
Di�erene Forms

and Hypergeometri Summation

Diplomarbeit

eingereiht von Burkhard Zimmermann

Researh Institute for Symboli Computation,

Johannes Kepler Universit�at Linz.

Burkhard.Zimmermann�ris.uni-linz.a.at

eingereiht bei Prof. Dr. Peter Paule

Researh Institute for Symboli Computation,

Johannes Kepler Universit�at Linz.

Peter.Paule�ris.uni-linz.a.at

Hagenberg und Wien im Februar 2000

Abstrat

The method of di�erene forms (WZ forms) was invented by Zeilberger

in order to disover and prove hypergeometri summation identities. To

prove multisum identities by this method, one needs nontrivial losed

di�erene forms of higher degree. Almost no suh forms were known so

far. To �nd some, we develop a new method for transforming di�erene

forms in a way that preserves their losedness, whih an be seen as a

disrete variant of hange of variables in di�erential forms. Our �nal goal

is to disover new multisum identities; examples are given.
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1 Introdution

1.1 Some Appliations of WZ Forms

To prove hypergeometri summation identities, H. Wilf and D. Zeilberger in-

trodued WZ pairs [WZ90℄ and, more generally, WZ forms [Zei93℄. Their work

was honored with the 1998 Steele Prize for Seminal Contribution to Researh

from the AMS. Before explaining (de�ning) WZ forms, we list some of their

appliations.

Proving known ombinatorial identities. WZ pairs prove most known

hypergeometri single sum identities like, for example, Saalsh�utz's Theorem

[GKP89, p.171℄: Let m and n be natural numbers. Then

n

X

k=0

�

r + k

n+m

��

�s+ r + n

n� k

��

s� r +m

k

�

=

�

r

m

��

s

n

�

;

or, in hypergeometri notation,

�

r

n+m

��

�s+ r + n

n

�

3

F

2

�

�n; r + 1; �s+ r �m

r � n�m+ 1; �s+ r + 1

; 1

�

=

�

r

m

��

s

n

�

:

Wilf and Zeilberger [WZ90℄ prove all \lassial" hypergeometri summation

identities using the WZ method. Setion 3 ontains examples of binomial oef-

�ient identities proved by the WZ method.

Finding new ombinatorial identities. Given a hypergeometri single

sum identity, WZ forms allow us to produe new single sum identities from it.

Starting from Vandermonde's identity, Zeilberger [Zei95℄ derives the identity

k

X

n=0

(3n� 2 k)

�

k

n

�

2

�

2n

n

�

= 0 for k � 0;

or, equivalently,

4

F

3

�

�k; �k; 1�

2 k

3

;

1

2

1;

�2 k

3

; 1

; 4

�

= 0 for k � 0:

by his dualize and speialize method and omments on it:

\This is a brand new identity, unknown to Askey. It has a q-analog

derived from the q-version of WZ, that was unknown to Andrews,

and even whose limiting ase was brand new, and it took George

Andrews three densely paked pages, using �ve di�erent identities,

to prove."

In the dualize and speialize method, a ertain mirale remains unexplained;

new light is shed on it by losedness preserving substitutions { see setion 4.2.

A long list of new single sum identities found by (a variant of) the dualize and

speialize method is ontained in [Ges95℄.

A fast series for Ap�ery's onstant. Using a ertain WZ pair, Zeilberger

[Zei93℄ proves Ap�ery's elebrated identity

�(3) =

5

2

1

X

n=1

(�1)

n+1

n

3

�

2n

n

�

; (1)

1



where �(3) :=

P

1

n=1

1

n

3

.

Proving known multisum identities. Consider the identity [Den96℄

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

(2)

whih holds for 0 � 2v � k. By H. Wilf's amazingly suessful method of

dividing by the right hand side [WZ90℄ and a subsequent all to K. Wegshaider's

variant [Weg97℄ of Sister Celine Fasenmyer's algorithm [Fas47, Fas49℄, we �nd

a partiularly simple reursion for the summand whih an be immediately

translated to a WZ form of degree two; see setion 3.5.

Finding new multisum identities. The same WZ form that proves iden-

tity 2 immediately leads to the identity

X

b

X

k

(�1)

b

2

�k

�

s+ b� 2

s� 1

��

s+ b� 1

2 v � k

��

s+ k

2 v � b+ 1

��

v � 1

�v + k

�

= 0

whih is valid for 1 � s; 1 � v and to the identity

X

k

X

s

(�2)

k

�

b

s

��

2 v � b� 2

�s+ k � 1

��

2 v � k � 1

�s+ b� 1

��

2 v � k � 1

v � k

�

= 0

whih is valid for b � 0; 1 � v; b+ 2 � 2 v.

Testing simpli�ers for hypergeometri multisums. Multisum identi-

ties found by WZ forms, as, for example,

8

m�0

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

;

(whih is derived in setion 5.2), are useful for heking and omparing summa-

tion algorithms.

Challenging simpli�ers for expressions involving hypergeometri

sums. Using WZ forms, we an easily �nd and prove identities like

8

p�0

8

q�0

8

r�0

3

�p

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

�

3

�j

3

�k

+ 3

�q

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

�

3

�i

3

�k

+ 3

�r

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

�

3

�i

3

�j

= 3:

Given the left hand side expression of this identity, a simpli�er should redue it

to the right hand side. As far as I know, no simpli�er that an handle the sum

of more than one sum has been invented yet.

Challenging automati provers. Even if given both sides of an identity

like the one above as input, there is no reasonably fast algorithm that omputes

a proof of the given identity. There is no dediated proof algorithm for suh

problems, and general (prediate logi) provers are way too ineÆient to takle

them.

2



1.2 WZ Form Transformations

The need for WZ form transformations. Muh is known about hyper-

geometri single sum identities. There is an amazingly suessful database of

a few general summation identities that over most sums enountered in om-

binatorial pratie as speial ases. It is listed in Appendix III of [Sla66℄ and

implemented in Ch. Krattenthaler's Mathematia pakage HYP.m[Kra95℄.

Even better, the problem of expressing a single sum over a hypergeometri

summand as a hypergeometri expression is algorithmially solved

1

by �nding a

reurrene of the sum with Zeilberger's fast algorithm [Zei91℄ and subsequently

solving this reurrene with M. Petkov�sek's algorithm [PWZ96℄.

Muh less is known about hypergeometri multisums. Sister Mary Celine

Fasenmyer [Fas47, Fas49℄ invented an algorithm for �nding reurrenes for

multisums [PWZ96℄. Her algorithm was improved by P. Verbaeten and Kurt

Wegshaider, who implemented it in Mathematia. Note that her algorithm

does not help us to �nd multisum identities: Given a sum, we do not know a

priori if it �nds a losed form evaluation. A randomly hosen sum is unlikely to

�nd a losed form evaluation.

To �nd more multisum identities by the WZ form mehtod, we need nontrivial

WZ forms of higher degree. K. Wegshaider's Mathematia pakage multisum

an be used to onstrut suh forms. We were suessful to do so only 3 times;

in all other ases we interrupted the program multisum after running for some

long time.

To get more forms from a few known forms, we would like to transform

a known WZ form into an essentially di�erent WZ form. By \essentially

di�erent" we mean that identities produed by the new form should not follow

diretly (i.e. by substitution) from identities of the original form.

Early WZ pair transformations. The �rst WZ pair transformation is

introdued in the very �rst artile onWZ pairs [WZ90℄ as \Theorem B". I. Gessel

generalizes it slightly ([Ges95, Theorem 3.1℄) and uses the basi WZ method

together with his generalization to disover an abundane of new hypergeometri

single sum identities. These transformations do not produe essentially di�erent

WZ forms.

Fast series for Ap�ery's onstant. T. Amdeberhan and D. Zeilberger

[AZ97℄ present a ertain new WZ form transformation whih does indeed pro-

due essentially di�erent WZ forms. It is skillfully used in [Amd96℄ to obtain an

in�nite sequene of faster and faster onverging series for �(3). The �rst series

in this sequene gives Ap�ery's elebrated identity (1); the seond series gives

�(3) =

1

4

1

X

n=1

(56n

2

� 32n+ 5)

(2n� 1)

2

n

3

(�1)

n+1

�

2n

n

��

3n

n

�

whih enjoys muh faster onvergene than the �rst series.

More general WZ form transformations. We aim to transform WZ

forms by applying arbitrary integer linear substitutions. For WZ pairs and WZ

1-forms, you an easily �nd these transformations yourself using a simple new

trik that is explained in setion 4.1 and that was disovered independently by

I. Gessel [Ges99℄

1

at least up to a small gap

3



Unfortunately, this trik annot be arried over to r-forms where r > 1, i.e.

to the more interesting multisum ase. Setion 4.3, the main part of the thesis,

solves the transformation problem in the multisum ase. The transformation

algorithm is implemented in Mathematia.

Finding new multisum identities. Given a hypergeometri multisum

identity, we may hope to �nd a WZ form of higher degree from it. This form

usually leads to new multisum identities. However, we an do better. The

method of losedness preserving substitutions allows us to onstrut new WZ

forms from it whih in turn allow us to disover ever more { essentially di�erent

{ multisum identities. For example, we obtain the identity

X

k

X

s

2

�k

(2v + s� b� k)

�

b

s

��

b

2v � k

��

k + s

2v + s� b

��

v

k � v

�

= 0

(provided that b � 0 and v � 0) in this way, starting from S. Dent's identity

(setion 5.3).

Symmetry as a bonus All WZ pairs

2

F (n; k) dk + G(n; k) dn satisfy the

WZ equation

F (n+ 1; k)� F (n; k) = G(n; k + 1)�G(n; k)

whose symmetry is praised in [PWZ96℄ on page 123:

\When the WZ equation holds, there is omplete symmetry between

the indies n and k, espeially for terminating identities, whih pre-

viously had seemed to be playing seemingly di�erent roles. The

revelation of symmetry in nature has always been one of the main

objetives in siene."

Of ourse, WZ pairs should math this appealing symmetry. So far, no nontrivial

niely symmetri WZ pairs were known. We obtain the WZ form

2

�a�b

�

a+ b

a; b

�

1

a+ b

(b da� a db) ;

from the well known binomial form by our method of losedness preserving

substitutions in the setions 5.1. By the same method, the WZ forms

�

r

a

��

s

b

��

r + s

a+ b

�

�1

1

a+ b

(b da� a db)

and

4

�b�a

�

2 a

a

��

2 b

b

�

1

a+ b

(b da� a db)

are obtained. In the language of reurrenes, the losedness of these forms

means that

(�

a

a+�

b

b)

1

a+ b

2

�a�b

�

a+ b

a; b

�

= 0;

(�

a

a+�

b

b)

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

= 0

and

(�

a

a+�

b

b)

1

a+ b

4

�b�a

�

2 a

a

��

2 b

b

�

= 0:

2

For uniformity, we write the WZ pair (F (n; k);G(n; k)) as F (n; k) dk + G(n; k) dn

4



2 Di�erene Forms

The purpose of this setion is to give a omplete proof of the Theorem of Stokes{

Zeilberger. It is deliberately disseted into a olletion of small de�nitions and

propositions in order to allow for automati proving by a system like Theorema

[BJK

+

97℄ in the future. All proofs are obvious; some are left out while others are

inluded. Our interest lies in the dissetion itself, and in the partiular hoie of

de�nitions. A struggle for ombining formal orretness with traditional (and

useful) notation fored us to rede�ne a few most familiar notions like variable and

(hypergeometri) term. Of ourse one might see re-introduing these onepts as

overdoing; to our defense, we ite from the prefae of the textbook \Advaned

Calulus" on di�erential forms by M. Spivak:

\There are good reasons why the theorems should all be easy and

the de�nitions hard. As the evolution of Stokes' Theorem revealed, a

single simple priniple an masquerade as several diÆult results; the

proofs of many theorems involve merely stripping away the disguise.

The de�nitions, on the other hand, serve a twofold purpose: they are

rigorous replaements for vague notions, and mahinery for elegant

proofs."

We do not give a tutorial on WZ pairs and WZ forms here, sine the original

papers [WZ90℄ and [Zei93℄ are very readable. For a quik start, you may also

look at my slides for the 44e session du S�eminaire Lotharingien de Combinatoire.

2.1 Labels, Lattie Vetors and Terms

Established notation for di�erene equations is quite readable. Consider the

equation

(�

a

a+�

b

b)

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

= 0: (3)

The di�erene operators �

a

and �

b

are de�ned by �

a

= S

a

�1 and �

b

= S

b

�1

where S

a

and S

b

are the shift operators w.r.t. a and b: for example,

S

a

1

a+ b

�

r

a

��

s

b

�

=

1

a+ b+ 1

�

r

a+ 1

��

s

b

�

and

S

b

1

a+ b

�

r

a

��

s

b

�

=

1

a+ b+ 1

�

r

a

��

s

b+ 1

�

:

How to de�ne the shift operators S

a

and S

b

? A moment of thought shows

that attempts like

(S

a

f)(a; b) := f(a+ 1; b)

lead to onfusing onsequenes; for example, we would get

(S

a

f)(b; a) = f(b+ 1; a) (4)

and

(S

a

f)(�3a; b) = f(�3a+ 1; b) (5)

Looking at (4) and (5) may suggest that S

a

should be renamed to S

1

sine it

shifts a funtion in its �rst argument. We de�ne shift operators (S

1

f)(a; b) :=

5



f(a + 1; b) and (S

2

f)(a; b) := f(a; b + 1) as well as multipliation operators

(m

1

f)(a; b) := af(a; b) and (m

2

f)(a; b) := bf(a; b). In this notation, we would

write equation (3) as

(�

1

m

1

+�

2

m

2

)f = 0 (6)

where

f(a; b) =

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

:

Note that equation (3) is more readable than equation (6). We prefer the

operators �a; �b; a; b that at on terms like

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

over the operators S

1

; S

2

; m

1

; m

2

that at on funtions like f . However, we do

not want shift operators S

a

and S

b

to behave as (4) and (5); we want to get

S

a

f(b; a) = f(b; a+ 1) (7)

and

S

a

f(�3a; b) = f(�3a� 3; b) (8)

instead.

Our use of the word \term" omes from \hypergeometri term" by dropping

hypergeometriity. None of our proofs assume hypergeometriity, but all our

examples involve hypergeometri terms only.

An obvious andidate for the notion of \term" might be \purely syntatial

term" as used, for example, in the literature on term rewriting systems. To

avoid �xing a ertain \signature", introduing an \evaluation funtion" and

de�ning equivalene of terms modulo this evaluation funtion, we do not adopt

that partiular notion of term.

To us, the term

�

n

k

�

2

�

n+k

k

�

2

is simply the funtion that maps, for example,

the \vetor" f(n; 4); (k; 1)g to the number

�

4

1

�

2

�

4+1

1

�

2

= 400.

Labels. In the sequel, we will frequently assume that some �nite set L has

been �xed. Its elements, alled labels, model the integer variables { like n and

k { ourring in hypergeometri terms. Labels will be set in sans serif font, like

n and k. The variables x, y and z range over L. For example,

P

x

means

P

x2L

.

By onvention, di�erent letters in sans serif denote di�erent labels. Thus, for

example, k 6= n holds.

Remark: Where do we need the onvention that di�erent letters in sans serif

denote di�erent labels? Let's ompute a di�erene:

�

k

kn

3

= (k+ 1)n

3

� kn

3

= n

3

:

One might be tempted to \generalize" this to

�

x

xy

3

= y

3

whih, of ourse, is wrong as an be seen by onsidering the partiular ase

x = y = k:

�

k

kk

3

= 4k

3

+ 6k

2

+ 4k+ 1:

6



instead of

�

k

k

4

= k

3

:

Thus one really needs to assume k 6= n for alulating �

k

kn

3

= n

3

.

The labels are assumed to be totally ordered by �. We assume that L :=

fk; ng where k � n in all examples of this setion.

Vetors. X ! Y denotes the set of all funtions from X to Y . We will

often denote funtion appliation by using subsripts: f

x

means f(x).

Def. 1 (lattie vetor). The set of all (lattie) vetors is V := L ! Z.

Vetors will also be alled \points" or \lattie points". By onvention, p and p

0

range over V. As usual, vetor addition and salar multipliation are de�ned

pointwise:

1. (p+ p

0

)

x

:= p

x

+ p

0

x

2. (p)

x

:= p

x

:

An example of a vetor is p where p

k

= 3 and p

n

= 5. Alternatively, we

write p = f(k; 3); (n; 5)g.

Remark: Remark: De�nition 1 may seem strange, but in fat it is natural.

Usually, Z

n

is used as the set of all lattie vetors. Sine n = f0; 1; : : : ; n � 1g

in the usual (set theoreti) onstrution of N, we have Z

n

= Z

f0;1;:::;n�1g

=

f0; 1; : : : ; n� 1g ! Z.

All we do is to hange the index set from f0; 1; : : : ; n� 1g to something like

fk; ng.

Intuitively, a term (or expression) is an objet like

�

n+k

k

�

2

�k

that allows

plugging in integers for the labels appearing in it: For example, plugging k = 1

and n = 7 into

�

n+k

k

�

2

�k

yields 4. Thus we an view a term as a funtion from

V to C . For example, if

T =

�

n+ k

k

�

2

�k

and

p = f(k; 1); (n; 7)g

then we an evaluate the term T at the point p to get

T (p) =

�

7 + 1

1

�

2

�1

= 4:

When speaking of terms, we always have (multivariate) hypergeometri

terms [Weg97, pp. 12{14℄ in mind. However, we don't restrit ourselves to

hypergeometri terms (whih we even do not de�ne), sine our theorems do not

depend on this restrition. In pratie this means that all our theorems hold

for multivariate q-hypergeometri terms [Rie95℄ as well. However, our software

is presently restrited to (multivariate) hypergeometri terms.

Def. 2 (term). The set of terms is T := V ! C . We reursively de�ne:

1. Let x be a label in L. Then x in T is de�ned by x(p) := p

x

.

7



2. Let  be number in C . Then  in T is de�ned by (p) := .

3. Let f be funtion in C

n

! C . Then f in T

n

! T is de�ned by

�

f(T

1

; T

2

; : : : ; T

n

)

�

(p) := f(T

1

(p); T

2

(p); : : : ; T

n

(p)):

(In our appliations, the funtion f will typially be addition, subtration,

multipliation, division, the binomial oeÆient funtion or the fatorial

funtion.)

To avoid heavy notation, we allow ourselves to omit underlining. We hope that

ontext always resolves ambiguities.

Example: Let p = f(k; 1); (n; 7)g. Then

1. k(p) = 1 and n(p) = 7,

2. (k+ n) (p) = 8, and

3.

