
Polynomial Arithmeti

and Linear Systems

in Symboli Summation

Dissertation

zur Erlangung des akademishen Grades

,,Doktor der tehnishen Wissenshaften\

verfasst von

Fabrizio Caruso

am

Institut f�ur Symbolishes Rehnen (RISC)

Tehnish-Naturwissenshaftlihe Fakult�at

Johannes Kepler Universit�at Linz

Dezember 2002

Erster Begutahter: a.Univ.-Prof. Dr. Peter Paule

Zweiter Begutahter: o.Univ.-Prof. Dr. Franz Winkler

Eidesstattlihe Erkl�arung

Ih versihere, dass ih die Dissertation selbst�andig verfasst habe, andere als die

angegebenen Quellen und Hilfsmittel niht verwendet und mih auh sonst keiner

unerlaubten Hilfe bedient habe.

Linz, Dezember 2002

Fabrizio Caruso

i

ii

Abstrat

The objet of the thesis is twofold. Firstly we improve Zeilberger's algorithm for

symboli de�nite hypergeometri summation by interpolating the solutions of the

related system of linear equations with rational funtion oeÆients. Seondly

we develop a C++/Mathematia program library for polynomial arithmeti that

implements fast multipliation of sparse polynomials and some of the operations

related to homogeneous linear diophantine inequalities and equations as studied

in MaMahon's partition analysis and in its algorithmi version (
-alulus),

namely exponentiation of low degree polynomials and division by powers of low

degree polynomials.

Zusammenfassung

Diese Dissertation setzt sih aus zwei Teilen zusammen. Zum einen besh�aftigen

wir uns mit der Verbesserung des Algorithmus von Zeilberger zur symbolishen

de�niten hypergeometrishen Summation mittels Interpolation der L�osungen des

korrespondierenden Systems von linearen Gleihungen mit rationalen Funktio-

nen als KoeÆzienten. Zum anderen entwikeln wir eine C++/Mathematia

Programm-Bibliothek f�ur polynomiale Arithmetik, die die shnelle Multiplika-

tion von d�unn besetzen Polynomen sowie einige der Operationen, die in Sys-

temen von homogenen linearen diophantishen Ungleihungen und Gleihungen

auftreten, implementiert, die in der Partitionsanalyse von MaMahon und ihrer

algorithmishen Fassung (
-Kalk�ul) vorkommen, n�amlih Exponenzierung von

Polynomen niedrigen Grades und Division durh Potenzen von Polynomen niedri-

gen Grades.

iii

iv

I would like to dediate my dissertation to my parents Giuseppe Caruso and

Margherita Mirabella and to my dear grandmothers Vinenza and Margherita

that have supported and enouraged me during my studies.

Dedio la mia tesi ai miei genitori Giuseppe Caruso e Margherita Mirabella e

alle mie are nonne Vinenza e Margherita he tanto mi hanno aiutato e inor-

aggiato durante i miei studi.

v

vi

Aknowledgments

I would like to thank my adviser Prof. P. Paule who has helped me during my

studies at the RISC institute with his ontagious enthusiasm and with many

suggestions.

I would not have survived at RISC without the help and friendship of the

other members or the institute and in partiular of the members of the Com-

binatoris Group: Cleopatra Pau, Axel Riese, Carsten Shneider and Burkhard

Zimmermann with whom I have had pleasant disussions on both mathematial

and profane topis.

I also thank Erhard Aihinger of the Universal Algebra group at the University

of Linz, who has given me useful suggestions.

A thank goes to my olleagues Ralf Hemmeke and Manuel Kauers for their

patient help with Unix and L

A

T

E

X tehnialities.

vii

viii Aknowledgments

Contents

Introdution 1

Struture of the Thesis 5

Main Contributions 7

Basi Notations 9

I Zeilberger's Algorithm in the Masyma and Maxima

Computer Algebra Systems 11

1 Zeilberger's Algorithm in Masyma 13

1.1 Introdution . 13

1.2 Some Theory . 14

1.2.1 Some Fundamental De�nitions 14

1.2.2 Some Fundamental Fats 15

1.3 The Algorithms . 15

1.3.1 Gosper's Algorithm . 15

1.3.2 Zeilberger's Algorithm . 17

1.4 The Implementation . 19

1.4.1 Gosper's Algorithm . 20

1.4.2 Zeilberger's Fast Algorithm 20

1.5 Performane . 20

1.5.1 Timings . 21

1.5.2 Stability . 21

1.5.3 Future Improvements . 21

1.6 Manual . 22

1.6.1 Loading the �les . 22

1.6.2 The Commands . 22

1.7 Some Examples . 24

1.8 The Code . 31

1.8.1 Low Level Routines . 31

ix

x CONTENTS

1.8.2 Gosper Form Routines . 32

1.8.3 Gosper Equation Routines 33

1.8.4 Gosper's and Zeilberger's Algorithm 33

II Solving Systems of Linear Equations by Interpola-

tion 35

2 Cramer Driven Interpolation 37

2.1 Introdution . 37

2.2 Notation . 37

2.3 The Homogeneous Problem . 38

2.4 Rational CoeÆients . 39

2.4.1 De�nitions . 40

2.4.2 Modular Approah . 41

2.4.3 Bounding the Solutions . 44

2.5 Rational Funtions . 45

2.5.1 De�nitions . 45

2.5.2 Interpolation . 45

2.5.3 Bounding the Degrees of the Solutions 46

2.5.4 A Combination of the two Approahes 47

2.6 Distributed Computation . 47

2.7 The Pakage . 48

2.7.1 Loading the Pakages . 49

2.7.2 The Commands . 49

2.8 Conlusion . 51

3 Rational Interpolation 53

3.1 Introdution . 53

3.2 Reonstruting Rational Funtions 53

3.3 Cauhy Interpolation . 54

3.4 Pad�e Approximation . 56

3.5 Homogeneous Linear Systems . 57

3.5.1 The First Try . 58

3.5.2 A Heuristi Method . 58

3.5.3 A Reursive Method . 58

3.5.4 A Hybrid Method . 58

3.6 The Pakage . 59

3.6.1 The Commands . 59

3.6.2 Modular Null Spae Computation 60

3.6.3 Completing the Null Spae 62

3.6.4 Hybrid Modular Symboli Null Spae 63

3.6.5 Rational Funtion Interpolation 66

CONTENTS xi

3.7 Conlusion . 67

4 Linear Systems in Zeilberger's Algorithm 69

4.1 Introdution . 69

4.2 The Abstrat Model . 69

4.2.1 Notation . 69

4.2.2 The Fundamental Bijetion 70

4.2.3 More General Bijetions 74

4.2.4 Some Useful Properties . 76

4.2.5 Cardinality . 77

4.2.6 Maximal Cardinality Property 78

4.3 Shift Quotients in Zeilberger's Algorithm 79

4.3.1 Notation and De�nitions 80

4.3.2 Interpretation of the Model 81

4.3.3 Gosper Equation . 89

4.3.4 Lower Bounds on Degrees 91

4.3.5 Some Examples . 92

4.4 Conlusion . 93

III Polynomial Arithmeti Library 95

5 Combinatorial Interpretation of Division 97

5.1 Introdution . 97

5.2 De�nitions . 97

5.3 Existene of the Inverse . 99

5.4 Relation between C and q . 100

5.5 General Reurrene for C(i) . 102

5.6 Lifting to the b(x

�

) Case . 103

5.7 Combinatorial Meaning . 104

5.8 Binomial Case . 105

5.8.1 Diagrams of Compositions 107

5.8.2 Combinatorial Proof . 109

5.9 Powers of Polynomials . 114

5.9.1 Initial Values . 116

5.10 The Algorithms . 116

5.10.1 Modular Inverse . 116

5.10.2 Division by Powers of Polynomials 116

5.11 Summary . 117

6 The PolyComb Pakage 119

6.1 Introdution . 119

6.2 Struture of the Library . 119

xii CONTENTS

6.2.1 The Mathematia Component 119

6.2.2 The C++ Component . 120

6.2.3 The Communiation . 121

6.3 Relations among Classes . 122

6.4 The Algorithms . 122

6.4.1 Dense Polynomials . 122

6.4.2 Sparse Polynomials . 126

6.5 The Mathematia Component . 127

6.5.1 Loading . 128

6.5.2 The Parser . 128

6.5.3 The Mathematia Commands 132

6.6 The C++ Library . 134

6.6.1 Sparse Polynomial Library 135

6.6.2 Dense Polynomial Library 138

6.7 A Small Program . 140

6.8 Benhmarks . 141

6.8.1 Measurements . 142

6.8.2 Polynomial Multipliation and Expansion 142

6.8.3 Polynomial Exponentiation 144

6.9 Conlusion . 145

Appendix A 147

Appendix B 149

Curriulum Vitae 153

Bibliography 155

Index 159

Introdution

The objet of the thesis is twofold: improving Zeilberger's algorithm for symboli

de�nite hypergeometri summation by reonstruting the solutions of the related

system of linear equations with rational funtion oeÆients by interpolation,

and reating a library for polynomial arithmeti that implements some of the

operations related to homogeneous linear diophantine inequalities and equations,

namely fast multipliation of sparse polynomials, exponentiation of low degree

polynomials, division by powers of low degree polynomials. The �rst objet is

overed in the �rst two parts (hapters 1, 2, 3, 4) and the seond by the last part

(hapters 5, 6).

Zeilberger's algorithm (see [Zei90℄, [Zei91℄) is the standard omputational

method for symboli de�nite hypergeometri summation. Its omputational

bottle-nek is a sparse system of linear equations with rational funtion oef-

�ients. The �rst two parts of the thesis deal with the implementation of the

algorithm, with two di�erent approahes aimed at speeding up the solution of

systems of linear equations with rational funtion oeÆients by polynomial and

rational interpolation, and with a new abstrat model that gives information on

the degree of the solutions to the systems of linear equations related to Zeil-

berger's algorithm.

The third part of the thesis deals with the ombinatorial interpretation and

with the implementation of some operations between polynomials that appear

as subproblems in the algorithms that implement MaMahon's
-alulus (see

[Ma16℄, [APR01a℄, [AP99℄, [APRS℄, [APR01℄, [APR01d℄, [APR01e℄, [APR01b℄),

whih is a omputational method for solving problems in onnetion with linear

homogeneous diophantine inequalities and equations.

The �rst part of the thesis (Zeilberger's Algorithm in the Masyma and Max-

ima Computer Algebra Systems) onsists of one hapter:

� Chapter 1: Zeilberger's Algorithm in Masyma

In this hapter we desribe Zeilberger's algorithm and our implementation

on the Masyma and Maxima omputer algebra systems. Zeilberger's algorithm

solves the de�nite hypergeometri summation problem, i. e. given a 2-variable

term F (n; k), we want to rewrite the de�nite sum f(n) =

P

n

k=0

F (n; k) in a

1

2 Introdution

form free of

P

. This is done by �nding a speial k-free linear reurrene with

polynomial oeÆients for the summand F (n; k), whih, under the ondition of

natural boundary for F (n; k), an be extended into a k-free homogeneous linear

reurrene for the sum f(n) with polynomial oeÆients. The desired linear

reurrene for the summand has the form:

P

m

i=0

a

i

(n)F (n+ i; k) = G(n; k+1)�

G(n; k). The searh for this reurrene is done by guessing the order m of the left

hand side of this reurrene and then trying to �nd the orresponding G(n; k)

of the right hand side by means of a modi�ed Gosper's algorithm ([Gos78℄). We

note that a priori upper bounds for m an be given; however they turn out to

be too large and therefore not useful for pratial use. Gosper's algorithm for

the inde�nite summation problem solves the hypergeometri telesoping problem,

i.e. given a hypergeometri term t(k), it deides if there is a hypergeometri term

T (k) suh that t(k) = �

k

T (k) = T (k + 1)� T (k), and if it exists, it �nds it.

The seond part (Solving Systems of Linear Equations by Interpolation) on-

tains three hapters:

� Chapter 2: Cramer Driven Interpolation

� Chapter 3: Rational Interpolation

� Chapter 4: Linear Systems in Zeilberger's Algorithm

The �rst two hapters desribe two di�erent methods for solving systems of

linear equations with rational funtion oeÆients. The last hapter deals with

linear systems related to Zeilberger's algorithm and it gives more understanding

of some aspets of Zeilberger's algorithm (whih is desribed in the �rst hapter).

In Chapter 2 (Cramer Driven Interpolation) a well-known algorithm based

on Cramer's rule and on polynomial interpolation is desribed. Suh algorithm

solves overdetermined systems of homogeneous linear equations over Q and over

the �eld of rational funtions over Q under the hypothesis that the null spae is

one-dimensional. The algorithm reonstruts the numerators and denominators

of the omponents of the solutions by omputing di�erent homomorphi systems

over the �nite �elds Z

p

, with p prime.

In Chapter 3 (Rational Interpolation) we give a brief desription of the stan-

dard theory of the rational funtion reonstrution problem, i. e. the problem of

�nding a rational funtion of small degree that is ongruent to some polynomial

modulo some other polynomial. Rational funtion reonstrution has two impor-

tant appliations: rational interpolation and rational funtion approximation.

We have used this theory to build an algorithm that omputes the null spae of a

retangular matrix with entries in Q(y

1

; : : : ; y

n

) by reonstruting some low de-

gree omponents by rational funtion interpolation and the others symbolially.

This is done by plugging the omponents reonstruted by rational funtion in-

terpolation into the system in order to simplify it. This approah generalizes the

Introdution 3

previous work [RZ℄ on methods for speeding up hypergeometri summation. In

suh a way the new system an beome solvable by Gaussian elimination over

Q(y

i

1

; : : : ; y

i

r

) with 1 � i

j

� n and r < n. Alternatively the system an be solved

by iterating the proedure on the remaining variables.

In Chapter 4 (Linear Systems in Zeilberger's Algorithm) we onstrut an ab-

strat model to study the degree of the polynomial oeÆients of the linear re-

urrene whih is omputed by Zeilberger's algorithm. Given a proper hyperge-

ometri term F (n; k) and a linear shift operator L of order d with polynomial

oeÆients, we prove that the Gosper form (p(n; k), q(n; k), r(n; k)) of the shift

quotient in k of LF (n; k) is suh that the degree in n of q(n; k) and r(n; k) an be

bounded independently of d. This gives some insight on the degree in n of all the

polynomial oeÆients a

i

(n) of the linear reurrene satis�ed by F (n; k) that is

omputed by Zeilberger's algorithm. We do this in two steps: �rstly by proving

the existene of ertain bijetions between subsets of the natural numbers whih

reet the properties of the Gosper form; seondly by interpreting this abstrat

model in terms of the polynomials involved in the Gosper form.

The third part of the thesis (Polynomial Arithmeti Library) ontains two

hapters:

� Chapter 5: Combinatorial Interpretation of Division

� Chapter 6: The Polynomial Pakage

In Chapter 5 (Combinatorial Interpretation of Division) we give a ombinato-

rial interpretation of polynomial division and of modular inverse of a polynomial.

Suh interpretation relates the oeÆients of the modular inverse of a polyno-

mial with ompositions (i. e. ordered partitions) of non-negative integers. We

will desribe the reurrene for the oeÆients of the polynomial y(x) suh that

p(x) �y(x) � 1 mod x

l

, where l is a non-negative integer and p(x) is an invertible

polynomial over a ring R, i. e. x - p(x), for whih therefore y(x) exists. We will

use a transendental extension of R as a tool to study this reurrene.

Chapter 6 (The Polynomial Pakage) ontains a desription of algorithms and

the struture of a C++/Mathematia library for fast polynomial arithmeti and

a manual of both the Mathematia omponent and the C++ omponent of the

library. The library has two parts: a C++ implementation of fast polynomial

arithmeti for dense and sparse polynomials, and a Mathematia [Wol99℄ inter-

fae whih makes it possible to use the library from within the Mathematia

environment. The implemented methods and operators between polynomials in-

volve addition, multipliation, exponentiation and division with remainder and

various other auxiliary methods.

The C++ omponent of the library makes full use of the objet oriented

paradigm and of generi programming through the extensive use of templates.

4 Introdution

Thus polynomials over rings are de�ned over any ring of oeÆients that provide

the neessary methods (operations) required by a ring.

Struture of the Thesis

Zeilberger's Algorithm in

Masyma

Chapter 1

First implementation

on a publi domain

system

Cramer Driven

Interpolation

Chapter 2

It ould be used

to parallelize

Zeilberger's Algorithm

Combinatorial Interpretation

of Division

Relation between

polynomial division

and integer

ompositions

Chapter 5

Zeilberger's Algorithm

Chapter 3

a probabilisti

It an be used for

Rational Interpolation

Implementation of fast

polynomial arithmeti

related to some

ombinatorial problems

The Polynomial Pakage

Chapter 6

Chapter 4

Zeilberger's Algorithm

to undertsand

New abstrat model

Zeilberger's Algorithm

Linear Systems in

Part 2 Part 3Part 1

Zeilberger's Algorithm in the

Masyma and Maxima

Computer Algebra Systems

Solving Systems of Linear

Equations by Interpolation

Polynomial Arithmeti

Library

Polynomial ArithmetiLinear Systems

5

6 Struture of the Thesis

Main Contributions

The following items present a ondensed list of my sienti� ontributions whih

I have ahieved in my PhD thesis work and whih are new.

� The �rst implementation of Zeilberger's algorithm for de�nite hypergeo-

metri summation in the Maxima and Masyma omputer algebra systems.

(Chapter 1)

� Two Mathematia libraries for the omputation of the null spae of a ho-

mogeneous system of linear equations by interpolation. The seond library

uses a hybrid method based on rational interpolation that generalizes [RZ℄

(Chapter 2 and Chapter 3).

� A Combinatorial model that interprets the Gosper form of a rational fun-

tion in a new way. The appliation of this model to the study of the degree

of the omponents of the solutions of the linear systems related to Zeil-

berger's algorithm (Chapter 4).

� Combinatorial interpretation of the omputation of polynomial division and

of the modular inverse of a polynomial in terms of integer ompositions

(Chapter 5).

� A C++/Mathematia library for polynomial arithmeti with speial fous

on the omputation of modular powers of polynomials and division by pow-

ers of polynomials (Chapter 6).

7

8 Main Contributions

Basi Notations

N set of non-negative integer numbers

Z ring of integer numbers

Z

p

�eld of the residue lasses modulo p (p is a prime)

Q �eld of rational numbers

; empty set

R[x℄ ring of polynomials in x over the ring R

R[x

1

; : : : ; x

n

℄ ring of polynomials in x

1

,. . . ,x

n

over the ring R

R[[x℄℄ ring of power series in x over R

R

m;n

ring of m� n matries over the ring R

F (x) �eld of rational funtions over the �eld F

jaj absolute value of a

jAj determinant of A

jjajj

1

1-norm of a vetor

jjajj

2

Eulidean norm of a vetor

ajb a divides b

a - b a does not divide b

dae smallest integer greater or equal to a (a is real)

ba greatest integer less or equal to a (a is real)

[a

1

; : : : ; a

n

℄ n-tuple of a

1

,. . . ,a

n

O omplexity lass in the sense of [GKP94℄

i� \if and only if"

:= assignment

� end of proof

9

10 Basi Notations

Part I

Zeilberger's Algorithm in the

Masyma and Maxima Computer

Algebra Systems

11

Chapter 1

Zeilberger's Algorithm in

Masyma

1.1 Introdution

We present the �rst implementation within the Masyma and Maxima om-

puter algebra systems (see [Sh℄, [Ma96℄) of Zeilberger's Fast Algorithm for

the de�nite summation problem for the large lass of proper hypergeometri

terms, i. e. given a 2-variable term F (n; k), we want to rewrite the de�nite sum

f(n) =

P

n

k=0

F (n; k) in a form free of

P

. We do this by �nding a speial k-free

linear reurrene with polynomial oeÆients for the summand F (n; k), whih,

under the ondition of natural boundary for F (n; k), an be extended into a k-free

homogeneous linear reurrene for the sum f(n) with polynomial oeÆients. The

desired linear reurrene for the summand has the form:

P

m

i=0

a

i

(n)F (n+ i; k) =

G(n; k + 1) � G(n; k). The searh for this reurrene is done by guessing the

order m of the left hand side of this reurrene and then trying to �nd the

orresponding G(n; k) of the right hand side by means of a modi�ed Gosper's

algorithm (We note that a priori upper bounds for m an be given; however they

turn out to be too large and therefore not useful for pratial use). A new version

of Gosper's algorithm for this purpose has also been implemented and inluded

in this pakage.

Gosper's algorithm for the inde�nite summation problem solves the hyperge-

ometri telesoping problem, i. e. given a hypergeometri term t(k), it deides if

there is a hypergeometri term T (k) suh that t(k) = �

k

T (k) = T (k+1)�T (k),

and if it exists, it �nds it.

The standard Gosper's algorithm annot be used in Zeilberger's algorithm

beause it does not take into aount that there are some polynomial parameters.

Therefore a modi�ed version of this algorithm, in whih the polynomial unknown

parameters a

i

's are taken into aount, has been implemented and it is used by

our implementation of Zeilberger's algorithm to ompute the right hand side of

13

14 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

the desired reurrene.

These implementations do not onsider the more general q-ase, for whih

a Mathematia version has already been developed at RISC, University of Linz,

Austria (see [PR97℄). Moreover we remark that at RISC a Mathematia version of

Zeilberger's fast algorithm for the ordinary ase q = 1, onsidered in this report,

has already been implemented by Paule and Shorn [PS95℄. Both pakages are

available at the world wide web address

http://www.ris.uni-linz.a.at/researh/ombinat/ris/

1.2 Some Theory

We now introdue the basi de�nitions of the theory of de�nite and inde�nite

hypergeometri summation and some fundamental results of the theory whih

are neessary for the orretness of Zeilberger's fast algorithm and Gosper's al-

gorithm.

For a formal desription of Gosper's algorithm and Zeilberger's fast algorithm

and of the proofs of their orretness we refer to Gosper's original paper [Gos78℄

and to Zeilberger's papers [Zei90℄, [Zei91℄, respetively. For a tutorial desription

of these algorithms we refer to [GKP94℄ and [PWZ97℄.

1.2.1 Some Fundamental De�nitions

We are interested in treating sequenes (t(n))

n

but in our algebrai setting we

will treat terms t(n) with free variable n over the integers.

De�nition 1.2.1. Given a term t(n) over a �eld K of harateristi 0, we all

t(n + 1)=t(n) shift quotient of t(n).

De�nition 1.2.2. A term t(n) over a �eld K of harateristi 0 is said to be

hypergeometri if and only if the shift quotient t(n+1)=t(n) is a rational funtion

in n with oeÆients in K.

We an extend this de�nition to multivariate terms in the natural way:

De�nition 1.2.3. A term t(x

1

; : : : x

m

) over a �eld K of harateristi 0 is said to

be hypergeometri with respet to x

s

, where 1 � s � m, if and only if the quotient

t(x

1

; : : : ; x

s

+ 1; : : : x

m

)=t(x

1

; : : : ; x

m

) is a rational funtion in n with oeÆients

in K.

1.3. THE ALGORITHMS 15

De�nition 1.2.4. Given a 2-variable term F (k; n) over a �eld K of harateristi

0 is said proper hypergeometri if and only if it is in the following form:

F (n; k) = p(n; k)

Q

I

i=0

(a

i

k + b

i

n +

i

)!

Q

J

j=0

(d

j

k + e

j

n + f

i

)!

x

k

where p(k; n) is a polynomial in k and n, and a

i

, b

i

,

i

d

j

, e

j

, f

i

are integers and

x is a parameter.

This de�nition extends in the natural way to m-variable ase, where m � 2.

1.2.2 Some Fundamental Fats

In the following we will always denote by K a �eld of harateristi 0.

Property 1.2.1. Given a hypergeometri term t(n) over a �eld K. If there is

a hypergeometri term T (n) suh that t(n) = T (n + 1) � T (n), then we have

t(n + 1)=t(n) = r(n)T (n) where r(n) is a rational funtion.

Property 1.2.2. Any proper hypergeometri term F (n; k) is hypergeometri with

respet to n and k.

Theorem 1.2.3. (Existene of a k-free reurrene) Let F (n; k) be a proper

hypergeometri term, then F satis�es a nontrivial reurrene of the form:

m

X

i=0

a

i

(n)F (n; k) = G(n; k + 1)�G(n; k); (1.1)

where G(n; k)=F (n; k) is a rational funtion in n and k.

We will refer to the rational funtion G(n; k)=F (n; k) of Theorem 1.2.3 as

\rational erti�ate".

1.3 The Algorithms

1.3.1 Gosper's Algorithm

Gosper's algorithm solves the hypergeometri inde�nite summation problem:

given a hypergeometri term t(n), it deides whether there exists another hy-

pergeometri term T (n) suh that t(n) = T (n+1)�T (n). See Algorithm 1.1 for

the pseudo-ode.

16 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Algorithm 1.1 Gosper's Algorithm

Input: A hypergeometri term t(n) over a �eld K of harateristi 0.

Output: If there is a hypergeometri term T (n) suh t(n) = T (n + 1) � T (n),

then return T (n), else return ``no hypergeometri solution''

1: Compute rat

t

(n) := t(n + 1)=t(n);

2: Write rat

t

(n) in the following form:

rat

t

(n) =

p(n + 1)

p(n)

q(n)

r(n+ 1)

(1.2)

where gd(q(n); r(n+ j)) = 1 for all positive integers j's, and p, q, and r are

polynomials. This proess is desribed in detail in Chapter 4 in Algorithm 4.1.

3: Solve the following linear polynomial reurrene equation:

p(n) = q(n)s(n+ 1)� r(n)s(n); (1.3)

where the polynomial s(n) is the unknown.

4: if no s(n) found then

5: return ``no hypergeometri solution''

6: else

7: return

T (n) =

1

(

s(n+1)

s(n)

q(n)

r(n)

� 1)

� t(n):

1.3. THE ALGORITHMS 17

Remark 1.3.1. The speial form for the rational funtion rat

t

, alled Gosper

ondition, (see Algorithm 1.1) an be omputed by foring the gd ondition by

resultant omputation and simple rewriting. For more details see Algorithm 4.1.

In the proper hypergeometri ase, this step an also be done by simple inspetion.

Remark 1.3.2. The linear reurrene equation (4.71) in Algorithm 1.1, known as

Gosper equation, an be omputed by plugging into it a polynomial with unknown

oeÆients, whose degree an be properly bounded. For more details on how to

bound the degree of the polynomial we refer to [GKP94℄, page 227.

Why it works

For a formal proof of the orretness of this algorithm we refer to [PWZ97℄,

[Gos78℄, [Sh95℄ and [GKP94℄, pages 223{241.

The idea of this algorithm is that we an rewrite an inde�nite hypergeometri

summation problem into a linear reurrene. In fat, by Property 1.2.1 and Prop-

erty 1.2.2, we have that the solution T (n) of the inde�nite summation problem

and the input funtion t(n) must di�er by a fator given by rational funtion r(t):

T (n) = r(n)t(n):

By plugging this into the desired property: t(n) = T (n + 1) � T (n) and by

dividing both sides by t(n), we obtain the following reurrene equation over

rational funtions:

1 = r(n+ 1)rat

t

(n)� r(n)

where rat

t

(n) := t(n + 1)=t(n). Gosper ould not solve this kind of reurrene

equations, whih today an be solved by Abramov's method.[Abr95℄ For an al-

ternative approah and a detailed explanation of the onnetion between these

strategies see, for instane, [Pau95℄. Gosper had to �nd a way to get round this

problem: he rewrites rat

t

in a speial form (See (1.2) in Algorithm 1.1) that leads

to a simpler linear reurrene equation in whih the unknown is a polynomial,

and that an be solved by simple linear algebra.

1.3.2 Zeilberger's Algorithm

Zeilberger's algorithm solves the de�nite hypergeometri summation problem:

given a proper hypergeometri term F (n; k) with natural boundary, (i.e. for any

�xed n, F (n; k) has �nite support with respet to k), it �nds a k-free reurrene

for F (n; k) of the form:

P

m

i=0

a

i

(n)F (n + i; k) = G(n; k + 1) � G(n; k), whih

under the ondition of natural boundary for F (n; k) yields a homogeneous linear

reurrene for the sum f(n) =

P

n

k=0

F (n; k). See Algorithm 1.2 for the pseudo-

ode.

18 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Algorithm 1.2 Zeilberger's Algorithm

Input: A hypergeometri term F (n; k) in n and k over a �eld K of harater-

isti 0.

Output: A k-free linear reurrene with polynomial oeÆients for F (n; k) of the

form:

m

X

i=0

a

i

(n)F (n+ i; k) = G(n; k + 1)�G(n; k) (1.4)

1: Try Gosper's algorithm, on F (n; k);

2: if it �nds a solution then

3: return this solution;

4: m := 1;

5: while no solution yet do

6: Try the modi�ed version of Gosper's algorithm on the term

m

X

i=0

a

i

(n)F (n; k)

in whih the a

i

's are polynomial unknowns.

7: if some polynomials a

i

's and a hypergeometri term G(n; k) an be found

for whih the above reurrene (1.4) is satis�ed then

8: return [G; [a

0

; : : : ; a

m

℄℄

9: else

10: m := m+ 1;

1.4. THE IMPLEMENTATION 19

Remark 1.3.3. The modi�ed version of Gosper's algorithm is formally the same

as the standard one; the only di�erene is that in this version the a

i

's appear

as polynomial parameters and the solving of the reurrene equation p(n) =

q(n)s(n+ 1)� r(n)s(n) is now done by plugging in unknown polynomials whose

oeÆients are no more in the ground �eld K, but in the ring of rational funtions

with oeÆients in K.

Therefore the problem of de�nite summation an be rewritten as the problem of

solving systems of linear equations with polynomial oeÆients.

Remark 1.3.4. Under the hypothesis of natural boundary (�nite support) of

F (n; k), for instane let us assume that the support is stritly ontained in the

interval [0; p℄, with p > 0, the speial reurrene for the summand F (n; k), namely

P

m

i=0

a

i

(n)F (n+i; k) = G(n; k+1)�G(n; k) leads to a (homogeneous) reurrene

for the sum f(n), whih is what we are ultimately looking for.

In fat, summing the left hand side and right hand side of the speial reurrene

over a boundary larger than the support of F (n; k) we get:

p

X

k=0

m

X

i=0

a

i

(n)F (n+ i; k) =

p

X

k=0

(G(n; k+1)�G(n; k)) = G(n; p+1)�G(n; 0) = 0

Hene:

n

X

i=0

f(n+ i) = G(n; p+ 1)�G(n; 0) = 0

When the summand does not have �nite support the above equation will be

non-homogeneous.

Why it works

For a formal proof of the orretness we refer to the literature on this topi

([PWZ97℄, [Zei90℄, [Zei91℄, [Sh95℄). Here we present the basi idea behind it.

From Theorem 1.2.3 that states the existene of a k-free reurrene (see Se-

tion 1.2.2) we know that for any proper hypergeometri term F (n; k), there exists

a reurrene of the form:

P

m

i=0

a

i

(n)F (n + i; k) = G(n; k + 1) � G(n; k). Zeil-

berger's algorithm tries to �nd this reurrene by iteratively inreasing the order

of the reurrene and by using a modi�ed version of Gosper's algorithm to �nd

its right hand side; this proedure stops beause of the termination of Gosper's

algorithm and beause of the theorem mentioned above.

1.4 The Implementation

In this setion we report on some of the details of our implementation of Zeil-

berger's fast algorithm and of Gosper's algorithm.

20 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

The implementation of these two algorithms has been done in the internal

LISP-like language of the Masyma and Maxima omputer algebra systems.

I implemented both algorithms in Masyma in a straightforward way and no

signi�ant hanges have been made in the original algorithms.

