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Abstract

In this thesis we study Ramanujan’s congruences and related problems from an algorithmic
point of view. We present an algorithm that proves such congruences. Furthermore, we
also describe an algorithm that proves identities involving certain infinite products which are
tightly connected to Ramanujan’s congruences. The techniques involved are based on modular
forms and we spend some time on nailing down the definitions and results involved in this
area. In the last part of the thesis we give a proof of a result conjectured by James Sellers
about generalized Frobenius partitions, which resulted from joint work with Peter Paule.
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Kurzzusammenfassung

In der vorliegenden Arbeit werden Ramanujan Kongruenzen und verwandte Probleme von
einem algorithmischen Gesichtspunkt aus behandelt. Wir präsentieren einen neuen Algo-
rithmus, der derartige Kongruenzen behandeln kann. Ausserdem beschreiben wir eine al-
gorithmische Methode, mit der Identitäten über bestimmte unendliche Produkte, die eng
mit Ramanujan Kongruenzen verbunden sind, bewiesen werden können. Die verwendeten
Techniken basieren auf modularen Formen. Die notwendigen theoretischen Grundlagen für
modulare Formen werden ausführlich eingeführt. Den Abschluss dieser Arbeit stellt der Be-
weis einer Vermutung von James Sellers über verallgemeinerte Frobenius Partitionen, der in
Kooperation mit Peter Paule entstanden ist.
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Chapter 1

Extended Abstract

Our main focus is to find algorithmic solutions to problems related to congruences for infinite
products. More precisely, we consider power series generated by products as follows:

∞∑

m=0

ar(m)qm :=
∏

δ|N

∞∏

n=1

(1 − qδn)rδ , (1.1)

where N is a positive integer and r = (rδ)δ|N is an integer sequence indexed by the positive
divisors δ of N ; we denote the set of all such sequences by R(N). By a congruence associated
to such an infinite product we mean a tuple (m, t, p, r) such that:

ar(mn + t) ≡ 0 (mod p), n ∈ N, (1.2)

where m is a positive integer, t ∈ {0, . . . , m − 1}, p a prime and r ∈ R(N) for some positive
integer N . For example, the generating function for p(n) the number of partitions of n is
given by

∞∑

m=0

p(m)qm =
∞∏

n=1

(1 − qn)−1.

Ramanujan discovered that:

p(5n + 4) ≡ 0 (mod 5), n ∈ N, (1.3)

p(7n + 5) ≡ 0 (mod 7), n ∈ N, (1.4)

and
p(11n + 6) ≡ 0 (mod 11), n ∈ N. (1.5)

The congruence (1.3) follows from Ramanujan’s most beautiful identity (as stated by Hardy):

∞∑

m=0

p(5m + 4)qm = 5
∞∏

n=1

(1 − q5n)5

(1 − qn)6
. (1.6)

We also investigate generalizations of (1.6) because of the tight connection to the congruence
(1.3). Our work started when Peter Paule asked for an algorithmic proof of the congruences

∆2(10n + 2) ≡ 0 (mod 2) (1.7)

1



2 Chapter 1. Extended Abstract

and

∆2(25n + 14) ≡ 0 (mod 5) (1.8)

where ∆2(n) counts the number of broken 2-diamonds of length n as introduced by George
E. Andrews and Peter Paule in [2]. The congruences (1.7)-(1.8) appeared first as conjectures
in [2] and became theorems thanks to the work of Michael Hirschhorn and James Sellers [17]
who proved (1.7) and Song Heng Chan [8] who proved (1.8). In [2] it was also shown that

∞∑

n=0

∆2(n)qn =
∞∏

n=1

(1 − q2n)(1 − q5n)

(1 − qn)3(1 − q10n)
.

Consequently, the generating function for ∆2(n) is of the desired form (1.1). When looking
at the available literature we found an algorithm by Eichhorn and Ono [9] that we could
modify to cover (1.7) and (1.8). It should be mentioned that Dennis Eichhorn [11] proposed
an algorithm that could deal with any problem of the type (1.2) which is very similar to
the one in [9]. The idea of the algorithm is as follows. First we transform the congruence
(1.2) into a congruence for the coefficients of some modular form (abbreviated by MF). At
this point we need to explain what a MF is. To make a long story short, a weak modular
form (abbreviated by WMF) of integer weight k for a subgroup Γ ≤ SL2(Z) is a function f
defined on some domain, which is invariant under a certain action (depending on k) of the
subgroup Γ. The subgroup Γ is required to be of finite index in SL2(Z). From now on we
denote the set of all WMF of weight k for the group Γ by Ak(Γ). One can show that to each
f ∈ Ak(Γ) there corresponds uniquely an element (f1(q), . . . , fh(q)) ∈ C((q))h (where C((q))
is the ring of formal Laurent series), which we call the expansion of f . Then number h = h(Γ)
can be computed and depends only on Γ. From now on we identify f with its expansion. In
particular, for f, g ∈ Ak(Γ) we mean by f = g that fi(q) = gi(q) for all i ∈ {1, . . . , h}. One
can also prove that 0 ∈ Ak(Γ) and of course f = 0 means fi(q) = 0 for all i ∈ {1, . . . , h}.
Moreover, we can add WMFs by adding their expansions, and we note that if f , g ∈ Ak(Γ),
then f + g ∈ Ak(Γ).

The most important observation about f 6= 0 ∈ Ak(Γ) comes from the fact that

h∑

i=1

ord(fi(q)) ≤
k

12
[SL2(Z) : Γ]. (1.9)

The formula (1.9) can be used to prove an identity like f = g where f , g ∈ Ak(Γ). The
method is as follows. We first rewrite the identity in the form f − g = 0. Next we assign to
f − g its expansion (f1(q)− g1(q), . . . , fh(q)− gh(q)) and prove that

∑h
i=1 ord(fi(q)− gi(q)) >

k
12 [SL2(Z) : Γ]. Then necessarily f − g = 0, otherwise we get a contradiction to (1.9).
In practice one imposes more conditions on f ∈ Ak(Γ), namely that ord(fi(q)) ≥ 0 for all
i ∈ {1, . . . , h}. In this case, f is called a modular form (which is abbreviated by MF) of weight
k for the subgroup Γ, and we denote the set of all such MFs by Mk(Γ). For f 6= 0 ∈ Mk(Γ)
we immediately have by (1.9) that

ord(f1(q)) ≤
k

12
[SL2(Z) : Γ], (1.10)

which is easier to deal with in practice because proving f = g where f , g ∈ Mk(Γ), is
equivalent to showing ord(f1(g) − g1(q)) > k

12 [SL2(Z) : Γ]. The connection between MFs
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and congruences comes from the fact that typically for f ∈ Mk(Γ) we have f1(q) ∈ Z([q]),
the ring of formal power series with integer coefficients. In this case we say that f has
integral coefficients. Given f , g ∈ Mk(Γ) with integral coefficients assume we want to prove
f1(q) ≡ g1(q) (mod p). Then Jacob Sturm [40] has discovered an analogue of (1.10). Namely

ordp(f1(q)) ≤
k

12
[SL2(Z) : Γ]. (1.11)

By ordp(f1(q)) we mean taking the usual order of f1(q) after reducing the coefficients modulo
p. At this point we can continue to explain the algorithm of Eichhorn and Ono. Given (1.2)
they find some F ∈ MK(Γ′) (for some integer K and group Γ′) with integral coefficients and
prove that showing (1.2) is equivalent to showing F1(q) ≡ 0 (mod p), which they prove using
(1.11). Namely they prove that the first ν := K

12 [SL2(Z) : Γ] coefficients of F1(q) are congruent
0 modulo p. For this approach the main problem is that ν can sometimes gets very big and the
computational effort needed can be tremendous. In Chapter 3 we present an algorithm that
takes as input the congruence (1.2) and transforms it into an equivalent congruence of the
form f1(q) ≡ 0 (mod p) where f is a MF with integral coefficients. Our method of obtaining
f is based on papers by Rademacher [32], Kolberg [22] and Newman [27], [28] and differs from
the method of Eichhorn and Ono. In short our approach leads to significant improvements of
the bound ν. Based on the methods we develop in Chapter 3, we are able to prove identities
of the type (1.6) in algorithmic fashion, and we show in Chapter 4 how one can obtain such
identities by various examples. This thesis can be said to have as main scope the task to take
infinite product identities (e.g., (1.6)) resp. congruences (e.g., (1.7)-(1.8)) and to transform
them into identities resp. congruences between MFs. As seen by (1.9)-(1.11) it is crucial
to optimize the weight k and the order [SL2(Z) : Γ] of the MFs involved. In Chapter 2 we
show how one can prove certain identities involving infinite products of the form (1.1). Most
part of our description is spent on showing that the identity we wish to prove is equivalent
to several identities between certain MFs for the Hecke subgroup Γ0(N), N ∈ N∗, which is
the only class of subgroups that will be used throughout this thesis. We conclude the thesis
with chapters 5 and 6, which to some part emerged from joint work with Peter Paule, that
deal with proving a result conjectured by James Sellers [37]. The only tools involved in these
chapters are those introduced in Chapter 1 where we provide the exact definitions, and where
we prove the main properties of WMFs and MFs.

Finally I would like to mention that the material in Chapter 4 is already published [33].
The material of Chapter 6 is submitted. The remaining parts is in preparation.
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Chapter 2

Introduction to Modular Forms

In this chapter we will introduce the theory of modular forms that we will need throughout
this thesis.

2.1 Main Definitions

Throughout we will use the following conventions: N = {0, 1, . . .} and N∗ = {1, 2, . . .} denote
the nonnegative and positive integers, respectively. The complex upper half plane is denoted
by H := {τ ∈ C : Im(τ) > 0}.

The general linear group

GL+
2 (Z) :=

{(
a b
c d

)

: a, b, c, d ∈ Z and ad − bc > 0

}

acts on elements τ of the upper half plane H as usual; i.e., for γ =
(

a
c

b
d

)

∈ GL+
2 (Z) :

γτ :=
aτ + b

cτ + d
.

We recall basic notions related to the modular group

SL2(Z) :=

{(
a b
c d

)

: a, b, c, d ∈ Z and ad − bc = 1

}

.

For integers a and c not both zero we let gcd(a, c) be the greatest positive integer dividing a
and c.

Proposition 2.1. Let
(

a
c

b
d

)

∈ GL+
2 (Z) and x, y any integers such that

ax + cy = gcd(a, c).

Then (
a b
c d

)

=

(
a/ gcd(a, c) −y
c/ gcd(a, c) x

)(
gcd(a, c) bx + dy

0 (ad − bc)/ gcd(a, c)

)

,

where the left matrix of the product is in SL2(Z) and the right matrix is in GL+
2 (Z).

5



6 Chapter 2. Introduction to Modular Forms

For τ ∈ H and γ =
(

a
c

b
d

)

∈ GL+
2 (Z) we define as in Rankin [35]:

(γ : τ) := cτ + d.

Note that for γ1, γ2 ∈ GL+
2 (Z) and τ ∈ H we have the identity:

(γ1γ2 : τ) = (γ1 : γ2τ)(γ2 : τ). (2.1)

Let k ∈ Q. For every non-zero w ∈ C we define

wk := ek log(w),

where the principal value of the logarithm is used; i.e. the argument is between −π and π.
For γ1, γ2 ∈ GL+

2 (Z) and k ∈ Q define

σk(γ1, γ2) :=
(γ1 : γ2τ)k(γ2 : τ)k

(γ1γ2 : τ)k
, τ ∈ H.

Because of (2.1) we see that |σk(γ1, γ2)| = 1 for all τ ∈ H. One can show that σk(γ1, γ2) is
independent of τ . For γ ∈ GL+

2 (Z), f : H → C and k ∈ Q we define the “stroke operator”
f |kγ : H → C by the formula:

(f |kγ)(τ) := det(γ)
k
2 (γ : τ)−kf(γτ), τ ∈ H. (2.2)

The following formula is easily proven (e.g., Rankin [35, Th. 4.3.9]):

f |k(γ1γ2) = σk(γ1, γ2)(f |kγ1)|kγ2, γ1, γ2 ∈ GL+
2 (Z), k ∈ Z. (2.3)

Note. We should often write f |kγ1γ2 instead of f |k(γ1γ2).

Definition 2.2. We denote by S the set of all subgroups of SL2(Z) of finite index.

Our next task is to define the notion of weak modular form but before this we recall some
facts from complex analysis.

Lemma 2.3. Let f : H → C be holomorphic and l a positive integer. Let D∗ := {q ∈ C||q| <
1, q 6= 0} be the punctured unit disc. Assume that f is l-periodic, i.e. f(τ + l) = f(τ) for
τ ∈ H. Then there is a function f̃ : D∗ → C holomorphic on D∗ such that f̃(e2πiτ/l) = f(τ)
for all τ ∈ H. In particular there exists unique a : Z → C with n 7→ a(n) such that

f̃(e2πiτ/l) =
∞∑

n=−∞

a(n)e2πiτn/l, τ ∈ H. (2.4)

Proof. Because of f(τ + l) = f(τ) we can define a function f̃ : D∗ → C by the formula
f̃(e2πiτ/l) := f(τ) which is well defined because for given q0 ∈ C and τ0 ∈ C such that q0 =
e2πiτ0/l the set of all solutions τ to the equation q0 = e2πiτ/l is given by the set {τ0 + ln|n ∈ Z}
and f(τ0 + ln) = f(τ0) by assumption. It remains to prove that f̃ is holomorphic.

Let q0 ∈ D∗ and τ0 be such that q0 = e2πiτ0/l. Let logτ0 be the complex logarithm with

argument between 2πRe(τ0)
l − π and 2πRe(τ0)

l + π. Then

f̃(q) = f

(
l

2πi
logτ0(q)

)
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for q ∈ D∗ with 2πRe(τ0)
l − π < arg(q) < 2πRe(τ0)

l + π. Since l
2πi logτ0 is holomorphic in a

neighborhood of q0 and f is holomorphic in a neighbourhood of l
2πi logτ0(q0), their composition

f̃ must be holomorphic at q0.

Finally because f̃ is holomorphic on D∗ it admits a Laurent expansion proving (2.4).

Definition 2.4. Let l be a positive integer. For f : H → C a holomorphic l-periodic function
we define af,l : Z → C to be the unique sequence of Lemma 2.3 satisfying

f(τ) =
∞∑

n=−∞

af,l(n)e2πiτn/l, τ ∈ H.

Definition 2.5. Let k ∈ Z and f : H → C be holomorphic. Then f is called a Lk-function
if for all γ ∈ SL2(Z) there exist a positive integer lγ and a integer mγ such that fγ := f |kγ
is l-periodic and afγ ,l(n) = 0 if n < mγ; moreover if mγ ≥ 0 (for all γ ∈ SL2(Z)) then f is
called a Tk-function. We define the sets

Lk := {f |fa Lk-function} and Tk := {f |fa Tk-function}.

Definition 2.6. Let f : H → C, Γ ∈ S and k ∈ Z. Then f is called a weak modular form of
weight k for the group Γ iff

(i) f is holomorphic on H;

(ii) f |kγ = f for all γ ∈ Γ;

(iii) f ∈ Lk.

If in addition f ∈ Tk for all γ ∈ SL2(Z) then f is called a modular form of weight k. The
space of weak modular forms (resp. modular forms) of weight k for Γ will be denoted by Ak(Γ)
(resp. Mk(Γ)).

We next develop some tools that enables us to check when a function satisfies conditions
(i) and (iii) of Definition 2.6.

Proposition 2.7. Let f : H → C be holomorphic, γ ∈ GL+
2 (Z) and k ∈ Z. Then the function

f |kγ is holomorphic.

Proof. The functions gγ : H → H and hγ,k : H → C defined by gγ(τ) := γτ and hγ,k(τ) = (γ :
τ)−k for τ ∈ H are holomorphic. From Complex Analysis we know that the property being
holomorphic is preserved by composition and taking product of functions so that hγ,k · f ◦ gγ

is holomorphic on H. By (2.2) we have (f |kγ) = det(γ)k/2hγ,k ·f ◦gγ . This proves that (f |kγ)
is holomorphic.

Proposition 2.8. Let k, t ∈ Z and A ∈ GL+
2 (Z). Then the following statements are true:

(i) If f is in Lk (resp. Tk) then f |kA is in Lk (resp. Tk).

(ii) If f, g are in Lk (resp. Tk) then f + g is in Lk (resp. Tk).

(iii) If f is in Lk (resp. Tk) and g is in Lt (resp. Tt) then fg is in Lk+t (resp. Tk+t).
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Proof. (i): Take γ ∈ SL2(Z) arbitrary but fixed. By Proposition 2.1 one can write Aγ = ξT

where ξ ∈ SL2(Z) and T =
(

a
0

b
d

)

∈ GL+
2 (Z) is upper triangular. Let γ ∈ SL2(Z). Since f is

in Lk (resp. Tk) there exist a integer m (with m ≥ 0 if f ∈ Tk) and a positive integer l such
that

g := (f |kξ)(τ) =
∞∑

n=m

ag,l(n)e2πiτn/l, τ ∈ H.

This implies together with (2.3) and Aγ = ξT that

((f |kA)|kγ)(τ) = (f |kAγ)(τ) = (f |kξT )(τ) = (f |kξ)|kT

=(ad)k/2d−k(f |kξ)
(

aτ + b

d

)

= (ad)k/2d−k
∞∑

n=m

ag,l(n)e2πi bn
ld e2πi aτn

ld

for τ ∈ H, showing the desired property for f |kA in agreement with Definition 2.5.

The proof of (ii) and (iii) are immediate from Definition 2.5.

Definition 2.9. Let Γ ∈ S and γ ∈ SL2(Z). Then we define ωΓ,γ to be the least positive

integer h such that

(
1 h
0 1

)

∈ γ−1Γγ. When Γ is clear from the context we will write ωγ

instead of ωΓ,γ.

We will derive an explicit expression (in Lemma 2.37 below) for ωΓ,γ in the special case
when Γ is a Hecke subgroup.

Lemma 2.10. Let Γ ∈ S, k a positive integer, f ∈ Ak(Γ) and γ ∈ SL2(Z). Then

(f |kγ)(τ + ωγ) = (f |kγ)(τ), τ ∈ H.

Proof. By assumption there exists ξ ∈ Γ such that γ

(
1 ωγ

0 1

)

= ξγ. Then by (2.3) (because

σk ≡ 1 for k ∈ Z) and because of f ∈ Ak(Γ) we have

f |kγ
(

1 ωγ

0 1

)

= f |kξγ = (f |kξ)|kγ = f |kγ.

Noting that

(

f |kγ
(

1 ωγ

0 1

))

(τ) = (f |kγ)(τ + ωγ) finishes the proof.

Lemma 2.11. Let Γ ∈ S, k a positive integer, f ∈ Ak(Γ) and γ ∈ SL2(Z). Then there exist
an integer t and a sequence b : Z → C such that

g(τ) := (f |kγ)(τ) =
∞∑

n=t

b(n)e2πinτ/ωγ , τ ∈ H.

This implies in particular that g(τ +ωγ) = g(τ) for τ ∈ H and b(n) = ag,ωγ (n) for n ∈ Z with
n ≥ t. If additionally f ∈ Mk(Γ) then t ≥ 0.
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Proof. By Lemma 2.10 g(τ + ωγ) = g(τ), and since g ∈ Lk, because of (iii) in Definition 2.6,
there exist a integer m and a positive integer l (where m ≥ 0 if f ∈ Mk(Γ)) such that

g(τ) =
∞∑

n=m

ag,l(n)e2πinτ/l. (2.5)

Next change τ by τ + ωγ in (2.6) to obtain

g(τ) =
∞∑

n=m

ag,l(n)e2πinτ/l =
∞∑

n=m

ag,l(n)e2πinωγ/le2πiτn/l (2.6)

for τ ∈ H. If we substitute ql := e2πiτ/l in (2.6) then we obtain an equality of Laurent series
for every ql ∈ C with 0 < |ql| < 1. From Complex Analysis, we know that the coefficients of
Laurent series are unique and we can make coefficient comparison to obtain

ag,l(n) = ag,l(n)e2πinωγ/l, n ∈ Z, n ≥ m,

which implies that ag,l(n) = 0 if l ∤ nωγ . Finally, we can write

∞∑

n=m

ag,l(n)e2πinτ/l =
∑

n≥m, l
gcd(ωγ,l)

|n

ag,l(n)e2πinτ/l

=

∞∑

k=⌈m gcd(l,ωγ)/l⌉

ag,l(kl/ gcd(l, ωγ))e2πikτ/ gcd(ωγ ,l)

=
∞∑

k=⌈m gcd(l,ωγ)/l⌉

ag,l(kl/ gcd(l, ωγ))e
2πiτ

ωγk

gcd(ωγ,l)
/ωγ

=
∞∑

j=
ωγ

gcd(l,ωγ )
⌈m gcd(l,ωγ)/l⌉

ag,l(jl/ωγ)e2πiτj/ωγ .

Here we assume the convention ag,l(d) = 0 if d 6∈ Z. The proof is finished by setting t :=
ωγ

gcd(l,ωγ)⌈m gcd(l, ωγ)/l⌉ and

b(n) :=

{
0 if n < t

ag,l(nl/ωγ) otherwise.

We get the following equivalent characterization of (weak) modular forms.

Corollary 2.12. Let Γ ∈ S, k a positive integer and f : H → C. Then f ∈ Ak(Γ) (resp.
f ∈ Mk(Γ)) iff (i) and (ii) as in Definition 2.6 hold, and if for all γ ∈ SL2(Z) there exist an
integer m (with m ≥ 0 if f ∈ Mk(Γ)) and a sequence a : Z → C with n 7→ a(n) such that

(f |kγ)(τ) =
∞∑

n=m

a(n)e2πinτ/ωγ , τ ∈ H. (2.7)



10 Chapter 2. Introduction to Modular Forms

The following concept plays a very important role in the study of weak modular forms.

Definition 2.13. Let Γ ∈ S, k ∈ Z, f 6= 0 ∈ Ak(Γ) and γ ∈ SL2(Z). Then we define
OrdΓ(f, γ) to be the least integer m such that ag,ωΓ,γ (m) 6= 0 where g := f |kγ.

We next define a concept similar to Ord in Definition 2.13 that will be needed later.

Definition 2.14. Let f : H → C and assume there exist a : Z → C and m ∈ Z such that

f(τ) =
∞∑

n=m

a(n)e2πiτn, τ ∈ H,

and a(m) 6= 0. Then we define ord(f) := m.

The connection between Ord and ord is made explicit in the following lemma.

Lemma 2.15. Let Γ ∈ S, k ∈ Z, f ∈ Ak(Γ) and γ ∈ Γ. Then OrdΓ(f, γ) = ord
(
f |kγ

(ωΓ,γ

0
r
1

))

for all r ∈ Z.

Proof. Let g := f |kγ. Then by Definition 2.13 we have

g(τ) =
∞∑

n=OrdΓ(f,γ)

ag,ωΓ,γ (n)e2πinτ/ωΓ,γ , τ ∈ H,

and

(

f |kγ
(ωΓ,γ

0

r

1

))

=
(

g|k
(ωΓ,γ

0

r

1

))

= ω
k/2
Γ,γ

∞∑

n=OrdΓ(f,γ)

ag,ωΓ,γ (n)e2πin(ωΓ,γτ+r)/ωΓ,γ

= ω
k/2
Γ,γ

∞∑

n=OrdΓ(f,γ)

ag,ωΓ,γ (n)e2πinr/ωΓ,γe2πinτ , τ ∈ H,

(2.8)

which by Definition 2.14 implies that OrdΓ(f, γ) = ord
(
f |kγ

(
ωγ

0
r
1

))
as desired.

We see that we need to verify condition (iii) of Definition 2.6 for all γ ∈ SL2(Z) and this
is an infinite set. We would like to have some conditions that allows us to do this verification
for finitely many γ ∈ SL2(Z). For this purpose we introduce the group

SL2(Z)∞ :=

{(
1 h
0 1

)

| h ∈ Z

}

.

Recall that for subgroups H1, H2 of a group G the double coset of x ∈ G is defined as

H1xH2 := {h1xh2|h1 ∈ H1, h2 ∈ H2}.

The set of double cosets is denoted by H1\G/H2 and they form a partition of G.
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Lemma 2.16. Let Γ ∈ S, γ1 ∈ SL2(Z), γ2 ∈ Γγ1SL2(Z)∞, k ∈ Z and f : H → C. Assume
that f satisfies (ii) of Definition 2.6. Assume that there are a : Z → C with n 7→ a(n) and
m ∈ Z such that

(f |kγ1) =

∞∑

n=m

a(n)e2πinτ/ωγ , τ ∈ H. (2.9)

Then for any h such that γ2 ∈ Γγ1

(
1
0

h
1

)

we have (f |kγ2)(τ) = (f |kγ1)(τ +h) or, equivalently,

(f |kγ2) =
∞∑

n=m

a(n)e2πinh/ωγe2πinτ/ωγ , τ ∈ H. (2.10)

In particular, if f ∈ Ak(Γ), then OrdΓ(f, γ1) = OrdΓ(f, γ2).

Proof. By assumption there exist γ0 ∈ Γ such that γ2 = γ0γ1

(
1 h
0 1

)

. By (2.3) and f |kγ0 =

f (because of (ii) in Definition 2.6) we obtain

(f |kγ2)(τ) =

(

f |kγ0γ1

(
1 h
0 1

))

(τ)

=

(

(f |kγ0)|kγ1

(
1 h
0 1

))

(τ)

=

(

f |kγ1

(
1 h
0 1

))

(τ)

= (f |kγ1)(τ + h).

(2.11)

We obtain immediately:

Lemma 2.17. Let f : H → C, Γ ∈ S, R ⊆ Γ and k ∈ Z. Assume that
⋃

r∈R

ΓrSL2(Z)∞ = SL2(Z).

Then f ∈ Ak(Γ) iff (i) and (ii) of Definition 2.6 hold, and if for all γ ∈ R there exist a
integer m and a sequence a : Z → C with n 7→ a(n) such that

(f |kγ)(τ) =
∞∑

n=m

a(n)e2πinτ/ωγ , τ ∈ H.

Note that since Γ is of finite index, the set R can be finitely chosen because

|Γ\SL2(Z)/SL2(Z)∞| ≤ ν

where ν := [SL2(Z) : Γ] is the index of Γ in SL2(Z). The most important fact about weak
modular forms is the following lemma.

Lemma 2.18. Let Γ ∈ S, R ⊆ Γ a complete set of representatives of the double cosets
Γ\SL2(Z)/SL2(Z)∞ and f 6= 0 ∈ Ak(Γ). Then

∑

r∈R

OrdΓ(f, r) ≤ k

12
[SL2(Z) : Γ]. (2.12)
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A E

D’

D
C C’

B’

B

−1/2 1/2−1 1

(a) (b)

Figure 2.1: Contour of integration

The next lemma is the specialization of Lemma 2.18 to Γ = SL2(Z) and its proof is based
on Complex Analysis. The extension of Lemma 2.19 to Lemma 2.18 involves only algebra;
see our proof of Lemma 2.18 after Proposition 2.21.

Lemma 2.19. Let k ∈ Z and f 6= 0 be a weak modular form of weight k that is f ∈
Ak(SL2(Z)). Denote by id the identity matrix. Then

OrdSL2(Z)(f, id) ≤ k

12
. (2.13)

Proof. We recall that any holomorphic function f in some neighborhood of P ∈ H has locally
a representation of the form

f(τ) =
∞∑

n=0

a(n)(τ − P )N .

For f as above we denote by νP (f) the minimal integer m such that a(m) 6= 0. We integrate
f ′/f along the contour of Figure 2.1(a), but modified by taking small arcs around the possible
poles of f/f ′ on the boundary, as on Figure 2.1(b). For simplicity we phrase the proof under
the assumption that f has no zero on the boundary of the domain (that is f/f ′ has no pole
on the boundary) other than at i, e2πi/3 and e4πi/3. Let D ⊂ C be the interior of the domain
shown in Figure 2.1. Following e. g. Whittaker and Watson [42, p. 119-120] we see that

1

2πi

∫

∂D

f ′

f
=
∑

P∈D

vP (f). (2.14)
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The integral 1
2πi

∫

∂D
f ′(τ)
f(τ) dτ can also be computed by integrating over each segment and arc

listed in Figure 2.1(b). We start with the segment EA. Let f̃ be defined by the formula
f̃(e2πiτ ) = f(τ) for τ ∈ H. Because g(q) := q−OrdSL2(Z)(f,id)f̃(q) is a Taylor series in q because
of (2.7) and ωid = 1, there exists an ǫ such that g(q) 6= 0 for |q| < ǫ (otherwise g accumulates
at 0 and is identically 0). We may assume that E and A are chosen with imaginary part large

enough for e−2πIm(E) < ǫ to hold. Then

1

2πi

∫ A

E

f ′(τ)

f(τ)
dτ =

∫

C

f̃ ′(q)

f̃(q)
dq = −OrdSL2(Z)(f, id) (2.15)

where the contour C is the circle around 0 of radius e−2πIm(E) taken clockwise.
Next we consider the sum of the integrals of the segments AB and D′E:

∫ B

A

f ′(τ)

f(τ)
dτ +

∫ E

D′

f ′(τ)

f(τ)
dτ

which is 0 because f(τ + 1) = f(τ). Next we observe that

f ′(τ)

f(τ)
=

νe4πi/3(f)

τ − e4πi/3
+ holomorphic terms.

Consequently the integral

∫ B′

B

f ′(τ)

f(τ)
dτ = −1

6
νe4πi/3(f) + χ1

where χ1 is the integral over the holomorphic terms and goes to zero if the radius of the arc
BB′ goes to 0. Similarly

∫ D′

D

f ′(τ)

f(τ)
dτ = −1

6
νe2πi/3(f) + χ2 (2.16)

with χ2 → 0 if the radius of the arc DD′ goes to 0. Since e4πi/3 + 1 = e2πi/3 and because of
f(τ + 1) = f(τ) we have νe2πi/3(f) = νe4πi/3(f) and hence

∫ B′

B

f ′(τ)

f(τ)
dτ +

∫ D′

D

f ′(τ)

f(τ)
dτ = −1

3
νe2πi/3(f) + χ1 + χ2.

The same argument is used for the arc CC ′ around the point i to obtain

∫ C′

C

f ′(τ)

f(τ)
dτ = −1

2
νi(f) + χ. (2.17)

It remains to compute the integrals over the arcs B′C and C ′D. The map τ 7→ −1/τ
transforms the arc B′C to the arc DC ′. By property (ii) of Definition 2.6 we have

f(−1/τ) = τkf(τ), (2.18)

and
df(−1/τ)

dτ
=

f ′(−1/τ)

τ2
= τkf ′(τ) + kτk−1f(τ). (2.19)
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Since
∫ D

C′

f ′(w)

f(w)
dw =

∫ B′

C

1

τ2

f ′(−1/τ)

f(−1/τ)
dτ,

and after dividing (2.19) by (2.18) we obtain

1

τ2

f ′(−1/τ)

f(−1/τ)
=

f ′(τ)

f(τ)
+

k

τ
.

We see that the integral over the second arc has one term which cancels the integral over the
first arc, plus another term which is

∫ B′

C

k

τ
dτ. (2.20)

Finally, we let the radius of the arcs BB′ and DD′ go to 0. Then (2.20) approaches k/12 and
we sum (2.15), (2.16), (2.17) and (2.20) and compare it with (2.14). We obtain

−OrdSL2(Z)(f, id) − 1

2
νi(f) − 1

3
νe2πi/3(f) +

k

12
=
∑

P∈D

vP (f). (2.21)

Because f is holomorphic on H by property (i) of Definition 2.6 we have νP (f) ≥ 0 for all
P ∈ H. Using this on (2.21) we obtain (2.13).

Before we can prove Lemma 2.18 we need the following two simple propositions.

Proposition 2.20. Let Γ ∈ S and γ ∈ SL2(Z). Then

Γγ

(
1 i1
0 1

)

= Γγ

(
1 i2
0 1

)

iff ωγ |(i1 − i2). (2.22)

Proof. We see that (2.22) is equivalent to

(
1 i2 − i1
0 1

)

∈ γ−1Γγ iff ωγ |(i2 − i1), which is

immediate from Definition 2.9.

Proposition 2.21. Let Γ ∈ S, R ⊆ Γ be a complete set of representatives of Γ\SL2(Z), k ∈ Z
and f ∈ Ak(Γ). Then N(f) :=

∏

r∈R(f |kr) ∈ Aκ(SL2(Z)) where κ := k · [SL2(Z) : Γ].

Proof. First we observe that for k ∈ Z, m a positive integer, f1, . . . , fm : H → C and
γ ∈ SL2(Z) we have

(
m∏

i=1

fi

)

|kmγ =

m∏

i=1

(fi|kγ). (2.23)

Assume that R = {γ1, . . . , γm} where m := [SL2(Z) : Γ]. Then there exists r1, . . . , rm ∈ Γ
and a bijection σ : {1, . . . , m} → {1, . . . , m} such that γiγ = riγσ(i) for i ∈ {1, . . . , m}, which
together with (2.3), (2.23) and f ∈ Ak(Γ) implies

N(f) =

(
m∏

i=1

(f |kγi)

)

|kmγ =
m∏

i=1

{(f |kγi)|kγ} =
m∏

i=1

(f |kγiγ)

=
m∏

i=1

(f |kriγσ(i)) =
m∏

i=1

{(f |kri)|kγσ(i)} =
m∏

i=1

(f |kγσ(i)) = N(f).
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This shows property (ii) of Definition 2.6. Furthermore, N(f) is holomorphic by Proposition
2.7 and because of the fact that products of holomorphic functions are again holomorphic.
This proves (i) of Definition 2.6. By (i) and (iii) of Proposition 2.8 we have N(f) ∈ Tkm

proving (iii) of Definition 2.6.

Now we are ready for the

Proof of Lemma 2.18: Let R = {γ1, . . . , γn} (n = |Γ\SL2(Z)/SL2(Z)∞|). Define

St := {γt

(
1 i
0 1

)

| i ∈ {0, . . . , ωγt − 1}}

and mt := OrdΓ(f, γt) for t ∈ {1, . . . , n}. Then there is at : Z → C with a(mt) 6= 0 such that

gt(τ) :=
∏

s∈St

(f |ks)(τ) =

ωγt−1
∏

j=0

(f |kγt)(τ + j) =
∞∑

n=mt

at(n)e2πiτn, τ ∈ H,

because by Lemma 2.16 and Corollary 2.12 we have

(f |kγt)(τ + j) =
∞∑

n=mt

af |kγt,ωγt
(n)e2πij/ωγt e2πiτn/ωγt .

Define

N(f)(τ) :=
n∏

t=1

∏

s∈St

(f |ks) =
n∏

t=1

∞∑

j=mt

at(j)e
2πijτ , τ ∈ H. (2.24)

By Proposition 2.20 ∪γ∈Sk
Γγ = ΓγkSL2(Z)∞ for all k ∈ {1, . . . , n}. In other words, the set

S := ∪n
k=1Sk is a complete set of representatives of Γ\SL2(Z). This implies that N(f) ∈

Aκ(SL2(Z)) by Proposition 2.21 where κ := k · [SL2(Z) : Γ]. Furthermore, because of (2.24)
we have

OrdSL2(Z)(N(f), id) =
n∑

t=1

OrdΓ(f, γt)

which together with Lemma 2.19 implies

n∑

t=1

OrdΓ(f, γt) = OrdSL2(Z)(N(f), id) ≤ k · [SL2(Z) : Γ]

12
.

Corollary 2.22. Let Γ ∈ S, k ∈ Z and f 6= 0 ∈ Mk(Γ). Then

OrdΓ(f, id) ≤ k · [SL2(Z) : Γ]

12
.

Proof. We choose R in Lemma 2.18 such that id ∈ R. Then by (2.12) we have:

OrdΓ(f, id) +
∑

r∈R,r 6=id

OrdΓ(f, r) ≤ k

12
[SL2(Z) : Γ]. (2.25)

Because of OrdΓ(f, r) ≥ 0 for all r ∈ R, by Definition 2.6 we have
∑

r∈R,r 6=id OrdΓ(f, r) ≥ 0

and hence the result follows from inequality (2.25).
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Corollary 2.23. For all Γ ∈ S we have M0(Γ) = C.

Proof. Let f ∈ M0(Γ). Then by Definition 2.6 f =
∑∞

n=0 a(n)e2πinτ/l for some a : Z → C
and l ∈ N∗. If f 6∈ C then f − a(0) 6= 0 and f − a(0) ∈ M0(Γ). Then OrdΓ(f − a(0), id) > 0
contradicting Corollary 2.22.

Remark 2.24. We make the following observations. For Γ ∈ S

• Mk(Γ) and Ak(Γ) are vector spaces over C for k ∈ Z;

• if f ∈ Ak(Γ) and g ∈ Al(Γ) then f · g ∈ Ak+l(Γ) for k, l ∈ Z;

• A0(Γ) is a ring and M0(Γ) = C (because of Corollary 2.22).

2.2 Examples of Weak Modular Forms

In the previous section we studied weak modular forms from a general point of view. In this
chapter we will introduce a class of weak modular forms that will play an important role
throughout.

For τ ∈ H the Dedekind eta function η : H → C is defined by

η(τ) := q
1
24

∞∏

n=1

(1 − qn) where q := e2πiτ . (2.26)

We will also use the short hand notation:

ηn(τ) := η(nτ), n ∈ Z, τ ∈ H. (2.27)

The connection between the eta function and weak modular forms comes from Lemma 2.27
which we will introduce after some definitions.

Definition 2.25. Let a ∈ Z. For an odd integer n > 0 we define:

• If n = 1 then:
(a

n

)

=
(a

1

)

:= 1.

• If n is a prime p then:

(a

n

)

=

(
a

p

)

:=







0 if p | a
1 if a is a square modulo p

−1 otherwise
.

• If pα1
1 · . . . · pαk

k is the prime factorization of n then:

(a

n

)

:=

(
a

p1

)α1

· . . . ·
(

a

pk

)αk

.

The symbol
(

a
n

)
is called the Legendre-Jacobi symbol.
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Definition 2.26. Let c, d be integers with gcd(c, d) = 1 and d odd. Then we define

( c

d

)

∗
=

{
(

c
|d|

)
(−1)

sgn(c)−1
2

sgn(d)−1
2 , if c 6= 0,

sgn(d), otherwise,

and
( c

d

)∗
=

{ (
c
|d|

)
, if c 6= 0,

1, otherwise,

where sgn : R∗ → {−1, 1} is defined by

sgn(a) :=

{
1, if a > 0,

−1, otherwise.

The next lemma is proven in Knopp’s book [20, p. 51]).

Lemma 2.27. For
(

a
c

b
d

)

∈ SL2(Z):

η

(
aτ + b

cτ + d

)

= υη(a, b, c, d)(cτ + d)1/2η(τ), τ ∈ H, (2.28)

where

υη(a, b, c, d) =

{ (
d
c

)∗
e2πi{c(a+d)−bd(c2−1)−3c}/24 if c is odd,

(
c
d

)

∗
e2πi{(a+d)c−bd(c2−1)+3d−3−3cd}/24 if c is even.

(2.29)

The following lemma gives us another formula for υη(a, b, c, d) that will turn out to be
useful.

Lemma 2.28. Let A =
(

a
c

b
d

)

∈ SL2(Z) and υη(a, b, c, d) the unique complex number given

by (2.28). Then

υη(a, b, c, d) =

{ (
a
−c

)∗
e2πi{c(a+d)−ba(c2−1)−3c}/24 if c is odd,

(
−c
a

)

∗
e2πi{c(a+d)−ba(c2−1)−3a+3−3ca}/24 if c is even.