�

n+k

k

�

(p) = 8.

Example:

�

n+k

k

�

2

�k

is a term. It is the funtion that assigns to a point p the

number

�

p

n

+p

k

p

k

�

2

�p

k

, as an be alulated as follows:

�

n+ k

k

�

2

�k

(p) =

�

n+ k

k

�

(p) � (2

�k

)(p) =

=

�

n(p) + k(p)

k(p)

�

2

�k(p)

=

�

p

n

+ p

k

p

k

�

2

�p

k

:

2.2 Sums of Terms

To produe summation identities, we need to sum terms.

Def. 3 (support and sum). The support of T , supp T , onsists of all lattie

points where T does not vanish. T has �nite support i� supp T is �nite. In

this ase the sum of T is de�ned by

sum T :=

X

p2 supp T

T (p) ;

otherwise, sum T is left unde�ned.

Remark: We do not lose any in�nite sum identities by insisting on the �nite-

ness of supp T . We just prove �nite versions of our identities �rst and take

appropriate limits afterwards.

Example: Let L = fag and let n be a natural number. Then sum

�

n

a

�

= 2

n

.

Example: Let L = fa; ng. Then

�

n

a

�

has in�nite support and sum

�

n

a

�

is left

unde�ned.

8



Example: Let L = fa; ng and let n be a natural number. Then sum [n = n℄

�

n

a

�

is left unde�ned.

The funtion sum is C -linear:

Proposition 1. If T , T

1

and T

2

have �nite support and  2 C then

1. sum ( � T ) =  � sum T and

2. sum (T

1

+ T

2

) = sum (T

1

) + sum (T

2

):

Remark: Realling the de�nition of terms, we should have written sum ( � T )

as sum ( � T ) in order to distinguish between the omplex number  2 C and

the term  2 T.

2.3 Forms

Def. 4 (di�erene form). Let P(L) denote the set of all subsets of L. The

set F of all (di�erene) forms is de�ned by F := P(L)! T.

Throughout this setion, we stik to the following type onventions:

� i; j; k; l;m and n are integers.

� x; y and z are labels (in L).

� X;Y and Z are sets of labels, i.e. X;Y; Z 2 P(L).

� T is a term (in T).

� �; ! and � are forms (in F).

For example, we abbreviate

P

X�L

by

P

X

, we abbreviate 8

x2L

by 8

x

and so on.

For all examples in this setion we �x L = fa; b; g.

Def. 5. For X � L, the form dX is de�ned by dX (Y ) := [X = Y ℄. For x 2 L,

we abbreviate dfxg by dx.

Example: da (fag) = 1 and da (fa; bg)=0.

Def. 6. Forms an be multiplied by terms and added pointwise:

1. (T � !) (X) := T � !(X).

2. (! + �) (X) := !(X) + �(X).

The multipliation dot may be dropped. The form T d; is abbreviated by

T ; ontext resolves ambiguities.

Example:

�

�

b

a

�

2

�b

da

�

(X) equals

�

b

a

�

2

�b

if X = fag and 0 otherwise.

Example: (f(a; b) da+ g(a; b) db) (fag) equals f(a; b).

9



2.4 Plotting Forms

To train our intuition about di�erene forms, we plot them.

The di�erene form 2

k

�

n�k

n

�

d; is plotted as

follows: The olor of a point p is determined

by the number v = 2

k

�

n�k

n

�

(p). If v is 0, the

point is left white. Otherwise, a grey dot is

plotted at p and the value of v is written down

near p. (Unfortunately some of these num-

bers \ollide" with the numbers plaed on the

axes.)
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The di�erene form

�1

2

2

�n

�

n

k� 1

�

dn+ 2

�n

�

n

k

�

dk

is plotted as follows: The olor of a unit ube

in diretion k, i.e. a horizontal bar, is deter-

mined by the value of the term 2

�n

�

n

k

�

at the

left orner of the unit ube. Similarly the olor

of a unit ube in diretion n, i.e. a vertial

bar, is determined by the value of the term

�1

2

2

�n

�

n

k�1

�

at the lower orner of the unit

ube.

Stritly speaking,

2

�n

�

n

k

� �

k

2 (�n+ k� 1)

dn+ 1 dk

�

is no di�erene form at all sine

2

�n

�

n

k

�

k

2 (�n+ k� 1)

is no total funtion in V ! C and therefore

no term. To warn about a term that is not

de�ned at a point p, we plot this term at p

in red olor. The vertial red bars in the plot

stem from the denominator �n + k � 1 that

ours in 2

�n

�

n

k

�

k

2 (�n+k�1)

.
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The di�erene form

�

n+k

n

�

dk dn is plotted as

follows: The olor of a unit ube extending in

diretions k and n, i.e. a square, is determined

by the number

�

n+k

n

�

(p) where p is the lower

left orner of that square.
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2.5 Forms, Part 2

With respet to the operations � and + of De�nition 6 we have:

Proposition 2. Multipliation is assoiative and distributes over addition:

1. (T

1

� T

2

) � ! = T

1

� (T

2

� !).

2. (T

1

+ T

2

) � ! = T

1

� ! + T

2

� !.

3. T � (! + �) = T � ! + T � �.

Thus F is a T-module.

Def. 7 (sign). The sign of a pair of labels is de�ned by

s(x; y) =

8

<

:

1 if x � y

0 if x = y

�1 if x � y

and the sign of a pair of label sets is de�ned by

s(X;Y ) =

Y

x2X

Y

y2Y

s(x; y):

Proposition 3. The sign funtion satis�es the following skew ommutation

laws:

1. s(x; y) = �s(y; x).

2. s(X;Y ) = (�1)

#X#Y

s(Y;X).

Proposition 4. The sign funtion distributes over [ in the following restrited

sense:

1. s(X;Y ) s(X [ Y; Z) = s(X;Y ) s(X;Z) s(Y; Z).

2. s(X;Y [ Z) s(Y; Z) = s(X;Y ) s(X;Z) s(Y; Z).

Proof. We prove 1. If X\Y 6= ;, then s(X;Y ) = 0 and (1) follows. If X\Y = ;,

then s(X [Y; Z) = s(X;Z) s(Y; Z) by splitting the range of the produt quanti-

�er:

Q

x2X[Y

Q

y2Z

s(x; y) =

�

Q

x2X

Q

y2Z

s(x; y)

� �

Q

x2Y

Q

y2Z

s(x; y)

�

.

Def. 8 (exterior produt). The exterior produt of two forms is de�ned by

(! ^ �) (Z) :=

X

X;Y

X[Y=Z

s(X;Y )!(X) �(Y ):

For brevity ! ^ � may be abbreviated by !�.

Remark: Due to the fat that s(X;Y ) = 0 whenever X\Y 6= ;, only summands

for omplementary (with respet to L) X and Y ontribute.

Proposition 5. As expeted we have skew ommutation:

11



1. dx dy = �dy dx.

2. dx dx = 0.

Remark: Note that !^ � = �� ^! is not true in general.

Proposition 6. (F; ^ ; d;) is a monoid:

1. !^ d; = d;^! = !.

2. (!

1

^!

2

)^!

3

= !

1

^ (!

2

^!

3

).

Proof of Proposition 2.2. Let X be arbitrary. Then both ((!

1

^!

2

)^!

3

) (X)

and (!

1

^ (!

2

^!

3

)) (X) are equal to

X

Y

1

[Y

2

[Y

3

=X

s(Y

1

; Y

2

) s(Y

1

; Y

3

) s(Y

2

; Y

3

)!

1

(Y

1

)!

2

(Y

2

)!

3

(Y

3

)

as an be shown using Proposition 4.

Proposition 7. The exterior produt is both left and right T-linear:

1. (T � !)^ � = !^ (T � �) = T � (! ^ �).

2. (!

1

+ !

2

)^ � = !

1

^ � + !

2

^ �.

3. !^ (�

1

+ �

2

) = !^ �

1

+ !^ �

2

.

Proposition 6 and Proposition 7.1 will be used for dropping parentheses

without introduing ambiguities.

Sometimes it is easier to prove theorems for monomial forms �rst and to

extend them to arbitrary forms afterwards.

Def. 9 (monomial). A di�erene form ! is alled monomial i� there is a set

Z of labels suh that

!(X) 6= 0 =) X = Z:

For example, T da db is monomial while T

1

da db+ T

2

da d is not, whenever

T

1

6= 0 and T

2

6= 0.

Some proofs (as for example the proof of Proposition 43) proeed by indu-

tion on the degree.

Def. 10 (degree). A di�erene form is homogeneous of degree r (or has degree

r) i�

!(X) 6= 0 =) #X = r:

An r-form is a di�erene forms of degree r. We de�ne F

r

to be the set of all

r-forms.

An example of a 2-form is T

1

da db + T

2

db d + T

3

da d. The form 0 is

homogeneous of degree r, for any natural number r.

12



2.6 The Inner Produt of Forms

Def. 11 (inner produt). The inner produt of the forms � and ! is de�ned

by

h�; !i :=

X

X�L

�(X) � !(X)

Proposition 8. The inner produt is symmetri: h�; !i = h!; �i.

Proposition 9. The inner produt is both left and right T-linear:

1. hT�; !i = T h�; !i

2. h�

1

+ �

2

; !i = h�

1

; !i+ h�

2

; !i

3. h�; T!i = T h�; !i

4. h�; !

1

+ !

2

i = h�; !

1

i+ h�; !

2

i

2.7 Sums of Forms over Ranges

Def. 12 (Iversons braket). We de�ne Iverson's braket funtion from boo-

leans to integers by

1. [true℄ := 1,

2. [false℄ := 0.

For example, [2 = 2℄ = 1 and [2 < 2℄ = 0.

Def. 13 (sum). Let � have �nite support. The sum of ! over � is de�ned by

X

�

! := sum h�; !i:

The form � appearing under the

P

sign in

P

�

! is said to be used as

summation range and orresponds to a manifold in the ontinuous ase. The

form ! appearing on the right of the

P

sign in

P

�

! is said to be used as

summand. We typially use summation ranges involving Iverson brakets as,

for example,

� = [n = n℄[0 � k < 0℄

satisfying

�(X)(p) 2 f�1; 0; 1g;

but we never use this assumption. Using summation ranges involving hyperge-

ometri terms may lead to new summation identities.

Proposition 10. Let �, �

1

and �

2

have �nite support and let  2 C . Then

1.

P

�

 � ! =  �

P

�

!,

2.

P

�

(!

1

+ !

2

) =

P

�

!

1

+

P

�

!

2

,

3.

P

��

! =  �

P

�

!,

13



4.

P

�

1

+�

2

! =

P

�

1

! +

P

�

2

!,

The following proposition illustrates that we treat forms and ranges uni-

formly, in ontrast to [Zei93℄ and to the di�erential forms ase.

Proposition 11.

X

�

! =

X

!

�

2.8 Plotting Summation Ranges

As we enode summation ranges as forms, we plot them like forms; see Setion

2.4. Terms in summation ranges typially take on the values 1, 0 and �1 only.

We enode these values by olors: Green denotes 1, white denotes 0 and blue

denotes �1.
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[k = n℄ [n < 3℄ [0 � n℄ dn+([k = n� 1℄ [n < 3+

1℄ [0 � n�1℄� [n = 3℄ [k < n℄ [0 � n�1℄+ [0 =

n℄ [k < n℄ [n < 3℄) dk
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2.9 Plotting Sums of Forms over ranges

The plot shows the sum of the form ! =

�1

2

2

�n

�

n

k�1

�

dn+2

�n

�

n

k

�

dk over the range � =

[n = n℄ dk where n = 3. (The range � is de-

pited on top of the form !.) By de�nition

13,

X

�

! =

X

k

2

�n

�

n

k

�

(whih of ourse equals 1).
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2.10 Operators on Terms
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Def. 14. Let x 2 L. The unit vetor in x-diretion e

x

is de�ned by

(e

x

)

y

:= [x = y℄:

For example, e

k

= f(k; 1); (n; 0)g and e

n

= f(k; 0); (n; 1)g.

Def. 15. Let x 2 L. The shift operator S

x

in T! T is de�ned by

(S

x

T )(p) := T (p+ e

x

)

To ompute S

x

T in our notation of terms, it suÆes to replae eah our-

rene of x textually by x+1, as justi�ed by the following obvious proposition.

(Note that x and y are labels, not integers; thus [x = y℄ below tests equality of

labels, not equality of integers.)

Proposition 12. 1. S

x

y = x+ [x = y℄,

2. S

x

 = ,

3. S

x

f(t

1

; : : : ; t

n

) = f(S

x

t

1

; : : : ; S

x

t

n

).

For example, S

k

�

n+k

k

�

2

�k

=

�

n+k+1

k+1

�

2

�k�1

.

Def. 16. We de�ne the di�erene operator �

x

and the dual di�erene operator

�

�

x

by

1. �

x

:= �I + S

x

,

2.

�

�

x

:= �I + S

�1

x

,

where operator addition and subtration is, of ourse, de�ned pointwise.

For example, �

k

k! = (k+ 1)!� k! = kk!. and

�

�

k

[k < n℄ = [k� 1 < n℄� [k <

n℄ = [k � n℄ � [k < n℄ = [k = n℄. (Computing

�

�

x

on Iversons allows us to

ompute boundaries { even of in�nite ranges { symbolially.)

Proposition 13. Let T , T

1

and T

2

have �nite support. Then

1. sum S

k

x

T = sum T ,

2. sum (T

1

� S

x

T

2

) = sum (S

�1

x

T

1

� T

2

),

3. sum (T

1

� �

x

T

2

) = sum (

�

�

x

T

1

� T

2

).

Def. 17. The set of shift polynomials SP is the smallest subset in T ! T

satisfying

1. All shift operators S

k

x

are in SP,

2. SP is losed under omposition: If A and B are in SP, then AB is in SP,

3. SP is losed under addition: If A and B are in SP, then A + B and �A

are in SP,

4. 0 is in SP.

Thus SP = Z[S

x

1

; : : : ; S

x

n

℄ where L = fx

1

; : : : ; x

n

g.
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Examples of shift polynomials inlude �

x

and G

k

x

.

Proposition 14. Let A and B be shift polynomials. Then

1. A (T

1

+ T

2

) = AT

1

+AT

2

,

2. AB = BA,

Proof. Shift operators ommute with eah other.

2.11 Operators on Forms

Operators ating on terms indue orresponding operators ating on forms in a

natural way:

Def. 18. Let A be a funtion in T! T. Then

^

A in F ! F is de�ned by

(

^

A!) (X) := A(!(X)):

Overloading notation, we frequently abbreviate

^

A by A.

We will use De�nition 18 to lift shift operators S

k

x

, di�erene operators �

x

and multipliation operators (T �) from T ! T to F ! F. Of ourse, lifting

distributes over omposition:

Proposition 15. Let A and B be funtions in T! T. Then

(AB)̂ =

^

A

^

B

Proposition 16. Di�erene operators in F! F ommute:

1.

^

�

x

^

�

y

=

^

�

y

^

�

x

.

2.

^

�

x

�

^

�

y

� =

^

�

y

�

^

�

x

�.

Proof. We prove 1 by reduing it to the ommutation of di�erene operators in

T! T via Proposition 15:

^

�

x

^

�

y

= (�

x

�

y

)̂ = ((�1�)�

y

�

x

)̂ = �

^

�y

^

�x:

Def. 19. Overloading the meaning of dx, we de�ne the operator dx in F ! F

by dx (!) := dx^!.

Thus dx may denote a form in F or an operator in F ! F depending on

ontext.

Proposition 17. (dx!)(Z) =

P

Y

fxg[Y=Z

s(fxg; Y )!(Y ):

Remark: The summand in Proposition 17 is nonvanishing for Y = Z nfxg only;

thus we ould dispense of using a sum. Refraining from doing so helps in proving

Proposition 23.
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Proposition 18. The operators dx and dy satisfy the skew ommutation law

dx dy = �dy dx.

Proof. By applying both operators to ! and using the assoiativity of ^ , Propo-

sition 18 an be redued to the skew ommuation law dx dy = �dy dx for the

forms dx and dy.

Def. 20. (

�

dx �)(X) := s(x;X) �(fxg [X):

The operators

�

dx and

�

dy skew ommute with eah other. To see this, we

need a tehnial lemma:

Lemma 1. The sign funtion satis�es

s(fxg; Z) s(fyg; fxg [ Z) = �s(fyg; Z) s(fxg; fyg [ Z)

Proof. By Proposition 4 2, the left hand side is equal to

s(fxg; Z) s(fyg; fxg) s(fyg; Z)

and the right hand side is equal to

�s(fyg; Z) s(fxg; fyg) s(fxg; Z):

Sine s(fyg; fxg) = �s(fxg; fyg) by Proposition 3 2, both sides are equal.

As an immediate orollary of this lemma, we get:

Proposition 19. The operators

�

dx and

�

dy skew ommute with eah other:

�

dx

�

dy = �

�

dy

�

dx:

Proposition 20. Let A be a shift polynomial. Then

1. Adx = dxA.

2. A

�

dx =

�

dxA.

Proof. Shift operators ommute with the operator dx.

Def. 21. The exterior derivative operator d in F ! F and the boundary

operator � in F! F are de�ned by

1. d :=

P

x

dx�

x

,

2. � :=

P

x

�

dx

�

�

x

.

Remark: The letter d is overloaded. We use it both for onstruting forms and

for denoting the exterior derivative. Sine the exterior derivative of the form a

is indeed the form da, both interpretations of d agree.

17



Remark: The operator � is alled \boundary operator" sine it omputes \sign-

ed boundaries" of summation ranges; evidene is given by the following pitures:

� [k < k℄ [n < n℄ dk dn = [k = k℄ [n <

n℄ dn� [n = n℄ [k < k℄ dk

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

� [n + k < k℄ dk dn = [n + k = k℄ dn �

[n+ k = k℄ dk:

� [0 � k℄ [k � n℄ dk dn = (�[0 = k℄ [k �

n + 1℄ + [k = n + 1℄ [0 � k℄) dn + [k =

n℄ [0 � k℄ dk:

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

� [k = k℄ [n < n℄ [0 � n℄ dn� [n = n℄ [k <

k℄ [0 � k℄ dk = [k = k℄ [n = n℄ [0 �

n�1℄� [k = k℄ [n = n℄ [0 � k�1℄� [0 =

n℄ [k = k℄ [n < n℄ + [0 = k℄ [n = n℄ [k <

k℄:

Proposition 21. Both d and � are additive:

1. d(! + �) = d(!) + d(�).

2. �(! + �) = �(!) + �(�).

Proposition 22. We have dd = 0 as well as �� = 0.