1.4.1 Gosper's Algorithm

My implementation of Gosper's algorithm works in the speial ase of proper

hypergeometri terms, but it an be easily extended to the general hypergeometri

ase by substituting the Gosper form related routine with a more general routine

in whih the Gosper form is ahieved by a resultant omputation. (See [GKP94℄

for more details).

As a onsequene of this implementation hoie the desired speial form at

step 1 for the rational funtion rat

t

(n) is onstruted by initializing p(n) := 1,

q(n) := numerator(rat

t

), r(n+1) := denominator(rat

t

) and by simple inspetion

and rewriting of the fators of the polynomials q and r (See Algorithm 4.1 for

more details).

1.4.2 Zeilberger's Fast Algorithm

This version of Zeilberger's algorithm works in the proper hypergeometri ase. It

was onjetured that Zeilberger's algorithm ould have worked on a larger lass of

terms, namely the lass of holonomi terms (see [Chy98℄) but it has been proved

that the lass of proper hypergeometri terms and holonomi terms oinide (see

[APb℄, [APa℄).

The omputation of the reurrene for the sum and its solution is left to the

user as a post-proessing. Moreover the existene of a solution expressible in

elementary terms is not always guaranteed, therefore leaving the solution as a

reurrene is a reasonable hoie.

1.5 Performane

First of all we must point out that this implementation is only the �rst attempt to

inorporate Zeilberger's fast algorithm into the Masyma and Maxima omputer

algebra systems and therefore it is very far from being ompetitive with the best

existing optimized implementations (for example see [PS95℄).

No large sale test has been arried out to assess the speed of this implemen-

tation. The only test that has been run on this implementation is the olletion

of terms ontained in the �les testGosper.masyma and testZeilberger.ma-

syma, among whih there are some powers of the binomial oeÆient. Inreasing

powers of the binomial oeÆients have been used to test the stability of the sys-

tem and to obtain a rough idea of the performane of the system and to ompare

1.5. PERFORMANCE 21

it to some other implementations. I used this test suite beause of its simpliity

and beause we know a priori that the order of the reurrene for the summand

is d

p

2

e, where p is the power. (see [Cus89℄).

1.5.1 Timings

We present some timings obtained by testing the funtion parGosper on inreas-

ing powers of the binomial oeÆients in whih no loop on the order of the

reurrene is run. In these tests the Paule-Shorn Mathematia implementation

[PS95℄ and our Masyma implementation are ompared. These implementations

have been tested on an SGI Otane with 2 gigabytes of RAM and two 250 Mhz

RISC proessors (although muh less memory was neessary to run the programs

on these examples).

Results Note: Timings are in seonds

power order Paule=ShornMathematia Masyma Ratio

3 2 0:36s 3:31s 9:19

4 2 0:92s 3:95s 4:29

5 3 4:47s 37:11s 8:30

6 3 16:98s 121:64s 7:16

Average ratio : 7:23

1.5.2 Stability

Our Masyma implementation tested on an SGI Otane equipped with 2 gi-

gabytes of RAM ould no go beyond the sixth power of the binomial oeÆ-

ient whereas Paule-Shorn Mathematia implementation was able to handle the

eleventh power. The sixth power of the binomial oeÆient required less than 50

megabytes of memory.

1.5.3 Future Improvements

An analysis on the distribution of the omputation time shows that in the \heavy

ases" (binomial oeÆient to the �fth and sixth powers) the bottle-nek is the

omputation of the solution of the linear systems of equations that is required to

solve the reurrene equation (Gosper's equation).

This version uses the built-in linear solver of Masyma and Maxima, whereas

Paule-Shorn Mathematia uses a speial linear solver tailored for sparse systems.

Future optimized versions should use an ad ho linear solver that ould take

advantage of the spei� struture of the system.

22 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

1.6 Manual

Now we desribe how to load and use the pakage.

1.6.1 Loading the �les

The entire pakage an be downloaded from the RISC ombinatoris home page

at the following URL http://www.ris.uni-linz.a.at/researh/ombinat/ris/

The user will �nd the following �les:

1. algUtil.masyma

2. shiftQuotient.masyma

3. poly2quint.masyma

4. makeGosperForm.masyma

5. GosperEq.masyma

6. Gosper.masyma

7. Zeilberger.masyma

8. LOADZeilberger.masyma

9. testZeilberger.masyma

10. testGosper.masyma

The entire pakage an be loaded into memory by simply loading the �le

LOADZeilberger.masyma; this �le will take are of loading the other omponents

exept the �les ontaining some examples on whih the system has been tested,

namely testZeilberger.masyma and testGosper.masyma.

1.6.2 The Commands

Both Gosper and Zeilberger's algorithm have been implemented in two versions:

a verbose version, whih allows the user to hoose di�erent levels of verbosity,

and a non-verbose version.

1.6. MANUAL 23

Verbosity

The levels of verbosity are seleted by the user just appending a suÆx to the

ommand name (Gosper, parGosper, Zeilberger) or by passing a parameter in

the generi verbose versions of the ommand, whih is obtained by appending the

suÆx VerboseOpt to the ommand name. No suÆx is interpreted as non-verbose.

These are the levels of verbosity that have been implemented in both algo-

rithms:

Level SuÆx Sope

summary Summary summary of the main omputations

normal Verbose verbosity on the main proedure

very VeryVerbose verbosity on the subroutines

debugging Debugging strongest verbosity

linsys LinSys verbosity on the linear system

Example 1.6.1.

GosperVerbose(f,k) invokes Gosper's algorithm in verbose mode.

Example 1.6.2.

ZeilbergerVeryVerbose(f,k,n) invokes Zeilberger's algorithm in the very ver-

bose mode.

Gosper's Algorithm

� Gosper(f,k)

It solves the inde�nite summation problem of �nding a hypergeometri term

g(k) suh that f(k) = �

k

g(k) = g(k + 1)� g(k). If suh a hypergeometri

term exists it returns it as output, otherwise it will returnNO HYP SOL.

� GosperVerboseOpt(f,k,verbosity)

As Gosper but the level of verbosity is passed as a parameter.

� GosperSum(f, k, a, b)

It omputes

P

b

k=a

f by using Gosper to solve the inde�nite sum. (It only

works if the inde�nite sum is Gosper-summable).

� GosperSumVerboseOpt(f, k, a, b, verbosity)

As GosperSum but the level of verbosity is passed as a parameter.

24 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Zeilberger's Fast Algorithm

� Zeilberger(F, k, n)

Given a 2-variable proper hypergeometri term F (n; k), it omputes by

Zeilberger's algorithm a reurrene equation for F of the form:

d

X

i=0

a

i

(n)F (n + i; k) = �

k

(Cert(n; k)F (n; k)); (1.5)

where the a

i

's are polynomials free of k and Cert (\rational erti�ate")

is a rational funtion in n and k. The output will be a print-out of the

reurrene and the expliit values of the polynomial parameters a

i

and the

\rational erti�ate" Cert(n; k).

� ZeilbergerVerboseOpt(F, k, n, verbosity)

As Zeilberger but the level of verbosity is passed as a parameter.

� parGosper(F, k, n, d)

Given a 2-variable proper hypergeometri term, it omputes, when it exists,

a reurrene equation of order d for F of the form:

d

X

i=0

a

i

(n)F (n+ i; k) = �

k

(R(n; k)F (n; k)); (1.6)

where a

i

's are polynomials and R is a rational funtion (the erti�ate), and

it yields a term [R; [a

0

; : : : ; a

d

℄℄; if no suh reurrene exists them it yields

[0; [dummy value; : : : ; dummy value℄℄.

� parGosperVerboseOpt(F, k, n, d, verbosity)

As parGosper but the level of verbosity is passed as a parameter.

Settings

The only setting is the environment variable MAX ORD that sets an a priori bound

on the order of the reurrene that Zeilberger's algorithm iteratively tries to �nd

by applying parGosper with inreasing order. The default value of MAX ORD is 3.

1.7 Some Examples

Let us take a look at some examples, that an be found in the �les

� testGosper.masyma

1.7. SOME EXAMPLES 25

� testZeilberger.masyma.

Example 1.7.1. A simple Gosper-summable example

Let us try to telesope

1

4k

2

�1

by Gosper's algorithm:

(prompt) Gosper(1/4*k^2-1,k);

output: �

1

2(2k�1)

Let us now try to sum it over the interval [1; 4℄, i.e. evaluate

P

4

k=1

1

4k

2

�1

(prompt) GosperSum(1/4*k^2-1, k, 1, 4);

output:

4

9

Example 1.7.2. A less simple Gosper-summable example

Let us try to telesope

(�1)

k

k

4k

2

�1

by Gosper's algorithm:

(prompt) Gosper(((-1)^k*k)/(4k^2-1),k);

output: �

(�1)

k

4(2k�1)

Example 1.7.3. An example involving fatorials

(prompt) Gosper((a!*(-1)^k)/((a-k)!*k!),k);

output:

a!k(�1)

k

a(a�k)!k!

Example 1.7.4. A non-Gosper-summable ase

(prompt) Gosper(binomial(n,k),k,n);

output: NO HYP SOL

To handle this we must use parGosper or Zeilberger as shown in the next

example.

Example 1.7.5. Binomial oeÆient

To evaluate

P

m

i=0

�

n

k

�

we an use Zeilberger or parGosper and use the fat that

we expet a �rst order reurrene:

(prompt) Zeilberger(binomial(n,k),k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

�

n

k

�

and

Cert(n; k) = �

k

n� k + 1

26 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

and

a[0℄(n) = �2

a[1℄(n) = 1

Summing both sides of the reurrene and omputing the sum is left as simple

post-proessing.

Assuming that the reurrene has order 1, we ould have used parGosper:

(prompt) parGosper(binomial(n,k),k,n,1);

output:

�

�

k

n� k + 1

; f�2; 1g

�

Example 1.7.6. Squared binomial oeÆient

We an try to sum the squared binomial oeÆient with parGosper, but to do

this we must guess the order of the reurrene:

(prompt) parGosper(binomial(n,k)^2,k,n,1);

output:

�

�

k

2

(3n� 2 k + 3)

(n� k + 1)

2

; f�2 (2n+ 1) ; n+ 1g

�

Example 1.7.7. Binomial Theorem

Let us try a similar example:

(prompt) Zeilberger(binomial(n,k)*x^k,k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

�

n

k

�

x

k

and

Cert(n; k) = �

k

n� k + 1

and

a[0℄(n) = �(x + 1)

a[1℄(n) = 1

1.7. SOME EXAMPLES 27

Example 1.7.8. Vandermonde identity reurrene (see [GKP94℄, page 169)

(prompt) Zeilberger(binomial(a,k)*binomial(b,n-k),k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

�

a

k

��

b

n� k

�

and

Cert(n; k) =

k(�n + k + b)

n� k + 1

and

a[0℄(n) = �(n� b� a)

a[1℄(n) = �(n + 1)

Example 1.7.9. First Karlsson-Gosper identity (see [Kar86℄)

(prompt)

Zeilberger(binomial(n,k)*(n-1/4)!/(n-k-1/4)!/

(2*n+k +1/4)!*9^(-k),k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

(n�

1

4

)!

�

n

k

�

9

k

(n� k �

1

4

)!(2n+ k +

1

4

)!

and

Cert(n; k) =

144k(8n+ 4(k � 1) + 13)(52n

2

+ 16kn+ 75n� 32k

2

+ 24k + 26

(n� k + 1)(4n� 4k + 3)(8n+ 4k + 5)(8n+ 4k + 9)

and

a[0℄(n) = 2

8

a[1℄(n) = �27(3n+ 2)(12n+ 13)

28 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Example 1.7.10. Seond Karlsson-Gosper identity (see [Kar86℄)

(prompt)

Zeilberger(binomial(n,k)*(n-1/4)!/(n-k-1/4)!/

(2*n+k+5/4)!*9^(-k),k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

(n�

1

4

)!

�

n

k

�

9

k

(n� k �

1

4

)!(2n+ k +

5

4

)!

and

Cert(n; k) =

144k(8n+ 4(k � 1) + 17)(52n

2

+ 16kn+ 127n� 32k

2

� 4k + 72)

(n� k � 1)(4n� 4k + 3)(8n+ 4k + 9)(8n+ 4k + 13)

and

a[0℄(n) = 2

8

a[1℄(n) = �27(3n+ 4)(12n+ 17)

Example 1.7.11. Trinomial oeÆients

(prompt) Zeilberger(n!/k!/(k+m)!/(-2*k-m+n)!,k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) + a[2℄f(n+ 2; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

n!

k!(n + k)!(n�m� 2k)!

and

Cert(n; k) =

4k(m + k)(n+ 1)(n+ 2)

(n�m� 2k + 1)(n�m� 2k + 2)

and

a[0℄(n) = 3(n+ 1)(n+ 2)

a[1℄(n) = (n + 2)(2n+ 3)

a[2℄(n) = �(n�m + 2)(n+m+ 2)

1.7. SOME EXAMPLES 29

Example 1.7.12. Speial ase of the Strehl identity (see [Str94a℄)

(prompt) Zeilberger(binomial(2*k,k)*binomial(n,k)^2,k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) + a[2℄f(n+ 2; k) = �

k

(Cert(n; k)f(n; k))

where

Cert(n; k) = �

k

3

(n+ 1)

2

(4n� 3k + 8)

(n� k + 1)

2

(n� k + 2)

2

and

a[0℄(n) = 9(n+ 1)

2

a[1℄(n) = �(10n

2

+ 30n+ 23)

a[2℄(n) = (n+ 2)

2

Example 1.7.13. Another seond order reurrene

(prompt) Zeilberger((n!*(n+k)!)/(k!^3*(n-k)!^2),k,n));

output:

a[0℄f(n; k) + a[1℄f(n + 1; k) + a[2℄f(n+ 2; k)+a[3℄f(n+ 3; k) =

�

k

(Cert(n; k)f(n; k))

(1.7)

where

f(n; k) =

n!(n+ k)!

k!

3

(n� k)!

2

and

Cert(n; k) = �

k

3

(n+ 1)(11n

2

� 6kn+ 37n� k

2

� 7k + 30)

(n� k + 1)

2

(n� k + 2)

2

and

a[0℄(n) = �(n + 1)

2

a[1℄(n) = �(11n

2

+ 33n+ 25)

a[2℄(n) = (n+ 2)

2

30 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Example 1.7.14. The binomial oeÆient to the third power

We an also use parGosper to �nd a reurrene on suh sequene, but we must

guess its order:

(prompt) parGosper(binomial(n,k)^3,k,n,1);

output: f0; f0; 0gg

This means that parGosper ould not �nd a �rst order reurrene of the desired

form but we don't give up. Let us look for a seond order reurrene:

(prompt) parGosper(binomial(n,k)^3,k,n,2);

output:

�

(k

3

(n+ 1)

2

�

14n

3

� 27 kn

2

+ 74n

2

+ 18k

2

n

�93kn+ 128n� 4k

3

+ 30k

2

� 78k + 72

�

)=

((n� k + 1)

3

(n� k + 2)

3

);

�

8 (n+ 1)

2

; 7n

2

+ 21n+ 16;� (n+ 2)

2

		

(1.8)

Example 1.7.15. Binomial oeÆient to the fourth power

(prompt) Zeilberger(binomial(n,k)^4,k,n);

output:

a[0℄f(n; k) + a[1℄f(n+ 1; k) + a[2℄f(n+ 2; k) = �

k

(Cert(n; k)f(n; k))

where

f(n; k) =

�

n

k

�

4

and

Cert(n; k) =

= �

k

4

(n+ 1)(74n

6

� 260kn

5

+ 725n

5

+ 374k

2

n

4

� 2056kn

4

+ 2885n

4

�

276k

3

n

3

� 6420kn

3

+ 6045n

3

+ 104k

4

n

2

� 1244k

3

n

2

+ 5298k

2

n

2

�

9892kn

2

+ 7030n

2

� 16k

5

n + 298k

4

n� 1884k

3

+ 5322k

2

n� 7520kn+

4300n� 20k

5

+ 210k

4

� 900k

3

+ 1980k

2

� 2256k + 1080

(n� k + 1)

4

(n� k + 2)

4

(1.9)

and

1.8. THE CODE 31

a[0℄(n) = �4(n + 1)(4n+ 3)(4n+ 5)

a[1℄(n) = �2(2n+ 3)(3n

2

+ 9n+ 7)

a[2℄(n) = (n+ 2)

3

1.8 The Code

The implementations of both Gosper's algorithm and Zeilberger's fast algorithm

have been entirely oded in the internal LISP-like language of the omputer alge-

bra systems Masyma vers.419 and Maxima 5.5. The implementation exploits

Masyma omputer algebra engine for fatorizing, simplifying and normalizing

polynomials and rational funtions, and the modularity of the Masyma language,

but it does not use Masyma hypergeometri tools like Gosper's implementation

of his own algorithm beause Zeilberger's algorithm requires a parametrized ver-

sion of Gosper's algorithm.

The entire ode an be found in the RISC ombinatoris home page at the

U.R.L.: http://www.ris.uni-linz.a.at/researh/ombinat/ris/.

The ode is ontained in the following �les:

algUtil.masyma algebrai utilities

shiftQuotient.masyma shift quotient omputation

poly2quint.masyma internal data strutures onversions

makeGosperForm.masyma Gosper form related routines

GosperEq.masyma Gosper equation related routines

Gosper.masyma Gosper's algorithm main routines

Zeilberger.masyma Zeilberger's algorithm main routines

LOADZeilberger.masyma Zeilberger's routines loader

testZeilberger.masyma Some examples

testGosper.masyma Some Gosper's algorithm related examples

1.8.1 Low Level Routines

The low level routines are ontained in the �les algUtil.masyma, shiftQuo-

tient.masyma and poly2quint.masyma.

The �rst �le ontains the lowest level algebrai routines for handling polyno-

mials (extrating omponents of polynomials, degree, et).

32 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

The seond �le ontains routines neessary for omputing the shift quotient of

a hypergeometri term and for omputing the result of the appliation of a linear

reurrene operator to a hypergeometri term, whih is omputed by a strategy

similar to the one used in Horner's algorithm for polynomial evaluation:

nieForm(hyp,var,parName,ord) :=

blok(

[shQuo,num,den,res℄,

res:parName[ord℄,

shQuo : shiftQuo(hyp,n),

for i : ord step -1 thru 1 do

res : xthru(parName[i-1℄ +

shiftFatPoly(shQuo,n,i-1)*res),

return(res)

);

The third �le ontains the routines neessary for storing polynomials in speial

data strutures; namely quintuples that are well-suited for building the desired

Gosper form of the shift quotient of a proper hypergeometri term. Suh quintu-

ples are arrays in whih the following information of a polynomial is stored:

� degree

� leading oeÆient

� seond leading oeÆient

� tail (polynomial without the �rst two monomials)

� multipliity (number of ourrenes) of the polynomial in the shift quotient

Example 1.8.1.

If the polynomial (7x

3

� 5x

2

+ 4x + 8) appears in the shift quotient with a

multipliity, say 5, it will be enoded in the following quintuple : [3; 7;�5; x

2

+

4x; 5℄.

1.8.2 Gosper Form Routines

All the Gosper form (1.2) related routines are in makeGosperForm.masyma. The

main routine builds the desired form by heking iteratively the gd ondition

required by the Gosper form. Whenever the ondition is violated the undesired

fators will be moved from the polynomials q and r to the polynomial p. This

proedure exploits the ad ho data struture quintuple, whih has been oded

in poly2quint.masyma. A detailed desription of this proess is treated in

Chapter 4.

1.8. THE CODE 33

1.8.3 Gosper Equation Routines

The omputation of the degree of the solution and the solution of the Gosper

equation (1.3) has been oded in the �le GosperEq.masyma. Solving is done by

simple linear algebra on the unknown oeÆients of the solution.

1.8.4 Gosper's and Zeilberger's Algorithm

Gosper's and Zeilberger's algorithm have been oded in two versions (verbose

and non-verbose) in the �le Gosper.masyma.

Zeilberger's fast algorithm is a parametrized version of Gosper's algorithm,

in whih the linear solving of the reurrene equation is done with polynomial

parameters.

The oding follows in a straightforward way Gosper's algorithm as desribed

in the previous setions.

34 CHAPTER 1. ZEILBERGER'S ALGORITHM IN MACSYMA

Part II

Solving Systems of Linear

Equations by Interpolation

35

Chapter 2

Cramer Driven Interpolation

2.1 Introdution

We desribe an algorithm based on Cramer's rule and on polynomial interpolation

that solves overdetermined systems of homogeneous linear equations over Q and

over the �eld of rational funtions over Q under the hypothesis that the null spae

has dimension 1. We restrit our attention to the ase of overdetermined systems

with one-dimensional null spae beause they are easier to study and beause

the systems involved in hypegeometri summation are very often of the same

type. The algorithm desribed is a generalization of the algorithm in [Lip81℄,

pages 243{251. The algorithm omputes the numerators and denominators of

the omponents of the solutions as determined by Cramer's rule. It does so by

�rst omputing homomorphi systems over �nite �elds Z

p

, with p prime and then

by polynomial interpolation or by the Chinese remainder theorem.

2.2 Notation

In the following K will be a �eld ontaining Q and A an m � n matrix with

entries over K, with m � n.

Let us denote the entries of A with a

i;j

, for 1 � i � m and 1 � j � n, i. e.

A =

0

B

B

B

B

�

a

1;1

a

1;2

� � � a

1;n

a

2;1

a

2;2

� � � a

2;n

: :

: :

a

m;1

a

m;2

� � � a

m;n

1

C

C

C

C

A

: (2.1)

De�nition 2.2.1. We de�ne the the largest square upper part of A, denoted by

37

38 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

A, as the matrix:

A =

0

B

B

B

B

�

a

1;1

a

1;2

� � � a

1;n

a

2;1

a

2;2

� � � a

2;n

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

a

n;1

a

n;2

� � � a

n;n

1

C

C

C

C

A

: (2.2)

For any given m � s matrix M and any olumn vetor b with s entries, we

denote by M jb the m� (s+1) matrix obtained by appending the vetor b to M .

De�nition 2.2.2. We de�ne by L(A) the matrix obtained from A by removing

its last olumn and by R(A) the last olumn of A.

In the following we will refer to Gaussian elimination applied on a matrix as

to any proess that produes a (lower or upper) triangular matrix by operations

that do not hange the solutions of the orresponding system of linear equations.

In pratie when using homomorphi images the hoie of the matrix should be

done in a way that makes it very likely to have images that an be used for

reonstruting the solutions of the system (see Remark 2.4.2).

De�nition 2.2.3. For any matrixM we de�ne the triangular form ofM , denoted

by �(M), to be the matrix obtained from M by performing Gaussian elimination

on it.

De�nition 2.2.4. Given a matrix M 2 K

m;s

and a olumn vetor with m om-

ponents, we all the i-th Cramer matrix of M with respet to b, denoted by

C

i

(M; b), the matrix obtained from M by substituting the i-th olumn with b,

for 1 � i � s.

Example 2.2.1.

Let us onsider

A =

0

�

2 4 5

7 0 3

1 1 2

1

A

; b =

0

�

6

2

0

1

A

(2.3)

Then

L(A) =

0

�

2 4

7 0

1 1

1

A

; R(A) =

0

�

5

3

2

1

A

; C

1

(A; b) =

0

�

6 4 5

2 0 3

0 1 2

1

A

: (2.4)

2.3 The Homogeneous Problem

We onsider the problem of solving the homogeneous system of linear equations

2.4. RATIONAL COEFFICIENTS 39

Ax = 0; (2.5)

with A 2 K

m;n

, m � n and when the dimension of the null spae of A is 1.

Let us denote L(A) by A

0

and let us assume without loss of generality that

A

0

has maximal rank, i. e. n� 1. Sine the null spae of A has dimension 1, then

A has rank n� 1 and we an set the value of the last omponent of the solution

to (2.5) to 1 and onsider the problem:

A

0

x = b; (2.6)

where b is a olumn vetor obtained by taking the opposite of the last olumn of

A, i. e. its omponent i-th omponent is �a

i;n

, for all 1 � i � m.

A solution to (2.6) gives us the remaining n � 1 omponents of the solution

to (2.5) whose last omponent is 1. All the other solutions will be multiples.

We now fae the problem of solving an overdetermined system of inhomoge-

neous linear equations of maximal rank.

2.4 Rational CoeÆients

We denote by m a positive integer and by r a non-negative integer.

We onsider the problem of �nding the integers x suh that

x � r mod m; (2.7)

with

0 � r < m: (2.8)

We onsider an elementary result

1

whih tells us how to reover an integer

solution from a modular one.

De�nition 2.4.1. For any r suh that 0 � r < m, we de�ne �

m

(r) as follows:

�

m

(r) =

(

r; if r < m=2,

r �m; otherwise.

(2.9)

1

For a more detailed study of the solutions to integer ongruenes we refer to [Lip81℄, pages

243{251.

40 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

Theorem 2.4.1. The ongruene

x � r mod m; (2.10)

with

0 � r < m (2.11)

has a unique solution s, suh that

�m=2 � s < m=2; (2.12)

given by s = �

m

(r).

Proof. Clearly the de�nition of �

m

(r) (2.9) gives a solution in the desired range.

Let us now denote by s

1

and s

2

two solutions of (2.10) in the range given by (2.11).

Therefore we have

s

1

� s

2

mod m: (2.13)

If they were not equal, we ould assume, without loss of generality, 0 � s

1

<

s

2

< m and therefore we would have

0 < s

2

� s

1

< m; (2.14)

but then, by (2.13), we would also have that s

2

� s

1

is a multiple of m, whih

ontradits (2.14).

�

Remark 2.4.1. The funtion �

m

desribes the least positive solution to the

ongruene (2.10). Suh a funtion is neessary when reonstruting possibly

negative integer solutions for whih only a bound on the absolute value is known.

2.4.1 De�nitions

Now let us assume that the �eld K is the �eld Q of the rational numbers.

For a given matrix M 2 Q

m;n

with m � n and a given prime p suh that

it does not divide any of the denominators of the entries of M , we denote by

mod

p

(M) the matrix obtained from M by taking its entries modulo p.

In the following we will always onsider primes that do not divide any of the

denominators of the entries in the onsidered matrix.

We onsider those primes p suh that, for 1 � i � n

det(L(�

(p)

)) 6= 0;

det(L(�

(p)

)) = mod

p

(det(L(�)));

det(C

i

(L(�

(p)

); R(�

(p)

))) = mod

p

(det(C

i

(L(�); R(�))));

(2.15)

2.4. RATIONAL COEFFICIENTS 41

where

� = �(M);

�

(p)

= �(mod

p

(M)):

(2.16)

We all suh primes \luky" for M .

Remark 2.4.2. The lukiness of a prime does not only depend on M but also

on � . In order to redue the risk of having \unluky" hoies, it is better to

perform Gaussian elimination by only allowing addition to a row of a salar

multiple of some other row and interhange of two rows and by keeping some

history of the row swithes in order to later hek whether a prime was probably

\luky".

2.4.2 Modular Approah

We an solve the overdetermined system of linear equations of maximal rank (2.6)

by a modular approah, namely by onsidering modular homomorphisms.

Let us denote �(A

0

jb) by � and �(mod

p

j

(A

0

jb)) by �

(p

j

)

.

We onsider a set of primes fp

1

; : : : ; p

l

g suh that B <

Q

l

i=1

p

i

, where B is a

known bound suh that

B > 2max(jdj; jd

1

j; : : : ; jd

n�1

j); (2.17)

where

d = det(L(�));

d

i

= det(C

i

(L(�); R(�))):

(2.18)

For eah of the primes p

j

we ompute

d

(p

j

)

= det(L(�

(p

j

)

));

d

(p

j

)

i

= det(C

i

(L(�

(p

j

)

); R(�

(p

j

)

))):

(2.19)

An eÆient way to ompute d

(p

j

)

in (2.19) is to �rst ompute �

(p

j

)

and then

ompute the determinant of its upper part as the produt of the diagonal ele-

ments. The determinants d

(p

j

)

i

an be omputed by solving the triangularized

system �(mod

p

j

(A

0

jb)) by bak-substitution and taking, for eah omputed om-

ponent of the solution, the produt by d

(p

j

)

.

In fat if p

j

is luky, then by Cramer's rule we have

x

(p

j

)

i

=

d

(p

j

)

i

d

(p

j

)

; 1 � i � n� 1; (2.20)

42 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

where x

p

j

i

is the i-th omponent of the solution modulo p

j

of the system orre-

sponding to mod

p

j

(A

0

jb).

Moreover, if the primes p

j

are luky for A

0

jb, then by (2.15), we must also

have:

d

(p

j

)

� d mod p

j

; (2.21)

and

d

(p

j

)

i

� d

i

mod p

j

; (2.22)

for 1 � j � l and 1 � i � n� 1.

We now onsider the following Chinese remainder problems:

z � d

(p

j

)

mod p

j

1 � j � l; (2.23)

and

z

i

� d

(p

j

)

i

mod p

j

1 � j � l; (2.24)

for 1 � i � n� 1.

By the Chinese remainder theorem (see [Win96℄ and Appendix A) we an

solve the systems of ongruenes (2.23) and (2.24). Therefore we would �nd a

non-negative integer solution d

�

to (2.23) with 0 � d

�

i

<

Q

l

j=1

p

j

and the non-

negative integer solutions d

�

i

to (2.24) with 0 � d

�

i

<

Q

l

j=1

p

j

.

We onsider the system of ongruenes

y � d

�

mod

l

Y

j=1

p

j

; (2.25)

with

�(

l

Y

j=1

p

j

)=2 � y < (

l

Y

j=1

p

j

)=2; (2.26)

and

y

i

� d

�

i

mod

l

Y

j=1

p

j

; (2.27)

with

�(

l

Y

j=1

p

j

)=2 � y

i

< (

l

Y

j=1

p

j

)=2 (2.28)

for 1 � i � n� 1.

We notie that by (2.17) we have

l

Y

j=1

p

j

� B > 2max(jdj; jd

1

j; � � � ; jd

n�1

j); (2.29)

2.4. RATIONAL COEFFICIENTS 43

and that d and d

i

are solutions respetively of (2.25) and (2.27). Therefore

Theorem 2.4.1 guarantees the existene and uniqueness of the solution to (2.25)

and (2.27) whih must then be respetively d and d

i

.

The omponents of the solution to (2.6) are obtained by Cramer's rule.

Example 2.4.1.

Let us onsider the simple example

A =

0

B

B

�

2 3 �5

1 1 �4

4 �2 3

3 4 �9

1

C

C

A

; b =

0

B

B

�

3

2

2

5

1

C

C

A

: (2.30)

We know with hindsight that 89 is a big enough prime to reonstrut the

omponents of solution of the matrix orretly, i. e. we know that

89 > 2 �max(jdj; jy

1

j; jy

2

j; jy

3

j); (2.31)

where d is the determinant of A and y

i

is the determinant of C

i

(A; b), i. e. the

i-th Cramer of A with respet to b.

