’s Completeness Theorem).

Since normal models are definitely preferable and we can always obtain them, it is reasonable
to  construct  them  in  the  first  place.  In  other  words,  we  now  take  the  option  of  treating  equality
internally  in  the  sequel.  Hence  we  are  now  in  the  following  situation:  We  have  to  construct  a
normal  model  for  an  axiom  system  ,  which  contains  (possible  after  some  trivial  equivalence
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normal  model  for  an  axiom  system  F ,  which  contains  (possible  after  some  trivial  equivalence
transformation on the axioms) only formulae of the form

"x1
º "xn

$y1
º $ym

"z1
º "zk

$º S = T ,

where  S  and  T  are  two  terms having  the  free  variables  x1 , ¼, xn  and  y1 , ¼, ym  and  z1 , ¼, zk ,
etc.  By  the  usual  technique  of  Skolemization,  we  can  get  rid  of  the  existential  formulae  at  the
expense of adding suitable function symbols to the signature. Agreeing that we abbreviate univer
sal formulae by letting the corresponding variables occur free, we end up with axioms of the form
S = T ; we call them equalities.  The categories that can be constructed by such axiom systems are
already  very  rich  in  structure;  they  are  called  varieties.  Their  structure  is  studied  carefully  in
universal algebra [20]; for example, one famous result by Birkhoff says that one can characterize
varieties  as  those  algebraic  categories  which  are  closed  under  subalgebras,  homomorphs  and
quotients  (see  page 75).  We  call  a  category  algebraic  if  its  signature  is  purely  algebraic  (i.  e.
consisting of object and function constants alone).

As  explained  above,  we  can  obtain  a  normal  model  by  collapsing  the  supposedly  equal  ele
ments.  Hence  we  have  to  construct  the  term  algebra  for  the  given  signature  and  then  take  the
quotient with respect to the congruence relation induced by the equalities F .  For this purpose, we

need each equality S = T  in the form of a pair XS��, T
���\  containing the word corresponding to the left|

hand  and  right|hand  side  (see  after  (63)  for  a  discussion  of  the  quoting  function  x# x��).  Let  us
assume we have  got  a  meta|level function Eql  that  does  all  the  preprocessing on  F  as  described

above and then transforms each equality S = T  into the word pair XS��, T
���\ ; such a function is easy to

implement but tremendously tedious to describe. Let us now look at the variety of unital commuta
tive rings for seeing an example. Its axiom system F  is given by the set of the following formulae
(incorporating implicit universal quantifiers)

(67)

Hx + yL + z = x + Hy + zL,
x + 0 = x,

x + H-xL = 0,

x + y = y + x,

Hx yL z = Hx yL z,

1 x = x,

x y = y x,

x Hy + zL = x y + x z,

which we have already seen in their relativized form in (58); we will soon say a little more about
this relativization. For now, let us just mention that EqlF  is the set of the pairs

(68)

XPlus
������

 HPlus
������

 Hx, yL, zL, Plus
������

 Hx, Plus
������

 Hy, zLL\,
XPlus
������

 Hx, 0
��L, x\,

XPlus
������

 Hx, Negative
�������������

 HxLL, 0
��\,

XPlus
������

 Hx, yL, Plus
������

 Hy, xL\,
XTimes
���������

 HTimes
���������

 Hx, yL, zL, Times
���������

 Hx, Times
���������

 Hy, zLL\,
XTimes
���������

 H1��, xL, x\,
XTimes
���������

 Hx, yL, Times
���������

 Hy, xL\,
XTimes
���������

 Hx, Plus
������

 Hy, zLL, Plus
������

 HTimes
���������

 Hx, yL, Times
���������

 Hx, zLL\,
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where  we  have  replaced  the  operator  symbols  +, -, *  by  standard  function  names
Plus, Negative, Times  for making the overbarring more readable. But what is now the meaning of
the variables x, y, z  occurring there? They are now ranging over the elements in the word set WS ;
for example, the second word pair in (68) says that for each admissible word x , we want to identify

the words Plus
������Hx, 0

��L  and the word x  itself. Therefore let us write EqlS,F  for the set consisting of all

such  word  pairs  over  WS .  For  arbitrary F ,  we  now define  EqvS,F  to  be  the  equivalence  relation

induced  by  the  word  pairs  EqvS,F ,  i.  e.  the  corresponding  reflexive,  symmetric  and  transitive

closure.  It  is  easy  to  see  that  EqvS,F  is  actually  a  congruence,  as  long  as  F  is  consistent  (this  is

where  one  needs  the  hypothesis  in  Gödel’s  Completeness  Theorem  for  the  case  of  equational
axiom systems). Hence we may define all the operations of TS  on the congruence classes as usual.
This gives rise to the functor

(69)

FS,F = Ι
F

 
i
kjjjSigF  HSLí x : í

F
� x Î WS �EqvS,F í

"
fÎdom HSL  "

t1 ,¼, tS HfLÎWS

 fF  HPt1T, ¼, PtS HfLTL = Pf� Ht1 , ¼, tS HfLLT y{zzz,
which does indeed construct the required model for the given signature S  and the equational axiom
system F .

For making this statement precise, we have to assert two things: that FS,F  has the right syntax
(it fulfills the desired signature specification associated with S)  and the right semantics (it fulfills
the  equational  axioms  described  in  F).  The  difference  is  again  the  relativization incorporated  in
passing from the meta to the object level. We have already solved this problem for the signature by
introducing the "corresponding signature definition" in (62), denoted by SigSHDL ; it relativizes the
signature given ùabsolutely÷ in S . Let us then introduce a similar meta|level function for effecting
this relativization on the axioms; we denote it by AxmS,FHDL . Again we skip the actual implementa
tion of such a function since it is quite trivial but dull: The only thing to be done is to replace each
signature  constant  (this  is  also  true  for  the  general  situation  which  involves  object,  function  and
predicate constants) by the corresponding domain|curried symbol and to restrict all the quantifiers
to the domain. Signature and Axioms make up a category as explained above, so we can combine
the relativization definitions into the definition scheme

(70)
D : @CatS,FD :� SigS  HDL,
D : CatS,F :� AxmS,F  HDL.

Finally,  we  can  now  formulate  our  result  in  the  following  convenient  form:  For  all  algebraic
signatures S  and for all equational axiom systems F , we have

(71)FS,F : CatS,F .