(2.30)

Proof. We know that A−1 =
(

d
−c

−b
a

)

and by (2.28)

η(τ) = η(AA−1τ) = υη(a, b, c, d)(c(A−1τ) + d)1/2υη(d,−b,−c, a)(−cτ + a)1/2η(τ)

= υη(a, b, c, d)υη(d,−b,−c, a)(−cτ + a)−1/2(−cτ + a)1/2η(τ)

= υη(a, b, c, d)υη(d,−b,−c, a)η(τ), τ ∈ H.

(2.31)

Observe that we used above that
√

z ·
√

1
z = 1 for all z ∈ C \ {x ∈ R|x ≤ 0}. After canceling

η(τ) from both sides of (2.31) we obtain

υη(a, b, c, d)υη(d,−b,−c, a) = 1

which implies (2.30).

We get immediately the following simplified formula for υη(a, b, c, d) if we restrict c > 0
and gcd(c, 6), which Newman [27] discovered in slightly different form.
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Lemma 2.29. Let
(

a
c

b
d

)

∈ SL2(Z) with c > 0, gcd(c, 6) = 1 and υη(a, b, c, d) the unique

complex number given by (2.28). Then

υη(a, b, c, d) =
(a

c

)

e2πi{c(a+d)−3c}/24. (2.32)

Proof. By using c2 − 1 ≡ 0 (mod 24) in (2.30) and Definition 2.26 we immediately obtain
(2.32).

If we impose a > 0, c > 0, gcd(a, 6) = 1, then Newman [28] discovered a more simple
expression for υη(a, b, c, d) that will be more useful than the one in Lemma 2.27. This is given
in the next lemma and we prove it directly using Lemma 2.28. But first some properties of
the Legendre-Jacobi symbol.

Lemma 2.30. Let n > 0 be an odd integer, then the following relations hold:

• If a and b are integers then
(a

n

)( b

n

)

=

(
ab

n

)

. (2.33)

• (
2

n

)

= (−1)
n2−1

8 . (2.34)

• (−1

n

)

= (−1)
n−1

2 . (2.35)

• If m is an odd integer then

(m

n

)

=
( n

m

)

(−1)
m−1

2
n−1

2 . (2.36)

Proof. We refer to [31]: For (2.36) see Satz 28, p. 71, (9) p. 70 for (2.33), (39) p. 84 for
(2.35), and (40) p. 85 for (2.34).

The following notion turns out to be easier to deal with in some applications.

Definition 2.31. For

(
a b
c d

)

∈ SL2(Z) we define

ǫ(a, b, c, d) := eπi/4υη(a, b, c, d)

where υη(a, b, c, d) is the unique complex number given by (2.28).

Lemma 2.32. Let

(
a b
c d

)

∈ SL2(Z) with a > 0, c > 0 and gcd(a, 6) = 1. Then

ǫ(a, b, c, d) = e−
πia
12

(c−b−3). (2.37)
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Proof. By Definition 2.26 and (2.35):
(−c

a

)

∗

=

(−c

a

)

=
( c

a

)

(−1)
a−1
2 =

( c

a

)

e2πi
6(a−1)

24 , (2.38)

and in case c is odd we have by Definition 2.26 and by (2.33):
(

a

−c

)∗

=
(a

c

)

=
( c

a

)

(−1)
(c−1)(a−1)

4 =
( c

a

)

e2πi
−3(c−1)(a−1)

24 . (2.39)

Note that because gcd(a, 6) = 1 we have a2 ≡ 1 (mod 24) which together with ad − bc = 1
gives

d ≡ abc + a (mod 24). (2.40)

Next we substitute (2.38)-(2.40) into (2.30) which together with Definition 2.31 will simplify
to (2.37).

The conditions stated in Lemma 2.32 motivate the following definition.

Definition 2.33. Let Γ ∈ S. Then we define

Γ∗ :=

{(
a b
c d

)

∈ Γ|a > 0, c > 0, gcd(a, 6) = 1

}

.

From Lemma 2.27 we see that η24 ∈ M12(SL2(Z)) but this is not the only modular form
(or weak modular form) that can be constructed using the eta function. Lemma 2.34 below
is a mild extension of an extremely useful result stated and exploited first by M. Newman
in [27, Th. 1] and [28, Th. 1] which shows us how to construct weak modular forms for the
Hecke subgroup

Γ0(N) :=

{(
a b
c d

)

∈ SL2(Z)|N |c
}

, N ∈ N∗, (2.41)

which will play a very important role throughout this work.

Lemma 2.34 (“Newman’s Lemma”). Let r = (rδ)δ|N be a finite sequence of integers indexed
by the positive divisors δ of N ∈ N∗. Let fr : H → C be defined by fr(τ) :=

∏

δ|N ηrδ(δτ).
Then

fr ∈ Ak(N) for k =
1

2

∑

δ|N

rδ,

if the following conditions are satisfied:

(i)
∑

δ|N δrδ ≡ 0 (mod 24);

(ii)
∑

δ|N Nrδ/δ ≡ 0 (mod 24);

(iii)
∏

δ|N δrδ is the square of a rational number;

(iv)
∑

δ|N rδ ≡ 0 (mod 4).

If (i)-(iv) are satisfied, then fr ∈ Mk(N) iff
∑

δ|N

gcd2(δ, d)rδ/δ ≥ 0

for all d|N .
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The following result due to Newman will be used to prove Lemma 2.34 and will also be
used later.

Lemma 2.35. Let k ∈ Z, f : H → C and N be a positive integer. Then the following
statements are true:

(i) Γ0(N)∗ generates Γ0(N);

(ii) If f |kγ = f for all γ ∈ Γ0(N)∗, then f |kγ = f for all γ ∈ Γ0(N).

Proof. (i): First we show that γ ∈ SL2(Z)∞ may be written as a product of matrices from

Γ0(N)∗. If γ =
(
−1
0

h
−1

)

then

(
6N − 1 −1

6N −1

)(
1 −(h + 1)

6N −6N(h + 1) + 1

)

=

(
−1 h
0 −1

)

= γ. (2.42)

If γ =
(

1
0

h
1

)

then γ =
(
−1
0

0
−1

)(
−1
0

−h
−1

)

and each term in this product may be written as

a product of matrices from Γ0(N)∗. Next let
(

a
c

b
d

)

∈ Γ0(N) with c 6= 0. Then one easily

verifies that

(
a b
c d

)

=

(
sgn(c) t sgn(c)

0 sgn(c)

)(
a sgn(c) − |c|t b sgn(c) − dt sgn(c)

|c| d sgn(c)

)

︸ ︷︷ ︸

∈Γ0(N)∗

(2.43)

where t is such that a · sgn(c)− |c|t > 0, gcd(a · sgn(c)− |c|t, 6) = 1. This proves that Γ0(N)∗

generates Γ0(N) because we already showed that
(

sgn(c)
0

t sgn(c)
sgn(c)

)

is a product of matrices in

Γ0(N)∗ for any t ∈ Z.

(ii): For γ ∈ Γ0(N) we define the L(γ) to be the least positive integer n such that
γ = γ1 · · · γn with γ1, . . . , γn ∈ Γ0(N)∗. Note that the existence of the integer n and of
γ1, . . . , γn ∈ Γ0(N)∗ is guaranteed by (i). By assumption

f |kξ = f, ξ ∈ Γ0(N)∗. (2.44)

Assume by induction that for all ξ ∈ Γ0(N) with L(ξ) < n we have

f |kξ = f. (2.45)

Let γ ∈ Γ0(N)∗ be such that L(γ) = n. Then there exists ξ with L(ξ) < n and γ1 ∈ Γ0(N)∗

such that γ1ξ = γ. By (2.3), (2.44) and (2.45) we have

f |kγ = f |kγ1ξ = (f |kγ1)|kξ = f |kξ = f.

Proof of Lemma 2.34: We proceed by verifying conditions (i)-(iii) in Definition 2.6. Prop-
erty (i) is clear. In order to prove condition (ii) in Definition 2.6, it is sufficient to show that
fr|kγ = fr for all γ ∈ Γ0(N)∗ by (ii) of Lemma 2.35.
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By Lemma 2.32 the following formula holds for all τ ∈ H and
(

A
C

B
D

)

∈ SL2(Z)∗:

η

(
Aτ + B

Cτ + D

)

= (−i(Cτ + D))1/2

(
C

A

)

e−
Aπi
12

(C−B−3)η(τ), (2.46)

with (C/A) being the Legendre-Jacobi symbol.

For δ|N and γ =
(

a
c

b
d

)

∈ Γ0(N)∗ this implies:

η

(

δ
aτ + b

cτ + d

)

= η

(
a(δτ) + bδ
c
δ (δτ) + d

)

= (−i(cτ + d))1/2

(
c/δ

a

)

e−
aπi
12

(c/δ−δb−3)η(δτ).

Consequently we have:

∏

δ|N

ηrδ

(

δ
aτ + b

cτ + d

)

= (−i(cτ + d))
1
2

P

δ|N rδ
∏

δ|N

(
c/δ

a

)rδ

×e−
aπi
12

(c
P

δ|N rδ/δ−b
P

δ|N rδδ−3
P

δ|N rδ)
∏

δ|N

ηrδ(δτ).

Because of properties (i) and (ii), and k = 1
2

∑

δ|N rδ this reduces to:

∏

δ|N

ηrδ

(

δ
aτ + b

cτ + d

)

= (−i(cτ + d))k
∏

δ|N

(
c/δ

a

)rδ

e
πika

2

∏

δ|N

ηrδ(δτ).

Next we note that

∏

δ|N

(
c/δ

a

)rδ

=
∏

δ|N

(
c/δ

a

)rδ
(

δ2

a

)rδ

=
∏

δ|N

(
δc

a

)rδ

=
∏

δ|N

(
δ

a

)rδ

,

where we applied (iv). By property (iii) this reduces to 1.

Hence we have proven that for all γ =
(

a
c

b
d

)

∈ Γ0(N)∗:

(fr|kγ)(τ) = (−i)ke
πika

2

∏

δ|N

ηrδ(δτ).

Because of gcd(a, 6) = 1 and (iv) we have that (−i)ke
πika

2 = 1, which proves the desired
property. Owing to the fact that the η function is holomorphic on H it remains to show that
condition (iii) of Definition 2.6 holds.

For a fixed γ =
(

a
c

b
d

)

∈ SL2(Z) and a fixed positive divisor δ of N , let xδ, yδ be integers

satisfying δaxδ+cyδ = gcd(δa, c). Observe that gcd(δa, c) = gcd(δ, c) because of gcd(a, c) = 1,

and set λ := gcd(δ, c). Set γ0,δ :=
(

δa/λ
c/λ

−yδ
xδ

)

∈ SL2(Z) and γ1,δ :=
(

λ
0

δbxδ+dyδ
δ/λ

)

, and verify

that γ0,δγ1,δ =
(

δa
c

δb
d

)

. Then by (2.28) and because of

c

λ
γ1,δτ + xδ =

λ

δ
(cτ + d)
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we have:

η(γ0,δγ1,δτ) =

(
λ

δ
(cτ + d)

) 1
2

υη (δa/λ,−yδ, c/λ, xδ) η(γ1,δτ).

Noting that δ(γτ) = (γ0,δγ1,δ)τ one obtains

(fr|kγ)(τ) = (cτ + d)−kfr(γτ) = C(a, b, c, d) ·
∏

δ|N

ηrδ(γ1,δτ),

where

C(a, b, c, d) :=
∏

δ|N

υrδ
η (δa/λ,−yδ, c/λ, xδ)

∏

δ|N

(
λ

δ

)rδ/2

.

Finally we observe that

η(γ1,δτ) = η

(
λτ + δbxδ + dyδ

δ/λ

)

= η

(
λ2τ + (δbxδ + dyδ)λ

δ

)

= q
λ2

24δ e
πi(δbxδ+dyδ)λ

12δ

∞∏

n=1

(

1 − qne
2πin(δbxδ+dyδ)λ

δ

)

.

Consequently,
∏

δ|N ηrδ(γ1,δτ) = q
1
24

P

δ|N
rδλ2

δ h(q) where h(q) is a Taylor series with nonzero

constant term in powers of q1/ν for some positive integer ν, and therefore condition (iii) of
Definition 2.6 is fulfilled. Recalling λ = gcd(δ, c) and Definition 2.6 we see that fr ∈ Mk(N)
if and only if

∑

δ|N

rδgcd2(δ, c)

δ
≥ 0 (2.47)

for all c ∈ Z. But since gcd(δ, c) = gcd(δ, gcd(c, N)) whenever δ|N , we see that we need to
check (2.47) only for c being a divisor of N .

Remark 2.36. Newman’s Lemma in its original version in [27] or [28] can be refined to an
“if and only if” statement, as remarked-without proof-for instance by Garvan [14, Thm. 4.7].
Being not relevant for the present context, we only mention that an analogous refinement
holds also for our modified version as we will see in the end of next chapter.

2.3 The Hecke Subgroups

The Hecke subgroups Γ0(N), N ∈ N∗ are very important throughout this thesis and we will
derive some of their properties. We start with an explicit formula for ωΓ0(N),γ , γ ∈ SL2(Z),
in Definition 2.9:

Lemma 2.37. Let γ =
(

a
c

b
d

)

∈ SL2(Z) and N a positive integer. Then

ωΓ0(N),γ =
N

gcd(c2, N)
.
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Proof. By Definition 2.9 we need to find the minimal positive integer h such that

γ

(
1 h
0 1

)

γ−1 =

(
1 − ach a2h
−c2h 1 + ach

)

∈ Γ0(N). (2.48)

We see that (2.48) is equivalent to

−c2h ≡ 0 (mod N) ⇔ − c2

gcd(c2, N)
h ≡ 0 (mod

N

gcd(c2, N)
) ⇔ h ≡ 0 (mod

N

gcd(c2, N)
).

Definition 2.38. Let p be a prime, N ∈ N and α ∈ {0, . . . , N}. Then we define:

SN,α,p :=







{0, . . . , pN − 1} if α = 0;
{x ∈ {0, . . . , pN−α − 1}| gcd(p, x) = 1} if 1 ≤ α ≤ N − 1;
{1} if α = N.

Lemma 2.39. Let M, N, Q be positive integers and p a prime such that p ∤ QM . For

α ∈ {0, . . . , N} let x(α), y(α) : SN,α,p → Z be such that for x
(α)
λ := x(α)(λ) and y

(α)
λ := y(α)(λ)

where λ ∈ SN,α,p:

x
(α)
λ pα − y

(α)
λ QλM = 1.

For α ∈ {0, . . . , N} set

RN,α,p :=

{(

x
(α)
λ y

(α)
λ

QλM pα

)

| λ ∈ SN,α,p

}

.

Then ∪N
i=0RN,α,p forms a complete set of representatives of Γ0(p

NM) in Γ0(M). In particular

N∑

i=0

|RN,α,p| = [Γ0(M) : Γ0(p
NM)] = pN (1 + p−1). (2.49)

Proof. Let γ =

(
a b
c d

)

∈ Γ0(M). We will show that there exists a α ∈ {0, . . . , N} and

λ ∈ SN,α,p such that

(
a b
c d

)(

pα −y
(α)
λ

−QλM x
(α)
λ

)

∈ Γ0(p
NM).

Clearly this is the case if cpα − QλMd ≡pN 0. If d ≡pN 0 then choose α = N and λ = 1.

Otherwise write d = d0p
β with β < N and gcd(b0, p) = 1 and choose α = β and λ such that

λ ≡ Q−1M−1d−1
0 c (mod pN−α) , 0 ≤ λ ≤ pN−α. Next we show that the representatives are

not equivalent. This task is equivalent to showing that

(

x
(β)
λ′ y

(β)
λ′

Qλ′M pβ

)(

pα −y
(α)
λ

−QλM x
(α)
λ

)

∈ Γ0(p
NM)



24 Chapter 2. Introduction to Modular Forms

only if λ = λ′ and α = β, which is equivalent to showing that Qpαλ′M − QpβλM ≡pN 0
which can happen only if α = β and λ = λ′. To show (2.49) we note that |RN,α,p| = |SN,α,p|
and by Definition 2.38 we obtain immediately

|SN,α,p| =







pN if α = 0;
pN−α − pN−α−1 if 1 ≤ α ≤ N − 1;
1 if α = N .

This implies that

N∑

i=0

|SN,α,p| = pN +
N−1∑

α=1

(pN−α − pN−α−1) + 1 = pN + pN−1 − 1 + 1 = pN (1 + p−1)

which proves (2.49).

Corollary 2.40. Let N be a positive integer. Then

[SL2(Z) : Γ0(N)] = N
∏

p|N

(1 + p−1).

Proof. Let pβ1
1 · · · pβn

n be the prime decomposition of N . Because of (2.41) we see that Γ0(N) ⊆
Γ0(M) iff M |N . This implies that we have a chain

Γ0(N) ⊆ Γ0(p
β1
1 · · · pβn

n ) ⊆ Γ0(p
β1
1 · · · pβn−1

n−1 ) ⊆ . . . ⊆ Γ0(p
β1) ⊆ Γ0(1) = SL2(Z).

This chain implies that

[SL2(Z) : Γ0(N)] = [Γ0(1) : Γ0(p
β1
1 )]

n−1∏

i=1

[Γ0(p
β1
1 · · · pβi

i ) : Γ0(p
β1
1 · · · pβi+1

i+1 )],

and which by (2.49) equals
∏n

i=1 pβi
i (1 + p−1

i ) finishing the proof.

One can easily modify this proof of Lemma 2.39 to get in addition (in Lemma 2.44 (i))
the explicit coset representatives of Γ0(MN) in Γ0(M) even for N not necessarily a prime
power and in this way one obtains Corollary 2.40 directly. Moreover, we obtain (in Lemma
2.44 (ii) another formula for the index [SL2(Z) : Γ0(N)] which might be preferable for some
applications. For the sake of completeness we carry out the details.

Lemma 2.41. Let m, n be positive integers and λ ∈ Z. Then if gcd(λ, m, n) = 1 there exists
an integer k such that gcd(λ + km, n) = 1.

Proof. For p|n define

kp :=

{
1, if p|λ;
0, otherwise.

By chinese remaindering there exists a k ∈ Z such that k ≡ kp (mod p) for all p|n. We will
show that gcd(λ+km, n) = 1. Assume by contradiction that p| gcd(λ+km, n). Then p|n and
λ + km ≡ λ + kpm ≡ 0 (mod p). If p|λ then kp = 1 meaning p|λ + m and consequently p|m
contradicting gcd(λ, m, n) = 1. If p ∤ λ then kp = 0 contradicting λ + kpm ≡ 0 (mod p).
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Lemma 2.41 motivates the next definition.

Definition 2.42. Let m, n be positive integers and λ ∈ Z such that gcd(λ, m, n) = 1. Then we
define ρm,n(λ) to be the minimal positive integer such that gcd(ρm,n(λ), n) = 1 and ρm,n(λ) ≡
λ (mod m).

We point out that minimality in Definition 2.42 is only required for uniqueness.

Definition 2.43. Let N be a positive integer. Then for δ|N we define

SN,δ :=

{

ρN/δ,δ(λ)|λ ∈
{

0, . . . ,
N

δ
− 1

}

| gcd(λ, N/δ, δ) = 1

}

.

Lemma 2.44. Let N, Q, M ∈ N∗ such that gcd(N, QM) = 1. For δ|N let x(δ), y(δ) : SN,δ → Z

with λ 7→ x
(δ)
λ , y

(δ)
λ be such that

x
(δ)
λ δ − y

(δ)
λ QλM = 1.

For δ|N set

RN,δ :=

{(

x
(δ)
λ y

(δ)
λ

QλM δ

)

| λ ∈ SN,δ

}

.

(i) Then ∪δ|NRN,δ forms a complete set of coset representatives of Γ0(NM) in Γ0(M);

(ii)

∑

δ|N

|RN,δ| =
∑

δ|N

δϕ(gcd(δ, N/δ))

gcd(δ, N/δ)
= [Γ0(M) : Γ0(NM)] = N

∏

p|N

(1 + p−1) (2.50)

where ϕ : N∗ → N∗ is the Euler ϕ-function with ϕ(n) equal to the number of positive integers
less then n and coprime to n.

Proof. (i): Let γ =

(
a b
c d

)

∈ Γ0(M). We will show that there exists a δ|N and λ ∈ SN,δ

such that
(

a b
c d

)(

δ −y
(δ)
λ

−QλM x
(δ)
λ

)

∈ Γ0(NM).

Clearly this is the case if cδ − QλMd ≡N 0. We choose δ = gcd(d, N) and λ such that
c ≡ QλM d

δ (mod N
δ ) or equivalently λ ≡ cQ−1M−1(d/δ)−1 (mod N

δ ). We also need to show
that cQ−1M−1(d/δ)−1 is equivalent modulo N/δ with some element in SN,δ which is true
iff cQ−1M−1(d/δ)−1 is a unit modulo gcd(δ, N/δ). Clearly Q−1, M−1 and (d/δ)−1 are units
modulo gcd(δ, N/δ) because they are units modulo N/δ. Also, because δ|d we must have
gcd(c, δ) = 1 because of ad− bc = 1 implying that c is a unit modulo δ and consequently also
modulo gcd(δ, N/δ).

Next we show that the representatives are not equivalent. This task is equivalent to
showing that if for δ1, δ2|N , λ1 ∈ SN,δ1 and λ2 ∈ SN,δ2 the relation

(

x
(δ1)
λ1

y
(δ1)
λ1

Qλ1M δ1

)(

δ2 −y
(δ2)
λ2

−Qλ2M x
(δ2)
λ2

)

∈ Γ0(NM), (2.51)
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holds then λ1 = λ2 and δ1 = δ2. We note that (2.51) is equivalent to

N |(Qλ1Mδ2 − Qλ2Mδ1). (2.52)

In particular δ1|(Qλ1Mδ2 − Qλ2Mδ1) hence δ1|Qλ1Mδ2 but gcd(QMλ1, δ1) = 1 implying
δ1|δ2. By symmetry δ2|δ1 and we may set δ = δ1 = δ2. By (2.52) we have N

δ |(Qλ1M −Qλ2M)
so λ1 ≡ λ2 (mod N/δ) implying λ1 = λ2 because SN,δ contain no two elements equivalent
modulo N/δ. This finishes the proof of (i).

(ii): Next we compute the number of elements in SN,δ for δ|N . We see that x with
0 ≤ x ≤ N/δ−1 is in SN,δ iff x is a unit modulo gcd(δ, N/δ). There are totally ϕ(gcd(δ, N/δ))
units modulo gcd(δ, N/δ) and the mapping φ : ZN/δ → Zgcd(δ,N/δ) defined by φ(x) := x

(mod gcd(δ, N/δ)) has the property |φ−1(x)| = N/δ
gcd(δ,N/δ) for all x ∈ Zgcd(δ,N/δ) which shows

that |SN,δ| = N/δ
gcd(δ,N/δ) · ϕ(gcd(δ, N/δ)). Since |RN,δ| = |SN,δ| we showed that

∑

δ|N

(N/δ)ϕ(gcd(δ, N/δ))

gcd(δ, N/δ)
=
∑

δ|N

δϕ(gcd(δ, N/δ))

gcd(δ, N/δ)
= [Γ0(M) : Γ0(NM)]. (2.53)

Assume by induction that for n < N (2.50) holds. Next let p|N and write N = pαN0 where
p ∤ N0. Then

=
∑

δ|N

δϕ(gcd(δ, N/δ))

gcd(δ, N/δ)

=
∑

δ|pαN0

δϕ(gcd(δ, N/δ))

gcd(δ, N/δ)

=
∑

δ1|pα,δ2|N0

δ1δ2ϕ(gcd(δ1δ2, p
αN0/(δ1δ2)))

gcd(δ1δ2, pαN0/(δ1δ2))

=
∑

δ1|pα,δ2|N0

δ1δ2ϕ(gcd(δ1, p
α/δ1) gcd(δ2, N0/δ2))

gcd(δ1, pα/δ1) gcd(δ2, N0/δ2)

=
∑

δ1|pα,δ2|N0

δ1δ2ϕ(gcd(δ1, p
α/δ1))ϕ(gcd(δ2, N0/δ2))

gcd(δ1, pα/δ1) gcd(δ2, N0/δ2)

=




∑

δ1|pα

δ1ϕ(gcd(δ1, p
α/δ1))

gcd(δ1, pα/δ1)








∑

δ2|N0

δ2ϕ(gcd(δ2, N0/δ2))

gcd(δ2, N0/δ2)





= [Γ0(M) : Γ0(p
αM)] · [Γ0(M) : Γ0(N0M)].

(2.54)

The induction base for (2.50) is N = pα for p an arbitrary prime and α ∈ N. By (2.53) we
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have

[Γ0(M) : Γ0(p
αM)] =

∑

δ|pα

δϕ(gcd(δ, pα/δ))

gcd(δ, pα/δ)

=

α∑

i=0

piϕ(gcd(pi, pα/pi))

gcd(pi, pα/pi)

=
α∑

i=0

piϕ(pmin(i,α−i))

pmin(i,α−i)

= ϕ(1) +

α−1∑

i=1

piϕ(pmin(i,α−i))

pmin(i,α−i)
+ pαϕ(1)

= 1 +
α−1∑

i=1

pi(1 − p−1) + pα = pα(1 + p−1).

(2.55)

Note that we used that ϕ(pα) = pα(1− p−1) which is immediately seen by counting the units
in Zpα .

For the remaining part of this section we will derive some results that allows us to compute
a complete set of representatives of the double cosets Γ0(N)\SL2(Z)/SL2(Z)∞ for any given
positive integer N .

Lemma 2.45. Let N be a positive integer. For each δ ∈ N∗ such that δ|N let Xδ be any set
of complete representatives of Z∗

gcd(δ, N
δ )

with the property gcd(x, δ) = 1 for all x ∈ Xδ. Write

Xδ = {a(δ)
1 , . . . , a

(δ)
ϕ(gcd(δ,N/δ))}. Let b(δ), d(δ) : Xδ → Z with λ 7→ b

(δ)
λ , d

(δ)
λ be such that

a
(δ)
λ d

(δ)
λ − b

(δ)
λ δ = 1, λ ∈ {1, . . . , ϕ (gcd(δ, N/δ))}. (2.56)

Define

SN,δ :=

{(

a
(δ)
λ b

(δ)
λ

δ d
(δ)
λ

)

|λ ∈ {1, . . . , ϕ(gcd(δ, N/δ))}
}

.

Then ∪δ|NSN,δ is a complete set of representatives of the double cosets Γ0(N)\SL2(Z)/SL2(Z)∞.
Furthermore ⋃

δ|N

|SN,δ| =
∑

δ|N

ϕ(gcd(δ, N/δ)).

Proof. Let
(

a
c

b
d

)

∈ SL2(Z) be arbitrary but fixed. We will show that there exist δ|N and
(

a
(δ)
λ
δ

b
(δ)
λ

d
(δ)
λ

)

∈ Xδ such that
(

a
c

b
d

)

∈ Γ0(N)

(

a
(δ)
λ
δ

b
(δ)
λ

d
(δ)
λ

)

SL2(Z)∞. Set δ = gcd(c, N) and choose

λ such that
a

(δ)
λ ≡ d−1 c

δ
(mod gcd(δ, N/δ)). (2.57)

Since gcd
(

c
δ , N

δ

)
= 1 such a a

(δ)
λ ∈ Xδ surely exists. Note that because of (2.56) one can write

(2.57) equivalently as

d
(δ)
λ ≡ d

( c

δ

)−1
(mod gcd(δ, N/δ)). (2.58)



28 Chapter 2. Introduction to Modular Forms

We will show that
(

a b
c d

)

∈ Γ0(N)

(

a
(δ)
λ b

(δ)
λ

δ d
(δ)
λ

)

SL2(Z)∞. (2.59)

We observe that (2.59) is equivalent with the existence of h ∈ Z such that

(
a b
c d

)(
1 h
0 1

)(

d
(δ)
λ −b

(δ)
λ

−δ a
(δ)
λ

)

∈ Γ0(N). (2.60)

Further (2.60) is equivalent to

cd
(δ)
λ − δ(ch + d) ≡ 0 (mod N) ⇔ c

δ
d

(δ)
λ − d ≡ c

δ
δh (mod N/δ)

⇔ d
(δ)
λ − d

( c

δ

)−1
≡ δh (mod N/δ).

(2.61)

Because of (2.58) there exists a k ∈ Z such that k gcd(δ, N/δ) = d
(δ)
λ − d

(
c
δ

)−1
. Because of

this we may write (2.61) as

k gcd(δ, N/δ) ≡ δh (mod N/δ) ⇔ k ≡ δ

gcd(δ, N/δ)
h (mod N/(δ gcd(δ, N/δ))). (2.62)

Since δ
gcd(δ,N/δ) is a unit modulo N

δ gcd(δ,N/δ) we may choose h such that

h ≡ k

(
δ

gcd(δ, N/δ)

)−1

(mod N/(δ gcd(δ, N/δ))).

We next show that given

(

a
(δ1)
λ
δ1

b
(δ1)
λ

d
(δ1)
λ

)

,

(

a
(δ2)
µ

δ2

b
(δ2)
µ

d
(δ2)
µ

)

∈ ∪δ|NSN,δ such that

(

a
(δ1)
λ b

(δ1)
λ

δ1 d
(δ1)
λ

)

∈ Γ0(N)

(

a
(δ2)
µ b

(δ2)
µ

δ2 d
(δ2)
µ

)

SL2(Z)∞ (2.63)

implies δ1 = δ2 and λ = µ. As before we see that (2.63) is equivalent to the existence of h ∈ Z
such that (

a
(δ1)
λ b

(δ1)
λ

δ1 d
(δ1)
λ

)(
1 h
0 1

)(

d
(δ2)
µ −b

(δ2)
µ

−δ2 a
(δ2)
µ

)

∈ Γ0(N)

which is equivalent to

δ1d
(δ2)
µ − δ2(δ1h + d

(δ1)
λ ) ≡ 0 (mod N). (2.64)

By (2.64) we see that δ1|δ2(δ1h + d
(δ1)
λ ) implying δ1|δ2 because of gcd(δ1, d

(δ1)
λ ) = 1 by (2.56).

Again by (2.64) we see that δ2|δ1d
(δ2)
µ implying δ2|δ1 because of gcd(δ2, d

(δ2)
µ ) = 1. This shows

δ2 = δ1. By using this we see that (2.64) is equivalent to

d(δ)
µ − (δh + d

(δ)
λ ) ≡ 0 (mod N/δ). (2.65)

This implies that d
(δ)
µ − d

(δ)
λ ≡ 0 (mod gcd(δ, N/δ)) which together with (2.56) implies a

(δ)
µ −

a
(δ)
λ ≡ 0 (mod gcd(δ, N/δ)) showing λ = µ.



Chapter 3

Automatic Proofs of Identities

Related to Modular Forms

Fix a positive integer N and let R(N) be the set of integer sequences r = (rδ)δ|N indexed

by the positive divisors δ of N . Let r(1), . . . , r(m) ∈ R(N) and v1, . . . , vm ∈ ⋃∞
k=−∞ M2k(N)

where M2k(N) := M2k(Γ0(N)). In this chapter we will present an algorithm for proving
identities of the form:

v1

∏

δ|N

η
r
(1)
δ

δ + · · · + vm

∏

δ|N

η
r
(m)
δ

δ = 0. (3.1)

We call an identity of type (3.1) a general eta identity. We define an equivalence relation ∼
on R(N)×Z in the following way. For (r, kr), (s, ks) ∈ R(N)×Z we say that (r, kr) ∼ (s, ks)
iff:

•
∑

δ|N δ(rδ − sδ) ≡ 0 (mod 24);

• ∑δ|N (N/δ)(rδ − sδ) ≡ 0 (mod 24);

• ∑δ|N (rδ − sδ) + 2kr − 2ks = 0;

• ∏δ|N δrδ−sδ is a rational square.

For f ∈ Mk(N) of weight k denote the weight of f by w(f); i.e. w(f) = k. Our strategy for
proving (3.1) is as follows. We write the set

{(r(1), w(v1)), . . . , (r
(m), w(vm))}

as a partition S1 ∪ S2 ∪ . . . ∪ Sl into equivalence classes under the relation ∼. Fix an index
j and write the equivalence class Sj as {(r(Ij(1)), w(vIj(1))), . . . , (r

(Ij(|Sj |)), w(vIj(|Sj |)))} where
Ij : Sj → {1, . . . , |Sj |} is a function that indexes the elements of Sj . Then we will show
(Theorem 3.5) that if (3.1) is true then for all j ∈ {1, . . . , l}:

vIj(1)

∏

δ|N

η
r
(Ij(1))

δ
δ + · · · + vIj(|Sj |)

∏

δ|N

η
r
(Ij(|Sj |))

δ
δ = 0. (3.2)

We call an identity of type (3.2) a fundamental eta identity. This means that to each Sj cor-
responds a fundamental eta identity and it is sufficient to prove these l (smaller) fundamental

29
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eta identities because they sum up to the general eta identity (3.1). Summarizing we prove
that a general eta identity (3.1) is true by proving that these l smaller identities are true.
So it is sufficient to restrict ourselves to proving fundamental eta identities (3.2). We divide

both sides of (3.2) by
∏

δ|N η
r
(Ij(1))

δ
δ and obtain

vIj(1) + vIj(2)

∏

δ|N

η
r
(Ij(2))

δ −r
(Ij(1))

δ
δ + · · · + vIj(|Sj |)

∏

δ|N

η
r
(Ij(|Sj |))

δ −r
(Ij(1))

δ
δ = 0. (3.3)

A fundamental eta identity in the form (3.3) we call reduced fundamental eta identity. For
the rest of the proof we apply a method very similar to the one proposed in Chapter 20 of
[7]. Denote by F the left hand side of (3.3). We will show in Section 3.2 that for some κ1,
κ2 ∈ Z there exists f ∈ Mκ1(N) such that Ff ∈ Mκ2(N). Next we show by computing

the q-series of Ff that OrdΓ0(N)(Ff, id) > κ2·[SL2(Z):Γ0(N)]
12 . This contradicts Corollary (2.22)

unless Ff = 0, implying F = 0 and (3.3) is proven. Note that (2.50) is useful in computing
the index [SL2(Z) : Γ0(N)] = N

∏

p|N (1 + p−1).

3.1 Reduction of a General Eta Identity to Fundamental Eta

Identities

The purpose of this section is to prove Theorem 3.5. In order to state it we need the following
definitions. We recall that r ∈ Q is called a rational square if r = q2 for some q ∈ Q.

Definition 3.1. The equivalence relation ≈ on the positive integers is defined by

z1 ≈ z2 iff z1/z2 is a rational square.

Definition 3.2. For N a positive integer with prime divisors p1, . . . , pn we define

L(N) := {pα1
1 · · · pαn

n |(α1, . . . , αn) ∈ Zn
2 },

where Z2 := {0, 1}.

Next we introduce some short hand notation to save space.

Definition 3.3. For n, m ∈ Z let [n, m] := {x ∈ Z|n ≤ x ≤ m}.

Definition 3.4. Let N be a positive integer. For (i, j, k, l) ∈ [0, 23]2 × Z × L(N) we define

A
(1)
N (i) := {r ∈ R(N) |

∑

δ|N

δrδ ≡ i (mod 24)};

A
(2)
N (j) := {r ∈ R(N) |

∑

δ|N

(N/δ)rδ ≡ j (mod 24)};

A
(3)
N (k) := {(r, z) ∈ R(N) × Z |

∑

δ|N

rδ + 2z = k};

A
(4)
N (l) := {r ∈ R(N) |

∏

δ|N

δrδ ≈ l};

A
(i,j,k,l)
N := A

(3)
N (k) ∩ {(A(1)

N (i) ∩ A
(2)
N (j) ∩ A

(4)
N (l)) × Z}.
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Theorem 3.5. Let N be a positive integer, let p1, . . . , pn be the primes dividing N , {v1, . . . , vm} ⊆
∪∞

k=−∞A2k(N) (where A2k(N) := A2k(Γ0(N)) is as in Definition 2.6), {R(1), . . . , R(m)} ⊆
R(N). Assume that the following identity holds:

v1(τ)
∏

δ|N

η
R

(1)
δ

δ (τ) + · · · + vm(τ)
∏

δ|N

η
R

(m)
δ

δ (τ) = 0, τ ∈ H. (3.4)

Then for all (i, j, k, l) ∈ [0, . . . , 23]2 × Z × L(N) we have:

∑

x∈[1,m]

(w(vx),R(x))∈A
(i,j,k,l)
N

vx(τ)
∏

δ|N

η
R

(x)
δ

δ (τ) = 0, τ ∈ H. (3.5)

We split the proof of this theorem into four parts. In the first part we show that if a
general eta identity (3.4) is true then the following identities hold:

∑

x∈[1,m]

(w(vx),R(x))∈A
(3)
N (k)

vx(τ)
∏

δ|N

η
R

(x)
δ

δ (τ) = 0, τ ∈ H, k ∈ Z. (3.6)

In part two we prove that if an identity of type (3.6) holds for some fixed k ∈ Z then the
following identities hold:

∑

x∈[1,m]

(w(vx),R(x))∈A
(3)
N (k)

R(x)∈A
(1)
N (i)

vx(τ)
∏

δ|N

η
R

(x)
δ

δ (τ) = 0, τ ∈ H, i ∈ [0, 23]. (3.7)

In part three we prove that if an identity of type (3.7) holds for some fixed k ∈ Z and some
i ∈ [0, 23] then the following identities hold:

∑

x∈[1,m]

(w(vx),R(x))∈S
(k,i,j)
N

vx(τ)
∏

δ|N

ηR
(x)
δ (δτ) = 0, τ ∈ H, j ∈ [0, 23], (3.8)

where S(k, i, j) ⊆ R(N) × Z is defined by:

S
(k,i,j)
N := A

(3)
N (k) ∩ {(A(1)

N (i) ∩ A
(2)
N (j)) × Z}.

Finally in the last part of the proof we prove that if an identity of type (3.8) holds for some
fixed k ∈ Z and some i, j ∈ [0, 23] then the following fundamental eta identities hold:

∑

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈p

α1
1 ···pαn

n

vx(τ)
∏

δ|N

ηR
(x)
δ (δτ) = 0, τ ∈ H, (α1, . . . , αn) ∈ Zn

2 , (3.9)

where Z2 := {0, 1} and p1, . . . , pn are the primes dividing N . In particular the validity of
(3.9) finishes the proof because for (i, j, k, l := pα1

1 · · · pαn
n ) ∈ [0, 23]2 × Z × L(N) we have

{(d, R(x)) ∈ A
(i,j,k,l)
N , x ∈ [1, m]}

={(d, R(x)) ∈ S
(k,i,j)
N |

∏

δ|N

δ|R
(x)
δ | ≈ pα1

1 · · · pαn
n , x ∈ [1, m]}.

We will need the following obvious proposition in order to make the flow of arguments smooth.
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Proposition 3.6. Let N be a positive integer and f ∈ ∪∞
k=−∞A2k(N) then

f(τ + 1) = f(τ), τ ∈ H. (3.10)

3.1.1 Reduction of (3.4) to (3.6)

In order to achieve the goal of this subsection we need Lemma 3.8 below. In order to prove
Lemma 3.8 we first need Lemma 3.7.

Lemma 3.7. Let m, n ∈ N∗. Let f1, . . . , fn : H → C be such that for j ∈ [1, n] we have
fj(τ + m) = fj(τ), τ ∈ H. Assume that there exist nonzero p1(τ), . . . , pn(τ) ∈ C[τ ] such that

deg(p1(τ)) < . . . < deg(pn(τ)) (3.11)

and
f1(τ)p1(τ) + · · · + fn(τ)pn(τ) = 0, τ ∈ H. (3.12)

Then f1 = · · · = fn = 0.

Proof. Clearly the lemma is true for n = 1. Let N > 1 be an integer and assume by induction
that the lemma is true for n < N . Then we prove that it is also true for n = N . For
g(τ) ∈ C[τ ] denote

g(0)(τ) := g(τ)

and
g(k)(τ) = g(k−1)(τ + m) − g(k−1)(τ), k ∈ N∗.