Then performing Gaussian elimination on mod

89

(Ajb) over Z

89

produes:

mod

89

(Ajb) =

0

B

B

�

2 3 84 3

1 1 85 2

4 87 3 2

3 4 8 5

1

C

C

A

0

B

B

�

2 3 84 3

0 46 62 46

0 81 13 85

0 44 43 45

1

C

C

A

0

B

B

�

2 3 84 3

0 46 62 46

0 0 47 4

0 0 34 1

1

C

C

A

0

B

B

�

2 3 84 3

0 46 62 46

0 0 47 4

0 0 0 0

1

C

C

A

:

(2.32)

By bak-substitution in Z

89

we get

x

1

= 32; x

2

= 12; x

3

= 55: (2.33)

The determinant in Z

89

is given the produt of the diagonal elements:

d

0

= mod

89

(det(A)) = 52: (2.34)

Using Cramer's rule (2.20) we get that the numerators in Z

89

of the ompo-

nents of the solution are:

ŷ

1

= x

1

� d

0

= 32 � 52 � 62 mod 89; (2.35)

ŷ

2

= x

2

� d

0

= 12 � 52 � 1 mod 89; (2.36)

ŷ

3

= x

3

� d

0

= 55 � 52 � 12 mod 89: (2.37)

(2.38)

44 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

In order to reonstrut the determinants in Z we take the least absolute value

integer (2.9):

d = �

89

(d

0

) = 52� 89 = �37;

y

1

= �

89

(y

0

1

) = 62� 89 = �27;

y

2

= �

89

(y

0

2

) = 1;

y

3

= �

89

(y

0

3

) = 12:

(2.39)

The solution in Q will then be:

(y

1

=d; y

2

=d; y

3

=d) = (27=37;�1=37;�12=37): (2.40)

2.4.3 Bounding the Solutions

Unless a good bound for jdj, jd

1

j; jd

2

j; : : : ; jd

n�1

j is known beause of extra infor-

mation about the spei� problem, a reasonable bound for the absolute value of

the determinant is given in most ases by the Hadamard bound.

De�nition 2.4.2. For a given matrix A 2 Q

n;n

, the Hadamard bound, denoted

by H(A), for the absolute value of the determinant of A is given by

H(A) =

n

Y

i=1

jjA

i

jj

2

; (2.41)

where A

i

is the i-th row in A.

Example 2.4.2.

For the matrix

A =

�

�1 2

3 5

�

; (2.42)

we have

det(A) = �11; H(A) = jj(�1; 2)jj

2

� jj(3; 5)jj

2

= (1 + 4)

1=2

� (9 + 25)

1=2

' 11:66:

(2.43)

Remark 2.4.3. Sine for any matrix A we have jAj = jA

T

j, we an get a sharper

bound by taking the minimum of the Hadamard bounds for both the matrix and

its transpose.

For a retangular matrix A 2 Q

m;n

, withm > n a bound is obtained by taking

the maximum of the Hadamard bounds for all possible minors of size n� n.

2.5. RATIONAL FUNCTIONS 45

2.5 Rational Funtions

In the following setion we present our way of adapting the results presented in

the previous setion to the rational funtion ase.

2.5.1 De�nitions

Let us now onsider the ase when the �eld K is the �eld Q(y) of univariate

rational funtions over the rationals.

The notations eval

x

(M) and A(x), with x 2 Q and suh that it is not a root

of any of the denominators of the entries of M , denote the matrix obtained from

M by substituting y by x.

In the following we will always onsider rational values x suh that they do

not divide any of the denominators of the entries of the onsidered matrix.

For any given matrix A we onsider the evaluation homomorphisms with

respet to the upper determinant of the triangular form, obtained by substituting

the variable with rational values. We onsider the rationals x suh that, for

1 � i � n, the following holds:

det(L(�

x

)) 6= 0;

det(L(�

x

)) = eval

x

(det(L(�)));

det(C

i

(L(�

x

); R(�

x

))) = eval

x

(det(C

i

(L(�); R(�))));

(2.44)

where we have used the following abbreviations

� := �(M);

�

x

:= �(M(x)):

(2.45)

We all \luky" those rationals x for whih (2.44) holds.

2.5.2 Interpolation

Analogously to the ase for K = Q we an solve the overdetermined system of

linear equations of maximal rank (2.6) by interpolation.

We onsider s distint rationals x

1

; : : : ; x

s

, with s suh that D < s, where D

is a known bound suh that

D > max(deg(d); deg(d

1

); : : : ; deg(d

n�1

)); (2.46)

where, as in the ase K = Q ,

� = �(A

0

jb);

d = det(L(�));

d

i

= det(C(L(�); R(�))):

(2.47)

46 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

For eah evaluation we ompute the orresponding upper determinants.

In order to ombine the solutions orresponding to di�erent evaluations we

use polynomial interpolation (e. g. Lagrange polynomial interpolation, Newton

polynomial interpolation, et.). Choosing luky evaluations guarantees a orret

result. For the de�nition of Lagrange and Newton polynomial interpolation we

refer to Appendix A.

This approah an be reursively generalized to the multivariate ase by sim-

ply onsidering the isomorphism Q (y

1

; y

2

; : : : ; y

s

) = Q(y

1

; : : : ; y

s�1

)(y

s

) and iter-

ating the method for eah indeterminate.

2.5.3 Bounding the Degrees of the Solutions

In order to have a good bound on the degree of d, d

1

; d

2

; : : : ; d

n�1

we an again

use Hadamard bound.

In fat, for any square matrix M 2 Q (y)

n;n

we have that

j det(M(x))j �

n

Y

i=1

jjM

i

(x)jj

2

�

n

Y

i=1

jjM

i

(x)jj

1

; x 2 Q ; (2.48)

where M

i

is the i-th row in M .

Sine this holds for any x 2 Q (and suh that it does not divide any of the

denominators of the entries of the M) we must also have

deg(det(M(x))) � deg(

n

Y

i=1

jjM

i

(x)jj

1

) =

n

X

i=1

deg(jjM

i

(x)jj

1

) =

=

n

X

i=1

deg(

n

X

j=1

jm

i;j

j) =

n

X

i=1

max

j=1;:::;n

(deg(m

i;j

));

(2.49)

where m

i;j

is the element of M in the i-th row and j-th olumn.

This is generalized to the upper determinant of a matrix by simply taking all

possible determinants of submatries of size n� n.

Then for a retangular matrix A 2 Q

m;n

a bound on the degree of the deter-

minant of A is also given by:

m

X

i=1

max

j=1;:::;n

(deg(a

i;j

)):

Example 2.5.1.

Let us onsider the matrix

A =

�

n� 1 n

2

n

3

+ 2n n+ 5

�

: (2.50)

2.6. DISTRIBUTED COMPUTATION 47

Then a bound on the degree of the determinant of A is given by

max(1; 2) + max(3; 1) = 5; (2.51)

whih, in this ase, oinides with the degree of det(A) = �n

5

�2n

3

+n

2

+4n�5.

2.5.4 A Combination of the two Approahes

The modular approah and the interpolation approah an work together when

working on matries with entries in Q (y

1

; : : : ; y

s

). For eah indeterminate and

for the ground �eld Q we an reursively reonstrut d, d

1

, d

2

,. . . , d

n�1

by in-

terpolation over eah indeterminate and by the Chinese remainder theorem over

Q .

2.6 Distributed Computation

Both the ase K = Q and the ase K = Q (y

1

; : : : ; y

s

) perform the following main

operations:

1. Solving the homomorphi images of the original problem,

� modular image in the rational ase,

� evaluation image in the rational funtion ase.

2. Colleting the results,

3. Reonstruting the solutions.

� Reonstrution by the Chinese remainder theorem in the rational ase,

� Reontrution by interpolation in the rational funtion ase.

48 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

Solving the homomorphi images and reonstruting the solutions an be

performed in parallel, namely eah image an be solved independently and eah

omponent of the solutions an be reonstruted independently as in the following

sheme:

d(l); d

1

(l); d

n�1

(l)

mod

p

l

(A

0

jb)

A

0

jb

d(1); d(2); : : : ; d(l)

d(1); d

1

(1); d

n�1

(1)

mod

p

1

(A

0

jb)

Merging of the results

Reonstrution

Gaussian

Elimination

d

n�1

d

d

n�1

(1); d

n�1

(2); : : : ; d

n�1

(l)

2.7 The Pakage

My library implements the algorithms desribed above for the univariate ase and

the rational ase has been implemented in the Mathematia language [Wol99℄. A

generalization to the multivariate ase would be easy to implement but the poor

performane of this approah disouraged me to proeed further into this dire-

tion. A better approah is presented in the next hapter. The library is available

on the world wide web at the ombinatoris home page of RISC (University of

Linz, Austria) at the following web address

http://www.ris.uni-linz.a.at/researh/ombinat/

2.7. THE PACKAGE 49

2.7.1 Loading the Pakages

All the routines are ontained in the following Mathematia pakages:

matrixTools.m Matrix manipulations

detBound.m Bounds for absolute values of determinants

detDegreeBound.m Bounds for degrees of determinants

CramerNullSpae.m Interpolation Routines

The main pakage CramerNullSpae.m will automatially load the remaining

pakages. It an be evaluated within the Mathematia environment as any other

pakage by the ommand:

<< CramerNullSpae.m

2.7.2 The Commands

The pakage CramerNullSpae.m provides the following ommands:

ChNullSpaeAt[oefs, evalPoint, detBound℄

ChNullSpaeUntil[oefs, intPoints℄

DistChNullSpaeUntil[oefs, intPoints℄

Example 2.7.1 and Example 2.7.2 are related to the systems that are solved

in Zeilberger's algorithm for de�nite hypergeometri summation (see Algorithm

1.2 in the �rst hapter).

Solving Linear Systems at One Point

Command

ChNullSpaeAt[oefs, evalPoint, detBound℄

Parameters

� oefs is the matrix whose null spae has to be found

� evalPoint is the point at whih we intend to evaluate the matrix

� detBound is the bound (2.17)

Semantis

The ommand ChNullSpaeAt[oefs, evalPoint, detBound℄ solves the

system of linear equations ontained in oefs for n = evalPoint by solving for

di�erent mahine size primes and then by reonstruting the solution via the

Chinese remainder theorem with the bound given by detBound. It outputs a pair

ontaining the solution and an ordered list ontaining the indexes of the rows in

the upper part of the triangularized matrix.

50 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

Example 2.7.1.

We an use ChNullSpaeAt to �nd the null spae of

A =

0

�

n+ 1 3 0 2n

2n 0 5n �n

2

+ 1

n

2

+ n+ 1 n

2

�n

2

� 2n + 3 n

2

+ 2n

1

A

(2.52)

for n = 1; 2; 3, as follows

Table[ChNullSpaeAt[A, i, 100℄, i, 1, 3℄

fff�35; 0; 14; 35g; f1; 2; 3gg,

ff�35;�165; 59; 150g; f1; 2; 3gg,

ff423;�1086;�30; 261g; f1; 2; 3ggg

Solving a System by Interpolation

Commands

� ChNullSpaeUntil[oefs, intPoints℄

� DistChNullSpaeUntil[oefs, intPoints℄

Parameters

� oefs is the matrix whose null spae has to be found

� intPoints is the number of interpolation points that have to be onsidered

Semantis

Both ommands solve the system of linear equations ontained in oefs by

iteratively invoking ChNullSpaeAt for as many hoies of n as intPoints, and

then by interpolating the results via Lagrange interpolation.

The ommand DistChNullSpaeUntil does the same as ChNullSpaeUntil

but uses the pakage Distributed Mathematia (see [PS00℄) to solve with respet to

as many interpolation points as possible in parallel over a network of omputers.

Example 2.7.2.

We an use ChNullSpaeUntil or DistChNullSpaeUntil to �nd the null spae

of the following matrix

A =

0

�

1 0 0 2n+ 1

�2n� 2 0 2n+ 2 �n

2

+ 1

n

2

+ 2n+ 1 n

2

+ 2n + 1 �n

2

� 2n� 1 �n

2

� 2n� 1

1

A

(2.53)

as follows

2.8. CONCLUSION 51

ChNullSpaeUntil[A, 10℄ // Simplify

ff2(1 + n)

3

(1 + 2n);�(1 + n)

4

; 3(1 + n)

4

;�2(1 + n)

3

gg

or in parallel with the ommand DistChNullSpaeUntil:

<< dist.m

Distributed Mathematia V1.0.0 () 2000 Cleopatra Pau (RISC-Linz)

See http://www.ris.uni-linz.a.at/software/distmath

InitializeD[pinwheel, otane, andromeda, otane, galaxy, solaris℄

Conneting pinwheel...

Conneting andromeda...

Conneting galaxy...

okay

AllD["<< CramerNullSpae.m"℄

okay

AllD["myCoefs = ff1; 0; 0; 1+2ng; f�2�2n; 0; 2+2n; 1�n

2

g; f1+2n+n

2

; 1+

2n+ n

2

;�1� 2n� n

2

;�1� 2n� n

2

gg"℄

okay

DistChNullSpaeUntil[myCoefs, 10℄ // Simplify

ff2(1 + n)

3

(1 + 2n);�(1 + n)

4

; 3(1 + n)

4

;�2(1 + n)

3

gg

Remark 2.7.1. The ommand InitializeD initializes the omputers available

on the network. The ommand AllD \broadast" a ommand to all the omputers

in the network.

2.8 Conlusion

The two variations of the approah based on Cramer's rule and on polynomial

interpolation and on the Chinese remainder theorem perform very badly when

ompared with an approah based on rational interpolation, whih is presented

in the next hapter. Therefore I have not further developed nor extended the

implementation of this method.

The problems enountered are:

� The method works under restritive hypotheses (rank, matrix form, hoie

of primes)

� The method requires the detetion of unluky ases

� Too many homomorphi images are omputed (see explanation in the next

paragraph)

52 CHAPTER 2. CRAMER DRIVEN INTERPOLATION

The exessive number of neessary homomorphi images is not aused by a

bad bound on the degree of the polynomials but it is intrinsi in the approah.

The determinant of the upper matrix and those of the Cramer matries are the

denominator and numerators of the omponents of the solution but they often

have ommon fators that annot be predited in advane.

This experiene made lear that an alternative had to be onsidered. A better

approah is treated in the next hapter in whih rational funtion interpolation

and a hybrid method based on guessing and symboli omputation is used.

Chapter 3

Rational Interpolation

3.1 Introdution

We give a brief desription of the theory behind the rational funtion reon-

strution problem as desribed in [GvzG99℄, pages 106{115. Rational funtion

reonstrution is the problem of �nding a rational funtion that is ongruent to

some polynomial modulo some other polynomial. Rational funtion reonstru-

tion has two important appliations: rational interpolation and rational funtion

approximation. We use rational funtion interpolation to build an algorithm that

omputes the null spae of a retangular matrix with entries in Q(y

1

; : : : ; y

n

) by

reonstruting some low degree omponents of the solutions by rational funtion

interpolation and the others symbolially. This is done by plugging the ompo-

nents reonstruted by rational funtion interpolation into the system in order

to simplify it. In suh a way the new system an beome solvable by Gaussian

elimination over Q (y

i

1

; : : : ; y

i

r

) with 1 � i

j

� n and r < n. Alternatively the sys-

tem an be solved by iterating the proedure on the remaining variables. These

algorithms have been implemented in the Mathematia omputer algebra system.

3.2 Reonstruting Rational Funtions

In the following let F be a �eld, m 2 F [x℄ be a polynomial of positive degree

n (whih will serve as modulus), and f 2 F [x℄ be a polynomial of degree less

than n.

De�nition 3.2.1. Given a; b 2 F [x℄, we de�ne the j-th row of the extended

Eulidean algorithm for a and b to be the ordered triplet (r; s; t), with r; s; t 2

F [x℄, where r is the remainder, and s, t are the orresponding ofators omputed

at the j-th step of the Algorithm 3.1 (generalized extended Eulidean algorithm)

for a and b.

53

54 CHAPTER 3. RATIONAL INTERPOLATION

Algorithm 3.1 Generalized Extended Eulidean Algorithm

Input: (f; g) with f; g 2 F [x℄.

Output: l 2 N ; r

j

; s

j

; t

j

2 R for 0 � j � l as omputed below.

1: r

0

:= Norm(f); s

0

:= Loe�

x

(f)

�1

; t

0

:= 0;

r

1

:= Norm(g); s

1

:= 0; t

1

:= Loe�

x

(g)

�1

;

2: i := 1;

3: while r

i

6= 0 do

4: q

i

:= r

i�1

quot r

i

; // Quotient of r

i�1

divided by r

i

r

i+1

:= r

i�1

mod r

i

;

s

i+1

:= (s

i�1

� q

i

s

i

)=Loe�

x

(r

i+1

); // Loe�

x

= leading oeffiient

t

i+1

:= (t

i�1

� q

i

t

i

)=Loe�

x

(r

i+1

); // Norm(f) = f Loe�

x

(f)

�1

i := i+ 1;

r

i+1

:= Norm(r

i+1

)

5: return i; r

j

; s

j

; t

j

, for 0 � j � i:

Given k 2 f0; 1; : : : ; ng we want to �nd a rational funtion r=t 2 F (x), with

r; t 2 F [x℄ suh that

gd(t;m) = 1;

rt

�1

� f mod m; deg r < k; deg t � n� k;

(3.1)

where t

�1

is the inverse of t modulo m.

The following theorem desribes the onditions under whih (3.1) has solu-

tions.

Theorem 3.2.1. Let r

j

; s

j

; t

j

2 F [x℄ be the omponents of the j-th row in the

extended Eulidean algorithm for m and f , where j is the minimal integer suh

that deg r

j

< k.

1. If gd(r

j

; t

j

) = 1 then r

j

and t

j

solve (3.1).

2. If r=t is a anonial form solution to (3.1) then gd(r

j

; t

j

) = 1 and r =

�

�1

r

j

and t = �

�1

t

j

, where � is the leading oeÆient of t

j

.

Corollary 3.2.2. There is an algorithm whih deides whether (3.1) has a solu-

tion, and if so, omputes the solution in O(n

2

) operations in F .

For the proofs and more details we refer to [GvzG99℄, pages 106{115.

3.3 Cauhy Interpolation

In the following let u

0

; u

1

; : : : ; u

n�1

be distint elements of F , and for 0 � i < n,

let v

i

= g(u

i

) be a olletion of samples of an unknown funtion g : F ! F .

3.3. CAUCHY INTERPOLATION 55

Cauhy interpolation is the problem of rational interpolation where, given a

olletion of samples v

i

, for 0 � i < n of an unknown funtion g at distint points

u

0

; u

1

; : : : ; u

n�1

and given k 2 f0; 1; : : : ; ng, we want to �nd a rational funtion

r=t 2 F (x), with r; t 2 F [x℄, suh that

t(u

i

) 6= 0;

r(u

i

)=t(u

i

) = v

i

; 0 � i < n; deg r < k; deg t � n� k:

(3.2)

We will refer to the solutions of (3.2) as \rational interpolant" .

Lemma 3.3.1. Let (r

i

; s

i

; t

i

) be the i-th row in the extended Eulidean algorithm

for (a(x); b(x)) 2 F [x℄. Then

gd(r

i

; t

i

) = gd(a; t

i

): (3.3)

For the proof we refer to [GvzG99℄, pages 106{115.

The following orollary of Theorem 3.2.1 desribes the solutions to the prob-

lem (3.2).

Corollary 3.3.2. Let f 2 F [x℄ of degree less than n, with f(u

i

) = v

i

for 0 � i <

n, let k 2 f0; 1; : : : ; ng and r

j

; s

j

; t

j

2 F [x℄ be the omponents of the j-th row in

the extended Eulidean algorithm for ((x� u

0

) � (x� u

1

) � � � (x� u

n�1

); f), where

j is minimal suh that deg r

j

< k.

1. If gd(r

j

; t

j

) = 1 then r

j

and t

j

solve (3.2).

2. If r=t 2 F (x) is a anonial form solution to (3.2), then gd(r

j

; t

j

) = 1 and

r = �

�1

r

j

and t = �

�1

t

j

, where � is the leading oeÆient of t

j

.

Proof. Problem (3.2) is a speial instane of problem (3.1) where

m = (x� u

0

) � (x� u

1

) � � � � � (x� u

n�1

); (3.4)

and where f is the interpolating polynomial of degree less than n.

�

Therefore in order to �nd a solution to (3.2) we apply Algorithm 3.1 (gen-

eralized extended Eulidean algorithm) to (m; f), with m as in (3.4). If the

gd(r

j

; t

j

) 6= 1 then, by Lemma 3.3.1, also gd(m; t

j

) 6= 1 and therefore t(u

i

) = 0

for some i 2 f0; 1; : : : ; n� 1g and (3.2) has no solution.

Example 3.3.1.

Let us take F = Z

5

and let us �nd the rational funtions � = r=t 2 Z

5

suh that

�(0) = 1;

�(1) = 2;

�(2) = 4:

56 CHAPTER 3. RATIONAL INTERPOLATION

First of all we ompute the interpolating polynomial f of degree less than 3:

f = 3x

2

+ 3x+ 1:

Then the extended Eulidean algorithm for (m; f) with m = x(x�1)(x�2) =

x

3

+ 2x

2

+ 2x and f yields the following sequene of remainders and ofators

j r

j

s

j

t

j

0 x

3

+ 2x

2

+ 2x 1 0

1 x

2

+ x+ 2 0 2

2 x+ 2 4 2x+ 2

3 1 4x+ 1 2x

2

+ 1

4 0 x

2

+ x+ 2 3x

3

+ x

2

+ x

From the sequene we an read o� the following solutions orresponding to

the rows i where the gd of r

i

and t

i

is one

r

1

=t

1

=

x

2

+ x+ 2

2

;

r

2

=t

2

=

x + 2

2x+ 2

;

r

3

=t

3

=

1

2x

2

+ 1

:

(3.5)

Corollary 3.3.3. There is an algorithm the deides whether the problem (3.2)

has a solution, and if so, it omputes it in O(n

2

) arithmeti operations in F .

3.4 Pad�e Approximation

Pad�e approximation (see [GvzG99℄, pages 112{115) is the problem of approxi-

mating a power series

P

i�0

f

i

x

i

2 F [[x℄℄ with all f

i

2 F to a rational funtion

r=t 2 F [x℄ with r; t 2 F [x℄ and x - t.

Formally, given k 2 f0; 1; : : : ; ng and f 2 F [x℄ of degree less than n we want

to �nd a rational funtion r=t 2 F (x) with r; t 2 F [x℄ suh that

x - t; r=t � f mod x

n

; deg r < k; deg t � n� k:
(3.6)

Corollary 3.4.1. Let f 2 F [x℄ of degree less than n, k 2 f0; 1; : : : ; ng, and

r

j

; s

j

; t

j

2 F [x℄ be the omponents of the j-th row of the extended Eulidean

algorithm for (x

n

; f), where j is minimal suh that deg r

j

< k.

1. If gd(r

j

; t

j

) = 1 then r

j

and t

j

are solutions to (3.6).

2. If r=t is a anonial form solution to (3.6), then gd(r

j

; t

j

) = 1 and r =

�

�1

r

j

, t = �

�1

t

j

, where � is the leading oeÆient of t

j

.

3.5. HOMOGENEOUS LINEAR SYSTEMS 57

Proof. Problem (3.6) is an instane of (3.1) for m = x

n

.

�

We will refer to the solutions of (3.6) as \Pad�e approximants".

Thus the Pad�e approximants are obtained by omputing r

j

and t

j

through Al-

gorithm 3.1 (generalized extended Eulidean algorithm) and by heking whether

their gd is one, and if so, no suh approximant exists, otherwise r

j

=t

j

is a solution

to (3.6).

Corollary 3.4.2. There is an algorithm that deides whether (3.6) has a solution,

and if so, it omputes it in O(n

2

) arithmeti operations in F .

3.5 Homogeneous Linear Systems

We an apply rational funtion interpolation to reonstrut the omponents of

the solutions of a homogeneous system of linear equations with polynomial or

rational funtion oeÆients.

Given A 2 Q(y

1

; : : : ; y

p

)

m;n

, we want to �nd x = (x

1

; : : : ; x

n

), with x

i

2

Q(y

1

; : : : ; y

p

), 1 � i � n suh that

Ax = 0: (3.7)

De�nition 3.5.1. We de�ne �(A) to be the ordered sequene of n-tuples on-

taining the null spae of A obtained by triangularization and bak-substitution.

Given A 2 Q (y

1

; : : : ; y

p

)

m;n

and a p-tuple v = (v

1

; v

2

; : : : ; v

p

) of rational num-

bers, the notation eval

v

(A) denotes the matrix obtained from A by substituting

in all entries of A v

i

to y

i

, for 1 � i � p, whenever no denominator of any of

the entries of A beomes zero. Besides, given an ordered sequene � of n-tuples

of rational funtions in Q (y

1

; : : : ; y

p

), the notation eval

v

(�) denotes the ordered

sequene obtained from � by substituting in all n-tuples v

i

to y

i

, for 1 � i � p,

whenever no denominator of any of the omponents of the n-tuples beomes zero.

De�nition 3.5.2. We onsider the vetors v 2 Q(y

1

; : : : ; y

p

) for whih eval

v

(A)

and eval

v

(�(A)) are de�ned and suh that

�(eval

v

(A)) = eval

v

(�(A)): (3.8)

We all the vetors v luky evaluations for A.

In the next setions we desribe various strategies and tools for experimenta-

tions for the omputation of the null spae by rational funtion interpolation that

I have implemented in the Mathematia pakage RatNullSpae (for the details

on the pakage see Setion 3.6).

58 CHAPTER 3. RATIONAL INTERPOLATION

3.5.1 The First Try

We an reonstrut �(A) by taking the solutions �(eval

v

(A)) of suÆiently many

luky evaluations and by rational funtion interpolation.

If we always hoose luky evaluations, this method is an algorithm that or-

retly reonstruts the solutions. What makes this brute fore approah useless

in many ases is the fat that the bound on the number of neessary evaluations

is often too high.

3.5.2 A Heuristi Method

A slightly di�erent method would be using rational funtion interpolation in

an iterative way. We remove those possible solutions that hange one a new

evaluation is onsidered and keep the others. One we have a unique andidate,

we take that as the solution.

I ould not �nd examples for whih this heuristi failed to reonstrut the

orret solution. Moreover this method does not require any bound and it is

muh faster than the previous method. I implemented this method in the pakage

RatNullSpae.m whih is desribed in this hapter (see ModularNullSpae).

3.5.3 A Reursive Method

We desribe a reursive method that improves the previous heuristi method.

Suh improved heuristi reonstruts �rst those omponents that require few

evaluations to stabilize, then plugs their values into the system in order to simplify

it and reursively reonstruts the remaining omponents in the simpli�ed system.

I implemented this method in the pakage RatNullSpae.m whih is desribed

in this hapter (see CompleteNullSpae).

3.5.4 A Hybrid Method

An ever faster method is to use the heuristi method only for those omponents

that require few evaluations to stabilize. One these omponents have been om-

puted their values an be plugged in into the original system in order to simplify

it. Then the simpli�ed system an be solved by a symboli algorithm. This

method generalizes the work in [RZ℄. I implemented this method in the pakage

RatNullSpae.m, whih is desribed in this hapter (see RatNullSpae).

This method an be sped up by putting into the system extra information on

the degree of the omponents of the solutions.

Blak Lists

If we know in advane whih omponents require fewer evaluations we an avoid

trying to reonstrut the others. This is implemented by putting these ompo-

3.6. THE PACKAGE 59

nents into a blak list. These omponents will be omputed symbolially.

Delayed Interpolation

If we have a lower bound for the number of evaluations neessary to reonstrut

the omponents we an avoid interpolation until the neessary number of evalua-

tions has been reahed. Having this information an be partiularly useful when

using non-inremental interpolation algorithms.

3.6 The Pakage

A pakage that implements null spae omputation through rational funtion re-

onstrution has been implemented in the Mathematia omputer algebra system

[Wol99℄. The pakage is available on the world wide web at the ombinatoris

home page of RISC (University of Linz, Austria) at the following web address

http://www.ris.uni-linz.a.at/researh/ombinat/

The pakage an be loaded as any other Mathematia pakage by the om-

mand:

<< RatNullSpae.m

The pakage provides funtions for omputing the null spae by the heuris-

ti method, by the reursive method and by the hybrid method as desribed in

the previous setion. The pakage provides also some lower level routines that

implement rational funtion reonstrution and rational funtion interpolation.

3.6.1 The Commands

Null spae omputation is implemented in the funtions

� RatNullSpae

� ModularNullSpae

� MultiModularNullSpae

� HybridNullSpae

� MultiHybridNullSpae

� CompleteNullSpae

All the ommands exept CompleteNullSpae take as input a matrix and

output the null spae. Both input and output follow the Mathematia onvention

used in the internal NullSpae ommand.

60 CHAPTER 3. RATIONAL INTERPOLATION

A omponent is given the onventional value "?"meaning non-omputed when

either it annot be omputed beause of too few interpolating points or the user

desires not to ompute it.

The ommand InterpolatingRatFuntion provides univariate rational fun-

tion interpolation.

Example 3.6.1, 3.6.2, 3.6.3 and 3.6.4 are related to the systems that are

solved in Zeilberger's algorithm for de�nite hypergeometri summation (see Al-

gorithm 1.2 in the �rst hapter).

3.6.2 Modular Null Spae Computation

Commands

� ModularNullSpae[oefs℄

� MultiModularNullSpae[oefs℄

Parameter

oefs ontains the matrix whose null spae has to be omputed.

Options

Name Default Value

StartingInterpolation 3

Offset 3

DegreeBound 6

Var 0 (not de�ned)

Verbose O�

Algorithm NullSpae

BlakList f g

Semantis

The ommands ModularNullSpae and MultiModularNullSpae ompute all

the omponents of the vetors in the null spae exept those whose positions are

in BlakList.

ModularNullSpae uses rational funtion interpolation on the variable passed

as a single element through the option Var or, when no option is given (Var is 0),

on the �rst variable in the lexiographi order ontained in oefs.

The ommand MultiModularSpae uses rational funtion interpolation on

eah variable passed as a list through the option Var or, when no option is given

(Var is 0), on all variables.

Meaning of the options

� StartingInterpolation is the number of minimal interpolation points at

whih the interpolation algorithm is invoked.

3.6. THE PACKAGE 61

� Offset is the initial integer interpolating point.

� DegreeBound is the maximum number of interpolating point to be onsid-

ered after whih, in ase of unsuessful result, the value "?" is assigned to

the omponent.

� Var is the variable or variables (passed as a list) with respet to whih the

interpolation should be performed. When it has value 0 it means \the �rst

variable found in oefs" if used in ModularNullSpae, or \all the variables

found in oefs" when used in MultiModularNullSpae.

� Verbose toggles the verbosity and an be set either to On or Off.

� Algorithm is the algorithm whih has to be used to solve eah homomorphi

image.

� BlakList is a the set (passed as a list of positive integers) ontaining

the positions of those omponents that are not to be omputed. Those

omponents are given the onventional value "?".

Example 3.6.1. A Univariate Example

Let us ompute the null spae of the following matrix with univariate polynomial

entries:

A =

0

�

1 n

3

+ 2 n� 2 4n + 1

�2n� 2 0 2n+ 2 �n

2

+ 1

n

2

+ 2n+ 1 n

2

+ 2n+ 1 �n

2

� 2n� 1 �n

2

� 2n� 1

1

A

(3.9)

This an be done ModularNullSpae. Let us try to reonstrut the ompo-

nents by using at most 5 interpolating points:

ModularNullSpae[A, DegreeBound -> 5℄

Output =

ff?;

1 + n

2

; ?; 1gg (3.10)

Two omponents are left without a value. Trying with an extra point yields

the omplete solution:

ModularNullSpae[A, DegreeBound -> 6℄

Output =

ff�

6 + 7n + n

2

+ n

3

+ n

4

2(�1 + n)

;

1 + n

2

;�

5 + 9n+ n

3

+ n

4

2(�1 + n)

; 1gg (3.11)

62 CHAPTER 3. RATIONAL INTERPOLATION

Example 3.6.2. A Multivariate Example

Let us now onsider the following matrix with bivariate polynomial entries:

A =

0

�

1 m+ n 0 m+ 1

�2 0 2n+ 2 0

m 0 0 n

1

A

(3.12)

We an �nd the null spae of A by either the ommand ModularNullSpae

or by the ommand MultiModularNullSpae.