This result means that FS,F  is indeed a normal model for the prescribed category. In logic, such
a  structure  is  called  a  canonical  model;  see  page 202  in [28].  As  for  the  term algebras,  one  may
easily  add  a  set  X  of  "variables",  thus  obtaining  a  corresponding  equivalence  EqvS,FHXL  and

domain  FS,FHXL .  In  universal  algebra,  such  a  structure  is  called  the  free  algebra  in  X  for  the
variety specified by S  and F ; see page 66f in [20], where it is also proved that free algebras for a
fixed variety and fixed  X¤  are unique up to isomorphism (this is why we can say: "the" free alge
bra ¼). In fact, their description involves an abstract semantic characterization of the model class,
but  they  prove  it  equivalent  with  the  syntactic  S, F  formulation  used  here  (called  "equational
classes" by them); see page 75.
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classes" by them); see page 75.
Before we continue on the exciting path of Gödel’s Completeness Theorem, let us briefly ask

ourselves  what  we  have  achieved  so  far  in  terms  of  the  polynomial  definition.  Obviously,  our
preferred category is that of the unital commutative rings. They are described by (55), with S  and
F  as in (61) and (67), respectively. So what is the free algebra in the variety UniCommRing  over
the  indeterminates,  say,  8x, y<?  It  is  all  the  terms  that  we  can  build  from  x, y  and  the  signature
constants,  subject  to  the  equalities  of  the  variety.  For  example,  FS,F  contains  terms  like

x6  y2 + x2  y + 2 x y  or 2 x + 2, where we have used the power notation as an abbreviation, so x6  y2

is  actually  x x x x x x y y .  Furthermore,  2 x y  is  an  abbreviation  for  x y + x y ,  etc.  So  this  almost
polynomials over the integers, just that we do not have the actual integers available as coefficients.
Besides this, we cannot simplify a term like H1 + 1L x . This is not the same as x + x , which we have
abbreviated as 2 x . We will soon return to this point of ùinstalling a coefficient algebra÷.

But  now  let  us  continue  the  development  of  model  construction  as  it  is  needed  for  Gödel’s
Completeness Theorem, as soon as we have nonequational axioms in F . In fact, we will not really
need this case for introducing polynomials, so we will treat this point a bit more briefly. It is just
too tempting to walk the whole path to its beautiful conclusion, since there is not so much missing
at this point. In fact, there is only one crucial idea necessary for coping with general formulae: One
has to ùsaturate÷ them in such a way that one can read off how to define the required relations of
the model. Following [28], we find it convenient to distinguish two kinds of saturations:

è First one shows that it is straightforward to construct a model for Hintikka sets; page 112.
Such sets are downward saturated, containing for each formula all the parts that are neces
sary for its proof; somehow one goes downward on their history. For example, if j ß Ψ  is
in the set, then j  and Ψ  should be as well; if $x j  is in the set, then jx¬t  should also be in
the set for some closed term t . The idea of the model construction is this: Going downward
more  and  more,  one  must  finally  hit  atomic  formulae  with  ground  terms.  Since  ground
terms are just the carrier elements of the term algebra, we can define the relation symbols
simply  by  making  it  true  exactly  for  those  terms  that  occur  in  the  corresponding  atomic
formulae.  (Dealing  with  internal  equality,  we  must  of  course  treat  equational  atomic
formulae~ground  equalities~as  we  did  before,  whereas  everything  else  is  done  on  the
representatives and transferred to the congruence classes; see page 202f.)

è Second  one  constructs  a  model  for  a  given  axiom  system  F  by  adding  all  expressible
formulae  that  keep  F  consistent;  see  page 116f.  In  this  way,  F  becomes  not  only  down
ward but also upward saturated  as  we add all  the formulae that could be proved as theo
rems or axiomatized as independent formulae; in this sense, we are going upward in their
history. This is done by using an arbitrary enumeration of all formulae (in case of uncount
able  languages  one  even  has  to  appeal  to  Zorn’s Lemma), so  one  forces completeness of
the  resulting  axiom system F*  in  a  rather  brutal  manner:  For  an  undecidable  formula  j ,
either  j  itself  or  its  negation  Ø j  is  adjoined~whichever  happens  to  come  first  in  the
chosen enumeration! In this sense,  the constructed model involves some arbitrariness that
was not necessary as long as we had only equational axioms or Hintikka sets. This is also
the  reason  why  the  corresponding  term  algebra  in  general  does  not  obey  the  universal
mapping  property  characteristic  for  free  algebras,  not  even  for  purely  algebraic  axioms:
Not every class of algebras has free algebras; see page 66 in [20].

Having done all this, one ends up with a canonical model for the given signature S  and axiom
system  F ,  which  we  will  denote  by  CS,F .  Just  as  before,  the  completeness  result  now  reads  as
CS,F : CatS,F .  We  should  also  mention  that  one  speaks  of  Herbrand  models  if  equality  is  treated
externally: In this case, the universe of the model is still the term algebra rather than its equational
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externally: In this case, the universe of the model is still the term algebra rather than its equational
quotient, and one need not deal with representatives of congruence classes.

As  a  final  remark  on  the  general  problem of  constructing canonical  models  for  axiomatically
specified categories, let  us  again say a  few words about the viewpoint of  category theory. There,
the overall tendency is always to get rid of the set category as the underlying material from which
the models are built; everything is formulated in ùarrow|theoretic÷ terms. A good example for this
approach can be  found on  page 147ff  in  [23],  although this  book focuses on  "algebraic type the
ory":  The  signatures  are  purely  algebraic  but  formulated  in  a  typed  language;  the  Completeness
Theorem  gets  the  name  "categorical  type  theory  correspondence".  By  using  a  suitable  category|
theory version of the construction sketched above, the so|called "classifying category"~correspond
ing to what we have called FS,F  above~ for the given "algebraic theory" is constructed. Its main
value is seen in being a syntax|independent representation of the algebraic theory.

Coming  back  to  the  polynomials,  we  must  now  resolve  the  problem  with  the  coefficients.
Actually,  there  are  two  problems  here:  one  of  a  syntactic  nature,  the  other  of  a  semantic  nature.
The  first  one  is  that  we  do  not  even  have  symbols  for  denoting  the  coefficients  for  the  desired
polynomials. In the example above, we had the case of Z@x, yD  in mind. But what about Q@x, yD?
We cannot possibly write down the term 2.5 x + 4.7 y  unless we have constant symbols for all of Q
or whatever coefficient domain we have in mind. The other problem is that we wanted to identify
H1 + 1L x  and 2 x ; this is the semantic problem now. In order to cover all cases, we have to add all
the equalities valid in the desired coefficient domain.

