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Chapter 1

Introduction

1.1 Computer Generated Proofs of Binomial Multisum Iden-

tities

One of the most exciting discoveries in the recent years, due to Doron Zeilberger, was that

the problem of proving binomial summation identities like Dixon's identity

X

k

(�1)

k

�

2n

k

�

3

= (�1)

n

(3n)!

n!

3

can e�ciently be handled by the computer. Since then Zeilberger's fast algorithm has be-

come the standard tool to tackle binomial coe�cient identities involving a single summation

quanti�er. The method is so successful that it is already treated in the book \Concrete

Mathematics" ([GKP94]), and that recently the introductory textbook \A=B" ([PWZ96])

was published, which is exclusively devoted to this and similar methods. However, there are

many binomial sums that involve more than one summation quanti�er, and only a few special

examples can be treated iteratively by Zeilberger's fast algorithm. Some examples of multisum

identities that can not be proved by single summation techniques are the beautiful identity
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; (1.1)

the Andrews-Paule sum
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and the following identity due to John Essam
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where (a)

n

= a(a+1) : : :(a+n�1). In view of these examples we want to develop an e�cient

algorithm that solves the following de�nite summation problem: prove or disprove that for

every nonnegative integer n

X

k

1

� � �

X

k

r

F (n; k

1

; : : : ; k

r

) = rhs(n); (1.2)

where F (n; k

1

; : : : ; k

r

) and rhs(n) are some binomial functions. It is well known, due to Wilf

and Zeilberger ([WZ92a]), that in principle such multisums can be handled with a method

called Sister Celine's technique. But until now the performance of Sister Celine's technique

was only good enough to prove relatively simple examples: the above multisums were beyond

the power of the method. It is the goal of this thesis to improve and generalize Sister Celine's

technique, such that it constitutes an e�cient algorithm. We have implemented a Mathematica

procedure for generating proofs | contained in our packageMultiSum| that is signi�cantly

faster than previous implementations. For instance, with our implementation it is quite easy

to compute proofs for the above identities. The main algorithmic achievements of this thesis

are a new e�cient generalization of Sister Celine's technique (Section 3.5) and the utilization

of the relatively unknown theory of P. Verbaeten ([Ver76]). Additionally, we are able to �ll

some gaps in the theory as it is given in [WZ92a], e.g., by giving a complete proof of the

fundamental theorem of hypergeometric summation in [WZ92a] (Corollary 3.3).

A recurrence for the sum. The general method to prove an identity of the form (1.2) is to

compute a homogeneous linear polynomial recurrence relation for the multiple sum f(n) =

P

k

1

� � �

P

k

r

F (n; k

1

; : : : ; k

r

):

a

0

(n)f(n) + a

1

(n)f(n� 1) + � � �+ a

l

(n)f(n� l) = 0: (1.3)

To complete the proof, we only have to check that rhs(n) satis�es this recurrence relation

(if rhs(n) is a binomial function simply by plugging in). The identity follows by checking

that enough initial values of f(n) and rhs(n) are identical, i.e., we must verify that f(0) =

rhs(0); : : : ; f(l � 1) = rhs(l � 1), and f(n) = rhs(n) for those n where a

0

(n), the leading

polynomial coe�cient of the recurrence, vanishes. We can also handle the case that rhs(n)

is a sum that satis�es a recurrence relation: it is possible to compute a recurrence relation

satis�ed by the di�erence of the two sums and again the identity follows from comparing

enough initial values.

As a concrete example, we can prove the identity (1.1) by showing that both sums satisfy the

following polynomial recurrence relation (see Chapter 5)

n

3

f(n) � (2n� 1)(17n

2

� 17n+ 5) f(n� 1) + (n� 1)

3

f(n� 2) = 0:

If both sides are equal for n = 0 and n = 1, then the identity holds for all n.

Creative telescoping. We obtain recurrences for the sum by using Zeilberger's creative

telescoping. We require that the summand F has compact support, i.e., that for every n

there are only �nitely many tuples (k

1

; : : : ; k

r

) 2Z

r

where F (n; k

1

; : : : ; k

r

) is nonzero (a sum
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with standard boundary conditions, see Section 3.3), and that F satis�es a recurrence relation

w.r.t. the parameter n of the form

a

0

(n)F (n; k

1

; : : : ; k

r

) + � � �+ a

l

(n)F (n � l; k

1

; : : : ; k

r

) =

r

X

l=1

�

k

l

G

l

(n; k

1

; : : : ; k

r

); (1.4)

where a

i

(n) are polynomials free of the summation variables, and

�

k

l

G

l

(n; k

1

; : : : ; k

r

) = G

l

(n; k

1

; : : : ; k

l

+ 1; : : : ; k

r

) � G

l

(n; k

1

; : : : ; k

r

):

It is important that the G

l

are always multiples of F , either rational function multiples (in

Zeilberger's fast algorithm) or polynomial recurrence operator multiples (in Sister Celine's

technique, see Section 3.2), so that also G

l

has compact support. Summing the recurrence

w.r.t. k

1

; : : : ; k

r

, we observe that the �-parts telescope and the boundary values are zero, due

to compact support. This yields a homogeneous recurrence relation for f(n).

For the case r = 1, i.e., the case of single summation, the problem of �nding a recurrence of

the form (1.4) is successfully solved by Zeilberger's fast algorithm ([Zei90a]) that is based on

Gosper's algorithm ([Gos78]) for inde�nite hypergeometric summation (see also [PWZ96] or

[GKP94]). In the few cases where we make use of Zeilberger's fast algorithm in this thesis, we

use the reliable and fast Mathematica implementation due to Paule and Schorn ([PS95]).

1

For

multiple summation no equally successful method exists. The problem is much harder to solve,

and despite all e�orts, the running time of the algorithms can be prohibitively high. There are

two essentially di�erent methods to compute the recurrence (1.4): the hypergeometric method

and the elimination method. They di�er in the way they compute the recurrence and the class

of functions they can treat.

The hypergeometric method. The hypergeometric method operates on a hypergeometric

summand F (n; k

1

; : : : ; k

r

), that means the fractions

F (n� 1; k

1

; : : : ; k

r

)

F (n; k

1

; : : : ; k

r

)

;

F (n; k

1

� 1; : : : ; k

r

)

F (n; k

1

; : : : ; k

r

)

; � � � ;

F (n; k

1

; : : : ; k

r

� 1)

F (n; k

1

; : : : ; k

r

)

are rational functions in n; k

1

; : : : ; k

r

. The class of hypergeometric functions includes most of

the binomial summands we are interested in, e.g., binomial coe�cients that are integer linear

in the variables n; k

1

; : : : ; k

r

. We are able to check that a hypergeometric function satis�es a

recurrence: divide the recurrence by the function and we only have to check that a rational

function is identically zero. Therefore a recurrence of the form (1.4) constitutes a computer

generated proof.

To compute a recurrence of the form (1.4) we use Sister Celine's technique or in other words

the method of k-free recurrences. Sister Celine's technique was invented by M. C. Fasenmyer

([Fas47], [Fas49]), systematically investigated by P. Verbaeten ([Ver76]), and generalized and

used for symbolic summation by H. Wilf and D. Zeilberger ([WZ92a]). The method computes

a homogeneous polynomial recurrence relation for the summand with the special property that

the polynomial coe�cients are free of the summation variables (k-free recurrence). Every such

1

available from http://www.risc.uni-linz.ac.at/research/combinat/risc/software/
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k-free recurrence can be transformed into the form (1.4). In the next chapters we investigate

Sister Celine's technique in detail. In Chapter 2 we prove that for a special class of summands a

k-free recurrence always exists, and we investigate Verbaeten's theory (especially the important

notion of a P-maximal structureset). In Chapter 3 we investigate the transformation into the

form (1.4) and we state an e�cient generalization of Sister Celine's technique, which is new.