Proof. We prove dd = 0. Using the additivity of �

y

and dy we expand dd to

P

y

P

x

A(y; x) where A(y; x) = dy dx�

y

�

x

. Now A(y; x) = �A(x; y) as an

be shown using the ommutation �

y

�

x

= �

x

�

y

and the skew ommutation

dy dx = �dx dy. Hene

P

y

P

x

A(y; x) = 0.

Proposition 23. In inner produts, the operator dx an be moved from the

right side to left side, getting

�

dx:

h�; dx!i =




�

dx �; !

�

:

Proof. We transform the left hand side stepwise to the right hand side. By

de�nition of the inner produt it is

X

Z

�(Z) (dx!)(Z):

By Proposition 17, (dx!)(Z) equals

P

Y

fxg[Y=Z

s(fxg; Y )!(Y ). Thus the left

hand side equals

X

Y;Z

fxg[Y=Z

s(fxg; Y ) �(Z)!(Y ):

18



The ondition fxg [ Y = Z allows us to eliminate the sum on Z, yielding

X

Y

s(fxg; Y ) �(fxg [ Y )!(Y ):

As s(fxg; Y ) �(fxg [ Y ) = (

�

dx �)(Y ), this simpli�es to

X

Y

(

�

dx �)(Y )!(Y )

whih, by the de�nition of the inner produt, is the right hand side of Proposition

23.

In sums, operators an be moved from the summand to the summation range

by the following Proposition:

Proposition 24. Let � have �nite support. Then

1.

P

�

dx! =

P

�

dx �

!,

2.

P

�

�

x

! =

P

�

�

x

�

!,

3.

P

�

dx�

x

! =

P

�

dx

�

�

x

�

!.

Proof. We prove 1. It is true sine h�; dx !i =




�

dx �; !

�

by Proposition 23.

Next we prove 2. By De�nition 13, De�nition 3 and the additivity of sum it is

equivalent to

X

X

�(X)�

x

(!(X)) =

X

X

�

�

x

(�(X))!(X)

whih is true by Proposition 13. Finally 3 an be proved using 1, 2 and the

ommutation

�

�

x

�

dx =

�

dx

�

�

x

(Proposition 20(2)).

2.12 The Theorem of Stokes{Zeilberger

We are now ready for the entral theorem about di�erene forms.

Theorem 1 (Stokes{Zeilberger). Let � have �nite support. Then

X

�

d! =

X

��

!:

Proof. Summing Proposition 24.3 over all x 2 L gives

X

x

X

�

dx�

x

! =

X

x

X

�

dx

�

�

x

�

!:

The bilinearity of

P

�

! allows us to move the sums on x inside:

X

�

X

x

dx�

x

! =

X

P

x

�

dx

�

�

x

�

!:

Sine

P

x

dx�

x

= d and

P

x

�

dx

�

�

x

= � Theorem 1 follows.
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The omnipresent telesoping trik [GKP89, p.50℄ is the simplest speial ase

of Stokes' Theorem:

Proposition 25 (telesoping). Suppose that the funtions f and F in Z! C

satisfy F (n + 1) � F (n) = f(n) for all n. Assume a < b. Then

P

b�1

k=a

f(k) =

F (b)� F (a).

Proof. Let L := fkg, ! := F (k) and � := [a � k < b℄dk. Use Stokes' Theorem.

Needless to say, Proposition 25 is a disrete analog of

R

b

a

F

0

(x)dx = F (b) �

F (a).

Def. 22. We de�ne losedness and exatness as follows:

1. The form ! is d-losed, or, shorter, ! is a losed form, i� d! = 0.

2. The form � is �-losed, or, shorter, � is a losed range, i� �� = 0.

3. The form ! is d-exat, or, shorter, ! is an exat form, i� 9

~!

d~! = !.

4. The form � is �-exat, or, shorter, � is an exat range, i� 9

~�

�~� = �.

For the purpose of produing interesting identities, we usually do not use

the Theorem of Stokes{Zeilberger in full generality. Instead, we only use the

following immediate orollary of it.

Theorem 2 (identity mill). Let � be an exat range having �nite support and

let ! be losed form. Then

X

�

! = 0:

Proof. Sine � is an exat form, there is a form ~� suh that � = �~�. Thus

X

�

! =

X

� ~�

! =

X

~�

d! =

X

~�

0 = 0:

The essential step is the use of the Theorem of Stokes-Zeilberger.

2.13 WZ Pairs

Def. 23 (WZ pair). Let f and g be funtions in Z

2

! Z. The pair (f; g) is

alled a WZ pair[WZ90℄ i�

f(n+ 1; k)� f(n; k) = g(n; k + 1)� g(n; k):

WZ pairs an be enoded as losed di�erene forms:

Proposition 26. Let L = fk; ng. Then (f; g) is a WZ pair i�

f(n; k) dk+ g(n; k) dn

is losed.
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Well known propositions about WZ pairs naturally

follow from the Identity Mill Theorem. The following

proposition is part of Theorem A of [WZ90℄:

Proposition 27. Let (f; g) be a WZ pair. Suppose

that

8

n�0

lim

k!�1

g(n; k) = 0:

Then

8

n�0

X

k

f(n; k) =

X

k

f(0; k)

whenever both sums onverge.

-1 1 2 3 4

-1

1

2

3

4

n

k

Proof. Let n be a �xed natural number, �

K

:= �[�K � k < K℄[0 � n <

n℄dkdn and ! := f(n; k) dk + g(n; k) dn: The Identity Mill Theorem shows that

8

K

P

�

K

! = 0 whih implies lim

K!1

P

�

K

! = 0 i.e.

P

k

f(n; k) =

P

k

f(0; k):

The following proposition is used in [Zei93℄ to prove Ap�erys series for �(3):

Proposition 28. Let (f; g) be a WZ pair. Suppose

that

8

�>0

9

N

8

n�N

8

k

jf(n; k)j < �:

Then

1

X

n=0

g(n; 0) =

1

X

n+0

(f(n; n) + g(n; n+ 1))

whenever both sums onverge.

-1 1 2 3 4
k

-1

1

2

3

4

n

Remark: The original version of this proposition, Theorem 7 of [Zei93℄, misses a

ondition like 8

�>0

9

N

8

n�N

8

k

jf(n; k)j < �: Plugging ! = d

2 k

k+n+1

into the original

version would yield a WZ proof of 0 = 1.

Proposition 29. Let (f; g) be a WZ pair and let s

be a �xed integer. Suppose that both f and g vanish

for negative arguments. Then

X

a+b=s

(g(a; b)� f(a; b)) = 0:

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

Proposition 30. Let (f; g) be a WZ pair and let a

and b be �xed integers. Suppose that both f and g

vanish for negative arguments. Then

X

k<a

f(b; k) =

X

n<b

g(n; a):

As is trivial to get suh propositions by plugging some exat range � into

the Identity Mill Theorem (even automatially!), we stop doing this.
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2.14 WZ Forms and the Residue Calulus

In his foreword to [PWZ96℄, D. E. Knuth mentions the identity

X

k

�

2k

k

��

2n� 2k

2� k

�

= 4

n

:

Of ourse, it is immediately proved by omparing oeÆients at z

n

in

1

p

1� 4z

1

p

1� 4z

=

1

1� 4z

:

We prove it in a di�erent way in order to point at an analogy between the WZ

method and the residue alulus.

To prove

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

= 1;

To prove

Z

1

�1

1

1 + x

2

dx = �;

we start by searhing for a range �

and a losed form ! suh that

X

�

! =

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

:

we start by searhing for a meromor-

phi funtion f and a path  suh

that

Z



f(z)dz =

Z

1

�1

1

1 + x

2

dx:

Gosper's algorithm helps us to �nd

! = 4

�n

�

2k

k

��

2n� 2k

n� k

�

�

�

1dk�

n� k+ 1=2

n� k+ 1

k

n+ 1

dn

�

:

Finding f is immediate:

f(z) =

1

1 + z

2

:

We �x an integer n and the range ��

where

�� = [n = n℄dk:

1 2 3 4 5
k

1

2

3

4

We �x the path � where

�(t) = t:

Next we extend �� to an exat range

�,

� = ��+ �

0

+ �

mini

:

-1 1 2 3 4 5
k

1

2

3

4

Next we extend � to a nullhomo-

topi losed path ,

 = � + 

0

+ 

pole

:
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We arefully hoose a range �

mini

that is nonvanishing on a handful of

points only, and a range �

0

that lies

outside the support of !. Thus

X

�

mini

!

= trivial to ompute;

and

X

�

0

! = 0:

We arefully hoose a path �

mini

that onsists of yles around poles

only, and a path 

0

that does not

ontribute to the integral. Thus

Z



pole

f(z)dz

= revealed by the residue

and

Z



0

f(z)dz = 0:

Sine

X

�

! = �

X

�

mini

!

we prove

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

= 1:

Sine

Z



f(z)dz = �

Z



pole

f(z)dz

we prove

Z

1

�1

1

1 + x

2

dx = �:
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3 WZ Forms

Sometimes \WZ form" is used as a synonym for \losed di�erene form". To

stress the lose orrespondene between di�erential forms and di�erene forms,

we reuse ommon terminology from di�erential forms and reserve the notion

WZ form for the hypergeometri ase.

Def. 24 (WZ form). A WZ form is a losed di�erene form whose oeÆient

terms are hypergeometri or q-hypergeometri.

Presently, our pakage wz.m is restrited to WZ forms; however, we plan to

support other oeÆient domains as well in the future.

Def. 25 (trivial WZ form). A WZ form is alled trivial, i� it is the exterior

derivative of another WZ form.

To �nd nontrivial identities, we need nontrivial forms.

3.1 Gosper's Algorithm Construts WZ Pairs

Given a hypergeometri term and a label, Gosper's algorithm �nds out if there

is a hypergeometri antidi�erene to the term. In the aÆrmative ase, the

algorithm returns this antidi�erene.

As shown in [WZ90℄, Gosper's algorithm solves the problem of onstruting

WZ pairs: Consider the Binomial Theorem. Its natural WZ-style proof is to

sum a WZ form

! := �

�

n

k

�

x

k

y

n�k

(x+ y)

n

dk+G(k; n) dn

(where L = fk; ng) over the exat range

� := � [0 � n < n℄ dk dn

getting

�1 +

X

k

�

n

k

�

x

k

y

n�k

(x+ y)

n

= 0:

The form ! is losed i�

�

k

G(k; n) = ��

n

�

n

k

�

x

k

y

n�k

(x+ y)

n

;

Gosper's algorithm omputes G(k; n) and we �nally obtain the WZ form

! =

�

n

k

�

x

k

y

n�k

(x+ y)

n

�

ky

(n� k+ 1)(x+ y)

dn� dk

�

:

Remark: The form ! reeives some treatment in setion 5.1.
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3.2 Inompleteness of the WZ Forms Method

Unfortunately, the method of WZ forms is not omplete for proving identities

of the form

1

X

k=�1

f(n; k) = 1

where f(n; k) is hypergeometri in n and k. Note however that Zeilberger's fast

algorithm [Zei91℄ is omplete for proving all these identities.

A ounterexample [PS95℄ for the ompleteness of the WZ method is

f(n; k) = (�1)

k

�

n

k

��

3k

n

�

(�3)

�n

:

More generally, Paule and Shorn [PS95℄ proved that

f

d

(n; k) = (�1)

k

�

n

k

��

dk

n

�

(�3)

�d

is a ounterexample for eah integer d � 3.

3.3 Singlesum Identities

All identities in this setion were generated by a omputer program; itations

were added by hand. All parameters appearing in the identities are assumed to

be integers. The program annotates identities with inequality onstraints on the

parameters. While these onstraints are suÆient, some inequalities ourring

in them may be redundant: For example, the program does not simplify \for

a � 0; 2 a � 0; a � n; n+a � 0" to \for 0 � a � n" in identity 1 below. Redun-

dant inequalities ould be deteted by the simplex algorithm and subsequently

removed; we have not implemented this so far.

Identity 1 (a \Moriarity" identity of Davis [Ego84, p. 52℄).

n

X

k=a

(�1)

k

2

2 k

�

k

a

��

n+ k

2 k

�

=

2n+ 1

2 a+ 1

(�1)

n

2

2 a

�

n+ a

2 a

�

for a � 0; 2 a � 0; a � n; n+ a � 0:

Remark: The sum equals

2

F

1

�

n+ a+ 1; �n+ a

a+

1

2

; 1

�

(�1)

a

2

2 a

�

n+ a

2 a

�

:

It an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 2 (!1).

k

X

n=a+1

n

(2n� 1) (2n+ 1)

�

2 k

n+ k

��

n+ a

2 a+ 1

�

=

a+ 1

(2 a+ 1) (2 k + 1)

2

2 k�2 a�2

�

k

a+ 1

�

for a+ 1 � 0; 2 a+ 1 � 0; k � 0; 2 k � 0; a+ 1 � k:
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Remark: The sum equals

4

F

3

�

2 a+ 2; a+ 2; a+

1

2

; �k + a+ 1

a+ 1; a+

5

2

; k + a+ 2

;�1

�

�

a+ 1

(2 (a+ 1)� 1) (2 (a+ 1) + 1)

�

2 k

k + a+ 1

�

:

It an be evaluated by Slater III.10.

Identity 3 ([Ego84, p. 52℄, orreted).

r+n

X

i=r+1

�

n� 1

�r + i� 1

��

r

2 r � i

�

=

�

r + n� 1

r � 1

�

for 1 � n; n � 0; 1 � r; r � 0; 1 � r + n:

Remark: The sum is a ertain

2

F

1

�

: : :

: : :

; 1

�

and an be evaluated by Vander-

monde's Theorem and Gauss's Theorem.

Identity 4 (!3).

n�1

X

r=�i+1

3 r

2

� 2n r + 3 i r + r � i n+ i

2

2 r + i

�

n� 1

r + i� 1

��

n

�r + n� 1

��

2 r + i

r

�

= 0

for 1 � n; n � 0:

Identity 5 (of Dixon, [GKP89℄).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��

+ a

k + 

��

+ b

k + b

�

= a!

�1

b!

�1

!

�1

(+ b+ a)!

for a � 0; b � 0; b+ a � 0;  � 0; + a � 0; + b � 0; + b+ a � 0:

Remark: The sum equals

3

F

2

�

�2 a; �b� a; �� a

b� a+ 1; � a+ 1

; 1

�

(�1)

a

�

+ a

� a

��

+ b

b� a

�

:

It an be evaluated by Dixon's Theorem (Slater III.8, terminated in the �rst

variable), Dixon's Theorem (Slater III.8) and Dixon's Theorem (Slater III.9).

Identity 6 (!5).

b

X

=k+1

(�1)



�

+ a� 1

�k + � 1

��

k + b

�+ b

�

(� 1)! (� b+ a)!

�1

= (�1) (�1)

b+1

�

b� a� 1

k � a

�

a!

�1

(b� 1)!

for a � 0; 1 � b; a+ 1 � b; k + 1 � b; a � k; k + a � 0; k + b � 0:
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Remark: The sum equals

3

F

2

�

k � b+ 1; k + 1; k + a+ 1

k � b+ a+ 2; 2 k + 2

; 1

�

� (�1)

k+1

�

k + b

�k + b� 1

�

k! (k � b+ a+ 1)!

�1

:

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 7 (!5).



X

a=k+1

(�1)

a

�

a� 1

�+ b+ a

��

b+ a� 1

�k + a� 1

��

k + 

� a

�

=

k � 



(�1)

+1

�



� b

��

� b

k � b

�

for b � 0;  � 0; b+ 1 � ; b � ; k � ; b � k; k + b � 0; k +  � 0:

Remark: The sum equals

3

F

2

�

k � + 1; k + 1; k + b+ 1

k � + b+ 2; 2 k + 2

; 1

�

(�1)

k+1

�

k

k � + b+ 1

��

k + 

�k + � 1

�

:

(9)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2).

Identity 8 (!5).

k

X

b=0

(�1)

b

�

a+ 1

�� b+ a+ 1

��

�b+ a

�k + a

��

+ b

b

��

k + b

+ b

�

= 0

for a+ 1 � 0;  � a+ 1;  � 0; k � a; k + a+ 1 � 0;  � k; k +  � 0:

Remark: The sum equals

3

F

2

�

� a� 1; �k; k + 1

+ 1; �a

; 1

� �

a

�k + a

��

a+ 1

�+ a+ 1

��

k



�

: (10)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2)

Identity 9 (!5).

k

X

=0

(�1)



�

+ b

b

��

+ b+ a� 1

a� 1

��

k + b

+ b

��

k + 

+ a

�

= 0

for 1 � a; b � 0; 1 � b+ a; k + 1 � b; a � k; k + a � 0; k + b � 0:

Remark: The sum equals

3

F

2

�

b+ a; k + 1; �k

a+ 1; b+ 1

; 1

� �

b+ a� 1

a� 1

��

k

a

��

k + b

b

�

: (11)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2).
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Identity 10 (!5).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��

+ a

k + 

��

+ b

k + b

�

=

�

+ b

b

��

+ b+ a

a

�

for a � 0; b � 0; b+ a � 0;  � 0; + a � 0; + b � 0; + b+ a � 0:

Remark: The sum equals

3

F

2

�

�2 a; �b� a; �� a

b� a+ 1; � a+ 1

; 1

�

(�1)

a

�

+ a

� a

��

+ b

b� a

�

: (12)

It an be evaluated by Dixon's Theorem (Slater III.8, terminated in the �rst

variable) .

Identity 11 (of Carlitz [Ego84, p. 170℄).

m

X

k=0

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

=

�

p+m

m

��

p+ n

n

�

for m � 0; n � 0; n+m � 0; p � 0; p+m � 0; p+ n � 0:

Remark: The sum equals

3

F

2

�

�m; �n; �p

1; �p� n�m

; 1

� �

p+ n+m

n+m

�

: (13)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 12 (!11).

p�m+k

X

n=p

(�1)

n

�

n

k � 1

��

n

�p+ n

��

p+ k

p� n�m+ k

�

= (�1)

p+m+k

�

k � 1

m� 1

��

p

p�m+ 1

�

for 1 � k; m � k; 1 � m; p � 0; p+ k � 0; m � p+ 1:

Remark: The sum equals

3

F

2

�

m� k; p+ 1; p+ 1

p� k + 2; p+m+ 1

; 1

�

(�1)

p

�

p

k � 1

��

p+ k

�m+ k

�

: (14)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 13 (!11).

k+1

X

p=0

(�1)

p

�

n+m+ 1

p+ n+m� k

��

p+m

m

��

p+ n

n

�

= (�1)

k+1

�

m

k + 1

��

n

k + 1

�

for k + 1 � 0; m � 0; k + 1 � m; n � 0; k + 1 � n; n+m+ 1 � 0:

28



Remark: The sum equals

3

F

2

�

�k � 1; m+ 1; n+ 1

n+m� k + 1; 1

; 1

� �

n+m+ 1

n+m� k

�

: (15)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 14 (of Saalsh�utz [GKP89, (5.28)℄).

n

X

k=0

�

r + k

n+m

��

�s+ r + n

n� k

��

s� r +m

k

�

=

�

r

m

��

s

n

�

for m � 0; n � 0; m � r; s � r + n; n � s; r � s+m:

Remark: The sum equals

3

F

2

�

�n; r + 1; �s+ r �m

r � n�m+ 1; �s+ r + 1

; 1

� �

r

n+m

��

�s+ r + n

n

�

: (16)

The identity is equivalent to Saalsh�utz's Theorem (Slater III.2).