In general, we want to define the polynomials for variety described by the signature S  and the
equational axioms F ; see page 12 in [42]. Accordingly, the coefficient domain may be any algebra
A  in this variety, i. e. we are given any A  with A : CatS,F . Of course, the coefficient domain may
be of a much more specific type; for example, as above, it may be a field Q  although we construct
the  polynomials in  the  variety of  unital  commutative rings.  The  specific nature of  the  coefficient
domain enters only through the computational laws, allowing identifications like H1 + 1L x  and 2 x ,
as in the above example; this is what we meant before by describing polynomials as the model of
polynomial functions. But first let us define the necessary constants for denoting the coefficients of
the polynomial. Since they name each individual in A , we will call them the name constants for A .
Let  us  denote  them by  priming  the  respective  individual,  e.  g.  3’  would  be  the  name  of  3.  The
name system  of  A ,  denoted  by  NmHAL ,  is  then  defined as  8a’ È a Î A< .  For  reasons  of  sanity,  we
require NmHAL  to be distinct from S , whenever a name signature is constructed (this can always be
enforced if necessary). The other thing needed is the collection of all equalities S = T  valid in A ,
when S  and T  range over all the terms over the signature SÜNmHAL . We will call this collection
the operation table of A  and denote it by OpHA, SL , since this is common terminology at least for
finite domains A . For uncountable domains coefficient domains like R , such a definition of NmHAL
and OpHA, SL  is clearly inconstructive, but one can usually resort to some ùreasonable÷ subdomain
if constructivity is an issue; in the case of R , algebraic number fields could be such a choice.

Now  it  is  easy  to  describe  the  polynomials  precisely.  Let  S  be  a  signature  and  F  an  axiom
system over S ,  together forming the variety CatS,F  with category type V .  Furthermore, let A  be a
coefficient  domain  with  A : V ,  and  let  X  be  a  set  of  indeterminates,  which  must  of  course  be
distinct from SÜNmHAL . Then we define the polynomials for V  over A  in X  as the free algebra in
X  for the variety with signature SÜNmHAL  and axioms FÜOpHA, SL . The corresponding introduc
tion functor for polynomials is therefore given by

(72)PS,F  HA, XL = FSÜNm HAL,FÜOp HAL  HXL.
Having  introduced  a  name  V  for  the  category  type  of  CatS,F ,  we  can  also  write  PVHA, XL

instead of PS,FHA, XL . For example, we can describe the normal polynomials over a unital commuta
tive ring  as the domain , usually denoted by . In the future, we will refer
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tive ring R  as the domain PUniCommRingHR, XL , usually denoted by R@XD . In the future, we will refer
to this domain simply as the "commutative polynomials" over the ring R . A bit more specifically,
we might take for X  the set 8x, y, z<  and for R  the ring Z  or the field R  forming the integer polyno
mials  Z@x, y, zD  or  real  polynomials  R@x, y, zD ,  respectively.  With  finite  indeterminate  sets  like
8x, y, z< ,  one usually speaks of "polynomials in x, y, z" instead of "polynomials in 8x, y, z<", thus
identifying R@8x, y, z<D  with R@x, y, zD .

Actually,  the  construction  (72)  is  quite  general~it  yields  what  universal  algebra  calls  a  free
union;  see page 13 in [42].  Given two free algebras FS,FHXL  and FS’,F’HX ’L ,  we can construct the

free  algebra  FSÜS’,FÜF’IXÜ  X ’M ,  where  Ü   denotes  the  disjoint  union  (in  a  reasonable  setting  X

and X ’  will be disjoint anyway, so Ü   is simply the normal set|theoretic union) as their free union
in the variety CatSÜS’,FÜF’ . Strictly speaking, we should say: this is some free union, but by speak
ing of the free union we mean the particular construction considered here. The signatures S  and S’
need not be the same (the corresponding algebras are then called dissimilar), but by merging them
into the (normal!) union SÜ S’ , their common part show up only once in the resulting free union
(this is  actually a  slight generalization of the usual definition of free union,  which is restricted to
similar algebras, but it seems to be a quite natural one~the notion of homomorphism in V  remains
the  same  even  though  some  of  its  conditions  become  vacuous  in  case  of  a  reduced  signature).
About  the  axioms of  F  and  F’  we  must  of  course stipulate compatibility, meaning that  not  only
must F  and F’ themselves be consistent, but even their union FÜ F’.

Let  us  now  introduce  the  name  algebra  NSHAL  of  a  given  algebra  A  in  a  variety  CatS,F  as
FSÜNmHAL,OpHA,SL . A typical name example would be the number system ¼, -2, -1, 0, 1, 2, ¼  for
the  ring of  integers.  But  A  could  also  be  the  algebra  of  trigonometric functions;  in  this  case,  the
name  algebra  would  include  the  functions  x# sinHxL,  x# cosHxL ,  x# sinH3.75 xL ,
x# sinHxL cosH2 xL ,  ¼  Now we can  make the  notion of  "installing a  coefficient algebra" precise:
We see that PS,FHA, XL  is indeed the free union of FS,FHXL  and NSHAL .

As mentioned before, mathematical structures usually do not include sufficiently many construc
tors for denoting all the carrier elements. Hence it is customary to eliminate the name|part from the
polynomial signature, retaining only the original signature S . In model theory, the domains arising
from  such  an  elimination  are  called  reducts.  As  a  consequence,  we  have  the  nice  preservation
property  PVHA, XL : V .  So  the  luxury  of  the  name  signature  was  just  an  intermediate  device  for
defining polynomials.

Now that we have finished building up polynomials according to the old definition, let us ask
ourselves  how  the  evaluation  homomorphism and  polynomial  functions  look  like  in  this  setting.
One can actually answer these questions on a very broad basis: For any free algebra, a term can be
evaluated  in  the  most  natural  way~simply  by  plugging  domain  values  into  the  indeterminate.
More precisely, if T  is a congruence class of terms from TS,F , represented by some particular term
t  possibly  (in  fact,  typically)  containing  the  indeterminate  x ,  and  a  fitting  algebra  A : CatS,F ,  its
evaluation in a carrier point a Î �A  is given by the value t

� Èx¬a ; we denote this by evalS,F,AHa, TL
or  evalV,AHa, TL  if  V  designates  CatS,F .  Here  we  have  written  t

�
 for  the  term  arising  from  t  by

ùrecurrying÷  the  operation  domain  from  TS,F  to  A ,  e.  g.  replacing  TS,FH+L  by  AH+L .  Hence  t
�

becomes a term denoting an individual of A , as soon as each occurrence of the indeterminate x  is
replaced by the value a ; this is what we indicated by writing t

� Èx¬a . Note that the evaluation homo
morphism  is  well|defined  by  specifying  its  values  in  terms  of  equivalence  classes,  because  the
equivalence is a congruence.