This generalization together with the notion of a P-maximal structureset gives rise to a fast and

useful implementation, the Mathematica package MultiSum, which is described in Chapter

4. Chapter 5 contains the proofs of several interesting identities.

An alternative approach is the method proposed by Wilf and Zeilberger in [WZ92a], that

looks directly for a recurrence of the form (1.4). But the main computational problems are

still unsolved, so in practice this approach is not very successful (see Subsection 3.5.2). Another

alternative method is due to L. Yen ([Yen93]), who showed that there exist computable upper

bounds for the number of initial values we have to compare to establish the identity. This

means we do not have to compute a recurrence at all, but unfortunately the upper bounds are

far too large to be useful.

The elimination method. The elimination method operates on P-�nite functions, i.e.,

functions that are de�ned by a set of linear di�erence-di�erential equations and �nitely many

initial conditions. The subject of investigation is the left ideal of operators (di�erential oper-

ators, shift operators, or q-shift operators) that annihilates this function. The research was

again stimulated by D. Zeilberger, who showed in [Zei90b] that the subclass of holonomic

functions is closed w.r.t. de�nite summation. He also showed that one is able to compute,

using elimination in the annihilation ideal of the function, a recurrence of the form (1.4) for

any holonomic function. Zeilberger used Sylvester's dialytic elimination to compute this re-

currence, a method that is rather slow. The work on such annihilation ideals was extended by

F. Chyzak and B. Salvy to �-�nite functions in the general setting of Ore-algebras ([CS97]). In

this context elimination is performed by using noncommutative Gr�obner bases. These �-�nite

functions can be handled with F. Chyzak's ([Chy94]) Maple implementation Mgfun.

2

It re-

mains to mention that M. Schorn, in the last chapter of his diploma thesis [Sch95], presents an

elimination algorithm that computes recurrences for double sums of hypergeometric functions

in incredibly short time.

1.2 Notation and Basic De�nitions

In this section we de�ne the mathematical notations and the basic de�nitions used in the

thesis.

Numbers. We frequently use the following sets of numbers: the set of all integers Z=

f: : : ;�2;�1; 0; 1; 2; : : :g, the set of positive integers N = f1; 2; 3; : : :g, the set of nonnegative

integers N

0

= f0; 1; 2; 3; : : :g, the set of negative integers �N = f�1;�2;�3; : : :g, the set of

real numbersR, the set of complex numbers C , the complex numbers without zero C

�

= C nf0g,

and the integer interval [a : : b] = fi 2Zj a � i � bg.

2

available from http://pauillac.inria.fr/algo/libraries/
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Sets. Let S

1

and S

2

be subsets of some set M , and let l 2 M , and assume we have an

addition + on M . Then we can de�ne an addition for sets:

S

1

+ S

2

:= fs

1

+ s

2

j s

1

2 S

1

and s

2

2 S

2

g;

S

1

+ l := fs

1

+ l j s

1

2 Sg:

Note that S + ; = ; and l + ; = ;. The size of a set S, i.e., the number of elements of S, is

denoted by jSj (but note that in Section 2.6 jSj has a slightly di�erent meaning: the number

of integer lattice points of a bounded subset of R

2

).

Vectors. Throughout this work we will use vector notation. A vector, or more exactly a

r-vector for some r 2 N, is a tuple (j

1

; : : : ; j

r

) (e.g., of numbers or variables) and is always

printed in bold font, e.g., j. The component at position i of j is denoted by j

i

. If a vector has

already subscripts, e.g., j

p

, the component at position i is denoted by j

p;i

. Let i = (i

1

; : : : ; i

r

)

and j = (j

1

; : : : ; j

r

), we de�ne

i � j :() i

s

� j

s

for all s 2 [1 : : r];

i � j := i

1

j

1

+ � � �+ i

r

j

r

;

i

j

:= i

j

1

1

� � � i

j

r

r

;

[i : : j] := fl 2Z

r

j i � l � jg:

For the zero-vector we write 0 = (0; : : : ; 0). Often we shall use vector notation in a somehow

sloppy way, e.g., if i 2 Zand j 2 Z

r

then (i; j) denotes an element of Z

r+1

, and if n and

k = (k

1

; : : : ; k

r

) are variables then F (n;k) is the same as F (n; k

1

; : : : ; k

r

).

Multiple Sums. We also use vector notation for multiple sums. Let S �Z

r

, and let f(i) be

a function de�ned for all i 2 S. We de�ne the multiple sum of f over S recursively as

X

i2S

f(i) :=

X

i

1

2S

1

X

�

i2S(i

1

)

f(i

1

;

�

i);

where S

1

= fi

1

2 Zj 9

�

i 2 Z

r�1

such that (i

1

;

�

i) 2 Sg and S(i

1

) = f

�

i 2 Z

r�1

j (i

1

;

�

i) 2 Sg.

Occasionally we use the notation

J

X

j=0

f(j) :=

X

j2[0 : :J]

f(j);

where 0;J 2Z

r

.

If the summation range S is in�nite, then we have to make sure that the sum exists. The sum

can be either an analytic object, i.e., a convergent series of a complex valued function, or a

formal power series, i.e., the summand has the form f(i)x

i

where x is a vector of indeterminates

and f is a function with values from a ring.

Polynomials. Let R be a ring. The ring of polynomials over R in the variable x is denoted

by R[x]. The polynomials in several indeterminates x

1

; : : : ; x

r

are denoted by R[x

1

; : : : ; x

r

]

(or by R[x] or R[V ] where x = (x

1

; : : : ; x

r

) is a vector of variables and V = fx

1

; : : : ; x

r

g is a
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set of variables). The quotient �eld of R[x

1

; : : : ; x

r

], the �eld of rational functions, is denoted

by R(x

1

; : : : ; x

r

). The total degree of a polynomial p in the variables k is denoted by deg

k

(p).

Let p 2 R[x] be a polynomial in x and let a 2 R. Then the value of p at a, (the evaluation

of p at a) is denoted by p(a). The polynomial p is often also written as p(x), so our notation

does not distinguish between a polynomial and the evaluation of a polynomial, but this will

not cause any misunderstanding. The evaluation of polynomials in several indeterminates and

of rational functions is denoted analogously.