If g(k)(τ) 6= 0 then it is immediate that deg(g(k)(τ)) = deg(g(k−1)(τ)) − 1. This implies that
for k ∈ N and g(τ) 6= 0:

deg(g(k)(τ)) = deg(g(τ)) − k, g(k)(τ) 6= 0 (3.13)

if deg(g(τ)) ≥ k, and
g(k)(τ) = 0 (3.14)

if k > deg(g(τ)). Let F : H → C. Then ∆m(F ) : H → C is defined by

∆m(F )(τ) := F (τ + m) − F (τ), τ ∈ H.

Applying ∆m to both sides of (3.12) one obtains

f1(τ)p
(1)
1 (τ) + · · · + fN (τ)p

(1)
N (τ) = 0, τ ∈ H.

And by repeated application of ∆m to (3.12) we obtain by induction that

f1(τ)p
(k)
1 (τ) + · · · + fN (τ)p

(k)
N (τ) = 0, τ ∈ H.

In particular if deg(p1(τ)) = d then

f2(τ)p
(d+1)
2 (τ) + · · · + fN (τ)p

(d+1)
N (τ) = 0, τ ∈ H,

because of (3.14). Because of (3.11) and (3.13) we have that p
(d+1)
j (τ) 6= 0 for j ∈ [2, N ] and

deg(p
(d+1)
2 (τ)) < . . . < deg(p

(d+1)
N (τ)).

Hence by the induction hypothesis f2 = . . . = fN = 0 and by (3.12) also f1 = 0.
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Lemma 3.8. Let m, n ∈ N∗. Let f1, . . . , fn : H → C be such that for j ∈ [1, n] we have
fj(τ + m) = fj(τ), τ ∈ H. Let a1, . . . , an ∈ 1

2Z be pairwise distinct and p(τ) ∈ C[τ ] \ {0}.
Assume that

f1(τ)p(τ)a1 + · · · + fn(τ)p(τ)an = 0, τ ∈ H. (3.15)

Then f1 = · · · = fn = 0.

Proof. Assume w.l.o.g. that a1 < . . . < an, then (3.15) is equivalent to proving

f1(τ) + f2(τ)p(τ)b2 + · · · + fn(τ)p(τ)bn = 0, τ ∈ H, (3.16)

where bk = ak − a1 for k = 1, . . . , n. Write (3.16) as

f1(τ) + fi1(τ)p(τ)bi1 + · · · + fir(τ)p(τ)bir = −fj1(τ)p(τ)bj1 . . . − fjs(q)p(τ)bjs , (3.17)

where bi1 , . . . , bir ∈ Z and bj1 , . . . , bjs ∈ Z + 1/2. Taking the square on both sides of (3.17)
and moving the right hand-side to the left hand-side we obtain:

f2
1 (τ) +

∞∑

k=1

hk(τ)pk(τ) = 0, τ ∈ H, (3.18)

where hk : H → C is such that hk(τ + m) = hk(τ) and hk = 0 for sufficiently large k. Hence
by Lemma 3.7 we obtain f2

1 = 0. By induction on n the result follows.

To simplify notation we also introduce the following definition.

Definition 3.9. Let N be a positive integer and r ∈ R(N). Then we define Φr : H → C by

Φr(τ) :=
∏

δ|N

ηrδ(δτ), τ ∈ H.

In order to apply Lemma 3.8 to (3.4) we need the following lemma.

Lemma 3.10. Let N be a positive integer, γ :=

(
1 + 242N 24

24N 1

)

∈ SL2(Z) and r ∈ R(N),

then
Φr(γτ) = (24Nτ + 1)

1
2

P

δ|N rδΦr(τ), τ ∈ H.

Proof. Let

(
a b
c d

)

∈ Γ0(N) and δ a divisor of N . Then

η

(

δ
aτ + b

cτ + d

)

= η

(
a(δτ) + δb

(c/δ)(δτ) + d

)

= (cτ + d)1/2υη(a, δb, c/δ, d)η(δτ), (3.19)

for τ ∈ H, because of (2.28). In particular (3.19) implies that

Φr

(
aτ + b

cτ + d

)

= (cτ + d)
1
2

P

δ|N rδ
∏

δ|N

υrδ
η (a, bδ, c/δ, d)Φr(τ), τ ∈ H. (3.20)

Next we set

(
a b
c d

)

= γ in (3.20). This finishes the proof together with

υη(1 + 242N, 24δ, 24N/δ, 1) = 1

for all δ|N by (2.30).
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We are ready to prove the goal of this subsection. First we rewrite (3.4) as

v1(τ)ΦR(1)(τ) + · · · + vm(τ)ΦR(m)(τ) = 0, τ ∈ H. (3.21)

Next we apply the transformation γ in Lemma 3.10 to (3.21) and obtain

v1(τ)(24Nτ + 1)
1
2

P

δ|N R
(1)
δ +w(v1)ΦR(1)(τ)

+ · · · + vm(τ)(24Nτ + 1)
1
2

P

δ|N R
(m)
δ +w(vm)ΦR(m)(τ) = 0, τ ∈ H.

(3.22)

We can rewrite (3.22) as

∞∑

k=−∞

(24Nτ + 1)k/2gk(τ) = 0, τ ∈ H, (3.23)

where for k ∈ Z
gk(τ) :=

∑

x∈[1,m]

(w(vx),R(x))∈A
(3)
N (k)

vx(τ)ΦR(x)(τ), τ ∈ H.

Note that the sum (3.23) is in fact a finite sum and that gk(τ + 24) = gk(τ) because by
Lemma 2.27 we have η(τ + 24) = η(τ) and because of Proposition 3.6 vj(τ + 24) = vj(τ) for
j ∈ [1, m]. So we can apply Lemma 3.8 to (3.23) and obtain that gk = 0 for k ∈ Z. This
accomplishes the goal of this subsection.

3.1.2 Reduction of (3.6) to (3.7)

In order to obtain the desired result we will apply the next lemma.

Lemma 3.11. Let m be a positive integer and h0, . . . , hm−1 : H → C. Assume that

hk(τ + 1) = e2πik/mhk(τ), τ ∈ H, (3.24)

for k ∈ [0, m − 1] and that
m−1∑

k=0

hk(τ) = 0, τ ∈ H. (3.25)

Then hk = 0 for k ∈ [0, m − 1].

Proof. Let ω = e2πi/m. Then after applying the transformation τ 7→ τ + l to (3.25) for
l ∈ [0, m − 1] and using (3.24) to rewrite we obtain m equations

m−1∑

k=0

ωlkhk(τ) = 0, τ ∈ H,

which in matrix form reads







1 1 · · · 1
1 ω · · · ωm−1

...
...

...
...

1 ωm−1 . . . ω(m−1)2















h0(τ)
h1(τ)

...
hm−1(τ)








=








0
0
...
0








, τ ∈ H. (3.26)

The left matrix in (3.26) is just the Vandermonde matrix and its determinant is nonzero.
This implies h0(τ) = . . . = hm−1(τ) = 0.
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In order to apply Lemma 3.11 we need the following lemma.

Lemma 3.12. Let N be a positive integer and r ∈ R(N). Define

µ :=
∑

δ|N

δrδ.

Then
Φr(τ + 1) = e2πiµ/24Φr(τ), τ ∈ H.

Proof. This lemma follows from the relation η(τ +1) = eπi/12η(τ) because of Lemma 2.27.

We are now ready to prove that proving (3.6) reduces to proving (3.7). We see that (3.6)
is equivalent to

23∑

i=0

hi(τ) = 0, τ ∈ H, (3.27)

where
hi(τ) =

∑

x∈[1,m]

(w(vx),R(x))∈A
(3)
N (k)

R(x)∈A
(1)
N (i)

vx(τ)ΦR(x)(τ).

By Lemma 3.12 and Proposition 3.6 we have for k ∈ [0, 23] that

hk(τ + 1) = e2πik/24hk(τ), τ ∈ H.

Lemma 3.11 gives hk = 0 for k ∈ [0, 23].

3.1.3 Reduction of (3.7) to (3.8)

We will prove the reduction step of this section by applying the transformation f |kWN and

then Lemma 3.11. Here WN :=

(
0 −1
N 0

)

is the Atkin-Lehner involution studied in [5].

Also recall that for f ∈ Ak(N) we defined w(f) = k.

Lemma 3.13. Let N be a positive integer, r ∈ R(N), f ∈ ∪∞
t=−∞A2t(N) and k :=

∑

δ|N rδ +
2w(f). Then



f ·
∏

δ|N

ηrδ
δ



 | k
2
WN = (f |w(f)WN )N

k−2w(f)
4 υη(0,−1, 1, 0)

P

δ|N rδ
∏

δ|N

δ−
rδ
2

∏

δ|N

ηrδ

N/δ.

Proof. Let δ|N . Then by (2.28) we obtain

ηrδ(δWNτ) = ηrδ(−1/(Nτ/δ)) = (Nτ/δ)rδ/2υrδ
η (0,−1, 1, 0)ηrδ(Nτ/δ).

The result follows by taking the product over all divisors δ|N on both sides of the above
relation and then applying (2.2).

Lemma 3.14. Let N be a positive integer and f ∈ ∪∞
t=−∞A2t(N). Then

(f |w(f)WN )(τ + 1) = (f |w(f)WN )(τ), τ ∈ H.
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Proof. In [5] it is proven that

WNΓ0(N)W−1
N = Γ0(N). (3.28)

This implies that f |w(f)WN ∈ Aw(f)(N) if f ∈ Aw(f)(N). This is proven as follows. Assume
that γ ∈ Γ0(N) then by (3.28) there exists γ′ ∈ Γ0(N) such that WNγ = γ′WN . This implies
that

f |w(f)WNγ = f |w(f)γ
′WN = f |w(f)WN .

Above we used (2.3), Definition 2.6 and that σj(γ1, γ2) = 1 for all γ1, γ2 ∈ GL+
2 (Z) if j ∈ Z.

We have shown that f |w(f)WN ∈ Aw(f)(N), the result follows by Proposition 3.6.

We see that (3.7) is equivalent to

23∑

j=0

∑

x∈[1,m]

(w(vx),R(x))∈S
(k,i,j)
N

vx(τ)
∏

δ|N

ηR
(x)
δ (δτ) = 0, τ ∈ H. (3.29)

Next we apply the stroke operator | k
2
WN to both sides of (3.29) and obtain by Lemma 3.13:

23∑

j=0

hj = 0 (3.30)

where

hj :=
∑

x∈[1,m]

(w(vx),R(x))∈S
(k,i,j)
N

(vx|w(vx)WN )N
k−2w(vx)

4

× υη(0,−1, 1, 0)
P

δ|N R
(x)
δ

∏

δ|N

δ−
R

(x)
δ
2

∏

δ|N

η
R

(x)
δ

N/δ

=

(
∑

x∈[1,m]

(w(vx),R(x))∈S
(k,i,j)
N

vx

∏

δ|N

η
R

(x)
δ

δ

) ∣
∣
∣ k

2
WN .

(3.31)

By Lemma 3.12 and Lemma 3.14 we obtain hj(τ + 1) = eπij/12hj(τ) and consequently by
Lemma 3.11 we obtain hj = 0 for j ∈ [0, 23]. By (3.31) and (2.3) we obtain

(hj |WN )(τ) = σ−1
k/2(WN , WN )

∑

x∈[1,m]

R(x)∈S
(k,i,j)
N

vx

∏

δ|N

ηR
(x)
δ (δτ) = 0.

Canceling the term σ−1
k/2(WN , WN ) (which is a root of unity) gives (3.8).
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3.1.4 Reduction of (3.8) to (3.9)

The main goal of this subsection is to prove Lemma 3.17 from which this reduction step
will follow immediately by induction as we will see. In order to prove Lemma 3.17 we need
Lemma 3.16 which depends on Lemma 3.15. A proof of the next lemma is given in Chapter
6 of Serre’s book [38].

Lemma 3.15 (Dirichlet). For any two coprime integers a, d there are infinitely many primes
p such that a ≡ p (mod d).

Lemma 3.16. Let {q1, . . . , qm, v} be a set of (pairwise distinct) primes such that {q1, . . . , qm}
are odd primes (and v is an arbitrary prime). Then there are infinitely many primes p such
that

(qk
p

)
= 1, k ∈ [1, m] and

(
v
p

)
= −1.

Proof. We split the proof in two cases depending on if v = 2 or not.

Case v = 2. By the Chinese remainder theorem there is an a ∈ Z such that

a ≡ 5 (mod 8) (3.32)

and

a ≡ 1 (mod qk), k ∈ [1, m]. (3.33)

Because of gcd(a, 8q1 · · · qm) = 1 there exists by Lemma 3.15 a prime p such that p ≡ a
(mod 8q1 · · · qm). Then the congruences (3.32)-(3.33) are still valid if a is replaced by p.
Because p ≡ 5 (mod 8) and because of (2.34):

(
2

p

)

=

(
v

p

)

= (−1)
p2−1

8 = −1.

Because of (3.33) and (2.36):

(
qk

p

)

= (−1)
p−1
2

qk−1

2

(
p

qk

)

=

(
p

qk

)

= 1 (3.34)

for k ∈ [1, m]. This finishes the proof for the case v = 2.

Case v 6= 2. Again by the Chinese remainder theorem there exists a solution a to (3.33) that
also satisfies

a ≡ r (mod v) and a ≡ 1 (mod 4) (3.35)

where r is an integer such that
(

r
v

)
= −1. Again by Dirichlet’s Lemma 3.15 there are infinitely

many primes such that

a ≡ p (mod 4q1 · · · qmv).

As in the previous case (because of p ≡ 1 (mod 4)) we verify that p satisfies (3.34). Further-
more, by (2.36) and because of (3.35)

(
v

p

)

= (−1)
v−1
2

p−1
2

(p

v

)

=
(r

v

)

= −1.
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Lemma 3.17. Let i, j ∈ [0, 23] and k ∈ Z. Let N be a positive integer and p1, . . . , pn the

prime divisors of N . Let t ∈ [0, n − 1] and define Vt := {pβ1
1 · · · pβt

t |(β1, . . . , βt) ∈ Zt
2} if t > 0

and V0 := {1}. Assume that for all ν ∈ Vt

∑

(αt+1,...,αn)∈Zn−t
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp

αt+1
t+1 ···pαn

n

vxΦR(x) = 0. (3.36)

Then for all ν ∈ Vt+1 we have: If t ≤ n − 2
∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp

αt+2
t+2 ···pαn

n

vxΦR(x) = 0; (3.37)

otherwise, if t = n − 1
∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈ν

vxΦR(x) = 0. (3.38)

Proof. By Lemma 3.16 there exists infinitely many primes P such that
(pt+1

P

)

= −1 (3.39)

and (ps

P

)

= 1 for s ∈ [t + 2, n]. (3.40)

Especially there must exist at least one such prime P which also satisfies gcd(P, 242N) = 1.

Let Y, X ∈ Z be such that Y P − 242NX = 1. Then γ =

(
Y 24X

24N P

)

∈ Γ0(N). By

Lemma 2.27 we have for δ|N

υη(Y, 24Xδ, 24N/δ, P ) =

(
24N/δ

P

)

eπi(P−1)/4 =

(
24Nδ

P

)

eπi(P−1)/4. (3.41)

By Lemma 2.27 together with (3.41) we obtain

η(δγτ) = η

(
Y (δτ) + 24Xδ

(24N/δ)δτ + P

)

= υη(Y, 24Xδ, 24N/δ, P )(24Nτ + P )1/2η(δτ)

=

(
24N

P

)(
δ

P

)

eπi(P−1)/4(24Nτ + P )1/2η(δτ).

(3.42)

From (3.42) together with k =
∑

δ|N R
(x)
δ + 2w(vx) we obtain

vx(γτ) ΦR(x) (γτ)

= eπik(P−1)/4

(
24N

P

)k




∏

δ|N δR
(x)
δ

P



 (24Nτ + P )
k
2
+w(vx)vx(τ)ΦR(x)(τ).

(3.43)
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Define

λ(k) := eπik(P−1)/4

(
24N

P

)k

.

Then from (3.43) we obtain the following formula for the action of the stroke operator | k
2
γ

on vxΦR(x) .

vxΦR(x) | k
2
γ = λ(k)





∏

δ|N δR
(x)
δ

P



 vxΦR(x) . (3.44)

Next we apply the stroke operator | k
2
γ to (3.36) and after canceling the nonzero term λ(k)

we obtain:

∑

(αt+1,...,αn)∈Zn−t
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp

αt+1
t+1 ···pαn

n





∏

δ|N δ|R
(x)
δ |

P



 vxΦR(x) = 0.

(3.45)

Next we use that a ≈ b ⇒
(

a
P

)
=
(

b
P

)
, in particular

∏

δ|N

δ|R
(x)
δ | ≈ νp

αt+1

t+1 · · · pαn
n implies





∏

δ|N δ|R
(x)
δ |

P



 =

(

νp
αt+1

t+1 · · · pαn
n

P

)

(3.46)

and because of (3.39) and (3.40) we have

(

νp
αt+1

t+1 · · · pαn
n

P

)

=

(

νp
αk+1

t+1

P

)

=
( ν

P

)
(

p
αk+1

t+1

P

)

. (3.47)

Next applying (3.46) and (3.47) to (3.45) we obtain

( ν

P

) ∑

(αt+1,...,αn)∈Zn−t
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp

αt+1
t+1 ···pαn

n

(

p
αt+1

t+1

P

)

vxΦR(x) = 0.

(3.48)

this is equivalent to

( ν

P

) ∑

(αt+2...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp0

t+1p
αt+2
t+2 ···pαn

n

vxΦR(x)

−
( ν

P

) ∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp1

t+1p
αt+2
t+2 ···pαn

n

vxΦR(x) = 0.
(3.49)
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Similarly we obtain from (3.36) after multiplying by
(

ν
P

)
that:

( ν

P

) ∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp0

t+1p
αt+2
t+2 ···pαn

n

vxΦR(x)

+
( ν

P

) ∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp1

t+1p
αt+2
t+2 ···pαn

n

vxΦR(x) = 0
(3.50)

Adding (3.50) to (3.49) and dividing out 2
(

ν
P

)
6= 0 (because of gcd(P, N) = 1 by assumption)

we obtain:
∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp0

t+1p
αk+2
t+2 ···pαn

n

vxΦR(x) = 0

(3.51)

Similarly taking the difference between (3.50) and (3.49) and dividing out 2
(

ν
P

)
we obtain:

∑

(αt+2,...,αn)∈Zn−t−1
2

∑

x∈[1,m],

(w(vx),R(x))∈S
(k,i,j)
N ,

Q

δ|N δ
|R

(x)
δ

|
≈νp1

t+1p
αt+2
t+2 ···pαn

n

vxΦR(x) = 0

(3.52)

In particular (3.51) and (3.52) implies (3.37) because pt+1Vt ∪Vt = Vt+1 and hence one needs
to show (3.37) for v ∈ pt+1Vt which is (3.52) and for v ∈ Vt which is (3.51).

In particular (3.8) is just (3.36) for t = 0. Using induction on k we find that (3.37) holds
for t = n − 1 which is precisely (3.9).

3.2 An Algorithm to Prove Reduced Fundamental Eta Iden-

tities

In this very short subsection we recollect the results derived in the form of an informal
algorithm description. Recall that Mk(N) is the space of modular forms of weight k for the
group Γ0(N). Recall that Mk(N) is a C-vector space.

We have shown in the previous section that any general eta identity (3.1) can be split
into smaller fundamental eta identities (3.2). As we saw in the introduction to Chapter 3 any
fundamental eta identity (3.2) can be rewritten immediately as a reduced fundamental eta
identity (3.3).

Let N be a positive integer and (d1, . . . , dm) with 1 = d1 < d2 < . . . < dm = N the
positive divisors of N . We write a sequence r ∈ R(N) in the form r = (rd1 , . . . , rdm). Let
R(1), . . . , R(n) ∈ R(N), v0, v1, . . . , vn ∈

⋃∞
j=−∞ M2j(N) and

v0 + v1ΦR(1) + · · · + vnΦR(n) = 0 (3.53)
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a reduced fundamental eta identity (3.3). Then in particular the R(1), . . . , R(n) satisfy the

conditions (i)-(iv) of Lemma 2.34 and
∑

δ|N R
(j)
δ + 2w(vj) = 2w(v0) for j ∈ [1, n].

This shows that each term in a reduced fundamental eta identity belongs to Aw(v0)(N).
Note that if r1, r2 ∈ R(N) satisfy (i)-(iv) then also r1 + r2 does. It is straightforward to

check that the sequence A(k) := (24k, 0, . . . , 0) ∈ R(N) satisfies (i)-(iv) for k ∈ Z. It is also
easy to see that for any r = (rd1 , . . . , rdm) satisfying (i)-(iv) there exists a minimal kr ∈ Z
such that for all t ≥ kr the sequence r+A(t) satisfy (i)-(v) and consequently Φr+A(t) ∈ Mv(N)
for v = 1

2

∑

δ|M rδ + 12t. Let κ := max(kR(1) , . . . , kR(n)). Then by Lemma 2.34 we have that

v0ΦA(κ) + v1ΦR(1)+A(κ) + · · · + vnΦR(n)+A(κ) (3.54)

is in M12κ+w(v0)(N) because for each j ∈ [1, n] we have vjΦA(κ)+R(j) ∈ M12κ+w(v0)(N). Next
we can compute the q-expansion of (3.54) using (2.26). Then by Corollary 2.22 and Corollary
2.40 we obtain that (3.54) is identically 0 if the first

1 +

(

κ +
w(v0)

12

)

N
∏

p|N

(

1 +
1

p

)

coefficients are.

Example 3.18. We apply the algorithm to the celebrated identity of Jacobi [42, p. 470]:

∞∏

n=1

(1 − q2n−1)8 + 16q

∞∏

n=1

(1 + q2n)8 =

∞∏

n=1

(1 + q2n−1)8, (3.55)

which we rewrite in terms of eta products:

η8

η8
2

+ 16
η8
4

η8
2

− η16
2

η8η8
4

= 0. (3.56)

It is easily seen that (3.56) is a fundamental eta identity. By dividing both sides of (3.56) by
η8

η8
2

we obtain the following reduced fundamental eta identity:

1 + 16
η8
4

η8
− η24

2

η16η8
4

= 0. (3.57)

Next we multiply both sides of (3.57) by η24 so that each term is in M12(4):

η24 + 16η8
4η

16 − η24
2 η8

η8
4

= 0. (3.58)

Using (2.26) we obtain

η24 = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 · · ·
η8
4η

16 = q2 − 16q3 + 104q4 − 320q5 + 252q6 + · · ·
η24
2 η8

η8
4

= q − 8q2 − 4q3 + 192q4 − 290q5 − 2016q6 + · · · .

Using these expansions we find that the first 7 coefficients of the q-expansion of the left hand
side of (3.58) are 0, which by Corollary 2.22 and Corollary 2.40 implies that η24 + 16η8

4η
16 −

η24
2 η8

η8
4

is identically 0, proving (3.58). Since (3.55)-(3.58) are equivalent, we have proven the

Jacobi identity (3.55).
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Remark 3.19. We point out that in the algorithm described we multiply a reduced funda-
mental eta identity by η24k for some integer k. This does not always lead to optimality in the
sense that the number of coefficients needed to be checked in the q-expansion of the resulting

identity is minimal. For example we can multiply both sides of (3.57) by
η8η8

4

η8
2

. Then each

term in the new identity is in M4(4) and by Corollary 2.22 and Corollary 2.40 we only need
to show that the first 3 coefficients of the resulting q-expansion are 0.

In the next chapter we give examples of other fundamental eta identities. The relations in
Section 6.6 of Chapter 6 are of the same type as the ones in the next section and are proven
in an analogous way.

3.3 Ramanujan’s Most Beautiful Identities and Newman’s Lemma

Revisited

There is a huge variety of examples of fundamental/general eta identities. Moreover, in this
section we restrict to prove the Ramanujan identities where (3.59) according to Hardy [13, p.
xxxv] is Ramanujan’s most beautiful identity:

∞∑

n=0

p(5n + 4)qn = 5
∞∏

n=1

(1 − q5n)5

(1 − qn)6
, (3.59)

and
∞∑

n=0

p(7n + 5)qn = 7
∞∏

n=1

(1 − q7n)3

(1 − qn)4
+ 49q

∞∏

n=1

(1 − q7n)7

(1 − qn)8
. (3.60)

The proof will use a variant of the method described above, again based on Newman’s lemma.
To this end we introduce the U -operator.

Definition 3.20. Let f : H → C be holomorphic on H. Then for m a positive integer we
define

(f |Um)(τ) :=
1

m

m−1∑

λ=0

f

(
τ + λ

m

)

.

Obviously Um is linear (on C); in addition, Umn = Um ◦Un = Un ◦Um (m, n ∈ N∗). Next
we prove some further important properties of the U -operator.

Lemma 3.21. Let f : H → C be holomorphic on H, m a positive integer and R :=
{r0, . . . , rm−1} a complete set of representatives of the residue classes modulo m. Then if
f(τ + 1) = f(τ) for all τ ∈ H we have

(f |Um)(τ) =
1

m

m−1∑

λ=0

f

(
τ + rλ

m

)

for all τ ∈ H.

Proof. Because R is a complete set of representatives of the residue classes modulo m there
is a permutation σ : {0, . . . , m − 1} → {0, . . . , m − 1} and a mapping k : {0, . . . , m − 1} → Z
such that rσ(λ) = λ+mk(λ) for λ ∈ {0, . . . , m−1}. This means that for all λ ∈ {0, . . . , m−1}

f

(
τ + rσ(λ)

m

)

= f

(
τ + λ + mk(λ)

m

)

= f

(
τ + λ

m
+ k(λ)

)

= f

(
τ + λ

m

)

(3.61)
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because of f(τ + 1) = f(τ). By (3.61) and Definition 3.20 we have

1

m

m−1∑

λ=0

f

(
τ + rλ

m

)

=
1

m

m−1∑

λ=0

f

(
τ + rσ(λ)

m

)

=
1

m

m−1∑

λ=0

f

(
τ + λ

m

)

= (f |Um)(τ).

Lemma 3.22. Let f : H → C be holomorphic on H. Assume that

f(τ) =
∞∑

n=−∞

a(n)qn, (q = e2πiτ ), τ ∈ H.

Then for m a positive integer

(f |Um)(τ) =
∞∑

n=−∞

a(mn)qn, (q = e2πiτ ), τ ∈ H.

Proof. By Definition 3.20 we have

(f |Um)(τ) =
1

m

m−1∑

λ=0

∞∑

n=−∞

a(n)e2πin τ+λ
m =

∞∑

n=−∞

a(n)e
2πiτn

m

m−1∑

λ=0

e
2πiλn

m =
∞∑

n=−∞

a(mn)qn.

Here we have used that
∑m−1

λ=0 e
2πiλn

m =

{
0 if m ∤ n;
m otherwise.

.

Lemma 3.23. Let f, g : H → C be holomorphic functions on H. Let fm : H → C be defined
by fm(τ) := f(mτ) and assume that f(τ + 1) = f(τ) for all τ ∈ H. Then

(fmg|Um) = f(g|Um).

Proof. By Definition 3.20 we obtain

(fmg|Um)(τ) =
1

m

m−1∑

λ=0

f

(

m
τ + λ

m

)

g

(
τ + λ

m

)

= f(τ)(g|Um)(τ), τ ∈ H.

Lemma 3.24. Let k ∈ Z, m, N ∈ N∗ and f ∈ Ak(Nm2) (resp. f ∈ Mk(Nm2)). Then
f |Um ∈ Ak(Nm) (resp. f |Um ∈ Mk(Nm)).

Proof. For λ ∈ Z define Tλ :=
(

1
0

λ
m

)

. Then for λ ∈ Z and
(

a
mc

b
d

)

∈ Γ0(Nm) one has:

Tλ

(
a b

mc d

)

=

(
a + λmc −c(b + λd)2

m2c d − mdc(b + λd)

)

Tλd2+bd. (3.62)

We also observe by Definition 3.20 that

f |Um = mk/2
m−1∑

λ=0

f |kTλ. (3.63)
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By (i) and (ii) of Proposition 2.8 together with (3.63) we see that f |Um ∈ Lk (resp. f |Um ∈ Tk

if f ∈ Mk(Nm2)). This shows that condition (iii) of Definition 2.6 holds. By Proposition
2.7 and because the sum of holomorphic functions is again holomorphic we see that f |Um is
holomorphic proving (i) of Definition 2.6.

Using (3.62), (3.63), Lemma 3.21 and f ∈ Mk(Nm2) we find

(f |Um)|k
(

a b
mc d

)

= mk/2
m−1∑

λ=0

f |k
(

a + λmc −c(b + λd)2

m2c d − mdc(b + λd)

)

Tλd2+bd

= mk/2
m−1∑

λ=0

f |kTλd2+bd = f |Um.

This verifies condition (ii) of Definition 2.6.

Definition 3.25. For l ∈ N∗ write ϕl(τ) :=
∏∞

n=1(1 − qn(lτ)) where q : H → C satisfies
q(τ) := e2πiτ for all τ ∈ H.

Proof of (3.59): By Lemma 3.23 and Lemma 3.22 we have

(

q6 ϕ4
5ϕ

5
25

ϕ1
|U5

)

(τ) = ϕ5
5(τ)ϕ4(τ)(q6/ϕ1|U5)(τ)

= q2(τ)
∞∏

n=1

(1 − q5n(τ))5(1 − qn(τ))4
∞∑

n=0

p(5n + 4)qn(τ), τ ∈ H.

(3.64)

By (2.26) we have that q6 ϕ4
5ϕ5

25
ϕ1

=
η4
5η5

25
η and q

∏∞
n=1(1 − q5n)5(1 − qn)4 = q−1/6η4η5

5 which
together with (3.64) implies

(
η4
5η

5
25

η
|U5

)

= q2
∞∏

n=1

(1 − q5n)5(1 − qn)4
∞∑

n=0

p(5n + 4)qn. (3.65)

Next we multiply both sides of (3.59) by q2
∏∞

n=1(1− q5n)5(1− qn)4 and use (3.65) to rewrite
the result as

(
η4
5η

5
25

η
|U5

)

= 5q2
∞∏

n=1

(1 − q5n)10

(1 − qn)2
. (3.66)

By (2.26) we have 5q2
∏∞

n=1
(1−q5n)10

(1−qn)2
=

η10
5
η2 . This allows us to rewrite (3.66) as

(
η4
5η

5
25

η
|U5

)

− 5
η10
5

η2
= 0. (3.67)

By Lemma 2.34
η4
5η5

25
η ∈ M4(25) and by Lemma 3.24 we have

(
η4
5η5

25
η |U5

)

∈ M4(5). Note that

(3.67) can be viewed as a reduced fundamental eta identity because it may be rewritten as

v1 + v2
η10
5

η2
= 0,
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where v1 :=
η4
5η5

25
η |U5 ∈ M4(5) and v2 := −5 ∈ M0(5). By using Lemma 2.34 again we obtain

η10
5
η2 ∈ M4(5). Putting all this together we obtain

f :=

(
η4
5η

5
25

η
|U5

)

− 5
η10
5

η2
∈ M4(5). (3.68)

By (2.49) we have [SL2(Z) : Γ0(5)] = 6 and by Corollary 2.22 we have that if f ∈ M4(5) and
OrdΓ0(5)(f, id) > 2 then f = 0. By this together with (3.68) we see that in order to prove
(3.66) we need to show

OrdΓ0(5)(f, id) > 2

which is by (3.65) and (3.66) equivalent with showing that the coefficients of q0, q and q2 of
the series

q2
∞∏

n=1

(1 − q5n)5(1 − qn)4
∞∑

n=0

p(5n + 4)qn − 5q2
∞∏

n=1

(1 − q5n)10

(1 − qn)2

are 0. Because p(4) = 5 this is obviously the case.

Proof of (3.60): By Lemma 3.23, Lemma 3.22 and (2.26) we have

(

q16 ϕ7
49ϕ

6
7

ϕ
|U7

)

=

(
η7
49η

6
7

η
|U7

)

= q3ϕ7
7ϕ

6
∞∑

n=0

p(7n + 5)qn. (3.69)

Multiplying (3.60) by q3ϕ7
7ϕ

6 we obtain by (3.69) and (2.26)

(
η7
49η

6
7

η
|U7

)

= q3ϕ10
7 ϕ2 + q4 ϕ14

7

ϕ2
= η10

7 η2 +
η14
7

η2
. (3.70)

By Lemma 2.34 we have η10
7 η2,

η14
7
η2 ∈ M6(7) and

η7
49η6

7
η ∈ M6(49). By Lemma 3.24 we have

(
η7
49η6

7
η |U7

)

∈ M6(7) showing

f :=

(
η7
49η

6
7

η
|U7

)

− η10
7 η2 − η14

7

η2
∈ M6(7). (3.71)

By (2.49) we have [SL2(Z) : Γ0(7)] = 8 and by Corollary 2.22 we have that if f ∈ M4(7) and
OrdΓ0(7)(f, id) > 4 then f = 0. By this together with (3.71) we see that in order to prove
(3.70) we need to show

OrdΓ0(7)(f, id) > 4

which is by (3.69) and (3.70) equivalent with showing that the coefficients of q0, q, q2, q3 and
q4 of the series

q3ϕ7
7ϕ

6
∞∑

n=0

p(7n + 5)qn − q3ϕ10
7 ϕ2 − q4 ϕ14

7

ϕ2

are 0 which is easily verified.

We conclude this section with a “if and only if version” of Lemma 2.34, which we already
announced in Remark 2.36:

Lemma 3.26. Let N be a positive integer, r ∈ R(N) and k ∈ 2Z. Then
∏

δ|N ηrδ
δ ∈ Ak(N)

iff
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(i) k = 1
2

∑

δ|N rδ;

(ii)
∑

δ|N δrδ ≡ 0 (mod 24);

(iii)
∑

δ|N
N
δ rδ ≡ 0 (mod 24);

(iv)
∏

δ|N δrδ is a rational square.

Furthermore
∏

δ|N ηrδ
δ ∈ Mk(N) iff (i)-(iv) and

∑

δ|N

rδ
gcd2(δ, d)

δ
≥ 0 (3.72)

for all d|N .

Proof. If (i)-(iv) hold then fr ∈ Ak(N) by Lemma 2.34. Again by Lemma 2.34 we obtain
fr ∈ Mk(N) if (3.72). For the converse assume that

∏

δ|N ηrδ
δ ∈ Ak(N). Then there exists

f ∈ Ak(N) such that f −∏δ|N ηrδ
δ = 0 and by Theorem 3.5 we see that (0, k) ∼ (r, 0) which

is equivalent with r and k verifying (i)-(iv). Again by Lemma 2.34, because f ∈ Mk(N) and
because of the fact that f satisfies (i)-(iv), then necessarily (3.72) is satisfied by r.



Chapter 4

An Algorithmic Approach to

Ramanujan’s Congruences

Introduction

Throughout this chapter M denotes a positive integer, and r = (rδ) denotes a sequence of
integers rδ indexed by all positive integer divisors δ of M .

In this chapter we present an algorithm that takes as input a generating function of
the form

∏

δ|M

∏∞
n=1(1 − qδn)rδ =

∑∞
n=0 a(n)qn together with three positive integers m, t, p;

the algorithm returns true if a(mn + t) ≡ 0 (mod p), n ≥ 0, or false otherwise. A similar
algorithm for generating functions of the form

∏∞
n=1(1 − qn)r1 (i.e. the case M = 1) has

already been given in [9]. Our original plan was to implement that algorithm in order to
prove some congruences from [2]. The algorithm we present here and the one in [9] both
have in common that at the end one has to check that the congruence is true for the first
coefficients up to a bound ν that the algorithm returns, and then to use the theorem of Sturm
[40] to conclude that it is true for all coefficients. However we noticed that for our purpose the
bound ν given in [9] was extremely high for some inputs. Encouraged by comments of Peter
Paule we examined the problem in more detail. Finally our study resulted in a significant
improvement of estimating the bound ν a priori. Our main tools to derive a better bound ν
are a combination of results by Rademacher [32] and Newman [28]; Kolberg [21] was another
major source of inspiration.

The organization of this chapter is as follows: In section 1 we present the basic terminology.
In section 2 we prepare some results needed to apply the theorem of Sturm. The main result,
Theorem 4.22, can be viewed as a generalization of a theorem of R. Lewis [25]. In section
3 we estimate functions at different points; this is needed in order to prove they are indeed
modular forms. In section 4 we show how to apply the theorem of Sturm in order to prove our
desired congruence. In section 5 we conclude by giving some examples. A published version
of this chapter can be found in [33].

4.1 Basic Terminology and Formulas

Let a be an integer relatively prime to 6, i.e. gcd(a, 6) = 1. For such a one can easily show
that a2 −1 ≡24 0. Similarly if gcd(a, 3) = 1 then a2 −1 ≡3 0, and finally, if gcd(a, 2) = 1 then
a2 − 1 ≡8 0. These facts will be used throughout the text.

47
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Definition 4.1. Let D∗ := {q ∈ C||q| < 1, q 6= 0} be the punctured disc. We define q : H →
D∗ by q = q(τ) := e2πiτ for τ ∈ H.

Definition 4.2. Given a positive integer m let ϕ : [0, m − 1] × H → H be a function with
expansion ϕ(t, τ) = q−t

∑∞
n=0 a(n)qn, where t ∈ {0, . . . , m − 1}. Let Sm be a complete set of

non-equivalent representatives of the residue classes modulo m. For κ ∈ N with gcd(m, κ) = 1
we define:

Mm,κ(ϕ(t, τ)) :=
∑

λ∈Sm

ϕ

(

t,
τ + κλ

m

)

. (4.1)

In this paper we are always choosing

κ := gcd(1 − m2, 24). (4.2)

With this choice clearly gcd(κ, m) = 1.
Another property needed later is as follows:

Lemma 4.3. Let κ be as defined in (4.2), then 6|κm.

Proof. One can proceed by case distinction. For instance, if 2 ∤ m and 3|m, then m2 − 1 ≡8 0
because gcd(m, 2) = 1. Hence by (4.2) we have 8|κ, thus 6|κm. The other cases are similar.

Lemma 4.4. Given positive integers m and κ, let ϕ(t, τ) be as in Definition 4.2. Then we
have:

Mm,κ(ϕ(t, τ)) = m

∞∑

n=0

a(mn + t)qn. (4.3)

Proof. By Definition 4.2 we have

Mm,κ(ϕ(t, τ)) =
∑

λ∈Sm

e−2πit τ+κλ
m

∞∑

n=0

a(n)e2πin τ+κλ
m

=
∞∑

n=0

a(n)e−
2πiτt

m e
2πinτ

m

∑

λ∈Sm

e2πiλ−κt+κn
m

=
∑

n≥0
n≡mt

m · a(n)e−
2πiτt

m e
2πinτ

m

=m
∞∑

n=0

a(mn + t)q
−t
m q

t
m qn

=m
∞∑

n=0

a(mn + t)qn.

Note that the sum
∑

λ∈Sm
e2πiλ−κt+κn

m equals m if −κt + κn ≡m 0. This is exactly the case
when n ≡m t. For n 6≡m t the sum is 0.

Definition 4.5. Let M ∈ N∗. By R(M) we denote the set of all integer sequences (rδ) indexed
by all positive divisors δ of M .



4.1. Basic Terminology and Formulas 49

Definition 4.6. For m, M ∈ N∗, t ∈ N such that 0 ≤ t ≤ m − 1 and r = (rδ) ∈ R(M), we
define:

f(τ, r) :=
∏

δ|M

∞∏

n=1

(1 − qδn)rδ =
∞∑

n=0

a(n)qn, (4.4)

and

gm,t(τ, r) := q
24t+

P

δ|M δrδ

24m

∞∑

n=0

a(mn + t)qn.