The  case  of  several  indeterminates  is  analogous,  but  one  must  introduce  a  total  ordering  on
them  for  supplying  a  sequence  of  input  arguments  to  them  (if  one  wants  to  consider  infinitely
many indeterminates, one actually needs a well|ordering as on page 6 in [42]). Usually one thinks
of  V  and  A  as  fixed quantities (in  programming, one  would  say "global variables"), so  it  is  sup
pressed  in  denoting  the  evaluation  homomorphism;  one  simply  writes   or  even  briefer
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pressed  in  denoting  the  evaluation  homomorphism;  one  simply  writes  evalHa, TL  or  even  briefer
evalaHTL .  In the special case when T  is  a  polynomial, the evaluation algebra A  usually coincides
with the coefficient domain.

The concept of polynomial function is defined in terms of the evaluation homomorphism, so it
stays  the  same  as  before:  For  a  polynomial  p Î PVHA, 8x1 , ¼, xn<L  over  the  coefficient  domain
A : V ,  its associated polynomial function p� : An ® A  is defined by p� HaL = evalVHa, pL .  The collec
tion of all  such polynomial functions forms an algebra in V ,  which we denote by PV

n HAL .  For the
commutative polynomials, this is just PnHAL  according to our previous notation (see Section 2); so
we simply suppress V  when it defaults to the variety UniCommRing.  Just like PVH_, XL ,  the con
struction PV

n H_L  is  again  a  functor  constructing the  domain of  polynomial functions from a  given
evaluation domain in V .  Although we will only need it  in the polynomial setting, we should also
mention that everything goes through without any change, if one considers an arbitrary free algebra
FV  is  a  variety  V .  However,  the  resulting  "polynomial  functions"  in  this  case  are  usually  called
"derived operations".

We are now finished with the construction of polynomials according to the old definition. This
has taken a considerable portion of time (and paper), but we think that it pays off: We have placed
the ùreal idea÷ of polynomials~in a sense that will become clear soon~into its proper mathemati
cal setting, thereby uncovering some deeper principles of how structures are built up in mathemat
ics. In the next subsection, we will address some algorithmic questions: not surprisingly, this will
lead us back to the succinct definition.

A.4 Computing with Polynomials

Up  to  now,  we  have  not  lost  any  thought  about  the  algorithmic  aspects  of  the  old  definition  of
polynomials.  Let  us  analyze  this  in  the  well|known  situation  of  commutative  polynomials.  A

polynomial like x2 + 2 is now a congruence class

(73)8x2 + 2 - 1, x3 + x2 - x3 + 2, H3 - 2L x2 + H-H-2LL, ¼<
containing infinitely many terms all representing the same polynomial x2 + 2. This may be a nice
characterization for theoretical investigations, but it is obviously quite useless for practical computa
tions. The succinct definition, where the polynomial is conceived as the finite sequence X1, 0, 2\ , is
very pragmatic compared with the infinite set (73). All the necessary operations can be carried out
with this finitary data structure, and they are actually rather simple to implement. So it seems the
old definition has no chance of surviving in our modern times of emphasized computer implementa
tion? Let us reconsider the situation for a moment.

The  formalization  of  polynomial  domains  as  free  algebras  was  actually  following  some  old
intuitions. Now the old mathematicians have done computations with polynomials for a long time,
without ùhaving÷ any precise definition~neither the old nor the succinct one. So what did they do?
Let us once again look at the computation (52), namely

(74)H2 + xL H-2 + xL = -4 + 2 x - 2 x + x2 = -4 + x2 ,

from a naive and ùinnocent÷ viewpoint: We multiply the polynomials 2 + x  and -2 + x  by consider
ing  them  as  "formal  expressions  in  an  indeterminate  x",  thus  obtaining  the  formal  expression

H2 + xL H-2 + xL ,  which  we  "rewrite" first  into  the  formal  expression  -4 + 2 x - 2 x + x2  and  then

into  -4 + x2 .  The  latter  "is"  then  the  resulting polynomial.  What  has  happened  here?  Obviously,
the  rewrite  steps  carried  the  formal  expressions  along  the  congruence  EqvS,FHXL  induced  by  the

axioms  in the signature  of the variety . So the "formal expressions" are nothing
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axioms F  in the signature S  of the variety UniCommRing. So the "formal expressions" are nothing
else  than  terms  representing  the  corresponding  congruence  class.  We  will  call  such  representing
terms polynomial terms,  whatever the variety CatS,F  may be.  Note,  however,  that  they are called
"polynomials" on page 84 of the Universal Algebra text [20]!

So the basic idea is that one can perform effective computations on the polynomial forms rather
than the polynomials themselves. But how do we decide whether two polynomials are equal then?

Look at the polynomial (73) again: Some computation might yield the polynomial form x2 + 2 - 1

as its result, another computation x2 + 2. How can we know that they represent the same polyno
mial? In other words, the general problem is to find a decision algorithm for the congruence rela
tion EqvS,FHXL  in order to decide equality in FS,FHXL .  In the literature about rewriting, it is called

the word problem, and there several are well|known instances where it is unsolvable; see page 59
in [1]. Hence we cannot hope to control every kind of polynomial in this way, but it turns out that
there are decision algorithms for many practically interesting polynomial types~of course includ
ing the commutative polynomials.

The fundamental idea is to fix the direction in which each axiom of F  is used in the following
way: It should not matter in which order any one of several applicable axioms is used for rewriting
a given term; in the end, one should always come up with the same final term. Rewrite systems of
this  type  are  called  convergent,  and  the  two  key  requirements listed above  are  called  confluence
(the  order  does  not  matter)  and  termination  (there  is  always  a  final  term).  See  page 9  in  [1]  for
precise definitions. Basically, one has to do the following: For a fixed axiom system F  in a signa
ture S  and a set of indeterminates X , one defines a binary reduction relation �  on TSHXL  which
expresses that some equation with a fixed orientation is used once on a term. Its reflexive, symmet

ric and transitive closure,  denoted by �
*

,  coincides then with EqvS,FHXL .  But  what  we need for

computational purposes is of course the oriented version: the reflexive and transitive closure, called

the corresponding rewrite relation and denoted by �
*

. The art of rewriting is now to add some~
logically speaking~redundant equality axioms to F  such that the corresponding rewrite relation is
indeed convergent.