The Gamma Function. The Gamma function �(z) is de�ned, following Weierstra�, by the

equation

1

�(z)

:= ze

z

1

Y

n=1

�

�

1 +

z

n

�

e

�

z

n

�

where  = lim

m!1

(

P

m

k=1

1

k

� lnm) is Euler's constant. The Gamma function is analytic in

C except at the points z = 0;�1;�2; : : : , where it has poles of �rst order. We will frequently

use the following well-know properties of �(z):

�(n) = (n� 1)! if n 2 N; (1.5)

�(z + 1) = z�(z): (1.6)

Falling and Rising Factorials. The Pochhammer symbol (a)

n

for n 2Zand for a 2 K, for

some �eld K of characteristic 0, is de�ned as

(a)

n

:=

8

>

>

<

>

>

:

a(a+ 1) � � �(a+ n � 1) if n 2 N

1 if n = 0

1

(a� 1)(a� 2) � � �(a+ n)

if n 2 �N and a =2 f1; 2; : : : ;�ng:

The Pochhammer symbol is also known as \rising factorial" and denoted by a

n

. We de�ne

the falling factorial

a

n

:= (�1)

n

(�a)

n

and see that a

n

= a(a� 1) : : :(a � n + 1) if n 2 N. The most important and frequently used

identities for Pochhammer symbols are

(a)

n

=

�(a+ n)

�(a)

if a 2 C and a+ n 6= 0;�1;�2; : : : (1.7)

(a)

n

(a)

m

= (a+m)

n�m

: (1.8)

Binomials. The binomial coe�cient for n; k 2 C is de�ned as

�

n

k

�

:= lim

�!0

�(n+ 1+ �)

�(k + 1)�(n� k + 1+ �)
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which exists, provided that k 2Zif n 2 �N. If k 2Zthis is equivalent to

�

n

k

�

=

8

<

:

n

k

k!

if k � 0

0 if k < 0:

The binomial coe�cient satis�es the following basic recurrence relations:

(n� k)

�

n

k

�

= n

�

n � 1

k

�

;

k

�

n

k

�

= (n� k + 1)

�

n

k � 1

�

;

�

n

k

�

=

�

n� 1

k

�

+

�

n� 1

k � 1

�

;

for all n and k in C such that the binomial coe�cients are de�ned. The �rst two relations

imply that the binomial coe�cient is a hypergeometric function, the third one is our �rst

example of a so-called k-free recurrence relation.

Recurrences and Operators. The most important tool for automatic proofs of summation

identities are recurrences. We now formally de�ne recurrence relations for functions and a

convenient operator notation for recurrences.

Let F (k;x) : D � C

r+s

! R be a function of the variables k = (k

1

; : : : ; k

r

) and x =

(x

1

; : : : ; x

s

), where R is some ring. Then F is said to satisfy a homogeneous linear polynomial

recurrence relation in k i� there exist a �nite nonempty set S 2 Z

r

and for every i 2 S a

polynomial a

i

(k;x) 2 R[k;x], not all trivial, such that

X

i2S

a

i

(k;x)F (k� i;x) = 0

for all (k;x) 2 D with (k� i;x) 2 D for all i 2 S. The order of the recurrence in the variable

k

l

is de�ned as maxfi

1;l

� i

2;l

j i

1

; i

2

2 S and a

i

1

; a

i

2

6= 0g.

By using operator notation we can handle recurrences in a very elegant way. Let F (n; k) be

a function of the variables n and k (we can only use operators if we associate variables to the

function). For the variables n, k (which are usually denoted by lower case letters) we de�ne

the forward-shift operators N , K (which are denoted by the corresponding upper case letter)

that operate on F as follows

N F (n; k) := F (n+ 1; k) and KF (n; k) := F (n; k + 1):

Since such operators can be added, multiplied, and even inverted (N

�1

F (n; k) = F (n�1; k))

we can write a recurrence relation

X

(i;j)2S

a

i;j

(n; k)F (n� i; k� j) = 0
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as the application of the operator P (n; k;N;K) =

P

(i;j)2S

a

i;j

(n; k)N

�i

K

�j

to F :

P (n; k;N;K)F (n; k) = 0:

It is convenient (and no serious restriction) to consider only those operators where the shift

operators have nonnegative exponents, so that such operators are polynomials. We de�ne the

ring of polynomial recurrence operators in n and k as

R[n; k]hN;Ki := f

X

(i;j)2S

a

i;j

(n; k)N

i

K

j

j a

i;j

(n; k) 2 R[n; k] and S � N

2

0

; jSj <1g:

This set is in a natural way equipped with an addition and a noncommutative multiplication,

so that R[n; k]hN;Ki is a noncommutative ring. The essential noncommutativity relations

are

nN = N (n� 1) and kK = K (k� 1):

Of course we can use any variable and shift operator we want, e.g., if we have a function

F (n;k) of the variables k = (k

1

; : : : ; k

r

), we denote the ring of recurrence operators by

R[n; k

1

; : : : :k

r

]hN;K

1

; : : : ; K

r

i or in vector notation by R[n;k]hN;Ki.

Very often we will use special forms of recurrence operators in R[n;k]hN;Ki. Among the most

important are the k-free recurrences (see Chapter 2), whose polynomial coe�cients are free

of k: we will denote the set of those recurrences by R[n]hN;Ki. The other important type of

recurrence is the so-called \certi�cate recurrence" (see Chapter 3), a recurrence involving the

forward-shift di�erence or delta operators de�ned as follows

�

n

:= (N � 1) and �

k

l

:= (K

l

� 1):

Every recurrence involving such delta operators can be written in normal form, i.e., as a sum

of power products of shift operators with a left polynomial coe�cient. If we speak of orders

of a certi�cate recurrence, we mean the orders of the normal form.



Chapter 2

Sister Celine's Technique: k-free

Recurrences

\Sister Celine's technique deserves to become more widely used."

Earl D. Rainville ([Rai60])

2.1 Introduction

Sister Celine's technique, or the method of k-free recurrences, provides an elementary method

to compute recurrences for multiple sums

P

k

F (n;k). The central concept is that of a k-

free recurrence for the hypergeometric summand F (n;k), that is a homogeneous polynomial

recurrence relation whose coe�cients do not depend on the summation variables k, i.e., a

recurrence of the form

X

(i;j)2S

a

i;j

(n)F (n� i;k� j) = 0; (2.1)

where the a

i;j

(n) are polynomials in n and S is a �nite set of integer tuples.

A simple example will illustrate how we can �nd a recurrence for the sum using a k-free

recurrence for the summand. Let us prove the trinomial identity

(x+ y + z)

n

=

X

i;j

�

n

j

��

j

i

�

x

i

y

j�i

z

n�j

:

A recurrence, which is free of i and j, for the summand F (n; i; j) is:

xF (n� 1; i� 1; j � 1) + yF (n� 1; i; j� 1) + zF (n � 1; i; j)� F (n; i; j) = 0: (2.2)

We (or our computer) can independently check that F satis�es this recurrence: divide the

recurrence by F (n; i; j), the fractions like F (n�1; i�1; j�1)=F (n; i; j) are rational functions,

9
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and the equation for rational functions can be checked to be zero. We sum this recurrence over

all integers i and j and, since the polynomial coe�cients do not depend on the summation

variables, and since

P

i;j

F (n � 1; i� 1; j � 1) =

P

i;j

F (n � 1; i; j � 1) =

P

i;j

F (n � 1; i; j),

we get a recurrence relation for the sum f(n):

(x+ y + z)f(n� 1)� f(n) = 0:

It is immediately clear that (x+ y+ z)

n

satis�es this recurrence and, after checking the initial

value, the identity is proved. Moreover, the recurrence is of �rst order, thus allowing us to

evaluate the sum without any a priori knowledge of the closed form.

The important observation of Sister Celine, who developed her method to obtain pure recur-

rence relations for hypergeometric polynomials, was that the problem of �nding a recurrence

relation for F (n;k) can be reduced to the problem of �nding a recurrence relation for the

rational functions F (n� i;k� j)=F (n;k). The latter one is a �nite problem and can be solved

algorithmically.