Identity 15 (!14).

n

X

m=0

�

�r + k

n�m

��

r

m

��

s+ r �m

k

�

=

�

s

n

��

s+ r � n

�n+ k

�

for k � 0; n � k; n � 0; r � k; r � 0; s � 0; n � s; k � s+ r; n � s+ r:

Remark: The sum equals

3

F

2

�

�n; �r; �s� r + k

�r � n+ k + 1; �s� r

; 1

� �

�r + k

n

��

s+ r

k

�

: (17)

The identity is equivalent to Saalsh�utz's Theorem (Slater III.2).

Identity 16 (!14).

k

X

n=0

�

r � k

�n+m

��

s

n

��

s+ r � n

�n+ k

�

=

�

r

m

��

s+ r �m

k

�

for k � 0; m � 0; k � r; m � r; s � 0; k � s+ r; m � s+ r; m+ k � s+ r:

Remark: The sum equals

3

F

2

�

�k; �m; �s

r �m� k + 1; �s� r

; 1

� �

r � k

m

��

s+ r

k

�

: (18)

The identity is equivalent to Saalsh�utz's Theorem (Slater III.2).
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Identity 17 (!14).

s+k

X

r=k

(�s+ 2 r �m� k)

�

n+ k

�s+ r + n

��

n+m

r � k

��

r

m

��

s� r +m+ k

s� r +m

�

= 0

for k � 0; m � 0; 1 � n; n+ k � 0; n+m � 0; s+ 1 � n; s � 0:

Remark: The sum equals

5

F

4

�

�s�m+ k; �

1

2

s�

1

2

m+

1

2

k + 1; �n�m; k + 1; �s

�

1

2

s�

1

2

m+

1

2

k; �s+ n+ k + 1; �s�m; �m+ k + 1

; 1

�

� (�s�m+ k)

�

k

m

��

n+ k

�s+ n+ k

��

s+m

s+m� k

�

:

It an be evaluated by Dixon's Theorem as stated in Slater III.12.

Identity 18 (!14).

�r+m+k+1

X

s=n

(�1)

s

�

k + 1

s+ r �m

��

s

n

��

s+ r � n

�n+ k

�

= (�1)

r+m+k+1

�

�r + k

n�m� 1

��

r

m+ 1

�

form+1 � 0; n � k; m+1 � n; r � k; r+ n � m+ k+1; r � 0; m+1 � r:

Remark: The sum equals

3

F

2

�

r + n�m� k � 1; n+ 1; r + 1

r + n�m+ 1; r + n� k + 1

; 1

�

(�1)

n

�

k + 1

r + n�m

��

r

�n+ k

�

: (19)

The identity is equivalent to Saalsh�utz's Theorem (Slater III.2).

Identity 19 (of Kummer [GKP89, (5.30)℄).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��

b+ a

k + b

�

=

�

b+ a

a

�

for a � 0; b � 0; b+ a � 0:

Remark: The sum equals

2

F

1

�

�2 a; �b� a

b� a+ 1

;�1

�

(�1)

a

�

b+ a

b� a

�

: (20)

It an be evaluated by Kummer's Theorem.

Identity 20 (!19).

k

X

b=0

(�1)

b

�

b+ a

a

��

k + a

b+ a

��

k + b

b+ a

�

= 0 for a � 0; a � k; k + a � 0: (21)

30



Remark: The sum equals

2

F

1

�

k + 1; �k

a+ 1

; 1

� �

k

a

��

k + a

a

�

: (22)

It an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 21 (!19).

k

X

a=0

(�1)

a

�

b+ a

a

��

k + a

b+ a

��

k + b

b+ a

�

= 0 for b � 0; b � k; k + b � 0: (23)

Remark: The sum equals

2

F

1

�

�k; k + 1

b+ 1

; 1

� �

k

b

��

k + b

b

�

: (24)

It an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 22 (of Moriarty [Ego84, p. 11℄).

n

X

k=m

1

n+ k

(�4)

k

�

k

m

��

n+ k

2 k

�

=

1

n+m

(�1)

n

4

m

�

n+m

2m

�

for m � 0; 2m � 0; m � n; n+m � 0:

Remark: The sum equals

2

F

1

�

n+m; �n+m

m+

1

2

; 1

�

1

n+m

(�4)

m

�

n+m

2m

�

: (25)

It an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 23 (!22).

k�1

X

n=m

�

2 k � 1

n+ k

��

n+m

2m

�

= 4

�m+k�1

�

k � 1

m

�

for 1 � k; 1 � 2 k; m+ 1 � k; m � 0; 2m � 0:

Remark: The sum equals

2

F

1

�

2m+ 1; m� k + 1

m+ k + 1

;�1

� �

2 k � 1

m+ k

�

: (26)

It an be evaluated by Kummer's Theorem.

Identity 24.

X

n

�

18n

2

� 9 k n+ 3n� 8 k � 12

�

�

k + 4

3n� k

�

= 2 (k + 3) (k + 4) (�1)

k

for k + 4 � 0:
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Remark: The sum is a ertain

5

F

4

with argument �1. There are integer dis-

tanes between upper and lower entries; ontiguous relations may apply.

Exerise: Try to evaluate the sum with Mathematia 3:0:1. �

Identity 25 (of Grosswald [Ego84, p. 27℄).

2m

X

v=0

�

�1

2

�

v

�

r + 2m

v + r

��

v + 2 r + 2m

v

�

= (�1)

m

2

�2m

�

r + 2m

m

�

for m � 0; r +m � 0; r + 2m � 0; 2 r + 2m � 0:

Remark: The sum equals

2

F

1

�

2 r + 2m+ 1; �2m

r + 1

;

1

2

� �

r + 2m

r

�

: (27)

It an be evaluated by Gauss's Seond Theorem .

Identity 26 (!25).

X

r

(�1)

r

�2 r + 2m� 1

�

�2 r + 2m

�v � 2 r + 2m� 1

��

�r + 2m

m

��

v + 2m

�r + 2m

�

= 0

for m � 0; v + 1 � 0; v + 2m � 0:

Remark: The sum equals

2

F

1

�

�

1

2

v �m+

1

2

; �

1

2

v �m+ 1

�v �m+

3

2

; 1

�

�

1

2 v + 2m� 1

(�1)

v

�

v + 2m

m

��

2 v + 2m

v + 2m� 1

�

:

It an be evaluated by Vandermonde's Theorem, Gauss's Theorem and S2105.

Identity 27 ([Ego84, p. 27℄).

n

X

k=0

1

(k + 1) (�n+ k � 1)

�

2 k

k

��

2n� 2 k

n� k

�

=

�1

n+ 2

�

2n+ 2

n+ 1

�

for n+ 1 � 0; 2n+ 2 � 0:

Remark: The sum equals

3

F

2

�

�n� 1;

1

2

; 1

2; �n+

1

2

; 1

�

�1

n+ 1

�

2n

n

�

: (28)

It an be transformed by T3204, T3205, T3206, T3207, T3217, T3237, u, T3240,

T3261, T3262, T3263, T3264, T3267 and T3268. Sine there are integer dis-

tanes, ontiguous relations may apply.
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Identity 28 (!27).

k

X

n=0

3n� 2 k � 1

(�n+ k + 1) (n+ 1)

�

�2n+ 2 k

�n+ k

��

2n

n

�

=

�1

2

�

2 k + 2

k + 1

�

for k + 1 � 0; 2 k + 2 � 0:

Remark: The sum equals

4

F

3

�

�

2

3

k +

2

3

; �k � 1;

1

2

; 1

�

2

3

k �

1

3

; 2; �k +

1

2

; 1

�

�2 k � 1

k + 1

�

2 k

k

�

: (29)

It an be transformed by T4301, T4302, T4303, T4304 and T4362. Sine there

are integer distanes, ontiguous relations may apply.

Identity 29 (a ompanion of [Ego84, p. 49℄).

k

X

n=0

1

q + 2n

�

�2n+ 2 k

�n+ k

��

q + 2n

n

�

=

1

q

�

q + 2 k

k

�

for k � 0; q + k � 0; q + 2 k � 0:

Remark: The sum equals

3

F

2

�

1

2

q; �k;

1

2

q +

1

2

�k +

1

2

; q + 1

; 1

�

1

q

�

2 k

k

�

: (30)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 30 (a ompanion of [Ego84, p. 49℄).

n

X

q=�k

�

�q + 2n� 1

n� 1

��

q + 2 k

k

�

=

n+ k + 1

2 (2n+ 2 k + 1)

�

2n+ 2 k + 2

n+ k + 1

�

for k � 0; 1 � n; n+ k + 1 � 0; 2n+ 2 k + 2 � 0:

Remark: The sum equals

2

F

1

�

�n� k; k + 1

�2n� k + 1

; 1

� �

2n+ k � 1

n� 1

�

: (31)

It an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 31 (of Le-Jen Shoo [Ego84, p. 52℄).

m

X

k=0

�

m

k

�

2

�

n+ 2m� k

2m

�

=

�

n+m

n

�

2

for m � 0; 2m � 0; n � 0; n+m � 0:
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Remark: The sum equals

3

F

2

�

�m; �m; �n

1; �n� 2m

; 1

� �

n+ 2m

2m

�

: (32)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

Identity 32 (!31). Assume 0 � n � k and

p(m) = 3mn� 2 k n� 2n+ 4m

2

� 3 km� 2 k � 2:

Then

X

m

p(m)

�

k + 1

m

�

2

�

2m

n+ 2m� k

��

n+m

n

�

2

= 0:

Remark: The sum is a ertain

7

F

6

with integer distanes; ontiguous relations

may apply.

Identity 33 (!31).

k+1

X

n=0

(�1)

n

�

2m+ 1

n+ 2m� k

��

n+m

n

�

2

= (�1)

k+1

�

m

k + 1

�

2

for k + 1 � 0; m � 0; k + 1 � m; 2m+ 1 � 0:

Remark: The sum equals

3

F

2

�

m+ 1; m+ 1; �k � 1

1; 2m� k + 1

; 1

� �

2m+ 1

2m� k

�

: (33)

It an be evaluated by Saalsh�utz's Theorem (Slater III.2) and Saalsh�utz's

Theorem (Slater III.31).

3.4 Partial Sums of Hypergeometri Series

Some identities involving partial sums of hypergeometri series an be proven

by the WZ-forms method. As an example, onsider the following identity (it

appears as (2.6.4) in [Sla66℄):

Identity 34 (Bailey 1931).

�(x +m) �(y +m)

�(m) �(x + y +m)

3

F

2

�

x; y; v +m� 1

v; x+ y +m

; 1

�

to n terms

=

�(x+ n) �(y + n)

�(n) �(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

; 1

�

to m terms

34



Proof. We aim to �nd a WZ style proof of Identity 34. We rewrite Identity 34

using a

�

k

= �(a+ k) =�(a):

�(x+m) �(y +m)

�(m) �(x+ y +m)

�

X

0�i<n

�(x+ i)

�(x)

�(y + i)

�(y)

�(v +m� 1 + i)

�(v +m� 1)

�(v)

�(v + i)

�(x+ y +m)

�(x+ y +m+ i)

1

i!

=

�(x+ n) �(y + n)

�(n) �(x+ y + n)

�

X

0�j<m

�(x+ j)

�(x)

�(y + j)

�(y)

�(v + n� 1 + j)

�(v + n� 1)

�(v)

�(v + j)

�(x+ y + n)

�(x+ y + n+ j)

1

j!

(34)

Inspetion shows that both summands di�er by a rational fator only. Exploiting

this observation we rewrite Equation 34 as

X

0�i<n

m

v +m� 1

v +m� 1 + i

t(i;m) =

X

0�j<m

n

v + n� 1

v + n� 1 + j

t(n; i) (35)

where

t(i; j) =

�(x+ i) �(y + i)

i! �(v + i)

�(x+ j) �(y + j)

j! �(v + j)

�(v + i+ j) �(v)

�(x+ y + i+ j) �(x) �(y)

: (36)

Equation 35 suggests a WZ style proof whih indeed works. Let L = fi; jg

(we allow ourselves to use itali letters for label onstants from now on) and

! = j

v + j � 1

v + i+ j � 1

t(i; j) di+ i

v + i� 1

v + i+ j � 1

t(i; j) dj:

with the motive of writing Equation 35 as

X

�

1

! =

X

�

2

! (37)

where

�

1

= [0 � i < n℄[j = m℄ di and �

2

= [i = n℄[0 � j < m℄ dj:

Fortunately, ! is losed (as an be heked by our pakage wz.m). Therefore,

X

� [i<n℄[j<m℄ di dj

! = 0: (38)

By the support of ! only the edges �

1

and �

2

of the retangle � [i < n℄[j <

m℄ di dj ontribute to the sum in Equation 38. Equation 37is equivalent to

Equation 38 and therefore proved.

Note that �nding WZ style proofs requires some luk: A proposed form !

might well turn out to be non-losed. We do not know an algorithm for �nding

WZ style proofs.

Open Problem: Find a losed multivariate analog to the di�erene form ! of

the proof above. �

Following [Sla66, p. 81℄, we onsider the speial ase m!1 of Identity 34.

To do so, we use:
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Lemma 2. Let x and y be omplex numbers and let k be a natural number.

Then

1. lim

n!1

�

�(n+x)

�(n+y)

�

=

�

n

x

n

y

�

= 1 and

2. lim

n!1

(n+x)

�

k

(n+y)

�

k

= 1.

As m!1, Identity 34 redues to:

Identity 35.

2

F

1

h

x; y

v

; 1

i

to n terms =

�(x+ n) �(y + n)

�(n) �(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

; 1

�

Plugging in x = y =

1

2

and v = 1 yields the following identity of Ramanujan

(whih appears as (2.6.1) in [Sla66℄):

Identity 36.

2

F

1

�

1

2

;

1

2

1

; 1

�

to n terms =

1

n

�

�(n+

1

2

)

�(n)

�

2

3

F

2

�

1

2

;

1

2

; n

1; n+ 1

; 1

�

Note that the speial ase n = 1 gives us a series for 1=�:

1 =

�

4

�

2

F

1

�

1

2

;

1

2

2

; 1

�

:

3.5 Wegshaider's Algorithm Construts WZ r-forms

Given an r-fold hypergeometri summation identity, Kurt Wegshaider's algo-

rithm allows us to onstrut a WZ form of degree r in r+1 variables from it.

Consider the identity [Den96℄

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

whih is valid for 0 � 2v � k: Let

f(b; k; s) := (�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

=

�

2

�2 v+k

�

�v + k

�2 v + k

��

be the result of dividing the summand by the right hand side. To show that

X

b

X

s

f(b; k; s) = 1

we run Wegshaider's algorithm by typing

<<MultiSum.m; summand=(-1)^b

Binomial[s,b℄Binomial[k-s,2v-b℄Binomial[k-2v,s-b℄;

rhs=Binomial[k-v,k-2v℄2^(k-2v); fbks=summand/rhs;

rek=FindCertifiate[fbks,k,0,{b,s},{1,0},1℄; rek1=rek[[1℄℄;

at the Mathematia ommand line, getting the answer
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2 (1+k-2 v) (1+k-v) F[k,-1+b,s℄

- 2 (1+k-2 v) (1+k-v) F[1+k,-1+b,s℄

== Delta[b,- (1+k-2 v) (b+k-2 v) F[k,-1+b,s℄

- 2 (-2+b-s) (1+k-v) F[1+k,-1+b,1+s℄℄

+Delta[s,- 2 (-1+b-s) (1+k-v) F[1+k,-1+b,s℄℄.

Up to a shift in b this means that

(p

1

S

k

� p

2

I +�

b

A

1

+�

s

A

2

)f(b; k; s) = 0

where L = fb; k; sg (note that v 62 L),

p

1

= p

2

= �2(1 + k� 2v)(1 + k� v);

A

1

= �(1 + k� 2v)(1 + b+ k� 2v)I � 2(�1 + b� s)(1 + k� v)S

k

S

s

and

A

2

= �2(b� s)(1 + k� v)S

k

:

Both p

1

and p

2

are free of b and s (by design of Wegshaider's algorithm).

Furthermore, p

1

= p

2

(sine

P

b

P

s

f(b; k; s) = 1). These two properties of p

1

and p

2

allow us to transform the reurrene to

(�

k

+�

b

1

p

1

A

1

+�

s

1

p

1

A

2

)f(b; k; s) = 0:

The latter reurrene asserts the losedness of

! := �f(b; k; s)dbds+

1

p

1

A

1

f(b; k; s)dkds+

1

p

1

A

2

f(b; k; s)dbdk:

Straightforward omputation gives

! = (�1)

b

2

�k+2 v

�

k� 2 v

s� b

��

k� v

k� 2 v

�

�1

�

�s+ k

�b+ 2 v

��

s

b

�

�

 

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds

+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

db ds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

db dk

�

:

Remark: The idea of dividing by the right hand side before running Wegshai-

der's algorithm is due to Wilf [Wil98℄.

3.6 Some Multisum Identities

Identity 37 ([Den96℄).

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

for 0 � 2v � k:
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Identity 38 (!37).

X

b

X

k

(�1)

b

2

�k

�

s+ b� 2

s� 1

��

s+ b� 1

2 v � k

��

s+ k

2 v � b+ 1

��

v � 1

�v + k

�

= 0

for 1 � s; 1 � v:

Remark: The annotation \(!37)" above indiates that identity 38 is obtained

as a ompanion of identity 37.

Identity 39 (!37).

X

k

X

s

(�2)

k

�

b

s

��

2 v � b� 2

�s+ k � 1

��

2 v � k � 1

�s+ b� 1

��

2 v � k � 1

v � k

�

= 0

for b � 0; 1 � v; b+ 2 � 2 v:

Identity 40 ([AP93℄).