In  fact,  there  is  a  well|known  algorithm  for  realizing  this  so|called  completion  process  for
many practically interesting purposes due to Donald E. Knuth and Peter B. Bendix [39], called the
Knuth|Bendix  algorithm (although  it  may  fail  on  some  inputs  and  run  forever  on  others,  so  one
should rather call it a procedure). The main idea is that for obtaining a complete system, it suffices
to  add  oriented  equalities~called  rewrite  rules~for  very  specific  situations,  namely  when  two
earlier  rewrite  rules  overlap  on  their  left|hand sides;  the  corresponding  right|hand sides  are  then
said to form a critical pair. The fundamental idea of critical pairs lies at the heart of many impor
tant algorithms in computer science, collectively known as critical|pair/completion or briefly CPC
procedures [12].  Besides the Knuth|Bendix algorithm for solving particular word problems, there
are  two  other  famous  instances  of  this  idea,  both  discoveries  being  independent  from Knuth  and
Bendix’s:  One  is  Buchberger’s  algorithm  for  computing  Gröbner  bases  [17],  the  other  (though
slightly less in the CPC spirit) is Robinson’s resolution procedure [55].

For our present purposes, we need not resort to sophisticated machinery; let us simply remark
that by inspection, one can find convergent rewrite systems for many practically important types of
polynomials~see  [42]  for  the  case  of  unital  commutative  rings,  groups,  lattices,  and  boolean
algebras, including proofs of their convergence. For example, the rewrite system for the ùclassical÷
commutative  polynomials  proceeds  by  expanding  the  polynomials  (this  corresponds  to  using  the
distributivity axiom directed ùforward÷ if both operands are non|constant), collecting equal monomi
als  (this  corresponds  to  using  the  distributivity  axiom  directed  ùbackward÷  if  either  operand  is
constant),  simplifying  the  coefficients  (using  the  operation|table  axioms  in  the  ùcomputation
direction÷),  ordering  the  monomials  and  their  indeterminates  appropriately  (using  the
associativity/commutativity axioms  of  addition  and  multiplication  in  a  direction  prescribed  by  a
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associativity/commutativity axioms  of  addition  and  multiplication  in  a  direction  prescribed  by  a
suitable  term  ordering),  and  so  on.  A  similar  strategy  can  be  applied  for  unital  rings  (without
commutativity of multiplication!), whose variety we shall denote by UniRing;  the only difference
is  that  we  need  not  order  the  indeterminates  within  monomials.  From  now  on,  we  will  simply
speak  of  uncommutative  polynomials  (polynomial  terms,  polynomial  forms)  in  this  case.  This
name  is  a  bit  ugly,  but  we  will  not  have  to  use  it  often  because  we  will  mainly  work  with  the
slightly different notion of noncommutative polynomials to be introduced in Section 5.

Whenever  one  has  a  convergent  rewrite  system �
*

 for  a  congruence  ~  (meaning  �
*

 coin
cides with ~), one can rewrite a given term until this process stops (since convergence guarantees
termination); the resulting term is  then called the normal form  of  the input term, and it  is  unique
due  to  the  confluence  property  (which  is  also  guaranteed  by  convergence).  Denoting  the  normal
form of a term t  by tx , the corresponding normalization mapping t# tx  has two essential proper

ties: First, it preserves the congruence, meaning t ~ tx , because �
*

 is clearly a subrelation of �
*

.
Second,  it  ùequalizes÷  the  congruence,  meaning t ~ u Þ tx = ux ,  because  of  the  uniqueness  prop
erty. A mapping with these two properties is called a canonical simplifier for ~ , and the correspond
ing  normal  forms  are  then  canonical  forms for  ~ ;  see  page 12  in  [16]:  The  canonicality require
ment is  equivalent to the decidability of the given congruence and hence to the solvability of the
word problem in the free algebra FS,FHXL . Furthermore, the factor domain FS,FHXL  is then isomor
phic to the corresponding ample algebra: Its universe is the collection of all the normal forms; its
operations proceed by first applying the operations as in TSHXL  and then normalizing the resulting
terms; see page 13 ibidem.

Applied  to  polynomial  terms,  this  solves  the  problem  of  effective  computation  in  all  those
cases, where we have a convergent rewrite system. Following [5] on page 58, the normal form of a
given  polynomial  term  will  be  called  its  associated  polynomial  form.  Then  we  can  interpret  the
above isomorphism as saying that we can basically identify the polynomials with their associated

polynomial forms.  For  example,  the  polynomial (73)  corresponds to  the  polynomial form x2 + 2.
Now we can also see the connection to the succinct definition of polynomials: Since we can always
represent a  polynomial form in R@XD  by  the  finite multisequence of  its  coefficients, the ùsuccinct
polynomials÷  turn out  to be nothing else than custom|tailored data structure of  the corresponding
polynomial forms, including an addition and multiplication that is optimized for this data structure.
It  is  therefore clear  that  the  succinct  concept  of  polynomials is  so  well  suited for  the algorithmic
tasks  of  today’s  computer  algebra~limited,  though,  to  the  special  case  of  polynomials  for  the
variety  UniCommRing,  which  is  of  course  the  most  important  type  of  polynomials  occurring  in
practice. In the general case,  it  is  highly non|trivial to come up with similar custom|tailored data
structures  and  optimized  operations  on  them.  In  the  literature,  this  problem  is  known  as  term
indexing.

For us, the most important case will not be the commutative but~in some sense~the uncommu
tative  polynomials.  So  let  us  briefly  consider  the  problem  of  indexing  for  this  situation.  Taking
away the commutativity for multiplication in the axiom system (67), there are seven axioms for the
variety  UniCommRing;  we  will  discuss  their  use  one  by  one.  Obviously,  it  is  still  possible  to
expand a polynomial into a sum monomials by virtue of the distributivity axiom. By the associativ
ity and commutativity of addition, so we can then collect the monomials in a set, realized as a list
with a fixed term ordering. The law of the additive neutral is realized by simply taking out empty
monomials  from  this  list.  Translating  -x  into  H-1L x ,  the  law  of  the  additive  inverse  becomes
superfluous as it is subsumed by the operation table. The associative law for multiplication tells us
that we can regard the monomials as words, having indeterminates and coefficients as letters (note
that the coefficients do not in general commute with the indeterminates~see the next subsection).
The  law  of  the  multiplicative neutral  just  tells  us  to  discard  empty  words.  Finally,  the  operation
table  may be  applied whenever  one  meets  a  subterm without  indeterminates. Hence we can con
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table  may be  applied whenever  one  meets  a  subterm without  indeterminates. Hence we can con
clude that the uncommutative polynomial forms are isomorphic to the data structure of word lists.