Sister Celine's technique

� For a hypergeometric function F (n;k) with values in a �eld K and a set S of integer

tuples make an Ansatz of the form

X

(i;j)2S

a

i;j

(n)F (n � i;k� j) = 0: (2.3)

� Divide (2.3) by F (n;k) to get the rational equation

X

(i;j)2S

a

i;j

(n)R

i;j

(n;k) = 0 (2.4)

and clear denominators to get the polynomial equation

X

(i;j)2S

a

i;j

(n)p

i;j

(n;k) = 0: (2.5)

� Compare the coe�cient of every power product k

l

1

1

� � �k

l

r

r

in this equation with zero to

get a homogeneous linear equation system for the a

i;j

over the �eld of rational functions

K(n).

� Compute a basis for the vectorspace of solutions of this equation system (i.e., the

nullspace of the matrix). Every nontrivial element of this nullspace (after multiplying

with a common denominator) yields a k-free recurrence.

1

1

Note that two linearly independent solutions of the equation system do not necessarily yield two independent

recurrences: they possibly di�er only by a shift.



CHAPTER 2. SISTER CELINE'S TECHNIQUE | PART 1 11

Note that in the next sections we will only consider functions F (n;k;�) : D � C

m

! C

that are hypergeometric in n and k and possibly contain additional parameters �. So the

polynomials a

i;j

are polynomials in n and � over the complex numbers, and we have to solve

an equation system over the �eld C (n;�).

The remaining task is to �nd a set of tuples S (a so-called structureset), such that a k-free

recurrence exists. In the next sections we will show that for a large class of functions, the

proper hypergeometric functions, such a set exists. Furthermore we will show that a special

class of structuresets, the P-maximal structuresets, are the most suitable structuresets for this

algorithm.

The simple procedure outlined here in this rough form is not a usable algorithmic tool. The

problem of �nding k-free recurrences is a time and space consuming problem. Some e�cient

generalizations of Sister Celine's technique are described in Section 3.5. All algorithms in this

diploma thesis have been implemented in Mathematica; a description of these implementations

is contained in Chapter 4.

Sister Mary Celine Fasenmyer | a short biography can be found in [PWZ96] | is the founder

of the subject of �nding recurrences for hypergeometric sums ([Fas47], [Fas49]). A whole chap-

ter of Rainville's book on special functions ([Rai60]) is devoted to her method. In the seventies

Pierre Verbaeten developed an existence theory for Sister Celine's method, and wrote the �rst

computer programs. His work was done before computer algebra systems were developed to

serve as a framework for such programs, and before the connection between hypergeometric

functions and binomial summation was well recognized. Unfortunately Verbaeten's results

are not well known to the scienti�c community, due to the fact that his main work [Ver76]

is written in Dutch. The only English text [Ver74] is a summary of three pages. A German

version can be found in the last chapter of J. Hornegger's diploma thesis [Hor92]. Finally,

after the exciting discoveries in the area of symbolic summation, Herbert S. Wilf and Doron

Zeilberger used Sister Celine's method to provide elementary existence proofs for Zeilberger's

fast single sum algorithm (see [PWZ96]), and generalized her method to the case of several

summation variables ([WZ92a]).

This generalization (including the existence theorem) as well as the work of Verbaeten (in-

cluding the central notion of a P-maximal structureset) are the content of the next sections.

2.2 Proper Hypergeometric Functions

In this section, by following [WZ92a], we will de�ne the set of proper hypergeometric functions,

for which we can show that a k-free recurrence relation holds. We de�ne these functions as

evaluations of certain hypergeometric terms. Hypergeometric terms are the natural objects

to work with: they are easy to de�ne and manipulate and can serve as input to computer

programs. But only functions can be summed, so in the following we will clearly distinguish

between functions and terms.

The simplest hypergeometric terms are polynomials and factorials expressions like (n+k)! and

exponential terms like x

k

with x free of k. Note that it is the property of integer linearity in k
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and n that makes the factorial hypergeometric. Rational functions, too, are obviously hyperge-

ometric, but they do not necessarily satisfy a k-free recurrence, as Wilf and Zeilberger [WZ92a]

pointed out: Even the simple 1=(n

2

+k

2

) does not. Suppose it does satisfy a recurrence of the

form (2.1), then in an appropriate neighbourhood of every pole (i; j) all, except one, terms

are �nite. This one term tends to in�nity, because the polynomial coe�cient does not depend

on k. Thus a recurrence cannot hold in a neighbourhood of this pole.

So it is natural to de�ne the terms as products of polynomials, integer-linear factorials (more

general Gamma functions) and exponentials. Additionally we assume that the function does

not only depend on the hypergeometric variables n and k = (k

1

; : : : ; k

r

), but also on some

additional parameters � = (�

1

; : : : ; �

l

).

De�nition 2.1. Let r 2 N; l 2 N

0

, and let V = fn; k

1

; : : : ; k

r

; �

1

; : : : ; �

l

g be a set of variables.

Let

1. pp 2 N

0

and qq 2 N

0

, and

2. for every p 2 [1 : : pp] let a

p

2Z, b

p

2Z

r

, and c

p

2 C [�], and

3. for every q 2 [1 : : qq] let u

q

2Z, v

q

2Z

r

, and w

q

2 C [�], and

4. let P (n;k) 2 C [V ] be a polynomial, and

5. let x

0

; x

1

; : : : ; x

r

2 C [�] be polynomials.

Then

t = P (n;k)

Q

pp

p=1

�(a

p

n + b

p

� k+ c

p

)

Q

qq

q=1

�(u

q

n + v

q

� k+ w

q

)

x

n

0

x

k

1

1

� � �x

k

r

r

: (2.6)

is a proper hypergeometric term with hypergeometric variables n and k and additional param-

eters �. The linear forms a

p

n + b

p

� k+ c

p

are called the numerator factorial expressions of

t, the linear forms u

q

n+ v

q

� k+ w

q

are called the denominator factorial expressions of t.

It is possible to give a more general de�nition of proper hypergeometric terms such that the

existence theorem (Theorem 2.19) still holds. The c

p

, the w

q

, and the x

i

may be elements

of C (�), and P (n;k) may be a rational function with a denominator that factors completely

into integer-linear factors un+v �k+w. We decided to give a restricted de�nition to simplify

the investigations in the following sections. But note that the restriction is not a serious

one. Such more general hypergeometric terms can be transformed into proper hypergeometric

terms by introducing new additional unknowns ��

i

to replace the rational functions c

p

, w

q

,

and x

i

, and by writing each denominator factor of P (n;k) as the quotient of two Gamma

functions: 1=(un+ v � k+ w) = �(un+ v � k+ w)=�(un+ v � k+ w+ 1).

Many important special functions, e.g., the well known Bessel function

J

n

(z) =

1

X

r=0

(�1)

r

z

n+2r

2

n+2r

r! �(n+ r + 1)

;

are the sum (�nite or in�nite) of a proper hypergeometric term. The Pochhammer symbol

(a)

n

is �(a+n)=�(a), provided that a+n is neither 0 nor a negative integer. So the summand
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of the generalized hypergeometric function

p

F

q

(x) =

1

X

k=0

(a

1

n+ b

1

)

k

� � �(a

p

n+ b

p

)

k

(u

1

n + v

1

)

k

� � � (u

q

n+ v

q

)

k

x

k

k!

;

if the a

i

and u

i

are integers, is a proper hypergeometric term.

What can we say about binomial coe�cient identities, which we are mainly interested in.

Binomial coe�cients do not appear in the above de�nition, but since

�

n

k

�

, for n =2 �N, is de�ned

as

n!

k!(n�k)!