X

i

X

j

�

j + i

j

�

2

�

n+m� j � i

n� j

�

2

=

1

2

�

2n+ 2m+ 2

2n+ 1

�

for m � 0; n � 0:

Identity 41 (!40). Let j and m be natural numbers. De�ne the polynomial

p(i; n) by

p(i; n) = �2 j n

3

+ i n

3

� n

3

+ 5 j mn

2

� 2 imn

2

+ 2mn

2

� 4 j

2

n

2

�2 i j n

2

� 2 j n

2

+ 2 i

2

n

2

� 2 i n

2

� 4 j m

2

n�m

2

n+ 6 j

2

mn

+4 i j mn+ 2 j mn+ 2 imn� 2 j

3

n� 3 i j

2

n� j

2

n� 2 i j n

�i

2

n� 2 j

2

m

2

+ j

3

m+ 2 i j

2

m:

Then

X

i

X

n

p(i; n)

1

(n+ j)

2

�

j + i� 1

j

�

2

�

2m

�2n+ 2m

��

n+ j

n�m+ j + i

�

2

= 0:
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4 Transformations

4.1 WZ Pairs Yield New WZ Pairs

Tewodros Amdeberhan [AZ97℄, Ira Gessel[Ges95℄, Herbert Wilf and Doron Zeil-

berger [WZ90℄ found transformations of knownWZ pairs to newWZ pairs. They

are stated as Propositions 33{36 on pp. 42{42. Appliations of these transfor-

mations range from disovering new summation identities to obtaining faster

and faster onvergent series for �(3) [Amd96℄. A ommon feature of all known

transformations is that they do not mix the labels n and k. We aim to �nd more

general transformations that do mix n and k. Note that the transformations we

�nd were independently disovered by Ira Gessel [Ges99℄.

A naive attempt that fails. Consider the form

! =

�

n

k

�

2

�n

�

n� 2k� 1

k+ 1

dk+

n� 2k+ 1

2(k� n� 1)

dn

�

whih is losed as ould be heked by omputation. To obtain a new losed

form, we try to apply the substitution n! n+ k to !. A reasonable guess is to

proeed just as in the ase of di�erential forms, replaing dn by dn+ dk.

!

0

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

k+ 1

dk+

n� k+ 1

2(�n� 1)

(dn+ dk)

�

(39)

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

k+ 1

dk+

n� k+ 1

2(�n� 1)

dn+

n� k+ 1

2(�n� 1)

dk

�

(40)

=

�

n+ k

k

�

2

�n�k

�

2n

2

+ k

2

� 2nk� n� 2k� 3

2(n+ 1)(k+ 1)

dk+

n� k+ 1

2(�n� 1)

dn

�

(41)

Sine omputation reveals that !

0

is not losed, our substitution has not pre-

served losedness. Thus we learn that di�erene forms require a di�erent method

for substituting losedness-preservingly.

A method based on heating. Note that ! = d(�(n; k)) where

�(n; k) =

�

n

k

�

2

�n

:

All we need to do is to apply n! n+k to the potential term �(n; k) of ! instead

of applying it diretly to ! getting

�

0

(n; k) =

�

n+ k

k

�

2

�n�k

and hoose !

0

:= d(�

0

(n; k)). Calulation yields

!

0

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

2(k+ 1)

dk+

k� n� 1

2(n+ 1)

dn

�

As !

0

is exat by its de�nition, it is losed. Summarizing, we reahed !

0

by a

detour via �(n; k) and �

0

(n; k):

�(n; k)

substitute

������! �

0

(n; k)

d

?

?

y

?

?

y

d

! ����! !

0

39



Unfortunately, our method depends on having a hypergeometri potential

term of !. Thus it works for trivial forms only.

3

But we should not give up

too early, we just need an additional trik.

A general method. Consider Example 1 of [WZ90℄:

! = f(n; k)dk+ g(n; k)dn

where

f(n; k) =

�

n

k

�

2

�n

g(n; k) =

�

n

k

�

2

�n�1

k

k� n� 1

Sine Gosper's algorithm [Gos78℄ shows that there is no hypergeometri term

�(n; k) satisfying d(�(n; k)) = ! we annot heat any more. A disrete oun-

terpart of Poinar�e's Lemma (whih we do not prove) assures us that there is

some term �(n; k) satisfying d(�(n; k)) = !. Of ourse, �(n; k) might well fail to

be hypergeometri; it seems that we loose in that ase. A simple trik resues

us. Assume that ! = d(�(n; k)); this is, ! = f(n; k)dk+ g(n; k)dn where

f(n; k) = �(n; k+ 1)� �(n; k);

g(n; k) = �(n+ 1; k)� �(n; k):

We de�ne �

0

(n; k) := �(n + k; k) and !

0

:= d(�

0

(n; k)) in order to imitate the

substitution n! n+ k somehow. Straightforward omputation gives

!

0

= f

0

(n; k)dk+ g

0

(n; k)dn

where

f

0

(n; k) = �

k

�(n+ k; k)

= �(n+ k+ 1; k+ 1)� �(n+ k; k);

g

0

(n; k) = �

n

�(n+ k; k)

= �(n+ k+ 1; k)� �(n+ k; k):

Next we simply eliminate all ourrenes of the unknown potential funtion �

by expressing di�erenes of � by f and g only:

f

0

(n; k)

= �(n+ k+ 1; k+ 1)� �(n+ k+ 1; k)

| {z }

f(n+k+1;k)

+�(n+ k+ 1; k)� �(n+ k; k)

| {z }

g(n+k;k)

g

0

(n; k) = g(n+ k; k):

Note that we don't need to know �(n; k) any more! In a nutshell, our trik is to

pretend to know the potential funtion �.

3

[Zei93℄ alls a form trivial i� there is a hypergeometri term �(n; k) satisfying d(�(n; k)) =

!.
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Proposition 31. If

f(n; k)dk+ g(n; k)dn

is losed, then

(f(n+ k+ 1; k) + g(n+ k; k))dk+ g(n+ k; k)dn

is losed, too.

Proof. The proof is an easy alulation (that does not use the Lemma of Poin-

ar�e). Lemma.

Let's go bak to Example 1 of [WZ90℄,

! =

�

n

k

�

2

�n

dk+

�

n

k

�

2

�n�1

k

k� n� 1

dn:

Proposition 31 gives

!

0

=

�

n+ k

k

�

2

�n�k

�

1

2

dk�

k

2(n+ 1)

dn

�

whih is losed indeed. To get rid of ugly rational fators !

0

we try some shifts

on it, and S

�1

n

sueeds in the sense that !

00

:= S

�1

n

!

0

looks nie:

!

00

=

�

n+ k

n ; k

�

2

�n�k

�

n

n+ k

dk�

k

n+ k

dn

�

:

Grasping the pattern in !

00

allows us to �nd an in�nite sequene of losed forms;

see page 53.

We lose with two remarks on Proposition 31.

Remark: Naive substitution of n! n+ k into f(n; k)dk+ g(n; k)dn yields

!

0

= f(n+ k; k)dk+ g(n+ k; k)d(n+ k)

= (f(n+ k; k) + g(n+ k; k)) dk+ g(n+ k; k)

whih di�ers from the form in Proposition 31 just by a shift.

Herb Wilf [Wil99℄ obtains the following Proposition by iterating the trans-

formation of Proposition 31. To obtain it diretly via potential funtions, we

use �

0

(n; k) = �(n+ rk; k).

Proposition 32. Let f(n; k)dk + g(n; k)dn be losed and let r be a natural

number. De�ne

f

0

(n; k) := f(n+ rk + r; k) +

X

0�j<r

g(n+ rk + j; k);

g

0

(n; k) := g(n+ rk; k):

Then f

0

(n; k)dk+ g

0

(n; k)dn is losed.

A transformation of Ira Gessel an be obtained via �

0

(n; k) := �(�n; k).
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Proposition 33 (Theorem 3.1 (iv) of [Ges95℄). If

f(n; k)dk+ g(n; k)dn

is losed, then

f(�n; k)dk� g(�n� 1; k)dn

is losed.

Similarly, �

0

(n; k) := ��(n;�k+ 1) yields:

Proposition 34 ([Ges95℄, Theorem 3.1 (v)). If

f(n; k)dk+ g(n; k)dn

is losed, then

f(n;�k)dk� g(n;�k+ 1)dn

is losed.

A transformation from Rational Funtions Certify Combinatorial Identities

[WZ90℄ an be found using �

0

(n; k) := ��(�k;�n).

Proposition 35 ([WZ90℄, part of Theorem B). If

f(n; k)dk+ g(n; k)dn

is losed, then

g(�k� 1; n)dk+ f(�k;�n� 1)dn

is losed.

A transformation of Tewodros Amdeberhan an be obtained via �

0

(n; k) :=

�(sn; k).

Proposition 36 ([AZ97℄). Let s be a positive integer and let

f(n; k)dk+ g(n; k)dn

be a losed form. Then

f(sn; k)dk+

X

0�i<s

g(sn+ i; k)dn

is losed.

4.2 WZ 1-Forms Yield New WZ 1-Forms

The method of substituting in potential funtions extends to 1-forms in an

arbitrary number of variables and any integer linear substitutions in a straight-

forward way.

As a �rst appliation, we show that losedness preserving substitution in

1-forms partially explain the dualize and speialize mirale [Zei95℄. Consider

the Vandermonde identity

X

k

�

a

k

��

n

k

�

=

�

a+ n

a

�

for a � 0 and n � 0: (42)
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Its assoiate identities are just other instanes of the Vandermonde identity.

However, its speial ase

n

X

k=0

�

n

k

�

2

=

�

2n

n

�

for n � 0 (43)

yields, as an assoiate identity,

k

X

n=0

(3n� 2 k)

�

k

n

�

2

�

2n

n

�

= 0 for k � 0; (44)

or, equivalently,

4

F

3

�

�k; �k; 1�

2 k

3

;

1

2

1;

�2 k

3

; 1

; 4

�

= 0 for k � 0; (45)

whih �rst appears in [Zei95℄:

This is a brand new identity, unknown to Askey. It has a q-analog

derived from the q-version of WZ, that was unknown to Andrews,

and even whose limiting ase was brand new, and it took George

Andrews three densely paked pages, using �ve di�erent identities,

to prove.

Let's look at this from the point of view of losedness preserving substitutions.

To prove identity 42, we ould use the form

�

a

k

��

n

k

��

a+ n

a

�

�1

�

1 dk+

k

2

(n� k+ 1) (a+ n+ 1)

dn

�

(46)

whih is losed with respet to L = fk; ng. However, let us use the form

�

a

k

��

n

k

��

a+ n

a

�

�1

�

�

1 dk+

k

2

(n� k+ 1) (a+ n+ 1)

dn+

k

2

(a� k+ 1) (a+ n+ 1)

da

�

{ whih is losed with respet to L = fk; n; ag { instead. (It is a remarkable fat

that it is usually possible to extend hypergeometri WZ 1-forms in two variables

to hypergeometri WZ 1-forms in more than two variables. In our example this

is obvious sine

�

a

k

��

n

k

��

a+ n

a

�

�1

is symmetri under exhanging a and n.) Closedness preserving substitution

fa! ng

�

yields

fa! ng

�

! =

�

n

k

�

2

�

2 n

n

�

�1

 

1 dk+

k

2

(2 k� 3 n� 3)

2 (n� k+ 1)

2

(2 n+ 1)

dn

!

and a shadow of this form proves identity 44. It remains to dislose what is

going on in the losedness preserving substitution fa! ng

�

.
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Proposition 37. Assume that

f(k; n; a) dk+ g(k; n; a) dn+ h(k; n; a) da

is losed with respet to L = fk; n; ag. Then

f(k; n; n) dk+ (g(k; n; n+ 1) + h(k; n; n)) da

is losed with respet to L = fk; ng.

4.3 Transforming Forms of Arbitrary Degree

Unfortunately, the simple substitution trik (as desribed in [Ges99℄ or setion

4.1) does not generalize to forms of higher degree. Therefore we needed to de-

velop a ompletely di�erent method; it is presented in the following subsetions.

Note that substitution is more important in the domain of higher degree

forms than in the domain of forms of degree 1. This is due to a lak of known

nontrivial higher degree forms. In fat, as far as I know, only a single higher

degree forms has been known so far

To �nd higher degree forms, we start with a well known multisum

losed form identity, and we would need a multivariate analog of

Gosper's algorithm. I am presently developing suh an algorithm,

but until I sueed, all I an present is the r-form arising out of the

multinomial identity . . . whih produes . . . .

To �nd other higher degree forms, we use two methods:

1. We use Kurt Wegshaider's algorithm [Weg97℄ as shown in setion 3.5.

2. We transform known losed di�erene forms to new ones. The transfor-

mation algorithm developed in this setion is implemented in our Math-

ematia pakage wz.m. Using this pakage, transformation theorems an

be produed by pressing a few keys.

4.4 Substitutions

A substitution � assigns a term to eah label in L. If the term t is assigned to

the label x (this is, if �(x) = t), then we say that t is substituted for x. The

set of all substitutions is L ! T. We adopt speial notation for substitutions:

f(x

1

; t

1

); : : : ; (x

n

; t

n

)g is written fx

1

! t

1

; : : : ; x

n

! t

n

g. Furthermore, x ! x

may be dropped. Thus the substitution f(n; n + k); (k; k)g an be written

fn! n+ kg.

Applying substitutions to terms. An example of an appliation of a

substitution to a term is

\

fn! n+ k; k! kg

| {z }

substitution

�

n

k

�

2

�n

| {z }

term

=

�

n+ k

k

�

2

�n�k

:

If we had introdued terms syntatially, we ould easily de�ne the appliation

of a substitution � to a term t by turning Proposition 38 on page 45 into a

de�nition; it would be the obvious reursive de�nition of substitution that is
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used in most funtional and logi programming languages, as for example in

Prolog, Haskell and Mathematia. For simpliity (to hide unimportant detail)

we have not de�ned terms syntatially; for us, a term is a funtion in V ! C .

Still, substitutions following Proposition 38 are import to us: We have used them

already when omputing shifts { the operator S

n

is nothing but the substitution

fn! n+1g { and we will use them heavily in the method of losedness preserving

substitutions. Thus we want to de�ne substitutions. Of ourse, substitutions

should obey Proposition 38. Indeed, knowing Proposition 38, together with

Proposition 39, is all one needs to know about substitutions; the tehnial but

trivial rest of this setion may be skipped at no risk.

Let us avoid parentheses by two onventions in this setion. First, f x :=

f(x) denotes the appliation of f to x. Seond, funtion appliation assoiates to

the left: F f x denotes (F f)x whih would be usually written (F (f))(x). The

so-alled �-notation for funtions turns out to be handy in this setion. Using

�-notation, 8x : inrement(x) = x + 1 an be written inrement = �x: x + 1,

and 8x : square(x) = x

2

an be written square = �a: a

2

{ the name of the

variable \bound by �" does not matter. �-notation allows us to use funtions

in intermediate steps of proofs without giving names to these funtions. For

example, we might alulate (�x: x � 1) 4 = 3 and (�y: y

3

) 4 = 64.

Def. 26. Let � be a substitution and t be a term. The appliation of the

substitution � to the term t is denoted by �̂ t and de�ned by

�̂ t p := t (�x: � x p):

Example: Let � = fn! n+k; k! kg and t =

�

n

k

�

2

�n

: Let us hek if De�nition

26 gives the expeted result �̂ t =

�

n+k

k

�

2

�n�k

: Let n and k be arbitrary but

�xed integers and let p = f(n; n); (k; k)g. We want to see if indeed �̂ t p =

�

n+k

k

�

2

�n�k

.

Note that � n p = n + k and � k p = k. Taken together, these equations

show that �x: � x p is the funtion f(n; n + k); (k; k)g. By de�nition of �̂ t we

thus have �̂ t p = t (�x: � x p) =

�

n+k

k

�

2

�n

.

The result �̂ t =

�

n+k

k

�

2

�n�k

ould have been obtained immediately by the

following proposition; it shows the lose analogy of our notion of term to syn-

tatial terms and justi�es the our use of the word \substitution".

Proposition 38. Let  2 C , x 2 L, f 2 C

n

! C and � 2 L! T. Then

1. �̂  = .

2. �̂ x = �(x).

3. �̂ (f(t

1

; : : : ; t

n

)) = f(�̂ t

1

; : : : ; �̂ t

n

).

Proof. We prove (1). Let p be an arbitrary point. Then �̂  p =  (�x: � x p) =

 p.

We prove (2). Let p be an arbitrary point. Then �̂ x p = x (�z: � z p) =

(�z: � z p) (x) = � x p = �(x) p.

We prove (3). Let p be an arbitrary point. Then �̂ (f(t

1

; : : : ; t

n

)) p

= f(t

1

; : : : ; t

n

) (�x: � x p)

= f(t

1

(�x: � x p); : : : ; t

n

(�x: � x p))

= f(�̂ t

1

p; : : : ; �̂ t

n

p)

= f(�̂ t

1

; : : : ; �̂ t

n

) p.
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Def. 27. A term t is integer linear i� it is integer-valued and additive:

1. t 2 V ! Z.

2. 8

p;q2V

t(p+ q) = t(p) + t(q).

For example, 2n�3k is integer linear. The term

1

2

n�3k is not integer linear

sine it is not integer-valued. The term 2n� 3k+1 is not integer linear sine it

is not additive.

Def. 28. A substitution � is integer linear i� �(x) is an integer-linear term

for eah label x. In this ase we de�ne �

xy

, the oeÆient of y in �(x) by

�

xy

:= � x e

y

.

For example, � = fn! 2n+3k; k! 4n+5kg is an integer linear substitution

and �

nk

= 3.

One more onvention:

Q

x

f

x

denotes the omposition of the funtions f

x

1

;

: : : ; f

x

n

where fx

1

; : : : ; x

n

g = L and x

1

� � � � � x

n

. It does not denote a

produt. Shifts an be \moved to the right of substitutions" as follows:

Proposition 39. Let y 2 L and let � be an arbitrary integer linear substitution

in L! T. Then

S

y

Æ �̂ = �̂ Æ

Y

x

S

�

xy

x

: (47)

For example,

S

k

Æ (fn! 2n+3k; k! 4n+5kg)̂ = S

k

Æ (fn! 2n+3k; k! 4n+5kg)̂ ÆS

3

n

ÆS

5

k

as an be heked by applying both operators to the term f(n; k) { the result

is f(2n + 3k + 3; k ! 4n + 5k + 5) either way. Of ourse, Proposition 39 is a

triviality. With an eye towards automati proof-heking, we prove it anyway.