Lemma 4.7. For m, M ∈ N∗, t ∈ N such that 0 ≤ t ≤ m− 1 and r = (rδ) ∈ R(M) we obtain
the following representation:

gm,t(τ, r) =
1

m

m−1∑

λ=0

e
2πiκλ(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κλ)

m

)

. (4.5)

Proof. Using (2.26) we see that f(τ, r) = q−
P

δ|M δrδ

24
∏

δ|M ηrδ(δτ). Next applying Mm,κ to

ϕ(t, τ) := q−tf(τ, r), by Definition 4.2 we see that:

Mm,κ(ϕ(t, τ)) =
m−1∑

λ=0

e2πi( τ+κλ
m

)(−t−

P

δ|M δrδ

24
)
∏

δ|M

ηrδ

(
δ(τ + κλ)

m

)

= q
−24t−

P

δ|M δrδ

24m

m−1∑

λ=0

e
2πiκλ(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κλ)

m

)

.

Alternatively by Lemma 4.4 we obtain:

Mm,κ(ϕ(t, τ)) = m

∞∑

n=0

a(mn + t)qn = mq−
24t+

P

δ|M δrδ

24m gm,t(τ, r).

Comparing the two expressions for Mm,κ(ϕ(t, τ)) we obtain our assertion.

The following lemma will be used on several occasions:

Lemma 4.8. Given a real number k and maps f : H → C and g : Γ × H → C. Suppose for

all γ =

(
a b
c d

)

∈ Γ and for all τ ∈ H:

(cτ + d)−kf(γτ) = g(γ, τ).

Then for all ξ =

(
A B
C D

)

∈ M2(Z)∗ and for all τ ∈ H:

(
gcd(A, C)

AD − BC
(Cτ + D)

)−k

f(ξτ)

= g

((
A

gcd(A,C) −y
C

gcd(A,C) x

)

,
gcd(A, C)τ + Bx + Dy

AD−BC
gcd(A,C)

)

where the integers x and y are chosen such that Ax + Cy = gcd(A, C).
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Proof. Define

γ :=

(
A

gcd(A,C) −y
C

gcd(A,C) x

)

and γ′ :=

(

gcd(A, C) Bx + Dy

0 AD−BC
gcd(A,C)

)

.

Then the statement follows from the relation ξ = γγ′ and by

f(ξτ) = f(γ(γ′τ)) =

(
C

gcd(A, C)
(γ′τ) + x

)k

g(γ, γ′τ).

4.2 The function gm,t(τ, r) under modular substitutions

Throughout this section we will assume that gcd(a, 6) = 1, a > 0 and c > 0 so that (2.37) will
always apply and a2 ≡24 1. For this reason recall:

Γ0(N)∗ = {γ ∈ Γ0(N)|a > 0, c > 0, gcd(a, 6) = 1}.

Because M and r = (rδ) are assumed as fixed we will write gm,t(τ) := gm,t(τ, r) and f(τ) :=
f(τ, r) throughout.

We are interested in deriving a formula for gm,t(γτ) with γ ∈ Γ0(N)∗ where N is an integer
such that for every prime p with p|m we have also p|N , i.e.,

p|m implies p|N, (4.6)

and such that for every δ|M with rδ 6= 0 we have δ|mN , i.e.,

δ|M implies δ|mN ; (4.7)

and some additional properties which we will specify later. For our purpose it is convenient
to define the following set:

Definition 4.9. We define

∆ :=

{

(m, M, N, (rδ)) ∈ (N∗)3 × R(M) | m, M, N and (rδ) satisfy
the conditions (4.6) and (4.7).

}

.

Lemma 4.10. Let (m, M, N, (rδ)) ∈ ∆, γ =

(
a b
c d

)

∈ Γ0(N)∗ and λ a nonnegative

integer. Then there exist integers x, y, a′ such that:

(i) (a + κλc)x + mcy = 1, where y := y0(mκc)3 for some integer y0.

(ii) a′a ≡24c 1.

Moreover, setting µ := λdx + bx−ba′m2

κ ,
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(iii) For ǫ as in Definition 2.31, τ ∈ H and δ|M with rδ 6= 0 we have

η

(
δ(γτ + κλ)

m

)

= (−i(cτ + d))
1
2 ǫ(a + κλc,−δy, mc/δ, x)η

(
δ(τ + κµ)

m

)

e
2πiabmδ

24 ,

(4.8)

and

ǫ(a + κλc,−δy, mc/δ, x) =

(
mcδ

a + κλc

)

e−
(a+κλc)πi

12
(mc/δ−3). (4.9)

(iv) The value µ is an integer, and if λ runs through a complete set of representatives of
residue classes modulo m then so does µ; i.e., λ 7→ µ is a bijection of Z/mZ.

(v) We have

λ ≡c µa2 − ab
1 − m2

κ
. (4.10)

Proof. We prove each part of Lemma 4.10 separately.
Proof of (i). We know that the equation

(a + κλc)x + mcy0(mκc)3 = 1 (4.11)

has integer solutions x and y0 iff

gcd(a + κλc, mc(mκc)3) = 1. (4.12)

To prove (4.12) it suffices to prove gcd(a + κλc, m) = 1 and gcd(a + κλc, κc) = 1. We have
that

gcd(a + κλc, κc) = gcd(a, κc).

But gcd(a, c) = 1 because ad− bc = 1, and gcd(a, κ) = 1 because gcd(a, 6) = 1 by assumption
and κ being a divisor of 24 from (4.2), so gcd(a, κc) = 1. Next we see that gcd(a+κλc, c) = 1
implies gcd(a+κλc, N) = 1 because N |c. But gcd(a+κλc, N) = 1 implies gcd(a+κλc, m) = 1
by (4.6). This proves (4.12).

Note: Because of y = y0(mκc)3 Lemma 4.3 gives

y ≡24 0. (4.13)

Proof of (ii). The assumptions gcd(a, 6) = 1 and gcd(a, c) = 1 imply that gcd(a, 24c) =
1, which is equivalent to the existence of an integer a′ such that a′a ≡24c 1.

Proof of (iii). To prove (4.8) we let ǫ be as in Definition 2.31 let

K := (−i(cτ + d))
1
2 ǫ(a + κλc,−δy,

mc

δ
, x). (4.14)

We apply Lemma 4.8 with

ξ =

(
A B
C D

)

=

(
δ(a + κλc) δ(b + κλd)

mc md

)

,

k = 1/2, f(τ) = η(τ), g(γ, τ) = (−i)1/2ǫ(a, b, c, d)η(τ),
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and we get

η

(
δ((a + κλc)τ + b + κλd)

mcτ + md

)

= Kη

(
δτ + δ(b + κλd)x + mdδy

m

)

(4.15)

which is valid under the assumption that (a + κλc)x + δy mc
δ = 1 which implies that

δ(a + κλc)x + δymc = δ = gcd(δ(a + κλc), mc),

as required in Lemma 4.8.

Note that mc
δ is a positive integer (N |c and, by (4.7), δ|mN), and that (a+κλc)x+δy mc

δ =
1 because of (i). Also recall that gcd(a + κλc, m) = 1 because of (4.6).

We will also need that for all integers j we have as a trivial consequence of (2.26):

η(τ + j) = η(τ)e
2πij
24 . (4.16)

Consequently,

η

(
δ(γτ + κλ)

m

)

=η

(
δ((a + κλc)τ + b + κλd)

mcτ + md

)

(by substituting for γ)

=Kη

(
δτ + δ(b + κλd)x + mdδy

m

)

(by (4.15))

=Kη

(
δτ + δ(b + κλd)x

m

)

(by (4.16) and (4.13))

=Kη

(
δτ + δ(b + κλd)x − δba′m2

m
+ δba′m

)

=Kη

(
δτ + δ(b + κλd)x − δba′m2

m

)

e
2πiδa′bm

24 (by (4.16))

=Kη

(
δ(τ + κµ)

m

)

e
2πiδa′bm

24 (by the def. of µ)

=Kη

(
δ(τ + κµ)

m

)

e
2πiδabm

24 (because of a′ ≡24 a).

In the last line we used fact (ii), namely aa′ ≡24c 1. This together with a2 ≡24 1 implies
that a ≡24 a′ because of uniqueness of the inverse modulo 24.

To prove (4.9) we first note that

gcd(a + κλc, 6) = 1, (4.17)

because of κc ≡6 0 by Lemma 4.3 and (4.6) together with N |c.
We have that
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ǫ(a + κλc,−δy,
mc

δ
, x)

=

(
mc/δ

a + κλc

)

e−
(a+κλc)πi

12
(mc/δ+δy−3) (by (2.37) and (4.17))

=

(
mc/δ

a + κλc

)

e−
(a+κλc)πi

12
(mc/δ−3) (by (4.13))

=

(
mc/δ

a + κλc

)(
δ2

a + κλc

)

e−
(a+κλc)πi

12
(mc/δ−3) (see below)

=

(
mcδ

a + κλc

)

e−
(a+κλc)πi

12
(mc/δ−3) (by (2.33)).

The third equality is shown as follows. If gcd(a + κλc, δ) = 1 then Definition 2.25 implies

that
(

δ2

a+κλc

)

= 1. To prove relative primeness we see by (4.6) and (4.7) that each prime p

dividing δ also divides N and consequently also c. So gcd(a + κλc, p) = gcd(a, p). But since
p|c and gcd(a, c) = 1 by ad − bc = 1, we conclude that gcd(a + κλc, δ) = 1.

Proof of (iv). In order to prove that µ is an integer we need to show that bx−ba′m2 ≡κ 0.
By (4.11) we obtain ax ≡κ 1. We also know by (ii) that aa′ ≡24c 1. Because of κ|24 by (4.2),
we have that aa′ ≡κ 1. From this it follows that x ≡κ a′ by uniqueness of inverses mod κ.
Consequently,

bx − ba′m2 ≡κ bx − bxm2 ≡κ bx(1 − m2) ≡κ 0,

using κ|(1 − m2) from (4.2).

Next we show that the mapping λ 7→ µ is a bijection of Z/mZ by providing an inverse
using the observation that:

µ − bx − ba′m2

κ
≡m λdx implies λ ≡m (xd)−1(µ − bx − ba′m2

κ
).

The only non-trivial step is to show that d and x are indeed invertible modulo m. First of all,
x is invertible modulo m because of (4.11). Because of ad−bc = 1 we have that gcd(c, d) = 1,
and since N |c we have that gcd(N, d) = 1. By (4.6) we get that gcd(m, d) = 1 which shows
that also d is invertible modulo m.

Proof of (v). By (4.11) we have that ax ≡κc 1. From aa′ ≡24c 1 and κ|24 we conclude
that aa′ ≡κc 1 which implies x ≡κc a′ by uniqueness of inverses mod κc.

Because of the relation ad − bc = 1 we have that ad ≡c 1. From ax ≡κc 1 it follows that
ax ≡c 1 which implies d ≡c x by uniqueness of inverses mod c.

Next we will show the validity of

µ ≡c λd2 + bd
1 − m2

κ
(4.18)

by the following chain of arguments starting with the definition of µ:

κµ ≡κc κλdx + bx − ba′m2 ≡κc κλdx + bx − bxm2 ≡κc κ(λdx + bx
1 − m2

κ
)
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which implies that

µ ≡c λdx + bx
1 − m2

κ
≡c λd2 + bd

1 − m2

κ
.

We thus have proven (4.18). By multiplying the last congruence with a2, we obtain:

µa2 − ba
1 − m2

κ
≡c λ.

We have again used that the inverse of d is a modulo c.

In order to arrive at our main result, Theorem 4.22, we need to introduce some additional
assertions, Lemmas 4.11 to 4.19.

Lemma 4.11. Let l, j be integers and C, a, s non-negative integers such that:

1. the relation p|l implies p|C for any prime p;

2. gcd(a, l) = 1;

3. l = 2sj where j is odd;

4. a is odd and C is even.

Then for any non-negative integer λ:

(
l

a + λC

)

=

(
l

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 .

Proof. By a similar reasoning as in the proof of (4.9) we see that gcd(a + λC, l) = 1 for all
integers λ and thus gcd(a + λC, j) = 1.

Next we can write j = j1j2 where j1 is squarefree and j2 is a square. Clearly j1|C by
assumption. Then:

(
j

a + λC

)

=

(
j1

a + λC

)(
j2

a + λC

)

(by (2.33))

=

(
j1

a + λC

)

(because of gcd(a + λC, j) = 1)

=(−1)
a+λC−1

2
j1−1

2

(
a + λC

j1

)

(by (2.36))

=(−1)
a+λC−1

2
j1j2−1

2

(
a + λC

j1

)

(because of j2 ≡4 1)

=(−1)
λC(j−1)

4 (−1)
a−1
2

j1−1
2

(
a

j1

)

(because of a + λC ≡j1 a)

=(−1)
λC(j−1)

4

(
j1

a

)

(by (2.36))

=(−1)
λC(j−1)

4

(
j

a

)

(by (2.33) and because of

(
j2

a

)

= 1).
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Summarizing, we have proven:

(
j

a + λC

)

= (−1)
λC(j−1)

4

(
j

a

)

. (4.19)

Next,

(
2

a + λC

)

= (−1)
2aλC+λ2C2

8

(
2

a

)

(4.20)

is easily seen by

(
2

a + λC

)

=(−1)
(a+λC)2−1

8 (by (2.34))

=(−1)
2aλC+λ2C2

8

(
2

a

)

(by (2.34)).

The following derivation concludes the proof:

(
l

a + λC

)

=

(
2

a + λC

)s( j

a + λC

)

(by (2.33))

=

(
2

a

)s( j

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 (by (4.19) and (4.20))

=

(
l

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 (by (2.33)).

In order to make the next lemmas more readable we need to introduce some helpful
definitions:

Definition 4.12. A tuple (m, M, N, (rδ)) ∈ ∆ is said to be κ-proper, if

κN
∑

δ|M

rδ
mN

δ
≡24 0, (4.21)

and
κN

∑

δ|M

rδ ≡8 0, (4.22)

where as usual κ = gcd(1 − m2, 24).

Definition 4.13. For (m, M, N, (rδ)) ∈ ∆, γ =

(
a b
c d

)

∈ Γ0(N)∗ and λ a non-negative

integer we define:

β(γ, λ) := e
P

δ|M
2πirδδamb

24

∏

δ|M

(
mcδ

a + κλc

)|rδ|

e−
(a+κλc)πi

12

P

δ|M rδ(mc/δ−3), (4.23)

where
(
·
·

)
is the Jacobi symbol.
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Remark 4.14. It follows by Definition 4.13 that (β(γ, λ))24 = 1 for all λ ∈ Z.

Definition 4.15. For M a positive integer and (rδ) ∈ R(M) let π(M, (rδ)) = (s, j) where s
is a non-negative integer and j an odd integer uniquely determined by

∏

δ|M δ|rδ| = 2sj.

Lemma 4.16. Let (m, M, N, (rδ)) ∈ ∆ be κ-proper, γ =

(
a b
c d

)

∈ Γ0(N)∗, (s, j) :=

π(M, (rδ)). Then for λ a non-negative integer the following relations hold:

β(γ, λ) =
∏

δ|M

(
mcδ

a + κλc

)|rδ|

e−
πia
12

(
P

δ|M
mc
δ

rδ−
P

δ|M rδδmb−3
P

δ|M rδ), (4.24)

and

β(γ, λ) =

{
β(γ, 0) if κc ≡8 0

β(γ, 0)(−1)
κλc(j−1)

4 (−1)s 2aκλc+κ2λ2c2

8 if
∑

δ|M rδ ≡2 0
. (4.25)

Proof. To prove (4.24) we see from its definition that β(γ, λ) can be rewritten as

=
∏

δ|M

(
mcδ

a + κλc

)|rδ |

e−
πia
12

(
P

δ|M rδ
mc
δ
−

P

δ|M mbδrδ−3
P

δ|M rδ)

· e−
πiκλc

12
(
P

δ|M rδ
mc
δ
−3

P

δ|M rδ).

Because of N |c, (4.21) and (4.22) we can conclude that
∑

δ|M rδcκ
mc
δ ≡24 0 and κc

∑

δ|M rδ ≡8

0. Hence

e−
πiκλc

12
(
P

δ|M rδ
mc
δ
−3

P

δ|M rδ) = 1.

To prove (4.25) we see that condition (4.22) implies that either
∑

δ|M rδ ≡2 0 or κN ≡8 0.
From (4.24) and Lemma 4.11 we see that if κc ≡8 0 then β(γ, λ) = β(γ, 0), λ ≥ 0.

If
∑

δ|M rδ ≡2 0 then

∏

δ|M

(
mc

a + κλc

)|rδ|

=

(
mc

a + κλc

)P

δ|M |rδ|

=

(
mc

a + κλc

)P

δ|M rδ

= 1,

and we have

∏

δ|M

(
δmc

a + κλc

)|rδ |

=

(∏

δ|M δ|rδ|

a + κλc

)

(by (2.33))

=

(∏

δ|M δ|rδ|

a

)

(−1)
κλc(j−1)

4 (−1)
s(2aκλc+κ2λ2c2)

8 (by Lemma 4.11)

=
∏

δ|M

(
δmc

a

)|rδ |

(−1)
κλc(j−1)

4 (−1)
s(2aκλc+κ2λ2c2)

8 (by (2.33)).

In view of (4.24) this implies that

β(γ, λ) = β(γ, 0)(−1)
κλc(j−1)

4 (−1)
s(2aκλc+κ2λ2c2)

8 . (4.26)
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Note that in order to apply Lemma 4.11 above we need to verify that p|∏δ|M δ|rδ| im-

plies p|κc and that gcd(a,
∏

δ|M δ|rδ|) = 1. This follows from (4.6) and (4.7) together with
gcd(a, c) = 1 because of ad − bc = 1.

Lemma 4.17. Let (m, M, N, (rδ)) ∈ ∆, γ =

(
a b
c d

)

∈ Γ0(N)∗ and t an integer with

0 ≤ t ≤ m − 1 such that the relation

24m

gcd(κ(−24t −∑δ|M δrδ), 24m)
| N (4.27)

holds, then for τ ∈ H we have that

gm,t(γτ) = (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

β(γ, λ)e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

,
(4.28)

where µ is defined as in Lemma 4.10.

Proof. Given two integers λ, λ′ such that λ ≡c λ′, relation (4.27) implies

λ ≡ 24m
gcd(24m,κ(−24t−

P

δ|M δrδ))
λ′,

consequently

e
2πiλκ(−24t−

P

δ|M δrδ)

24m = e
2πiλ′κ(−24t−

P

δ|M δrδ)

24m .

Therefore by (v) in Lemma 4.10 we conclude that:

e
2πiλκ(−24t−

P

δ|M δrδ)

24m = e
2πiκ(µa2−

ab(1−m2)
κ )(−24t−

P

δ|M δrδ)

24m . (4.29)

Hence,

gm,t(γτ) =
1

m

m−1∑

λ=0

e
2πiκλ(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(γτ + κλ)

m

)

(by (4.5))

= (−i(cτ + d))

P

δ|M rδ

2

· 1

m

m−1∑

λ=0

β(γ, λ)e
2πiκλ(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by (4.8), (4.9) and (4.23))

= (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

β(γ, λ)e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)
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(by (4.29)).

Lemma 4.18. Let (m, M, N, (rδ)) ∈ ∆ be κ-proper, γ =

(
a b
c d

)

∈ Γ0(N)∗, and t an

integer with 0 ≤ t ≤ m − 1 such that (4.27) holds. Let t′ be the unique integer satisfying

0 ≤ t′ ≤ m − 1 and t′ ≡m ta2 + a2−1
24

∑

δ|M δrδ. Assume that κN ≡8 0, then for τ ∈ H we
have that

gm,t(γτ) = β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ).

Proof.

gm,t(γτ) = β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m ·

1

m

m−1∑

λ=0

e
2πiκµ(−24t′−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by (4.28) and because β(γ, 0) = β(γ, λ), λ ∈ Z by (4.25))

=β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ)

(by (4.5) and (iv) in Lemma 4.10).

Lemma 4.19. Let (m, M, N, (rδ)) ∈ ∆ be κ-proper, γ =

(
a b
c d

)

∈ Γ0(N)∗, (s, j) =

π(M, (rδ)) and t an integer with 0 ≤ t ≤ m − 1 such that (4.27) holds. Assume further that
∑

δ|M rδ ≡2 0 and 2|m.

(i) If s ≡2 0 let t′ be the unique integer satisfying t′ ≡m ta2 + a2−1
24

∑

δ|M δrδ − 3mca2(j−1)
24

and 0 ≤ t′ ≤ m − 1. Then for τ ∈ H we have that

gm,t(γτ) = (−1)
abc(1−m2)(j−1)

4 β(γ, 0)

· (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ).

(4.30)

(ii) If κc ≡4 0 let t′ be the unique integer satisfying t′ ≡m −3mcsa2

24 + ta2 + a2−1
24

∑

δ|M δrδ

and 0 ≤ t′ ≤ m − 1. Then for τ ∈ H we have that

gm,t(γτ) = (−1)
sa2bc(1−m2)

4 β(γ, 0)

· (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ).

(4.31)
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Proof. Proof of (i):

gm,t(γτ) = (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m β(γ, 0)

· 1

m

m−1∑

λ=0

(−1)
κλc(j−1)

4 e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by (4.28) and (4.26), together with 2|m which implies 2|c because of (4.6))

=(−1)
abc(1−m2)(j−1)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

(−1)
κµa2c(j−1)

4 e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by (4.10) and c ≡2 0)

=(−1)
abc(1−m2)(j−1)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

e
2πiκµa2(3mc(j−1)−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

=(−1)
abc(1−m2)(j−1)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

e
2πiκµ(−24t′−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by substituting for t′)

=(−1)
abc(1−m2)(j−1)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ)

(by (4.5) and (iv) in Lemma 4.10).

Proof of (ii):

gm,t(γτ) = (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m β(γ, 0)

· 1

m

m−1∑

λ=0

(−1)
saκλc

4 e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by (4.28) and (4.26))

=(−1)
sa2bc(1−m2)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

(−1)
κµa3cs

4 e
2πiκµa2(−24t−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)
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(by (4.10) and c ≡2 0))

=(−1)
sa2bc(1−m2)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

· 1

m

m−1∑

λ=0

e
2πiκµ(−24t′−

P

δ|M δrδ)

24m

∏

δ|M

ηrδ

(
δ(τ + κµ)

m

)

(by substituting for t′)

=(−1)
sa2bc(1−m2)

4 β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m gm,t′(τ)

(by (4.5) and (iv) in Lemma 4.10).

Note that if 2 ∤ m then κN ≡8 0 and Lemma 4.18 applies. If 2|m and κN 6≡8 0 then the
Lemma 4.19 applies.

Let (m, M, N, (rδ)) ∈ ∆ and s, j integers such that π(M, (rδ)) = (s, j). In the next
theorem we will also assume that:

κN ≡4 0 and 8|Ns, (4.32)

or

s ≡2 0 and 8|N(1 − j). (4.33)

Definition 4.20. We define

∆∗ := { all tuples (m, N, N, t, (rδ)) with properties as listed in (4.34) below} :

(m, M, N, (rδ)) ∈ ∆ is κ-proper, t ∈ N, 0 ≤ t ≤ m − 1;

in addition (4.27) hold and (4.32) or (4.33).
(4.34)

Definition 4.21. Let m, M, N ∈ N∗ and (rδ) ∈ R(M). Define the operation ⊙ : Γ0(N)∗ ×
{0, . . . , m − 1} → {0, . . . , m − 1}, (γ, t) 7→ γ ⊙ t, where for γ =

(
a b
c d

)

the image γ ⊙ t is

uniquely defined by the relation

γ ⊙ t ≡m ta2 +
a2 − 1

24

∑

δ|M

δrδ. (4.35)

Finally we arrive at the main theorem of this section which can be viewed as a general-
ization of a theorem of R. Lewis; see Remark 4.23 below.

Theorem 4.22. Let (m, M, N, t, (rδ) = r) ∈ ∆∗, gm,t(τ, r) be as in Definition 4.6, γ =
(

a b
c d

)

∈ Γ0(N)∗, and β as in Definition 4.13. Then for all τ ∈ H we have that

gm,t (γτ, r) = β(γ, 0) (−i(cτ + d))

P

δ|M rδ

2 e2πi
ab(1−m2)(24t+

P

δ|M δrδ)

24m · gm,γ⊙t(τ, r). (4.36)
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Proof. If 2 ∤ m then κN ≡8 0 and (4.36) follows from Lemma 4.18. If 2|m we split the proof

in two cases depending on if (4.32) or (4.33) holds. If (4.32) holds we have that −3mcsa2

24 ≡m 0

and (−1)
sa2bc(1−m2)

4 = 1 and by (ii) in Lemma 4.19 we obtain (4.36). Similarly when (4.33)

holds we have that 3mca2(j−1)
24 ≡m 0 and (−1)

abc(1−m2)(j−1)
4 = 1 and by (i) in Lemma 4.19 we

obtain (4.36).

Remark 4.23. Theorem 4.22 extends Theorem 1 in [25] which covers products of the form
∏∞

n=1(1 − qn)r1 where r1 is a fixed integer.

4.3 Formulas for gm,t(γτ) when γ ∈ Γ

Usually gm,t(τ) = gm,t(τ, r) as defined in Definition 4.6 is not a modular form. But if we choose

a sequence (aδ) ∈ R(N) properly, we can always make sure that
(
∏

t′∈P (t) gm,t′(τ)
)(
∏

δ|N ηaδ(δτ)
)

(with P (t) as in (4.46)) is a modular form. To prove this we need some formulas for
∏

δ|N ηaδ(δ(γτ)) and for gm,t(γτ) that are valid for all γ in Γ, in order to check condition
(iii) in Definition 2.6 of a modular form. This is done in the Lemmas 4.25 to 4.31 below.

Recall from (4.2) that κ = gcd(1 − m2, 24).

Definition 4.24. For m a positive integer and x ∈ Z we denote by [x]m ∈ Z/mZ the residue
class of x modulo m.

Lemma 4.25. Let (m, M, N, (rδ)) ∈ ∆ and γ =

(
a b
c d

)

∈ Γ. For δ|M with δ > 0 and λ

an integer let x(δ, λ) and y(δ, λ) be any fixed solutions to the equation δ(a + κλc) · x(δ, λ) +
mc · y(δ, λ) = gcd(δ(a + κλc), mc). Further define

w(δ, λ, γ, τ) :=
gcd(δ(a + κλc), mc)τ + δ(b + κλd)x(δ, λ) + mdy(δ, λ)

δm
gcd(δ(a+κλc),mc)

. (4.37)

Then there exists a map C : Γ → C such that for all γ ∈ Γ and τ ∈ H the following relation
holds:

∏

δ|M

ηrδ

(
δ(γτ + κλ)

m

)

= C(γ)(cτ + d)
1
2

P

δ|M rδ
∏

δ|M

ηrδ (w(δ, λ, γ, τ)) . (4.38)

In addition, there exist mappings C ′ : Γ → C and µ : Z → Z such that for all γ ∈ Γ0(N) and
τ ∈ H the following relation holds:

∏

δ|M

ηrδ

(
δ(γτ + κλ)

m

)

= C ′(γ)(cτ + d)
1
2

P

δ|M rδ
∏

δ|M

ηrδ

(
δ(τ + κµ(λ))

m

)

, (4.39)

where µ is chosen such that [λ]m 7→ [µ(λ)]m is a bijection of Z/mZ.

Proof. To prove (4.38) let γ =

(
a b
c d

)

∈ Γ. Apply Lemma 4.8 with k set to 1
2 , f(τ) to

η(τ), g(γ, τ) to (−i)
1
2 ǫ(a, b, c, d)η(τ) and ξ to

(
δ(a + κλc) δ(b + κλd)

mc md

)

; then for all δ|M
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with δ > 0 the following relation holds:

(
gcd(δ(a + κλc), mc)

δm
m(cτ + d)

)− 1
2

η

(
δ((a + κλc)τ + b + κλd)

m(cτ + d)

)

=(−i)
1
2 ǫ

(
δ(a + κλc)

gcd(δ(a + κλc), mc)
,−y(δ, λ),

mc

gcd(δ(a + κλc), mc)
, x(δ, λ)

)

η(w(δ, λ, γ, τ)).

Taking the product over δ|M on both sides and using that

η

(
δ(γτ + κλ)

m

)

= η

(
δ((a + κλc)τ + b + κλd)

m(cτ + d)

)

proves (4.38).
To prove (4.39) we first will prove that gcd(δ(a + κλc), mc) = δ if N |c. By (4.7) we see

that δ|mc hence gcd(δ(a + κλc), mc) = δ gcd(a + κλc, mc
δ ). Also since gcd(a + κλc, c) = 1

because of ad − bc = 1, and gcd(a + κλc, m) = 1 because of (4.6), we can conclude that
gcd(a + κλc, mc

δ ) = 1. Next, for λ ∈ Z let x0(λ) and y0(λ) be any solutions to the equation
(a + κλc)x0(λ) + mcy0(λ) = 1. Then we can define x(δ, λ) := x0(λ) and y(δ, λ) := δy0(λ)
because of gcd(δ(a + κλc), mc) = δ. Consequently,

η(w(δ, λ, γ, τ)) = η

(
δτ + δ(b + κλd)x0(λ)

m
+ δdy0(λ)

)

. (4.40)

Next, let X and Y be integers such that κX + mY = 1. Such integers clearly exist by (4.2).
Define µ(λ) := (b + κλd)Xx0(λ). Then

η

(
δ(τ + κµ(λ))

m

)

= η

(
δ(τ + κ(b + κλd)Xx0(λ))

m

)

=η

(
δ(τ + (b + κλd)x0(λ))

m
− δY (b + κλd)x0(λ)

)

.

(4.41)

This shows that

η(w(δ, λ, γ, τ)) = ǫη

(
δ(τ + κµ(λ))

m

)

for some 24-th root of unity ǫ because of (4.16) and by (4.40) and (4.41). It only remains
to show that µ is a bijection of Z/mZ. Note that x0(λ) is invertible modulo m because of
(a + κλc)x0(λ) + mcy0(λ) = 1 implying (µ(λ)X−1x0(λ)−1 − b)κ−1d−1 ≡m λ. Note that d is
invertible modulo m because of gcd(c, d) = 1 which by (4.6) implies gcd(m, d) = 1.

Remark 4.26. Note that (4.39) is very similar to (4.8) in Lemma 4.10 but here we lifted the
restriction gcd(a, 6) = 1, a > 0, c > 0.

Proposition 4.27. Let M be a positive integer and r, a, b, c ∈ R(M). Then there exists a
positive integer k and a Taylor series h(q) in powers of q1/k such that

∏

δ|M

ηrδ

(
aδτ + bδ

cδ

)

= q
1
24

P

δ|M rδ
aδ
cδ h(q). (4.42)

Proof. The proof follows by substituting (2.26) into (4.42). We omit the details.
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Lemma 4.28. Let γ0 ∈ Γ, (m, M, N, (rδ)) ∈ ∆, t ∈ Z with 0 ≤ t ≤ m − 1, and define the
mappings p : Γ × [0, . . . , m − 1] → Q and p : Γ → Q by

p(γ, λ) :=
1

24

∑

δ|M

rδ
gcd2(δ(a + κλc), mc)

δm
, (4.43)

and
p(γ) := min

λ∈{0,...,m−1}
p(γ, λ). (4.44)

Then for all γ =

(
a b
c d

)

∈ Γ0(N)γ0SL2(Z) there exists a positive integer k and a Taylor

series h(q) in powers of q
1
k such that for τ ∈ H we have

(cτ + d)−
1
2

P

δ|M rδgm,t(γτ) = h(q)qp(γ0).

Proof. We write γ =

(
a b
c d

)

= γNγ0γ∞ where γN =

(
aN bN

cN dN

)

∈ Γ0(N), γ∞ =
(

1 b∞
0 1

)

∈ SL2(Z) and γ0 =

(
a0 b0

c0 d0

)

∈ Γ. Then

gm,t(γτ) =
1

m

m−1∑

λ=0

C1(λ)
∏

δ|M

ηrδ

(
δ(γτ + κλ)

m

)

(by (4.5)) with suitably chosen C1 : {0, . . . , m − 1} → C)

=(cN (γ0γ∞τ) + dN )
1
2

P

δ|M rδ

· 1

m

m−1∑

µ(λ)=0

C2(µ(λ))
∏

δ|M

ηrδ

(
δ(γ0γ∞τ + κµ(λ))

m

)

(by (4.39) with suitably chosen C2 : {0, . . . , m − 1} → C)

=((cN (γ0γ∞τ) + dN )(c0(γ∞τ) + d0))
1
2

P

δ|M rδ

· 1

m

m−1∑

µ(λ)=0

C3(µ(λ))
∏

δ|M

ηrδ

(
gcd2(δ(a0 + κµ(λ)c0), mc0)τ + C4(µ(λ), δ)

δm

)

(by (4.38) with suitably chosen C3 : {0, . . . , m − 1} → C and C4 : {0, . . . , m − 1} × {δ | δ ∈
N, δ|M} → C)

=(cτ + d)
1
2

P

δ|M rδ

· 1

m

m−1∑

µ(λ)=0

C3(µ(λ))
∏

δ|M

ηrδ

(
gcd2(δ(a0 + κµ(λ)c0), mc0)τ + C4(µ(λ), δ)

δm

)
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(because of

(
aN bN

cN dN

)(
a0 b0

c0 d0

)(
1 b∞
0 1

)

=

(
a b
c d

)

)

=(cτ + d)
1
2

P

δ|M rδ

m−1∑

µ(λ)=0

C3(µ(λ))qp(γ0,µ(λ))h(µ(λ), q)

(where for each µ(λ), h(µ(λ), q) is a Taylor series in powers of q24p(γ0,µ(λ)) by (4.42))

=(cτ + d)
1
2

P

δ|M rδqp(γ0)h(q)

(with h(q) := qp(γ0)
∑m−1

µ(λ)=0 C3(µ(λ))qp(γ0,µ(λ))−p(γ0)h(µ(λ), q)).

Lemma 4.29. Let N ∈ N∗, (aδ) ∈ R(N), f(τ) :=
∏

δ|N ηaδ(δτ), and define the mapping

p∗ : Γ → C by p∗
((

a0 b0

c0 d0

))

:= 1
24

∑

δ|N
aδ gcd2(δ,c0)

δ . Then for all γ =

(
a b
c d

)

∈ Γ

there exists an integer k and a Taylor series h∗(q) in powers of q
1
k such that

(cτ + d)−
1
2

P

δ|N aδf(γτ) = h∗(q)qp∗(γ). (4.45)

Furthermore, for γ1 ∈ Γ and γ2 ∈ Γ0(N)γ1SL2(Z) we have p∗(γ1) = p∗(γ2).

Proof. Let wδ := gcd(δa, c)gcd(δa,c)τ+δbxδ+dyδ

δ where xδ, yδ ∈ Z such that aδxδ + cyδ =
gcd(aδ, c) for any fixed δ|N with δ > 0. Then

(cτ + d)−
1
2

P

δ|N aδ
∏

δ|N

ηaδ(δγτ) =(cτ + d)−
1
2

P

δ|N aδ
∏

δ|N

ηaδ

(
δa

gcd(δa,c)wδ − yδ

c
gcd(δa,c)wδ + xδ

)

=C
∏

δ|N

ηaδ(wδ)

(by (2.28)) with suitably chosen C ∈ C)

=Cqp∗(γ)
∏

δ|N

h∗(δ, q)

(by (2.26) for some Taylor series h∗(δ, q) where δ|N (with constant term 1)). This proves
(4.45).
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To prove the remaining part of Lemma 4.29 let γ1 =

(
a b
c d

)

and γ2 =

(
A B
C D

)

.

Because of γ2 ∈ Γ0(N)γ1SL2(Z) we have that γ2 = γNγ1γ∞ for some γN =

(
a′ b′

c′N d′

)

∈

Γ0(N) and γ∞ =

(
1 b∞
0 1

)

∈ SL2(Z). This shows that C = ac′N + d′c and clearly

gcd(d′, c′N) = 1 because of a′d′ − c′Nd′ = 1. For δ|N this implies that gcd(δ, C) =
gcd(δ, ac′δ N

δ + d′c) = gcd(δ, d′c) = gcd(δ, c). By this we have shown that the sums p∗(γ1) and
p∗(γ2) have the same summands which proves that they are identical.

Theorem 4.30. Let (m, M, N, (rδ)) ∈ ∆, t ∈ Z with 0 ≤ t ≤ m − 1, p be as in Lemma 4.28,

(aδ) and p∗ be as in Lemma 4.29, and γ0 ∈ Γ. Then for all γ =

(
a b
c d

)

∈ Γ0(N)γ0SL2(Z)

the expression

q−(p(γ0)+p∗(γ0))(cτ + d)−
1
2

P

δ|M rδ−
1
2

P

δ|N aδgm,t(γτ)
∏

δ|N

ηaδ(δ(γτ))

finds a representation as a Taylor series in powers of q
1
k for some positive integer k.

Proof. By Lemmas 4.28 and 4.29, for each γ =

(
a b
c d

)

∈ Γ0(N)γ0SL2(Z) there exists a

positive integer k, and Taylor series h(q) and h∗(q) in powers of q
1
k such that

(cτ + d)−
1
2
(
P

δ|M rδ+
P

δ|N aδ)gm,t(γτ)
∏

δ|N

ηaδ(δ(γτ)) = h(q)h∗(q)qp(γ0)+p∗(γ0).

Lemma 4.31. Let F : H → C be a mapping, k an integer, and l a positive integer. Assume

that for all γ =

(
a b
c d

)

∈ Γ there exists a positive integer n and a Taylor series h(γ, q) in

powers of q
1
n such that for all τ ∈ H the relation (cτ + d)−kF (γτ) = h(γ, q) holds. Then for

all γ =

(
a b
c d

)

∈ Γ there exists a positive integer n′ and a Taylor series h∗(γ, q) in powers

of q
1
n′ such that for all τ ∈ H the relation (cτ + d)−kF (l(γτ)) = h∗(γ, q) holds.

Proof. We apply Lemma 4.8 with f(τ) = F (τ), g(γ, τ) = h(γ, q), ξ =

(
al bl
c d

)

, g :=

gcd(al, c), and x, y some integers such that alx + cy = g. As a consequence we have that

(g

l
(cτ + d)

)−k
f(l(γτ)) = h

((
al
g −y
c
g x

)

, q
g2

l e
2πig

l
(blx+dy)

)

.

Choosing n′ = g2

l n and

h∗(γ, q) = (g/l)kh

((
al
g −y
c
g x

)

, q
g2

l e
2πig

l
(blx+dy)

)

concludes the proof.
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Definition 4.32. We define

Z∗
n := {[x]n ∈ Zn| gcd(x, n) = 1},

and

Sn := {y2|y ∈ Z∗
n}.

Lemma 4.33. For all integers w ≥ 2 we have 24
∑

s∈Sw
s = [0]w. If gcd(w, 6) = 1 then

∑

s∈Sw
s = [0]w.

Proof. If gcd(w, 6) = 1 then [22]w ∈ Sw, which implies that [22]w
∑

s∈Sw
s =

∑

s∈Sw
s. This

is because multiplication by an element of Sw just permutes the summands. Consequently
[22−1]w

∑

s∈Sw
s = [0]w, but 22−1 is invertible modulo w and we can conclude that

∑

s∈Sw
s =

[0]w. If we assume that w = 2s3t then [52 − 1]w
∑

s∈Sw
s = [0]w. Next consider a general

w = 2s3tu, gcd(u, 6) = 1. We have a ring isomorphism φ : Z2s3tu → Z2s3t × Zu given by
φ([x]2s3tu) = ([x]2s3t , [x]u). Obviously,

φ

(

[24]w
∑

s∈Sw

s

)

= φ([24]w)
∑

s ∈ S2s3t ,
s′ ∈ Su

(s, s′)

=φ([24]w)



[|Su|]2s3t

∑

s∈S2s3t

s, [|S2s3t |]u
∑

s∈Su

s





=



[24|Su|]2s3t

∑

s∈S2s3t

s, [24|S2s3t |]u
∑

s∈Su

s



 = ([0]2s3t , [0]u).