, we can write binomial coe�cients that are integer-linear in the hypergeometric

variables as proper hypergeometric terms. But note that the function

�

n

k

�

is de�ned for n 2 �N

and k 2Zwhereas the function

n!

k!(n�k)!

is not.

Most hypergeometric terms that we will meet are of a special form, i.e., they are irreducible.

They have the nice property that certain cancellations in the rational functions F (n � i;k�

j)=F (n;k) can not happen, so that we are able to give the equation (2.5) explicitly.

De�nition 2.2. The proper hypergeometric term t is called irreducible i� t does not have a

polynomial part, and there do not exist a numerator factorial expression � and a denominator

factorial expression � of t, such that � � � 2Z. If t is not irreducible it is called reducible.

Although discrete functions are our main interest, we evaluate the term t also for complex

values of n and k. This is not only a natural generalization, it has also the advantage that

we can take limits of such functions. This enables us to show that a recurrence holds for

certain extensions of proper hypergeometric functions, i.e., for values of n and k for which the

proper hypergeometric function is not well-de�ned. There is a slight di�culty in this general

de�nition: we have to de�ne the function x

k

for complex values of x and k. It is de�ned as

e

k log(x)

, involving a complex logarithm. Since the logarithm function is a multivalued function

we have to agree on a branch of it. It is not so important which branch of the logarithm we

actually choose { if k is an integer then e

k log(x)

has the same value for every logarithm of x.

We de�ne the complex logarithm function log(z) : C

�

! C as

log(z) = ln(jzj) + i arg(z); (2.7)

where ln(x) is the real natural logarithm and arg(z) is the argument of z with �� < arg(z) � �.

This logarithm function is de�ned on the whole complex plane except zero, and it is not

continuous at the negative real numbers. This implies that the proper hypergeometric function,

as de�ned below, is not continuous in the additional parameters � (at least not for all values

of �). But it is certainly continuous in the hypergeometric variables.

De�nition 2.3. Let t be a proper hypergeometric term as in De�nition 2.1. Let (~n;

~

k;
~
�) 2

C

1+r+l

, and let ~c

p

, ~w

q

, ~x

i

be the polynomials c

p

, w

q

, respectively x

i

evaluated at
~
�. The term

t is said to be well-de�ned at (~n;

~

k;
~
�), i� for every p the number (a

p

~n+ b

p

�

~

k+ ~c

p

) is neither

0 nor a negative integer and i� ~x

i

is nonzero for all i 2 [0 : : r]. The set

D

t

= f(~n;

~

k;
~
�) 2 C

1+r+l

j t is well-de�ned at (~n;

~

k;
~
�)g
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is called the set of well-de�ned values of t. The function F

t

: D

t

! C is de�ned as the

evaluation of t at the well-de�ned points

F

t

(~n;

~

k;
~
�) = P (~n;

~

k;
~
�)

Q

pp

p=1

�(a

p

~n+ b

p

�

~

k+ ~c

p

)

Q

qq

q=1

�(u

q

~n+ v

q

�

~

k+ ~w

q

)

e

~n log(~x

0

)+���+

~

k

r

log(~x

r

)

;

where e

x

is the complex exponential function and log(x) is the complex logarithm de�ned

in (2.7). We call F

t

the proper hypergeometric function in n and k of t.

Of course we have to exclude certain values from the evaluation domain: the singularities of

the numerator Gamma functions and the zeros of the x

i

. But note that we need not exclude

points where the argument of a Gamma function in the denominator of the term is a negative

integer, because

1

�(x)

is an entire function; F

t

simply becomes zero at such points.

The hypergeometric function

�

n

k

�

is represented by the proper hypergeometric term

n!

k!(n�k)!

.

So

�

n

k

�

is not a proper hypergeometric function for all values of n. We have to exclude the

negative integers. This restriction is a big disadvantage, since the existence theorem of the

following sections only guarantees a recurrence to hold at well-de�ned values. Often, however,

we want or even need the recurrence to hold at the singular values, and we have to show this

by other means (see Section 2.7). We have the same situation for Pochhammer symbols and

falling factorials.

Using the functional equation of the Gamma function �(a + x) = (x)

a

�(x) for an arbitrary

integer a, we can give a explicit expression for the fundamental fraction F (n�i;k�j)=F (n;k).

De�nition 2.4. Let t be a proper hypergeometric term in n and k as in De�nition 2.1, and

let (i; j) 2Z

r+1

. We de�ne

R

t;i;j

=

P (n � i;k� j)

P (n;k)

Q

pp

p=1

(a

p

n + b

p

� k+ c

p

)

�ia

p

�j�b

p

Q

qq

q=1

(u

q

n + v

q

� k+ w

q

)

�iu

q

�j�v

q

x

�i

0

x

�j

1

1

� � �x

�j

r

r

; (2.8)

as a rational function in the variables n;k;�.

Note that a Pochhammer expression in the numerator actually is part of the denominator i�

the integer �ia

p

� j �b

p

is negative. Similarly, a denominator Pochhammer expression can be

actually a part of the numerator.

Lemma 2.5. Let t be a proper hypergeometric term in n and k and additional parameters �.

For the proper hypergeometric function F

t

of t we have for every point (~n;

~

k;
~
�) 2 D

t

F

t

(~n� i;

~

k� j;
~
�)

F

t

(~n;

~

k;
~
�)

= R

t;i;j

(~n;

~

k;
~
�); (2.9)

if F

t

(~n;

~

k;
~
�
�
�) 6= 0 and (~n � i;

~

k � j;
~
�) 2 D

t

. Furthermore we can write this equation as a

polynomial equation, so that the restriction F

t

(~n;

~

k;
~
�
�
�) 6= 0 becomes superuous.
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Proof. First note that the denominator of the rational function (2.8) is automatically nonzero

if F

t

(~n;

~

k;
~
�) 6= 0. Using the fundamental functional equation (1.6) of the Gamma function

one sees that for every p and every q we have

�(a

p

(~n� i) + b

p

� (

~

k� j) + c

p

(
~
�))

�(a

p

~n+ b

p

�

~

k+ c

p

(
~
�))

= (a

p

~n+ b

p

�

~

k+ c

p

(
~
�))

�ia

p

�j�b

p

;

�(u

q

~n+ v

q

�

~

k+ w

q

(
~
�))

�(u

q

(~n� i) + v

q

� (

~

k� j) + w

q

(
~
�))

=

1

(u

q

~n+ v

q

�

~

k+ w

p

(
~
�))

�iu

q

�j�v

q

;

which proves the claim.

As a simple consequence we note that every proper hypergeometric function is hypergeometric.

Next we de�ne the fundamental concepts structureset and k-free recurrence.

De�nition 2.6. Let t be a proper hypergeometric term with m hypergeometric variables. A

structureset for t is a �nite, nonempty set S �Z

m

.

De�nition 2.7. Let t be a proper hypergeometric term in n and k with additional parameters

�. F

t

satis�es a recurrence free of k i� there exist a structureset S for t and polynomials

a

i;j

(n;�) 2 C [n;�], not all zero, such that for every (~n;

~

k;
~
�) 2 D

t

with (~n� i;

~

k� j;
~
�) 2 D

t

for all (i; j) 2 S

X

(i;j)2S

a

i;j

(~n;
~
�)F

t

(~n� i;

~

k� j;
~
�) = 0

holds. The structureset S is called a structure for F

t

, i� F

t

satis�es a recurrence free of k on

S.