To this end, we need a lemma:

Lemma 3. Let d be a vetor. Then t(p+ d) = (

Q

x

S

d(x)

x

t)(p).

Proof. Expand d =

P

x

d(x)e

x

and use t(p+me

x

) = S

m

x

t p.

Proof of Proposition 39. Let t be an arbitrary but �xed term and p be an arbi-

trary but �xed vetor. We have to show

S

y

Æ �̂ t p = �̂ Æ

Y

x

S

�

xy

x

t p:

We transform the left hand side to the right hand side. By the de�nition of the

shift, the left hand side is equal to �̂ t (p + e

y

). By the de�nition of substitu-

tion appliation, this equals t(�x: � x (p+ e

y

)); from this point on, �-notation

omes in handy. The term � x is additive sine � is assumed to be integer lin-

ear. We thus obtain t(�x: (� x p) + (� x e

y

)). By pointwise vetor addition, used

\bakwards", this equals t((�x: � x p) + (�x: � x e

y

)). By Lemma 3, this equals

(

Q

x

S

� x e

y

x

) t (�x: � x p). Using the de�nition of substitution appliation bak-

wards, this equals (�̂ Æ

Q

x

S

� x e

y

x

) t p whih an be written as (�̂ Æ

Q

x

S

�

xy

x

) t p

by de�nition of �

xy

.
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We do not use the onvention that f x = f(x) any more. In the following

pages, fg will denote the omposition of f and g most of the times: (fg)(x) =

f(g(x)). Furthermore we abbreviate �̂ by �; ontext resolves ambiguities. Thus

Proposition 39 will be written

S

y

� = �

Y

x

S

�

xy

x

:

4.5 Guessing �

�

, Part 1

How to transform a losed di�erene form ! to a new losed form !

0

? Let us

look at the ontinuous ounterpart { di�erential forms { for inspiration. Put

loosely, a funtion f indues a pullbak f

�

that preserves losedness: d! = 0

implies df

�

! = 0. Closedness preservation is implied by the following properties

of the pullbak:

1. df

�

! = f

�

d!,

2. f

�

0 = 0,

whih an be proved as follows: Assuming d! = 0 and df

�

! = f

�

d! and f

�

0 = 0

we have to show that df

�

! = 0. And indeed, df

�

! = f

�

d! = f

�

0 = 0.

We return to di�erene forms. The funtion f orresponds to an integer

linear substitution � in T ! T; the restrition to integer linearity ensures that

� preserves hypergeometriity. For eah substitution � we aim to onstrut a

nontrivial operator �

�

in F ! F suh that the following three properties hold:

1. d�

�

! = �

�

d!,

2. �

�

0 = 0,

3. �

�

(!

1

+ !

2

) = �

�

!

1

+ �

�

!

2

By the argument given above, �

�

will be a losedness preserving substitution:

d! = 0 =) d�

�

! = 0: (48)

Let us try to �nd a de�nition for the funtion � that satis�es d�

�

! = �

�

d!

by motivated guessing. We �rst look at Equation d�

�

! = �

�

d! in the speial

ase where ! is a 0-form { this is, a term { T .

d�

�

T = �

�

dT (49)

Unfortunately we annot ompute either side of Equation 49 sine both sides

involve the funtion � whose de�nition is still unknown to us. However, sine

0-forms are just terms, we may reasonably de�ne

�

�

T := �T (50)

for all forms T of degree 0. Thus Equation 49 redues to

d�T = �

�

dT (51)

whose left hand side does not involve any unde�ned funtion.
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Our plan is to expand both sides of Equation 51 using the de�nition of d

and to read o� a suitable de�nition of �

�

by \omparing oeÆients".

Clearly, the right hand side of Equation 51 equals

�

�

X

x

dx�

x

T (52)

whih an be transformed to

X

x

�

�

dx�

x

T (53)

sine �

�

is additive.

We turn to the left hand side of Equation 51. By de�nition of d, it equals

X

y

dy�

y

�T: (54)

\Comparing oeÆients" between 54 and 53 is hindered by the operator � whih

appears on the left of � in 54 but on the right of �

�

in 53. To make Equation

54 more similar to Equation 53 we try to move the operator � to the right of �

in 54; we aim to express �

y

� as

P

x

�A

x

�

x

for suitable operators A

x

.

4.6 Di�erenes and Substitutions

Lemma 39 on page 46 shows us how to move a shift to the right of a substitution:

S

y

� = �

Y

x

S

�

xy

x

: (55)

We want to move a di�erene to the right of a substitution. Subtrating I�

from both sides of 47 yields

�

y

� = �(�I +

Y

x

S

�

xy

x

): (56)

By telesoping aording to the pattern

� I + S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n

y

x

n

(57)

=� I + S

A

x

1

y

x

1

(58)

� S

A

x

1

y

x

1

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

(59)

� S

A

x

1

y

x

1

S

A

x

2

y

x

2

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

S

A

x

3

y

x

3

(60)

: : : (61)

� S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n�1

y

x

n�1

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n

y

x

n

(62)

we express �I +

Q

z

S

�

zy

z

in terms of \long di�erenes" �I + S

�

xy

x

as follows:

�I +

Y

z

S

�

zy

z

=

X

x

0

�

�

Y

z�x

S

�

zy

z

+

Y

z�x

S

�

zy

z

1

A

=

X

x

 

Y

z�x

S

�

zy

z

!

(�I + S

�

xy

x

)

By telesoping again, we an redue \long di�erenes" to di�erenes using

�I + S

�

xy

x

= G

�

xy

x

�

x

: (63)

where the operator G

k

x

is de�ned by:
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Def. 29. The geometri shift polynomial G

k

x

is de�ned by

G

k

x

=

8

<

:

I + S

x

+ � � �+ S

k�1

x

if k > 0

0 if k = 0

�I � S

�

x

1� � � � � S

�k+1

x

if k < 0

In this subsetion we have proved:

Proposition 40. Let y 2 L and let � be an arbitrary integer linear substitution

in T! T. Then

�

y

� = �

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

:

4.7 Guessing �

�

, Part 2

Plugging Proposition 40 into Equation 54 on page 48 yields

d�T =

X

y

dy�

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T (64)

whih by additivity of � equals

d�T =

X

x

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T: (65)

Thus our goal

d�T = �

�

dT (66)

an be restated as

X

x

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T =

X

x

�

�

dx�

x

T: (67)

As a naive �rst attempt at obtaining equality we try to make both sums

equal by equating orresponding summands:

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T = �

�

dx�

x

T: (68)

Next we replae �

x

T by T

0

. Note that this requires additional faith sine x has

ourrenes outside �

x

too.

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

T

0

= �

�

dxT

0

: (69)

Read from right to left this de�nes �

�

on all monomial 1-forms

�

�

dxT :=

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

T; (70)

and, by additivity of �

�

, on all 1-forms.
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To de�ne �

�

on forms of arbitrary degree we need one more guess (fortunately

our last). We extend Equation 70 to the reursion

�

�

dx! :=

X

y

dy�

�

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

! (71)

(Note that �

�

appears on the right hand side of Equation 71).

4.8 Closedness Preserving Substitutions

Equation 71 leads us de�ne:

Def. 30. Let � be an integer linear substitution and x; y 2 L. Then the shift

polynomial P

�xy

in F! F is de�ned by

P

�xy

:= G

�

xy

x

Y

z�x

S

�

zy

z

:

Proposition 41. The following ommutation relations hold:

1. P

�x

1

y

1

P

�x

2

y

2

= P

�x

2

y

2

P

�x

1

y

1

.

2. P

�xy

dz = P

�xy

dz.

Proof. P

�xy

is a shift polynomial.

Proposition 42. Let � be an integer linear substitution. Then there is exatly

one funtion �

�

in F! F satisfying

1. �

�

(!

1

+ !

2

) = �

�

!

1

+ �

�

!

2

.

2. �

�

dx! =

P

y

dy�

�

P

�xy

!,

3. �

�

T = �T ,

Proof. Let ! be an arbitrary but �xed form. Sine the listed rules allow us to

ompute �

�

! in at least one way, there an be at most one suh funtion �

�

.

To show the existene of �

�

, we have to show that the rules listed do not

lead to a ontradition. In other words, we have to show that omputing �

�

! in

di�erent ways annot lead to di�erent results. Rules (1) and (3) annot lead to

di�erent results. We show that rule (2) annot lead to di�erent results either.

Sine dx

1

dx

2

= �dx

2

dx

1

, we have to show that �(dx

1

dx

2

) = �(�dx

2

dx

1

) in

order to rule out a ontradition (By heking this transposition, we over w.l.o.g

all permutations). Indeed,

�

�

(dx

1

dx

2

!) =

X

y

1

dy

1

�

�

P

�x

1

y

1

dx

2

! =

X

y

1

dy

1

�

�

dx

2

P

�x

1

y

1

!

=

X

y

1

y

2

dy

1

dy

2

�

�

P

�x

2

y

2

P

�x

1

y

1

!

agrees with

�

�

(�dx

2

dx

1

)!) = �

X

y

1

y

2

dy

2

dy

1

�

�

P

�x

1

y

1

P

�x

2

y

2

!

where we have used ommutation properties of the shift polynomials.
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Proposition 42 allows us to de�ne:

Def. 31. Let � be an integer linear substitution. We de�ne the losedness

preserving substitution operator �

�

in F ! F by

1. �

�

(!

1

+ !

2

) := �

�

!

1

+ �

�

!

2

,

2. �

�

dx! :=

P

y

dy�

�

P

�xy

!,

3. �

�

T := �T .

Remark: Clearly, �

�

dx! := : : : is an impliit de�nition. It would be nie to

replae it by an equivalent expliit de�nition �

�

(!)(X) := : : : but we failed to

do so.

Proposition 43 (Lifting Lemma). Suppose the shift polynomials A and B

and the substitution � satisfy

A� = �B:

Then

^

A�

�

= �

�

^

B:

Proof. Sine both

^

A�

�

and �

�

^

B are additive, it suÆes to prove

^

A�

�

! = �

�

^

B!

for any monomial !. We proeed by indution on the degree of !.

If the degree of w is zero, then ! is a term and

^

A�

�

! = �

�

^

B! redues to

A� = �B.

If the degree of w is positive, then we an �nd x and !

0

suh that ! = dx!

0

.

We have to show that

^

A�

�

dx!

0

= �

�

^

Bdx!

0

:

We ompute

^

A�

�

dx!

0

=

^

A

X

y

dy�

�

P

�xy

!

0

=

X

y

dy

^

A�

�

(P

�xy

!

0

)

and

�

�

^

Bdx!

0

= �

�

dx

^

B!

0

=

X

y

dy�

�

P

�xy

^

B!

0

=

X

y

dy�

�

^

B(P

�xy

!

0

)

using the de�nition of �

�

and ommutation properties of shift polynomials.

Sine P

�xy

!

0

is a monomial form of lesser degree than !, the indution hypoth-

esis shows that

^

A�

�

(P

�xy

!

0

) = �

�

^

B(P

�xy

!

0

):

Proposition 43 allows us to lift Proposition 39 to the level of losedness

preserving substitutions on forms:

Proposition 44. Let y 2 L and let � be an arbitrary integer linear substitution

in T! T. Then

�

y

�

�

= �

�

X

x

P

�xy

�

x

:
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Proof. By Proposition 40,

�

y

� = �

X

x

P

�xy

�

x

:

Sine both �

y

and �

P

x

P

�xy

�

x

are shift polynomials, we an lift this to Propo-

sition 44 by Proposition 43.

Proposition 45. The operators d and �

�

ommute:

d�

�

= �

�

d:

Proof. By Proposition 44,

d�

�

=

X

y

dy�

y

�

�

=

X

x;y

dy�

�

P

�xy

�

x

:

By de�nition of �

�

,

�

�

d =

X

x

�

�

dx�

x

=

X

x;y

dy�

�

P

�xy

�

x

:

Both sides agree.

Proposition 46 (Closedness Preserving Substitutions). .

The operator �

�

preserves d-losedness: If d! = 0, then d�

�

! = 0.

Proof. Suppose d! = 0. Then d�

�

! = �

�

d! = �

�

0 = 0.

We have found a tool for onstruting new forms and we are ready to apply

it.

5 Some New WZ Forms

5.1 The Symmetri Multinomial Form

We use the derivation of the symmetri multinomial form for illustrating how

new WZ forms { and therefore summation identities { an be found by the

method of losedness preserving substitutions and some guesswork.

Consider the form ([WZ90℄; or see setion 3.1),

! =

�

n

k; n� k

�

x

k

y

n�k

(x+ y)

n

�

ky

(n� k+ 1)(x+ y)

dn� dk

�

:

Its asymmetry provokes us to substitute fn ! a+ b; k ! ag

�

(using omputer

algebra) getting

fn! a+ b; k! ag

�

! =

�

a+ b

a; b

�

x

a

y

b

(x+ y)

a+b

�

y

x+ y

a

b+ 1

db�

y

x+ y

da

�

;
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whih looks somehow better. At this point it seems that \�ne tuning" suÆes

to reah a nie losed form. We try some substitutions like fa ! a � 1g

�

and

fb! b� 1g

�

; and indeed, one of them is more than suessful:

fb! b� 1g

�

fb! a+ bg

�

! =

�

a+ b

a; b

�

x

a

y

b

(x + y)

a+b

�

a

a+ b

db�

b

a+ b

da

�

:

Impressed by the beauty of our new form, we stop substituting. We absorb

rational fators into fatorials getting

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x + y)

a+b

da�

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db:

A pattern pops up now:

!

2

=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

(�1)

0

./

da db

+

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

(�1)

1

da

./

db ;

!

3

=

�

a� 1 + b+ 

a� 1; b; 

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

0

./

da db d

+

�

a+ b� 1 + 

a; b� 1; 

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

1

da

./

db d

+

�

a+ b+ � 1

a; b; � 1

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

2

da db

./

d ;

(Alternatively, !

3

an be found from the trinomial theorem by dividing through

the right hand side and running KurtWegshaider'sWegshaider, Kurt algorithm

FindReurrenewhih is ontained in his Mathematia pakage Multisum). We

are led to onsider an in�nite sequene of WZ forms of higher and higher degree:

Def. 32. Fix a natural number n, let L := fa

1

; : : : ; a

n

g and de�ne the nth

symmetri multinomial form !

n

to be

n

X

�=1

�

a

1

+ � � �+ a

��1

+ a

�

� 1 + a

�+1

+ � � �+ a

n

a

1

; : : : ; a

��1

; a

�

� 1; a

�+1

; : : : ; a

n

�

x

1

a

1

� � �x

n

a

n

(x

1

+ � � �+ x

n

)

a

1

+���+a

n

�(�1)

��1

da

1

: : : da

��1

./

da

�

da

�+1

: : : da

n

;

Theorem 3. For eah natural number n, the nth symmetri multinomial form

!

n

is losed.

In order to avoid an abundane of dots, we resist proving Theorem 3 in full

generality and on�ne ourselves to the ase n = 3.

for n = 3. We reall

!

3

=

�

a� 1 + b+ 

a� 1; b; 

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

0

./

da db d

+

�

a+ b� 1 + 

a; b� 1; 

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

1

da

./

db d

+

�

a+ b+ � 1

a; b; � 1

�

x

a

y

b

z



(x+ y + z)

a+b+

(�1)

2

da db

./

d:
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By de�nition of the exterior derivative d,

d(!

3

) = �

a

�

a� 1 + b+ 

a� 1; b; 

�

x

a

y

b

z



(x+ y + z)

a+b+

da db d

+ �

b

�

a+ b� 1 + 

a; b� 1; 

�

x

a

y

b

z



(x+ y + z)

a+b+

da db d

+ �



�

a+ b+ � 1

a; b; � 1

�

x

a

y

b

z



(x+ y + z)

a+b+

da db d;

where we have used that \sorting the ds" introdues an alternating sign whih

anels the alternating sign appearing in !

3

. For example, in the seond line,

(�1)

1

db da d = (�1)

1+1

da db d = da db d. Computing di�erenes gives

d(!

3

)

=

�

x+y + z

x+ y + z

�

a+ b+ 

a; b; 

�

�

�

a� 1 + b+ 

a� 1; b; 

��

x

a

y

b

z



(x + y + z)

a+b+

da db d

+

�

x+y+z

x+ y + z

�

a+ b+ 

a; b; 

�

�

�

a+ b� 1 + 

a; b� 1; 

��

x

a

y

b

z



(x + y + z)

a+b+

da db d

+

�

x+ y+z

x+ y + z

�

a+ b+ 

a; b; 

�

�

�

a+ b+ � 1

a; b; � 1

��

x

a

y

b

z



(x + y + z)

a+b+

da db d:

Adding up olumnwise yields

d(!

3

) =

�

x+ y + z

x+ y + z

�

a+ b+ 

a; b; 

�

�

�

a+ b+ 

a; b; 

��

x

a

y

b

z



(x + y + z)

a+b+

da db d;

where we have used

�

a� 1 + b+ 

a� 1; b; 

�

+

�

a+ b� 1 + 

a; b� 1; 

�

+

�

a+ b+ � 1

a; b; � 1

�

=

�

a+ b+ 

a; b; 

�

;

whih is orret by ombinatorial interpretation. Hene d(!

3

) = 0.

Remark: It is trivial to reformulate

8

n�0

X

k

�

n

k

�

x

k

y

n�k

= (x+ y)

n

as

8

n�0

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

= (x+ y)

n

:

with the motive of symmetry. This should not mislead us to believe that it is

trivial to guess !

2

diretly.

Remark: Note that (an asymmetri version of) the multinomial form appears

in the very �rst paper [Zei93℄ on WZ forms as equation (7.14):

!

MULTINOMIAL

:=

n!

k

1

! � � � k

r

!(k� k

1

� � � � � k

r

+ 1)!(r + 1)

n

�

 

(n� k

1

� � � � � k

r

+ 1) dk

1

� � � dk

r

+

r

X

i=1

k

i

dn dk

1

� � �

./

dk

i

� � � dk

r

!

:
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Computation reveals that !

MULTINOMIAL

is not losed for r = 2; Hene the

de�nition of !

MULTINOMIAL

must ontain an error somewhere. How to �x it

quikly? Closedness preserving substitutions help us in this task: We start from

!

n

as de�ned in De�nition 32,

n

X

�=1

�

a

1

+ � � �+ a

��1

+ a

�

� 1 + a

�+1

+ � � �+ a

n

a

1

; : : : ; a

��1

; a

�

� 1; a

�+1

; : : : ; a

n

�

x

1

a

1

� � �x

n

a

n

(x

1

+ � � �+ x

n

)

a

1

+���+a

n

�(�1)

��1

da

1

: : : da

��1

./

da

�

da

�+1

: : : da

n

;

and apply a ertain losedness preserving substitution (left as an exerise) to

get a debugged de�nition of !