ModularNullSpae[A, DegreeBound -> 6, Var->m℄

or

MultiModularNullSpae[A, DegreeBound -> 6℄

Output =

ff�

n

m

;

�m�m

2

+ n

m

2

+mn

;�

n

m(1 + n)

; 1gg (3.13)

3.6.3 Completing the Null Spae

Command

CompleteNullSpae[oefs, parSols℄

Parameters

� oefs is the matrix whose null spae has to be found

� parSols is a partially omputed null spae, i. e. it an ontain omponents

whose value is "?". It an be the output of ModularNullSpae or of the

ommand MultiModularNullSpae.

Options

Name Default Value

Verbose O�

Algorithm NullSpae

Semantis

CompleteNullSpae takes parSols and uses this information to simplify the

system by plugging in the values of the omponents in parSols that do not have

value "?". The new system will be devoid of these unknowns. Then it invokes

the null spae algorithm passed through the option Algorithm on the simpli�ed

system and returns a list of lists ontaining those omponents that had value "?"

in oefs and the last omponent.

3.6. THE PACKAGE 63

Meaning of the options

� Verbose toggles the verbosity level and an be either On or Off.

� Algorithm is the null spae algorithm whih is used to �nd the omponents

whose value in parSol is "?", i. e. those omponents that have not been

omputed.

Example 3.6.3.

Let us onsider the matrix:

A =

0

�

n� 1 0 0 2n+ 1

�2n 0 2n �n

2

+ 1

n + 1 n

2

+ 3n+ 1 �n

2

� 1 �n

2

� 1

1

A

(3.14)

We an guess some omponents of the solutions by:

ms = ModularNullSpae[A, DegreeBound -> 4℄

Output =

ff

�1� 2n

�1 + n

; ?; ?; 1gg (3.15)

Then we an use this result to �nd the remaining omponents by the ommand

CompleteNullSpae:

CompleteNullSpae[A,ms℄

Output =

ff

�1 + 2n� 2n

2

� 2n

3

+ n

4

2n(1 + 3n+ n

2

)

;

1� 3n� 5n

2

+ n

3

2(�1 + n)n

; 1gg (3.16)

3.6.4 Hybrid Modular Symboli Null Spae

Commands

� HybridNullSpae[oefs ℄

� MultiHybridNullSpae[oefs℄

� RatNullSpae[oefs℄

Parameter

oefs ontains the matrix whose null spae has to be omputed.

64 CHAPTER 3. RATIONAL INTERPOLATION

Options

Name Default Value

Verbose O�

ModularAlgorithm NullSpae

SymboliAlgorithm NullSpae

StartingInterpolation 3

Offset 3

DegreeBound 6

Var 0 (not de�ned)

BlakList f g

Semantis

HybridNullSpae invokes ModularNullSpae and then CompleteNullSpae

to �nd the null spae.

MultiHybridNullSpae and RatNullSpae are two di�erent names for the

same ommand. They invoke MultiModularNullSpae and CompleteNullSpae

to �nd the null spae.

Meaning of the options

� StartingInterpolation is passed to the modular null spae algorithm.

� Offset is passed to the modular null spae algorithm.

� DegreeBound is passed to the modular null spae algorithm.

� Var is passed to the modular null spae algorithm.

� BlakList is passed to the modular null spae algorithm.

� Verbose toggles the verbosity level, it an be either On or Off and it is

passed to ModularNullSpae and to CompleteNullSpae.

� ModularAlgorithm is passed through the option Algorithm to the modular

null spae algorithm.

� SymboliAlgorithm is passed through the option Algorithm to the om-

mand CompleteNullSpae.

Example 3.6.4.

Let us onsider the matrix A with polynomial entries:

A =

0

B

B

B

B

�

1 0 0 0 0 2

�6n� 9 0 0 0 2 �3n� 3

15n

2

+ 4n+ 3 0 0 2 �3n� 4 3n� 3

�n

3

� n

2

� n� 1 �3n� 1 2 3n+ 1 n n

0 7n

2

+ n+ 6 n+ 1 6 �n

3

+ 1 0

1

C

C

C

C

A

(3.17)

3.6. THE PACKAGE 65

We an �nd its null spae by any of the null spae algorithms that use the hybrid

method:

RatNullSpae[A℄

Output=

ff � 2;

530 + 639n� 801n

2

� 143n

3

+ 71n

4

4(13 + 6n+ 17n

2

)

;

486 + 2614 + 2727n

2

+ 429n

3

+ 1115n

4

� 803n

5

4(13 + 6n+ 17n

2

)

;

1

4

(�42� 71n+ 33n

2

);

�

3

2

(5 + 3n); 1gg

(3.18)

Example 3.6.5. Superiority over Mathematia

We an use HybridNullSpae to �nd the null spae of matries faster than by

the Mathematia built-in null spae algorithm. For instane we an onsider the

system that has to be solved by Zeilberger's algorithm applied to the binomial

oeÆient to the �fth power, i. e. the problem of �nding a speial linear reurrene

(see Theorem 1.2.3) with polynomial oeÆients in n and free of k (see reurrene

(1.1)) for

n

X

k=0

�

n

k

�

5

: (3.19)

One possible way to obtain the matrix is to run parGosperLinSys in the Max-

ima implementation of Zeilberger's algorithm, whih performs Zeilberger's algo-

rithm with verbose linear system solving. For more details on how Zeilberger's

algorithm works we refer to the �rst hapter of this thesis and to [Car99℄, [PS95℄,

[Zei90℄, [Zei91℄.

One we have the matrix, say, in b5oefs we an �nd its null spae in 37:69s

as follows:

HybridNullSpae[b5oefs,

BlakList -> {2, 3, 4, 5, 6, 7, 8, 9, 10}℄

Output =

ff2; (�514048� 2341112n� 4509834n

2

� 4764843n

3

�

2982616n

4

� 1106342n

5

� 225214n

6

� 19415n

7

)=

(16(292 + 253n+ 55n

2

)); : : : g

(3.20)

The Mathematia ommand NullSpae an solve the problem in 163:44 se-

onds. The tests were run on an SGI Otane (with two 200 Megahertz proessors)

with 2 Gigabytes RAM. We used Mathematia 4.0.

The ommand was used as follows

66 CHAPTER 3. RATIONAL INTERPOLATION

NullSpae[b5oefs℄ // Together

The same ommand not followed by the ommand Together, whih takes

are of adding up rational funtions, produes a rash of Mathematia 4.0.

3.6.5 Rational Funtion Interpolation

Rational funtion interpolation is implemented in the pakage in the ommand

InterpolatingRatFuntion.

Command

InterpolatingRatFuntion[interpList, numBound, var℄.

Parameters

� interpList is a list of interpolation points passed as a list of ouples (p; v),

where v is the value assumed at p.

� numBound is a bound on the degree of the numerator.

� var is the indeterminate of the searhed rational funtions.

Semantis

InterpolatingRatFuntion implements rational funtion interpolation by

�rst invoking a polynomial interpolation algorithm and then by invoking Algo-

rithm 3.1 (generalized extended Eulidean algorithm) on the polynomial inter-

polant and on the polynomial

Q

i

(var�p

i

), where p

i

are the interpolation points.

Example 3.6.6.

Let us interpolate the rational funtion f :

f(x) =

x� 1

x

2

+ 3

; (3.21)

by only knowing f at the values 1; 2; 3; 4:

f(1) =

1

7

; f(2) =

2

6

; f(3) =

3

19

; f(4) =

1

7

: (3.22)

This an be done by InterpolatingRatFuntion in the following way:

InterpolatingRatFuntion[{{1,0},{2,1/7},{3,1/6},{4,3/19}},3,x℄

Output =

f

�556 + 766x� 233x

2

+ 23x

3

1596

;

�9 + 10x� x

2

3 + 23x

;

�1 + x

3 + x

2

g (3.23)

3.7. CONCLUSION 67

The result ontains f but also other rational funtions that interpolate the

points in (3.22) but have numerator and denominator with di�erent degrees.

If we knew the degree of the numerator of f we ould hoose the orret

answer. Otherwise we an try to guess it with very high probability by taking

into aount extra points and taking those solutions that are both in the old and

new set of interpolants.

Let us take for instane

f(5) =

1

7

: (3.24)

Then we get

InterpolatingRatFuntion[

{{1,0},{2,1/7},{3,1/6},{4,3/19},{5,1/7}},3,x℄

Output =

f

�68 + 82x� 15x

2

+ x

3

28(3 + 4x)

;

�1 + x

3 + x

2

g (3.25)

We see that f = (�1 + x)=(3 + x

2

) is the only rational funtion ontained in

both solution sets ((3.23),(3.25)).

3.7 Conlusion

As seen in Example 3.6.5 rational funtion interpolation for guessing low degree

omponents of solutions of homogeneous systems of linear equations performs

muh better than the method based on Cramer's rule and polynomial interpola-

tion (desribed in the previous hapter).

The method based on Cramer's rule and polynomial interpolation reonstruts

the numerators and denominators of the omponents of the solutions as given

by Cramer's rule, whereas the method based on rational funtion interpolation

reonstruts the simpli�ed numerators and denominators.

The bottle-nek of this approah, as it is implemented now, is the interpolation

step in whih the generalized extended Eulidean algorithm (Algorithm 3.1) is

invoked.

A future version of the pakage ould use a more eÆient interpolation algo-

rithm.

68 CHAPTER 3. RATIONAL INTERPOLATION

Chapter 4

Linear Systems in Zeilberger's

Algorithm

4.1 Introdution

Given a proper hypergeometri term F (n; k) (see De�nition 4.3.1) and a linear

shift operator L of order d with polynomial oeÆients, we prove that the Gosper

form (p(n; k), q(n; k), r(n; k)) (see De�nition 4.3.6 and Algorithm 4.1) of the shift

quotient in k of LF (n; k) is suh that the degree in n of q(n; k) and r(n; k) an

be bounded independently of d. This gives some insight on the degree in n of the

polynomial oeÆients of the linear reurrene satis�ed by

P

n

k=0

F (n; k) that is

omputed by Zeilberger's algorithm. We do this in two steps: �rstly by proving

the existene of ertain bijetions between subsets of the natural numbers whih

reet the properties of the Gosper form; seondly by interpreting this abstrat

model in terms of the polynomials involved in the Gosper form.

4.2 The Abstrat Model

Given any positive integers n, s with s 6= 0, n � 2s, and a subset H of f1; : : : ; ng,

we onstrut a bijetion between a subset of fs + 1; : : : ; ng n (H + s) and a

subset fs+ 1; : : : ; ng nH with the property that for any i in its domain, (i)� i

is a non-negative multiple of s. Besides we show that is the bijetion between a

subset of fs+1; : : : ; ng n (H + s) and a subset fs+1; : : : ; ng nH with the largest

possible domain and suh that (i)� i is a non-negative multiple of s.

4.2.1 Notation

Throughout this setion n, s are �xed positive integers with s 6= 0, n � 2s, and

H is a given subset of f1; : : : ; ng. We use the following notation:

69

70 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

A(H) = H \ f1; : : : ; sg;

B(H) = H \ fs+ 1; : : : ; n� sg;

C(H) = H \ f1; : : : ; n� sg;

D(H) = H \ fn� s+ 1; : : : ; ng:

(4.1)

Pitorially:

C(H)=A(H)[B(H)

z }| {

1; 2; : : : ; s

| {z }

A(H)=H\

; s+ 1; s+ 2; : : : ; n� s

| {z }

B(H)=H\

; n� s+ 1; n� s+ 2; : : : ; n

| {z }

D(H)=H\

Given a funtion f : X ! Y , we denote by dom(f) the domain of f, i. e. X

and by im(f) the image, i. e. the set ff(x)jx 2 Xg.

Given a subset S � N and q 2 N we denote by S + q the set fp+ qjp 2 Sg.

4.2.2 The Fundamental Bijetion

In the next two theorems we treat the ase H � fs+ 1; : : : ; n� sg.

De�nition 4.2.1. Given n; s 2 N , s 6= 0, suh that n � 2s, and H � fs +

1; : : : ; n� sg. We de�ne the funtion �

H

�

H

: fs+ 1; : : : ; ng n (H + s)! fs+ 1; : : : ; ng nH; (4.2)

as follows:

If H is the empty set, we take the identity funtion

�

;

(i) = i; (4.3)

for all i 2 dom�

H

.

If H is not the empty set, we take for all i 2 dom�

H

�

H

(i) =

(

�

Hnfag

(i); if i 2 (fs+ 1; : : : ; ng n (H + s)) n �

�1

Hnfag

(a);

�

Hnfag

(a + s); if i = �

�1

Hnfag

(a);

(4.4)

where a denotes the minimum element in H with respet to the natural ordering.

Example 4.2.1 desribes the funtion �

H

for n = 9, s = 3 and H = f5; 6g.

4.2. THE ABSTRACT MODEL 71

Theorem 4.2.1. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � fs +

1; : : : ; n�sg. The funtion �

H

(see De�nition 4.2.1) is well-de�ned, is a bijetion

and is suh that �

H

(i)� i is a non-negative multiple of s, i. e. there exists a non-

negative integer m

i

suh that

�

H

(i)� i = m

i

� s: (4.5)

Proof. Let us prove this theorem by indution on the ardinality of H.

When H is the empty set, we have the identity funtion

�

;

(i) = i;

whih is a bijetion and it satis�es the ondition (4.5) beause:

�

;

(i)� i = 0 = 0 � s:

Let us assume that the theorem holds for all subsets of fs+ 1; : : : n� sg of a

ertain given ardinality j. We prove it for an arbitrary subset H of fs+1; : : : n�

sg of ardinality j + 1.

We onsider the funtion �

H

�

H

: fs+ 1; : : : ; ng n (H + s)! fs+ 1; : : : ; ng nH;

whih, by De�nition 4.2.1, is

�

H

(i) =

(

�

Hnfag

(i); if i 2 (fs+ 1; : : : ; ng n (H + s)) n �

�1

Hnfag

(a);

�

Hnfag

(a + s); if i = �

�1

Hnfag

(a);

(4.6)

where a is the minimum element in H with respet to the natural ordering.

We notie that a must be in the image of �

Hnfag

and therefore �

�1

Hnfag

(a) is an

element of the domain of �

Hnfag

.

Pitorially:

a+ s

a

�

�1

Hnfag

(a)

�

Hnfag

(a+ s)

The ondition (4.5) holds by the indution hypothesis for i 6= �

�1

Hnfag

(a).

When i = �

�1

Hnfag

(a) we have that by de�nition of inverse and by the indution

hypothesis

72 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

�

Hnfag

(�

�1

Hnfag

(a))

| {z }

=a

��

�1

Hnfag

(a) = l � s; (4.7)

where l is a non-negative integer.

Hene, by (4.7) and by the fat that �

Hnfag

(a+ s)� (a+ s) = m � s, with m

a non-negative integer,

�

H

(�

�1

Hnfag

(a))� �

�1

Hnfag

(a) = �

Hnfag

(a+ s)� (a� l � s) =

= a+ s+m � s� a+ l � s = (m+ l + 1) � s:

(4.8)

The funtion �

H

is surjetive, beause for i =2 f�

�1

Hnfag

(a); a+sg, �

H

spans the

image of �

Hnfag

expet for the values a and �

Hnfag

(a + s) and for i = �

Hnfag

(a)

it overs the value �

Hnfag

(a + s).

Injetivity follows from the indutive hypothesis and from the fat that a+s =2

dom(�

H

) and therefore for any i 2 dom(�

H

), i 6= �

�1

H

(a),

�

H

(i) = �

Hnfag

(i) 6= �

Hnfag

(a + s) = �

H

(�

�1

Hnfag

(a)): (4.9)

�

Example 4.2.1.

n = 9, s = 3, H = f5; 6g:

4 5 6 7 8 9 1210 11

4 5 6 7 8 9 121110

H = f5g

H = ;

1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8

4 5 6 7 8 9 1210 11

91

1 2 3 4 5 6 7 8 9

H = f5; 6g

4.2. THE ABSTRACT MODEL 73

Theorem 4.2.2. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � fs +

1; : : : ; n � sg. The funtion �

H

has the property that for any i 2 dom(�

H

),

�

H

(i)� i is the minimum non-negative multiple of s, i. e. we have

�

H

(i)� i

s

= min

l2N

(l j i+ l � s 2 fs+ 1; : : : ; ng nH): (4.10)

Proof. We proeed by indution on jHj.

When H is the empty-set, we have �

H

(i) = i for any i 2 dom(�

H

) and

therefore the minimality ondition (4.10) holds.

Given an arbitrary subset H of fs + 1; : : : ; n � sg, let us assume that the

property holds for a subsets of fs+1; : : : ; n�sg of lower ardinality than H, and

let us prove it for H.

Let us denote by a the minimum element in H with respet to the natural

ordering. The property holds for any i 6= �

�1

Hnfag

(a) beause in this ase �

H

(i) =

�

Hnfag

(i).

We have that �

H

(�

�1

Hnfag

(a)) = �

Hnfag

(a + s).

Moreover, we have

a = �

�1

Hnfag

(a) + l

1

� s; (4.11)

with

l

1

= min

l2N

(l j�

�1

Hnfag

(a) + l � s 2 im(�

Hnfag

)); (4.12)

and

�

Hnfag

(a + s) = a+ s+ l

2

� s; (4.13)

with

l

2

= min

l2N

(l j a+ s+ l � s 2 im(�

Hnfag

)); (4.14)

and therefore

l

2

+ 1 = min

l2N

(l j a+ l � s 2 im(�

Hnfag

) n fag): (4.15)

Hene

�

H

(�

�1

Hnfag

(a))

| {z }

=�

Hnfag

(a+s)

= �

�1

Hnfag

(a) + (l

1

+ l

2

+ 1) � s (4.16)

where

l

1

+ l

2

+ 1 = min

l2N

(l j�

�1

Hnfag

(a) + l � s 2 im(�

Hnfag

) n fag); (4.17)

beause of the minimality of l

1

and l

2

.

�

74 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

Pitorially:

a

�

Hnfag

(a+ s)

1

l

1

l

2

a+ s�

�1

Hnfag

(a)

4.2.3 More General Bijetions

The following lemma and theorem generalize the previous theorems respetively

to the ase H � f1; : : : ; n� sg and to the ase H � f1; : : : ; ng.

De�nition 4.2.2. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; n�

sg, we de�ne the funtion �

H

to be the following restrition of �

H

:

�

H

= �

B(H)

�

�

dom(�

B(H)

)n(A(H)+s)

: (4.18)

Lemma 4.2.3. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; n�sg.

The funtion �

H

is suh that for any i 2 fs+ 1; : : : ; ng n (H + s), �

H

(i)� i is a

non-negative multiple of s, i. e. there exists a non-negative integer m

i

suh that

�

H

(i)� i = m

i

� s: (4.19)

Moreover

�

H

: fs+ 1; : : : ; ng n (H + s)! R; (4.20)

where

R � fs+ 1; : : : ; ng nH;
(4.21)

Proof. The funtion �

H

is a bijetion that satis�es the ondition (4.19) beause

it is a restrition of �

B(H)

.

It is de�ned over fs+ 1; : : : ; ng n (H + s) beause �

B(H)

is de�ned over fs+

1; : : : ; ng n (B(H) + s).

Its image is a subset of fs + 1; : : : ; ng n H beause the image of �

B(H)

is

fs+ 1; : : : ; ng nB(H) and �

H

is a restrition of �

H

.

�

4.2. THE ABSTRACT MODEL 75

Example 4.2.2.

n = 6, s = 2

1 2 3 4 5 6

3 4 5 6 7 8

1 2 3 4 5 6

H = f3g H = f2; 3g

3 4 5 6 7 8

In the seond ase we have: A(H) = f2g and B(H) = f3g.

We introdue the notation

�

D(H) = D(H) \ im (�

C(H)

): (4.22)

De�nition 4.2.3. Given n; s 2 N , s 6= 0, suh that n � 2s, and H � f1; : : : ; ng,

we de�ne the funtion

H

to be the following restrition of �

H

H

= �

C(H)

�

�

dom(�

C(H)

)n�

�1

C(H)

(

�

D(H))

: (4.23)

Theorem 4.2.4. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; ng.

We have that

H

: P ! R (4.24)

where

P � fs+ 1; : : : ; ng n (H + s);

R � fs+ 1; : : : ; ng nH;

(4.25)

and

jP j; jRj = n� s� jC(H)j � j

�

D(H)j; (4.26)

Moreover

H

is suh that for any i 2 P ,

h

(i)� i is a non-negative multiple

of s, i. e. there exists a non-negative integer m

i

suh that

H

(i)� i = m

i

� s: (4.27)

Proof. The funtion

H

is a bijetion that satis�es the ondition (4.27) beause

it is a restrition of �

C(H)

.

We notie that

H

is then de�ned over

(fs+ 1; : : : ; ng n (C(H) + s)) n �

�1

C(H)

(

�

D(H))

whih has ardinality

n� s� jC(H)j � j

�

D(H)j:

�

76 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

Example 4.2.3.

n = 6, s = 2:

1 2 3 4 5 6

3 4 5 6 7 8

1 2 3 4 5 6

H = f2; 4g H = f2; 4; 5; 6g

3 4 5 6 7 8

In the seond ase we have: C(H) = f2; 4g, D(H) = f5; 6g and

�

D(H) = f5g.

4.2.4 Some Useful Properties

Property 4.2.5. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; ng.

The bijetive funtion

H

is suh that for any i 2 dom(

H

),

H

(i) � i is the

minimum non-negative multiple of s, i. e. we have

H

(i)� i

s

= min

l2N

(l j i+ l � s 2 im(

H

)): (4.28)

Proof. The proof follows from the the fat that

H

is a restrition of �

H

.

�

Property 4.2.6. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; ng.

The inverse funtion of

H

is suh that, for any j 2 im(

H

), there exists a

non-negative integer m

j

suh that

j �

�1

H

(j) = m

j

� s: (4.29)

Proof. The proof follows from (4.19). In fat for any j 2 im(

H

) we have

H

(

�1

H

(j))

| {z }

=j

�

�1

H

(j) = l

j

� s; (4.30)

where l

j

is a non-negative integer.

�

Let us denote by Æ(H) the set D(H) n

�

D(H).

4.2. THE ABSTRACT MODEL 77

4.2.5 Cardinality

The next two theorems give us the ardinality of the sets:

(fs+ 1; : : : ; n+ sg n (H + s)) n dom

H

;

(f1; : : : ; ng nH) n im

H

:

(4.31)

The meaning of these apparently obsure sets will beome lear in the next

setion where they are interpreted in terms of fators of polynomials involved in

Zeilberger's algorithm that satisfy a ertain ondition (Gosper ondition).

Theorem 4.2.7. Given n; s 2 N, s 6= 0, suh that n � 2s, H � f1; : : : ; ng.

Denoted by P

H

and R

H

the domain and image of the

H

. We have

j(fs+ 1; : : : ; n+ sg n (H + s)) n P

H

j = s� jÆ(H)j;

j(f1; : : : ; ng nH) nR

H

j = s� jÆ(H)j:

(4.32)

Proof. By Theorem 4.2.4, we have

jP

H

j = jR

H

j = n� s� jC(H)j � j

�

D(H)j: (4.33)

Moreover, sine

H � f1; : : : ; ng;

P

H

� fs+ 1; : : : ; n + sg n (H + s);

R

H

� f1; : : : ; ng nH;

(4.34)

we have

j(fs+ 1; : : : ; n+ sg n (H + s)) n P

H

j = j(f1; : : : ; ng nH) nR

H

j =

= j(f1; : : : ; ngj � jHj � jR

H

j = n� jHj � (n� s� jC(H)j � j

�

D(H)j) =

= n� jC(H)j � jD(H)j � n + s+ jC(H)j+ j

�

D(H)j = s� jÆ(H)j;

(4.35)

�

Example 4.2.4.

n = 11, s = 3, H = f3; 5; 6; 9; 10g:

2 3 4 5 6 7 81 9

4 5 6 7 8 9 10 11

10 11

141312

78 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

In this ase we have C(H) = f3; 5; 6g, D(H) = f9; 10g,

�

D(H) = f10g,

Æ(H) = f9g.

We see that the ardinality of the sets (fs+1; : : : ; n+sgn (H+s))ndom(

H

)

and (f1; : : : ; ng nH) n im(

H

) is s� jÆ(H)j = 3� 1 = 2:

Theorem 4.2.8. Given n; s 2 N, s 6= 0, suh that n � 2s, H � f1; : : : ; ng. The

set Æ(H) = D(H) n

�

D(H) is suh that:

0 � jÆ(H)j � s; (4.36)

and

jÆ(H)j = s i� f1; : : : ; ng = H: (4.37)

Proof. The fat that 0 � jÆ(H)j � s follows immediately from the de�nition of

Æ(H) and from the fat that

�

D(H) is a subset of D(H).

We see that if f1; : : : ; ng = H then im(�

C(H)

) = ; and therefore

�

D(H) = ;

whih implies Æ(H) = D(H) and jÆ(H)j = s sine D(H) = fn� s+ 1; : : : ; ng.

On the other hand, jÆ(H)j = s implies

�

D(H) = ; and D(H) = fn � s +

1; : : : ; ng. If we assumed that f1; : : : ; n�sgnH were not the empty-set we would

have that

max(i j i 2 f1; : : : ; n� sg nH) + s 2 dom(�

C(H)

) (4.38)

and its image would be in

�

D(H) = im(�

C(H)

) \D(H);

whih ontradits the fat that

�

D(H) = ;.

�

4.2.6 Maximal Cardinality Property

We now prove that

H

is the bijetion between a subset of fs+1; : : : ; ngn(H+s)

and a subset of fs+1; : : : ; ngnH suh that ondition (4.27) holds, whose domain

and image have the largest possible ardinality.

Theorem 4.2.9. Given n; s 2 N, s 6= 0, suh that n � 2s, and H � f1; : : : ; ng.

There exists no bijetion �

H

:M ! N where

M � fs+ 1; : : : ; ng n (H + s);

N � fs+ 1; : : : ; ng nH;

(4.39)

suh that for any i 2 P , there exists a non-negative integer m

i

suh that

�

H

(i)� i = m

i

� s: (4.40)

and dom(

H

) (M .

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 79

Proof. We notie that

dom(

H

) = (fs+ 1; : : : ; ng n (H + s)) n �

�1

C(H)

(

�

D(H)): (4.41)

We show that there annot be a bijetion �

H

:M ! N suh that the ondition

(4.40) holds and suh that M � fs+ 1; : : : ; ng n (H + s), N � fs+1; : : : ; ng nH

and that has any of the elements in �

�1

C(H)

(

�

D(H)) in its domain.

If this were not the ase, by Property 4.2.5 and by the fat that for any

i 2

�

D(H), �

H

(�

�1

C(H)

(i)) 6= i, we would also have

�

H

(�

�1

C(H)

(i)) > �

C(H)

(�

�1

C(H)

(i)) = i: (4.42)

By (4.40) we have

�

H

(�

�1

C(H)

(i))� �

�1

C(H)

(i) = m � s; (4.43)

where m is a non-negative integer.

By Property 4.2.6 on the inverse funtion

i� �

�1

C(H)

(i) = l � s; (4.44)

where l is a non-negative integer.

Therefore from (4.42) we have

�

H

(�

�1

C(H)

(i)) � i+ s; (4.45)

whih is impossible beause i � n� s+ 1 sine i 2

�

D(H).

�

Example 4.2.5.

n = 7, s = 2 and H = f1; 4; 6g:

1 2 3 4 5 6 7

minimal distane

outside the range

3 4 5 6 7 8 9

(next possible image)

Here we have C(H) = f1; 4g, D(H) =

�

D(H) = f6g.

4.3 Shift Quotients in Zeilberger's Algorithm

In this setion we interpret the previous results in terms of linear fators of

polynomials involved in Zeilberger's algorithm.

80 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

4.3.1 Notation and De�nitions

As in Chapter 1 (De�nition 1.2.4) we de�ne:

De�nition 4.3.1. We will denote by F (n; k) a proper hypergeometri term, i. e.

F (n; k) = P (n; k)x

k

Q

A

i=0

(a

i

n + b

i

k +

i

)!

Q

U

j=0

(u

j

n+ v

j

k + w

j

)!

(4.46)

where a

i

, b

i

,

i

, u

j

, v

j

and w

j

are integers, x is a parameter, and where P (n; k) 2

Q [n; k℄.

Given a hypergeometri term F (n; k) in n and k, we denote by N and K the

shift operators whose ation on F (n; k) is

Ns

n;k

= s

n+1;k

; Ks

n;k

= s

n;k+1

: (4.47)

We denote by L the linear reurrene operator with polynomial oeÆients

in n (free of k)

P

d

i=0

z

i

(n)N

i

, with z

i

(n) 2 Q(n).

De�nition 4.3.2. For any hypergeometri term F (n; k) we de�ne the shift quo-

tient of F (n; k) in n (respetively in k) as follows:

Q

n

(F (n; k)) =

F (n+ 1; k)

F (n; k)

; (4.48)

and

Q

k

(F (n; k)) =

F (n; k + 1)

F (n; k)

; (4.49)

respetively.

We denote by

^

F (n; k)

F (n; k)=(P (n; k)x

k

) =

Q

A

i=0

(a

i

n+ b

i

k +

i

)!

Q

U

j=0

(u

j

n + v

j

k + w

j

)!

: (4.50)

We will denote by num and den the operators that extrat respetively nu-

merators and denominators out of a rational funtion f(n; k) 2 Q (n; k), with

n; k 2 Z, in normal form, i. e. given

f(n; k) =

p

1

(n; k)

p

2

(n; k)

; (4.51)

with p

1

(n; k); p

2

(n; k) 2 Q [n; k℄ suh that gd(p

1

(n; k); p

2

(n; k)) = 1, we have

num f(n; k) = p

1

(n; k); den f(n; k) = p

2

(n; k): (4.52)

For the sole purpose of studying the degree it suÆes to onsider numerators

and denominators de�ned up to multipliative onstant oeÆients.

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 81

De�nition 4.3.3. We de�ne a proper hypergeometri term F (n; k) to be n-

regular (k-regular) in n if and only if the numerator and the denominator of its

shift quotient in n (respetively in k) have the same degree in n, i. e.

deg

n

(numQ

n

(F (n; k))) = deg

n

(denQ

n

(F (n; k))); (4.53)

and

deg

n

(numQ

k

(F (n; k))) = deg

n

(denQ

k

(F (n; k))): (4.54)

respetively.

We de�ne non-n-regular (non-k-regular) in n any term whih does not satisfy

(4.53) ((4.54) respetively).

Example 4.3.1. The Binomial CoeÆient

The binomial oeÆient

�

n

k

�

is n-regular in n but it is non-k-regular in n. In fat

we have:

Q

n

(

�

n

k

�

) =

n+ 1

n� k + 1

(4.55)

and

Q

k

(

�

n

k

�

) =

n� k

k + 1

: (4.56)

Example 4.3.2. Rational Funtions

Any rational funtion F (n; k) = p

1

(n; k)=p

2

(n; k), with p

1

; p

2

2 Q [n; k℄ is both

n-regular in n and k-regular in n. In fat we have:

Q

n

(

p

1

(n; k)

p

2

(n; k)

) =

p

1

(n+ 1; k)

p

2

(n+ 1; k)

�

p

2

(n; k)

p

1

(n; k)

(4.57)

and

Q

k

(

p

1

(n; k)

p

2

(n; k)

) =

p

1

(n; k + 1)

p

2

(n; k + 1)

�

p

2

(n; k)

p

1

(n; k)

: (4.58)

Example 4.3.3. The Fatorial Funtion

The fatorial term F (n; k) = n! is trivially k-regular in n but non-n-regular in n.

In fat

Q

n

(n!) =

(n+ 1)!

n!