Although we de�ned k-free recurrences only for proper hypergeometric function, we will also

use this concept for arbitrary functions. For the sake of readability, we will often drop the

parameters � from a

i;j

and F

t

.

Sister Celine's technique computes polynomials a

i;j

such that

P

a

i;j

R

t;i;j

, which is an element

of a �eld of rational functions, is identically zero. But in order to prove identities we need a k-

free recurrence

P

a

i;j

F

t

(n�i;k�j) = 0; so we have to investigate the relationship between the

former and the latter equation. Unfortunately, in previous publications on the subject (e.g.,

in [WZ92a]) no clear distinction has been made between the these two equations. Whereas it

is easy to show that a k-free recurrence for F

t

yields one for the rational functions (since the

rational function identity vanishes for enough values of n and k), the converse is not so simple.

Of course we can simply plug in values for n and k into the rational functions, but only if none

of the denominators evaluates to zero. Fortunately the fact that F

t

(~n;

~

k;
~
�) 6= 0 implies that

R

t;i;j

is well-de�ned at (~n;

~

k;
~
�) settles this problem for proper hypergeometric functions. The

following theorem shows this and thus guarantees us that we only have to �nd a recurrence

satis�ed by the R

t;i;j

to get a recurrence for F

t

. However, if we consider extensions of proper

hypergeometric functions (e.g., binomials) this proof fails, and we have to use other methods

(see Section 2.7).
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Theorem 2.8. If, for a proper hypergeometric term t in the variables n and k with additional

parameters �, there exists a structureset S and polynomials a

i;j

(n;�) 2 C [n;�] such that

X

(i;j)2S

a

i;j

(n;�)R

t;i;j

= 0 (2.10)

then also

X

(i;j)2S

a

i;j

(~n;
~
�)F

t

(~n� i;

~

k� j;
~
�) = 0 (2.11)

for every (~n;

~

k;
~
�
�
�) 2 D

t

with (~n � i;

~

k� j;
~
�
�
�) 2 D

t

for all (i; j) 2 S.

Proof. Let (~n;

~

k;
~
�
�
�) 2 D

t

be a point for which we want to show the recurrence to hold. We

distinguish three cases.

1. If F

t

(~n� i;

~

k� j;
~
�) is zero for every (i; j) 2 S then (2.11) trivially holds.

2. If F

t

(~n;

~

k;
~
�) 6= 0 then (2.11) follows from (2.9) by multiplying (2.10) with F

t

(~n;

~

k;
~
�).

3. If F

t

(~n;

~

k;
~
�) = 0 and F

t

(~n �

~

i;

~

k �

~

j;
~
�) 6= 0 for some (

~

i;

~

j) 2 S then we multiply the

rational equation (2.10) with the rational function

F

t

(n;k;�)

F

t

(n�

~

i;k�

~

j;�)

and we get the rational

equation

X

(i;j)2S

a

i;j

F

t

(n� i;k� j;�)

F

t

(n�

~

i;k�

~

j;�)

= 0

which, analogous to case 2, can be evaluated at (~n;

~

k;
~
�
�
�) to yield (2.11).

A consequence of Theorem 2.8 is that we cannot only add two recurrences or multiply a

recurrence with a polynomial, but we are also allowed to divide a recurrence by a polynomial.

More exactly this means that if

X

(i;j)2S

a

i;j

(n)F

t

(n� i;k� j) = 0

and if some p(n) divides all a

i;j

(n) then also

X

(i;j)2S

a

i;j

(n)

p(n)

F

t

(n� i;k� j) = 0;

since this holds for the recurrence of rational functions. But note that after manipulations of

the k-free recurrence, such as taking limits (see Section 2.7) or transforming into a certi�cate

recurrence (see Section 3.2), such a division is not allowed any more.
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2.3 The Associated Polynomial

Given a proper hypergeometric term t, we want to �nd a structure S for F

t

. We have seen

that it su�ces to solve the rational equation

X

(i;j)2S

a

i;j

(n)R

t;i;j

= 0 (2.12)

for polynomials a

i;j

(n) not depending on k. To this end, we multiply the equation with the least

common multiple of the denominators of the rational functions and cancel the greatest common

divisor of the numerators of the R

t;i;j

, and get a polynomial equation

P

(i;j)2S

a

i;j

(n)p

t;i;j

= 0.

In this section we will investigate these manipulations for an arbitrary proper hypergeometric

term. Following Verbaeten [Ver76], we are able to �nd a common denominator explicitly,

and also some factors that can be cancelled from the numerators. The resulting polynomial

equation will be called the associated polynomial.

To make the R

t;i;j

polynomial, we have to multiply with parts of the Pochhammer expressions

of (2.8). Those points (i; j) 2 S where the integers �ia

p

� j �b

p

(and �iu

q

� j �v

q

) are minimal

(respectively maximal) play an outstanding role. It is convenient to give them a name.

De�nition 2.9. Let t be a proper hypergeometric term as in De�nition 2.1 and S a struc-

tureset for t. Let p 2 [1 : : pp] and q 2 [1 : : qq]. A point (I;J) 2 S is called a numerator

boundary point and denoted by (I

num;p

;J

num;p

), i�

Ia

p

+ J � b

p

� ia

p

+ j � b

p

for all (i; j) 2 S:

Similarly, (I;J) 2 S is called a denominator boundary point and denoted by (I

den;q

;J

den;q

), i�

Iu

q

+ J � v

q

� iu

q

+ j � v

q

for all (i; j) 2 S:

The points (I

num;p

;J

num;p

) and (I

den;q

;J

den;q

) are called boundary points, because as the

extremal points of linear functions they are on the \boundary" of S (more exactly, on the

boundary of the convex hull of S). It is possible that there are several boundary points for a

p (or a q), but this is of no importance.

De�nition 2.10. Let t be a proper hypergeometric term as in De�nition 2.1, and let S be a

structureset for t. The polynomial P

t;S

P

t;S

=

X

(i;j)2S

a

i;j

(n) P (n� i;k� j) x

~

i�i

0

x

~

j

1

�j

1

1

� � �x

~

j

r

�j

r

r

Q

pp

p=1

(a

p

n+ b

p

� k+ c

p

� I

num;p

a

p

� J

num;p

� b

p

)

(I

num;p

�i)a

p

+(J

num;p

�j)�b

p

Q

qq

q=1

(u

q

n+ v

q

� k+ w

q

� I

den;q

u

q

� J

den;q

� v

q

)

(I

den;q

�i)u

q

+(J

den;q

�j)�v

q

; (2.13)

where

~

i = max

(i;j)2S

i and

~

j

s

= max

(i;j)2S

j

s

, is called the associated polynomial of t and S.

It is easy to see that (2.13) is indeed a polynomial in the variables n, k, �, and also in our

unknowns a

i;j

(n) (linear in the latter).
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Theorem 2.11. Let t be a proper hypergeometric term and let S be a structureset for t. The

rational equation

P

(i;j)2S

a

i;j

(n)R

t;i;j

= 0 is equivalent to the polynomial equation P

t;S

= 0.

Proof. In order to transform the rational equation into a polynomial equation we have to

multiply with a common denominator of the R

t;i;j

. Furthermore we cancel common numerator

factors. First multiply every R

t;i;j

with P (n;k) and x

~

i

0

x

~

j

1

1

� � �x

~

j

r

r

. The remaining rational

functions to handle are now the Pochhammer expressions.