MULTINOMIAL

:

~!

MULTINOMIAL

:=

n!

k

1

! � � � k

r

!(n� k

1

� � � � � k

r

+ 1)!(r + 1)

n

�

�

(n� k

1

� � � � � k

r

+ 1)(r + 1) dk

1

� � � dk

r

+

r

X

i=1

k

i

(�1)

i

dn dk

1

� � �

./

dk

i

� � � dk

r

!

(The neessary pathes are underlined).

5.2 Identities from the Symmetri Multinomial Form

To our knowledge, Identities 43, 47, 48, 49 and 50 are new. All alulations in

this setion an be done by hand almost e�ortlessly; omputer algebra support

is superuous.

We start with an obvious appliation of !

2

.

Identity 42 (Binomial Theorem).

8

n�0

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

= (x+ y)

n

:

Proof of Identity 42. Assume n � 0. De�ne

! :=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db�

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

da

and

� := �

fa;bg

([0 � a; 0 � b; 1 � a+ b < n℄ da db) :

Sine ! is losed by Theorem 3 and � is exat we know that

X

a;b

� � ! = 0:

We aim to ompute

P

a;b

� � !.
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The diagram shows that � deomposes into

� = �

0

+ �

1

+ �

2

+ �

3

where

�

0

= [a = 0; b = 1℄ da� [a = 1; b = 0℄ db;

�

1

= �[0 � a; 0 � b; a+ b = n℄ da

+[0 � a; 0 � b; a+ b = n℄ db;

�

2

= [1 � a � n; b = 0℄ da;

�

3

= �[a = 0; 1 � b � n℄ db:

1 2 3 4 5 6 7
i

1

2

3

4

5

6

7

j

The diagram further shows that

P

a;b

�

2

� ! = 0,

P

a;b

�

3

� ! = 0, and we om-

pute

X

a;b

�

0

� ! = �

�

0 + 0

0; 0

�

y

x+ y

�

�

0 + 0

0; 0

�

x

x+ y

= �1;

X

a;b

�

1

� ! =

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

(x+ y)

n

:

Adding these four sums gives

X

a;b

� � ! = �1 +

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

(x+ y)

�n

;

whih is zero as it is the sum of a losed form over an exat range. Identity 42

follows.

By summing the same form over di�erent ranges we usually get ompletely

di�erent identities; for example, both Identity 42 and Identity 43 are obtained

from !

2

.

Identity 43. Let p and q be natural numbers. Then

�

x

x+ y

�

p+1

q

X

k=0

�

p+ k

p

��

y

x+ y

�

k

+

�

y

x+ y

�

q+1

p

X

k=0

�

q + k

q

��

x

x+ y

�

k

= 1:

We postpone the proof of Identity 43 to page 57. It might seem redundant

to list speial ases of more general identities expliitly. However, this helps us

to see that Identity 43 is a generalization of well known identities. Substituting

1 for x and y redues Identity 43 to Identity 44 whih appears in [FC88℄.

Identity 44.

8

q�0

8

p�0

q

X

k=0

�

p+ k

k

�

2

�p�k

+

p

X

k=0

�

q + k

k

�

2

�q�k

= 2:

Finally, substituting m for p and q redues Identity 44 to Identity 45, whih

appears as \unexpeted identity" (5.20) in [GKP89, p. 167℄.

Identity 45.

8

m�0

m

X

k=0

�

m+ k

k

�

2

�k

= 2

m

:
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Note that Identity 43 and Identity 44 are nontrivial in the sense that their

sums annot be expressed in losed form, as an be proved by Gosper's algo-

rithm.

Proof of Identity 43. Assume p � 0 and q � 0. We de�ne

! :=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db�

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

da

and

� := � ( [0 � a � p; 0 � b � q℄ da db) :

Sine ! is losed by Theorem 3 and � is exat we know that

X

a;b

� � ! = 0:

We aim to ompute

P

a;b

� � !.

The diagram shows that � deomposes into

� = �

0

+ �

1

+ �

2

+ �

3

+ �

4

where

�

0

= [a = 0; b = 1℄ da� [a = 1; b = 0℄ db;

�

1

= [1 � a � p; b = 0℄ da;

�

2

= [a = p+ 1; 0 � b � q℄ db;

�

3

= �[0 � a � p; b = q + 1℄ da;

�

4

= �[a = 0; 1 � b � q℄ db:

1 2 3 4 5 6 7
i

1

2

3

4

5

6

7

j

The diagram further shows that

P

a;b

�

1

� ! = 0 and

P

a;b

�

4

� ! = 0. Computa-

tion yields

X

a;b

�

0

� ! = �

�

0 + 0

0; 0

�

y

x+ y

�

�

0 + 0

0; 0

�

x

x+ y

= �1;

X

a;b

�

2

� ! =

q

X

j=0

�

p+ j

p; j

�

x

p+1

y

j

(x+ y)

p+1+j

;

and

X

a;b

�

3

� ! =

p

X

i=0

�

i+ q

i; q

�

x

i

y

q+1

(x+ y)

i+q+1

:

Adding these �ve sums gives

X

a;b

� � ! = �1 +

q

X

j=0

�

p+ j

p; j

�

x

p+1

y

j

(x+ y)

p+1+j

+

p

X

i=0

�

i+ q

i; q

�

x

i

y

q+1

(x+ y)

i+q+1

:

whih is zero as it is the sum of a losed form over an exat range. Identity 43

follows upon renaming summation indies.

Of ourse, !

3

an be used to prove the Trinomial Theorem.
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Identity 46 (Trinomial Theorem).

8

n�0

X

i;j;k

i+j+k=n

�

i+ j + k

i; j; k

�

x

i

y

j

z

k

= (x+ y + z)

n

:

Note that the Trinomial Theorem is trivial in the sense that its double

sum an be transformed into losed form by iteratively applying the Binomial

Theorem, as expeted from (x+ y + z)

n

= (x+ (y + z))

n

.

Proof. Assume n � 0. We de�ne

! :=

�

a� 1 + b+ 

a� 1; b; 

�

x

a

y

b

z



(x+ y + z)

a+b+

./

da db d

�

�

a+ b� 1 + 

a; b� 1; 

�

x

a

y

b

z



(x+ y + z)

a+b+

da

./

db d

+

�

a+ b+ � 1

a; b; � 1

�

x

a

y

b

z



(x+ y + z)

a+b+

da db

./

d

and

� := � ([0 � a; 0 � b; 0 � ; 1 � a+ b+  < n℄ da db d) ;

the range � is the surfae of a \disrete tetrahedron". Sine ! is losed by

Theorem 3 and � is exat we know that

P

a;b;

� � ! = 0: As

X

a;b;

� � ! = �1 +

X

i;j;k

i+j+k=n

�

i+ j + k

i; j; k

�

x

i

y

j

z

k

(x+ y + z)

n

;

Identity 46 is proved.

The triviality of the Trinomial Theorem should not mislead us to disard !

3

whih proves Identity 47, a (truly) double sum identity.

Identity 47. Let p, q and r be natural numbers. Then

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

= 1:

Identity 47 is a trivariate analog of Identity 43.

Proof of Identity 47. Assume p � 0, q � 0, and r � 0. We de�ne

! :=

�

a� 1 + b+ 

a� 1; b; 

�

x

a

y

b

z



(x + y + z)

a+b+

./

da db d

�

�

a+ b� 1 + 

a; b� 1; 

�

x

a

y

b

z



(x + y + z)

a+b+

da

./

db d

+

�

a+ b+ � 1

a; b; � 1

�

x

a

y

b

z



(x + y + z)

a+b+

da db

./

d:
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and

� := � (([0 � a � p; 0 � b � q; 0 �  � r℄� [a = 0; b = 0;  = 0℄) da db) :

As ! is losed by Theorem 3 and � is exat we know that

X

a;b;

� � ! = 0:

We aim to ompute

P

a;b;

� � !.

0

2

4

6

i

0

2

4
j

0

1

2

3

k

0

1

2

0 2 4 6

i

0

2

4

j

0

1

2

3

k

1

2

3

0 2 4 6

i

0

2

4

j

0

1

2

3

k

1

2

3

The range � an be found by looking on the diagrams above or by ompu-

tation. Both methods yield � = �

a

+ �

b

+ �

b

+ �

0

+ �

0

where

�

a

= [a = p+ 1; 0 � b � q; 0 �  � r℄ db d;

�

b

= �[0 � a � p; b = q + 1; 0 �  � r℄ da d;

�



= [0 � a � p; 0 � b � q;  = r + 1℄ da db;

�

0

= ��

a

� �

b

� �



at p = q = r = 0;

�

0

= � � � :

We ompute

X

a;b;

�

a

� ! =

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

;

X

a;b;

�

b

� ! =

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

;

and

X

a;b;

�



� ! =

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

:
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Adding yields

X

a;b;

(�

a

+ �

b

+ �



) � !

=

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

:

As �

0

= �(�

a

+ �

b

+ �



) at p = q = r = 0, we derive

P

a;b;

�

0

� ! = �1 as

a partiular ase of

P

a;b;

(�

a

+ �

b

+ �



) � !. Finally,

P

a;b;

�

0

� ! = 0. Adding

these three sums we get

X

a;b;

� � !

=

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

� 1:

whih is zero as it is the sum of a losed form over an exat range. Identity 47

follows.

Upon substituting 1 for x, y, and z, Identity 47 redues to a (truly) double

sum analog of Identity 44.

Identity 48.

8

p�0

8

q�0

8

r�0

3

�p

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

�

3

�j�k

+ 3

�q

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

�

3

�i�k

+ 3

�r

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

�

3

�i�j

= 3:

Upon substituting m for p, q, and r, Identity 48 redues to a (truly) double

sum analog of Identity 45.

Identity 49.

8

m�0

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

:
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Note that it is easily possible to generalize Identities 43 and 47 to an arbitrary

number of summations. In order to save spae, we resist this temptation and

on�ne ourselves to looking at the speial ases Identity 45 and Identity 49:

�

m

m

�

1

0

= 1

m

;

m

X

i=0

�

m+ i

m; i

�

2

�i

= 2

m

;

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

:

Grasping a pattern we onjeture a sequene of multisum identities.

Identity 50.

m

X

i

1

=0

� � �

m

X

i

�

=0

�

m+ i

1

+ � � �+ i

�

m; i

1

; : : : ; i

�

�

(� + 1)

�i

1

����i

�

= (� + 1)

m

:

5.3 A new WZ form from an identity of S. Dent

An ertain identity of S. Dent [Den96℄ leads to the WZ form

! = (�1)

b

2

�k+2 v

�

k� 2 v

s� b

��

k� v

k� 2 v

�

�1

�

�s+ k

�b+ 2 v

��

s

b

�

�

 

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds

+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

db ds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

db dk

�

:

Closedness preserving substitution fb! b+ sg

�

leads to

(�1)

s+b

2

�k+2 v

�

k� 2 v

�b

��

k� v

k� 2 v

�

�1

�

�s+ k

�s� b+ 2 v

��

s

s+ b

�

�

 

(k+ b� 2 v)

2

(s+ b) (s+ k+ b� 2 v)

2 (b� 1)

2

(�k+ v � 1) (s+ b� 2 v � 1)

dk ds

+

� (k+ b� 2 v)

2

(s+ b)

(b� 1)

2

(s+ b� 2 v � 1)

db ds

+

(k� 2 v + 1) (�s+ k+ 1) (s+ b)

2 (b� 1) (�k+ v � 1) (s+ b� 2 v � 1)

db dk

�

:
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Consider the following shadow of the last form:

� (k� 2 v)

2

s

b

2

(�1)

b

2

�k+2 v

�

v

k� v

��

b

�k+ 2 v

��

b

�s

��

�s+ k

�s� b+ 2 v

�

�

 

(k+ b� 2 v)

2

(s+ b) (s+ k+ b� 2 v)

2 (b� 1)

2

(�k+ v � 1) (s+ b� 2 v � 1)

dk ds

+

� (k+ b� 2 v)

2

(s+ b)

(b� 1)

2

(s+ b� 2 v � 1)

db ds

+

(k� 2 v + 1) (�s+ k+ 1) (s+ b)

2 (b� 1) (�k+ v � 1) (s+ b� 2 v � 1)

db dk

�

:

It leads, by straightforward manipulation, to the identity

X

k

X

s

2

�k

(2v + s� b� k)

�

b

s

��

b

2v � k

��

k + s

2v + s� b

��

v

k � v

�

= 0

whih holds provided that b � 0 and v � 0.
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A How to Use the Pakage wz

This appendix may help the reader to use our pakage wz.m. Explanations apply

to the pakage wz.m as of February 00 running under Mathematia 3.x.

Download the �les wz.m and wzManual.nb from

http://www.ris.uni-linz.a.at/researh/ombinat/ris/.

Under Unix, put these �les into some diretory (for example, your home dire-

tory) and start the Mathematia frontend in that diretory by typing

Mathematia&

to a shell. From within Mathematia, load the pakage wz.m by exeuting

(Shift-Return)

In[1℄ := << wz:m

loading wz.m Ot 28, 1999...

Under Windows, reate a diretory C:nwz (using the Explorer), put the �les

wz.m and wzManual.nb into C:nwz and start Mathematia by double-liking

on C:nwznwzManual.nb. From within Mathematia, load the pakage wz.m by

exeuting (Shift-Return)

In[2℄ := $Path = Append[$Path; \ : =wz

00

℄;

<< wz:m

(When loading wz.m, you will get some "multiple ontext" warnings; you an

safely ignore them.)

The notebook �le wzManual.nb ontains appendix A. A quik way to get started

is to modify and rerun the following examples.

A.1 Construting Forms

Using preomputed examples. The easiest way to get a losed form is to

all a preomputed example; these examples are listed in appendix B.

In[3℄ := w1 = example[\dixon

00

℄

Out[3℄ =

(�1)

k

�

a+ b

a+ k

� �

a+ 

+ k

� �

b+ 

b+ k

�

a! b! !

(a + b+ )!

�

�(b+ k) (+ k)

2 (1 + a+ b+ ) (1+ a� k)

da

�

(a+ k) (+ k)

2 (1+ a+ b+ ) (1 + b� k)

db +�

(a+ k) (b+ k)

2 (1+ a+ b+ ) (1 + � k)

d + 1dk

�

Using Gosper's algorithm to onstrut losed 1-forms. If we know a

de�nite single hypergeometri sum identity involving free variables we an try

to onstrut a losed form from it by using Gosper's algorithm in the imple-

mentation of Peter Paule and Markus Shorn. Download the �le Zb.m from

http://www.ris.uni-linz.a.at/researh/ombinat/ris/ . Under Unix, opy this

�le into your Mathematia diretory; under Windows9x/NT, put it into C:nwz.

The funtion f ("omplete to a losed form") returns a WZ form. Note that

f alls the funtion Gosper of Peter Paule and Markus Shorn, whih does the

diÆult part of the omputation.

In[4℄ := term = toPht[Binomial[n; k℄2^� n℄;

w2 = f[term; fkg; fn; kg℄

Out[4℄ =

�

2

�n

�

n

k

��

�

1dk +

k

2 (�1+ k� n)

dn

�
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The third argument of f[...℄ determines the set of labels. For example

In[5℄ := term = toPht[Binomial[n; k℄Binomial[a; k℄=Binomial[a+ n; n℄℄;

w5 = f[term; fkg; fk; ng℄

Out[5℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

1dk+

k

2

(�1+ k� n) (1+ a+ n)

dn

�

is di�erent from

In[6℄ := w6 = f[term; fkg; fk; n; ag℄

Out[6℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

�

k

2

(1 + a� k) (1+ a+ n)

da+ 1dk+

k

2

(�1+ k� n) (1+ a+ n)

dn

�

Using Kurt Wegshaider's pakage to onstrut losed forms of higher

degree. To exeute the examples of this subsetion, you need Kurt Wegshai-

der's pakage multisum.m. It is available at

http://www.ris.uni-linz.a.at/researh/ombinat/ris/. Under Unix,

put the �le multisum.m into your Mathematia diretory; under Windows, put

it into C:nwz.

Suppose we want to prove the following (trivial) double sum analog of Vander-

monde's identity:

X

ij

�

R

i

��

S

j

��

T

n� i� j

�

=

�

R+ S + T

n

�

:

We divide by the right hand side and enter the resulting summand.

In[7℄ := lhs = bi[R; i℄ bi[S; j℄ bi[T; n� i� j℄;

rhs = bi[R+ S+ T; n℄;

summand = lhs=rhs;

We ompute a reurrene for the summand by Kurt Wegshaider's pakage.

In[8℄ := rek = FindCertifiate[summand; n;

ff1; 0; 0g; f0; 0; 0gg; fi; jg; f ff0; 0; 0gg; ff0; 0; 0gg g; 1℄[[

1℄℄

Out[8℄ = �n MultiSum`F[�1+ n; i; j℄ + n MultiSum`F[n; i; j℄ ==

Delta[i;�i MultiSum`F[n; i; j℄℄ + Delta[j;�j MultiSum`F[n; i; j℄℄

This reurrene yields a losed form:

In[9℄ := w3 = TermRekToForm[summand; rek℄

Out[9℄ =

�

R

i

� �

S

j

� �

T

�i� j+ n

�

�

R+ S+ T

n

�

�

�

(i + j� n) (�1+ n� R� S� T)

n (�1� i� j+ n� T)

didj +

j

n

dndi+�

i

n

dndj

�

Entering forms manually. Suppose we want to enter the form

Out[9℄ =

�

x

a

y

b

(x+ y)

�a�b

�

a+ b

a; b

�� �

�

b

a+ b

da +

a

a+ b

db

�

at the keyboard. First we enter the ommon hypergeometri fator. Note that

we have to all the funtion toPht to onvert it to our internal representation

for hypergeometri terms.
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In[10℄ := hyp = Multinomial[a; b℄ x^a y^b (x + y)^(�a � b)== toPht

Out[10℄ = x

a

y

b

(x+ y)

�a�b

�

a+ b

a; b

�

Next we input the rational funtion oeÆients of the desired form:

In[11℄ := rat1 = toPht[a=(a+ b)℄

Out[11℄ =

a

a+ b

and

In[12℄ := rat2 = toPht[�b=(a+ b)℄

Out[12℄ =

b

�a� b

Finally we "assemble" the desired form.