Unlike  to  the  situation  of  commutative  polynomials,  however,  we  do  not  gain  anything  from
using the isomorphic data structure. All we have to do is to regard addition and multiplication as
flexible  operations;  see  [41].  In  this  view,  the  unary  versions  act  as  identity  functions,  so
PlusHAL = A  and  TimesHAL = A .  Furthermore,  the  nullary  versions  are  the  corresponding  neutral
elements, so PlusHL = 0  and TimesHL = 1. Obviously it makes no difference whether we understand
a list XA, B, C\  as  a  data structure like ListHA, B, CL  with the flexible constructor "List"  or  as  an
addition PlusHA, B, CL  with the flexible constructor "Plus". But note that "Plus" has the additional
role of set union  in  this case,  meaning that it  joins two lists and then reorders it  according to the
fixed ordering. For the multiplication, the situation is similar. It amounts to the same thing whether
we consider a word A B C  as a data structure WordHA, B, CL  with the flexible constructor "Word"
or as a multiplication TimesHA, B, CL  with the flexible constructor "Times". The difference to the
previous  case  of  lists  is  that  "Times"  now  acts  as  concatenation  on  the  words,  which  does  not
involve any reordering of the letters~reflecting the uncommutative nature of this kind of polynomi
als.

Therefore we conclude that the advantages of the succinct definition are lost upon moving from
commutative to uncommutative polynomials: In our opinion, it is more reasonable to carry out the
computations immediately on  the  uncommutative polynomial forms rather than introducing some
artificial  definition  similar  to  what  is  done  for  commutative  polynomials  in  computer  algebra~
where it clearly does make sense.

A.5 Commutative versus Noncommutative

There is one more subtlety we must take into account. In the upcoming applications of uncommuta
tive polynomials, we will encounter situations where the coefficients are taken from a commutative
ring or even from a field. But for uncommutative polynomials as we defined them, there will be no
commutation between indeterminates and coefficients,  even though the coefficients may commute
amongst themselves. In typical situations, we are dealing with the complex field C  as a commuta
tive coefficient domain, and the indeterminates X = 8x1 , ¼, xn<  will represent differential, integral
and multiplication operators. As a concrete example, let us look at the situation X = 8sin, ¶< , where
sin  represents the multiplication operator mapping a function f  to the function x# f HxL sin x  and
¶  the differentiation operator mapping a function f  to its derivative f ’. The corresponding domain
of differential operators is then given by the uncommutative  polynomial ring PUniRingHC, 8sin, ¶<L ,
since sin  and ¶  obviously do not commute. This is a severe problem because we would like to do
computations like

(75)
H3 ¶ +2 sinL H7 ¶ +4L =

H3 ¶L H7 ¶L + H3 ¶L 4 + H2 sinL H7 ¶L + H2 sinL 4 = 21 ¶2 +12 ¶ +14 sin ¶ +8 sin,

where we have, among others, used the reduction

(76)
H3 ¶L H7 ¶L® 3 H¶H7 ¶LL®

3 HH¶7L ¶L®
!

3 HH7 ¶L ¶L® 3 H7 H¶ ¶LL®
* H3 * 7L H¶ ¶L® 21 H¶ ¶L = 21 ¶2 .

All  the  steps  indicated  by  ®  are  just  invocations  of  associativity,  the  step  indicated  by  ®
*

appeals to the operation table for multiplying complex numbers, and the last equality is merely a
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notational convention. The critical step is the one indicated by ®
!

, where we have made use of the
commutation between ¶  and 7. Of course, we need these commutations between all indeterminates
and all coefficients. Speaking a bit more generally, we are asking for a new type of ùuncommutative
polynomials÷ over a commutative ring R  in the indeterminates X , where x r = r x  for all indetermi
nates  x Î X  and  all  coefficients  r Î R .  Maybe  one  only  has  to  adjust  the  axioms  of  the  variety
UniRing  slightly for constructing this new type of ùuncommutative polynomials÷?

A moment’s thought, however, reveals that such ùuncommutative polynomials÷ cannot exist in
the  (very broad!)  understanding of  the  polynomial concept  outlined in  the  preceding subsections.
The  reason  is  simply  that  the  indeterminates  would  not  be  ùindeterminate÷  anymore;  they  would
not be fresh constants since the commutations bind special properties to them. For a clear concept
of  polynomial,  we  should  keep  this  requirement  such  that  the  term  "indeterminate"  deserves  its
name:  Their  essential  idea  is  that  we  know  nothing  about  them~except  that  they  are  distinct
anonymous elements of the carrier.

Let us make this point clearer by way of another example. As a coefficient domain, we take C
as  before.  But  the  indeterminates should be  X = 8sin, c<  now,  where  sin  is  as  before and c  is  the

ùcubing operator÷  mapping a  function f  to  the cubed function x# f HxL3 .  Again we can consider
the uncommutative polynomial ring PUniRingHC, 8sin, c<L , but now it is clear that we would not want
to  have  a  commutation between  the  indeterminate c  and,  say,  the  coefficient 3:  The  operator  c 3

maps  f  to  x# H3 f HxLL3 = 27 f HxL3 ,  whereas  the  operator  3 c  maps  f  to  x# 3 f HxL3 .  Since  the
commutations do not work for this particular interpretation of the indeterminates, we cannot expect
that they should work in general; the polynomial ring PUniRingHC, XL  cannot ùknow÷ anything about
the particular interpretation we have in mind!