What factors of (a

p

n + b

p

� k + c

p

)

�ia

p

�j�b

p

are in the common denominator of the R

t;i;j

, or

are in the numerator of every R

t;i;j

? We distinguish two cases according to the sign of the

minimal value of the �ia

p

� j � b

p

:

� If �I

num;p

a

p

�J

num;p

�b

p

� 0 then every (a

p

n+b

p

�k+ c

p

)

�ia

p

�j�b

p

is in the numerator

of R

t;i;j

. And all these numerator polynomials have the greatest common factor (a

p

n+

b

p

� k+ c

p

)

�I

num;p

a

p

�J

num;p

�b

p

, which we thus can cancel.

� If �I

num;p

a

p

� J

num;p

� b

p

< 0 then some of the (a

p

n + b

p

� k + c

p

)

�ia

p

�j�b

p

are part

of the denominator of R

t;i;j

. The least common multiple of these polynomials in the

denominator is 1=(a

p

n+b

p

�k+ c

p

)

�I

num;p

a

p

�J

num;p

�b

p

. We multiply each R

t;i;j

with this

common denominator.

In both cases we multiply R

t;i;j

with 1=(a

p

n+b

p

�k+c

p

)

�I

num;p

a

p

�J

num;p

�b

p

and the remaining

factor of (a

p

n + b

p

� k+ c

p

)

�ia

p

�j�b

p

in R

t;i;j

is

(a

p

n+ b

p

� k+ c

p

� I

num;p

a

p

� J

num;p

� b

p

)

(I

num;p

�i)a

p

+(J

num;p

�j)�b

p

:

Similarly we can �nd out with what the Pochhamer expressions 1=(u

q

n+v

q

�k+w

q

)

�iu

q

�j�v

q

have to be multiplied (or what has to be canceled) to make them polynomial.

� If �I

den;q

u

q

� J

den;q

� v

q

< 0 then there are only numerator factors. These numerator

factors have the greatest common divisor 1=(u

q

n + v

q

� k+ w

q

)

�I

den;q

u

q

�J

den;q

�v

q

, which

we thus cancel.

� If �I

den;q

u

q

� J

den;q

� v

q

� 0, the common denominator is equal to (u

q

n + v

q

� k +

w

q

)

�I

den;q

u

q

�J

den;q

�v

q

. We multiply all R

t;i;j

with it.

In both cases the remaining expression of 1=(u

q

n+v

q

�k+w

q

)

�iu

q

�j�v

q

is equal to the polynomial

1

(u

q

n + v

q

� k+ w

q

� I

den;q

u

q

� J

den;q

� v

q

)

(I

den;q

�i)u

q

+(J

den;q

�j)�v

q

:

After these manipulations the rational equation is a polynomial equation and equals (2.13).

We can easily show that we cannot cancel any further factor from the polynomial equation if

t is irreducible.
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Corollary 2.12. Let t be an irreducible proper hypergeometric term, S a structureset for t,

and P

t;S

=

P

(i;j)2S

a

i;j

(n)p

i;j

(n;k). There does not exist a nonconstant polynomial in n and

k that divides all p

i;j

(n;k).

Proof. Let � be a numerator factorial expression, and (I

�

;J

�

) its boundary point. Every other

numerator factorial expression �

1

with � � �

1

2 Zhas the same boundary point. It follows

from (2.13), since there is no denominator factorial expression � with ��� 2Z, that no factor

of the form � + l with l 2 Zdivides p

I

�

;J

�

. The same holds for every denominator factorial

expression. Since t has no polynomial part, every p

i;j

consists only of integer shifted factorial

expressions, and there cannot be a nonconstant divisor.

This means that for irreducible terms the equation P

t;S

= 0 cannot be simpli�ed further and

is actually the polynomial equation that the algorithm has to solve. Especially the degree

formula given below is exact. But note that even for reducible terms it is not very likely that

any further cancellation takes place.

We can now determine the degree of the associated polynomial. The total degree of P

t;S

in

k is the maximal degree of each of the summands. And the degree of a summand is the sum

over the subscripts of the Pochhammer expressions in (2.13) (of course we drop the factors

that are free of k, i.e., where b

p

= 0, v

q

= 0), plus the degree of the polynomial part. This

means

deg

k

(P

t;S

) = deg

k

(P (n;k))

+

pp

X

p=1

b

p

6=0

(I

num;p

a

p

+ J

num;p

� b

p

) �

qq

X

q=1

v

q

6=0

(I

den;q

u

q

+ J

den;q

� v

q

)

+ max

(i;j)2S

�

i

�

�

pp

X

p=1

b

p

6=0

a

p

+

qq

X

q=1

v

q

6=0

u

q

�

+ j �

�

�

pp

X

p=1

b

p

+

qq

X

q=1

v

q

�

�

(2.14)

Analogous to the de�nition of the numerator and denominator boundary points, let us de�ne

the third type of boundary points.

De�nition 2.13. Let t be a proper hypergeometric term as in De�nition 2.1, and let S be

a structureset for t. A point (I;J) 2 S is called a di�erence boundary point and denoted by

(I

di�

;J

di�

), i�

IA

t

+ J �B

t

� iA

t

+ j �B

t

for all (i; j) 2 S

where

A

t

=

pp

X

p=1

b

p

6=0

a

p

�

qq

X

q=1

v

q

6=0

u

q

and B

t

=

pp

X

p=1

b

p

�

qq

X

q=1

v

q

:

(A

t

;B

t

) is called the factorial di�erence.
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Summarizing we have found

Theorem 2.14. Let t be a proper hypergeometric term as in De�nition 2.1, and let S be a

structureset for t. For the total degree of P

t;S

in the variables k we have

deg

k

(P

t;S

) = deg

k

(P (n;k))

+

pp

X

p=1

b

p

6=0

(I

num;p

a

p

+ J

num;p

� b

p

) �

qq

X

q=1

v

q

6=0

(I

den;q

u

q

+ J

den;q

� v

q

)

� I

di�

A

t

� J

di�

�B

t

:

(2.15)

We see that the degree formula only depends on the boundary points of a structureset, and

not on any other property of it. This will be of some importance later.

If we compare the coe�cients of all power products k

m

1

1

� � �k

m

r

r

in P

t;S

, we get a homogeneous

linear equation system for the a

i;j

. This has a nontrivial solution if the number of unknowns

(i.e., the size of the structureset S) exceeds the number of equations. The number of equations

equals the number of power products k

m

1

1

� � �k

m

r

r

| an upper bound for this number can be

given using the total degree of P

t;S

in k

1

; : : : ; k

r

. It is well-known that the number of power

products of r variables of total degree less or equal d is

�

d+r

r

�

. Thus we have

Theorem 2.15. Let t be a proper hypergeometric term in n and k = (k

1

; : : : ; k

r

) and let S

be a structureset for t of size jSj. If

�

deg

k

(P

t;S

) + r

r

�

< jSj

then S is a structure for F

t

.

In case of only one summation variable this reduces to

Corollary 2.16. Let t be a proper hypergeometric term in n and k (i.e., r = 1) and let S be

a structureset for t of size jSj. If

deg

k

(P

t;S

) + 1 < jSj

then S is a structure for F

t

.

2.4 Existence of Recurrences

After the preliminary work of the last sections, we are ready to prove the existence of k-free

recurrences for every proper hypergeometric function. This existence theorem, given by Wilf

and Zeilberger in [WZ92a], uses a very simple type of structuresets | the rectangular shaped

sets S

I;J

.
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De�nition 2.17. Let I 2 N

0

and J 2 N

r

0

. We de�ne S

I;J

to be the structureset f(i; j) 2

Z

r+1

j i 2 [0 : : I ] and j 2 [0 : :J]g.