= n+ 1: (4.59)

4.3.2 Interpretation of the Model

With the next theorem and orollary we prove that the degree in n of some

polynomials involved in Zeilberger's algorithm an be bounded in a way whih

is independent of the order d of the reurrene. We do this by interpreting the

abstrat model desribed in the previous setion in terms of fators of polynomials

breaking a ertain ondition.

82 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

In the sequel we will use the following notation:

A

+

= fi j 0 � i � A; a

i

> 0g; A

�

= fi j 0 � i � A; a

i

< 0g;

U

+

= fj j 0 � j � U; u

j

> 0g; U

�

= fj j 0 � j � U; u

j

< 0g;

(4.60)

De�nition 4.3.4. Given f 2 Z[n; k℄ and i 2 N we de�ne the i-rising fatorial of

f(n; k), denoted by f

i

, to be

f

i

=

i�1

Y

j=0

(f + j); for i > 0; f

0

= 1: (4.61)

De�nition 4.3.5. Given f 2 Z[n; k℄ and i 2 N we de�ne the i-falling fatorial

of f(n; k), denoted by f

i

, to be

f

i

=

i�1

Y

j=0

(f � j); for i > 0; f

0

= 1: (4.62)

Lemma 4.3.1. denQ

n

(

^

F (n; k)) must be a divisor of

Y

j2U

+

(u

j

n+ v

j

k + w

j

+ 1)

u

j

�

Y

i2A

�

(a

i

n+ b

i

k +

i

)

a

i

: (4.63)

Proof. By de�nition of

^

F (n; k) we have

Q

n

(

^

F (n; k)) =

Q

i2A

+

(a

i

n+ b

i

k +

i

+ a

i

)!

Q

j2U

+

(u

j

n + v

j

k + w

j

+ u

j

)!

�

Q

j2U

+

(u

j

n+ v

j

k + w

j

)!

Q

i2A

+

(a

i

n + b

i

k +

i

)!

�

�

Q

i2A

�

(a

i

n + b

i

k +

i

+ a

i

)!

Q

j2U

�

(u

j

n + v

j

k + w

j

+ u

j

)!

�

Q

j2U

�

(u

j

n+ v

j

k + w

j

)!

Q

i2A

�

(a

i

n+ b

i

k +

i

)!

=

=

Q

i2A

+

(a

i

n+ b

i

k +

i

+ 1)

a

i

Q

j2U

+

(u

j

n + v

j

k + w

j

+ 1)

u

j

�

Q

j2U

�

(u

j

n+ v

j

k + w

j

)

u

j

Q

i2A

�

(a

i

n+ b

i

k +

i

)

a

i

:

(4.64)

Taking the denominator ompletes the proof.

�

In the following we will refer to the linear fators in n and k of denQ

n

(

^

F (n; k)),

i. e. those linear fators in n in k from

Y

j2U

+

(u

j

n + v

j

k + w

j

+ 1)

u

j

�

Y

i2A

�

(a

i

n + b

i

k +

i

)

a

i

that are not aneled in Q(

^

F (n; k)), simply as linear fators of denQ

n

(

^

F (n; k)).

We will refer to the linear fators ofN

h

denQ

n

(

^

F (n; k)), for h = 0; 1; : : : ; d�1,

as linear fators of

Q

d�1

h=0

(N

h

denQ

n

(

^

F (n; k))).

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 83

Algorithm 4.1 Gosper Form

Input: a(n; k)=b(n; k) 2 Q(n; k), with a(n; k); b(n; k) 2 Q [n; k℄

Output: p(n; k); q(n; k); r(n; k) 2 Q [n; k℄ suh that

a(n; k)

b(n; k)

=

p(n; k + 1)

p(n; k)

�

q(n; k)

r(n; k + 1)

: (4.65)

and

gd(q(n; k); r(n; k + j)) = 1; (4.66)

for all j � 1, j 2 N .

1: i := 0;

p

0

(n; k) := 1;

q

0

(n; k) := a(n; k);

r

0

(n; k) := b(n; k � 1).

2: while there exists j 2 N suh that

gd(q

i

(n; k); r

i

(n; k + j)) = f(n; k) 6= 1; (4.67)

do

3: q

i+1

(n; k) := q

i

(n; k)=f(n; k);

r

i+1

(n; k) := r

i

(n; k)=f(n; k � j + 1);

p

i+1

(n; k) := p

i

(n; k) � f(n; k � 1)

j�1

;

i := i+ 1.

4: return (p

i

(n; k); q

i

(n; k); r

i

(n; k))

84 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

De�nition 4.3.6. Given a rational funtion a(n; k)=b(n; k) 2 Q [n; k℄, we de�ne

the Gosper form of a(n; k)=b(n; k) to be the triplet (p(n; k); q(n; k); r(n; k)) of

polynomials in Q [n; k℄ suh that

a(n; k)

b(n; k)

=

p(n; k + 1)

p(n; k)

�

q(n; k)

r(n; k + 1)

: (4.68)

and suh that

gd(q(n; k); r(n; k + j)) = 1; 8j > 0; j 2 N : (4.69)

We refer to the ondition (4.69) as Gosper ondition .

We refer to the additional ondition on p, q and r

gd(p(n; k + 1); r(n; k + 1)) = 1;

gd(p(n; k); q(n; k)) = 1:

(4.70)

as Petkov�sek ondition [Pet92℄.

We refer to the problem of �nding y(n; k) 2 Q [n; k℄ suh that

p(n; k) = q(n; k)y(n; k + 1)� r(n; k)y(n; k); (4.71)

as Gosper equation and we all y(n; k) Gosper polynomial .

More details on the Gosper form an be found in the �rst hapter. We also

refer to [Gos78℄, [Pau95℄, [PS95℄, [Zei90℄, [Zei91℄, [GvzG99℄, pages 622{639 and

[GKP94℄, pages 223{241.

Remark 4.3.1. Imposing to the polynomials in Gosper form the additional

Petkov�sek ondition (4.70) produes a unique Gosper form up to invertible ele-

ments (Gosper-Petkov�sek form) .

Theorem 4.3.2. Algorithm 4.1 generates the Gosper form of a rational funtion.

For the proof we refer to [PWZ97℄, pages 79{84.

We will prove the next theorem by interpreting the ondition (4.27) on the

funtion

H

as a violation of the Gosper ondition.

Theorem 4.3.3. If the order d of L is suh that

d � M(F (n; k)); (4.72)

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 85

where

M(F (n; k)) = max(max

j2U

+

(d2jv

j

j=u

j

e);max

i2A

�

(d2jb

i

j=ja

i

je)); (4.73)

then, the number of linear fators f in

t(n; k) :=

d�1

Y

h=0

(N

h

denQ

n

(

^

F (n; k))) (4.74)

suh that

�g linear fator in Kt(n; k) suh that

f = K

m

g for some m 2 N ;

(4.75)

is bounded by

X

j2U

+

jv

j

j+

X

i2A

�

jb

i

j; (4.76)

Proof. By Lemma 4.3.1, we an write

t(n; k) =

Y

j2U

+

A

j;d

Y

s=1

(u

j

n+ v

j

k + w

j

+ f

j;s

)�

�

Y

i2A

�

B

i;d

Y

t=1

(a

i

n+ b

i

k +

i

+ 1� g

i;t

);

(4.77)

where A

j;d

, B

i;d

are non-negative integers and f

j;s

, g

j;t

are non-negative distint

integers suh that

1 � f

j;s

� d � u

j

; 1 � g

i;t

� d � ja

i

j:

Choosing d �M(F (n; k)) (4.73) guarantees

d � u

j

� 2 � jv

j

j; 8j 2 U

+

; (4.78)

and

d � ja

i

j � 2 � jb

i

j; 8i 2 A

�

: (4.79)

Hene, if we exlude the trivial ases v

j

= 0 and b

i

= 0, we are under the

hypotheses of Theorem 4.2.7 and Theorem 4.2.8 whih guarantee that for eah

fator (a

i

n+ b

i

k+

i

)

d�a

i

, i 2 A

�

and (u

j

n+v

j

k+w

j

)

d�u

j

, j 2 U

+

, respetively at

most jb

i

j and jv

j

j linear fators satisfy the ondition in (4.75). Therefore a bound

for the number of linear fators in Kt(n; k) that do not violate the ondition

(4.75), is

P

j2U

+

jv

j

j+

P

i2A

�

jb

i

j.

�

86 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

Example 4.3.4.

If we take

F (n; k) =

(2n+ k � 1)!

(4n+ 2k)!

;

and d = 2 we have:

Q

n

(

^

F (n; k)) = Q

n

(F (n; k)) =

(2n+ k + 1)!

(4n+ 2k + 4)!

(4n+ 2k)!

(2n+ k � 1)!

=

=

2n+ k

(4n+ 2k + 1)2(4n+ 2k + 3)(4n+ 2k + 4)

:

(4.80)

Therefore

t(n; k) = 4(4n+ 2k + 1)(4n+ 2k + 3)(4n+ 2k + 4)�

(4n+ 2k + 5)(4n+ 2k + 7)(4n+ 2k + 8);

(4.81)

where

t(n; k) :=

d�1

Y

h=0

(N

h

denQ

n

(

^

F (n; k))); (4.82)

and

Q

k

(1=t(n; k)) =

=

(X + 1)(X + 3)(X + 4)(X + 5)(X + 7)(X + 8)

(X + 3)(X + 4)(X + 6)(X + 7)(X + 9)(X + 10)

:

(4.83)

where X = 4n+ 2k.

The violations of the Gosper ondition (inluding anellations) between fa-

tors in the numerator and denominator of

Q

k

(1=t(n; k)) =

t(n; k)

Kt(n; k)

; (4.84)

are shown in the following diagram desribing

H

, de�ned in De�nition 4.2.3,

with H = f2; 6g, n = 8 and s = 2:

1 2 3 5 6 7 84

3 4 5 7 86 9 10

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 87

The set H = f2; 6g desribes the missing fators in t(n; k) (i.e. 4n + 2k + 2,

4n+ 2k + 6). The irled integers are the elements of the sets

(f1; : : : ; ng nH) n im (

H

); (4.85)

and

(fs+ 1; : : : ; n+ sg) n (H + s)) n dom (

H

): (4.86)

namely those integers in the upper set (i.e. f1; : : : ; 8g) that are nor in a \hole" (2

or 6) nor in the the image of

H

(i.e. f3; 5; 7; 8g), and those integers in the lower

set (i.e. f3; : : : ; 10g) that are nor in a \shifted hole" (4 or 8) nor in the domain

of

H

(i.e. f3; 5; 6; 7g), respetively. The �rst ones orrespond to the fators of

the polynomial q(n; k) in the Gosper form of Q

k

(1=t(n; k)) and the latter to the

fators in the polynomial r(n; k) in the Gosper form of Q

k

(1=t(n; k)).

Theorem 4.2.7 and Theorem 4.2.8 bound the ardinality of these sets and

therefore also the degree in n of q(n; k) and r(n; k) by s = 2.

In the following we will use the following notation

^

Q

n

= Q

n

(

^

F (n; k));

^

Q

k

= Q

k

(

^

F (n; k)) (4.87)

Lemma 4.3.4. For any d 2 N we have

(

d

X

i=0

z

i

(n)N

i

)F (n; k) =(

d

X

i=0

z

i

(n)(N

i

P (n; k))

i�1

Y

j=0

N

j

num

^

Q

n

d�1

Y

j=i

N

j

den

^

Q

n

)�

�

1

Q

d�1

i=0

(N

i

den

^

Q

n

)

� x

k

^

F (n; k):

(4.88)

Proof. We notie that

Q

n

=

NF (n; k)

F (n; k)

=

NP (n; k)

P (n; k)

�

N

^

F (n; k)

^

F (n; k)

=

NP (n; k)

P (n; k)

�

^

Q

n

: (4.89)

Therefore, using (4.89) we get

88 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

(

d

X

i=0

z

i

(n)N

i

)F (n; k) = (

d

X

i=0

z

i

(n)

i�1

Y

j=0

N

j

Q

n

)F (n; k) =

= (

d

X

i=0

z

i

(n)

i�1

Y

j=0

N

j

NP (n; k)

P (n; k)

�N

j

^

Q

n

)F (n; k) =

= (

d

X

i=0

z

i

(n)

N

i

P (n; k)

P (n; k)

i�1

Y

j=0

N

j

num

^

Q

n

den

^

Q

n

)F (n; k) =

= (

d

X

i=0

z

i

(n)N

i

P (n; k)

i�1

Y

j=0

N

j

num

^

Q

n

den

^

Q

n

) � x

k

^

F (n; k) =

=(

d

X

i=0

z

i

(n)(N

i

P (n; k))

i�1

Y

j=0

N

j

num

^

Q

n

d�1

Y

j=i

N

j

den

^

Q

n

)�

�

1

Q

d�1

i=0

(N

i

den

^

Q

n

)

� x

k

^

F (n; k):

(4.90)

�

Corollary 4.3.5. If the order d of L is suh that

d � max(max

j2U

+

(d2jv

j

j=u

j

e);max

i2A

�

(d2jb

i

j=ja

i

je)); (4.91)

then the Gosper form (p(n; k); q(n; k); r(n; k)) of Q

k

(LF (n; k)), will be suh that

the degrees of q(n; k) and r(n; k) in n are bounded by

deg

n

(num(

^

Q

k

)) + (

X

j2U

+

jv

j

j+

X

i2A

�

jb

i

j); (4.92)

and

deg

n

(den(

^

Q

k

)) + (

X

j2U

+

jv

j

j+

X

i2A

�

jb

i

j); (4.93)

respetively.

Proof. From Lemma 4.88 and from the distributivity of the shift quotient we

have that

Q

k

(LF (n; k)) =Q

k

(

d

X

i=0

z

i

(n)(N

i

P (n; k))

i�1

Y

j=0

N

j

num

^

Q

n

d�1

Y

j=i

N

j

den

^

Q

n

)�

�Q

k

(1=(

d�1

Y

h=0

N

h

den

^

Q

n

)) � x �

^

Q

k

;

(4.94)

We notie the following fats:

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 89

� Q

k

(1=(

Q

d�1

h=0

N

h

den

^

Q

n

)), by Theorem 4.3.3, ontributes to the degree in

n of q(n; k) and r(n; k) by a degree bounded by

P

j2U

+

jv

j

j+

P

i2A

�

jb

i

j;

� x�

^

Q

k

gives a ontribution to q(n; k) and r(n; k) with degree in n respetively

deg

n

num(

^

Q

k

) and deg

n

den(

^

Q

k

);

� Q

k

(

P

d

i=0

z

i

(n)(N

i

P (n; k))

Q

i�1

j=0

N

j

num

^

Q

n

�

Q

d�1

j=i

N

j

den

^

Q

n

) violates the

Gosper ondition (see (4.69)) beause it is the shift quotient in k of a

polynomial, and therefore does not ontribute to the degree in n of either

q(n; k) or r(n; k).

�

Remark 4.3.2. While Corollary 4.3.5 holds for any Gosper form, ondition (4.70)

(Petkov�sek ondition) an produe a Gosper form with lower degree polynomials.

4.3.3 Gosper Equation

In the next two theorems we �nd onditions under whih it is possible, at least

heuristially, to �nd a relation between the highest degree in n of z

i

(n) for 0 �

i � d� 1 and of the oeÆients y

i

(n) with respet to k of the Gosper polynomial

y(n; k).

In the following we assume that L is suh that LF (n; k) is Gosper-summable.

We denote the Gosper form of LF (n; k) by (p(n; k); q(n; k); r(n; k)).

We also introdue the following de�nitions:

� := max

0�i�d

(deg

n

(z

i

(n))); := deg

n

(y(n; k));

� := deg

n

(q(n; k)); � := deg

n

(r(n; k)); Æ := deg

n

(num

^

Q

n

);

(4.95)

where y(n; k) is the Gosper polynomial. We denote the oeÆient of k

i

in y(n; k)

by y

i

(n).

We denote by (�p(n; k); �q(n; k); �r(n; k)) the Gosper form of

Q

k

(1=(

d�1

Y

h=0

N

h

den

^

Q

n

)) � x �

^

Q

k

:

For a given polynomial a(n; k) 2 Q [n; k℄ we denote by Loe�

n

(a(n; k)) the

leading oeÆient of a(n; k) with respet to n, i. e. the oeÆient of highest degree

with respet to n.

90 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

Remark 4.3.3. Sine LF (n; k) is assumed to be Gosper-summable we have � �

0. Sine y(n; k) annot be identially zero we must also have � 0.

Lemma 4.3.6. Given F (n; k) proper hypergeometri, n-regular in n, then the

degree in n of p(n; k) is bounded by:

deg

n

(�p(n; k)) + � + deg

n

(P (n; k)) + d � Æ: (4.96)

Proof. Q

k

(

P

d

i=0

z

i

(n)(N

i

P (n; k))

Q

i�1

j=0

N

j

num

^

Q

n

�

Q

d�1

j=i

N

j

den

^

Q

n

) violates

the Gosper ondition beause it is the shift quotient of a polynomial.

Then the Gosper form (p(n; k); q(n; k); r(n; k)) of LF (n; k) has the following

form:

p(n; k) = p

0

(n; k) � �p(n; k); q(n; k) = �q(n; k); Kr(n; k) = K�r(n; k): (4.97)

where

p

0

(n; k) =

d�1

X

i=0

z

i

(n)(N

i

P (n; k))

i�1

Y

j=0

N

j

den

^

Q

n

�

d�1

Y

j=i

N

j

num

^

Q

n

; (4.98)

whose degree is bounded by � + deg

n

(P (n; k)) + d � Æ.

�

Lemma 4.3.7. Let F (n; k) be proper hypergeometri and non-k-regular in n, and

let us denote by (p(n; k); q(n; k); r(n; k)) the Gosper form for LF (n; k). Then

q(n; k)y(n; k + 1)� r(n; k)y(n; k) has degree in n:

 +max(�; �): (4.99)

Proof. We notie that the hypothesis of non-k-regularity in n of F (n; k) to-

gether with the fat that 1=(

Q

d�1

h=0

(N

h

den

^

Q

n

)) is k-regular in n implies that

^

F (n; k) � 1=(

Q

d�1

h=0

(N

h

den

^

Q

n

)) is non-k-regular in n, from whih follows � 6= �.

Therefore there is no anellation between the leading oeÆients of the polyno-

mials q(n; k)y(n; k + 1) and r(n; k)y(n; k). �

Theorem 4.3.8. Given F (n; k) proper hypergeometri, n-regular in n. If

X

ijdeg

n

(z

i

)=M

Loe�

n

(z

i

) Loe�

n

(P (n; k)) Loe�

n

(den

^

Q

n

)

i

�Loe�

n

(num

^

Q

n

)

d�i

6= 0

(4.100)

and either F (n; k) is non-k-regular in n,

or

4.3. SHIFT QUOTIENTS IN ZEILBERGER'S ALGORITHM 91

F (n; k) is k-regular in n and

X

jjdeg

n

(y

j

)=M

0

Loe�

n

(q) Loe�

n

(y

j

(n))(k + 1)

j

� Loe�

n

(r) Loe�

n

(y

j

(n))k

j

6= 0;

(4.101)

where M and M

0

are the highest degrees in n of the z

i

(n) for 0 � i � d� 1 and

y(n; k)'s, respetively, then we have

� + deg

n

(�p(n; k)) + deg

n

(P (n; k)) + d � Æ = +max(�; �): (4.102)

Proof. We see that the �rst ondition (4.100) guarantees that the left hand side

of the Gosper equation (4.71), i. e. p(n; k) has degree exatly � + deg

n

(�p(n; k)) +

deg

n

(P (n; k)) + d � Æ.

The seond ondition guarantees that the degree in n of the right hand side,

i. e. of q(n; k)y(n; k + 1)� r(n; k)y(n; k) is +max(�; �).

�

Theorem 4.3.9. Given F (n; k) proper hypergeometri, n-regular in n, non-k-

regular in n, then we have

� + deg

n

(�p(n; k)) + deg

n

(P (n; k)) + d � Æ � +max(�; �): (4.103)

Proof. By Lemma 4.3.6, the fat that F (n; k) is non-k-regular in n guarantees

that the right hand side of the Gosper equation (4.71), i. e.q(n; k + 1)y(n; k) �

r(n; k)y(n; k) has degree in n exatly +max(�; �).

By Lemma 4.3.7, the degree in n of the left hand side, i. e. p(n; k) is at most

� + deg

n

(�p(n; k)) + deg

n

(P (n; k)) + d � Æ:

�

4.3.4 Lower Bounds on Degrees

We now use the previous result to get lower bounds on the degree in n of the

oeÆients z

i

(n), for 0 � i � d� 1, of the linear reurrene operator L, and on

the Gosper polynomial y(n; k).

De�nition 4.3.7. Let us de�ne:

D(F (n; k); d) = max(�; �)� (deg

n

(�p(n; k)) + deg

n

(P (n; k)) + d � Æ): (4.104)

Remark 4.3.4. By Corollary 4.3.5, we have that � and � an be bounded inde-

pendently of d, whereas deg

n

(�p(n; k)) + deg

n

(P (n; k)) + d � Æ grows with d when

Æ � 1. Therefore, if Æ � 1, for d big enough we expet D(F (n; k); d) to be

negative.

92 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

Theorem 4.3.10. Given F (n; k) proper hypergeometri, n-regular in n, non-

k-regular in n, then the following lower bound on the degree in n of z

i

(n), for

0 � i � d� 1, and of the oeÆients y

i

(n) of y(n; k) with respet to k must hold:

� � D(F (n; k); d): (4.105)

Proof. It follows from Theorem 4.3.9, and from the fat that

� � +D(F (n; k); d) � D(F (n; k); d);

beause the Gosper polynomial annot be identially zero.

�

Theorem 4.3.11. Given F (n; k) proper hypergeometri, n-regular in n, then

if ondition (4.100) holds and either F (n; k) is non-k-regular in n or ondition

(4.101) holds, then we have

� � D(F (n; k); d); � �D(F (n; k); d): (4.106)

Proof. It follows from Theorem 4.3.8, and from the fat that

� = +D(F (n; k); d) � D(F (n; k); d);

 = � �D(F (n; k); d) � �D(F (n; k); d);

(4.107)

beause the Gosper polynomial annot be identially zero and not all the z

i

(n)

an be zero.

�

4.3.5 Some Examples

We run Zeilberger's algorithm implemented as desribed in Chapter 1 on inreas-

ing powers of binomials

�

n

k

�

p

, for p = 1; 2; : : : ; 7 sine the order d of the reurrene

found by the algorithm is related to the power p by the simple formula d = bp=2:

power order � � Æ � � �

1 1 1 0 1 0 0 0

2 1 2 0 2 1 1 0

3 2 3 0 3 5 2 3

4 2 4 0 4 7 3 4

5 3 5 0 5 16 6 10

6 3 6 0 6 20 9 11

7 4 7 0 7 37 16 21

We observe how � � grows in this ase with the order of the reurrene.

4.4. CONCLUSION 93

In all the presented examples we have

deg

n

(�p(n; k)) = 0;

deg

n

(P (n; k)) = 0:

(4.108)

We notie that

�

n

k

�

p

with p 2 N is n-regular in n and non-k-regular in n:

Q

n

(

�

n

k

�

p

) =

(n + 1)

p

(n� k + 1)

p

;

Q

k

(

�

n

k

�

p

) =

(n� k)

p

(k + 1)

p

:

(4.109)

Some other examples:

term order � � Æ � � �

n!

k!(m+k)!(n�m�2k)!

2 2 0 1 1 1 0

(n�k)!

k!(n�2k)!

2 2 1 1 0 0 0

�

2k

k

��

n

k

�

2

2 2 1 2 3 2 1

4.4 Conlusion

The main result ahieved in this hapter is a ombinatorial model that desribes

the Gosper ondition and therefore the Gosper form. By this model we know that

the degree of ertain polynomials (q(n; k) and r(n; k)) does not grow with the

order of the reurrene (see Corollary 4.3.5). From this, under some hypotheses

on the term (see (4.91)), we an estimate the di�erene between the degree (in

n) of the oeÆients of the linear reurrene (i. e. z

i

) and the oeÆients (i. e. y

i

)

of the Gosper polynomial.

We an apply this result to get lower bounds on the degree of solutions of re-

lated systems of linear equations. This is useful when omputing the omponents

of the solutions by polynomial interpolation. How to use this result together with

rational funtion interpolation still has to be investigated and some preliminary

experiments are enouraging. We ould use interpolation only on low degree

omponents and standard symboli Gaussian elimination for the remaining om-

ponents.

The main limitation of this result on the degree of the omponents of the solu-

tions is given by the hypotheses on the term (F (n; k)). Suh hypotheses are often

ful�lled when Zeilberger's algorithm is implemented as desribed in Chapter 1,

but an beome a serious restrition when Zeilberger's algorithm is implemented

in a di�erent way (for details on how to \tune" Zeilberger's algorithm we refer

94 CHAPTER 4. LINEAR SYSTEMS IN ZEILBERGER'S ALGORITHM

to [Rie01℄). For instane, when summing

n

X

k=0

�

n

k

�

(4.110)

we ould rewrite the problem as follows

n

X

k=0

�

n

k

�

=

n

X

k=0

n!

k!(n� k)!

= n!

n

X

k=0

1

k!(n� k)!

; (4.111)

where 1=(k!(n � k)!) is simpler to sum beause it generates a simpler system of

linear equations but it is no longer n-regular in n as

�

n

k

�

, and therefore does not

satisfy the onditions of theorems 4.3.9, 4.3.8, 4.3.10, 4.3.11.

Further study will be neessary to implement these results and extend them

to more general ases.

Part III

Polynomial Arithmeti Library

95

Chapter 5

Combinatorial Interpretation of

Division

5.1 Introdution

We desribe the reurrene for the oeÆients of the polynomial y(x) suh that

p(x) �y(x) � 1 mod x

l

, where l is a non-negative integer and p(x) is an invertible

polynomial over a ring R, i. e. x - p(x), for whih therefore y(x) exists. We will use

a transendental extension of R as a tool to study the reurrene. Besides, we give

a ombinatorial interpretation of the solution y(x) that relates the oeÆients of

y(x) with non-negative integer ompositions.

5.2 De�nitions

Let us denote by K a �eld ontaining Q , and let R either be equal to K or to

the ring K[v

1

; v

2

; : : : ; v

r

℄ of multivariate polynomials over K.

Let a

0

, a

1

, ... a

n

be transendental elements over the ring R and let

�

R =

R(a

0

; a

1

; : : : ; a

n

) be the transendental ring extension over R with respet to a

0

,

a

1

, ... a

n

.

Given these transendentals a

i

, let a(x) 2

�

R[x℄ be

a(x) =

n

X

i=0

a

i

x

i

:

Hene deg(a) = n.

Let us onsider a polynomial b(x) 2 R[x℄ with deg(b) = m and b

m

2 K n f0g:

b(x) =

m

X

i=0

b

i

x

i

97

98 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

and the polynomials q(x), r(x) 2

�

R[x℄, suh that:

a(x) = b(x) � q(x) + r(x) (5.1)

and either

r(x) = 0 (5.2)

or

deg(r) < deg(b): (5.3)

The transendentals a

0

,. . . ,a

n

are a tool to study a reurrene related to b(x).

Remark 5.2.1. The existene and uniqueness of q(x), r(x) are guaranteed by

the fat that b

m

, being an element of K n f0g, is invertible.

Notation

� Æ

i;j

denotes the Kroneker delta funtion, whih is 1 if i = j and 0 otherwise.

� [x

l

℄ is the operator whih extrats the oeÆient of x

l

from a polynomial

expanded with respet to x.

De�nition 5.2.1. Given p(x) 2

�

R[x℄ and d 2 Z suh that d � deg(p), we de�ne

the d-reversed polynomial of the polynomial p(x), denoted by rev

d

(p(x)), to be

rev

d

(p(x)) = x

d

p(1=x): (5.4)

Convention: Unless di�erently spei�ed, the j-th oeÆients of a, b, q, r and

of other polynomials will be denoted with the orresponding indexed letter, i. e.

q

j

= [x

j

℄q(x). CoeÆients with indees outside the range will be assumed to be

zero.

De�nition 5.2.2. Given the equality (5.1), we de�ne

C

b

(i) := [a

n

℄q

n�m�i

;

i. e. C

b

(i) is the oeÆient of a

n

in [x

n�m�i

℄q(x).

When b is lear from the ontext we use C(i) instead of C

b

(i).

5.3. EXISTENCE OF THE INVERSE 99

5.3 Existene of the Inverse

Property 5.3.1. For any polynomial p(x) 2 R[x℄ (or respetively

�

R[x℄), deg(p) =

m, with p

0

6= 0, and for any non-negative integer l, there exists always a polyno-

mial y(x) 2 R[x℄ (respetively

�

R[x℄) suh that

p(x) � y(x) � 1 mod x

l

: (5.5)

Moreover,

y

0

= p

�1

0

: (5.6)

Proof. The ondition (5.5) is equivalent to

l�1

X

k=0

k

X

i=0

p

i

y

k�i

!

x

k

= 1: (5.7)

Comparing the oeÆients with respet to x yields a system of linear equations

in triangular form:

p

0

y

0

= 1

p

1

y

0

+ p

0

y

1

= 0

p

2

y

0

+ p

1

y

1

+ p

0

y

2

= 0

: : : : : : : : : : : : : : : : : : : :

(5.8)

in whih the oeÆient of the highest variable in the ordering y

0

< y

1

< � � � < y

l�1

is always p

0

. Therefore suh a system an be solved by bak-substitution, that

yields

y

0

= p

�1

0

; (5.9)

whih proves the seond statement (5.6) , and for all 1 � k � l � 1 we have

y

k

= �

1

p

0

k

X

i=1

p

i

y

k�i

; k 2 N n f0g: (5.10)

�

Remark 5.3.1. The reurrene (5.10) gives an algorithm for omputing the

inverse. Sine p

i

is zero for i � 0 and i � m, suh algorithm performs O(l �m)

multipliations in the ground �eld.

100 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

5.4 Relation between C and q

For the sake of simpliity we will onsider b

m

= 1 in the following. The more

general ase when b

m

is an arbitrary element of K n f0g an be redued to the

ase b

m

= 1 by dividing the oeÆients of b(x) by the leading oeÆient.

We will need the following lemmas to show how C(i) gives the neessary

information to invert the m-reversed of b(x) =

P

m

i=0

b

i

x

i

2 R[x℄:

Lemma 5.4.1. For any non-negative integer i, the oeÆients of the quotient of

a(x) divided by b(x) an be expressed by the following formula:

q

n�m�i

= a

n�i

�

i�1

X

k=max(0;i�m)

b

m�i+k

q

n�m�k

: (5.11)

Moreover, q

n�m�i

is linear in a

n

, a

n�1

, ..., a

n�i

.

Proof. The proof of the above formula follows immediately from the orretness

of the shool division algorithm. In fat this formula desribes in a reursive

fashion a step of the shool division algorithm:

a

n

x

n�m

+ (a

n�1

� a

n

b

m�1

) x

n�m�1

+ (a

n�2

� a

n

b

m�2

� (a

n�1

� a

n

b

m�1

)b

m�1

) x

n�m�2

+ : : : + q

1

x+ q

0

=

(a

n

x

n

+ a

n�1

x

n�1

+ a

n�2

x

n�2

+ � � �+ a

0

)� (x

m

+ b

m�1

x

m�1

+ � � �+ b

0

)

a

n

x

n

+ a

n

b

m�1

x

n�1

+ a

n

b

m�2

x

n�2

+ : : :

(a

n�1

� a

n

b

m�1

) x

n�1

+ (a

n�2

� a

n

b

m�2

)x

n�2

+ : : :

(a

n�1

� a

n

b

m�1

)x

n�1

+ (a

n�1

� a

n

b

m�1

)b

m�1

x

n�2

+ : : :

(a

n�2

� a

n

b

m�2

� (a

n�1

� a

n

b

m�1

)b

m�1

) x

n�2

+ : : :

: :

Sine b(x) 2 R[x℄, the linearity of q

n�m�i

is immediately proved by indution

on i.