What  we  can  learn  from  this  example  is  that  one  typical  interpretation  of  the  rings
PUniRingHC, XL  is  various  composition  rings  (meaning  that  composition  plays  the  role  of  the  ring
multiplication; see page 306 in [53]) of operators acting on certain complex functions. The special
situation  with  commutations between  indeterminates and  coefficients  arises  when  we  restrict  our
attention to linear operators: In this case, we have xH f + gL = xH f L + xHgL  and xHr f L = r xH f L  for all
indeterminates x Î X ,  for  all  coefficients r Î R ,  and  for  all  admissible functions f , g  we have  in
mind.  The  only  interesting  information  we  can  extract  from  the  first  property  to  the  polynomial

ring is by substituting for f  and g  functions yH f`L  and zHg̀L  arising from other operators y, z Î X  and

arbitrary  admissible  functions  f
`

 and  g̀ .  This  gives  xIyH f`L + zHg̀LM = xIyH f`LM+ xHzHg̀LL  for  arbitrary

admissible functions f
`

 and g̀ . Since operator composition is just polynomial multiplication in this
interpretation, this amounts to xHy + zL = x y + x z ,  which is always fulfilled due to the distributive
law of the variety UniRing . The second property means that we require x r = r x  for all indetermi
nates x Î X  and for all coefficients r Î R .

Since  we  cannot  construct  a  new  type  of  ùuncommutative  polynomials÷  for  modelling  such
domains of linear operators as are relevant to us, let us consider a different device for enforcing the
desired commutations. In fact, we might have various other desires coming from specific interpreta

tions of the indeterminates, e. g. the property ¶2 sin = -sin  in the example presented at the begin

ning of this section. Now equalities like ¶2 sin + sin = 0  or ¶3 - 3 ¶ = 0  are all of the form p = 0,
where p  is some uncommutative polynomial. It is a well|known fact from ring theory that one can
always form the quotient ring  of all the polynomials with respect to the ideal generated from one
or  more  such  left|hand side  polynomials  p ;  this  is  true  for  the  commutative and  uncommutative
case alike.

It is advantageous to distinguish between ideals associated with fundamental properties like the
commutation ideal QHR, XL = Hr x - x r È x Î X ß r Î RL  for an arbitrary uncommutative polynomial

ring PUniRingHR, XL  and other more ùaccidental÷ ideals like the above example Á = H¶2 sin + sinL . In
the  first  case,  it  seems  appropriate  to  introduce  a  new  name  for  the  resulting  domain
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the  first  case,  it  seems  appropriate  to  introduce  a  new  name  for  the  resulting  domain
PUniRingHR, XL �QHR, XL , which does now indeed provide the desired ùuncommutative polynomials
with  indeterminate|coefficient commutations÷.  Following the  literature, we  will  call  it  the  ring of
noncommutative  polynomials  or  briefly  the  noncommutative  polynomial  ring  and  denote  it  by
R XX\ ; see page 527 in [3]. Analogous to the commutative case, we will abbreviate R X8x1 , ¼, xn<\
by R Xx1 , ¼, xn\ , as it is also customary in practice.

Having  constructed  this  new  domain,  we  should  again  pose  the  question  of  term  indexing.

Obviously, a noncommutative polynomial like 21 ¶2 +12 ¶ +14 sin ¶ +8 sin  occurring as the result
in (75) can be described as a set (or ordered list~see Section 4) containing pairs with a coefficient
and a word whose letters are only indeterminates. In the example, this list would be

(77)8X21, ¶ ¶\, X12, ¶\, X14, sin ¶\, X8, sin\<.
Now we can always view a  finite set  of  pairs as  a  function with finite domain,  if  the correspon
dence between both sides of the pairs is unique in some direction. In examples like (77), there will
always  be  only  one  coefficient  for  a  given  word~simply  because  the  normal  form  presupposes
that  all  like  monomials  are  fused.  Hence  we  can  view the  noncommutative polynomial  forms  as
finite functions from the word monoid X*  to the coefficient ring R . In fact, we can always think of
such a function as defined on the whole of X*  by mapping all the missing words to the coefficient
0,  and so  we will  identify the  noncommutative polynomial forms with the  collection of  all  func
tions from X*  to R  having finite support (but with the coefficients written in the left component).
In algebra, the construction of all finitely|supported functions from a given monoid M  to a ring R
is known as the monoid ring over R  and M ; it is an important tool in representation theory, where
M  is  usually  even  equipped  with  a  group  structure and  is  accordingly called  the  group  ring;  see
page 246  in  [53].  So  the  support  of  a  polynomial  p Î R XX\  is  8w Î X* È pHwL ¹ 0< ,  and  we  will
denote it by suppHpL .

Since it is well|known that the word monoid X*  is coincides with the free monoid over X , one
often reads the formulation that R XX\  is the monoid ring over R  and the free monoid over X ; see
page 527 in [3]. Analogously, one can characterized R@XD  as the monoid ring over R  and the free
abelian  monoid  over  X ;  see  page 64  in  [3].  The  latter  is  nothing  else  than  the  monoid  of  finite
multisequences, so the polynomials of R@x1 , ¼, xnD  are just finitely|supported functions from Nn

to R  as described in Section 2. However, one should keep in mind that only R@XD  but not R XX\  is a
ùreal÷ polynomial domain in the authoritative sense of the old definition. Having issued this warn
ing, we will from now on follow the common practice of using the name "polynomial" also for the
elements of some quotient PS,F HA, XL �Q  of a given polynomial domain PS,FHA, FL . Here F  is an
equational axiom system in a signature S , A  is an algebra from CatS,F , X  is a set of indeterminates,
and Q  is a congruence on (for rings: determined by an ideal in) PS,FHA, XL .

We  should  also  mention that  one  can  consider  R@XD  or  R XX\  as  an  algebra  over  R ,  which  is
then called the monoid algebra  over  the  free monoid over  X  or  the  free abelian monoid over  X ,
respectively. Note that the term "algebra" is here used in the narrower sense of what is also known
as  "bilinear  algebra"  [49],  namely  a  ring  which  is  at  the  same  time  a  compatible  module
(compatibility means mixed associativity of multiplication). Considering this algebra structure, one
may also characterize R@XD  or respectively R XX\  as the free abelian algebra over X  or as the free
algebra  over  X ;  see  pages 448ff  in  [6].  This  fact  also  justifies  the  parallelism  suggested  by  the
notations R@XD  and R XX\ .