Since φ is an isomorphism its kernel is {0}, which proves the lemma.

Definition 4.34. For m, M ∈ N∗, (rδ) ∈ R(M) and t ∈ N with 0 ≤ t ≤ m − 1 we define
the map ⊙ : S24m × {0, . . . , m − 1} → {0, . . . , m − 1} where the image [s]24m⊙t is uniquely
determined by the relation [s]24m⊙t ≡m ts + s−1

24

∑

δ|M δrδ. We also define

P (t) := {[s]24m⊙t|[s]24m ∈ S24m}. (4.46)

Lemma 4.35. Let m, t, M, N be positive integers with 0 ≤ t ≤ m − 1 such that (4.6) holds.

Let (rδ) ∈ R(M), γ =

(
a b
c d

)

∈ Γ0(N)∗, and ⊙ as in (4.35). Moreover, define

w :=
24m

gcd(κ(24t +
∑

δ|M δrδ), 24m)
.

Then the following statements hold:

(i) γ ⊙ t = [a2]24m⊙t.

(ii) [x]24m⊙t = [y]24m⊙t iff x ≡w y for all x, y ∈ Z.

(iii) P (t) = {γ ⊙ t|γ ∈ Γ0(N)∗}.
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(iv) For [s]24m ∈ S24m we have

P (t) = {[s]24m⊙t′|t′ ∈ P (t)}.

(v) χ :=
∏

t′∈P (t) e2πi
ab(1−m2)(24t′+

P

δ|M δrδ)

24m is a 24-th root of unity.

Proof. Proof of (i): If γ ∈ Γ0(N)∗ then gcd(a, 6) = 1. By (4.6) and because of gcd(a, N) = 1
we also have that gcd(a, m) = 1, hence gcd(a, 24m) = 1. This means that [a2]24m ∈ S24m.

Proof of (ii): Assume that [s1]24m⊙t = [s2]24m⊙t for [s1]24m, [s2]24m ∈ S24m. Then

κ(s1t +
s1 − 1

24

∑

δ|M

δrδ) ≡m κ(s2t +
s2 − 1

24

∑

δ|M

δrδ) (4.47)

because gcd(κ, m) = 1. Consequently (4.47) is equivalent to

κ(24t +
∑

δ|M

δrδ)(s1 − s2) ≡24m 0 (4.48)

and (4.48) is equivalent to

s1 − s2 ≡w 0.

Proof of (iii): By (i) we have

{γ ⊙ t|γ ∈ Γ0(N)∗}

={[a2]24m⊙t|
(

a b
c d

)

∈ Γ0(N)∗} ⊆ {[s]24m⊙t|[s]24m ∈ S24m}.

To show the other inclusion let [s]24m ∈ S24m. By definition there exists an [a]24m ∈ Z∗
24m

such that [s]24m = [a2]24m. Because gcd(a, 24) = 1 we have gcd(a, 6) = 1. We want to show
that there exists a λ such that gcd(a + 24λm, N) = 1 because then there exist integers x and
y such that

(
a + 24λm −y

N x

)

⊙ t = [s]24m⊙t

and the other inclusion is shown. It is sufficient to show that for each prime p with p|N there
exists an integer λp s.t. gcd(a + 24λpm, p) = 1 because then by the Chinese remainder there
exists a λ s.t. for all p|N we have that λ ≡p λp. If p is such that p|N and p|24m then we
simply choose λp = 0. If p|N and p ∤ 24m and p|a then choose λp = 1, if p ∤ a choose λp = 0.

Proof of (iv): We have to show that given [s]24m ∈ S24m, the mapping [s]24m⊙t : P (t) →
P (t) is a bijection. This is clear because the inverse is [s]−1

24m⊙t.

Proof of (v): Let S be a subset of S24m such that for [r1]24m, [r2]24m ∈ S we have
r1 6≡w r2, and such that for all [s]24m ∈ S24m there exists [r]24m ∈ S with r ≡w s. Then by
(ii):

P (t) = {ts +
s − 1

24

∑

δ|M

δrδ|[s]24m ∈ S}.
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It is straight-forward to prove that the set S gives a complete set of representatives of Sw.
Next note that

χ =
∏

t′∈P (t)

e2πi
ab(1−m2)(24t′+

P

δ|M δrδ)

24m

=
∏

[s]w∈Sw

e2πi
sab(1−m2)(24t+

P

δ|M δrδ)

24m

=e
2πiab(1−m2)(24t+

P

δ|M δrδ)

24m

P

[s]w∈Sw
s.

Since κ|(1−m2) and 24
∑

s∈Sw
s ≡w 0, by Lemma 4.33 we conclude that χ is a 24-th root

of unity.

4.4 Proving Congruences by Sturm’s Theorem

4.4.1 Proof Strategy

Let M be a positive integer and r = (rδ) ∈ R(M). Let f(τ, r) =
∏

δ|M

∏∞
n=1(1 − qδn)rδ =

∑∞
n=0 a(n)qn be as in Definition 4.6. Let m and u be positive integers and t an integer

satisfying 0 ≤ t ≤ m− 1. We want to prove or disprove the conjecture a(mn+ t) ≡u 0, n ≥ 0.
It is convenient to introduce the following definition:

Definition 4.36. For u a positive integer and c(τ) :=
∑∞

n=0 c(n)qn a power series we define
Ordu(c(τ)) := inf{n | u ∤ c(n)}; we write c(τ) ≡u 0 if Ordu(c(τ)) = ∞.

First note that if c1(τ) and c2(τ) are power series in q and if p is a prime number then
the relation c1(τ)c2(τ) ≡p 0 implies either c1(τ) ≡p 0 or c2(τ) ≡p 0.

Proposition 4.37. Let A, u be integers. Assume that for all divisors u′ of u and all primes
p dividing u/u′ we have

u′|A implies (u′p)|A. (4.49)

Then u|A.

Proof. To prove this statement assume that u ∤ A then there exists a prime q and α ∈ N such
that qα|A, qα+1 ∤ A and qα+1|u. Set u′ = pα and p = q then by (4.49) pα+1|A contradicting
qα+1 ∤ A.

Suppose that we already know that u′|a(mn + t) for all divisors u′ of u and all n ≥ 0. If

we can prove that a(mn+t)
u′ ≡p 0 for any prime p dividing u/u′, then by Proposition 4.37 we

have a(mn + t) ≡u 0, n ≥ 0. In other words, our aim is to prove

1

u′

∑

n=0

a(mn + t)qn ≡p 0,

which is equivalent to proving

(

1

u′

∞∑

n=0

a(mn + t)qn

)24

≡p 0,
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which in turn is equivalent to proving

H(τ) :=

(

1

u′

∞∑

n=0

a(mn + t)qn

)24

h1(τ) ≡p 0, (4.50)

where h1(τ) is a power series in q with h1(τ) 6≡p 0. We will choose h1(τ) in such a way that
H(τ) becomes a modular form of weight k for some subgroup G of Γ and some positive integer
k. Then by Theorem 4.38 below it is sufficient to show that Ordp(H(τ)) > k

12 [Γ : G] in order
to conclude that H(τ) ≡p 0 and hence a(mn + t)/u′ ≡p 0, n ≥ 0. In order to derive a bound
for Ordp(H(τ)) we will use that for given power series c1(τ) and c2(τ) with Ordp(c1(τ)) ≥ b1

for some b1 ∈ N and Ordp(c2(τ)) ≥ b2 for some b2 ∈ N then Ordp(c1(τ)c2(τ)) ≥ b1 + b2.

We will consider two types of congruences:

Type 1: a(mn + t) ≡u 0, n ≥ 0;

Type 2: a(mn + t′) ≡u 0, t′ ∈ P (t), n ≥ 0.

Obviously congruences of Type 2 are special cases of congruences of Type 1 but we have
observed that one can be “|P (t)| times faster in practical computations” when considering
congruences of Type 2. At the current stage this observation relies on experimental data and
is not yet proved; for a comparison see Example 4.42.

Before entering a detailed discussion of how to prove congruences of Type 1 and 2 we
recall a theorem of J. Sturm.

Theorem 4.38 (Sturm [40]). Let k be an integer and c(τ) =
∑∞

n=0 c(n)qn a modular form
of weight k for a subgroup G of Γ. Assume that Ordu(c(τ)) > k

12 [Γ : G] then c(τ) ≡u 0.

For setting up the lemmas in the next two subsections we have collected valuable ideas
from [39, p. 134, Cor. 9.1.4], attributed to Buzzard.

Proving Congruences of Type 1

Lemma 4.39. Let (m, M, N, t, (rδ) = r) ∈ ∆∗, (aδ) ∈ R(N), n be the number of double cosets
in Γ0(N)\Γ/SL2(Z) and {γ1, . . . , γn} ⊆ Γ a complete set of representatives of the double cosets
Γ0(N)\Γ/SL2(Z). Assume that p∗(γi) + |P (t)|p(γi) ≥ 0 for 1 ≤ i ≤ n and with p and p∗ as
in the lemmas 4.28 and 4.29. Next define:

ν :=
1

24








∑

δ|N

aδ + |P (t)|
∑

δ|M

rδ



 [Γ : Γ0(N)] −
∑

δ|N

δaδ





− 1

m

∑

t′∈P (t)

t′ − |P (t)|
24m

∑

δ|M

δrδ.

Then for f(τ, r) =
∑∞

n=0 a(n)qn and gm,t(τ, r) as in Definition 4.6 the following statements
hold:

(i) {(∏t′∈P (t) gm,t′(τ))(
∏

δ|N ηaδ(δτ))}24 is a modular form for the group Γ0(N) of weight
12
∑

δ|N aδ + 12|P (t)|
∑

δ|M rδ.

(ii) For any u ∈ N∗ we have that if Ordu(
∑∞

n=0 a(mn+t)qn) > ν then
∑∞

n=0 a(mn+t)qn ≡u

0.
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Proof. Proof of (i): Let γ =

(
a b
c d

)

∈ Γ0(N)∗ and let χ be as in (v) in Lemma 7.6.

Then:




∏

t′∈P (t)

gm,t′(γτ)





24

=(β(γ, 0)|P (t)|χ)24(cτ + d)12|P (t)|
P

δ|M rδ




∏

t′∈P (t)

gm,[a2]24m⊙t′(τ)





24

(by (4.36), Remark 4.14 and (i) in Lemma 7.6)

=(cτ + d)12|P (t)|
P

δ|M rδ




∏

t′∈P (t)

gm,t′(τ)





24

(4.51)

(by (iv) and (v) in Lemma 7.6).
By (2.28) we get:




∏

δ|N

ηaδ

(
a(δτ) + bδ
c
δ (δτ) + d

)




24

= (cτ + d)12
P

δ|N aδ




∏

δ|N

ηaδ(δτ)





24

. (4.52)

By (4.51) and (4.52) we obtain:








∏

t′∈P (t)

gm,t′(γτ)








∏

δ|N

ηaδ(δ(γτ))









24

=(cτ + d)12
P

δ|N aδ+12|P (t)|
P

δ|M rδ








∏

t′∈P (t)

gm,t′(τ)








∏

δ|N

ηaδ(δτ)









24
(4.53)

We want to prove that

V (τ) :=








∏

t′∈P (t)

gm,t′(τ)








∏

δ|N

ηaδ(δτ)









24

(4.54)

is a modular form of weight 12
∑

δ|N aδ + 12|P (t)|
∑

δ|M rδ for the group Γ0(N). Clearly,
condition (i) of Definition 2.6 is satisfied. Also condition (2) is satisfied because of (4.53)
and because of Lemma 2.35. The only assertion left to verify is condition (3). Let γ ∈
Γ0(N)γiSL2(Z), i ∈ {1, . . . , n}, then by Lemmas 4.29 and 4.28 there exists a positive integer

k such that h1(q), . . . , h|P (t)|(q), h
∗(q) are Taylor series in powers of q

1
k such that:

(cτ + d)−12
P

δ|N aδ+12|P (t)|
P

δ|M rδV (γτ) = q24p∗(γi)+24|P (t)|p(γi)h∗(q)

|P (t)|
∏

j=1

hj(q).

But by assumption p∗(γi)+ |P (t)|p(γi) ≥ 0, so also condition (iii) of Definition 2.6 is satisfied.
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Proof of (ii): Assume that a(mn + t) ≡u′ 0 for some integer u′ that divides u. Let
l ∈ N∗ be such that

h0(τ) :=
1

l




∏

t′∈P (t),t′ 6=t

(
∞∑

n=0

a(mn + t′)qn

)



24



∞∏

n=1

∏

δ|N

(1 − qδn)aδ





24

,

is a power series with integral coefficients such that for any prime p we have h0(τ) 6≡p 0. Then
V (τ)
lu′24 in (4.54) can be written as:

V (τ)

lu′24
=

1

lu′24
q

P

t′∈P (t)(24t′+
P

δ|M δrδ)/m




∏

t′∈P (t)

(
∞∑

n=0

a(mn + t′)qn

)



24

· q
P

δ|N δaδ





∞∏

n=1

∏

δ|N

(1 − qδn)aδ





24

=

(

1

u′

∞∑

n=0

a(mn + t)qn

)24

q
1
m(24

P

t′∈P (t) t′+|P (t)|
P

δ|M δrδ)+
P

δ|M δaδh0(τ).

If we choose h1(τ) := q
1
m(24

P

t′∈P (t) t′+|P (t)|
P

δ|M δrδ)+
P

δ|M δaδh0(τ) then in order to prove
a(mn+t)

u′ ≡p 0, n ≥ 0 for some prime p dividing u/u′ we need to prove

V (τ)

lu′24
=

(

1

u′

∞∑

n=0

a(mn + t)qn

)24

h1(τ) ≡p 0, (4.55)

which is exactly (4.50) above. From the above derivation we note that

Ordp(h1(τ)) ≥ 1

m



24
∑

t′∈P (t)

t′ + |P (t)|
∑

δ|M

δrδ



+
∑

δ|M

δaδ (4.56)

which is an integer because V (τ + 1) = V (τ). Because

Ordp





(

1

u′

∞∑

n=0

a(mn + t)qn

)24


 > 24ν,

by assumption, we have that

Ordp(
1

lu′24
V (τ)) >




∑

δ|N

aδ + |P (t)|
∑

δ|M

rδ



 [Γ : Γ0(N)]

because of (4.55), (4.56) and by substituting according to the definition of ν. Theorem 4.38

allows us to conclude that 1
lu′24 V (τ) ≡p 0 which implies that a(mn+t)

u′ ≡p 0, n ≥ 0.
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We display the results of this subsection in the form of an algorithm description. Our input
to the algorithm is m, M, u ∈ N∗, t ∈ {0, . . . , m − 1} and (rδ) ∈ R(M). The output of the
algorithm is true of false depending on if a(mn + t) ≡u 0 for all n ≥ 0 where

∑∞
n=0 a(n)qn =

∏∞
n=1

∏

δ|M (1 − qδn)rδ . The steps are as follows:

• Compute the minimal N such that (m, M, N, t, (rδ)) ∈ ∆∗.

• Compute a complete set of representatives γ1, . . . , γd for the double
cosets Γ0(N)\Γ/SL2(Z).

• Compute (aδ) ∈ R(N) such that p∗(γi) + |P (t)|p(γi) ≥ 0, i ∈
{1, . . . , d}, p and p∗ are as in Lemmas 4.28 and 4.29.

• Let ν be as in Lemma 4.40. If a(mn + t) ≡u 0 for n ∈ {0, . . . , ν}
then return true otherwise return false.

Proving Congruences of Type 2

Lemma 4.40. Let u be a positive integer, (m, M, N, t, (rδ)) ∈ ∆∗, (aδ) ∈ R(N), n be the
number of double cosets in Γ0(N)\Γ/SL2(Z) and {γ1, . . . , γn} ⊆ Γ a complete set of represen-
tatives of the double cosets Γ0(N)\Γ/SL2(Z). Assume that p(γi) + p∗(γi) ≥ 0, i = 1, . . . , n,
with p and p∗ as in the Lemmas 4.28 and 4.29. Furthermore, let l := 24m

κ , tmin := mint′∈P (t) t′

and

ν :=
1

24








∑

δ|N

aδ +
∑

δ|M

rδ



 [Γ : Γ0(N)] −
∑

δ|N

δaδ



− 1

24m

∑

δ|M

δrδ −
tmin

m
.

Then

(i) (
∏

δ|N ηaδ(lδτ)
∑

t′∈P (t) gm,t′(lτ))24 is a modular form of weight 12(
∑

δ|M rδ +
∑

δ|N aδ)
for the group Γ0(lN).

(ii) If Ordu(
∑∞

n=0 a(mn + t′)qn) > ν for all t′ ∈ P (t) then
∑∞

n=0 a(mn + t′)qn ≡u 0 for all
t′ ∈ P (t).

Proof. Proof of (i): Clearly condition (i) of Definition 2.6 is satisfied.
In order to prove condition (ii) we only need to consider γ ∈ Γ0(lN)∗ because of Lemma

2.35. Let γ =

(
a b
c d

)

∈ Γ0(lN)∗ then by Theorem 4.22 the following relation holds:

gm,t (l(γτ)) =β

((
a lb
c
l d

)

, 0

)

(−i(cτ + d))

P

δ|M rδ

2

· e2πi
abl(1−m2)(24t+

P

δ|M δrδ)

24m · gm,[a2]24m⊙t(lτ)

=β

((
a lb
c
l d

)

, 0

)

(−i(cτ + d))

P

δ|M rδ

2 gm,[a2]24m⊙t(lτ),

(4.57)

because

e
2πiabl(1−m2)(24t+

P

δ|M δrδ)

24m = e
2πiab(1−m2)(24t+

P

δ|M δrδ)

κ = 1.
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In this derivation we have substituted for l and used that κ|(1 − m2).
By (4.57), Remark 4.14 and (iv), (i) of Lemma 7.6 we obtain:




∑

t′∈P (t)

gm,t′(l(γτ))





24

= ((cτ + d))12
P

δ|M rδ




∑

t′∈P (t)

gm,t′(lτ)





24

. (4.58)

By (4.58) and (4.52) we obtain:




∏

δ|N

ηaδ(δl(γτ))
∑

t′∈P (t)

gm,t′(l(γτ))





24

= ((cτ + d))12(
P

δ|N aδ+
P

δ|M rδ)




∏

δ|N

ηaδ(δlτ)
∑

t′∈P (t)

gm,t′(lτ)





24

;

(4.59)

hence condition (ii) of Definition 2.6 is satisfied.
In order to prove (iii) in Definition 2.6 fix a t′ ∈ P (t), and a γ ∈ Γ0(N)γiSL2(Z), i ∈

{1, . . . , n}. Then by Lemmas 4.28 and 4.29 there exist positive integers k, k′ and Taylor series

h(q), h∗(q) in powers of q
1
k and q

1
k′ , respectively, such that

(cτ + d)−
1
2
(
P

δ|N aδ+
P

δ|M rδ)gm,t′(γτ)
∏

δ|M

ηaδ(δ(γτ)) = h(q)h∗(q)qp(γi)+p∗(γi).

Because of the positivity of p(γi) + p∗(γi), there exists an positive integer j such that

h(q)h∗(q)qp(γi)+p∗(γi) is a Taylor series in powers of q
1
j . Summarizing, we have proven that

for all t′ ∈ P (t) and all γ there exists a positive integer k and a Taylor series h(γ, q) such that

(cτ + d)−
1
2
(
P

δ|N aδ+
P

δ|M rδ)gm,t′(γτ)
∏

δ|M

ηaδ(δ(γτ)) = h(γ, q).

Then by Lemma 4.31 there exist positive integers k′(t′), t′ ∈ P (t) and Taylor series
h∗(t′, γ, q), t′ ∈ P (t) in powers of q1/k′(t′) such that

(cτ + d)−
1
2
(
P

δ|N aδ+
P

δ|M rδ)gm,t′(l(γτ))
∏

δ|M

ηaδ(δl(γτ)) = h∗(t′, γ, q).

This proves that

(cτ + d)−12(
P

δ|N aδ+
P

δ|M rδ)




∏

δ|N

ηaδ(δl(γτ))
∑

t′∈P (t)

gm,t′(l(γτ)





24

=




∑

t′∈P (t)

h∗(t′, γ, q)





24

.

So we have proven condition (iii) of Definition 2.6.
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Proof of (ii): First we note that given positive integers u′, ν ′ and a power series c(τ) :=
∑∞

n=0 c(n)qn such that Ordu′(c(τ)) > ν ′ we have that Ordu

(∑∞
n=0 c(n)qan+b

)
> aν′ + b for

any positive integers a and b.

We have proven above that V2(τ) := (
∏

δ|N ηaδ(lδτ)
∑

t′∈P (t) gm,t′(lτ))24 is a modular form
of weight 12(

∑

δ|N aδ +
∑

δ|M rδ) on group Γ0(lN).

Let u′ be a divisor of u and p a divisor of u/u′. Assume that u′|a(mn + t′) for n ≥ 0 and
t′ ∈ P (t). We have that

V2(τ)

u′24
= q

24
κ

P

δ|M δrδ+l
P

δ|N δaδ+ 242

κ
tmin




∑

t′∈P (t)

∞∑

n=0

a(mn + t′)

u′
q

24
κ

(mn+t′−tmin)





24

·





∞∏

n=1

∏

δ|N

(1 − qlδn)aδ





24

.

For this rewriting we have used the definition of gm,t(τ), the definition of l and that η(τ)
can be written as an infinite product according to (2.26). We observe that

Ordp(V2(τ)/u′24) >
24

κ

∑

δ|M

δrδ + l
∑

δ|N

δaδ +
242

κ
tmin +

242

κ
mν, (4.60)

by looking at the above rewriting of V2(τ)
u′24 and using the assumption that

Ordu

(
∞∑

n=0

a(mn + t′)qn

)

> ν,

for t′ ∈ P (t). If we substitute for ν in (4.60) we obtain:

Ordp(V2(τ)/u′24) >




∑

δ|N

aδ +
∑

δ|M

rδ



 [Γ : Γ0(N)]l.

Next observe that [Γ : Γ0(N)]l = [Γ : Γ0(Nl)] because there in no prime q such that q|l
and q ∤ N together with (2.50). Next apply Theorem 4.38 and we obtain V2(τ)

u′24 ≡p 0. This
completes the proof.

As in the previous subsection we display the results of this subsection in the form of an
algorithm description. Our input to the algorithm is m, M, u ∈ N∗, t ∈ {0, . . . , m − 1} and
(rδ) ∈ R(M). The output of the algorithm is true of false depending on if a(mn + t′) ≡u 0
for all n ≥ 0 and t′ ∈ P (t) where

∑∞
n=0 a(n)qn =

∏∞
n=1

∏

δ|M (1 − qδn)rδ . The steps are as
follows:
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• Compute the minimal N such that (m, M, N, t, (rδ)) ∈ ∆∗.

• Compute a complete set of representatives γ1, . . . , γd for the double
cosets Γ0(N)\Γ/SL2(Z).

• Compute (aδ) ∈ R(N) such that p∗(γi) + p(γi) ≥ 0, i ∈ {1, . . . , d},
p and p∗ are as in Lemmas 4.28 and 4.29.

• Let ν be as in Lemma 4.40. If a(mn + t′) ≡u 0 for n ∈ {0, . . . , ν}
and t′ ∈ P (t) then return true otherwise return false.

4.5 Examples

Example 4.41. The generating function for broken 2-diamonds according to Andrews and
Paule [2] is given by

∞∏

n=1

(1 − q2n)(1 − q5n)

(1 − qn)3(1 − q10n)
=

∞∑

n=0

∆2(n)qn.

In this paper they state some conjectures about the congruence properties of this function
such as

∆2(10n + 2) ≡2 0, n ≥ 0, (4.61)

and
∆2(25n + 14) ≡5 0, n ≥ 0. (4.62)

The first congruence (4.61) has been proven in [17] and the second (4.62) in [8]. Following
our approach, alternative proofs can be provided as follows. Since Chan [8] also proved that
∆2(25n + 24) ≡5 0, n ≥ 0 we can consider this to be a congruence of Type 2; i.e., we will
apply Lemma 4.40. We observe that (25, 10, 10, 14, (r1, r2, r5, r10) = (−3, 1, 1,−1)) ∈ ∆∗. A
complete set of representatives of the double cosets Γ0(10)\Γ/SL2(Z) is given by

γ0 =

(
1 0
0 1

)

, γ1 =

(
0 −1
1 0

)

, γ2 =

(
1 0
2 1

)

, γ3 =

(
1 0
5 1

)

.

Also let (a1, a2, a5, a10) = (73,−21,−15, 5) ∈ R(10). According to Lemma 4.40 we need to
show that p∗(γk) + p(γk) ≥ 0, k = 0, 1, 2, 3 which can be readily verified from the data below.

p∗(γ0) =
1

24
(12 73

1
− 22 21

2
− 52 15

5
+ 102 5

10
) =

6

24
,

p∗(γ1) =
1

24
(
73

1
− 21

2
− 15

5
+

5

10
) =

60

24
,

p∗(γ2) =
1

24
(12 73

1
− 22 21

2
− 12 15

5
+ 22 5

10
) =

30

24
,

p∗(γ3) =
1

24
(12 73

1
− 12 21

2
− 52 15

5
+ 52 5

10
) = 0,

p(γ0) = min
λ∈{0,...,24}

1

24
(−gcd2(1 · (1 + 24λ · 0), 25 · 0)

3

1 · 25
+ gcd2(2 · (1 + 24λ · 0), 25 · 0)

1

2 · 25

+gcd2(5 · (1 + 24λ · 0), 25 · 0)
1

5 · 25
− gcd2(10 · (1 + 24λ · 0), 25 · 0)

1

10 · 25
) = − 1

100
,
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p(γ1) = min
λ∈{0,...,24}

1

24
(−gcd2(1 · (0 + 24λ · 1), 25 · 1)

3

1 · 25
+ gcd2(2 · (0 + 24λ · 1), 25 · 1)

1

2 · 25

+gcd2(5 · (0 + 24λ · 1), 25 · 1)
1

25 · 5 − gcd2(10 · (0 + 24λ · 1), 25 · 1)
1

10 · 25
) = −5

2
,

p(γ2) = min
λ∈{0,...,24}

1

24
(−gcd2(1 · (1 + 24λ · 2), 25 · 2)

3

1 · 25
+ gcd2(2 · (1 + 24λ · 2), 25 · 2)

1

2 · 25

+gcd2(5 · (1 + 24λ · 2), 25 · 2)
1

25 · 5 − gcd2(10 · (1 + 24λ · 2), 25 · 2)
1

10 · 25
) = −5

4
,

p(γ3) = min
λ∈{0,...,24}

1

24
(−gcd2(1 · (1 + 24λ · 5), 25 · 5)

3

1 · 25
+ gcd2(2 · (1 + 24λ · 5), 25 · 5)

1

2 · 25

+gcd2(5 · (1 + 24λ · 5), 25 · 5)
1

5 · 25
− gcd2(10 · (1 + 24λ · 5), 25 · 5)

1

10 · 25
) = 0.

Further we have that [Γ : Γ0(10)] = 18,
∑

δ|10 aδ = 42,
∑

δ|10 rδ = −2,
∑

δ|10 δrδ = −6 and
∑

δ|10 δaδ = 6 hence ν = 1
24(40 · 18 − 6) − 1

24·25 · (−6) − 14
25 = 146/5 ≈ 30. Consequently by

Lemma 4.40 (ii) we have that if ∆2(25n + 14) ≡5 0 and ∆2(25n + 24) ≡5 0 for n = 0, . . . , 30
then ∆2(25n + 14) ≡5 ∆2(25n + 24) ≡5 0 for all nonnegative n. Also note that by (ii) in
Lemma 4.40 we have that

q144

(
∞∑

n=0

∆2(25n + 14)q25n+14 + ∆2(25n + 24)q25n+24

)24




∞∏

n=1

∏

δ|10

(1 − q25δn)aδ





24

,

is a modular form of weight 480 for the group Γ0(250).
Hirschhorn and Sellers [17] proved that ∆2(10n + 6) ≡2 0, n ≥ 0. To prove (4.61) and

Hirschhorn and Sellers’ result we can again apply Lemma 4.40. This time we have that
(10, 10, 40, 2, (r1, r2, r5, r10) = (−3, 1, 1,−1)) ∈ ∆∗. If we choose (aδ) = (a1, a2, a4, a5, a8, a10, a20, a40) =
(33,−15, 0,−6, 0, 3, 0, 0) then all conditions of Lemma 4.40 apply and we get that ν ≥ 39.
Consequently, verification of ∆2(10n + 2) ≡2 0 and ∆2(10n + 6) ≡2 0 for 0 ≤ n ≤ 39 implies
that (4.61) is true for all n ≥ 0.

Example 4.42. The generating function

∞∏

n=1

1

(1 − q3n)(1 − qn)3
=

∞∑

n=0

a(n)qn

appears in [29]. Here Ono proves that the numbers a(63n + j), j = 22, 40, 49, n ≥ 0 are
divisible by 7.

Ono uses Sturm’s criterion and needs to compute 148147 coefficients of a certain generating
function.

In order to solve this problem we can again apply Lemma 4.40. We find that (63, 3, 21, 22, (r1, r3) =
(−3,−1)) ∈ ∆∗ and see that the Lemma applies with (aδ) = (a1, a3, a7, a21) = (240,−77,−33, 11).
We find that ν ≥ 182 hence we need to verify that a(63n+22) ≡7 a(63n+40) ≡7 a(63n+49) ≡
0 for 0 ≤ n ≤ 182 in order to conclude that this congruence holds for all nonnegative n.

However Ono restates the problem by defining:

∞∑

n=0

b(n)qn =

(
∞∏

n=1

(1 − qn)14

(1 − q7n)2

)
∞∑

n=0

a(n)qn.
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He observes that a(63n+ j) ≡7 0, j = 22, 40, 49 is equivalent to b(63n+ j) ≡7 0, j = 22, 40, 49.

This is clear since
∏∞

n=1
(1−qn)14

(1−q7n)2
≡7 1.

We can again apply Lemma 4.40 to this reformulated problem. With input (63, 21, 21,
22, (r1, r3, r7, r21) = (11,−1,−2, 0)) ∈ ∆∗ we see that the lemma applies with (aδ) =
(a1, a3, a7, a21) = (5,−1, 0, 0). This time we find that ν ≥ 16 which is a huge improvement.
Because of a(n) ≡7 b(n) for all nonnegative n we need to show a(63n+22) ≡7 a(63n+40) ≡7

a(63n + 49) ≡ 0 for 0 ≤ n ≤ 16 in order to conclude that this congruence holds for all
nonnegative n.

We can also prove the congruence b(63n + 22) ≡7 0 with Lemma 4.39 and with the same
input (63, 21, 21, 22, (r1, r3, r7, r21) = (11,−1,−2, 0)) ∈ ∆∗. We see that all conditions of
Lemma 4.39 are satisfied if we choose (aδ) = (a1, a3, a7, a21) = (15,−4, 0, 0), and we get that
ν ≥ 45 (approximately 3 times higher in comparison to using Lemma 4.40). Hence we need
to verify that b(63n + 22) ≡7 0 for 0 ≤ n ≤ 45 in order for the congruence to be true for all
nonnegative n. Also (i) in Lemma 4.39 gives us that

q45




∏

t′∈{22,40,49}

(
∞∑

n=0

b(63n + t′)qn

)



24(
∞∏

n=1

(1 − qn)15

(1 − q3n)4

)24

,

is a modular form of weight 420 for the group Γ0(21).

Ex. gen. funct. m t p ν N (aδ) ∈ R(N)

1 1−3215110−1 25 14,24 5 30 10 1732−215−15105

2 1−3215110−1 10 2,6 2 39 40 1332−155−6103

3 3−11−3 63 22,40,49 7 182 21 12402111

377733

4 143−17−1 63 22,40,49 7 8 21 157−1

5 1−1 5 4 5 1 5 15

6 1−1 7 5 7 2 7 187−1

7 1−1 11 6 11 5 11 111

8 1−1 25 24 25 5 5 1265−5

9 1−1 49 47 49 14 7 1507−7

10 1−1 113 · 13 t ∈ P (237) 13 103145 143 117551143122

111595131342

11 11213−1 113 · 13 t ∈ P (237) 13 742 143 110411−9

12 1−1 125 74,124 125 26 5 11305−25

13 1−2 5 3 5 2 5 1115−2

14 1−2 25 23 25 10 5 1525−10

15 1−8 11 4 11 37 11 18911−8

16 1311−1 11 4 11 2 11 11

17 251−44−2 625 573 625 1301 20 11736443410217

2108553472086

18 1−3+593

3151 45 22,40 5 7 15 163−2151

19 1−3+793

3171 63 49 7 12 21 153−1

20 1−3+1193

31111 99 94 11 22 33 133−1

21 1−3+1993

31191 171 49 19 63 22 12

Table 4.1: Congruence Table
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Example 4.43. In this example we are considering several generating functions and consider
their congruence properties. Given a positive integer M we assume a generating function to
be of the form

∏

δ|M

∏∞
n=1(1 − qδn)rδ =

∑∞
n=0 a(n)qn, and we abbreviate such a generating

function by
∏

δrδ . In the Table 4.1 the second column describes the generating function that
we are considering. In columns 3, 4 and 5 we specify the integers m, t and p for which we wish
to prove that a(mn + t) ≡p 0, n ≥ 0. The column labeled by N specifies the integer N as in
Lemma 4.40. The last column specifies the (aδ) in R(N) such that Lemma 4.40 applies; this
is also listed in the form

∏

δ|N δaδ . Finally the column ν shows the bound for the “verification
proof”; i.e., that, number such that if a(mn + t) ≡p 0 is true for all 0 ≤ n ≤ ν and all t in
column 4, then it is true for all n ≥ 0.

Remark 4.44. Note that the examples 5, 6 and 7 are the famous Ramanujan congruences.
Let p(n) denote the number of partitions of n ∈ N; then the entries in example 5 show that in
order to prove p(5n + 4) ≡5 0 for all n ≥ 0, it is sufficient to verify that 5|p(4). Similarly if
7|p(5) and 7|p(12) then p(7n+5) ≡7 0 for all n ≥ 0. Finally in order to prove p(11n+6) ≡11 0
for all n ≥ 0 we need to verify that p(11n + 6) ≡11 0 for 0 ≤ n ≤ 5. Ono [9] obtains bounds
twice as big for the same congruences.

Remark 4.45. Generally, for some congruences one obtains a much better bound if one
multiplies the generating function by

∏∞
n=1

(1−qn)p

(1−qpn) ≡p 1 for some prime p when one wants

to prove a congruence modulo p. This trick has been found by Ono [9]. In the table above
examples 3 and 4 prove the same congruence because their generating functions are equal
modulo p; the same holds for examples 10, 11 and examples 15, 16; however the bounds ν
differ.

Remark 4.46. Example 17 in the table has been studied by Eichhorn and Sellers [10].
The generating function is denoted in their paper by

∑∞
n=0 cφ2(n)qn and corresponds to

2-colored Frobenius partitions. They conclude that cφ2(625n + 573) ≡625 0, n ≥ 0 if and
only if cφ2(625n + 573) ≡625 0, 0 ≤ n ≤ 198745. As seen in the table we only require that
cφ2(625n + 573) ≡625 0, 0 ≤ n ≤ 1301. This improves the number of coefficients needed to be
checked by a factor of approximately 152. In the end of the paper they are stating that the
computation took 147 hours while with our bound we are decreasing the computation time to
less then one hour!

Remark 4.47. The congruences in examples 18, 19, 20 and 21 are studied by Lovejoy [26].
If we multiply the generating function in examples 18, 19, 20 and 21 by

∏∞
n=1

1−qpn

(1−qn)p for p =

5, 7, 11, 19 we then obtain the same generating function f(q) (and 9qf(q) is the generating
function for 3-colored Frobenius partitions, e.g., [23]). For examples 18, 20 and 21, Lovejoy
proves the congruences by checking the first 181, 505 and 841 initial values while with the
methods developed here we only need to check the first 7, 22 and 63 initial values. This gives
an improvement by a factor of 25, 22 and 13, respectively.

Remark 4.48. It should be noted that there is a difference between what Ono and Eichhorn
[9] do and the approach here. Let f(q) =

∑∞
n=0 a(n)qn and assume that we want to prove

that
∑∞

n=0 a(mn + t)qn ≡p 0. Ono multiplies f(q) be a suitable η product and gets a new
generating function

∑∞
n=0 b(n)qn which is a modular form. Then he shows that

∞∑

n=0

a(mn + t)qn ≡p 0 ⇔
∞∑

n=0

b(m′n + t′)qn ≡p 0
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for suitable m′ and t′. Finally he uses a lemma which says that if
∑∞

n=0 b(n)qn is a modular
form for a group Γ′ then also

∑∞
n=0 b(m′n+t′)qm′n+t′ is a modular form for another group for

which he applies the theorem of Sturm. We on the other hand are transforming
∑∞

n=0 a(mn+
t)qn into a modular form by multiplying with a suitable function h1(q). As we have seen, our
method which is a generalization of the method in Rademacher [32] in practice gives much
better bounds ν.

Remark 4.49. We finally mention that the tools of this chapter were used by the author
and James Sellers to prove new congruences in [34] involving t-core partitions and k-broken
diamond partitions. For definitions of this partition functions we refer to [2] and [12].
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Chapter 5

Computer-Assisted Discovery of

Congruence Identities of

Kolberg-Ramanujan Type

This chapter describes an algorithmic approach towards a computer-assisted discovery of
identities like Ramanujan’s (3.59) and (3.60). For the sake of simplicity we call such identities
Congruence identities of Ramanujan type. Besides Ramanujan type identities we also consider
identities like the one in Corollary 5.10 which we call Congruence identities of Kolberg type
because they generalize the identities presented in [21]. We will give two examples illustrating
our method.

The generating function

∞∑

m=0

∆2(m)qm :=
∞∏

n=1

(1 − q2n)(1 − q5n)

(1 − qn)3(1 − q10n)
. (5.1)

counts the number of broken 2-diamond partitions and was introduced by George Andrews
and Peter Paule in [2]. In their paper they present the conjectures:

∆2(10n + 2) ≡ 0 (mod 2), (n ∈ N) (5.2)

and
∆2(25n + 14) ≡ 0 (mod 5), (n ∈ N). (5.3)

Conjecture (5.2) has been proven by Michael Hirschhorn and James Sellers [17] and they also
proved that

∆2(10n + 6) ≡ 0 (mod 2), (n ∈ N). (5.4)

Song Heng Chan [8] proved (5.3) together with

∆2(25n + 24) ≡ 0 (mod 5), (n ∈ N). (5.5)

He also gave proofs for (5.2) and (5.4). At this point we call the congruences (5.2) and (5.4)
the first main congruences and the congruences (5.3) and (5.5) the second main congruences.

We will also give a proof of the first and second main congruences as follows. Define

∞∑

m=0

∆2,5(m)qm :=

∞∏

n=1

(1 − q2n)(1 − qn)2

(1 − q10n)
. (5.6)

81
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Since
∏∞

n=1
(1−qn)5

(1−q5n)
≡ 1 (mod 5) and

(
∞∑

m=0

∆2(m)qm

)
∞∏

n=1

(1 − qn)5

(1 − q5n)
=

(
∞∑

m=0

∆2,5(m)qm

)

we see that

∆2(n) ≡ ∆2,5(n) (mod 5), (n ∈ N). (5.7)

Because of (5.7) we can prove the second main congruences (5.3) and (5.5) by replacing ∆2

with ∆2,5. The first reason we prefer to do this replacement rather then working with the
original generating function is because in the proof we will derive some identities similar to
(3.59)-(3.60) that imply the second main congruences and by experiment we found that the
identity gets considerably smaller if we replace ∆2 by ∆2,5. This saves us some space (and
computation time). The second motivation of the rewritings we will use is to illustrate the
standard types of tools than one often uses in manipulations of such problems. For the same
reasons we will also rewrite the first main congruences (5.2) and (5.4).