�

Lemma 5.4.2. For any h 2 f1; 2; : : : ; ng and for any non-negative integer i, we

have

[a

h�1

℄q

n�m�i�1

= [a

h

℄q

n�m�i

: (5.12)

Proof. The statement is true when i = 0 beause by Lemma 5.4.1 (5.11) we

have q

n�m

= a

n

and q

n�m�1

= a

n�1

� a

n

b

m�1

and therefore it follows that

5.4. RELATION BETWEEN C AND Q 101

[a

h�1

℄q

n�m�1

= [a

h�1

℄(a

n�1

� a

n

b

m�1

) = Æ

h;n

= [a

h

℄a

n

= [a

h

℄q

n�m

:

Assuming that the statement holds for values less than a ertain positive i,

we prove it for i.

By Lemma 5.4.1 (5.11), we have:

[a

h�1

℄q

n�m�(i+1)

=

=[a

h�1

℄(a

n�(i+1)

�

i

X

k=max (0;i+1�m)

b

m�(i+1)+k

q

n�m�k

) =

=Æ

h;n�i

�

i

X

k=max (0;i+1�m)

b

m�i+k�1

[a

h�1

℄q

n�m�k

=

=Æ

h;n�i

� b

m�i�1

[a

h�1

℄q

n�m

| {z }

=0

�

i

X

k=max(1;i+1�m)

b

m�i+k�1

[a

h�1

℄q

n�m�k

=

=Æ

h;n�i

�

i�1

X

k=max (0;i�m)

b

m�i+k

[a

h�1

℄q

n�m�(k+1)

=

=Æ

h;n�i

�

i�1

X

k=max (0;i�m)

b

m�i+k

[a

h

℄q

n�m�k

=

=[a

h

℄(a

n�i

�

i�1

X

k=max(0;i�m)

b

m�i+k

q

n�m�k

) = [a

h

℄q

n�m�i

:

(5.13)

�

Theorem 5.4.3. The oeÆients of the quotient q(x) are given by the following

formula:

q

l

=

n�m�l

X

j=0

a

n�j

C(n�m� l � j): (5.14)

Moreover, the polynomial

P

n�m

i=0

C(i)x

i

is the modular inverse of rev

m

(b) mod-

ulo x

n�m+1

, i. e.

n�m

X

i=0

C(i)x

i

� rev

m

(b)

�1

mod x

n�m+1

: (5.15)

Proof. By de�nition of C(i) and by Lemma 5.4.2 (5.12) we have that

C(n�m� l � j) = [a

n

℄q

l+j

= [a

n�j

℄q

l

: (5.16)

102 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

By Lemma 5.4.1 (5.11), we know that q

l

is linear in a

n

, a

n�1

, ..., a

m+l

. There-

fore we have:

q

l

=

n�m�l

X

j=0

a

n�j

� [a

n�j

℄q

l

=

n�m�l

X

j=0

a

n�j

C(n�m� l � j): (5.17)

In order to prove the seond part of the lemma, we notie that, by the previous

statement (5.17), we must have

rev

n

(a) �

n�m

X

i=0

C(i)x

i

�

n�m

X

l=0

l

X

j=0

a

n�j

C(l � j)

!

x

l

�

�

n�m

X

l=0

q

n�m�l

x

l

� rev

n�m

(q) mod x

n�m+1

:

(5.18)

By the existene of rev

m

(a)

�1

, proved in Property 5.3.1, we also have

n�m

X

i=0

C(i)x

i

� rev

n

(a)

�1

� rev

n�m

(q) mod x

n�m+1

: (5.19)

Applying rev

n

to a yields, beause of (5.1),

rev

n

(a) = rev

m

(b) � rev

n�m

(q) + x

n�m+1

rev

m�1

(r); (5.20)

and therefore

rev

n

(a) � rev

m

(b) � rev

n�m

(q) mod x

n�m+1

: (5.21)

Hene by the existene of rev

m

(b)

�1

, guaranteed by Property 5.3.1, we also

have

rev

m

(b)

�1

� rev

n

(a)

�1

� rev

n�m

(q) mod x

n�m+1

: (5.22)

whih, with the previous ongruene (5.19), ompletes the proof.

�

5.5 General Reurrene for C(i)

Theorem 5.5.1. The sequene C(i) satis�es the following m-th order linear re-

urrene:

C(i) =

8

>

<

>

:

0; if i < 0;

1; if i = 0;

�

P

i�1

k=max(0;i�m)

b

m�i+k

C(k); if i > 0:

(5.23)

5.6. LIFTING TO THE B(X

�

) CASE 103

Proof. For any negative i we learly have:

C(i) = [a

n

℄q

n�m�i

= [a

n

℄0 = 0:

From Lemma 5.4.1 (5.11) we have the following reurrene equation for q

n�m�i

q

n�m�i

= a

n�i

�

i�1

X

k=max(0;i�m)

b

m�i+k

q

n�m�k

: (5.24)

Applying [a

n

℄ to both sides of this reurrene ompletes the proof.

�

Remark 5.5.1. Theorem 5.5.1 an be also proved by using the fat that the C(i)

are the oeÆients of the inverse of rev

m

(b) as seen in Theorem 5.4.3 (5.15) and

therefore satisfy the reurrene (5.10) shown in the proof of the Property 5.3.1,

whih is, up to a hange in the indies the same as (5.23).

Remark 5.5.2. Thism-th order reurrene desribes an algorithm for omputing

the oeÆients C(i) of the modular inverse of rev

m

(b(x)), whih omputes eah

oeÆient by m multipliations in R.

5.6 Lifting to the b(x

�

) Case

Here we show how C

b(x)

an be used to onstrut C

b(x

�

)

, for any positive integer �.

Remark 5.6.1. C

b(x

�

)

(i) is, by Theorem 5.4.3 (5.15), the oeÆient of degree i

in the inverse of rev

m��

(b(x

�

)).

Theorem 5.6.1. For any moni polynomial b(x) and any positive integer � we

have

C

b(x

�

)

(i) =

(

C

b(x)

(i=�); if i � 0 mod �;

0; otherwise:

(5.25)

Proof. Let us denote C

b(x)

and C

b(x

�

)

by C and C

�

, respetively.

By Theorem 5.4.3 (5.15) we have that

n�m

X

i=0

(C(i)x

i

) � rev

m

(b(x)) � 1 mod x

n�m+1

: (5.26)

Therefore, by de�nition of rev

m

(5.4), substituting x with x

�

, we have

104 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

n�m

X

i=0

(C(i)x

�i

) � rev

�m

(b(x

�

)) � 1 mod x

�(n�m+1)

; (5.27)

and, sine for any positive �, �(n�m+ 1) � n� �m+ 1, we also have

n�m

X

i=0

(C(i)x

�i

) � rev

�m

(b(x

�

)) � 1 mod x

n��m+1

: (5.28)

Moreover, by Theorem 5.4.3 (5.15) applied to C

�

we have that

n��m

X

i=0

(C

�

(i)x

i

) � rev

�m

(b(x

�

)) � 1 mod x

n��m+1

: (5.29)

Hene, from (5.28) and (5.29) we get

n��m

X

i=0

(C

�

(i)x

i

) =

n�m

X

i=0

(C(i)x

�i

): (5.30)

Comparing the oeÆients with respet to x ompletes the proof.

�

5.7 Combinatorial Meaning

De�nition 5.7.1. A omposition of a non-negative integer i is a sequene [p

1

,

p

2

,. . . ,p

n

℄ of positive integers suh that

P

n

j=1

p

j

= i. By onvention the empty

sequene [℄ is the only omposition of 0.

For any non-negative integer i, we denote by Comp(i) the set of all the om-

positions of i.

De�nition 5.7.2. For any non-negative integers i and j, we de�ne the onate-

nation of Comp(i) with j, denoted by Comp(i)jj, as the set of sequenes obtained

from Comp(i) by appending j to the end of all the sequenes (ompositions of i)

in Comp(i).

Example 5.7.1.

For i = 3 and j = 5 we have:

Comp(3) = f[1; 1; 1℄; [2; 1℄; [1; 2℄; [3℄g

Comp(3)j5 = f[1; 1; 1; 5℄; [2; 1; 5℄; [1; 2; 5℄; [3; 5℄g

(5.31)

5.8. BINOMIAL CASE 105

Corollary 5.7.1. For any non-negative integers m and i we have:

C

b(x)

(i) =

X

t2Comp(i)

Y

2

�

t

(�b

m�

); (5.32)

where 2

�

means being a omponent of t.

Proof. This an be proven by indution on i and by using the reursive formula

(5.23) for C(i):

From (5.23) we have C(0) = 1 =

P

t2f[℄g

Q

2

�

t

(�b

m�

).

The indution step is proven by the fat that the set Comp(i) is given by

Comp(i) = [

0�k<i

Comp(k)j(i� k); (5.33)

where Comp(k)j(i� k) orresponds to the summand b

m�i+k

C(k) in the formula

(5.23).

�

Example 5.7.2.

Let us see how the ompositions of 4 an be written in terms of ompositions of

0, 1, 2 and 3:

Comp(4) = Comp(0)j4 [Comp(1)j3 [Comp(2)j2 [Comp(3)j1 =

= f[℄gj4 [f[1℄gj3 [f[1; 1℄; [2℄gj2 [f[1; 1; 1℄; [1; 2℄; [2; 1℄; [3℄gj1 =

= f[4℄; [1; 3℄; [1; 1; 2℄; [2; 2℄; [1; 1; 1; 1℄; [1; 2; 1℄; [2; 1; 1℄; [3; 1℄g:

(5.34)

5.8 Binomial Case

The previous formula has an interesting speial ase when b(x) = (x � d)

m

, i. e.

b

i

=

�

m

i

�

(�d)

m�i

:

Corollary 5.8.1. For any non-negative integers m; i and d 2 K n f0g we have:

C

(x�d)

m

(i) =

X

t2Comp(i)

Y

2

�

t

((�1)

+1

d

�

m

�

) =

�

m+ i� 1

i

�

� d

i

; (5.35)

Proof. By Corollary 5.7.1 we have

C

(x�d)

m

(i) =

X

t2Comp(i)

Y

2

�

t

((�1)

+1

d

�

m

�

): (5.36)

We prove that C

(x�d)

m

(i) =

�

m+i�1

i

�

� d

i

by indution on i.

By Theorem 5.5.1 (5.23) we have

106 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

C

(x�d)

m

(0) = 1 =

�

m + 0� 1

0

�

� d

0

:

We now assume that for a ertain positive i, C

(x�d)

m

(k) =

�

m+k�1

k

�

�d

k

for any

0 � k < i, and we prove it for i.

By Theorem 5.23 we have

C

(x�d)

m

(i) = �

i�1

X

k=0

((�d)

i�k

�

m

i� k

�

C

(x�d)

m

(k)) =

= �

i�1

X

k=0

((�d)

i�k

�

m

i� k

��

m+ k � 1

k

�

� d

k

) =

=

i�1

X

k=0

((�1)

i�k+1

d

i

�

m

i� k

��

m+ k � 1

k

�

):

(5.37)

At �rst glane to solve a de�nite sum like in (5.37) one would use Zeilberger's

algorithm [Zei90℄, [Zei91℄. However it turns out that this problem is also solvable

by Gosper's algorithm [Gos78℄ for inde�nite hypergeometri summation. Both

algorithms have been implemented in various pakages for di�erent omputer al-

gebra systems [Car99℄, [PS95℄, and are desribed in Setion 1.3.1 and Setion 1.3.2

as well as in [PWZ97℄, [Win96℄ and in [GvzG99℄, pages 622{639 and [GKP94℄,

pages 223{241. By using one of these pakages, one obtains

(�1)

i�k+1

d

i

�

m

i� k

��

m + k � 1

k

�

=

= �

k

�

(�1)

i�k

� d

i

k(m + k � i)

i �m

�

�

m

i� k

��

m+ k � 1

k

��

;

(5.38)

where �

k

denotes the forward di�erene operator, i. e. �

k

(f(k)) = f(k+1)�f(k).

Therefore from (5.37) we get

C

(x�d)

m

(i) =

=

i�1

X

k=0

�

k

�

(�1)

i�k

� d

i

k(m + k � i)

i �m

�

�

m

i� k

��

m + k � 1

k

��

=

=

�

m+ i� 1

i

�

� d

i

;

(5.39)

whih, with (5.36), ompletes the proof.

�

5.8. BINOMIAL CASE 107

Remark 5.8.1. The formula (5.25) allows us to generalize (5.35) to the ase

b(x) = (x

�

�d)

m

, for any positive integer �. The orresponding formula beomes

C

(x

�

�d)

m

(i) =

(

�

m+i=��1

i=�

�

d

i=�

; if i � 0 mod �;

0; otherwise.

(5.40)

Remark 5.8.2. The binomial oeÆient in the right hand side of (5.35):

�

m + i� 1

i

�

=

�

m + i� 1

m� 1

�

;

also ounts all the ompositions of m + i into exatly m parts. For a simple

bijetive proof of this see [And94℄, pages 54{57.

5.8.1 Diagrams of Compositions

In this setion we de�ne a relation between two integer ompositions and we prove

a property on suh relation that will be later useful to prove Corollary 5.8.1 in a

ombinatorial fashion.

De�nition 5.8.1. For any non-negative integer i we de�ne the relation �!,

alled diagram relation, between two ompositions C

1

; C

2

2 Comp(i) as follows:

C

1

�! C

2

if and only if C

2

is obtained from C

1

by merging two onseutive parts

of C

1

into one.

We denote by

�

�! the transitive and reexive losure of the diagram relation.

Then C

1

�

�! C

2

means that C

2

an be obtained from C

1

by merging onseutive

parts of C

1

into one.

For eah omposition C we de�ne the sign funtion � as follows

�(C) =

(

1; if in C has an even number of even parts;

�1; otherwise.

(5.41)

Example 5.8.1.

For i = 4 we have:

[4℄

[1,3℄ +

[1,2,1℄

[2,2℄

[1,1,2℄[2,1,1℄

[3,1℄

[1,1,1,1℄

+

108 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

For i = 5 we have:

[2,1,1,1℄ [1,1,1,2℄

[1,1,1,1,1℄

[1,1,3℄[1,3,1℄[1,2,2℄

[1,1,2,1℄[1,2,1,1℄

[2,1,2℄ +

+

+

+

[5℄

[2,2,1℄[3,1,1℄

[4,1℄ [3,2℄ [2,3℄ [1,4℄

De�nition 5.8.2. For any non-negative i we denote by 1

i

the omposition of i

with i parts:

1

i

= [1; 1; : : : ; 1

| {z }

i

℄: (5.42)

Lemma 5.8.2. For any positive integer i and any omposition C 2 Comp(i), the

number of ompositions D 2 Comp(i) with exatly h parts, suh that D

�

�! C is

given by

�

i� k

h� k

�

; (5.43)

where k is the number of parts of C.

Proof. We prove this by using the bijetion between ompositions of i into

exatly h parts and hoies without repetitions of h�1 elements in f1; 2; : : : ; i�1g.

We an visualize eah hosen element j as a line between j and j+1 in the range

[1; 2; : : : ; i℄.

The ondition D

�

�! C means, by de�nition of

�

�!, that the omposition C

is obtained from D by merging some adjaent parts. In terms of hoies in the set

f1; 2; : : : ; i� 1g this means that the hoies orresponding to the omposition C

must also orrespond to the omposition D.

Therefore the number of ompositions D with h parts, suh that D

�

�! C

is given by the number of possible hoies of h � 1 � (k � 1) elements in a set

with i� 1� (k� 1) elements, sine C has k parts to whih k� 1 hosen elements

orrespond. Thus we have that the �nal ount is:

�

i� 1� (k � 1)

h� 1� (k � 1)

�

=

�

i� k

h� k

�

: (5.44)

�

5.8. BINOMIAL CASE 109

Theorem 5.8.3. For any positive integer i and any omposition C of i we have

X

DjD

�

�!C

�(D) = Æ

C;1

i

: (5.45)

Proof. We notie that for any integer l suh that 1 � l � i + 1, the number

of even parts in a omposition D 2 Comp(i) with i� l + 1 parts, will be even if

l is even and odd otherwise. Therefore for the ompositions D 2 Comp(i) with

i� l + 1 we have �(D) = (�1)

l+1

.

By Lemma 5.8.2, we have that the number of ompositions D 2 Comp(i) with

i� l + 1 parts, suh that D

�

�! C, is given by

�

i� k

i� l + 1� k

�

; (5.46)

where k is the number of parts of C.

Summing with the orresponding sign over all possible number of parts of D,

i. e. 1 � l � i� k + 1 we get

X

DjD

�

�!C

�(D) =

i�k+1

X

l=1

(�1)

l+1

�

i� k

i� l + 1� k

�

: (5.47)

The sum in (5.47), being a de�nite hypergeometri sum, an be proved by

Zeilberger's algorithm, but it happens to be also solvable by Gosper's algorithm

for inde�nite hypergeometri summation.

By performing one of these algorithms on (5.47) we get

i�k+1

X

l=1

(�1)

l+1

�

i� k

i� l + 1� k

�

= Æ

C;1

i

; (5.48)

whih proves (5.45).

�

Remark 5.8.3. The sign funtion � is a speial ase of the M�obius funtion (see

[Str94b℄, pages 116{117) for partially ordered sets, where the partial ordering

here is given by the relation

�

�!.

5.8.2 Combinatorial Proof

Corollary 5.8.1 an also be proved in a purely ombinatorial way, namely by

�nding a bijetion between two sets whose ardinality is given by the left hand

side and by the right hand side of (5.35), respetively.

110 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

For any non-negative integer k, we all a set (respetively multiset) with k

elements, a k-set (respetively k-multiset). We all a sequene with k elements

(respetively without repetitions) a k-sequene (respetively a k-sequene without

repetitions) .

De�nition 5.8.3. For any non-negative integer k and any set S we de�ne a

ombination (respetively ombination without repetitions) from S of size k, to

be any k-subset (respetively k-multiset) of S.

De�nition 5.8.4. For any non-negative integer k and any set S we de�ne a k-

permutation (respetively k-permutation without repetition) from S, to be any k-

sequene of elements from S (respetively k-sequene of elements from S without

repetitions).

Proof. First of all we observe that the binomial oeÆient in the right hand

side of (5.35):

�

m + i� 1

i

�

ounts all the ombinations with repetitions of size i from an m-set. For a simple

ombinatorial proof of this we refer to [Str94b℄, pages 13{17.

We show that the left hand side of the formula (5.35) desribes an inlusion-

exlusion

1

proedure whih ounts the ombinations with repetitions of size i from

an m-set by �rst ounting all the i-permutations with repetitions and then by

subtrating and adding i-permutations with repetitions where inreasingly larger

bloks of onseutive elements are inversely ordered with respet to a ertain

order.

Let us �rst ount all the i-permutations with repetitions from an m-set. Sine

for eah position we have m hoies, this overounting yields:

�

m

1

�

� � �

�

m

1

�

| {z }

i

=

�

m

1

�

i

; (5.49)

whih in fat orresponds to the omposition of i:

[1; 1; � � � ; 1

| {z }

i

℄:

In order to ount the i-ombinations with repetitions from an m-set, super-

uous i-permutations with repetitions must be removed.

1

For a formal and very general de�nition of inlusion-exlusion see [Sta97℄, pages 64{67.

5.8. BINOMIAL CASE 111

Let us onsider the m elements from whih we have built all i-permutations

with repetitions totally ordered with respet to �.

We disregard those i-permutations in whih in any position (i. e. from 1 to

i� 1) two onseutive elements are not ordered

2

with respet to the relation �.

This is done for all hoies of 2 elements from m and for eah position from

1 to i� 1; therefore we subtrat from the ount:

�

m

2

�

�

�

m

1

�

� � �

�

m

1

�

| {z }

i�2

=

�

m

2

��

m

1

�

i�2

; (5.50)

whih orresponds to the ompositions of i:

[2; 1; 1; � � � ; 1; 1℄;

[1; 2; 1; � � � ; 1; 1℄;

: :

[1; 1; 1; � � � ; 1; 2℄:

By removing the superuous i-permutations where two onseutive elements

are not ordered with respet to �, we have also overounted superuous i-

permutations with repetitions where two onseutive elements are not ordered

with respet to �, in fat ases with 3 onseutive elements in the opposite with

respet to � and ases with two ouples of onseutive elements in the wrong

order are overounted, for instane ases with 3 onseutive elements inversely

ordered are removed both when the �rst two onseutive elements and when the

seond two onseutive elements are onsidered.

The overounted i-permutations with repetitions orrespond to the next lass

of ompositions of i in whih two parts are merged into one:

[3; 1; 1; � � � ; 1; 1℄;

[1; 3; 1; � � � ; 1; 1℄;

: :

[1; 1; 1; � � � ; 1; 3℄;

and

2

This is how the sorting algorithm \bubble sort" works.

112 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

[2; 2; 1; 1 � � � ; 1; 1℄;

[2; 1; 2; 1; � � � ; 1; 1℄;

: :

[2; 1; 1; 1; � � � ; 1; 2℄;

[1; 2; 2; 1; � � � ; 1; 1℄;

[1; 2; 1; 2; � � � ; 1; 1℄;

: :

[1; 2; 1; 1; � � � ; 1; 2℄;

: :

: :

In this way we have again overounted those i-permutations with repetitions

where larger groups of onseutive elements are inversely ordered with respet to

�, whih orrespond to ompositions of i with larger parts obtained by merging

two parts into one.

In the inlusion-exlusion proedure the sign of the orretion will be positive

if the orresponding ompositions of i have an even number of even parts and

will be negative otherwise, in fat merging two odd parts generates a new even

part and merging two parts where at least one is even dereases the number of

even parts by 1.

This proess an be desribed as a diagram of i. Theorem 5.8.3 guarantees

that eah lass of i-permutations with bloks of onseutive elements inversely

ordered is ounted orretly, i. e. the sum of the times in whih it is inluded and

exluded is zero.

�

Some related ombinatorial proofs on ompositions an be found in [And94℄,

pages 54{57 and [Str94b℄, pages 13{17.

Example 5.8.2.

Let us onsider all ombinations with repetitions of size 3 from the set fa; b; ; dg.

Then we are in the ase m = 4, and i = 3.

Counting all 3-permutations with repetitions from a 4-set, yields:

�

4

1

�

�

�

4

1

�

�

�

4

1

�

=

�

4

1

�

3

= 64;

whih orresponds to the omposition [1; 1; 1℄.

Let us desribe 3-permutations with repetitions from a 4-set as strings

3

of

size 3 from the set fa; b; ; dg where the onsidered ordering � is the alphabetial

ordering.

3

Strings are represented as sequenes of haraters between round parentheses.

5.8. BINOMIAL CASE 113

We disregard those 3-permutations with repetitions where two onseutive

elements are not in alphabetial order. Therefore we are ounting those 3-

permutations with repetitions whih math the following patterns

4

:

(b a �); (� b a);

(a �); (� a);

(d a �); (� d a);

(b �); (� b);

(d b �); (� d b);

(d �); (� d):

(5.51)

The number of all these ases is therefore

2 �

�

4

2

�

�

�

4

1

�

= 48;

where the patterns on the left and right olumn of (5.51) orrespond respetively

to the ompositions [2; 1℄ and [1; 2℄.

By doing so we are overounting 3-permutations with repetitions where 3

onseutive elements are not alphabetially ordered:

(b a);

(d b a);

(d a);

(d b):

(5.52)

The number of these ases is:

�

4

3

�

= 4;

whih orresponds to the omposition [3℄.

In fat the 3-permutations with repetitions in (5.52) math patterns both on

the left and on the right olumn of (5.51):

(b a) 2 (� b a) \ (b �);

(d b a) 2 (� b a) \ (d b �);

(d a) 2 (� a) \ (d �);

(d b) 2 (� b) \ (d �):

(5.53)

Hene the �nal ount is:

�

4

1

�

� 2

�

4

2

�

�

�

4

1

�

+

�

4

3

�

= 20 =

�

4 + 3� 1

3

�

: (5.54)

4

In this ontext a pattern is a set of strings represented with the same notation as of a string

but with at least one ourrene of the wild-ard harater *", whih denotes any possible

element of the set fa,b,,dg.

114 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

5.9 Powers of Polynomials

We now onsider a well-known result

5

that generalizes Corollary 5.8.1 to the

ase where b(x) is any rational power of a polynomial in R[x℄ with onstant

oeÆient in K n f0g. This result is a generalization of (5.35) but is obtained in

a totally di�erent way, namely by seeing powers of polynomials as formal power

series (generating funtions) whose oeÆients an be desribed by a reurrene.

We will refer to this method as exponentiation by generating funtions. When

this method is used for dividing polynomials we will refer to it as dividing by

generating funtions.

We introdue the following notation:

d(x) 2 R[x℄; deg(d) = s; d

0

2 K n f0g;

�

d

p

(x) = d(x)

�p

=

1

X

i=0

G

d

p

(i)x

i

; G

d

p

(i) 2 R; 8i 2 N ;

(5.55)

where p 2 Q .

For brevity of notation we use �(x) for �

d

p

(x) and G(i) for G

d

p

(i) whenever

this does not ause ambiguity.

Theorem 5.9.1. When d(0) = 1 and p is a non-negative integer, we have

G

d

p

(i) = C

rev

p�s

(d

p

)

(i); (5.56)

for any non-negative integer i.

Proof. By de�nition, G

d

p

(i) is the oeÆient of degree i in d(x)

�p

, whih is the

inverse of d(x)

p

. By Theorem 5.4.3 (5.15) C

rev

p�s

(d

p

)

(i) is the oeÆient of degree

i in the inverse of the rev

p�s

(rev

p�s

(d

p

)) = d(x)

p

.

�

Theorem 5.9.2. For any non-negative integer i and any p 2 Q G

d

p

(i) is solution

of the following linear order reurrene of order s (degree of d(x)) with linear

oeÆients:

s

X

i=0

(j + i � (p� 1))d

i

G(t� j) = 0 (8j 2 N n f0g): (5.57)

Proof. First of all we notie that using the de�nition of �(x) and di�erentiating

we obtain

�

0

(x) = �p � d(x)

�p�1

� d

0

(x):

5

For more details we refer to [GCL92℄, pages 114{116.

5.9. POWERS OF POLYNOMIALS 115

This, together with the de�nition of �(x), yields a �rst order linear di�erential

equation:

d(x) � �

0

(x) + p � d

0

(x) � �(x) = 0: (5.58)

Plugging the expliit forms of d(x) and �(x) into this equation, yields

s

X

i=0

d

i

x

i

�

1

X

i=0

G(i)ix

i�1

+ p �

s

X

i=0

d

i

ix

i�1

�

1

X

i=0

G(i)x

i

= 0:

Computing the Cauhy produt and shifting summation indies gives

1

X

l=0

l

X

i=0

(i + 1)G(i+ 1)d

l�i

!

x

l

+

+ p �

1

X

l=0

l

X

i=0

(G(i)(l � i+ 1)d

l�i+1

!

x

l

=

=

1

X

l=0

l+1

X

i=1

iG(i)d

l�i+1

!

x

l

+

+ p �

1

X

l=0

l

X

i=0

(G(i)(l � i+ 1)d

l�i+1

!

x

l

=

=

1

X

l=0

l+1

X

i=0

(i + (l � i+ 1)p)d

l�i+1

G(i)

!

x

l

= 0:

(5.59)

Comparing the oeÆients with respet to x gives

l+1

X

i=0

(i+ (l � i + 1)p)d

l�i+1

G(i) = 0; 8l 2 N :

We notie that (d

l�i+1

)

i2N

has the �nite support [l+1�s; l+1℄, and therefore

l+1

X

i=l+1�s

(i + (l � i+ 1)p)d

l�i+1

G(i) = 0; 8l 2 N :

Substituting l + 1 by j and an index transformation give

s

X

i=0

(j + i � (p� 1))d

i

G(j � i) = 0 8j 2 N n f0g: (5.60)

�

116 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

5.9.1 Initial Values

From Property 5.3.1 (5.6) we have that the initial value G

d

p

(0) must be the

inverse of the onstant oeÆient of d(x)

p

, namely d

�p

0

. Moreover, the reurrene

(5.57) enodes the remaining s� 1 initial values, whih are obtained as the �rst

s� 1 solutions of (5.57) for t 2 [1; s� 1℄:

5.10 The Algorithms

The reurrene (5.57) in Theorem 5.9.2 is an eÆient algorithm for omputing

the modular inverse of powers of polynomials. Besides, fast inversion of powers

of polynomials by this method an be used to speed-up polynomial division by

powers of polynomials.

5.10.1 Modular Inverse

The reurrene (5.57) desribes an algorithm that performs s multipliations over

R at eah step. In fat from (5.57) we see that for t 2 N n f0g, we an write G(t)

as s summands:

G(t) = �

1

d

0

�

s

X

i=1

(t + i � (p� 1))

t

� d

i

�G(t� i): (5.61)

Therefore the omplexity for the omputation of the inverse modulo x

l

by this

algorithm is O(s � l).

Exponentiation of dense univariate polynomials has been implemented in

C++. For more details and for a omparison with repeated squaring we refer to

the next hapter.

Remark 5.10.1. The omplexity of the previous algorithm is independent of the

power p.

Remark 5.10.2. For p = 1 the reurrene (5.61) beomes the reurrene (5.10)

used in the proof of Property 5.3.1.

5.10.2 Division by Powers of Polynomials

Division with remainder of the polynomial �(x) 2 R[x℄ of degree n by d(x)

p

,

where d(x) 2 R[x℄ is a polynomial of degree s, an be done by �rst omputing

the inverse of rev

p�s

(d(x)

p

) modulo x

n�ps

and then by multiplying the inverse of

rev

p�s

(d(x)

p

) by rev

p�s

(�(x)).

Let us here denote by q(x) the quotient and by r(x) the remainder in the

division of �(x) by d(x)

p

.

5.11. SUMMARY 117

As seen in the proof of Theorem 5.4.3 in (5.22), we have

rev

p�s

(d)

�p

= rev

p�s

(d

p

)

�1

�

� rev

n

(�)

�1

� rev

n�p�s

(q) mod x

n�p�s+1

;

(5.62)

from whih it follows

rev

n�p�s

(q) � rev

p�s

(d)

�p

� rev

n

(�) mod x

n�p�s+1

: (5.63)

Sine deg(q) = n� ps, the quotient an be omputed by (5.63) and by taking

the (p � s)-reversed.

Computing rev

p�s

(d)

�p

modulo x

n�p�s+1

by (5.61) takes n � ps steps, eah

of whih requires s multipliations in the ground �eld R. Therefore the overall

omplexity of the modular inversion is O(s(n � ps)) = O(sn � ps

2

), whih, as

long as s is small, is linear in the degree of the quotient, i. e. n� ps.

The omplexity of the omputation of the quotient will then depend on the

omplexity of the multipliation of rev

p�s

(d)

�p

by rev

n

(�), whih dominates the

omplexity of the modular inversion.

The remainder is then omputed by the formula

r(x) = �(x)� d(x)

p

� q(x); (5.64)

whih has the omplexity of the multipliation of d(x)

p

by q(x).

Remark 5.10.3. When omputing the remainder with (5.64), d(x)

p

an be om-

puted by the formula (5.61).

Division by powers of polynomial has been implemented in a C++ pakage

for polynomial arithmeti. For more details and for the implementation in C++

we refer to the next hapter.