As we have now seen that the monoid ring over R  and X*  provides the appropriate data struc
ture for noncommutative polynomials over R  in X , let us now ask ourselves again how this should
be  handled  in  the  implementation.  Obviously,  the  only  change  compared  to  the  uncommutative
polynomials is that the words contain only indeterminates, whereas the coefficient is separated as
an  additional  component  of  the  pair  comprising  a  monomial.  Hence  we  still  need  not  change
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an  additional  component  of  the  pair  comprising  a  monomial.  Hence  we  still  need  not  change
anything, as long as we agree that the coefficient should always be the first element~even if it is
1~in  the  word  expressed  by  TimesH¼L .  For  example,  the  noncommutative  polynomial  in  (77)
would be represented as

(78)Plus HTimes H21, ¶ , ¶L, Times H12, ¶L, Times H14, sin, ¶L, Times H8, sinLL,
which  is  nothing  else  than  the  corresponding  noncommutative  polynomial  form

21 ¶2 +12 ¶ +14 sin ¶ +8 sin, the only difference being in the concrete syntax used for writing it. So
also in this case, there is no disadvantage if we carry out the computations in the style of the old
definition, as long as we treat the first letter of each word in a special way that reflects its role as
the coefficient of the monomial.
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Epilog: Prospects of Generalization

Judging  from the  applied  point  of  view,  what  we  have  presented  in  this  PhD  thesis  is  of  course
not~yet~very  exciting.  We  have  only  considered  a  rather  narrow  and  simple  class  of  BVPs,
namely regular ones for differential equations that are simultaneously ordinary, linear, even having
constant  coefficients,  and  having  only  one  unknown.  However,  we  believe  that  there  are  some
prospects for generalizing our approach. Naturally, the work necessary for this will become increas
ingly more difficult as one climbs up the ladder of generalizations; but we hope this work will be
rewarded by a proportional increase of deep mathematical substance.

Let  us  first  look  at  some  straight|forward lines  of  generalization  (we  have  discussed most  of
these also in [57]):

è The  first  restriction that  one  should  try  to  get  rid  of  is  that  of  constant  coefficients,  thus
widening  the  scope  to  general  linear  differential  operators.  It  should  be  possible  to  find
out how this can be done by comparing with the well|established function|level method of
described e.g. on page 189 in [38]. The only step to be adapted here is the right inversion
of the given differential operator, which obviously does not any more factor into indepen
dent linear factors. But knowing the fundamental system, it may still be possible to succes
sively split off and invert "dependent linear factors" from the right until the given differen
tial operator is exhausted.

è We  can  view  systems  of  differential  equations  (together  with  their  boundary  conditions)
instead  of  a  single  one.  In  the  linear  case,  the  resulting  theory  is  very  similar  to  scalar
BVPs, using a Green’s matrix instead of a Green’s function; see e.g. page 249 in [38]. Our
method should be extensible to this case in a  fairly simple manner. In the worst case, we
have to recede to our original approach [57] via Gröbner bases and adapt them to work for
vectors  of  polynomials  rather  than  single  ones.  Essentially  this  amounts  to  computing
Gröbner bases in modules,  which is  a  routine task for  commutative polynomials (see e.g.
pages 485ff in [3]) and should smoothly carry over to noncommutative ones.

è It is certainly a much greater challenge to move from ordinary to partial differential equa
tions.  In  principle,  the  algebraization  employed  in  our  approach  extends  in  a  straight−
forward  way,  e.g.  introducing  Dx  and  Dy  instead  of  the  single  differentiation  D  and
analogous operators for integration. Here one might be able to benefit a lot from the alge
braic  approach employed in  Riquier−Janet theory and  from the  symmetry methods of  Lie
analysis.  The  treatment  of  boundary  values  must  of  course  be  adapted.  Besides  this,  the
analog of right inversion will be far more complex for most partial differential operators; it
might be analogous to the elimination techniques used in the holonomic approach [71].

è One of the most difficult generalizations is probably the step towards nonlinear BVPs. The
reason is that our algebraic model does not lend itself easily to describe nonlinear differen
tial operators, and a systematic approach might lead to general rewriting (still with respect
to  the  polynomial  congruence),  where  one  needs  substitution  in  addition  to  replacement.
Maybe this could be handled by a  suitable combination of Gröbner bases and the Knuth−
Bendix algorithm; see [2] and [48].

è In  this  thesis  we  have  only  considered  regular  BVPs  in  the  sense  that  there  is  a  unique
solution,  and  in  this  case  the  Moore−Penrose inverse  coincides with  the  actual  inverse.  If
the  BVP  is  underdetermined,  however,  one  can  still  search  for  a  so−called modified
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the  BVP  is  underdetermined,  however,  one  can  still  search  for  a  so−called modified
Green’s  function;  see  page 215f  in [63].  Since  the  modified  Green’s  function  just  corre
sponds  to  a  Moore−Penrose inverse,  our  method  should  be  adaptable  to  this  case  in  a
natural way.

è As a kind of curiosity, we should also be able to handle certain integro−differential equa
tions. In fact, the Green’s algebra provides a uniform way of expressing integral as well as
differential equations~and their mixtures.

Beyond these rather direct continuations of the research topic treated in this thesis, we believe
that our approach has some intrinsic interest not directly tied to BVPs of any kind. The essence of
our  method  can  be  described  as  solving  problems  at  the  operator  level  via  polynomial  methods.
This  could  be  a  new  research  paradigm  applicable  to  various  problems  of  a  field  that  might  be
called symbolic functional analysis.  Up  to  now,  symbolic methods have  conquered the  following
two  "main  floors":  numbers  (computer  algebra)  and  functions  (computer  analysis);  naturally,  the
third  floor  would  be:  operators  (symbolic  functional  analysis).  We  have  described  these  ideas  in
more detail in [9]; so let us just mention here two examples of problems residing on this third floor:

è Certain  problems in  potential  theory  seem to  have  a  flavor  that  is  very  similar to  that  of
BVPs for PDEs, at least when seen from the symbolic viewpoint. It is therefore natural to
ask in how far one could transfer some ideas from BVPs to the potential setting. In particu
lar,  one  would  like  to  formulate  an  algebraic  setup  that  allows  to  express  the  operator
induced  by  the  potential  function  (analogous  to  the  Green’s  operator  induced  by  the
Green’s function).

è The field of inverse problems opens a whole arena of possible applications for methods of
symbolic  functional  analysis.  Even  though  one  cannot  usually  expect  algebraic  solutions
for  such problems, the  polynomial approach will  certainly uncover a  great  deal  about  the
solution manifold. In particular, it might be possible to transform the given problem into a
different one possessing more profitable properties.

As  the  time  available  for  producing  and  writing  a  PhD  thesis  is  always  terribly  short,  we  do
hope that it will be possible to develop some of these interesting ideas in the future. As a matter of
fact, (good) mathematics is never finished; it always opens new doors.
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