Define
∞∑

m=0

a5(m)qn :=

∞∏

n=1

(1 − q5n)5

(1 − qn)
. (5.8)

The sequence (a5(n))n≥0 is the generating function for 5-core partitions studied in [12]. We
have the following connection with the first main congruences (5.2) and (5.4).

Lemma 5.1. Let α be a positive integer with 0 ≤ α ≤ 9. Then

a5(10n + α) ≡ 0 (mod 2), (n ∈ N)

is equivalent

∆2(10n + α) ≡ 0 (mod 2), (n ∈ N).

In order to prove Lemma 5.1 the following result is useful:

Lemma 5.2. Let m be a positive integer, α ∈ {0, . . . , m − 1} and a, b, c : Z → C such that

(
∞∑

n=0

a(n)qn

)(
∞∑

n=0

b(n)qmn

)

=
∞∑

n=0

c(n)qn. (5.9)

Then
∞∑

n=0

c(mn + α)qn =

(
∞∑

n=0

a(mn + α)qn

)(
∞∑

n=0

b(n)qn

)

.

Proof. Define b(n/m) :=

{
b(n/m) if m|n.
0 otherwise.

Then (5.9) can be rewritten as

(
∞∑

n=0

a(n)qn

)(
∞∑

n=0

b(n/m)qn

)

=

∞∑

n=0

c(n)qn
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and c(n) =
∑n

k=0 a(k)b
(

n−k
m

)
. We have

c(mn + α) =
mn+α∑

k=0

a(k)b

(
mn + α − k

m

)

=
mn+α∑

k=0,m|(α−k)

a(k)b

(
mn + α − k

m

)

=

n∑

s=0

a(ms + α)b(n − s).

The proof is completed after noting that

∞∑

n=0

(
n∑

s=0

a(ms + α)b(n − s)

)

qn =

(
∞∑

n=0

a(mn + α)qn

)(
∞∑

n=0

b(n)qn

)

.

Proof of Lemma 5.1. Since
∏∞

n=1
(1−qn)2(1−q10n)
(1−q2n)(1−q5n)2

≡ 1 (mod 2) we have by (5.1)

∞∑

n=0

∆2(n)qn ≡
∞∏

n=1

(1 − qn)2(1 − q10n)

(1 − q2n)(1 − q5n)2
·

∞∏

n=1

(1 − q2n)(1 − q5n)

(1 − qn)3(1 − q10n)
(mod 2)

=

∞∏

n=1

1

(1 − qn)(1 − q5n)
.

(5.10)

Using (5.10), (5.8) and
∏∞

n=0
(1−q10n)13

(1−q5n)26
≡ 1 (mod 2) we obtain

∞∑

n=0

a5(n)qn ≡
∞∏

n=1

(1 − q5n)26
∞∑

n=0

∆2(n)qn

≡
∞∏

n=1

(1 − q10n)13
∞∑

n=0

∆2(n)qn (mod 2).

(5.11)

Next we apply Lemma 5.2 to (5.11) with m = 2,

∞∑

n=0

b(n)qn =
∞∏

n=1

(1 − q10n)13,

∞∑

n=0

c(n)qn =
∞∑

n=0

a5(n)qn,

∞∑

n=0

a(n)qn =

∞∑

n=0

∆2(n)qn

and obtain

∞∑

n=0

a5(10n + α)qn ≡
∞∏

n=1

(1 − qn)13
∞∑

n=0

∆2(10n + α)qn (mod 2)
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which implies the desired result.

Lemma 5.1 shows that the first main congruences are equivalent to proving

a5(10n + 2) ≡ a5(10n + 6) ≡ 0 (mod 2), (n ∈ N). (5.12)

In connection with (5.7) we also noted that (5.3) and (5.5) are equivalent to

∆2,5(25n + 14) ≡ ∆2,5(25n + 24) ≡ 0 (mod 5), n ∈ N. (5.13)

We conclude this introduction by describing the strategy we will use to prove (5.12) and (5.13).
Take for example (5.12). We start by finding a suitable sequence a = (a1, a2, a5, a10) ∈ Z4

and use Theorem 4.22 to show that

∏

δ|10

ηaδ
δ

(
∞∑

n=0

a5(10n + 2)qn

)(
∞∑

n=0

a5(10n + 6)qn

)

(5.14)

is in A0(10). Next, for another suitable sequence r = (r1, r2, r5, r10) such that g =
∏

δ|10 ηrδ
δ ∈

A0(10) we will show that (5.14) is a polynomial in g with coefficients in 4Z. Since g is a
Laurent series in q with integer coefficients (by Lemma 2.34 and (2.26)) this will imply (5.12).
This shows how to prove the congruence by proving an identity of the form A = B where
A, B ∈ A0(10). In order to prove such an identity we will show that A − B ∈ M0(10) by
showing OrdΓ0(10)(A − B, γ) ≥ 0 for γ ∈ R and R a complete set of representatives of the
double cosets Γ0(10)\SL2(Z)/SL2(Z)∞ with id ∈ R. Then by Corollary 2.23 M0(10) = C
showing that A − B = c for some c ∈ C. Next by coefficient comparison we show that
c = 0 proving A = B. We mention at this point (assuming that A is (5.14) and B is
polynomial in g) that a = (a1, a2, a5, a10) and r = (r1, r2, r5, r10) will be chosen such that
OrdΓ0(10)(A, γ), OrdΓ0(10)(B, γ) ≥ 0 for all γ ∈ R−{id}. Then in order to prove OrdΓ0(10)(A−
B, γ) ≥ 0 for all γ ∈ R it suffices to prove OrdΓ0(10)(A − B, id) ≥ 0, which is shown by
comparing all the coefficients with negative exponent of two q-series. The author has learned
this method of proof from [32] and [27]-[28] although we expose it in a different way.

5.1 The Ring A+
0 (10) and its Generators

Definition 5.3. For d ∈ Z let γd :=
(

1
d

0
1

)
. The ring A+

0 (10) is defined as the subring of
A0(10) consisting of all f ∈ A0(10) such that

OrdΓ0(10)(f, γd) ≥ 0 (5.15)

for d ∈ {1, 2, 5}.

The ring A+
0 (10) has the following property.

Lemma 5.4. Let F 6= 0 ∈ A+
0 (10). Then OrdΓ0(10)(F, id) ≤ 0.

Proof. Assume by contradiction that OrdΓ0(10)(F, id) > 0. Then

∑

s∈R

OrdΓ0(10)(f, s) > 0,
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contradicting Lemma 2.18 because R := {γ1, γ2, γ5, id} is a complete set of representatives
for the double cosets Γ0(10)\SL2(Z)/SL2(Z)∞ by Lemma 2.45.

One can also prove this using Corollary 2.23. Because if OrdΓ0(10)(F ) > 0 then F ∈ M0(10)
hence F ∈ C by Corollary 2.23. Since OrdΓ0(10)(c) = 0 for all c ∈ C−{0} we conclude F = 0
because of OrdΓ0(10)(F ) > 0.

We are going to show that A+
0 (10) is generated by

fr := ηr1ηr2
2 ηr5

5 ηr10
10

where r1, r2, r5, r10 will be suitably chosen. As we saw, the Ord function plays an important
role, and in the present context we have the following simple result.

Lemma 5.5. Let r ∈ R(10) and fr := ηr1ηr2
2 ηr5

5 ηr10
10 . If fr ∈ A0(10) then OrdΓ0(10)(fr, id) =

1
24(r1 + 2r2 + 5r5 + 10r10).

Proof. By Lemma 2.34 we see that 1
24(r1 + 2r2 + 5r5 + 10r10) ∈ Z and by (2.26) we have

fr = q
1
24

(r1+2r2+5r5+10r10)
∞∏

n=1

(1 − qn)r1(1 − q2n)r2(1 − q5n)r5(1 − q10n)r10 ,

proving that ord(fr) = 1
24(r1 + 2r2 + 5r5 + 10r10). By Lemma 2.15 we have ord(fr) =

OrdΓ0(10)(fr, id) because of ωΓ0(10),id = 1 by Lemma 2.37.

We will try to find fr ∈ A+
0 (10) with OrdΓ0(10)(fr) = −1, so by Lemma 5.5

r1 + 2r2 + 5r5 + 10r10 = 24. (5.16)

We know by Lemma 2.34 that fr ∈ A0(10) if (5.16) and

10r1 + 5r2 + 2r5 + r10 ≡ 0 (mod 24), (5.17)

r1 + r2 + r5 + r10 = 0, (5.18)

r2 + r10 ≡ 0 (mod 2), (5.19)

r5 + r10 ≡ 0 (mod 2); (5.20)

the conditions (5.19)-(5.20) correspond to (iii) in Lemma 2.34. Note that g1,0(τ, r) = fr by
Definition 4.5, and by Lemma 4.28 (or by Lemma 4.29) we see that (5.15) is satisfied if

r1gcd2(1, d) +
r2gcd2(2, d)

2
+

r5gcd2(5, d)

5
+

r10gcd2(10, d)

10
≥ 0 (5.21)

for d = 1, 2, 5. By computer methods we find that the solutions fr = g0, g2, g5 satisfying
(5.16)-(5.21) are given by

g0 := η3η5

η2η3
10

, g2 :=
η4
2η2

5

η2η4
10

, g5 :=
η2η5

5

ηη5
10

,
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which can be written with (2.26) as

g0 = q−1
∞∏

n=1

(1 − qn)3(1 − q5n)

(1 − q2n)(1 − q10n)3
; (5.22)

g2 = q−1
∞∏

n=1

(1 − q2n)4(1 − q5n)2

(1 − qn)2(1 − q10n)4
; (5.23)

g5 = q−1
∞∏

n=1

(1 − q2n)(1 − q5n)5

(1 − qn)(1 − q10n)5
. (5.24)

Lemma 5.6. We have the relations

g0 + 5 = g2, g0 + 4 = g5.

Proof. By using (5.22)-(5.24) we find that

g0 = q−1 − 3 + q + 2q2 + 2q3 − 2q4 − q5 + · · ·
g2 = q−1 + 2 + q + 2q2 + 2q3 − 2q4 − q5 + · · ·
g5 = q−1 + 1 + q + 2q2 + 2q3 − 2q4 − q5 + · · ·

Using this information we find that ord(g0 +5− g2) ≥ 1 and ord(g0 +4− g5) ≥ 1. By Lemma
2.15 we have ord(f) = OrdΓ0(10)(f, id) for all f ∈ A0(10), and because g0 +4−g5, g0 +5−g2 ∈
A+

0 (10) we obtain by Lemma 5.4 that g0 + 4 − g5 = 0 and g0 + 5 − g2 = 0.

Lemma 5.7. Let X ∈ {g0, g2, g5}. Then A+
0 (10) = C[X].

Proof. Let f ∈ A+
0 (10) and consider the set

O(f) := {f + p(X)|p(X) ∈ C[X]}.
If 0 ∈ O(f) then we are done. Assume that 0 6∈ O(f). Then there exists a integer n ≤ 0 such
that

max
g∈O(f)

OrdΓ0(10)(g, id) = n (5.25)

because if for some G ∈ A+
0 (10) we have OrdΓ0(10)(G, id) > 0 then G = 0 by Lemma 5.4. Let

g ∈ O(f) be such that OrdΓ0(10)(g, id) = n. We observe that OrdΓ0(10)(X
−n, id) = n because

of OrdΓ0(10)(X, id) = −1 by (5.16) and Lemma 5.5. This implies that there is a c ∈ C such
that OrdΓ0(10)(g − cX−n, id) > n contradicting (5.25), because g − cX−n ∈ O(f) because of
n ≤ 0.

5.2 The First Main Congruences

We prove the first main congruences by proving (5.12).
Recall that R(10) is the set of integer sequences r = (rδ) indexed by the positive divisors

δ of 10. Let r′, a′ ∈ R(10) with r′ = (r′1, r
′
2, r

′
5, r

′
10) := (−1, 0, 5, 0) and a′ = (a′1, a

′
2, a

′
5, a

′
10)

where a′i are unknowns. Then by Definition 4.5 and (5.8) we have

F (τ) := g1,0(τ, a
′)g10,2(τ, r

′)g10,6(τ, r
′)

= q1+

P

δ|10 δa′δ
24

∏

δ|10

η
a′

δ
δ

(
∞∑

n=0

a5(10n + 2)qn

)(
∞∑

n=0

a5(10n + 6)qn

)

.

(5.26)
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Note that β in Definition 4.23 depends on the parameters r and m, and we will write
β = βm,r. Next we apply Theorem 4.22 on each term of the left hand side of (5.26)

with γ =
(

A
C

B
D

)

∈ Γ0(10)∗, (m, M, N, t, rδ) = (1, 10, 10, 0, a′) , (10, 10, 10, 2, (−1, 0, 5, 0)),

(10, 10, 10, 6, (−1, 0, 5, 0)). We obtain

F (γτ) = (β1,a′β10,r′β10,r′)(γ, 0)(−i(cτ + d))
1
2
(8+

P

δ|10 a′
δ)F (τ), (5.27)

and by Definition 4.23

(β1,a′β10,r′β10,r′)(γ, 0) =
∏

δ|10

(
Cδ

A

)|a′
δ |

e−
πiA
12

(
P

δ|10
C
δ

a′
δ−

P

δ|10 a′
δδB−3

P

δ|10 a′
δ). (5.28)

In view of Lemma 2.35, (5.27) and (5.28) we see that F ∈ A0(10) if

a′1 + 2a′2 + 5a′5 + 10a′10 ≡ 0 (mod 24), (5.29)

10a′1 + 5a′2 + 2a′5 + a′10 ≡ 0 (mod 24), (5.30)

a′1 + a′2 + a′5 + a′10 = −8, (5.31)

a′2 + a′10 ≡ 0 (mod 2), (5.32)

a′5 + a′10 ≡ 0 (mod 2). (5.33)

Note that conditions (5.29)-(5.31) ensure that

∑

δ|10

C

δ
a′δ −

∑

δ|10

a′δδB − 3
∑

δ|10

a′δ ≡ 0 (mod 24),

and conditions (5.32) and (5.33) imply
∏

δ|10

(
Cδ
A

)|a′
δ | = 1 in (5.28).

Next we find conditions on a′ such that F ∈ A+
0 (10). To indicate the dependence on

m and r of p in Lemma 4.28 we write p = pm,r. Then by Lemma 4.28 we see that for all
d ∈ {1, 2, 5} we have

(F |0γd)(τ) = H(q)qp1,a′ (γd)+2p10,r′ (γd) (5.34)

for some Taylor series H(q) in powers of q1/l = e2πiτ/l where l is some positive integer. Next
note that

p1,a′(γd) =
1

24

∑

δ|10

a′δ
gcd2(δ, d)

δ
. (5.35)

We also see by the formulas (4.43) and (4.44) that

p10,r′(γd) = min
λ∈{0,...,9}

1

24·10
(25gcd2(1 + κλd, 2) − gcd2(1 + κλd, 10)) (5.36)

and κ = gcd(1 − 102, 24) = 3. From (5.36) we find

p10,r′(γ1) = p10,r′(γ2) = 0 and p10,r′(γ5) =
1

10
. (5.37)
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By (5.34), (5.35) and (5.37) we see that (5.15) is satisfied if

1

24

(

a′1 +
a′2
2

+
a′5
5

+
a′10
10

)

≥ 0 (5.38)

1

24

(

a′1 + 2a′2 +
a′5
5

+
2a′10

5

)

≥ 0 (5.39)

1

24

(

a′1 +
a′2
2

+ 5a′5 +
5a′5
2

)

≥ −1

5
(5.40)

One verifies immediately that a′ = (a′1, a
′
2, a

′
5, a

′
10) = (−2, 4, 10,−20) satisfies (5.29)-(5.33)

and (5.38)-(5.40) proving that F2,6 ∈ A+
0 (10) with F2,6 as in Definition 5.8 below.

Definition 5.8.

F2,6 := q−5
∞∏

n=1

(1 − q2n)4(1 − q5n)10

(1 − qn)2(1 − q10n)20

(
∞∑

n=0

a5(10n + 2)qn

)(
∞∑

n=0

a5(10n + 6)qn

)

.

Let X ∈ {g0, g2, g5}. Then by Lemma 5.7 there exists a p(X) ∈ C[X] such that F2,6 =
p(X). The closed form for p(X) is given in the next lemma.

Lemma 5.9. We have F2,6 = 4(3g0 + 20)(g0 + 4)(g0 + 5)3.

Proof. By Lemma 5.4 it is sufficient to verify that OrdΓ0(10)(F2,6 − (3g0 + 20)(g0 + 4)(g0 +
5)3, id) > 0 which is done by the computer.

Corollary 5.10.
(

∞∑

n=0

a5(10n + 2)qn

)(
∞∑

n=0

a5(10n + 6)qn

)

= 12
∞∏

n=1

(1 − q2n)8(1 − q5n)2

(1 − qn)2
+ 80q

∞∏

n=1

(1 − q2n)9(1 − q5n)(1 − q10n)3

(1 − qn)5
.

(5.41)

Proof. By Lemma 5.6 we have g0 + 5 = g2 and g0 + 4 = g5 which together with Lemma 5.9
implies

q5
∞∏

n=1

(1 − qn)2(1 − q10n)20

(1 − q2n)4(1 − q5n)10
F2,6 = q5

∞∏

n=1

(1 − qn)2(1 − q10n)20

(1 − q2n)4(1 − q5n)10
(12g0 + 80)g5g

3
2.

The result follows by applying Definition 5.8 together with (5.22)-(5.24).

Corollary 5.11. For all n ∈ N we have

a5(10n + 2) ≡ a5(10n + 6) ≡ 0 (mod 2).

Proof. Define As(q) :=
∑∞

n=0 a5(10n+s)qn for s ∈ {2, 6}. Because of a5(6) = 6 and a5(2) = 2
we have

A6(q), A2(q) 6≡ 0 (mod 4). (5.42)

By Corollary (5.10) we have A2(q)A6(q) ≡4 0. This implies that either A2(q) ≡ 0 (mod 2)
or A6(q) ≡ 0 (mod 2). Assume without loss of generality that A2(q) ≡ 0 (mod 2). Then
(

1
2A2(q)

)
A6(q) ≡ 0 (mod 2) implying A6(q) ≡ 0 (mod 2) because 1

2A2(q) 6≡ 0 (mod 2) by
(5.42).
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5.3 The Second Main Congruences

We prove the second main congruences by proving (5.13). We could proceed as in the previous
section and try to find an expression for

(
∞∑

n=0

∆2,5(25n + 24)qn

)(
∞∑

n=0

∆2,5(25n + 14)qn

)

from which (5.13) follow. Indeed this method works also in this instance, but in view of getting
additional insight we present a slightly modified approach which has some extra advantages.

Let r′, a′ ∈ R(10) with r′ = (r′1, r
′
2, r

′
5, r

′
10) := (2, 1, 0,−1) and a′ = (a′1, a

′
2, a

′
5, a

′
10). Then

by Definition 4.5 and (5.8) we have

F (τ) := g1,0(τ, a
′)g5,4(τ, r

′)

= q
3
4
+

P

δ|10 δa′δ
24

∏

δ|10

η
a′

δ
δ

(
∞∑

n=0

∆2,5(5n + 4)qn

)

.
(5.43)

By Definition 4.23 we see that β depends on the parameters r and m and we will write
β = βm,r. Next we apply Theorem 4.22 on each term of the left hand side of (5.26) with

γ =
(

A
C

B
D

)

∈ Γ0(10)∗, (m, M, N, t, rδ) = (1, 10, 10, 0, a′) , (5, 10, 10, 4, (2, 1, 0,−1)). We obtain

F (γτ) = (β1,a′β5,r′)(γ, 0)(−i(cτ + d))
1
2
(2+

P

δ|10 a′
δ)F (τ), (5.44)

and by Definition 4.23

(β1,a′β5,r′)(γ, 0) =

(
5

A

)

e−
πiA
12

(30B−6)
∏

δ|10

(
Cδ

A

)|a′
δ |

e−
πiA
12

(
P

δ|10
C
δ

a′
δ−

P

δ|10 a′
δδB−3

P

δ|10 a′
δ).

(5.45)
In view of Lemma 2.35, (5.44) and (5.45) we see that F ∈ A0(10) if

a′1 + 2a′2 + 5a′5 + 10a′10 ≡ 6 (mod 24), (5.46)

10a′1 + 5a′2 + 2a′5 + a′10 ≡ 0 (mod 24), (5.47)

a′1 + a′2 + a′5 + a′10 = −2, (5.48)

a′2 + a′10 ≡ 0 (mod 2), (5.49)

a′5 + a′10 ≡ 1 (mod 2). (5.50)

Note that conditions (5.46)-(5.48) ensure that

∑

δ|10

C

δ
a′δ −

∑

δ|10

a′δδ(B − 30) − 3(
∑

δ|10

a′δ + 2) ≡ 0 (mod 24),

and conditions (5.49) and (5.50) imply
(

5
A

)∏

δ|10

(
Cδ
A

)|a′
δ| = 1 in (5.45).

Next we find conditions on a′ such that F ∈ A+
0 (10). To indicate the dependence on

m and r of p in Lemma 4.28 we write p = pm,r. Then by Lemma 4.28 we see that for all
d ∈ {1, 2, 5} we have

(F |0γd)(τ) = H(q)qp1,a′ (γd)+p5,r′ (γd) (5.51)
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for some Taylor series H(q) in powers of q1/l = e2πiτ/l where l is some positive integer. We
also see by the formulas (4.43) and (4.44) that

p5,r′(γd) = min
λ∈{0,...,4}

1

24·5(2gcd2(1+24λd, 5d)+
gcd2(2(1 + 24λd), 5d))

2
−gcd2(10(1 + 24λd), 5d)

10
)

from which we find

p5,r′(γ1) = p5,r′(γ5) = 0 and p5,r′(γ2) = − 1

20
. (5.52)

By (5.51), (5.35) and (5.52) we see that (5.15) is satisfied if

1

24

(

a′1 +
a′2
2

+
a′5
5

+
a′10
10

)

≥ 0 (5.53)

1

24

(

a′1 + 2a′2 +
a′5
5

+
2a′10

5

)

≥ 1

20
(5.54)

1

24

(

a′1 +
a′2
2

+ 5a′5 +
5a′5
2

)

≥ 0 (5.55)

One verifies immediately that a′ = (a′1, a
′
2, a

′
5, a

′
10) = (−1, 2, 3,−6) satisfies (5.46)-(5.50) and

(5.53)-(5.55) proving that F4 ∈ A+
0 (10) with F4 as in Definition 5.12 below.

Definition 5.12.

F4 := q−1
∞∏

n=1

(1 − q2n)2(1 − q5n)3

(1 − qn)(1 − q10n)6

(
∞∑

n=0

∆2,5(5n + 4)qn

)

.

Let X ∈ {g0, g2, g5}. Then by Lemma 5.7 there exists a p(X) ∈ C[X] such that F4 = p(X).
The closed form for p(X) is given in the next lemma.

Lemma 5.13. We have F4 = g0.

Proof. By Lemma 5.4 it is sufficient to verify that OrdΓ0(10)(F4 − g0, id) > 0 which is done
by computer.

Corollary 5.14.

∞∑

n=0

∆2,5(5n + 4)qn =
∞∏

n=1

(1 − qn)4(1 − q10n)3

(1 − q2n)3(1 − q5n)2
. (5.56)

Proof. By Lemma 5.13

q
∞∏

n=1

(1 − qn)(1 − q10n)6

(1 − q2n)2(1 − q5n)3
F4 = q

∞∏

n=1

(1 − qn)(1 − q10n)6

(1 − q2n)2(1 − q5n)3
g0.

The result follows by applying Definition 5.12 together with (5.22).

From this point on the proof of the second main congruences follow the same pattern as
in Chan’s paper [8].
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Corollary 5.15. For all n ∈ N we have

∆2,5(25n + 14) ≡ ∆2,5(25n + 24) ≡ 0 (mod 5).

Proof. By Corollary 5.14 and because of (1 − A)5 ≡ 1 − A5 (mod 5) we have

∞∑

n=0

∆2,5(5n + 4)qn =
∞∏

n=1

(1 − qn)4(1 − q10n)3

(1 − q2n)3(1 − q5n)2
=

∞∏

n=1

(1 − qn)4(1 − q10n)

(1 − q2n)3(1 − q5n)

∞∏

n=1

(1 − q10n)2

(1 − q5n)

≡
∞∏

n=1

(1 − qn)4(1 − q2n)5

(1 − q2n)3(1 − qn)5

∞∏

n=1

(1 − q10n)2

(1 − q5n)
(mod 5)

implying
∞∑

n=0

∆2,5(5n + 4)qn ≡
∞∏

n=1

(1 − q2n)2

(1 − qn)

∞∏

n=1

(1 − q10n)2

(1 − q5n)
(mod 5). (5.57)

Define
∑

n=0 b(n)qn :=
∏∞

n=1
(1−q2n)2

(1−qn) . Then (5.57) can be rewritten as

(
∞∑

n=0

b(n)qn

)(
∞∑

n=0

b(n)q5n

)

≡
∞∑

n=0

∆2,5(5n + 4)qn (mod 5).

and by Lemma 5.2 we obtain

∞∑

n=0

∆2,5(5(5n + α) + 4)qn ≡
(

∞∑

n=0

b(5n + α)qn

)(
∞∑

n=0

b(n)qn

)

for α ∈ {0, . . . , 4}, which implies

∆2,5(5(5n + α) + 4) ≡ 0 (mod 5) ⇔ b(5n + α) ≡ 0 (mod 5)

so it suffices to prove that

b(5n + 2) ≡ b(5n + 4) ≡ 0 (mod 5)

which is clear from the identity
∑∞

n=0 b(n)qn =
∑∞

n=0 q
1
2
n(n+1) by (7.25).
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Chapter 6

Sellers’ Conjecture

6.1 Introduction

In his 1984 Memoir [1], George E. Andrews introduced two families of partition functions,
φk(m) and cφk(m), which he called generalized Frobenius partition functions. In this chapter
we restrict our attention to 2-colored Frobenius partitions. Their generating function reads
as follows [1, (5.17)]:

∞∑

m=0

cφ2(m)qm =
∞∏

n=1

1 − q4n−2

(1 − q2n−1)4(1 − q4n)
. (6.1)

In 1994 James Sellers [37] conjectured that for all integers n ≥ 0 and α ≥ 1 one has

cφ2(5
αn + λα) ≡ 0 (mod 5α),

where λα is defined to be the smallest positive integer such that

12λα ≡ 1 (mod 5α). (6.2)

In his joint paper with Dennis Eichhorn [10] this conjecture was proved for the cases α =
1, 2, 3, 4. In this chapter we settle Sellers’ conjecture for all α in the spirit of G. N. Watson
[41]. Several authors (e.g. [24], [3]) have stated that the method of Watson works well when
the modular functions involved live on a Riemann surface of genus 0. The reason for this
is that every such modular function can be written as a rational function (in Watson’s case
polynomial function) in some fixed modular function t. In contrast to this, the modular
functions that appear in this chapter belong to a Riemann surface of genus 1. Treatments
of this type are very rare in the literature. To the best of our knowledge only the papers
by B. Gordon and K. Hughes [15], [16] and [18] apply Watson’s method to genus 1 Riemann
surfaces. In these papers the authors use a relatively simple trick on the modular equation to
make Watson’s method work for larger genus then 0. We are applying essentially the same
idea in this chapter; see Lemma 6.13 below.

This chapter (a preceding version [30] is submitted) is structured as follows. In Section 6.2
we state the Main Theorem (Theorem 6.8) of this chapter. It describes the action of a class
of U -operators on a quotient of eta function products being crucial for the problem Sellers’
conjecture then is derived as an immediate consequence (Corollary 6.9). The rest of the
chapter deals with proving the Main Theorem. The basic building blocks of our proof are the
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twenty Fundamental Relations listed in Section 6.6. Despite postponing their proof to Section
6.5, we shall use these relations already in Section 6.3 and Section 6.4. In Section 6.3 a crucial
result is proved, the Fundamental Lemma (Lemma 6.13), which has been inspired by work
of B. Gordon and K. Hughes as it was mentioned above. The proof of the Main Theorem is
presented in Section 6.4. To this end three further lemmas are introduced, all being immediate
consequences of the Fundamental Lemma. Finally we mention that in Section 6.5, in order
to prove the twenty Fundamental Relations, we utilize a computer-assisted method which is
based on a variant of a well-known lemma by M. Newman (Lemma 2.34).

For x ∈ R the symbol ⌊x⌋ (“floor” of x) as usual denotes the greatest integer less or equal
to x. Let f =

∑

n∈Z
anqn, f 6= 0, be such that an = 0 for almost all n < 0. Then the order

of f is the smallest integer N such that aN 6= 0; we write N = ord(f). More generally, let
F = f ◦t =

∑

n∈Z
antn with t =

∑

n≥1 bnqn, then the t-order of F is defined to be the smallest

integer N such that aN 6= 0; we write N = ordt(F ). For example, if ord(f) = −1 and t = q2,
then ordt(F ) = −1 but ord(F ) = −2.

6.2 The Main Theorem

Let

CΦ2(q) :=
∞∑

m=0

cφ2(m)qm.

Lemma 6.1.

CΦ2(q) =
∞∏

n=1

(1 − q2n)5

(1 − qn)4(1 − q4n)2
.

Proof. From (6.1),

CΦ2(q) =
∞∏

n=1

(1 − q2(2n−1))(1 − q2n)4

(1 − qn)4(1 − q4n)

=
∞∏

n=1

(1 − q2n)(1 − q2n)4

(1 − qn)4(1 − q4n)2
.

Definition 6.2. We define

A :=
η5
2η

2
100

η5
50η

2
4

(6.3)

and

u :=
η

η25
. (6.4)

The following explicit expressions for λα in (6.2) are easily verified.

Lemma 6.3. For β ∈ N∗:

λ2β−1 =
1 + 7 · 52β−1

12
and λ2β =

1 + 11 · 52β

12
.
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Definition 6.4. For α, m ∈ N and f, M : H → C we define L
(m)
0 (M, f) := f and for α ≥ 1

we define

L
(m)
2α−1(M, f) := ML

(m)
2α−2(M, f)|Um

and
L

(m)
2α (M, f) := L

(m)
2α−1(M, f)|Um.

Here Um is as in Definition 3.20.

Lemma 6.5. For α ∈ N∗ and λα as in Lemma 6.3 we have:

L
(5)
2α−1(Au−4, 1) = q

∞∏

n=1

(1 − q5n)4(1 − q20n)2

(1 − q10n)5

∞∑

n=0

cφ2(5
2α−1n + λ2α−1)q

n (6.5)

and

L
(5)
2α (Au−4, 1) = q

∞∏

n=1

(1 − qn)4(1 − q4n)2

(1 − q2n)5

∞∑

n=0

cφ2(5
2αn + λ2α)qn (6.6)

Proof. It is sufficient to prove the following statements:

(i) (6.5) is valid for α = 1;

(ii) the truth of (6.5) for α = N with N ≥ 1 implies the truth of (6.6) for α = N ;

(iii) the truth of (6.6) for α = N with N ≥ 1 implies the truth of (6.5) for α = N + 1.

Proof of (i):

L
(5)
1 (Au−4, 1) =

η5
2η

2
100η

4
25

η5
50η

2
4η

4
|U5 = q2

∞∏

n=1

(1 − q2n)5(1 − q100n)2(1 − q25n)4

(1 − q50n)5(1 − q4n)2(1 − qn)4
|U5

(by Definition 6.4, (6.3), (6.4) and (2.26))

=
∞∏

n=1

(1 − q20n)2(1 − q5n)4

(1 − q10n)5

(

q2
∞∏

n=1

(1 − q2n)5

(1 − qn)4(1 − q4n)2
|U5

)

(by Lemma 3.23)

=
∞∏

n=1

(1 − q20n)2(1 − q5n)4

(1 − q10n)5

∞∑

n=1

cφ2(5n − 2)qn

(by Lemma 6.1 and Lemma 3.22)

=q
∞∏

n=1

(1 − q20n)2(1 − q5n)4

(1 − q10n)5

∞∑

n=0

cφ2(5n + 3)qn.



96 Chapter 6. Sellers’ Conjecture

Proof of (ii):

L
(5)
2N (Au−4, 1) = q

∞∏

n=1

(1 − q5n)4(1 − q20n)2

(1 − q10n)5

∞∑

n=0

cφ2(5
2N−1n + λ2N−1)q

n|U5

=
∞∏

n=1

(1 − qn)4(1 − q4n)2

(1 − q2n)5

(
∞∑

n=1

cφ2(5
2N−1(n − 1) + λ2N−1)q

n|U5

)

(by Lemma 3.23)

=
∞∏

n=1

(1 − qn)4(1 − q4n)2

(1 − q2n)5

∞∑

n=1

cφ2(5
2N−1(5n − 1) + λ2N−1)q

n

(by Lemma 3.22)

=
∞∏

n=1

(1 − qn)4(1 − q4n)2

(1 − q2n)5

∞∑

n=0

cφ2(5
2Nn + 4 · 52N−1 + λ2N−1)q

n.

By Lemma 6.3, λ2N = λ2N−1 + 4 · 52N−1.
Proof of (iii):

L2N+1(1) = q3
∞∏

n=1

(1 − q100n)2(1 − q25n)4

(1 − q50n)5

∞∑

n=0

cφ2(5
2αn + λ2α)qn|U5

=
∞∏

n=1

(1 − q20n)2(1 − q5n)4

(1 − q10n)5

(
∞∑

n=3

cφ2(5
2N (n − 3) + λ2N )qn|U5

)

(by Lemma 3.23)

=
∞∏

n=1

(1 − q20n)2(1 − q5n)4

(1 − q10n)5

∞∑

n=0

cφ2(5
2N+1n + 2 · 52N + λ2N )qn

(by Lemma 3.22). Again by Lemma 6.3, λ2N+1 = λ2N + 2 · 52N .

Definition 6.6. Let t, ρ, σ, p0, and p1 be functions defined on H as follows:

t :=
η6
5

η6
, ρ :=

η2η
3
10

η3
4η20

, σ :=
η2
2η

4
5

η4η2
10

(6.7)

p0 :=
1

2
(−4tσ − 25tρσ2 − 2ρσ2 + 30tσ2 + 2σ2 + tρ), (6.8)

p1 :=
1

2
(−250tσ2 + 200tσ + 20σ + ρ − 22σ2 + 5ρσ2 − 4ρσ). (6.9)
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We note that all functions defined in Definition 6.6 have Taylor series expansions in powers
of q with coefficients in Z, resp. 1

2Z. (In fact, one can show that all the coefficients are in Z
but this is not needed for our purpose.) In particular, Ord(ρ) = Ord(σ) = 0 and Ord(t) = 1,
which implies Ord(p0) ≥ 1 and Ord(p1) ≥ 1.

Before stating the Main Theorem of the chapter, we introduce convenient shorthand no-
tation.

Definition 6.7. A map a : Z × Z → Z is called discrete array if for each i ∈ Z the map
a(i,−) : Z → Z, j 7→ a(i, j), has finite support.

Theorem 6.8 (“Main Theorem”). There exist discrete arrays r, s, u, v such that for β ∈ N∗

and τ ∈ H:

L
(5)
2β−1(Au−4, 1) = 52β−1p0

∞∑

n=0

r(β, n)5⌊ 5n+2
2 ⌋tn +

∞∑

n=1

s(β, n)5⌊ 5n−5
2 ⌋tn, (6.10)

and

L
(5)
2β (Au−4, 1) = 52βp1

∞∑

n=0

u(β, n)5⌊ 5n+1
2 ⌋tn +

∞∑

n=1

v(β, n)5⌊ 5n−4
2 ⌋tn. (6.11)

The remaining sections are devoted to proving the Main Theorem by mathematical induc-
tion on β. In Sections 6.3 and 6.4 we describe the algebra underlying the induction step. In
Section 6.5 we settle the initial cases, i.e., the correctness of the twenty fundamental relations
listed in Section 6.6.

We conclude this section by deriving the truth of Sellers’ conjecture as a corollary.

Corollary 6.9. Sellers’ conjecture is true; i.e., for α ∈ N∗:

cφ2(5
αn + λα) ≡ 0 (mod 5α), n ∈ N∗.

Proof. The statement is derived immediately by applying the Lemmas 6.5 and 6.3 to (6.10)
and (6.11).

6.3 The Fundamental Lemma

In this section we prove the Fundamental Lemma, Lemma 6.13, which will play a crucial role
in the proof of the Main Theorem in Section 6.4.

Definition 6.10. With t = t(τ) as in Definition 6.6 we define:

a0(t) = −t, a1(t) = −53t2 − 6 · 5t, a2(t) = −56t3 − 6 · 54t2 − 63 · 5t,

a3(t) = −59t4 − 6 · 57t3 − 63 · 54t2 − 52 · 52t,

a4(t) = −512t5 − 6 · 510t4 − 63 · 57t3 − 52 · 55t2 − 63 · 52t.

We define s : {0, . . . , 4} × {1, . . . , 5} → Z to be the unique function satisfying

aj(t) =

5∑

l=1

s(j, l)5⌊
5l+j−4

2 ⌋tl. (6.12)
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Remark 6.11. Writing aj(t) as in (6.12) to reveal divisibility by powers of 5 of its coefficients
is of help in the proof of Lemma 6.15 and is inspired by [6].

Lemma 6.12. For 0 ≤ λ ≤ 4 let

tλ(τ) := t

(
τ + λ

5

)

, τ ∈ H.

Then in the polynomial ring C(t)[X]:

X5 +
4∑

j=0

aj(t)X
j =

4∏

λ=0

(X − tλ). (6.13)

Proof. First we prove
4∏

λ=0

tλ = −a0(t) = t. (6.14)

With ω := e48πi/5 one has for τ ∈ H:

4∏

λ=0

tλ(τ) =
4∏

λ=0

q1/5ωλ
∞∏

n=1

(
1 − qn

1 − ωλnqn/5

)6

= q
∞∏

n=1

4∏

λ=0

(
1 − qn

1 − ωλnqn/5

)6

= q
∞∏

n=1

(1 − qn)30
∞∏

n=1

(
1 − q5n

1 − qn

)6 ∞∏

n=1

(
1

1 − qn

)30

= t(τ).

Here we used the fact that
∏4

λ=0(1 − ωλnz) equals (1 − z)5 if 5|n, and 1 − z5 otherwise.
For the remaining part of the proof we use (6.14) to rewrite (6.13) into the equivalent

form

X5 +
4∑

j=0

aj(t)X
j = −t

4∏

λ=0

(1 − Xt−1
λ ). (6.15)

Hence to complete the proof, in view of t =
∏4

λ=0 tλ it remains to show that

aj(t) = (−1)j+1tej(t
−1
0 , . . . , t−1

4 ), 0 ≤ j ≤ 4, (6.16)

where the ej are the elementary symmetric functions. To this end we utilize the fact that

5(t−j |U5) =

4∑

λ=0

t−j
λ , j ∈ Z.

The first non-trivial case is j = 1. Observing

e1(t
−1
0 , . . . , t−1

4 ) =

4∑

λ=0

t−1
λ = 5(t−1|U5),

to show (6.16) for j = 1 we need to show that

5(t−1|U5) = t−1a1(t) = −53t − 5 · 6.
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But this is the second entry of Group III of the twenty fundamental relations from Section
6.6. The next cases 2 ≤ j ≤ 4 work analogously with the remaining entries of Group III. For
example, if j = 2 then Newton’s formula, translating elementary symmetric functions into
power sums, implies

e2(t
−1
0 , . . . , t−1

4 ) =
1

2

((
5(t−1|U5)

)2 − 5(t−2|U5)
)

=
1

2

(
(−53t − 5·6)2 − (−56t2 + 54·5)

)
= −t−1a2(t).