5.11 Summary

In this hapter we have used the shool division algorithm for polynomials to �nd

a desription of the modular inverse of a polynomial (Theorem 5.4.3). With this

result we an desribe the oeÆients of the modular inverse of a polynomial over

a �eld ontaining Q by a linear reurrene (Theorem 5.5.1). Suh a linear reur-

rene has a ombinatorial meaning in terms of integer ompositions (Corollary

5.7.1).

We have treated the speial ase of the modular inverse of a binomial or

power of a binomial of a speial form (Corollary 5.8.1), whih leads to prove the

ombinatorial identity (5.35), for whih we an provide a ombinatorial proof

using the priniple of inlusion-exlusion.

118 CHAPTER 5. COMBINATORIAL INTERPRETATION OF DIVISION

We have related these results to previous well-known fats whih generalize

the reurrene orresponding to the speial binomial ase (Theorem 5.9.1).

In the end we desribe how to use the reurrenes as algorithms to ompute

powers of polynomials and how to divide polynomials by powers of polynomials.

Chapter 6

The PolyComb Pakage

6.1 Introdution

We desribe the algorithms and the struture of the C++/Mathematia library

PolyComb for fast polynomial arithmeti. This hapter also ontains a manual

of the Mathematia and C++ ommands provided by PolyComb. The library

has two parts: a C++ implementation of fast polynomial arithmeti for dense

and sparse polynomials, and a Mathematia interfae whih makes it possible to

use the library from within the Mathematia environment. The implemented

methods and operators between polynomials inlude addition, multipliation,

exponentiation and division with remainder and various other auxiliary methods.

The C++ omponent of the library makes full use of the objet oriented

paradigm and of generi programming through the extensive use of templates.

Thus polynomials over rings are de�ned over any ring of oeÆients that provide

the neessary methods (operations) required by a ring.

6.2 Struture of the Library

The library has a Mathematia [Wol99℄ omponent that provides an easy-to-use

interfae, and a C++ omponent that implements fast polynomial arithmeti.

6.2.1 The Mathematia Component

The part of the library written in Mathematia [Wol99℄ is omposed by an inter-

fae and by a parser whih is used by the interfae to translate the polynomial

expression into a format whih an be easily proessed by the C++ library.

119

120 CHAPTER 6. THE POLYCOMB PACKAGE

The Interfae

Di�erent versions of the interfae are available depending on the type of poly-

nomials involved in the expressions, e. g. whether the polynomials are sparse or

dense, whether their power produts are sparse or dense, whether their oeÆ-

ients are arbitrary length integers or oating point reals, et. The interfae

takes as input a polynomial expression in the Mathematia syntax.

The interfae invokes the parser, whih, using also the information on the

type of polynomial expression, rewrites the expression in a speial ompressed

post�x format (see next setion for more details).

The interfae uses the C++ library to perform the omputation and waits for

the result whih is read in from the standard output devie.

The Parser

The parser performs two tasks

1. It parses a polynomial expression, it mathes the largest possible set of

subexpressions in it that an be onsidered a polynomial and writes them

as one polynomial. In this way it minimizes the size of the output and the

overhead time for ommuniation (see Example 6.2.1).

2. It transforms the polynomial expression into a speial post�x format that

an be read by the C++ omponent of the library.

Example 6.2.1.

The polynomial expression

3x

2

+ (4x

3

+ 2x)(x+ 1) + x

3

� 2

is parsed as

(x

3

+ 3x

2

� 2

| {z }

polynomial

) + (4x

3

+ 2x

| {z }

polynomial

)(x + 1

| {z }

polynomial

)

The post�x form will be saved as a parenthesisless sequene of polynomials

and operators. At the end of the proess the post�x form is passed by the interfae

to the library.

6.2.2 The C++ Component

The C++ omponent is the ore of the library whih does all the omputation

and outputs the result into a �le or sreen in a format that is both human readable

and that an be read and proessed by Mathematia.

The library proesses the input in post�x form by a stak. It iteratively reads

an element in post�x form and if it is a polynomial, it puts it into the stak, if it

6.2. STRUCTURE OF THE LIBRARY 121

is an n-ary operand, it takes n polynomials from the top of the stak, it performs

the orresponding operation on them and puts the result into the stak. The

�nal result will be the polynomial left in the stak.

6.2.3 The Communiation

The following piture briey desribes how the omponents interat with eah

other.

C++

Library

Polynomial Result

Post�x Expression

Type of Polynomial

Polynomial Expression

Interfae

Parser

Mathematia

The dotted arrow within the interfae box means that the interfae simply

alls the parser within its ode and uses its result.

The ommuniation between the interfae and the library is implemented by

saving the post�x expression into a �le whih is then read by the C++ library.

The output is written in the standard output devie. The interfae reads the

output of the C++ library through the pipe mehanism.

This implementation is good when the library is alled only one beause

at eah new all the library has to be restarted. When this is not the ase a

better mehanism should be used. For instane the ommuniation ould be

done through MathLink ([Wol99℄) or through a di�erent mehanism in whih

the library is always running in a stand-by mode as a server and whenever an

expression is sent to it by a lient (e. g. the Mathematia interfae), it \wakes

up" and proesses the input.

122 CHAPTER 6. THE POLYCOMB PACKAGE

6.3 Relations among Classes

The following diagram desribes the relations among the lasses of polynomials

and power lasses present in the library.

Sparse PolynomialDense Polynomial

Sparse Univariate

Polynomal

Power Produt

Single Power

Sparse Power Produt

Dense Power Produt

The lass of sparse polynomials implements sparse polynomials where the

lass of power produts to be used is a template parameter. The library provides

already three di�erent lasses of power produts: sparse, dense and single power.

The lass of univariate sparse polynomials is derived form the lass of sparse

polynomials with single power as power produt. It implements univariate sparse

polynomials and provides a few additional operations like Karatsuba multiplia-

tion.

The lass of dense polynomials implements dense univariate polynomials with

Karatsuba multipliation, shool and Newton division, and exponentiation by

generating funtions.

6.4 The Algorithms

Various algorithms for fast polynomial arithmeti that speed up produt, expo-

nentiation and division have been implement for sparse and dense polynomials.

6.4.1 Dense Polynomials

The implemented fast arithmeti for dense polynomials inludes: Karatsuba mul-

tipliation, division by Newton method, exponentiation by generating funtions,

division by powers of polynomials by generating funtions.

6.4. THE ALGORITHMS 123

Karatsuba Multipliation

Karatsuba algorithm is based on a divide-and-onquer strategy. For more details

we refer to [Win96℄, page 39 and [GvzG99℄, pages 210{215. Multiplying two

polynomials a(x) and b(x) an be done by splitting eah polynomial into its

higher and lower part. For the sake of simpliity let us onsider that both a(x)

and b(x) have degree n and that n is even.

Then we an write:

a(x) = a

0

(x) + a

1

(x)x

n=2

;

b(x) = b

0

(x) + b

1

(x)x

n=2

;

(6.1)

where a

0

, a

1

, b

0

and b

1

have degree less than or equal to n=2.

Multiplying a(x) by b(x) yields:

a(x) � b(x) = (a

0

(x) + a

1

(x)x

n=2

) � (b

0

(x) + b

1

(x)x

n=2

) =

= a

1

(x)b

1

(x)x

n

+ a

0

(x)b

0

(x) + (a

1

(x)b

0

(x) + a

0

(x)b

1

(x))x

n=2

:

(6.2)

We observe that

(a

0

(x) + a

1

(x)) � (b

0

(x) + b

1

(x)) =

a

0

(x)b

0

(x) + a

0

(x)b

1

(x) + a

1

(x)b

0

(x) + a

1

(x)b

1

(x):

(6.3)

Therefore

a

0

(x)b

1

(x) + a

1

(x)b

0

(x) =

(a

0

(x) + a

1

(x)) � (b

0

(x) + b

1

(x))� a

0

(x)b

0

(x)� a

1

(x)b

1

(x):

(6.4)

So (6.4) allows us to simplify (6.2) as follows:

a(x) � b(x) =

a

1

(x)b

1

(x)x

n

+ a

0

(x)b

0

(x)+

(a

0

(x) + a

1

(x)) � (b

0

(x) + b

1

(x))� a

0

(x)b

0

(x)� a

1

(x)b

1

(x):

(6.5)

By applying (6.5) instead of (6.2) we perform only 3 multipliations over

polynomials of degree n=2 instead of 4 multipliations.

Computing a(x) � b(x) by applying reursively (6.5) has omplexity O(n

log

2

3

),

whereas the shool algorithm has omplexity O(n

2

)

Division by Newton Method

Division by Newton method (see [GvzG99℄, pages 243{249) is based on the idea

of dividing a(x) by b(x) by �rst omputing the inverse of the reversed of b(x)

(see De�nition 5.2.1) modulo an appropriate power of x through a symboli ver-

sion of Newton iteration method, and then omputing the quotient by a fast

multipliation algorithm (e. g. Karatsuba multipliation).

124 CHAPTER 6. THE POLYCOMB PACKAGE

When dividing a(x) by b(x) we want to �nd q(x), r(x) suh that

a(x) = b(x)q(x) + r(x); (6.6)

where deg r(x) < deg b(x) or r(x) = 0.

Let us also assume:

deg a(x) = n; deg b(x) = m:

Taking the n-reversed of a(x) (see De�nition 5.2.1) yields

rev

n

a(x) = rev

m

b(x) rev

n�m

q(x) + rev

n

r(x) =

= rev

m

b(x) rev

n�m

q(x) + x

n�m+1

rev

m�1

r(x):

(6.7)

Thus we have the following ongruene

rev

n

a(x) � rev

m

b(x) rev

n�m

q(x) mod x

n�m+1

; (6.8)

and also

rev

n�m

q(x) = rev

n

a(x)(rev

m

b(x))

�1

mod x

n�m+1

: (6.9)

Therefore one (rev

m

b(x))

�1

is omputed, the quotient an be omputed by

the formula (6.9).

For the sake of simpliity let us assume that b(0) = 1.

Computing b(x)

�1

an be done by a symboli version of Newton iteration for

root �nding. In this ase the funtion to whih we apply Newton iteration is:

�(g) = 1=g � f: (6.10)

The general Newton iteration formula is:

g

i+1

= g

i

�

�(g

i

)

�

0

(g

i

)

: (6.11)

whih for (6.10) beomes:

g

i+1

= g

i

� (1=g

i

� f)(�g

2

i

) = 2g

i

� fg

2

i

: (6.12)

The following theorem gives a good initial point for the iteration and tells us

that (6.12) quikly onverges to the desired solution.

Theorem 6.4.1. Given a ommutative ring with unity R, f; g

0

; g

1

; � � � 2 R[x℄,

with f(0) = 1, g

0

= 1 and g

i+1

= 2g

i

� fg

2

i

for all i. Then

fg

i

� 1 mod x

2

i

for all i � 0. (6.13)

6.4. THE ALGORITHMS 125

Proof. Let us proeed by indution on i.

For i = 0 we have

fg

0

� f(0)g

0

� 1 mod x

2

0

: (6.14)

Let us assume that (6.13) holds for a given positive integer j and prove it for

j + 1.

We see that

1� fg

i+1

� 1� f(2g

i

� fg

2

i

) � 1� 2fg

i

+ f

2

g

2

i

�

� (1� fg

i

)

2

� 0 mod x

2

i+1

:

(6.15)

�

Therefore g

i

onverges to the orret solution in a logarithmi number of

steps. The overall omplexity of the Newton method for division is O(M(n)),

where M(n) is the omplexity of multiplying two polynomials of degree n. For

more details on the omplexity analysis we refer to [GvzG99℄, pages 243{263.

Exponentiation by Generating Funtions

Exponentiating a polynomial by generating funtions is done by onsidering the

power of polynomial as a formal power series (generating funtion). Suh power

series satis�es a ertain di�erential equation (5.58) from whih a reurrene (5.57)

satis�ed by its oeÆients an be obtained. For the details we refer to the previous

hapter and to [GCL92℄, pages 114-116.

Fast Division by Powers of Polynomials

When diving by possibly high powers of polynomials of low degree polynomials,

we an follow the same strategy as for division by Newton method, where the in-

version is done by exponentiation through generating funtions. For more details

we refer to the previous hapter and to [GCL92℄, pages 114-116.

Repeated Squaring for Fast Exponentiation

Exponentiation by repeated squaring (see [GvzG99℄, pages 69{70) of a polynomial

p(x) by a power n, with n 2 N is based on the simple reursive formula:

p(x)

n

=

8

>

<

>

:

p(x); if n = 1;

p(x)

n=2

� p(x)

n=2

; if n is even, n 6= 1;

p(x)

(n�1)=2

� p(x)

(n�1)=2

� p(x); if n is odd, n 6= 1:

(6.16)

This proedure performs blog

2

n squarings and H(n) � 1 � blog

2

n multi-

pliations, where H(n) is the Hamming weight of the binary representation of n,

i. e. the number of 1s in it. For more details we refer to [GvzG99℄, pages 69{70.

126 CHAPTER 6. THE POLYCOMB PACKAGE

6.4.2 Sparse Polynomials

Fast arithmeti for polynomials in sparse representation inludes: Karatsuba mul-

tipliation (it pays o� if the involved sparsely represented polynomials are not

very sparse), multipliation by geobukets, repeated squaring for fast exponen-

tiation.

Karatsuba Multipliation

Karatsuba multipliation an also be used for polynomials in sparse represen-

tation but its advantage over the shool algorithm degrades quikly when many

oeÆients are zero. For more details we refer to Setion 6.4.1 and also to [Win96℄,

page 39 and [GvzG99℄, pages 210{215.

Repeated Squaring for Fast Exponentiation

Repeated squaring for exponentiation of a polynomial is also implemented for

sparse polynomials. For more details we refer to Setion 6.4.1 and also to

[GvzG99℄, pages 69{70.

Multipliation by Geobukets

Multipliation of sparse possibly multivariate polynomials an be drastially sped

up by using the geobuket data-struture to save intermediate sums. The original

paper where geobukets were introdued is [Yan98℄.

The geobuket data-struture speeds up the addition of many polynomials.

When multiplying two polynomials we have to sum up many polynomials to get

the result. Adding up many polynomials by simple insertion into an ordered list

representing the partial sum ends up almost always adding small polynomials to

a big partial sum. This has a bad worst ase omplexity orresponding to the

ase when the entire list ontaining the partial sum has to be visited to append

the terms of the new polynomial at the end.

The geobuket data-struture avoids this problem by saving the partial sum

into a vetor of lists of polynomials B where the i-th ell an only ontain 4

i

monomials. Eah ell is implemented as an ordered list of pairs ontaining a

power produt and the orresponding oeÆient. The addition of a polynomial

f to the geobuket B is desribed in Algorithm 6.1. A new polynomial f with

l monomials is added into the ell at position blog

4

(l), i.e. the lowest ell that

ould ontain the polynomial. If the maximum number of monomials in the ell

is exeeded, we have an overow, the ell is zeroed and its ontent is added to the

next ell until a ell is reahed where the maximum number of allowed monomials

is not exeeded.

We remark that the geobuket does not represent a polynomial in a unique

way, and that monomials in di�erent ells are not automatially aneled.

6.5. THE MATHEMATICA COMPONENT 127

Algorithm 6.1 Addition of a Single Polynomial to a Geobuket

Input: A polynomial f .

Output: The polynomial f is added into B, i. e. B := B + f .

1: i := max(1; dlog

4

(#f)e); // # means number of power produts

2: if i � m then

3: f := f +B[i℄;

4: while i � m and #f > 4

i

do

5: f := f +B[i+ 1℄;

6: B[i℄ := 0;

7: i := i+ 1;

8: m := max(m; i);

9: B[i℄ := f:

By adding a polynomial to a geobuket, we only add polynomials of similar

size and the maximum number of overows for an addition is bounded by a

logarithm of the size of the polynomial.

In order to have the �nal result the geobuket needs to be anonialized, i. e.

the ontent of all the ells must be added up.

Adding n polynomials f

1

; f

2

; : : : ; f

n

by a geobuket suh that the total number

of monomials of f

1

; f

2

; : : : ; f

n

is N has omplexity O(Nlog(N)), whereas the

shool algorithm has omplexity O(N

2

).

Example 6.4.1.

The geobuket B = [B[1℄; B[2℄; B[3℄℄ with

B[1℄ = �5x

7

y + �13x

5

B[2℄ = y

24

+ 3x

4

y

6

+ 5x

7

y + 17x

5

+ �2x

2

B[3℄ = �4x

5

+ x

2

(6.17)

has \internal anellations" and represents y

2

4 + 3x

4

y

6

� x

2

+ 4. In fat the

\anonialization" gives

B[1℄ +B[2℄ +B[3℄ =

= (�5x

7

y � 13x

5

) + (y

24

+ 3x

4

y

+

5x

7

y + 17x

5

� 2x

2

) + (�4x

5

+ x

2

) =

= y

2

4 + 3x

4

y

6

� x

2

:

(6.18)

6.5 The Mathematia Component

The Mathematia interfae onsists of the following omponents:

� The Mathematia pakage pPostify.m,

128 CHAPTER 6. THE POLYCOMB PACKAGE

� The Mathematia notebook expand.nb,

� The exeutable program expand.out,

� The exeutable program power.out (only for dense polynomials).

These �les are available on the world wide web at the ombinatoris home

page of RISC (University of Linz, Austria) at the following web address

http://www.ris.uni-linz.a.at/researh/ombinat/

6.5.1 Loading

In order to use the Mathematia interfae expand.out and pPostify.m must be

in the same diretory as expand.nb.

To load the pakage it is enough to load and evaluate the Mathematia note-

book expand.nb, whih will also take are of loading the pakage pPostify.m.

6.5.2 The Parser

The pakage pPostify.m ontains the parser whih provides the funtions nees-

sary to onvert polynomial expressions into a speial post�x format that an be

interpreted by the C++ library.

The pakage exists in various versions that only di�er by the kind of polyno-

mials that are treated (dense univariate, sparse univariate, sparse multivariate)

and the type of power produts (sparse, dense).

The following types of polynomials are so far supported

� dense univariate

� sparse univariate

� sparse multivariate with sparse power produts

� sparse multivariate with dense power produts

Support for additional types of polynomials (e. g. dense multivariate, reur-

sively represented, et.) an be easily added without having to rewrite the

parser. It suÆes to rewrite the funtion WritePoly of the parser (ontained

in pPostify.m) that translates a polynomial in the Mathematia syntax into

its internal representation (for more details see the setion on the polynomial

representation).

6.5. THE MATHEMATICA COMPONENT 129

The Post�x Format

The ommand pPostify outputs a text �le into a stream ([Wol99℄) ontaining a

sequene of lines. Eah line begins with a harater (meaning either a polynomial

or an operator) followed by some arguments, as in the following sheme:

Charater Meaning Arguments

X polynomial identi�er polynomial representation

P sum sum arity

T produt produt arity

E exponentiation exponent

Power Produt Representation

The Mathematia interfae provides the following types of representations of

power produts:

� univariate (single power)

� dense

� sparse

Powers are simply represented by their exponent.

Sparse power produts are represented as a sequene starting with the number

of powers followed by ouples (varId; power) where varId is an integer that

identi�es an indeterminate and power is the orresponding power.

Dense power produts are represented as a sequene of powers orresponding

to the powers of the indeterminates in the polynomial expression whih is taken

into onsideration.

Example 6.5.1.

The power produts x

5

y

7

z

2

and x

3

z

6

are represented sparsely by the sequenes

3 1 5

|{z}

x

5

2 7

|{z}

y

7

3 2

|{z}

z

2

; 2 1 3

|{z}

x

3

3 6

|{z}

z

6

;

respetively, and densely by the sequenes

5 7 2; 3 0 6;

respetively.

130 CHAPTER 6. THE POLYCOMB PACKAGE

Polynomial Representation

The following two kinds of polynomial representation are available:

� dense

� sparse

Dense polynomials are represented as a sequene starting with an integer

indiating the number of power produts followed by a sequene of oeÆients.

Sparse polynomials are represented as a sequene beginning with an integer

indiating the number of power produts and then by a sequene of ouples

(pp; oef) , where pp is the representation of a power produt and oef is the

orresponding oeÆient.

Example 6.5.2. A univariate polynomial

The polynomial 3x

5

+ 7x

2

+ 2x+ 1 is sparsely represented by the sequene

4 0 1

|{z}

1

1 2

|{z}

2x

2 7

|{z}

7x

2

5 3

|{z}

3x

5

and it is densely represented by the sequene

6 1 2 7 0 0 3

Example 6.5.3. A multivariate sparse polynomial

The polynomial 3xz +5y

2

+ 1 is represented as a sparse multivariate polynomial

with sparsely represented power produts by the sequene

3 0 1

|{z}

1

1 2 2 5

| {z }

5y

2

2 1 1 3 1 3

| {z }

3xz

and it is represented as a sparse multivariate polynomial with densely represented

power produts by the sequene

3 0 0 0 1

| {z }

1

0 2 0 5

| {z }

5y

2

1 0 1 3

| {z }

3xz

The Post�x Translator Command

The ommand pPostify is ontained in the Mathematia pakage pPostify.m.

Command

pPostify[strm, expr℄

6.5. THE MATHEMATICA COMPONENT 131

Parameters

� strm is the stream where we want pPostify to write its output. It an also

be "stdout" whih is the standard output, i. e. the Mathematia window.

� expr is a Mathematia polynomial expression ontaining the operators +,

�, ^ .

Semantis

pPostify transforms a polynomial into the post�x format that an be inter-

preted by the C++ library. Its output depends on the kind of polynomials that

are treated.

The type of polynomial is given by loading the orresponding routines. This

is so far implemented

1

by having more versions of the pakage pPostify.m.

Example 6.5.4. A univariate polynomial

The expression (3x

5

+ 2x

3

+ 4x + 7)(x

3

+ 2) + 5x + 2 is onverted by pPostify

in the following way:

pPostify["stdout", (3x^5 + 2x^3 + 4x + 7)(x^3 + 2) + 5x + 2℄

(sparse version)

Output =

X 2 0 2 1 5

X 2 0 2 3 1

X 4 0 7 1 4 3 2 5 3

T 2

P 2

(dense version)

Output =

X 2 2 5

X 4 2 0 0 1

X 6 7 4 0 2 0 3

T 2

P 2

Example 6.5.5. A multivariate sparse polynomial

The polynomial expression (3xz +5y

2

+1)(2y+ x) + 7x is onverted into post�x

form by pPostify as follows

1

This ould also be done with a uni�ed pakage and by passing the type of polynomials and

the type of power produts through an option or parameter to the ommand pPostify.

132 CHAPTER 6. THE POLYCOMB PACKAGE

pPostify["stdout", (3 x z + 5 y^2 + 1)(2y + x) + 7x℄

(sparsely represented power produts)

Output =

X 1 1 1 1 7

X 2 1 1 1 1 1 2 1 2

X 3 0 1 1 2 2 5 2 1 1 3 1 3

T 2

P 2

(densely represented power produts)

Output =

X 1 1 0 0 7

X 2 1 0 0 1 0 1 0 2

X 3 0 0 1 0 2 0 5 1 0 1 3

T 2

P 2

6.5.3 The Mathematia Commands

The Mathematia ommands use the library to perform expansion of polynomial

expressions and exponentiation of polynomials.

The Polynomial Expansion Command

The ommand PolynomialExpand is ontained in expand.nb. It also requires

the �les pPostify.m and expand.out.

Command

PolynomialExpand[expr℄

Parameter

expr is a Mathematia polynomial expression possibly ontaining the opera-

tors +, � , ^ .

Options

Name Default Value

Algorithm expand.out

Verbose O�

Semantis

PolynomialExpand[expr℄ fully expands the polynomial expression expr by

using pPostify and expand.out. It �rst invokes pPostify to transform the ex-

pression into the post�x format. Then it uses the C++ library by the exeutable

6.5. THE MATHEMATICA COMPONENT 133

expand.out to expand the expression. The output from expand.out is read by

PolynomialExpand from a temporary �le.

Meaning of the options

� Algorithm is the name of the exeutable �le that uses the C++ library

to perform the polynomial expansion. Di�erent versions of the exeutable,

using for instane di�erent oeÆient rings, an exist.

� Verbose toggles the verbosity level.

Example 6.5.6.

The expression ((x + 1)

10

+ (y � 1)

3

) + x

5

z

3

(x

3

� 1) an be expanded by the

ommand PolynomialExpand as follows

PolynomialExpand[((x + 1)^10 + (y - 1)^3) + x^5 z^3 (x^3 - 1)℄

Output =

10x

1

+ 45x

2

+ 120x

3

+ 210x

4

+ 252x

5

� x

5

z

3

+ 210x

6

+ 120x

7

+ 45x

8

+ x

8

z

3

+ 10x

9

+ x

10

+ 3y

1

� 3y

2

+ y

3

(6.19)

The Exponentiation Command

The polynomial ommand ModPower is ontained in the �le power.nb. It also

requires the �les pPostify.m and power.out.

Command

ModPower[poly, power, thr℄

Parameter

� poly is a polynomial (in the Mathematia syntax).

� power is the power to whih we want to exponentiate poly.

� thr is the exponent of the modulo x

thr

with respet to whih we ompute

the power (x is the indeterminate).

Options

Name Default Value

Algorithm power.out

Verbose O�

134 CHAPTER 6. THE POLYCOMB PACKAGE

Semantis

ModPower[poly,power,thr℄ omputes

poly

power

mod x

thr

; (6.20)

by alling power.out whih reads the polynomial through a �le. ModPower uses

the ommand WritePoly (ontained in pPostify.m) to translate poly into its

internal representation. The so far implemented version assumes that poly has

onstant oeÆient equal to one. The output is then read by ModPower through

the pipe mehanism.

Meaning of the options

� Algorithm is the name of the exeutable �le that uses the C++ library

to perform the polynomial exponentiation. Di�erent versions of the exe-

utable, using for instane di�erent oeÆient rings, an exist.

� Verbose toggles the verbosity level.

Example 6.5.7.

We an ompute the modular inverse of (x+1) modulo x

10

by ModPower as follows

ModPower[(x + 1), -1, 10℄

Output =

1� x + x

2

� x

3

+ x

4

� x

5

+ x

6

� x

7

+ x

8

� x

9

(6.21)

Example 6.5.8.

We an ompute (2x

3

� 3x+ 1)

12

modulo x

8

by ModPower as follows

ModPower[(2x^3 - 3x + 1), 12, 8℄

Output =

1� 36x+594x

2

� 5916x

3

+39303x

4

� 180576x

5

+566940x

6

� 1098504x

7

(6.22)

6.6 The C++ Library

The C++ library for polynomial arithmeti onsists of the following parts:

� dense polynomial library

� sparse polynomial library

The C++ libraries are available on the world wide web at the ombinatoris

home page of RISC (University of Linz, Austria) at the following web address

http://www.ris.uni-linz.a.at/researh/ombinat/

6.6. THE C++ LIBRARY 135

6.6.1 Sparse Polynomial Library

The sparse polynomial library is ontained in the following �les (followed by the

extensions .h and .xx):

File name Desription

log4 logarithm base four

lassLong lass for long integers

uniPowers lass of powers

powerProduts lass of sparse power produts

densePowerProduts lass of dense power produts

polynomialRing sparse polynomial ring lass

uniPolynomials univariate sparse polynomial ring lass

The additional �le expand.xx is required to generate expand.out, whih is

required by the Mathematia interfae (expand.nb).

The Power Produts Classes

The implemented power produts types are ontained in the following template

lasses

Type of power produt File Template Parameters

uniPowers single powers expType

powerProduts sparse power produts varType, expType

densePowerProduts dense power produts nVars, expType

whose parameters are

Parameter Type of parameter Desription

expType lass Type of the exponents of the powers

varType lass Type desribing the indeterminates

nVars int Number of variables

A power produt implementation in order to be used as a parameter of

polynomialRing must provide a onstrutor with no arguments, the overloaded

operators for produt, produt \in plae", omparison, input, output and the

method one() to ompute the unit power produt.

The CoeÆients

The oeÆient ring is not implemented in the library but has to be provided as

a parameter to the polynomial template lasses.

A oeÆient ring implementation must at least provide a onstrutor with no

arguments, all the overloaded operators for sum, sum \in plae", di�erene, pre�x

136 CHAPTER 6. THE POLYCOMB PACKAGE

and post�x inrement, pre�x and post�x derement, produt, produt in \plae",

omparison, assignment input, output and the method zero() to ompute the

zero element.

The template lass lassLong (in lassLong.h and lassLong.xx) adds

the method zero() to the C++ prede�ned types (int, float, double, et.) and

to the GMP lasses ([GNU℄) mpz lass and mpr lass.

The library has so far been tested with the following built-in oeÆient rings:

� int

� long long

� float

� double

� long double

and with the following additional implementations of oeÆient rings:

� mpz lass (GMP

2

implementation of arbitrary length integers)

� mpr lass (gmp implementation of rationals)

� NTL::ZZ (NTL

3

implementation of arbitrary length integers)

� user de�ned template lass for Z

p

, with p prime

The polynomialRing Class

Sparse polynomials are implemented in the template lass polynomialRing whih

take the following parameters

Parameter Desription

ppType Power Produt Class

oeRing CoeÆient Ring Class

The lass polynomialRing implements

� binary operators between polynomials for sum and produt,

� unary operators + =, � = for \in plae" sum and produt,

� the exponentiation operator ^ ,

� the method

2

For an on line doumentation we refer to [GNU℄.

3

For an on line doumentation we refer to [Sho℄.

6.6. THE C++ LIBRARY 137

void

gbMult(polynomialRing<ppType,oeRing> & poly)

whih multiplies the polynomial \in plae" by poly using a geobuket,

� the method

void

expandFromFile(istream & sor)

whih expands \in plae" a polynomial expression from the stream sor,

� the operators <<, >> for input and output from and to streams.

A text �le with name varNames has to be present in the same diretory

as expand.out. Suh �le must ontain an integer representing the maximum

number of indeterminates followed by the names of the indeterminates used for

the output format. When the library is used through the Mathematia interfae

the appropriate �le varNames is generated automatially.

The uniPolynomial Class

Sparse univariate polynomials are implemented in uniPolynomial, whih is a

derived lass of polynomialRing, namely in the C++ syntax:

template<lass degType, lass oeRing>

lass uniPolynomial :

publi polynomialRing<uniPower<degType>,oeRing>;

The lass uniPolynomial takes the following parameters

Parameter Desription

degType Type representing the exponents

oeRing Class of the oeÆient ring

It inherits all the methods of polynomialRing and implements

� the friend funtion

uniPolynomial<degType,oeRing>

Karatsuba(onst uniPolynomial<degType,oeRing> & lhs,

onst uniPolynomial<degType,oeRing> & rhs)

whih multiplies two polynomials by Karatsuba's algorithm,

� the method

138 CHAPTER 6. THE POLYCOMB PACKAGE

uniPolynomial<degType,oeRing>

shift(onst degType d)

whih multiplies a polynomial in x by the power x

d

,

� the method

uniPolynomial<degType,oeRing>

modulo(onst degType m)

whih omputes a polynomial in x modulo x

m

,

� the method

uniPolynomial<degType,oeRing>

reversed(onst degType d)

whih omputes the d-reversed polynomial.