In[13℄ := w4 = hyp � (rat1 d[b℄ + rat2 d[a℄)

Out[13℄ =

�

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�� �

b

�a� b

da +

a

a+ b

db

�

A.2 Closedness Preserving Substitutions

WZ forms yield newWZ forms by losedness preserving substitutions. If <rule>

is a substitution, or a list of substitutions, then ps[<rule>℄ is the orresponding

losedness preserving substitution. As a �rst example, we explain a \dualize and

speialize-mirale" of D. Zeilberger by a losedness preserving substitution.

In[14℄ := w6

Out[14℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

�

k

2

(1 + a� k) (1 + a+ n)

da+ 1dk+

k

2

(�1+ k� n) (1 + a+ n)

dn

�

In[15℄ := w�new = w6=:ps[a� > n℄

Out[15℄ =

��

n

k

��

2

�

2 n

n

�

�

1dk+

k

2

(�3 + 2 k� 3 n)

2 (�1 + k� n)

2

(1+ 2 n)

dn

�

For another example, we show how to symmetrize the form

In[16℄ := w2

Out[16℄ =

�

2

�n

�

n

k

��

�

1dk +

k

2 (�1 + k� n)

dn

�

whih ontains a binomial oeÆient

n!

k!(n� k)!

. To get rid of its ugly asym-

metri denominator, we substitut n->n+k:

In[17℄ := w�halfdone = w2=:ps[n� > n+ k℄

Out[17℄ =

�

2

�k�n

�

k+ n

k

��

�

1

2

dk+�

k

2 (1+ n)

dn

�

Now the denominator of the pure hypergeometri fator is symmetri. We

wonder if the rational oeÆients an be made symmetri too, and we try a

ouple of shifts. One of them is indeed suessful:

In[18℄ := w�symmetri = shift[n;�1℄[w�halfdone℄
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Out[18℄ =

�

2

�k�n

�

k+ n

k

�� �

n

k+ n

dk +�

k

k+ n

dn

�

A.3 Computing Exterior Derivatives

The appliation d[w℄ omputes the exterior derivative of w (whih must be

a form). Sine all forms introdued so far are losed by onstrution, their

respetive exterior derivatives are zero. For example,

In[19℄ := d[w�symmetri℄

Out[19℄ = 0

A.4 Ranges and Boundaries.

Entering ranges. Suppose we need the range (�[a+ b == k℄)da+([a+b ==

k℄)db. We an either enter it diretly at the keyboard

In[20℄ := r1 = �i[a+ b == k℄d[a℄ + i[a+ b == k℄d[b℄

Out[20℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

or we de�ne it as the boundary of a halfspae:

In[21℄ := interior�of�r1 = i[a+ b < k℄ d[a; b℄

Out[21℄ = 1 (([a+ b < k℄)dadb)

In[22℄ := r1 = boundary[interior�of�r1℄

Out[22℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

The seond method is reommended for all but the simplest ranges. For exam-

ple,

In[23℄ := interior�of�r2 = i[a+ b < k℄ i[a >= 0℄i[b >= 0℄ d[a; b℄;

r2 = boundary[interior�of�r2℄

Out[23℄ = 1 ((�[a + b == k℄ [a � 0℄ [b � 0℄ + [b == 0℄ [a � 0℄ [a+ b < 1+ k℄)da+

([a+ b == k℄ [a � 0℄ [b � 0℄� [a == 0℄ [b � 0℄ [a+ b < 1+ k℄)db)

would be hard to enter diretly.

Plotting ranges. To hek if we get indeed the ranges we have in mind we

plot them.

In[24℄ := Blok[fk = 3g;

dstPlot[f0; r1; 0g℄℄;

-3 -2 -1 1 2 3
a

-3

-2

-1

1

2

3

b
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In[25℄ := Blok[fk = 3g;

dstPlot[f0; r2; 0g℄℄;

-3 -2 -1 1 2 3
a

-3

-2

-1

1

2

3

b

Of ourse we have to set all parameters, like k in the example above, of the range

to be plotted to �xed integers. This an be onveniently done by wrapping a

Blok[fk=...g,...℄ around.

A.5 Summing Forms over Ranges

We sum the form

In[26℄ := w4

Out[26℄ =

�

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�� �

b

�a� b

da +

a

a+ b

db

�

over the range

In[27℄ := r1

Out[27℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

by issuing the ommand

In[28℄ := wwSum[r1; w4℄

Out[28℄ =

X

ab

a+b==k

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�

A.6 Bugs

Please report bugs to B.Zimmermann�ris.uni-linz.a.at.
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B Some Closed Forms

All losed forms in the following list are inluded in the pakage wz.m.

example["dent"℄ = (�1)

b

2

�k+2 v

 

k� 2 v

s� b

! 

k� v

k� 2 v

!

�1

 

�s+ k

�b+ 2 v

! 

s

b

!

�

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

dbds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

dbdk

�

[Den96℄

example["jaegers"℄= 2

�

j+i

j

�

2

�

n�j�i+m

n�j

�

2

�

2 n+2m+2

2 n+1

�

�1

�

�(i�1)

2

i

2

(�n+j+i�m�1)

2

(i n�n�m j�j)

(i�m�1)

2

(j+i�1)

2

(j+i)

2

n (2 n+1)

dj dn+

�i

2

j

2

(�n+j+i�m�1)

2

(i�m�1)

2

(j+i�1)

2

(j+i)

2

(�n+j�1)

2

n (2 n+1)

�

2 j n

3

� i n

3

� n

3

� 4 j

2

n

2

� 2 i j n

2

+ 5m j n

2

+ 11 j n

2

+ 2 i

2

n

2

� 2m i n

2

� 2 i n

2

� 3m n

2

� 5 n

2

+ 2 j

3

n+ 3 i j

2

n� 6m j

2

n� 11 j

2

n

�4m i j n� 8 i j n+ 4m

2

j n+ 18m j n+ 18 j n+ i

2

n+ 2m i n+ 3 i n� 3m

2

n� 10m n� 8 n+m j

3

+ j

3

+ 2m i j

2

+ 2 i j

2

� 2m

2

j

2

�7m j

2

� 5 j

2

� 4m i j� 4 i j+ 4m

2

j+ 11m j+ 7 j+ 2m i+ 2 i� 2m

2

� 5m� 3

�

di dn

+

i

2

j

2

(�n+j+i�m�1)

2

(n+m+1) (2 n+2m+1)

(i�m�1)

2

(j+i�1)

2

(j+i)

2

n (2 n+1)

di dj

�

[, ℄

example["hong"℄= (�1)

i+v+r

�

i

�q+r

� �

i

�q+v

� �

n
r

�

�1

�

n

v

�

�1

�

n

i

� �

n�i

q

� �

n�i

q+n�v�r

�

�

�q (q+i�r) (q+i�v) (q+n�v�r)

(

q

2

+i q�2 q�i�r v+1

)

(n�r) (n�v) (q�r�1) (q�v�1) (q+i�v�r�1) (q�n+i�1)

dq dn

+

n q (q+i�r) (q+i�v) (q+n�v�r�1) (q+n�v�r)

(�n+i) (n�r) (n�v) (�q+r+1) (q�v�1) (q+i�v�r�1)

dq di +

�(q�1) q (q+i�1) (q+i�r) (q+i�v) (q+n�v�r�1) (q+n�v�r)

(�n+i) (n�r) (n�v) (q�r�1) (q�v�1) (q+i�v�r�1) (q�n+i�1)

dn di

�

[Hon96, ℄

example["gkp5.22"℄=

�

r

m+k

� �

s

n�k

� �

s+r

n+m

�

�1

�

m+k

s+r+1

ds+

(m+k) (s�n+k)

(�r+m+k�1) (s+r+1)

dr +

�(m+k) (s�n+k)

(�n+k�1) (�s�r+n+m)

dn+

s�n+k

s+r�n�m

dm+ 1 dk

�

[GKP89, 5.22℄
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example["gkp5.23"℄=

�

l

m+k

� �

s

n+k

� �

s+l

n�m+l

�

�1

�

(m+k) (n+k)

(�s+n+k�1) (s+l+1)

ds+

�m�k

�s+n�m

dn+

�n�k

�n+m�l

dm+

(m+k) (n+k)

(m�l+k�1) (s+l+1)

dl+ 1 dk

�

[GKP89, 5.23℄

example["gkp5.24"℄ = (�1)

�m�l+k

 

l

m+ k

! 

s+ k

n

! 

s�m

n� l

!

�1

�

m+ k

�s+m� 1

ds+

� (m+ k) (s� n+ k)

(n+ 1) (�s+ n+m � l)

dn+

�s+ n� k

�s+ n+m� l

dm+

(m+ k) (s� n+ k)

(m� l+ k� 1) (�n+ l)

dl+ 1 dk

�

[GKP89, 5.24℄

example["gkp5.25"℄ = (�1)

�m�l+k

 

l� k

m

! 

s

�n+ k

! 

s�m� 1

�n�m+ l

!

�1

�

(�l+ k� 1) (�n+ k)

(�s+m) (s+ n� k+ 1)

ds+

� (�l+ k� 1) (�n+ k)

(�n�m+ l) (s+ n� k+ 1)

dn+

(�l+ k� 1) (�n+ k)

(m+ 1) (n+m � l)

dm+

� (�l+ k� 1) (�n+ k)

(m� l+ k� 1) (�s� n+ l+ 1)

dl+ 1 dk

�

[GKP89, 5.25℄

example["gkp5.26"℄=

�

l�k

m

� �

q+k

n

� �

q+l+1

n+m+1

�

�1

�

l�k+1

q+l+2

dq+

�(�l+k�1) (q�n+k)

(n+1) (�q+n+m�l)

dn+

(�l+k�1) (q�n+k)

(m+1) (�q+n+m�l)

dm+

�(�l+k�1) (q�n+k)

(m�l+k�1) (q+l+2)

dl + 1 dk

�

[GKP89, 5.26℄

example["gkp5.27"℄=

�

r

k

� �

s

n�k

� �

s+r

n

�

�1

�

k

s+r+1

ds+

k (s�n+k)

(�r+k�1) (s+r+1)

dr +

�k (s�n+k)

(�n+k�1) (�s�r+n)

dn+ 1 dk

�

[GKP89, 5.27℄
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example["gkp5.28"℄ =

 

r

m

!

�1

 

r + k

n+m

! 

�s+ r + n

n� k

! 

s

n

!

�1

 

s� r +m

k

!

�

k (r � n�m+ k) (�s+ r + k)

(�s+ r �m+ k� 1) (�s+ r + n) (s+ 1)

ds+

�k (�s+ 2 r �m+ k+ 1)

(r + 1) (�s+ r �m)

dr +

�k (r � n�m+ k) (�s+ r + k)

(�n+ k� 1) (n+m+ 1) (�s+ n)

dn

+

k (r � n�m+ k) (�s+ r + k)

(n+m+ 1) (�r +m) (s� r +m� k+ 1)

dm+ 1 dk

�

[GKP89, 5.28℄

example["gkp5.29"℄ = (�1)

k

 

b+ a

k+ a

! 

+ a

k+ 

! 

+ b

b

!

�1

 

+ b

k+ b

! 

+ b+ a

a

!

�1

�

1 dk+

� (k+ a) (k+ b)

2 (+ b+ a+ 1) (�k+ + 1)

d+

� (k+ a) (k+ )

2 (+ b+ a+ 1) (�k+ b+ 1)

db+

� (k+ b) (k+ )

2 (+ b+ a+ 1) (�k+ a+ 1)

da

�

[GKP89, 5.29℄

example["gkp5.30"℄= (�1)

k

�

b+a

a

�

�1

�

b+a

k+a

� �

b+a

k+b

�

�

1 dk+

�k�a

2 (�k+b+1)

db+

�k�b

2 (�k+a+1)

da

�

[GKP89, 5.30℄

example["ep11"℄= (�1)

�n+k

4

�m+k

�

k

m

� �

n+k

2 k

� �

n+m

2m

�

�1

�

�(2 k�1) (�m+k)

(�n+k�1) (n+k)

dn+

�(2 k�1) (�m+k)

2 (�n+m) (n+k)

dm+

n+m

n+k

dk

�

[Ego84, p.11℄

example["ep24rest0"℄= (�1)

�3 n+k

�

3 n�k

k

�

�

k

(

�18 n

2

+9 k n�15 n+k�1

)

2 (�3 n+2 k�3) (�3 n+2 k�2) (�3 n+2 k�1)

dn+

�3 n

2 (�3 n+k)

dk

�

[Ego84, p.24℄

example["ep27"℄= (�1)

�v�m

2

�v+2m

�

r+2m

m

�

�1

�

r+2m

v+r

� �

v+2 r+2m

v

�

�

1 dv +

v

�2 r�2m�1

dr +

2 (2 r+4m+3) v (v+r)

(2 r+2m+1) (�v+2m+1) (�v+2m+2)

dm

�

[Ego84, p.27℄
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example["ep47"℄= (�1)

k

�

r

k

�

r!

�1

�

�k

(

�k r

3

+a r

3

+r

3

+k

2

r

2

�a k r

2

�2 k r

2

+r

2

+k

2

r�2 k r+r+a k�k�a+1

)

(�r+k�1) (r�1) r (r+1)

dr + (�k+ a) dk+

�k

r

da

�

[Ego84, p.47℄

example["e2.6"℄=

�

2 k

k

� �

2 n+2

n+1

�

�1

�

2 n�2 k

n�k

�

�

�k (�3 n+2 k�5) (�2 n+2 k�1)

(�n+k�2) (�n+k�1) (n+1) (2 n+3)

dn+

�n�2

(k+1) (�n+k�1)

dk

�

[Ego84, 2.6℄

example["ep48"℄= 2

�2 n+k

n!

�1

(n� k)!

�1

(2 n� k)!

�

�k (�2 n+k�1)

4 (�n+k�1) (n+1)

dn+ 1 dk

�

[Ego84, p.48℄

example["ep49"℄=

�

2 n�2 k

n�k

� �

q+2 k

k

� �

q+2 n

n

�

�1

�

2 k (�2 n+2 k�1)

(q+2 k) (q+2 n+1)

dq+

�2 k (�2 n+2 k�1) q (q+k)

(�n+k�1) (q+2 k) (q+2 n+1) (q+2 n+2)

dn+

q

q+2 k

dk

�

[Ego84, p.49℄

example["ep52"℄=

�

m

k

�

2

�

n+m

n

�

�2

�

n+2m�k

2m

�

�

�k

2

(�n�2m+k�1)

(�n+k�1) (n+m+1)

2

dn+

�k

2

(�n�2m+k�1)

(

�3mn+2 k n�3 n�4m

2

+3 km�8m+3 k�4

)

2 (�m+k�1)

2

(2m+1) (n+m+1)

2

dm+ 1 dk

�

[Ego84, p.52℄

example["e2.18;1"℄= (�1)

�n+k

2

2 k�2 a

�

k
a

� �

n+a

2 a

�

�1

�

n+k

2 k

�

�

2 (2 a+1) (�k+a) (2 k�1) (n+1)

(�n+k�1) (n+a+1) (2 n+1) (2 n+3)

dn+

2 a+1

2 n+1

dk+

(2 a+1) (�k+a) (2 k�1)

2 (�n+a) (n+a+1) (2 n+1)

da

�

[Ego84, 2.18;1℄

example["ep59"℄=

�

n�1

�r+i

� �

r+1

2 r�i

� �

r+n

r

�

�1

�

(�r+i) (�r+i+1)

(

3 r

2

+2 n r�3 i r+5 r�i n+2 n+i

2

�2 i+2

)

(�2 r+i�2) (�2 r+i�1) (�r�n+i) (r+n+1)

dr +

(�r+i) (�r+i+1)

(�r�n+i) (r+n+1)

dn+ 1 di

�

[Ego84, p.59℄

example["gauss"℄= n!

�1

(� ())

�1

� (� a) � (� b) (� (� b� a))

�1

a

n

b

n



n

�1

�

1 dn+

n

�b�a

d+

n (n+�1)

b (�+b+1)

db+

n (n+�1)

a (�+a+1)

da

�

example["e3.17"℄= (�1)

k+j

�

p+i

p+k

� �

p+k

p+j

�

�

k�j

�p�j�1

dp+ 1 dk+

(�k+j) (j p�i p+p+j k�i k+j+1)

(�j+i�1) (�j+i) (p+j+1)

dj+

�(�k+j) (j p�i p+j k�i k�k+i+1)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.17℄

example["e3.4.2;1"℄= (�1)

k+j

�

i

k

� �

k

j

�

�

1 dk+

(�k+j) (j k�i k+j+1)

(�j+i�1) (�j+i) (j+1)

dj+

�(�k+j) (j k�i k�k+i+1)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.4.2;1℄
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example["e3.4.2;2"℄ = (�1)

k+j

 

p� j

p� k

! 

p� k

p� i

!

�

k� j

�p+ i� 1

dp+ 1 dk

+

(�k+ j)

�

�j p+ i p� p� j k+ i k+ 2 j

2

� 2 i j + 2 j� i

�

(�j+ i� 1) (�j+ i) (�p+ j)

dj+

� (�k+ j)

�

j p� i p+ j k� i k� k� 2 i j� j + 2 i

2

+ 2 i+ 1

�

(�j + i) (�j+ i+ 1) (�k+ i+ 1)

di

!

[Ego84, 3.4.2;2℄

example["e3.4.2;3"℄= (�1)

k+j

�

i�1

k�1

� �

k�1

j�1

�

i! j!

�1

�

1 dk+

(�k+j)

(

j k�i k+j

3

�i j

2

+j

2

+i

)

(�j+i�1) (�j+i) j (j+1)

dj+

�(�k+j)

(

j k�i k�k+i

2

j�j�i

3

+2 i+1

)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.4.2;3℄

example["dixon"℄= (�1)

k

�

b+a

k+a

� �

+a

k+

� �

+b

k+b

�

a! b! ! (+ b+ a)!

�1

�

1 dk+

�(k+a) (k+b)

2 (+b+a+1) (�k++1)

d+

�(k+a) (k+)

2 (+b+a+1) (�k+b+1)

db

+

�(k+b) (k+)

2 (+b+a+1) (�k+a+1)

da

�

example["ep170"℄ =

 

m

k

! 

n
k

! 

p+m

m

!

�1

 

p+ n

n

!

�1

 

p+ n+m� k

n+m

!

�

�k

2

(�p� n�m+ k� 1)

(�p+ k� 1) (p+m+ 1) (p+ n+ 1)

dp+

�k

2

(�p� n�m+ k� 1)

(�n+ k� 1) (n+m+ 1) (p+ n+ 1)

dn+

�k

2

(�p� n�m+ k� 1)

(�m+ k� 1) (n+m+ 1) (p+m+ 1)

dm+ 1 dk

�

[Ego84, p.170℄
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