Here we used the third entry of Group III.

Finally we are ready for the main result of this section.

Lemma 6.13 (“Fundamental Lemma”). For u : H → C and j ∈ Z:

utj |U5 = −
4∑

l=0

al(t)(utj+l−5|U5).

Proof. For λ ∈ {0, . . . , 4} Lemma 6.12 implies

t5λ +
4∑

l=0

al(t)t
l
λ = 0.

Multiplying both sides with uλtj−5
λ where uλ(τ) := u((τ + 24λ)/5) gives

uλtjλ +

4∑

l=0

al(t)uλtj+l−5
λ = 0.

Summing both sides over all λ from {0, . . . , 4} completes the proof of the lemma.

6.4 Proving the Main Theorem

We need to prepare with some lemmas. Recall that t is as in Definition 6.6.

Lemma 6.14. Given functions v1, v2, u : H → C and l ∈ Z. Suppose for l ≤ k ≤ l + 4 there

exist Laurent polynomials p
(1)
k (t), p

(2)
k (t) ∈ Z[t, t−1] such that

utk|U5 = v1p
(1)
k (t) + v2p

(2)
k (t) (6.17)

and

Ordt

(

p
(i)
k (t)

)

≥
⌈

k + si

5

⌉

, i ∈ {1, 2}, (6.18)

for some fixed integers s1 and s2. Then there exist families of Laurent polynomials p
(1)
k (t), p

(2)
k (t) ∈

Z[t, t−1], k ∈ Z, such that (6.17) and (6.18) hold for all k ∈ Z.
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Proof. Let N > l+4 be an integer and assume by induction that there are families of Laurent

polynomials p
(i)
k (t), i ∈ {1, 2}, such that (6.17) and (6.18) hold for l ≤ k ≤ N − 1. Suppose

p
(i)
k (t) =

∑

n≥
l

k+si
5

m

ci(k, n)tn, 1 ≤ k ≤ N − 1,

with integers ci(k, n). Applying Lemma 6.13 we obtain:

utN |U5 = −
4∑

j=0

aj(t)(utN+j−5|U5)

= −
4∑

j=0

aj(t)
2∑

i=1

vi

∑

n≥
l

N+j−5+si
5

m

ci(N + j − 5, n)tn

= −
2∑

i=1

vi

4∑

j=0

aj(t)t
−1

∑

n≥
l

N+j+si
5

m

ci(N + j − 5, n − 1)tn.

Recalling the fact that aj(t)t
−1 for 0 ≤ j ≤ 4 is a polynomial in t, this determines Lau-

rent polynomials p
(i)
N (t) with the desired properties. The induction proof for N < l works

analogously.

Lemma 6.15. Given functions v1, v2, u : H → C and l ∈ Z. Suppose for l ≤ k ≤ l + 4 there

exist Laurent polynomials p
(i)
k ∈ Z[t, t−1], i ∈ {1, 2}, such that

utk|U5 = v1p
(1)
k (t) + v2p

(2)
k (t) (6.19)

where

p
(i)
k (t) =

∑

n

ci(k, n)5

j

5n−k+γi
2

k

tn (6.20)

with integers γi and ci(k, n). Then there exist families of Laurent polynomials p
(i)
k (t) ∈

Z[t, t−1], k ∈ Z, of the form (6.20) for which property (6.19) holds for all k ∈ Z.

Proof. Suppose for an integer N > l + 4 there are families of Laurent polynomials p
(i)
k (t),

i ∈ {1, 2}, of the form (6.20) satisfying property (6.19) for l ≤ k ≤ N − 1. We proceed by
mathematical induction on N . Applying Lemma 6.13 and using the induction base (6.19)
and (6.20) we obtain:

utN |U5 = −
4∑

j=0

aj(t)
2∑

i=1

vi

∑

n

ci(N + j − 5, n)5

j

5n−(N+j−5)+γi
2

k

tn.
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Utilizing (6.12) from Definition 6.10 this rewrites into :

utN |U5 = −
4∑

j=0

5∑

l=1

s(j, l)5⌊
5l+j−4

2 ⌋tl

×
2∑

i=1

vi

∑

n

ci(N + j − 5, n)5

j

5n−(N+j−5)+γi
2

k

tn

= −
2∑

i=1

vi

4∑

j=0

5∑

l=1

∑

n

s(j, l)ci(N + j − 5, n − l)

× 5

j

5(n−l)−(N+j−5)+γi
2

k

+⌊ 5l+j−4
2 ⌋

tn.

(6.21)

The induction step is completed by simplifying the exponent of 5 as follows:

⌊
5(n − l) − (N + j − 5) + γi

2
+

⌊
5l + j − 4

2

⌋⌋

≥
⌊

5(n − l) − (N + j − 5) + γi

2
+

5l + j − 5

2

⌋

=

⌊
5n − N + γi

2

⌋

.

The induction proof for N < l works analogously.

Before proving the Main Theorem, Theorem 6.8, we need one more lemma.

Lemma 6.16. Given A as in (6.3), p0 and p1 as in (6.8) and (6.9), respectively. Then there
exist discrete arrays ai, bi, c, and di, i ∈ {0, 1}, such that the following relations hold for all
k ∈ N:

Au−4tk|U5 =
∑

n≥⌈(k+1)/5⌉

a0(k, n)5⌊ 5n−k−2
2 ⌋tn + p0

∑

n≥⌈(k−4)/5⌉

a1(k, n)5⌊ 5n−k+5
2 ⌋tn, (6.22)

Au−4p1t
k|U5 =

∑

n≥⌈(k+1)/5⌉

b0(k, n)5⌊ 5n−k−2
2 ⌋tn + p0

∑

n≥⌈(k−4)/5⌉

b1(k, n)5⌊ 5n−k+4
2 ⌋tn, (6.23)

tk|U5 =
∑

n≥⌈k/5⌉

c(k, n)5⌊ 5n−k−1
2 ⌋tn, (6.24)

p0t
k|U5 =

∑

n≥⌈(k+1)/5⌉

d0(k, n)5⌊ 5n−k−2
2 ⌋tn + p1

∑

n≥⌈k/5⌉

d1(k, n)5⌊ 5n−k+1
2 ⌋tn. (6.25)

Proof. Section 6.6 lists twenty fundamental relations, which are proved in Section 6.5 (The-
orem 6.19). The five fundamental relations of Group I fit the pattern of the relation (6.22)
for five consecutive values of k. The same observation applies to the relations of the Groups
II, III and IV with regard to the relations (6.23), (6.24), and (6.25), respectively. In each of
these cases k is less or equal to 0. Hence applying Lemma 6.14 and Lemma 6.15 immediately
proves the statement for all k ≥ 0.
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Now we are ready for the proof of the Main Theorem.

Proof of Theorem 6.8 (“Main Theorem”). We proceed by mathematical induction on β.
For β = 1 the statement is settled by the first fundamental identity Au−4|U5 = 5(−t + 5p0)
of Section 6.6. The induction step will be carried out as follows: In the first step we show
that the correctness of (6.10) for N = 2β − 1, β ∈ N∗, implies (6.11) for N + 1 = 2β, which
in the second step is shown to imply the correctness of (6.10) for N + 2 = 2β + 1.

For the first step we recall Definition 6.4 and apply the induction hypothesis (6.10) to
obtain

L
(5)
2β (Au−4, 1) = L

(5)
2β−1(Au−4, 1)|U5

= 52β−1

(
∞∑

n=0

r(β, n)5⌊ 5n+2
2 ⌋(p0t

n|U5) +
∞∑

n=1

s(β, n)5⌊ 5n−5
2 ⌋(tn|U5)

)

.

Utilizing (6.24) and (6.25) of Lemma 6.16 with discrete arrays c and di gives

L
(5)
2β (Au−4, 1) = 52β−1



p1

∑

m≥0

∑

n≥0

r(β, n)d1(n, m)5⌊ 5n+2
2 ⌋+⌊ 5m−n+1

2 ⌋tm

+
∑

m≥1

∑

n≥0

r(β, n)d0(n, m)5⌊ 5n+2
2 ⌋+⌊ 5m−n−2

2 ⌋tm

+
∑

m≥1

∑

n≥1

s(β, n)c(n, m)5⌊ 5n−5
2 ⌋+⌊ 5m−n−1

2 ⌋tm


 .

(6.26)

Observe that for m, n ≥ 0:

⌊
5n + 2

2

⌋

+

⌊
5m − n + 1

2

⌋

=

⌊
5m + n + 1

2

⌋

+

⌊
3n + 2

2

⌋

≥
⌊

5m + 1

2

⌋

+ 1,

⌊
5n + 2

2

⌋

+

⌊
5m − n − 2

2

⌋

=

⌊
5m + n − 2

2

⌋

+

⌊
3n + 2

2

⌋

≥
⌊

5m − 4

2

⌋

+ 1,

and for m, n ≥ 1:

⌊
5n − 5

2

⌋

+

⌊
5m − n − 1

2

⌋

=

⌊
5m + n − 5

2

⌋

+

⌊
3n − 1

2

⌋

≥
⌊

5m − 4

2

⌋

+ 1.

Hence the right hand side of (6.26) is of the desired form (6.11).
For the second step we again recall Definition 6.4 and apply the induction hypothesis

(6.11) to obtain

L
(5)
2β+1(Au−4, 1) = Au−4L

(5)
2β (Au−4, 1)|U5

= 52β

(
∞∑

n=0

r(β, n)5⌊ 5n+1
2 ⌋(Au−4p1t

n|U5) +
∞∑

n=1

s(β, n)5⌊ 5n−4
2 ⌋(Au−4tn|U5)

)

.
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Utilizing (6.22) and (6.23) of Lemma 6.16 with discrete arrays ai and bi gives

L
(5)
2β+1(Au−4, 1) = 52β

×



p0

∑

m≥0

∑

n≥0

r(β, n)b1(n, m)5⌊ 5n+1
2 ⌋+⌊ 5m−n+4

2 ⌋tm

+ p0

∑

m≥0

∑

n≥1

s(β, n)a1(n, m)5⌊ 5n−4
2 ⌋+⌊ 5m−n+5

2 ⌋tm

+
∑

m≥1

∑

n≥0

r(β, n)b0(n, m)5⌊ 5n+1
2 ⌋+⌊ 5m−n−2

2 ⌋tm

+
∑

m≥1

∑

n≥1

s(β, n)a0(n, m)5⌊ 5n−4
2 ⌋+⌊ 5m−n−2

2 ⌋tm


 .

(6.27)

Similar to above observe that for m, n ≥ 0:

⌊
5n + 1

2

⌋

+

⌊
5m − n + 4

2

⌋

=

⌊
5m + n + 2

2

⌋

+

⌊
3n + 3

2

⌋

≥
⌊

5m + 2

2

⌋

+ 1,

for m ≥ 0 and n ≥ 1:
⌊

5n − 4

2

⌋

+

⌊
5m − n + 5

2

⌋

=

⌊
5m + n + 2

2

⌋

+

⌊
3n − 1

2

⌋

≥
⌊

5m + 2

2

⌋

+ 1,

for m ≥ 1 and n ≥ 0:
⌊

5n + 1

2

⌋

+

⌊
5m − n − 2

2

⌋

=

⌊
5m + n − 4

2

⌋

+

⌊
3n + 3

2

⌋

≥
⌊

5m − 5

2

⌋

+ 1,

and for m, n ≥ 1:

⌊
5n − 4

2

⌋

+

⌊
5m − n − 2

2

⌋

=

⌊
5m + n − 6

2

⌋

+

⌊
3n

2

⌋

≥
⌊

5m − 5

2

⌋

+ 1.

Hence the right hand side of (6.27) is of the desired form (6.10) with β replaced by β+1. This
completes the proof of the Main Theorem assuming the validity of the twenty fundamental
relation in Section 6.6. Their correctness will be proven in the next section.

6.5 Proving the Fundamental Relations

6.5.1 A computerized proof of the fundamental relations

At the level of eta products we need the following facts that are immediate from Newman’s
Lemma 2.34.

Lemma 6.17. For the functions from Definition 6.6 the following statements are true:

(i) η24
5 · η4

25η2
100

η5
50

· η5
2

η4η2
4

= η24
5 Au−4 ∈ M12(100);

(ii) tη24, tη24
5 ∈ M12(20);
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(iii) ση24, ση24
5 ∈ M12(20);

(iv) ρη24, ρη24
5 ∈ M12(20);

(v) t−jη24
5 ∈ M12(20), 0 ≤ j ≤ 5;

(vi) t−6η48
5 ∈ M24(20);

(vii) tjη48 ∈ M24(20), −2 ≤ j ≤ 5;

(viii) p1η
72, p1η

72
5 ∈ M36(20);

(ix) p0η
96, p0η

96
5 ∈ M48(20).

Proof. The statements (i)-(vii) are straight-forward verifications invoking Lemma 2.34. In
proving (viii) and (ix) we restrict to showing that p1η

72 ∈ M36(20) in (viii), since the other
cases are analogous. According to (6.9) we need to show that

tσ2η72, tση72, ση72, ρη72, σ2η72, σ2ρη72, σρη72 ∈ M36(20).

By (ii) and (iii) we have that tη24 and ση24 are in M12(20). Consequently

ση24 · ση24 · tη24 ∈ M36(20).

Similarly one sees that tη24 ·ση24 ·η24 ∈ M36(20) because η24 ∈ M12(20). The other monomials
are treated analogously.

Next we connect all the fundamental relations to Newman’s lemma 2.34.

Lemma 6.18. For the functions from Definition 6.6 the following statements are true for
any choice of integer coefficients c(i, j) and d(i, j):

(i) η144
(

(Au−4t−j |U5) −
∑4

i=−1(c(i, j)t
i + d(i, j)p0t

i)
)

∈ M72(20), 0 ≤ j ≤ 4;

(ii) η144
(

(Au−4p1t
−j |U5) −

∑5
i=−2(c(i, j)t

i + d(i, j)p0t
i)
)

∈ M72(20), 2 ≤ j ≤ 6;

(iii) η144
(

(t−j |U5) −
∑4

i=0 c(i, j)ti
)

∈ M72(20), 0 ≤ j ≤ 4;

(iv) η144
(

(p0t
−j |U5) −

∑5
i=−2(c(i, j)t

i + d(i, j)p0t
i)
)

∈ M72(20), 1 ≤ j ≤ 5.

Proof. We only prove (i) which corresponds to Group I of the fundamental relations; the
other cases are analogous. The statement follows from showing that each term in the sum is
in M72(20). We start with the term η144(Au−4t−j |U5) for a fixed j ∈ {0, . . . , 4}. By Lemma
3.23,

η144(Au−4t−j |U5) = (η144
5 Au−4t−j |U5).

By (6.3) we have that

η24
5 Au−4 = η24

5

η4
25η

2
100

η5
50

· η5
2

η4η2
4

,
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which is in M12(100) by Lemma 6.17(i). By Lemma 6.17(v) we have t−jη24
5 ∈ M12(20) ⊆

M12(100), because in general Γ0(N1) is a subgroup of Γ0(N2) if N2|N1. Observing that
η96
5 ∈ M48(20) ⊆ M48(100), we can conclude that

t−jη24
5 ·η24

5 Au−4·η96
5 = η144

5 Au−4t−j ∈ M72(100).

Finally, Lemma 3.24 implies that (η144
5 Au−4t−j |U5) ∈ M72(20). Proving that η144ti and

η144p0t
i are in M72(20) for −1 ≤ i ≤ 4 is done analogously using Lemma 6.17 again.

Theorem 6.19. The twenty fundamental relations listed in the Appendix hold true.

Proof. After multiplication with η144 the entries of Group I to IV correspond to elements
from Mk(N) with k = 72 and N = 20. By Corollary 2.40 we have µ = [SL2(Z) : Γ0(20)] =
36. Consequently by Lemma 2.22, the proof is completed by verifying equality of the first
1 + µk/12 = 217 coefficients in the Taylor series expansions of both sides of each of the
fundamental relations. This task is left to the computer.

6.6 The Fundamental Relations

Group I:

Au−4|U5 = −5t + 52p0;

Au−4t−1|U5 = −1 + p0t
−1;

Au−4t−2|U5 = 55t2 + 11·52t + 11 − p0(5
3 + 2·5t−1);

Au−4t−3|U5 = −58t3 − 34·55t2 − 51·53t − 119 + p0(2·56t + 6·54 + 21·5t−1);

Au−4t−4|U5 = −511t4 + 92·56t2 + 759·53t + 253·5 − p0(8·57t + 99·54 + 44·52t−1).

Group II:

Au−4p1t
−2|U5 = −55t2 + 114·52t + 59 − p0(124·53 + 59t−1);

Au−4p1t
−3|U5 = 58t3 − 36·55t2 − 103·53t − 26 − p0(5

6t − 9·54 + 7 · 5t−1);

Au−4p1t
−4|U5 = 511t4 + 14·59t3 + 259·56t2 + 1436·53t + 38·5

− p0(5
9t2 + 122·56t + 211·54 − 7·5t−1);

Au−4p1t
−5|U5 = −514t5 + 12·511t4 + 9·59t3 − 1494 · 56t2 − 2366·54t − 196·5

+ p0(5
12t3 + 8·510t2 + 282·57t + 409·55 − 11·52t−1);

Au−4p1t
−6|U5 = −7·515t5 − 372·512t4 − 917·510t3 − 1581·57t2 + 16089·54t − 69·52

+ t−1 + p0(96·512t3 + 13·512t2 − 404·57t − 3152·55 + 361·52t−1 − t−2).

Group III:

1|U5 = 1;

t−1|U5 = −52t − 6;

t−2|U5 = −55t2 + 54;

t−3|U5 = −58t3 − 102·5;

t−4|U5 = −511t4 + 966·5.
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Group IV:

p0t
−1|U5 = 3·510t4 + 77·57t3 + 562·54t2 + 41·53t + 1

− p1(5
9t3 + 14·56t2 + 44·53t + 2·5);

p0t
−2|U5 = −55t2 − 14·52t + 7 − 5p1;

p0t
−3|U5 = −58t3 − 14·55t2 − 54t − 12 − 54tp1;

p0t
−4|U5 = −511t4 − 14·58t3 − 57t2 + 12·5 − 57t2p1;

p0t
−5|U5 = 4·514t5 + 121·511t4 + 233·59t3 + 738·56t2 + 109·54t − 17·52

+ p1(4·510t3 + 14·58t2 + 44·55t + 2·53 − t−1).



Chapter 7

Some Modular Functions

Connected to Sellers’ Conjecture

In the previous chapter we proved Sellers’ conjecture. This was done by proving its equivalence
with the congruences

L(5)
n (Au−4, 1) ≡ 0 (mod 5n), n ∈ N. (7.1)

Here L is as in Definition 6.4. We recall that L
(5)
n (Au−4, 1) in relation (7.1) can be viewed as

a Laurent series L̃n(Au−4, 1)(q) (with integer coefficients) in powers of q = e2πiτ , and (7.1)

means that each coefficient in L̃
(5)
n (Au−4, 1)(q) is divisible by 5n.

To prove (7.1) in Theorem 6.8 we found identities of the form

L
(5)
2n−1(Au−4, 1) = 52n−1(P2n−1(t) + p0Q2n−1(t)) (7.2)

and

L
(5)
2n (Au−4, 1) = 52n(P2n(t) + p1Q2n(t)), (7.3)

where Pn(t), Qn(t) ∈ Z[t] and where p0, p1, t ∈ A0(20) are Laurent series in powers of q with
integer coefficients. Let p(n) denote the number of partitions of n, and let µα be such that
24µα ≡ 1 (mod 11α) and 0 ≤ µα ≤ 11α − 1. We note that Atkin [3] proved the longstanding
Ramanujan conjecture

p(11αn + µα) ≡ 0 (mod 11α) (7.4)

for α, n ∈ N in a similar way. More precisely, he proved that (7.4) is implied by the identities

L
(11)
2n−1(η121/η, 1)

= 112n−1(P
(0)
2n−1(T ) + J2P

(2)
2n−1(T ) + J3P

(3)
2n−1(T ) + J4P

(4)
2n−1(T ) + J6P

(6)
2n−1(T ))

(7.5)

and

L
(11)
2n (η121/η, 1)

= 112n(P
(0)
2n (T ) + J2P

(2)
2n (T ) + J3P

(3)
2n (T ) + J4P

(4)
2n (T ) + J6P

(6)
2n (T ))

(7.6)

where P
(j)
n ∈ Z[T ] for j ∈ {0, 2, 3, 4, 6}, n ∈ N∗ and T, J2, J3, J4, J6 ∈ A0(11) are Laurent

series in powers of q with integral coefficients.

107
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Atkin also proved that the C[T, T−1]-module generated by 1, J2, J3, J4, J6 is the whole
A0(11). In our case neither the C[t, t−1]-module generated by 1, p0 nor the one generated by
1, p1 is the whole A0(20) (and also not the one generated by 1, p0, p1).

One can easily see by looking at Atkin’s proof that for any element f = P (0)(T ) +
J2P

(2)(T ) + J3P
(3)(T ) + J4P

(4)(T ) + J6P
(6)(T ) with P (j) ∈ Z[T, T−1] for j ∈ {0, 2, 3, 4, 6}

and any α ∈ N there exists a n ∈ N such that L
(11)
n (η121/η, f) ≡ 0 (mod 11α). This is the

same as saying that the sequence (L
(11)
n (η121/η, f))n≥0 converges to 0 in the 11-adic metric.

It seems that without this property the identities (7.5) and (7.6) could not have been
proven. In fact, all the papers that deal with congruences similar to (7.4) (see for example
[4], [15], [16], [24] and [18]) involve identities of the type

L(p)
n (g, 1) = pα(J1P

(1)
n (T ) + · · · + JjP

(j)
n (T )), P (I)

n (T ) ∈ Z[T, T−1], i = 0, . . . , j,

and the C[T, T−1] module generated by 1, J1, . . . , Jj is the whole A0(pN) for some N . Further-

more, the sequence (L
(p)
n (g, f))n≥0 converges to 0 in the p-adic metric for every f ∈ A0(pN).

In our problem one can also show that for every given α ∈ N and any F (t), G(t) ∈ C[t]

the sequence (L
(5)
n (Au−4, F (t) + p1G(t))n≥0 converges to 0 in the 5-adic metric. However we

also found examples of functions f ∈ A0(20) such that the sequence (L
(5)
n (Au−4, f))n≥0 does

not converge to 0 in the 5-adic metric. In our point of view, this is the most important fact
that distinguishes the Sellers’ problem from the previous ones. Our key observation is that
the “Sellers functions” are satisfying special functional relations which we first discovered by
computer experiments. In this chapter we will turn our attention to the main properties that
characterizes the special C[t, t−1] modules generated by 1, p0 and 1, p1. We will show that
the functional equations we mentioned earlier together with A0(20) membership gives rise to
submodules of A0(20) that are generated by {1, p0} and {1, p1}, respectively.

7.1 Preparatory Notions and Results

Definition 7.1. For f : H → C and γ ∈ GL+
2 (Z) we define f |γ := f |0γ.

Definition 7.2. We define q : H → C by q(τ) := e2πiτ for τ ∈ H.

Definition 7.3. For m, r, t ∈ Z we define Vm,r,t :=
(

m
0

r
t

)
, Vm := Vm,0,1 and Vm,r := Vm,r,1.

Definition 7.4. For m ∈ Z we introduce γm :=

{ (
1
m

0
1

)
, if m 6= 0,

(
0
1
−1
0

)
, otherwise.

Definition 7.5. For p ≥ 5 a prime we define

F̃∞(q) :=
∏∞

n=1
(1−q2n)5

(1−q4n)2
, F∞ :=

η5
2

η2
4
, f∞,p := F∞

F∞|Vp2
,

F̃1/2(q) :=
∏∞

n=1
(1−qn)2(1−q4n)2

(1−q2n)
, F1/2 :=

η2η2
4

η2
, f1/2,p :=

F1/2

F1/2|Vp2
,

F̃0(q) :=
∏∞

n=1
(1−q2n)5

(1−qn)2
, F0 :=

η5
2

η2 , f0,p := F0
F0|Vp2

.

Definition 7.6. Let p ≥ 5 be a prime and α ∈ {1, 2}. We define R1(p
α) to be the set of all

f ∈ A0(4pα) such that

(F0|Vp)(f |γp2V4,−1) = (F∞|V4p)(f |V4) + 2(F1/2|V4p)(f |γ2p2V4). (7.7)
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Definition 7.7. Let p ≥ 5 be a prime and α ∈ {1, 2}. We define R2(p
α) to be the set of all

f ∈ A0(4pα) such that

F0(f |γp2V4,−1) = (F∞|V4)(f |V4) + 2(F1/2|V4)(f |γ2p2V4). (7.8)

The following proposition is a straight forward consequence of (2.26) and Definitions 7.5,
7.6 and 7.7.

Proposition 7.8. Let p ≥ 5 be a prime and α ∈ {1, 2}. If f ∈ R1(p
α) then

F̃0(q
p)(f |γp2V4,−1) = F̃∞(q4p)(f |V4) + 2qpF̃1/2(q

4p)(f |γ2p2V4), (7.9)

and if f ∈ R2(p
α) then

F̃0(q)(f |γp2V4,−1) = F̃∞(q4)(f |V4) + 2qF̃1/2(q
4)(f |γ2p2V4). (7.10)

For ord as in Definition 2.14 we have the following important property.

Lemma 7.9. Let p ≥ 5 be a prime and α ∈ {1, 2}. If f ∈ R1(p
α) then

ord(f |γp2V4,−1) ≤ 4 · ord(f), (7.11)

ord(f |γp2V4,−1) ≤ 4 · ord(f |γ2p2) + p, (7.12)

with equality in either (7.11) or (7.12). If f ∈ R2(p
α) then

ord(f |γp2V4,−1) ≤ 4 · ord(f), (7.13)

ord(f |γp2V4,−1) ≤ 4 · ord(f |γ2p2) + 1, (7.14)

with equality in either (7.13) or (7.14).

Proof. By Lemma 2.37 we have

ωΓ0(4pα),γp2
=

4pα

gcd(p4, 4pα)
= 4, ωΓ0(4pα),γ2p2

=
4pα

gcd(4p4, 4pα)
= 1 and ωΓ0(4pα),id = 1.

Consequently by Lemma 2.11 there exist b, b1, b2 : Z → C and t, t1, t2 ∈ Z such that
b(t), b1(t1), b2(t2) 6= 0 and for τ ∈ H:

(f |γp2)(τ) =
∞∑

n=t

b(n)e2πinτ/4, f(τ) =
∞∑

n=t1

b1(n)e2πinτ and (f |γ2p2)(τ) =
∞∑

n=t2

b2(n)e2πinτ ,

which implies that

(f |γp2V4,−1) =
∞∑

n=t

b(n)e−2πin/4e2πinτ ,

which by Definition 2.14 implies that

ord(f |γp2V4,−1) = t, ord(f) = t1 and ord(f |γ2p2) = t2. (7.15)
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Define c : Z → C by the formula

∞∑

n=t

c(n)e2πiτn := F̃0(e
2πipτ )(f |γp2V4,−1)(τ) = F̃0(e

2πipτ )
∞∑

n=t

b(n)e−2πin/4e2πinτ , τ ∈ H.

(7.16)
Clearly c(t) 6= 0 because F̃0(e

2πiτp) is of the form 1 + e2πiτp
∑∞

n=0 d(n)e2πiτpn for some d :
Z → C. Also define c1, c2 : Z → C by the formulas

∞∑

n=t1

c1(n)e8πinτ := F̃∞(e8πipτ )(f |V4)(τ) = F̃∞(e8πipτ )
∞∑

n=t

b1(n)e8πinτ (7.17)

and

∞∑

n=t2

c2(n)e8πinτ := F̃1/2(e
8πipτ )(f |γ2p2V4)(τ) = F̃1/2(e

8πipτ )
∞∑

n=t

b2(n)e8πinτ , τ ∈ H. (7.18)

Also here c1(t1), c2(t2) 6= 0 by the same reason as c(t) 6= 0. By (7.16)-(7.18) and (7.10) we
obtain

∞∑

n=t

c(n)qn =
∞∑

n=t1

c1(n)q4n + qp
∞∑

n=t2

c2(n)q4n

and by coefficient comparison we observe t ≤ 4t1 and t ≤ 4t2+p, with equality in one of them,
which together with (7.15) gives (7.11)-(7.12). The proof of (7.13)-(7.14) is analogous.

The most important result of this chapter is that p0t
j ∈ R1(5), p1t

j ∈ R2(5) and
tj ∈ R1(5) ∩ R2(5) for all j ∈ Z.

Furthermore, all functions in R1(5) may be written as a linear combination of
p0t

j and tj and that all functions in R2(5) may be written as a linear combination
of p1t

j and tj for j ∈ Z.

7.2 R1(p
i) and R2(p

i) are A0(p
i)-modules Containing A0(p

i)

The next lemma shows that if i ∈ {1, 2} then R1(p
i), R2(p

i) are A0(p
i) modules.

Lemma 7.10. Let i ∈ {1, 2} and f ∈ A0(p
i). If f ′ ∈ R1(p

i) (resp. f ′ ∈ R2(p
i)) then

ff ′ ∈ R1(p
i) (resp. ff ′ ∈ R2(p

i)).

Proof. We have:

(F0|Vp)(ff ′|γp2V4,−1) − (F∞|V4p)(ff ′|V4) − 2(F1/2|V4p)(ff ′|γ2p2V4)

= (F0|Vp)(f |γp2V4,−1)(f
′|γp2V4,−1) − (F∞|V4p)(f |V4)(f

′|V4)

− 2(F1/2|V4p)(f |γ2p2V4)(f
′|γ2p2V4)

= (F0|Vp)(f |V4,−1)(f
′|γp2V4,−1) − (F∞|V4p)(f |V4)(f

′|V4)

− 2(F1/2|V4p)(f |V4)(f
′|γ2p2V4)

= (f |V4)((F0|Vp)(f
′|γp2V4,−1) − (F∞|V4p)(f

′|V4) − 2(F1/2|V4p)(f
′|γ2p2V4))

= 0.

The other case is analogous.
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The rest of this section will be devoted to show that 1 ∈ R1(p)∩R2(p) for p ≥ 5 a prime.
We will need the following lemma (e.g. [42, p. 469]).

Lemma 7.11 (Jacobi Triple Product). For q, y ∈ C with y 6= 0 and |q| < 1:

∞∏

m=1

(1 − q2m)(1 + q2m−1y2)(1 + q2m−1y−2) =

∞∑

n=−∞

qn2
y2n.

Lemma 7.12. We have the following relation:

F̃0(q) = F̃∞(q4) + 2qF̃1/2(q
4). (7.19)

Proof. We define
∞∑

n=0

a(n)qn :=
∞∏

m=1

(1 − q2m)5

(1 − qm)2(1 − q4m)2
(7.20)

Because of the relation

∞∏

m=1

(1 + q2m−1) =
∞∏

m=1

1 + qm

1 + q2m
=

∞∏

m=1

(1 − q2m)2

(1 − qm)(1 − q4m)

we have
∞∏

m=1

(1 − q2m)(1 + q2m−1)2 =
∞∏

n=1

(1 − q2m)5

(1 − qm)2(1 − q4m)2
. (7.21)

By Lemma 7.11 (after replacing y = 1), (7.21) and (7.20) we have that

∞∑

n=0

a(n)qn = 1 + 2
∞∑

n=1

qn2
. (7.22)

From (7.22) we see that

∞∑

n=0

a(4n)q4n = 1 + 2
∞∑

n=0

q4n2
=

∞∏

m=1

(1 − q8m)5

(1 − q4m)2(1 − q16m)2
(7.23)

and
∞∑

n=0

a(4n + 1)q4n+1 = 2q
∞∑

n=1

q4n(n+1) (7.24)

We again see from Lemma 7.11 (after replacing y = q1/2 and making some elementary sim-
plifications) that

∞∑

n=0

qn(n+1) =
∞∏

m=1

(1 − q4m)2

(1 − q2m)
(7.25)

which together with (7.24) gives

∞∑

n=0

a(4n + 1)q4n+1 = 2q

∞∏

m=1

(1 − q16m)2

(1 − q8m)
. (7.26)
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From (7.22) we see that a(4n + 2) = a(4n + 3) = 0 for all n ∈ N, showing that

∞∑

n=0

a(n)qn =
∞∑

n=0

a(4n)qn +
∞∑

n=0

a(4n + 1)q4n+1.

This together with (7.20), (7.23) and (7.24) implies

∞∏

m=1

(1 − q2m)5

(1 − qm)2(1 − q4m)2
=

∞∏

m=1

(1 − q8m)5

(1 − q4m)2(1 − q16m)2
+ 2q

∞∏

m=1

(1 − q16m)2

(1 − q8m)
,

which by Definition 7.5 gives after multiplication by
∏

m≥1(1−q4m)2 the desired result (7.19).

We obtain immediately by Lemma 7.12 and Proposition 7.8:

Corollary 7.13. Let p ≥ 5 be a prime. Then 1 ∈ R1(p) ∩ R2(p).

Corollary 7.14. Let i ∈ {1, 2} and f ∈ A0(p
i), then f ∈ R2(p

i) ∩ R1(p
i).

Proof. By Corollary 7.13 we have 1 ∈ R2(p) ∩ R1(p) ⊆ R2(p
2) ∩ R1(p

2), and by Lemma 7.10
we have f · 1 ∈ R1(p

i) ∩ R2(p
i).

7.3 A A0(p)-module Isomorphism Between R1(p) and R2(p)

Definition 7.15. We define g∞(τ) := F∞(τ)/F0(4τ) and g1/2(τ) := F1/2(τ)/F0(4τ) for
τ ∈ H.

Remark 7.16. Note that g∞, g1/2 ∈ A0(16) by Lemma 2.34.

Definition 7.17. For h ∈ Z we define Bh :=
(

1
0

h
1

)

.

We need the following easily verifiable proposition in the proof of the next two lemmas.

Proposition 7.18. Let m ∈ N∗ be odd and h ∈ Z then:

(i) if (m2 + 4)h − 1 ≡ 0 (mod 4m) then Γ0(4m)γm2γ4 = Γ0(4m)γ0Bh;

(ii) if 4h + 1 ≡ 0 (mod m) then Γ0(4m)γ2m2γ4 = Γ0(4m)γ2Bh.

Lemma 7.19. Let p ≥ 5 be a prime and f ∈ R2(p). Then the following identity holds:

(F0|Vp)(f |γ0V4p) = (F∞|V4p)(f |γ4V4p,x∞) + 2(F1/2|V4p)(f |γ2V4p,x1/2
) (7.27)

where x∞, x1/2 are any integers satisfying 1 + 4x∞ ≡ 0 (mod p), x∞ + 1 ≡ 0 (mod 4) and
1 + 2x1/2 ≡ 0 (mod p).

Proof. Set ξ1 :=
(

5
16

1
4

)
and ξ2 :=

(
5
16

−1
−3

)

. Note that ξ2 ∈ Γ0(16). One can easily verify that

ξ1 = ξ2V1,1,4. (7.28)
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Then

0 =F0(f |γp2V4,−1) − F∞(f |V4) − F1/2(f |γ2p2V4) by Definition 7.6

=(f |γp2V4,−1) − g∞(f |V4) − g1/2(f |γ2p2V4) by Def. 7.15 after div. by F0

=(f |γp2) − (g∞|V1,1,4)f − (g1/2|V1,1,4)(f |γ2p2) by applying V1,1,4

=(f |γp2γ4) − (g∞|ξ1)(f |γ4) + 2(g1/2|ξ1)(f |γ2p2γ4) by applying γ4

=(f |γp2γ4) − (g∞|ξ2V1,1,4)(f |γ4)

+ 2(g1/2|ξ2V1,1,4)(f |γ2p2γ4) because of (7.28)

=(f |γp2γ4) − (g∞|V1,1,4)(f |γ4)

+ 2(g1/2|V1,1,4)(f |γ2p2γ4) because g∞, g1/2 ∈ A0(16)

=(f |γ0B−x∞) − (g∞|V1,1,4)(f |γ4)

+ 2(g1/2|V1,1,4)(f |γ2Bx1/2−x∞) by Proposition 7.18

=(f |γ0V4p) − (g∞|Bx∞+1
4

Vp)(f |γ4V4p,x∞)

+ 2(g1/2|Bx∞+1
4

Vp)(f |γ2V4p,x1/2
) by applying V4p,x∞

=(f |γ0V4p) − (g∞|Vp)(f |γ4V4p,x∞) by g∞|Bx∞+1
4

= g∞

+ 2(g1/2|Vp)(f |γ2V4p,x1/2
) and g1/2|Bx∞+1

4
= g1/2

=(F0|Vp)(f |γ0V4p) − (F∞|Vp)(f |γ4V4p,x∞) after multiplying by F0|Vp

+ 2(F1/2|Vp)(f |γ2V4p,x1/2
) and using Def. 7.15.

Lemma 7.20. Let p ≥ 5 be a prime and f ∈ R1(p). Then the following identity holds:

F0(f |γ0V4p) = (F∞|V4)(f |γ4V4p,x∞) + 2(F1/2|V4)(f |γ2V4p,x1/2
), (7.29)

where x∞, x1/2 are any integers satisfying 1 + 4x∞ ≡ 0 (mod p), x∞ + 1 ≡ 0 (mod 4) and
1 + 2x1/2 ≡ 0 (mod p).

Proof. Set ξ1 :=
(

5p
16

p
4

)
and ξ2 :=

(

5p
16

1+5x∞
4

1+4x∞
p

)

. Note that ξ2 ∈ Γ0(16). One can easily verify

that
ξ1 = ξ2V1,−x∞,4p. (7.30)

Then

0 =(F0|Vp)(f |γp2V4,−1) − (F∞|Vp)(f |V4)

− (F1/2|Vp)(f |γ2p2V4) by Definition 7.7

=(f |γp2V4,−1) − (g∞|Vp)(f |V4) by Definition 7.15

− (g1/2|Vp)(f |γ2p2V4) after dividing by (F0|Vp)

=(f |γp2) − (g∞|Vp,p,4)f − (g1/2|Vp,p,4)(f |γ2p2) by applying V1,1,4

=(f |γp2γ4) − (g∞|ξ1)(f |γ4) + 2(g1/2|ξ1)(f |γ2p2γ4) by applying γ4

=(f |γp2γ4) − (g∞|ξ2V1,−x∞,4p)(f |γ4)

+ 2(g1/2|ξ2V1,−x∞,4p)(f |γ2p2γ4) because of (7.30)
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=(f |γp2γ4) − (g∞|V1,−x∞,4p)(f |γ4)

+ 2(g1/2|V1,−x∞,4p)(f |γ2p2γ4) because g∞, g1/2 ∈ A0(16)

=(f |γ0B−x∞) − (g∞|V1,−x∞,4p)(f |γ4)

+ 2(g1/2|V1,−x∞,4p)(f |γ2Bx1/2−x∞) by Proposition 7.18

=(f |γ0V4p) − g∞(f |γ4V4p,x∞)

+ 2g1/2(f |γ2V4p,x1/2
) by applying V4p,x∞

=F0(f |γ0V4p) − F∞(f |γ4V4p,x∞) after multiplying by F0

+ 2(F1/2|Vp)(f |γ2V4p,x1/2
) and using Def. 7.15.

Corollary 7.21. Let p ≥ 5 be a prime and x1/2, x∞ as in Lemma 7.20. Then if f ∈ R1(p)

F̃0(q)(f |γ0V4p) = F̃∞(q4)(f |γ4V4p,x∞) + 2qF̃1/2(q
4)(f |γ2V4p,x1/2

) (7.31)

and if f ∈ R2(p)

F̃0(q
p)(f |γ0V4p) = F̃∞(q4p)(f |γ4V4p,x∞) + 2qpF̃1/2(q

4p)(f |γ2V4p,x1/2
). (7.32)

Proof. The result follows immediately from Lemma 7.20, Lemma 7.19 and (2.26).