A text �le with name varName has to be present in the same diretory as

expand.out. Suh �le must ontain the name of the indeterminate used for the

output format. When the library is used through the Mathematia interfae the

appropriate �le varName is generated automatially

6.6.2 Dense Polynomial Library

The dense polynomial library is implemented in uniPolynomial that is a tem-

plate lass ontained in the following �les (followed by the extensions .h and

.xx):

File name Desription

log2 logarithm in base two

lassLong lass for long integers

uniPolynomials lass of univariate dense polynomials

The exeutables expand.out and power.out that are used with the Mathe-

matia interfae are produed by the �les

File name Desription

expand.xx expand input from Mathematia

power.xx exponentiates input from Mathematia

The dense polynomial lass implements

� binary operators between polynomials for sum and produt;

6.6. THE C++ LIBRARY 139

� unary operators + =, � = for \in plae" sum and produt;

� the exponentiation operator ^ ;

� the friend funtion

uniPolynomial<oeRing>

Karatsuba(onst uniPolynomial<oeRing> & lhs,

onst uniPolynomial<oeRing> & rhs)

whih performs multipliation by Karatsuba algorithm;

� the method

pair<uniPolynomial<oeRing>,uniPolynomial<oeRing> >

divide(onst uniPolynomial<oeRing> & lhs,

onst uniPolynomial<oeRing> & rhs)

whih performs division by the shool algorithm;

� the method

pair<uniPolynomial<oeRing>,uniPolynomial<oeRing> >

Newton(onst uniPolynomial<oeRing> & lhs,

onst uniPolynomial<oeRing> & rhs)

whih divides lhs by rhs using Newton division;

� the method

pair<uniPolynomial<oeRing>,uniPolynomial<oeRing> >

GFdivide(onst uniPolynomial<oeRing> & lhs,

onst uniPolynomial<oeRing> & rhs,

onst long p)

whih divides lhs by rhs

p

by generating funtion driven division;

� the method

void

modPower(onst uniPolynomial<oeRing> & base,

onst long p,

onst long m)

whih omputes the p-th power of base modulo x

m

.

140 CHAPTER 6. THE POLYCOMB PACKAGE

� the method

void

expandFromFile(istream & sor)

expands \in plae" a polynomial expression from the stream sor;

� the operators <<, >> for input and output from and to streams.

6.7 A Small Program

The following program reads two sparsely represented polynomials with sparsely

represented power produts from the �les polyA.pol and polyB.pol, prints on

the sreen the two polynomials, their sum, their produt (omputed by the shool

algorithm), their squares, then it omputes the produt by geobuket multiplia-

tion, it stores it into the �rst polynomial and prints the result.

The oeÆient ring oeR is provided by the template lass mpz lass of the

GMP library [GNU℄ for arbitrary length integers and rationals (by inluding

gmp.h and gmpxx.h). In order to make mpz lass a suitable parameter for

polynomialRing it is wrapped in the template lass lassLong whih gives the

extra methods required by the template parameter of polynomialRing.

#inlude <gmp.h>

#inlude <gmpxx.h>

#inlude <iostream>

#inlude <fstream>

#inlude "lassLong.h"

#inlude "polynomialRing.h"

typedef lassLong<mpz_lass> oeR;

typedef long degType;

typedef short varType;

void main()

{

polynomialRing<powerProdut<varType,lassLong<degType> >,oeR> a;

polynomialRing<powerProdut<varType,lassLong<degType> >,oeR> b;

ifstream r1Stream("polyA.pol");

r1Stream >> a;

r1Stream.lose();

ifstream r2Stream("polyB.pol");

r2Stream >> b;

6.8. BENCHMARKS 141

r2Stream.lose();

out << "a : " << a << endl;

out << "b : " << b << endl;

out << "a + b = " << a+b << endl;

out << "a * b = " << a * b << endl;

out << "a^2 = " << (a^2) << endl;

out << "b^2 = " << (b^2) << endl;

a.gbMult(b);

out << "(using Geobukets) a := a * b" << endl;

out << "a = " << a << endl;

};

When polyA.pol ontains

2 1 1 1 1 1 2 1 1

whih represents x

1

+ y

1

, and polyB.pol ontains

2 1 2 2 1 2 1 1 3 1 1

whih represents y

2

+ x

1

z

1

, the program will output

a : (1)x^1 +(1)y^1

b : (1)y^2 +(1)x^1 z^1

a + b = (1)x^1 +(1)y^1 +(1)y^2 +(1)x^1 z^1

a * b = (1)x^1 y^2 +(1)y^3 +(1)x^2 z^1 +(1)x^1 y^1 z^1

a^2 = (1)x^2 +(2)x^1 y^1 +(1)y^2

b^2 = (1)y^4 +(2)x^1 y^2 z^1 +(1)x^2 z^2

(using Geobukets) a := a * b

a = (1)x^1 y^2 +(1)y^3 +(1)x^2 z^1 +(1)x^1 y^1 z^1

6.8 Benhmarks

Here we present some benhmarks that ompare the performane of the Mathe-

matia built-funtions for polynomial expansion and polynomial exponentiation

with PolyComb (the C++ library run through the Mathematia interfaes) for

polynomial expansion (to be found in the �le expand.nb) and the for polynomial

exponentiation (to be found in the �le power.nb).

142 CHAPTER 6. THE POLYCOMB PACKAGE

6.8.1 Measurements

We present some timings of the Mathematia built-in funtions versus our library

used through its Mathematia interfae for polynomial expansion.

These timings measure the overall time spent by the library when used through

the Mathematia interfae. The overhead produed by the parsing of the expres-

sions and by the data interhange is also inluded in the timings.

The oeÆient arithmeti is provided by the lass mpz lass of the GMP

library [GNU℄ for arbitrary length arithmeti.

Modality of Measurement

All the tests have been run on a Pentium IV 1,5 Megahertz equipped with 512

Megabytes of memory and under the Linux operating system. For the Mathe-

matia ode of the tests we refer to Appendix B. The timings are measured only

in seonds and are not to be onsidered very aurate sine slight variations exist

in di�erent exeutions of the tests.

6.8.2 Polynomial Multipliation and Expansion

Dense Polynomials

Here we present some timings of the Mathematia built-in funtions versus our

library used through the Mathematia interfae for polynomial expansion using

Karatsuba multipliation and using shool multipliation.

degree Mathematia Karatsuba Mult. Shool Mult.

1000 10 1 1

2000 43 3 4

3000 97 5 7

4000 167 6 12

For more details see Appendix B.

Sparse Univariate Polynomials

Here we present some timings of the Mathematia built-in funtions ompared

with the timings of our library when used through its Mathematia interfae for

polynomial expansion using geobuket multipliation and using shool multipli-

ation.

The test measures in seonds the time spent for omputing the produt

of two univariate polynomials with exatly t = m � 100 monomials, for m =

2; 3; 4; 5; 6; 7; 8; 9.

6.8. BENCHMARKS 143

Eah oeÆient is in the range between 0 and 9 and has degree in the range

between 1 and m � 10

7

. We refer to the Appendix B for more details on how the

tests were exeuted.

power produts Mathematia Geobuktes Shool Algorithm

200 2 2 1

300 7 3 4

400 17 5 7

500 33 8 12

600 56 12 19

700 88 17 28

800 133 22 39

900 192 29 54

1000 264 35 72

For more details see Appendix B.

Sparse Multivariate Polynomials

Here we present some timings of the Mathematia built-in funtions versus the

polynomial library used through the Mathematia interfae for polynomial ex-

pansion in a version using both geobuket multipliation and in a version using

shool multipliation.

The test measures in seonds the time spent for expanding an expression of the

form p

1

�p

2

+(�p

1

+1) �p

2

where p

1

and p

2

are randomly generated polynomial in

m = 4; 8 indeterminates with exatly t = 300; 400; 500; 600; 700 power produts.

Eah oeÆient is in the range between 0 and 9 and eah power produt is a

produt of the m indeterminates whose exponent has a 90% probability of being

0 and a 10% probability of being a value in the range between 1 and 99. We refer

to the Appendix B for more details on how the tests were exeuted.

Case m = 4

power produts Mathematia Geobuktes Shool Algorithm

300 23.5 4.0 6.0

400 54.0 7.5 14.0

500 102.5 11.5 26.5

600 177.0 19.0 46.0

700 275.0 27.0 72.5

800 438.0 36.0 113.0

900 587.0 51.0 166.0

1000 636.0 62.0 232.0

144 CHAPTER 6. THE POLYCOMB PACKAGE

Case m = 8

power produts Mathematia Geobukets Shool Algorithm

300 27.0 4.5 7.5

400 62.5 9.0 16.0

500 119.5 13.5 31.0

600 200.5 21.0 57.0

700 327.5 27.5 91.5

800 348.0 38.0 140.0

900 506.0 47.0 204.5

1000 707.0 61.0 335.0

For more details see Appendix B.

6.8.3 Polynomial Exponentiation

Here we present some timings of the Mathematia built-in funtions versus the

Mathematia interfae for polynomial exponentiation using the generating fun-

tion method and repeated squaring.

The tests measure in seonds the time spent for exponentiating to the power

p = 50; 100; 150; 200; 250 randomly generated dense polynomials with degree d =

10; 20; 40 and oeÆients in the range f0; 99g by

� Built-in Mathematia Expand ommand

� Mathematia interfae using exponentiation by generating funtions

� Mathematia interfae using repeated squaring

Case d = 10

p (power) Mathematia Generating Funtions Repeated Squaring

50 1 <1 <1

100 6 <1 1

150 15 1 3

200 27 1 6

250 44 2 13

Case d = 20

p (power) Mathematia Generating Funtions Repeated Squaring

50 5 <1 1

100 23 1 3

150 54 1 11

200 106 2 28

250 212 4 58

6.9. CONCLUSION 145

Case d = 40

p (power) Mathematia Generating Funtions Repeated Squaring

50 22 <1 2

100 92 1 13

150 214 3 46

200 382 5 109

250 781 8 238

For more details we refer to Appendix B.

6.9 Conlusion

The library so far provides only basi arithmeti operations for polynomials in

distributed representation. The next step ould be to extend the library into two

diretions:

� providing diret support for polynomials in reursive representation

� implementing more operations

� improving eÆieny of the overloaded operators

The library allows having polynomials as oeÆients of polynomials but no

operations tailored for suh representation, like onversions between di�erent

representations, have been implemented, yet.

The library ould also be extended with more operations like multivariate

greatest ommon divisor.

Overloaded operators suh as + and * are so far implemented in a straight-

forward way and do not delay evaluation to improve eÆieny. For instane, the

ommand:

a = b + (6.23)

would ompute the sum of b and and write the result in a temporary loation

and then it would opy it into a.

Delaying the addition until an assignment operator is being evaluated would

solve the problem. This an be done by having the operators output an uneval-

uated result in a speial data struture. The assignment would then perform the

operation (or operations).

146 CHAPTER 6. THE POLYCOMB PACKAGE

Appendix A

Chinese Remainder Problem

The Chinese remainder algorithm solves a system of ongruenes of the form

x � r

1

mod m

1

: : :

x � r

t

mod m

t

(6.24)

where the r

i

and m

i

, for 1 � i � t, are elements of a ring and the m

i

are pairwise

relatively prime.

We refer to the r

i

as remainders and to the m

i

as moduli.

Lagrange Interpolation

Lagrange Interpolation is based on the Lagrange interpolating polynomial, i. e.

the polynomial P (x) 2 F [x℄, with F �eld, of degree n� 1 whih passes through

the points

y

1

= P (x

1

);

� � �

y

n

= P (x

n

);

(6.25)

whih is given by

P (x) =

n

X

j=1

P

j

(x); (6.26)

with

P

j

(x) =

n

Y

k=1

k 6=j

x� x

k

x

j

� x

k

y

j

: (6.27)

147

148 Appendix A

Newton Interpolation

Newton Interpolation uses the Chinese remainder algorithm to interpolate a poly-

nomial where the onsidered ring is the ring of polynomials over a �eld. We on-

sider the Chinese remainder problem where the remainders r

i

= f(p

i

) are values

of the unknown funtion f at p

i

and the moduli are linear funtions of the form

x� p

i

, where x is the indeterminate:

x � r

1

(x� p

1

)

: : :

x � r

t

(x� p

t

)

(6.28)

Remark: Newton interpolation is superior to Lagrange interpolation in that

it an be used in an inremental fashion.

Appendix B

Here we give some details on how the timings of the library for polynomial arith-

meti were obtained.

Multipliation of Dense Univariate Polynomials

For testing multipliation between two dense univariate polynomials we have used

the following Mathematia ode:

rC := Random[Integer,{0,10^10-1}℄

rP[deg_℄ := Sum[rC x^i,{i,0,deg}℄

p1 = rP[...℄;

p2 = rP[...℄;

initT = AbsoluteTime[℄;

r2 = PolynomialExpand[p1 p2℄;

Print["[",

Max[N[AbsoluteTime[℄-initT-1,1℄,0℄,",",

N[AbsoluteTime[℄-initT+1,1℄,"℄"℄;

initT = AbsoluteTime[℄;

r1 = Expand[p1 p2℄;

Print["[",

Max[N[AbsoluteTime[℄-initT-1,1℄,0℄,",",

N[AbsoluteTime[℄-initT+1,1℄,"℄"℄;

Eah oeÆient is in the integer range [0; 10

10

� 1℄.

Multipliation of Sparse Univariate Polynomials

For testing multipliation between two sparse univariate polynomials we have

used:

r:=Random[Integer,{1,10-1}℄;

dr[i_℄:=Random[Integer,{1,i}℄;

rP[range_,size_℄ := Module[{res},

res = 0;

While[Length[res℄ != size,

res = res + r y^dr[range℄

℄;

Return[res℄

149

150 Appendix B

℄;

m = ...;

p1 = rP[m * 10^7,m * 100℄;

p2 = rP[m * 10^7,m * 100℄;

initT = AbsoluteTime[℄;

r1 = Expand[p1 p2℄;

Print[AbsoluteTime[℄-initT℄

initT = AbsoluteTime[℄;

r2 = PolynomialExpand[p1 p2℄;

Print[AbsoluteTime[℄-initT℄

Eah oeÆient is in the range between 0 and 9 and has degree in the range

between 1 and m � 10

7

.

Expansion of Sparse Multivariate Polynomials

We have tested multipliation and addition with the following Mathematia ode:

sparsity=9;

r:=Random[Integer,{1,10-1}℄;

dr[i_℄:=If[Random[Integer,{0,9}℄<sparsity,

0,

Random[Integer,{1,10^5-1}℄℄;

var[i_℄:=ToExpression[StringJoin["x",ToString[i℄℄℄;

rT[nVars_℄:=Produt[var[i℄^dr[i℄,{i,1,nVars}℄;

rP[nVars_,size_℄ := Module[{res},

res = 0;

While[Length[res℄ != size,

temp =r rT[nVars℄;

If[!IntegerQ[temp℄,

res = res + temp;

℄;

℄;

Return[res℄

℄;

m = ...;

p1 = rP[m,...℄;

p2 = rP[m,...℄;

p3 = (-p1+1);p4 = p2;

initT = AbsoluteTime[℄;

r1 = Expand[p1 p2+p3 p4℄;

Print["[",Max[N[AbsoluteTime[℄-initT-1,1℄,0℄,",",

N[AbsoluteTime[℄-initT+1,1℄,"℄"℄;

initT = AbsoluteTime[℄;

r2 = PolynomialExpand[p1 p2 + p3 p4℄;

Print["[",Max[N[AbsoluteTime[℄-initT-1,1℄,0℄,",",

N[AbsoluteTime[℄-initT+1,1℄,"℄"℄;

Eah oeÆient is in the integer range between 0 and 9 and eah power produt

is a produt of them indeterminates whose exponent has 90% probability of being

0 and 10% probability of being a value in the integer range between 1 and 99.

This test was run twie and the average timings were onsidered.

Appendix B 151

Note: We notie that inrementing the number of variables nVars does not

always make the problem of multiplying two polynomials generated by rP[nVars,

size℄ harder.

Exponentiation of Dense Univariate Polynomials

For testing exponentiation we have used:

rC := Random[Integer,{0,10^2-1}℄

rP[deg_℄ := Sum[rC x^i,{i,0,deg}℄

deg = ...;

pAUX = rP[pDeg℄;

p = pAUX - Coeffiient[pAUX,x,0℄+1;

modulo = exponent*Exponent[p,x℄+1;

initT = AbsoluteTime[℄;

res = ModPower[p,exponent,modulo℄;

AbsoluteTime[℄-initT

initT = AbsoluteTime[℄;

res2 = Expand[p^exponent℄;

AbsoluteTime[℄-initT

In this test eah oeÆient is in the integer range [0; 99℄.

152 Appendix B

Curriulum Vitae

Personal Data

First Name: Fabrizio

Family Name: Caruso

Birthday: 19/09/1972

Address: Via Del Popolo, 45/a,

95040, Liodia Eubea (CT), Italy

Studies

1986{1991 High Shool

(\Maturit�a sienti�a"),

Lieo Sienti�o, Caltagirone, Italy

1991{1996 Master Degree in Computer Siene

(\Laurea in Informatia"),

University of Catania, Italy

1997{ PhD Studies in Symboli Computation

RISC, Johannes Kepler University, Linz, Austria

Grants

� SFB grant F1305 of the Austrian FWF

� Grant from the University of Catania for speialization in a foreign in-

stitution (\Borsa di studio per orsi di perfezionamento presso istituzioni

estere")

� Grant no. 203.15.10 from the CNR (Italian national researh ounil)

154

Bibliography

[Abr95℄ S.A. Abramov. Rational solutions of linear di�erential and di�erene

equations with polynomial oeÆients. In Pro. ISSAC '95. ACM Press,

1995.

[And94℄ G.E. Andrews. The Theory of Partitions. Cambridge University Press,

1994.

[APa℄ S.A. Abramov and M. Petkov�sek. Minimal deomposition of inde�nite

hypergeometri sums. (orreted) preprint.

[APb℄ S.A. Abramov and M. Petkov�sek. On the struture of multivariate hy-

pergeometri terms. preprint.

[AP99℄ G.E. Andrews and P. Paule. MaMahon's Partition Analysis IV: Hy-

pergeometri multisums. S�em. Lothar. Combin., (B42i):1{24, 1999.

[APR01a℄ G.E. Andrews, P. Paule, and A. Riese. MaMahon's Partition Analysis

III:The Omega Pakage. European J. Combin., (22):887{904, 2001.

[APR01b℄ G.E. Andrews, P. Paule, and A. Riese. MaMahon's Partition Analysis

IX: k-gon partitions. Bull. Austral. Math. So., (64):321{329, 2001.

[APR01℄ G.E. Andrews, P. Paule, and A. Riese. MaMahon's Partition Analysis

VI: A new redution algorithm. Ann. Comb., (5):251{270, 2001.

[APR01d℄ G.E. Andrews, P. Paule, and A. Riese. MaMahon's Partition Anal-

ysis VII: Constrained ompositions. In B.C. Berndt and K. Ono, edi-

tors, q-Series with Appliations to Combinatoris, Number Theory, and

Physis, volume 291 of Contemp. Math., pages 11{27. Amer. Math. So.,

2001.

[APR01e℄ G.E. Andrews, P. Paule, and A. Riese. MaMahon's Partition Analysis

VIII: Plane partition diamonds. Adv. in Appl. Math., (27):231{242,

2001.

155

156 BIBLIOGRAPHY

[APRS℄ G.E. Andrews, P. Paule, A. Riese, and V. Strehl. MaMahon's Parti-

tion Analysis V: Bijetions, reursions, and magi squares. In Algebrai

Combinatoris and Appliations.

[Car99℄ F. Caruso. A Masyma Implementation of Zeilberger's Fast Algorithm.

SFB-Report 99-16, RISC, J.K. University, Linz, Austria, 1999.

[Chy98℄ F. Chyzak. Fontions holonomes en alul formel. PhD thesis, INRIA

(Frane), May 27 1998. Th`ese universitaire no. TU 0531.

[Cus89℄ T.W. Cusik. Reurrenes for sums of powers of binomial oeÆients.

J. Combin. Theory Ser. A, 52(1):77{83, 1989.

[GCL92℄ O.K. Geddes, R.S. Czapor, and G. Labahn. Algorithms for Computer

Algebra. Kluwer, 1992.

[GKP94℄ R. Graham, D. Knuth, and O. Patashnik. Conrete Mathematis -

A Foundation for Computer Siene. Addition Wesley, seond edition,

1994.

[GNU℄ GNU Projet. GMP on line doumentation. Available at

http://www.swox.om/gmp/.

[Gos78℄ R.W. Gosper. Deision proedure for inde�nite hypergeometri sum-

mation. In Proeedings of the National Aademy of Sienes of USA,

number 75, pages 40{42, 1978.

[GvzG99℄ J. Gerhard and J. von zur Gathen. Modern Computer Algebra. Cam-

bridge University Press, 1999.

[Kar86℄ P.W. Karlsson. On two hypergeometri summation formulas onjetured

by Gosper. Simon Stevin, 60(4):329{337, 1986.

[Lip81℄ J.D. Lipson. Algebra and Algebrai Computing. Addison-Wesley, Read-

ing, Massahusetts, 1981.

[Ma16℄ P.A. MaMahon. Combinatory Analysis, volume 2. Cambridge Univer-

sity Press, 1915-1916. Reprinted: Chelsea, New York, 1960.

[Ma96℄ Masyma, In. Mathematis and System Referene Manual, sixteenth

edition, 1996.

[Pau95℄ P. Paule. Greatest fatorial fatorization and symboli summation. J.

of Symboli Computation, (20):235{268, 1995.

[Pet92℄ M. Petkov�sek. Hypergeometri solutions of linear reurrenes with poly-

nomial oeÆients. J. of Symboli Computation, (14):243{264, 1992.

BIBLIOGRAPHY 157

[PR97℄ P. Paule and A. Riese. A Mathematia q-Analogue of Zeilberger's

Algorithm Based on an Algebraially Motivated Approah to q-

Hypergeometri Telesoping. Speial Funtions, q-Series and Related

Topis, Fields Institute Communiations, (14):179{210, 1997.

[PS95℄ P. Paule and M. Shorn. A Mathematia Version of Zeilberger's Algo-

rithm for Proving Binomial CoeÆient Identities. J. of Symboli Com-

putation, (20):673{698, 1995.

[PS00℄ C. Pau and W. Shreiner. Distributed Mathematia - User and Referene

Manual. RISC Report 00-25, RISC, J.K. University, Linz, Austria, 2000.

[PWZ97℄ M. Petkov�sek, H. Wilf, and D. Zeilberger. A=B. A K Peters, MA,

1997.

[Rie01℄ A. Riese. Fine-Tuning Zeilberger's Algorithm: The Methods of Auto-

mati Filtering and Creative Substituting. In F.G. Garvan and M.E.H.

Ismail, editors, Symboli Computation, Number Theory, Speial Fun-

tions, Physis and Combinatori, volume 4 of Developments in Mathe-

matis, pages 243{254. Kluwer, 2001.

[RZ℄ A. Riese and B. Zimmermann. Randomization Speeds up Hypergeomet-

ri Summation. Preprint.

[Sh℄ W.F. Shelter. Maxima on line doumentation. Available at

http://www.ma.utexas.edu/maxima/index.html

http://maxima.soureforge.net/referenemanual/maxima to.html.

[Sh95℄ M. Shorn. Contributions to Symboli Summation, Deember 1995.

[Sho℄ V. Shoup. NTL on line doumentation. Available at

http://www.shoup.net/ntl/.

[Sta97℄ R.P. Stanley. Enumerative Combinatoris, volume I. Cambridge Uni-

versity Press, 1997.

[Str94a℄ V. Strehl. Binomial identities { ombinatorial and algorithmi aspets.

DMATH: Disrete Mathematis, 136, 1994.

[Str94b℄ V. Strehl. Binomial identities - ombinatorial and algorithmial aspets.

Disrete Mathematis, (136):309{346, 1994.

[Win96℄ F. Winkler. Polynomial Algorithms in Computer Algebra. SpringerWi-

enNewYork, 1996.

[Wol99℄ S. Wolfram. The Mathematia Book, fourth edition, 1999.

158 BIBLIOGRAPHY

[Yan98℄ T. Yan. The Geobuket Data Struture for Polynomials. J. Symboli

Computation, 25(3):285{293, Marh 1998.

[Zei90℄ D. Zeilberger. A fast algorithm for proving terminating hypergeometri

identities. Disrete Mathematis, (80):207{211, 1990.

[Zei91℄ D. Zeilberger. The method of reating telesoping. J. of Symboli Com-

putation, (11):195{204, 1991.

Index

1

i

, 108

A(H), 69

B(H), 69

C(H), 69

C

b

(i), 98

C

i

(M; b), 38

Comp, 104

D(F (n; k); d), 91

D(H), 69

H(A), 44

�

k

, 106

Q

k

, 80

Q

n

, 80

�

D(H), 75

�

d

p

(x), 114

Æ(H), 76

Æ

i;j

, 98

den, 80

dom, 70

eval

v

, 57

eval

x

, 45

^

F (n; k), 80

^

Q

k

, 87

^

Q

n

, 87

im, 70

�

m

, 39

L, 80

mod

p

, 40

�

H

, 74

�(A), 57

num, 80

�

H

, 70, 74

H

, 75

rev

d

, 98

�, 107

� , 38

``?'', 60

Abramov's method, 17

Algorithm, 60{63

algorithm

addition to geobuket, 126

division

by generating funtions, 122

by powers of polynomials, 125

Newton, 122, 123

shool, 100

division by powers of polynomials

by generating funtions, 122

exponentiation

by generating funtions, 122, 125

by repeated squaring, 125

extended Eulidean, 53{55, 57, 66

row of, 53

generalized extended Eulidean,

53{55, 57, 66

Gosper, 15

Gosper Form, 83

multipliation

by geobukets, 126

Karatsuba, 122, 123

polynomial evaluation

Horner, 32

Zeilberger, 17

AllD, 51

bak-substitution, 41, 43, 57, 99

bijetion

fundamental, 70

binomial theorem, 26

blak list, 58

159

160 INDEX

BlakList, 60, 61, 64

bubble sort, 111

C++ omponent, 120

anonialization, 127

Cauhy interpolation, 54

Chinese remainder

problem, 42, 147

theorem, 37, 42, 47, 49, 51

ChNullSpaeAt, 49, 50

ChNullSpaeUntil, 50

lient, 121

ombination, 110

without repetitions, 110

ombinatorial proof, 109

CompleteNullSpae, 62, 64

omposition, 104

onatenation, 104

onatenation of a omposition, 104

Cramer matrix, 38

Cramer's rule, 41

CramerNullSpae.m, 49

d-reversed polynomial, 98, 138

DegreeBound, 60, 61, 64

diagram relation, 107

transitive and reexive losure, 107

diophantine

equations, 1

inequalities, 1

DistChNullSpaeUntil, 50, 51

Distributed Mathematia, 50

divide, 139

divide-and-onquer strategy, 123

domain, 70

expandFromFile, 137, 140

falling fatorial, 82

�nite support, 17, 19, 115

forward di�erene operator, 106

funtion

Kroneker delta, 98

sign, 107

fundamental bijetion, 70

Gaussian elimination, 38, 41, 43, 53,

93

gbMult, 137

gd ondition, 17, 32

generalized extended Eulidean algo-

rithm, 53{55, 57, 66

generating funtion, 114

geobuket, 126

GFdivide, 139

GMP, 136, 140, 142

Gosper

ondition, 17, 84, 86, 89, 90

equation, 17, 33, 84, 89, 91

form, 20, 32, 69, 83, 84, 87{90

polynomial, 84, 89, 91, 92

Gosper, 23

Gosper's algorithm, 15

Gosper-Petkov�sek

form, 84, 89

Gosper-summable, 25, 89, 90

GosperSum, 23

GosperSumVerboseOpt, 23

GosperVerbose, 23

GosperVerboseOpt, 23

Hadamard bound, 44, 46

Hamming weight, 125

heuristi method, 58

homomorphism

evaluation, 45

modular, 41

Horner's algorithm, 32

hybrid method, 58

HybridNullSpae, 63

identity

�rst Karlsson-Gosper, 27

seond Karlsson-Gosper, 28

Strehl, 29

Vandermonde, 27

image, 70

in plae

INDEX 161

expand

of a dense polynomial, 140

of a sparse polynomial, 137

produt

of oeÆients, 136

of dense polynomials, 139

of power produts, 135

of sparse polynomials, 136

sum

of oeÆients, 135

of dense polynomials, 139

of sparse polynomials, 136

inlusion-exlusion, 110, 112

InitializeD, 51

integer ongruene, 39, 40, 42, 147

interpolant

polynomial, 66

rational, 55

InterpolatingRatFuntion, 66

interpolation

Cauhy, 55

delayed, 59

Lagrange, 46

Newton, 46

polynomial, 46

rational, 55

k-free reurrene, 15, 17

k-multiset, 110

k-permutation, 110

without repetition, 110

k-regular, 80

k-sequene, 110

without repetitions, 110

k-set, 110

Karatsuba, 137, 139

Karatsuba multipliation, 122, 123

Karlsson-Gosper

�rst identity, 27

seond identity, 28

Kroneker delta funtion, 98

Lagrange

interpolating polynomial, 147

polynomial interpolation, 46, 147

largest square upper part, 37

lifting, 103

linear reurrene operator, 80

LISP, 20, 31

LOADZeilberger.masyma, 22

luky

evaluation, 57

primes, 41

rationals, 45

MaMahon, 1

Masyma, 20, 31

Mathematia, 57, 59, 119

omponent, 127

interfae, 120

parser, 120

MathLink, 121

matrix

L(A), 38

R(A), 38

mod

p

, 40

Cramer, 38

triangular form of a, 38

MAX ORD, 24

Maxima, 20, 31

maximal ardinality property, 78

method

heuristi, 58

hybrid, 58

reursive, 58

method (obj. or. progr.), 119

ModPower, 133

modPower, 139

modular inverse, 101, 116, 123, 134

ModularAlgorithm, 64

ModularNullSpae, 60

modulo, 138

mpz lass, 136

MultiHybridNullSpae, 63

MultiModularNullSpae, 60

M�obius funtion, 109

162 INDEX

n-regular, 80

natural boundary, 17, 19

network, 50, 51

Newton

division, 122

iteration, 123, 124

formula, 124

polynomial interpolation, 46, 148

Newton, 139

non-Gosper-summable, 25

non-k-regular, 81

non-n-regular, 81

NTL, 136

NTL::ZZ, 136

Offset, 60, 64

-alulus, 1

one(), 135

operator

forward di�erene, 106

linear reurrene, 80

shift, 3, 80

overow, 126

Pad�e

approximant, 57

approximation, 56

parGosper, 24

parGosperVerboseOpt, 24

parser, 120, 128

Paule-Shorn implementation, 21

Petkov�sek ondition, 84

PolyComb, 119

PolynomialExpand, 132

polynomialRing, 136

post�x form, 120, 121, 128{131

power produt, 129, 135

pPostify, 130

quintuple, 32

rational erti�ate, 15

rational funtion approximation, 2,

53

RatNullSpae, 63

reursive method, 58

regular, 80

repeated squaring

for polynomial exponentiation, 125

resultant, 17, 20

reversed, 138

reversed polynomial, 98, 138

rising fatorial, 82

shool

division, 100, 139

multipliation, 142, 143

server, 121

shift

operator, 3, 80

quotient, 14, 80

shift, 138

StartingInterpolation, 60, 64

stream, 129

Strehl identity, 29

summation

hypergeometri

de�nite, 17

inde�nite, 15

q-ase, 14

SymboliAlgorithm, 64

telesoping, 2, 13

template, 119

term

holonomi, 20

hypergeometri, 14

proper, 15, 80

regular proper, 80

transendental extension, 97

triangular form, 38

triangularization, 57

trinomial oeÆients, 28

uniPolynomial, 137, 138

Vandermonde identity, 27

Var, 60, 61, 64

INDEX 163

Verbose, 60{64

WritePoly, 128, 134

Zeilberger, 24

Zeilberger's algorithm, 17

ZeilbergerVerboseOpt, 24

ZeilbergerVeryVerbose, 23

zero(), 136