Definition 7.22. For x, m ∈ Z we define ξp,x :=

(
m x
4m 4x + 1

)

.

Lemma 7.23. Let p ≥ 5 be a prime, i ∈ {1, 2} and f ∈ Ri(p). Let x∞, x1/2 be any integers
such that 4x∞ + 1 ≡ 0 (mod p), x∞ + 1 ≡ 0 (mod 4) and 2x1/2 + 1 ≡ 0 (mod p). Then
g := f |ξp,x∞ ∈ Rj(i)(p) where (j(1), j(2)) := (2, 1). In addition we have

f |γ0V4p = g|γp2V4,−1; (7.33)

f |γ4V4p,x∞ = g|V4; (7.34)

f |γ2V4p,x1/2
= g|γ2p2V4; (7.35)

g|ξp,x∞ = f ⇔ f |ξ2
p,x∞

= f. (7.36)

Proof. First we note that for any γ ∈ Γ0(4p) there exists γ′ ∈ Γ0(4p) such that ξp,x∞γ =
γ′ξp,x∞ . Hence f |ξp,x∞γ = f |γ′ξp,x∞ = f |ξp,x∞ . Showing that g ∈ A0(4p). After substituting
(7.33)-(7.35) in (7.29) one can verify that g ∈ R2(p) with Definition 7.7.

Proof of (7.33). Because of ξ−1
p,x∞

γ0V4pV
−1
4,−1γ

−1
p2 ∈ Γ0(4p) we have

f |γ0V4p = g|ξ−1
p,x∞

γ0V4p = g|(ξ−1
p,x∞

γ0V4pV
−1
4,−1γ

−1
p2 )γp2V4,−1 = g|γp2V4,−1.

Proof of (7.34). Because of ξ−1
p,x∞

γ4V4p,x∞V −1
4 = id ∈ Γ0(4p) we have

f |γ4V4p,x∞ = g|(ξ−1
p,x∞

γ4V4p,x∞V −1
4 )V4 = g|V4.

Proof of (7.35). Because of ξ−1
p,x∞

γ2V4p,x1/2
V −1

4 γ−1
2p2 ∈ Γ0(4p) we have

f |γ2V4p,x1/2
= g|(ξ−1

p,x∞
γ2V4p,x1/2

V −1
4 γ−1

2p2)γ2p2V4 = g|γ2p2V4.

Proof of (7.36). Because of ξ2
p,x∞

= Vp,0,pΓ0(4p) and because of (f |Vp,0,p) = f we have (7.36).

The proof when f ∈ R2(p) is analogous.
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Lemma 7.24. Let p ≥ 5 be a prime. Let x∞, x1/2 be any integers such that 4x∞ + 1 ≡ 0
(mod p), x∞ + 1 ≡ 0 (mod 4) and 2x1/2 + 1 ≡ 0 (mod p). If f ∈ R1(p) then

ord(f |γ0V4p) ≤ 4 · ord(f |γ4Vp,x∞), (7.37)

ord(f |γ0V4p) ≤ 4 · ord(f |γ2Vp,x1/2
) + 1, (7.38)

with equality in either (7.37) or (7.38). If f ∈ R2(p) then

ord(f |γ0V4p) ≤ 4 · ord(f |γ4Vp,x∞), (7.39)

ord(f |γ0V4p) ≤ 4 · ord(f |γ2Vp,x1/2
) + p, (7.40)

with equality in either (7.39) or (7.40).

Proof. Let g := f |ξp,x∞ . Then by (7.33)-(7.35) we see that proving (7.37)-(7.38) is equivalent
to proving

ord(g|γp2V4,−1) ≤ 4 · ord(g), (7.41)

ord(g|γp2V4,−1) ≤ 4 · ord(g|γ2p2) + 1, (7.42)

with one of them being an equality. The truth of (7.41)-(7.42) is implied by (7.13)-(7.14)
because by Lemma 7.23 g ∈ R2(p). The proof of (7.39)-(7.40) is analogous.

Lemma 7.25. Let p ≥ 5 a prime, f ∈ A0(p) and x ∈ Z such that 4x + 1 ≡ 0 (mod p). Then
f |ξp,x ∈ A0(p).

Proof. Let γ =
(

a
pc

b
d

)

. Then one easily verifies that there exists a γ′ ∈ Γ0(p) such that

ξp,xγξ−1
p,x = γ′ which implies that

(f |ξp,x)|γ = (f |ξp,xγ) = (f |γ′ξp,x) = (f |ξp,x).

This verifies condition (ii) of Definition 2.6. Condition (i) of Definition 2.6 is immediate from
Proposition 2.7 and condition (iii) of Definition 2.6 follows by (i) in Proposition 2.8.

Definition 7.26. Let p ≥ 5 be a prime and i ∈ {1, 2}. Then (Ri(p),⊙) denotes the A0(p)-
module with g ⊙ f := (g|ξp,x∞)f for g ∈ A0(p), f ∈ Ri(p), and where x∞ is any integer such
that 4x∞ + 1 ≡ 0 (mod p). By (Ri(p), ·) we denote the A0(p)-module with g · f := gf for
g ∈ A0(p) and f ∈ Ri(p).

Note that ⊙ is well defined because for h ∈ Z we have
(

p
4p

x∞

4x∞+1

)(
1
0

h
1

)

=
(

p
4p

ph+x∞

4(x∞+ph)+1

)

,

which because of g|ξp,x∞ ∈ A0(p) implies g|ξp,x∞ |
(

1
0

h
1

)

= g|ξp,x∞ by Lemma 7.25 showing

that the choice of x∞ does not result in any ambiguity. The goal of this section is fulfilled by
the following lemma that gives the module isomorphism between R1(p) and R2(p).

Lemma 7.27. Let p ≥ 5 be a prime and x∞ a integer such that 4x∞ + 1 ≡ 0 (mod p) and
x∞ + 1 ≡ 0 (mod 4). Then the mapping φ : R1(p) → R2(p) given by φ(f) := f |ξp,x∞ is a
module isomorphism from the module (R1(p), ·) to the module (R2(p),⊙).

Proof. By Lemma 7.23 we see that φ(f) ∈ R2(p) if f ∈ R1(p). So φ maps R1(p) to R2(p).
That it is a homomorphism follows from Definition 7.26. Also because of (7.36) we see that
φ−1(f) = f |ξp,x∞ showing that it is one to one and onto.
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Remark 7.28. In particular, Lemma 7.27 shows that if b1, . . . , bn is a A0(p)-basis for R1(p)
then φ(b1), . . . , φ(bn) is A0(p)-basis for R2(p). This gives us an algorithm to construct a basis
for R2(p) once a basis for R1(p) is known which we will exploit in the last section of this
chapter.

7.4 A0(5) = C[t, t−1]

In this section we prove that A0(5) = C[t, t−1]. Recall form (6.7) that t =
η6
5

η6 . We need the
following lemma

Lemma 7.29. Let δ be a positive divisor of 4. Then

(ηδ|γ0V20)(τ) = e−πi/4(20τ/δ)1/2η20/δ(τ)

for τ ∈ H.

Proof. By Lemma 2.27 we have

(ηδ|γ0V20)(τ) = η

(

− 1
20
δ τ

)

= υη(0,−1, 1, 0)η20/δ(τ)

and υη(0,−1, 1, 0) = e−πi/4 by (2.30).

Corollary 7.30. We have t|γ0V5 = 5−3t−1.

Proof. By Lemma 7.29,

(t|γ0V20)(τ) =
(η6

5|γ0V20)(τ)

(η6|γ0V20)(τ)
=

e−6πi/4(20τ/5)3η6
20/5(τ)

e−6πi/4(5τ)3η6
20(τ)

=
1

53

η6
4(τ)

η6
20(τ)

= (5−3t−1|V4)(τ)

(7.43)
for τ ∈ H. From (7.43) we find (t|γ0V5) = (t|γ0V20V

−1
4 ) = (5−3t−1|V4V

−1
4 ) = 5−3t−1.

Lemma 7.31. Let f ∈ A0(5). Then

OrdΓ0(5)(f, γ0) = ord(f |γ0V5), OrdΓ0(5)(f, id) = ord(f).

Proof. We use Lemma 2.37 to compute ωΓ0(5),γ for γ ∈ {id, γ0} and then apply Lemma
2.15.

Lemma 7.32. Let f 6= 0 ∈ R1(5). Then OrdΓ0(5)(f, γ0) < 0 or OrdΓ0(5)(f, id) < 1.

Proof. Assume by contradiction that OrdΓ0(5)(f, γ0) ≥ 0 and OrdΓ0(5)(f, id) ≥ 1. Then

∑

s∈R

OrdΓ0(20)(f, s) ≥ 1,

contradicting Lemma 2.18 because
R := {γ0, id}

is a complete set of representatives for the double cosets Γ0(5)\SL2(Z)/SL2(Z)∞ by Lemma
2.45.
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Lemma 7.33. For t =
η6
5

η6 we have

OrdΓ0(5)(t, γ0) = −1 and OrdΓ0(5)(t, id) = 1.

Proof. By Lemma 7.31 we have OrdΓ0(5)(t, id) = ord(t). By (2.26) we have ord(t) = 1. By
Lemma 7.31 we have OrdΓ0(5)(t, γ0) = ord(t|γ0V5) and by Corollary 7.30 we have (t|γ0V5) =
5−3t−1 and consequently ord(t|γ0V5) = ord(t−1) = −1 because of ord(t) = 1.

Lemma 7.34. We have C[t, t−1] = A0(5).

Proof. Let f ∈ A0(5). We must show that there is a Laurent polynomial p(t) ∈ C[t, t−1] such
that f = p(t). We split the problem in two cases depending on the condition OrdΓ0(5)(f, id) ≥
1 or not.

Case 1. OrdΓ0(5)(f, id) ≥ 1. By Lemma 7.33 we have OrdΓ0(5)(t, id) = 1, which implies that
OrdΓ0(5)(f + p(t), id) ≥ 1 for any p(t) ∈ C[t] with p(0) = 0. Next consider the set

O(f) := {f + p(t)|p(t) ∈ C[t], p(0) = 0}. (7.44)

We must prove that 0 ∈ O(f), because this implies that there exists p(t) ∈ C[t] (with p(0) = 0)
such that f = p(t) and this is what we want. Assume by contradiction 0 6∈ O(f). Then there
is an integer n < 0 such that

max
g∈O(f)

OrdΓ0(5)(g, γ0) = n, (7.45)

because by Lemma 7.49, if g 6= 0 ∈ A0(5) and OrdΓ0(5)(g, id) ≥ 1, then OrdΓ0(5)(g, γ0) < 0.
Let g ∈ O(f) be such that OrdΓ0(5)(g, γ0) = n. Then by Lemma 7.33 OrdΓ0(5)(t

−n, γ0) = n
and there exists a c ∈ C such that either

g + ct−n = 0 or OrdΓ0(5)(g + ct−n, γ0) > n.

Note that g + ct−n ∈ O(f) by (7.44) and because of n < 0. If g + ct−n = 0, then 0 ∈ O(f).
On the other hand if OrdΓ0(5)(g + ct−n, γ0) > n we have a contradiction to (7.45).

Case 2. OrdΓ0(5)(f, id) < 1. Assume that OrdΓ0(5)(f, id) = n < 1. Then by Lemma 7.33 we
have OrdΓ0(5)(t

rf, id) = r+n. Consequently, for r = 1−n we have OrdΓ0(5)(t
rf, γ52) ≥ 1 and

we proved in Case 1 that there is p(t) ∈ C[t] such that trf = p(t) implying f = t−rp(t).

7.5 Conditions that Yield Generators for the A0(5)-Module

R1(5)

The structure of this section follows closely structure of the previous section and can thus be
viewed as a generalization. The goal of this section is to prove the following lemma.

Lemma 7.35. Let P ∈ R1(5), t =
η6
5

η6 and assume that

OrdΓ0(20)(P, γ0) = −7 and OrdΓ0(20)(P, γ52) = 4.

Then R1(5) is generated by {1, P} as a C[t, t−1]-module.

We need a couple of lemmas before we give the proof of (7.35).
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Lemma 7.36. Let f ∈ A0(20). Then

OrdΓ0(20)(f, γ0) = ord(f |γ0V20), OrdΓ0(20)(P, γ52) = ord(f |γ52V4,−1),

OrdΓ0(20)(f, γ2) = ord(f |γ2V5,2), OrdΓ0(20)(f, γ2·52) = ord(f |γ2·52),

OrdΓ0(20)(f, γ4) = ord(f |γ4V5,11), OrdΓ0(20)(f, id) = ord(f).

Proof. We use Lemma 2.37 to compute ωΓ0(20),γ for γ ∈ {id, γ0, γ2, γ4, γ52 , γ2·52} and then
apply Lemma 2.15.

Lemma 7.37. Let f 6= 0 ∈ R1(5). Then OrdΓ0(20)(f, γ0) < −3 or OrdΓ0(20)(f, γ52) < 4.

Proof. Assume by contradiction that OrdΓ0(20)(f, γ0) ≥ −3 and OrdΓ0(20)(f, γ52) ≥ 4. Then
by Lemma 7.36 and 7.24 we have

−3 ≤ OrdΓ0(20)(f |γ0) = ord(f |γ0V20) ≤ 4 · ord(f |γ4V5,11) = 4 · OrdΓ0(20)(f |γ4)

and

−3 ≤ OrdΓ0(20)(f |γ0) = ord(f |γ0V20) ≤ 4 · ord(f |γ2V5,2) + 1 = 4 · OrdΓ0(20)(f |γ2) + 1

implying
0 = ⌈−3/4⌉ ≤ OrdΓ0(20)(f |γ4) and − 1 ≤ OrdΓ0(20)(f |γ2). (7.46)

By Lemma 7.36 and 7.9 we have

4 ≤ OrdΓ0(20)(f, γ52) = ord(f |γ52V4,−1) ≤ 4 · ord(f) = 4 · OrdΓ0(20)(f | id)

and

4 ≤ OrdΓ0(20)(f, γ52) = ord(f |γ52V4,−1) ≤ 4 · ord(f |γ2·52) + 5 = 4 · OrdΓ0(20)(f, γ2·52)

implying
0 = ⌈−1/4⌉ ≤ OrdΓ0(20)(f, γ2·52) and 1 ≤ OrdΓ0(20)(f | id). (7.47)

By (7.46) and (7.47) we find
∑

s∈R

OrdΓ0(20)(f, s) ≥ 1

contradicting Lemma 2.18 because

R := {γ0, γ2, γ4, γ52 , γ2·52 , id}

is a complete set of representatives for the double cosets Γ0(20)\SL2(Z)/SL2(Z)∞ by Lemma
2.45.

Lemma 7.38. For t =
η6
5

η6 we have

OrdΓ0(20)(t, γ0) = −4 and OrdΓ0(20)(t, γ52) = 4.

Proof. By Lemma 7.36 we have OrdΓ0(20)(t, γ52) = ord(t|γ52V4,−1). By Lemma 2.34 we have
t ∈ A0(5) implying ord(t|γ52V4,−1) = ord(t|V4,−1). By (2.26) we have ord(t) = 1 and con-
sequently ord(t|V4,−1) = 4. By Lemma 7.36 we have OrdΓ0(20)(t, γ0) = ord(t|γ0V20) and
by Corollary 7.30 we have (t|γ0V5) = 5−3t−1 which implies (t|γ0V20) = 5−3(t−1|V4). Then
ord(t|γ0V20) = ord(t−1|V4) = −4 because of ord(t) = 1.
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Proof of Lemma 7.35: Let f ∈ R1(5). We must show that there are Laurent polynomials
q1(t), q2(t) ∈ C[t, t−1] such that f = q1(t) + Pq2(t). We split the problem in two cases
depending on if OrdΓ0(20)(f, γ52) ≥ 4 or not.

Case 1. OrdΓ0(20)(f, γ52) ≥ 4. By Lemma 7.38 we have OrdΓ0(20)(t, γ52) = 4 and by assump-
tion OrdΓ0(20)(P, γ52) = 4, implying that for any q1(t), q2(t) ∈ C[t] with q1(0) = 0, we have
OrdΓ0(20)(f + q1(t) + Pq2(t), γ52) ≥ 4.

Next consider the set

O(f) := {f + q1(t) + Pq2(t)|q1(t), q2(t) ∈ C[t], q1(0) = 0}. (7.48)

We must prove that 0 ∈ O(f), because then we have proven that there exist q1(t), q2(t) ∈ C[t]
(with q1(0) = 0) such that f = q1(t) + Pq2(t) and this is what we want. Let us assume that
0 6∈ O(f). Then there is an integer n < −3 such that

max
g∈O(f)

OrdΓ0(20)(g, γ0) = n, (7.49)

because by Lemma 7.37, if g 6= 0 ∈ R1(5) and OrdΓ0(20)(g, γ52) ≥ 4, then OrdΓ0(20)(g, γ0) <
−3.

Let g ∈ O(f) be such that OrdΓ0(20)(g, γ0) = n. By Lemma 7.24 either n ≡ 0 (mod 4) or
n ≡ 1 (mod 4).

If n ≡ 0 (mod 4), then by Lemma 7.38, OrdΓ0(20)(t
−n

4 , γ0) = n and there exists a c ∈ C
such that

g + ct−
n
4 = 0 or OrdΓ0(20)(g + ct−

n
4 , γ0) > n.

Note that g+ct−
n
4 ∈ O(f) by (7.48) and because of −n

4 ∈ N∗. If g+ct−
n
4 = 0, then 0 ∈ O(f).

On the other hand if OrdΓ0(20)(g + ct−
n
4 , γ0) > n, we have a contradiction to (7.49).

If n ≡ 1 (mod 4), then n ≤ −7 and by Lemma 7.38 together with OrdΓ0(20)(P, γ0) = −7

by assumption, we see that OrdΓ0(20)(Pt−
n+7

4 , γ0) = n and there exists a c ∈ Z such that

g + ct−
n+7

4 = 0 or OrdΓ0(20)(g + ct−
n+7

4 ) > n.

Note that g + ct−
n+7

4 ∈ O(f) by (7.48) and because of −n+7
4 ∈ N. If g + ct−

n+7
4 = 0, then

0 ∈ O(f). On the other hand if OrdΓ0(20)(g + ct−
n+7

4 , γ0) > n, we again have a contradiction
to (7.49).

Case 2. OrdΓ0(20)(f, γ52) < 4. Assume that OrdΓ0(20)(f, γ52) = n < 4. Then by Lemma 7.38

we have OrdΓ0(20)(t
rf, γ52) = 4r+n. Consequently, for r = ⌈4−n

4 ⌉ we have OrdΓ0(20)(t
rf, γ52) ≥

4 and we proved in Case 1 that there are q1(t), q2(t) ∈ C[t] such that trf = q1(t) + Pq2(t),
implying f = t−rq1(t) + Pt−rq2(t).

7.6 The Proof of p0 ∈ R1(5) and p1 ∈ R2(5)

The next lemma was inspired by [36, p. 5, Lemma 2]:

Lemma 7.39. Let f : H → C be holomorphic, v, m ∈ N∗, r ∈ Z and γ =

(
a b

mc d

)

∈
Γ0(m). Define M := mc gcd(cv, (m − 1)(mcr + d)) and

Γ :=

{
Γ0(M), if c 6= 0

SL2(Z)∞, otherwise.
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Assume that gcd(v, m) = 1 and f |ξ = f for all ξ ∈ Γ. Then f |UmγVv,r = f |γVv,rUm.

Proof. First we note that

γVv,r

(
1 1
0 1

)

(γVv,r)
−1 =

(
1 − mcav a2v
−m2c2v 1 + mcav

)

∈ Γ. (7.50)

Let v′ be an integer such that vv′ ≡ 1 (mod m). Define rλ := v′(r + bd + λd2) for λ ∈ Z.
One verifies easily that {r0, . . . , rm−1} is a complete set of representatives of the residue
classes modulo m because λ 7→ rλ is a bijection modulo m (because the inverse is given by
λ ≡ a2vrλ − a2r − ab (mod m) because of ad ≡ 1 (mod m)). This implies by Lemma 3.21
and, because of (f |γVv,r)(τ + 1) = (f |γVv,r)(τ) by (7.50), that

f |γVv,rUm =
1

m

m−1∑

λ=0

f |γVv,rTrλ
(7.51)

and Tλ :=

(
1 λ
0 m

)

for λ ∈ Z. Next observe that for all x, y ∈ Z such that

ar + b + yd − avx ≡ 0 (mod m), (7.52)

we have

TyγVv,rT
−1
x V −1

v,r γ−1 =

(
A B
C D

)

∈ Γ, (7.53)

where

A := acvx + amcr + ad + ymc2vx + yp2c2r + ymcd − car − bc − ymc2r − cyd,

B := −a2r − ab − ycavx − aymcr − mcyb +
a

m
(ar + b + yd − avx),

C := mc(m − 1)(mcr + d) + m2c2vx,

D := −mcavx − m2car − m2cb + amcr + ad.

We see that the condition (7.52) is satisfied with y = λ and x = rλ for λ ∈ {0, . . . , m − 1}.
By (7.53), (7.51) and because of f |

(
A
C

B
D

)

= f by assumption we have

f |UmγVv,r =
1

m

m−1∑

λ=0

f |TλγVv,r =
1

m

m−1∑

λ=0

f |
(

A B
C D

)

γVv,rTrλ

=
1

m

m−1∑

λ=0

f |γVv,rTrλ
= f |γVv,rUm.

The following proposition is just a rewriting of Lemma 3.23.

Proposition 7.40. Let p ≥ 5 be a prime and f, g : H → C. Then ((f |Vp)g|Up) = f(g|Up).

Lemma 7.41. Let p ≥ 5 be a prime. Then f ∈ R1(p
2) implies f |Up ∈ R2(p).
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Proof. By Lemma 3.24 we have f |Up ∈ A0(4p) because f ∈ A0(4p2) by Definition 7.6. It
only remains to verify that (f |Up) satisfies (7.8). By Lemma 7.39 and Proposition 7.40 we
see that:

0 =(Fr0 |Vp)(f |γp2V4,−1)|Up − (Fr∞ |V4p)(f |V4)|Up − 2(Fr1/2
|V4p)(f |γ2p2V4)|Up

=Fr0(f |γp2V4,−1Up) − (Fr∞ |V4)(f |V4Up) − 2(Fr1/2
|V4)(f |γ2p2V4Up)

=Fr0((f |Up)|γp2V4,−1) − (Fr∞ |V4)((f |Up)|V4) − 2(Fr1/2
|V4)((f |Up)|γ2p2V4) = 0.

Proposition 7.42. Let p ≥ 5 be a prime and k, r ∈ Z. Assume that p2r + 1 ≡ 0 (mod 4).
Then f∞,p|γp2V4,r = f0,p, where f0,p and f∞,p are as in Definition 7.5.

Proof. Let δ be a divisor of 4. Define

ξ1 :=

(
δ

p2

r
p2r+1

δ

)

and ξ2 :=

(

δ

1

p2r
p2r+1

δ

)

.

Then we have
Vδγp2V4,r = ξ1V4,0,δ and Vδp2γp2V4,r = ξ2V4p2,0,δ. (7.54)

By Lemma 2.27 we have

(η|ξ1V4,0,δ)(τ) =

(
4p2τ + p2r + 1

δ

)1/2

υη(δ, r, p
2, (p2r + 1)/δ)η

(
4τ

δ

)

and

(η|ξ2V4p2,0,δ)(τ) =

(
4p2τ + p2r + 1

δ

)1/2

υη(δ, p
2r, 1, (p2r + 1)/δ)η

(
4p2τ

δ

)

for τ ∈ H, which implies that
η|ξ1V4,0,δ

η|ξ2V4p2,0,δ
=

η4/δ

η4p2/δ
(7.55)

because of
υη(δ,r,p2,(p2r+1)/δ)
υη(δ,rp2,1,(p2r+1)/δ)

= 1 by Lemma 2.29.

From (7.54) and (7.55) follows

ηδ

ηδp2

|γp2V4,r =
η|Vδ

η|Vδp2

|γp2V4,r =
η|Vδγp2V4,r

η|Vδp2γp2V4,r
=

η|ξ1V4,0,δ

η|ξ2V4p2,0,δ
=

η4/δ

η4p2/δ
. (7.56)

Recalling that f∞,p =
η5
2η2

4p2

η5
2p2η2

4
one gets from (7.56) that f∞,p|γp2V4,r =

η5
2η2

p2

η5
2p2η2 = f0,p.

Proposition 7.43. Let p ≥ 5 be a prime. Then f∞,p|γ2p2 = f1/2,p.

Proof. Let δ 6= 4 be a divisor of 4. Then by Lemma 2.34 ηδ
ηδp2

∈ A0(2p2) we have

ηδ

ηδp2

|γ2p2 =
ηδ

ηδp2

. (7.57)

Let ξ1 :=
(

2
1

−p2

(1−p2)/2

)

and ξ2 :=
(

2
p2

−1
(1−p2)/2

)

. Then

V4p2γ2p2 = ξ1Vp2V2,1,2 and V4γ2p2 = ξ2V2,1,2.
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This relations imply:

η4p2

η4
|γ2p2 =

η|V4p2

η|V4
|γ2p2 =

η|V4p2γ2p2

η|V4γ2p2

=
η|ξ1Vp2V2,1,2

η|ξ2V2,1,2
. (7.58)

Next we use a derivation analog to the one used to prove (7.55) to show that

η|ξ1Vp2V2,1,2

η|ξ2V2,1,2
=

η|Vp2V2,1,2

η|V2,1,2
. (7.59)

By (7.59) and (7.58) we obtain

η4p2

η4
|γ2p2 =

η|ξ1Vp2V2,1,2

η|ξ2V2,1,2
=

η|Vp2V2,1,2

η|V2,1,2
. (7.60)

Next we exploit the well known relation (which is proven elementary after writing the eta
products as infinite q-products):

eπi/24η3
2

η4η
= η|V2,1,2. (7.61)

Because of (7.60) and (7.61) we obtain:

η2
4p2

η2
4

|γ2p2 =
η2|Vp2V2,1,2

η2|V2,1,2
=

(η|V2,1,2)
2|Vp2

(η|V2,1,2)2
=

(
η3
2

η4η

)2
|Vp2

(
η3
2

η4η

)2 =
η2η2

4η
6
2p2

η2
p2η

2
4p2η

6
2

. (7.62)

By definition f∞,p =
η5
2η2

4p2

η5
2p2η2

4
, which implies together with (7.57) and (7.62) that

f∞,p|γ2p2 =
η2η2

4η2p2

η2
p2η

2
4p2η2

= f1/2,p.

Lemma 7.44. Let p ≥ 5 and f ∈ R2(p
2), then F∞f

F∞|Vp2
|Up = f∞,pf |Up ∈ R1(p).

Proof. We see that F∞f
F∞|Vp2

|Up ∈ A0(4p) by Lemma 3.24. It only remains to show that (7.7)

is satisfied. By Definition 7.7 and the Propositions 7.42 and 7.43 we obtain:

0 =F0(f |γp2V4,−1) − (F∞|V4)(f |V4) − 2(F1/2|V4)(f |γ2p2V4)

=(F0|Vp2)
F0

Fr0 |Vp2

(f |γp2V4,−1) − (F∞|V4p2)
F∞|V4

F∞|V4p2

(f |V4)

−2(F1/2|V4p2)
F1/2|V4

F1/2|V4p2

(f |γ2p2V4)

=(F0|Vp2)f0,p(f |γp2V4,−1) − (F∞|V4p2)(f∞,p|V4)(f |V4)

−2(F1/2|V4p2)(f1/2,p|V4)(f |γ2p2V4)

=(F0|Vp2)(f∞,pf |γp2V4,−1) − (F∞|V4p2)(f∞,pf |V4)

−2(F1/2|V4p2)(f∞,pf |γ2p2V4)

=0.

Next we apply the Up operator to the last line above and use Lemma 7.39 and Proposition
7.40 as in the proof of Lemma 7.41 to get the desired result.
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We are now ready to prove the main goal of this section.

Lemma 7.45. p0 ∈ R1(5) and p1 ∈ R2(5).

Proof. In the previous chapter, section 6.6 “The Fundamental Relations”, the first relation
of Group I is:

(Au−4|U5) = −5t + 25p0 (7.63)

where A =
η5
2η2

100

η5
50η2

4
by (6.3), u = η

η25 by (6.4) and t =
η6
5

η6 by Definition 6.6. By Corollary 7.14

u−4 ∈ R2(5
2) and t ∈ R1(5) (7.64)

because u−4 ∈ A0(5
2), t ∈ A0(5) by Lemma 2.34. By Lemma 7.44 we have

Au−4|U5 ∈ R1(5) (7.65)

because of (7.64) and because of f∞,5 = A by (7.5). Noting that R2(5) is a vector space over
C we obtain by (7.63), (7.64) and (7.65)

1

25
(Au−4|U5) +

1

5
t = p0 ∈ R1(5). (7.66)

In the previous chapter, section 6.6, the second relation of Group IV is:

p0t
−2|U5 = −55t2 − 14·52t + 7 − 5p1. (7.67)

By Lemma 7.10 we have
p0t

−2 ∈ R1(5) (7.68)

because of (7.66) and because of t−2 ∈ A0(5) by Lemma 2.34. By Lemma 7.41 and because
of (7.68) we have

p0t
−2|U5 ∈ R2(5) (7.69)

Next observe by Corollary 7.14

−55t2 − 14·52t + 7 ∈ R2(5) (7.70)

because by Lemma 2.34 1, t, t2 ∈ A0(5) and because A0(5) is a vector space over C. Next we
use that R2(5) is a vector space over C which implies by linearity together with (7.67), (7.69)
and (7.70)

1

5
(p0t

−2|U5) + 54t2 + 14·5t − 7

5
= p1 ∈ R2(5).

7.7 The A0(5)-module R1(5) is Generated by {1, p0}
Lemma 7.46. Let δ be a positive divisor of 4. Then for all τ ∈ H we have

(ηδ|γ52V4,−1)(τ) = e2πi(δ−24/δ−3)/24

(
100τ − 24

δ

)1/2

η4/δ(τ)

and

(η5δ|γ52V4,−1)(τ) =

(−24/δ

5

)

e2πi·5(δ−24/δ−3)/24

(
100τ − 24

δ

)1/2

η20/δ(τ).
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Proof. Because of the matrix relations

(
4δ −δ

4·52 −24

)

=

(
δ

52

−1

−24/δ

)

V4,0,δ and

(
20δ −5δ
4·52 −24

)

=

(
δ −5
5 −24/δ

)

V20,0,δ

we have by Lemma 2.27:

(ηδ|γ52V4,−1)(τ) = η

(
4δτ − δ

4·52τ − 24

)

= η

(

δ 4τ
δ − 1

52 4τ
δ − 24/δ

)

= υη(δ,−1, 52,−24/δ)

(
100τ − 24

δ

)1/2

η

(
4τ

δ

)
(7.71)

and

(η5δ|γ52V4,−1)(τ) = η

(
20δτ − 5δ

4·52τ − 24

)

= η

(

δ 20τ
δ − 5

520τ
δ − 24/δ

)

= υη(δ,−5, 5,−24/δ)

(
100τ − 24

δ

)1/2

η

(
20τ

δ

)
(7.72)

where

υη(δ,−5, 5,−24/δ) =

(−24/δ

5

)

e2πi·5(δ−24/δ−3)/24

and

υη(δ,−1, 52,−24/δ) = e2πi·25(δ−24/δ−3)/24

because of (2.30).

Corollary 7.47. Let

t :=
η6
5

η6
, ρ :=

η2η
3
10

η3
4η20

, σ :=
η2
2η

4
5

η4η2
10

.

Then
t|γ0V20 = 1

53 t−1|V4, t|γ52V4,−1 = t|V4,

ρ|γ0V20 = 22

5
η10η3

2

η3
5η

, ρ|γ52V4,−1 = −4
η2η3

10
η3η5

,

σ|γ0V20 = 1
5

η2
10η4

4

η4
20η2

2
, σ|γ52V4,−1 =

η2
2η4

20

η4
4η2

10
.

Proof. By Corollary 7.30 we have t|γ0V5 = 5−3t−1 implying t|γ0V20 = 1
53 t−1|V4 and t|γ52V4,−1 =

t|V4 follows immediately from t ∈ A0(5) by Lemma 2.34. For the other cases we apply Lemma
7.29 and Lemma 7.46. By Lemma 7.29

(ρ|γ0V20)(τ) =
(η2|γ0V20)(τ)(η3

10|γ0V20)(τ)

(η3
4|γ0V20)(τ)(η20|γ0V20)(τ)

=
e−πi/4(20τ/2)1/2η20/2(τ)e−3πi/4(20τ/10)3/2η3

20/10(τ)

e−3πi/4(20τ/4)3/2η3
20/4(τ)e−πi/4(20τ/20)1/2η20/20(τ)

=
22

5

η10η
3
2

η3
5η

(τ)
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and by Lemma 7.46

(ρ|γ52V4,−1)(τ) =
(η2|γ52V4,−1)(τ)(η3

10|γ52V4,−1)(τ)

(η3
4|γ52V4,−1)(τ)(η20|γ52V4,−1)(τ)

=
e−2πi 13

24

(
100τ−24

2

)1/2
η4/2(τ)(−1)3e−2πi 195

24

(
100τ−24

2

)3/2
η3
20/2(τ)

e−2πi 15
24

(
100τ−24

4

)3/2
η3
4/4(τ)e−2πi 25

24

(
100τ−24

4

)1/2
η20/4(τ)

= −4
η2η

3
10

η3η5
(τ)

for τ ∈ H. The formulas corresponding to σ are proved analogously.

Lemma 7.48. Let p0 be as in Definition 6.6. Then the elements in {1, p0} generate R1(5)
as a C[t, t−1]-module.

Proof. First we note by Lemma 7.45 that p0 ∈ R1(5). We see by Definition 6.6 that p0 is a
polynomial in t, ρ and σ and we use Corollary 7.47 and (2.26) to compute

(p0 − 25t2|γ52V4,−1) = q4 + 2q5 − 6q8 + 32q9 − 4q10 − 105q12 + 286q13 − 64q14 + 8q15 + · · ·

and

(p0 − 25t2|γ0V20) = 625−1(−2q−7 + 4q−6 − 8q−5 + 25q−4 − 20q−3 + 32q−2 − 48q−1 + 6 + · · · ).

This implies that ord(p0 − 25t2|γ52V4,−1) = 4 and ord(p0 − 25t2|γ0V20) = −7. Using this and
Lemma 7.36 we find that OrdΓ0(20)(p0 − 25t2, γ52) = 4 and OrdΓ0(20)(p0 − 25t2, γ0) = −7.
Then Lemma 7.35 shows that {1, p0 − 25t2} generate R1(5) as a C[t, t−1]-module from which
follow that also {1, p0} are generators.

7.8 The A0(5)-module R2(5) is Generated by {1, p1}
The main result will be proved as a corollary of the next lemma. Recall t, p0, p1 from
Definition 6.6 and ξ from Definition 7.22.

Lemma 7.49. The following identities hold:

p0 = 25t2 + 14t + 1 + 25(p1|ξ5,11)t
2 (7.73)

(t|ξ5,11) = 5−3t−1 (7.74)

(p0|ξ5,11) = 5−4t−2 + 14·5−3t−1 + 1 + 5−4p1t
−2. (7.75)

Proof. Proof of (7.73): By Lemma 7.23 p1|ξ5,11 ∈ R1(5), implying

(p1|ξ5,11)t
2 ∈ R1(5) (7.76)

by Lemma 7.10. By Corollary 7.14,

25t2 + 14 + t + 1 ∈ R1(5). (7.77)

Finally by Lemma 7.45, p0 ∈ R1(5), which implies together with (7.76) and (7.77) that
f := 25t2 + 14t + 1 + 25(p1|ξ5,11)t

2 − p0 ∈ R1(5) (because R1(5) is vector space over C).
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We must prove that f = 0. Assume by contradiction that f 6= 0. Then by Lemma 7.37
OrdΓ0(20)(f, γ0) < −3 or OrdΓ0(20)(f, γ52) < 4, which by Lemma 7.36 is equivalent to showing

ord(f |γ0V20) < −3 or ord(f |γ52V4,−1) < 4. (7.78)

We will compute explicitly the f below and show that (7.78) is not satisfied giving a contra-
diction to (7.78).

By (7.33) in Lemma 7.23 we have

(p1|γ0V20) = (p1|ξ5,11)|γ52V4,−1 (7.79)

and (p1|ξ5,11)|γ0V20 = ((p1|ξ5,11)|ξ5,11)|γ52V4,1 which by (7.36) implies that

(p1|ξ5,11)|γ0V20 = p1|γ52V4,−1. (7.80)

By (7.79)

f |γ52V4,−1 = (25t2 + 14t + 1|γ52V4,−1) + 25(p1|γ0V20)(t
2|γ52V4,−1) − (p0|γ52V4,−1) (7.81)

and by (7.80)

f |γ0V20 = (25t2 + 14t + 1|γ0V20) + 25(p1|γ52V4,−1)(t
2|γ0V20) − (p0|γ0V20). (7.82)

Next by using Definition 6.6, Corollary 7.47 and (2.26) we find (by computer) that:

53(t|γ0V20) = q−4 − 6 + 9q4 + 10q8 − 30q12 + · · · ,

56(t2|γ0V20) = q−8 − 12q−4 + 54 − 88q4 − 99q8 + · · · ,

54(p0|γ0V20) = q−8 − 2q−7 + 4q−6 − 8q−5 + 13q−4 − 20q−3 + 32q−2 + · · · ,

52(p1|γ0V20) = −q−8 − q−4 + 2q−3 + 12 + 8q − 4q2 + · · · ,

(t|γ52V4,−1) = q4 + 6q8 + 27q12 + 98q16 + 315q20 + · · · ,

(t2|γ52V4,−1) = q8 + 12q12 + 90q16 + 520q20 + 2535q24 + · · · ,

(p0|γ52V4,−1) = q4 + 2q5 + 19q8 + 32q9 − 4q10 + 195q12 + 286q13 + · · · ,

(p1|γ52V4,−1) = −2q + 4q2 − 8q3 − 45q4 − 44q5 + 80q6 − 144q7 − 739q8 + · · · ,

which are plugged into (7.81) and (7.82) to verify OrdΓ0(20)(f, γ52) ≥ 4 and OrdΓ0(20)(f, γ0) ≥
−3 proving by Lemma 7.37 that f = 0.

Proof of (7.74): One can easily verify that ξ5,11 ∈ Γ0(5)γ0V5 which together with t ∈ A0(5)
by Lemma 2.34 implies (t|ξ5,11) = (t|γ0V5) and by Corollary 7.30 (t|γ0V5) = 5−3t−1.

Proof of (7.75): This identity follows by applying |ξ5,11 to (7.73) and using (7.74) together
with (7.36) in Lemma 7.23.

Corollary 7.50. R2(5) is generated by {1, p1} as a C[t, t−1]-module.

Proof. Let f ∈ R2(5). Then f |ξ5,11 ∈ R1(5) by Lemma 7.23. By Lemma 7.48 there exist
Laurent polynomials q1(t), q2(t) ∈ C[t, t−1] such that f |ξ5,11 = q1(t) + p0q2(t) and by (7.36)
in Lemma 7.23 we obtain

(f |ξ5,11)|ξ5,11 = f = q1(t|ξ5,11) + (p0|ξ5,11)q2(t|ξ5,11)

which by (7.74) and (7.75) rewrites into

f = q1(5
−3t−1) + (5−4t−2 + 14·5−3t−1 + 1 + 5−4p1t

−2)q2(5
−3t−1)

proving the desired representation for f .
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