Furthermore let us introduce a useful notation.

De�nition 2.18. Let x 2 R and x 2 R

m

. Then x

+

is de�ned as max(0; x) and x

+

as

(x

+

1

; : : : ; x

+

m

).

Theorem 2.19. ([WZ92a]) Let t be a proper hypergeometric term as in De�nition 2.1. The

proper hypergeometric function F

t

(n;k) satis�es a recurrence in n and k that is free of k.

Moreover there exists a recurrence whose order in n is less or equal

2

6

6

6

1

r!

�

1 �

�

pp

X

p=1

b

+

p

+

qq

X

q=1

(�v

q

)

+

+ (�B

t

)

+

�

�

r

3

7

7

7

:

Proof. We show that there exist I 2 N

0

and J 2 N

r

0

such that S

I;J

is a structure for t. The

boundary points of this structureset are easily determined. I

num;p

is equal to I if a

p

� 0

and 0 otherwise. The same for component s of J

num;p

: J

num;p;s

is equal to J

s

if b

p;s

� 0

and 0 otherwise. Similarly the denominator boundary points and the di�erence boundary

point: I

den;q

(J

den;q;s

; I

di�

; J

di�;s

) is equal to I (respectively J

s

; I; J

s

) if u

q

� 0 (respectively

v

q;s

� 0; A

t

� 0; B

t;s

� 0) and 0 otherwise. Using the x

+

notation I

num;p

a

p

can be written as

Ia

+

p

and the degree formula becomes

deg

k

(P (n;k)) + I

�

pp

X

p=1

b

p

6=0

a

+

p

+

qq

X

q=1

v

q

6=0

(�u

q

)

+

+ (�A

t

)

+

�

+

J �

�

pp

X

p=1

b

+

p

+

qq

X

q=1

(�v

q

)

+

+ (�B

t

)

+

�

;

which is linear in I and J. We now assume, w.l.o.g., that all entries of J are equal to an

integer J . We write the above degree as �I + J + � with suitably de�ned �; ; �. The size

of our structureset is (I + 1)(J + 1)

r

, so with Theorem 2.15, we only have to show that there

exist I; J such that

�

�I + J + � + r

r

�

< (I + 1)(J + 1)

r

: (2.16)

The binomial coe�cient on the l.h.s. of (2.16) is a polynomial in J of degree r with leading

coe�cient



r

r!

. If we choose I = d



r

r!

e then the r.h.s. of (2.16) is a polynomial in J of degree r

with leading coe�cient d



r

r!

e+ 1, so the r.h.s. of (2.16) becomes eventually, for large J , larger

than the l.h.s.

So a recurrence exists on S

I;J

if we choose an integer I such that

I �

1

r!

�

1 �

�

pp

X

p=1

b

+

p

+

qq

X

q=1

(�v

q

)

+

+ (�B

t

)

+

�

�

r

and if J is large enough.
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The given bound for the order of the recurrence in the main variable is, although slightly

better than those given in [WZ92a], not very useful for calculations with multisums. For

nearly every proper hypergeometric function with more than one summation variable there

exists a structure such that the number of unknowns is smaller than the number of equations.

Therefore there usually exist recurrences whose order is much smaller than the predicted one.

For the case of one summation variable, however, the bound for the summation order in n is

exact for many examples, and, moreover it is possible to give a bound for the recurrence order

in k as well.

Corollary 2.20. ([Wil91]) Let t be a proper hypergeometric term as in De�nition 2.1 in the

variables n and k (i.e., r = 1). There exists a recurrence free of k for F

t

of order (I; J) where

I =

pp

X

p=1

b

+

p

+

qq

X

q=1

(�v

q

)

+

+ (�B

t

)

+

J = 1 + deg

k

(P (n; k)) + I

�

pp

X

p=1

b

p

6=0

a

+

p

+

qq

X

q=1

v

q

6=0

(�u

q

)

+

+ (�A

t

)

+

� 1

�

Proof. With the notations of the above proof, the inequality we have to solve is �I+J+�+1 <

(I + 1)(J + 1). It is easy to see that the above formulas are a solution to this inequality.

Now we already able to complete the basic algorithm to �nd recurrences.

Sister Celine's technique with the Wilf-Zeilberger method.

� Start with small values of I;J, and try to �nd a recurrence for F

t

on S

I;J

.

� If this is not successful, repeat it with higher values of I and J until a recurrence is

found.

The existence theorem guarantees us that this procedure eventually stops. But it soon turns

out that the Wilf-Zeilberger method is not very e�cient. A much better method (using P-

maximal structuresets) can be derived from Verbaeten's work.

2.5 P-maximal Structuresets

In this section we investigate a special kind of structuresets, the P-maximal structuresets.

They were introduced by Verbaeten ([Ver76]) and are the optimal structuresets for Sister

Celine's technique. To see that the shape of the structuresets has a great inuence on the

success of Sister Celine's technique, let us consider a concrete example.

To prove Dixon's famous identity

X

k

(�1)

k

�

2n

k

�

3

= (�1)

n

(3n)!

n!

3
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Figure 2.1: The structures S

3;8

and S

Dixon

for (�1)

k

�

2n

k

�

3

.

with our method we have to �nd a k-free recurrence for the summand. Of course the method

of k-free recurrences is not a serious rival for Zeilberger's fast algorithm: for instance, the

Paule-Schorn implementation �nds a �rst order recurrence for the sum within seconds. But

we present a single sum example since the main point | that P-maximal structuresets are

superior | can be illustrated more easily.

Corollary 2.20 tells us that a recurrence exists for the structureset S

3;16

. This turns out to be

too big: the smallest structureset S

I;J

for which a recurrence exists is S

3;8

, still a rather large

set. Geometrically we can interpret this structureset as a part of the two dimensional integer

lattice (see Figure 2.1).

The k-free recurrence on S

3;8

is impressively large:

(�2 + n)

2

(�5 + 2n)

2

(�30 + 315n � 1234n

2

+ 2040n

3

� 1472n

4

+ 384n

5

)F (n� 3; k � 8) +

2(�2 + n)

2

(�5 + 2n)

2

(�48 + 438n � 1499n

2

+ 2262n

3

� 1564n

4

+ 408n

5

)F (n � 3; k � 7) +

4(�2 + n)

2

(�5 + 2n)

2

(294� 2889n + 10667n

2

� 16986n

3

+ 12052n

4

� 3144n

5

)F (n� 3; k � 6) +

2(�2 + n)

2

(�5 + 2n)

2

(�1680 + 16650n � 61973n

2

+ 99210n

3

� 70564n

4

+ 18408n

5

)F (n� 3; k � 5) +

10(�2 + n)

2

(�5 + 2n)

2

(462� 4587n + 17102n

2

� 27408n

3

+ 19504n

4

� 5088n

5

)F (n� 3; k � 4) +

2(�2 + n)

2

(�5 + 2n)

2

(�1680 + 16650n � 61973n

2

+ 99210n

3

� 70564n

4

+ 18408n

5

)F (n� 3; k � 3) +

4(�2 + n)

2

(�5 + 2n)

2

(294� 2889n + 10667n

2

� 16986n

3

+ 12052n

4

� 3144n

5

)F (n� 3; k � 2) +

2(�2 + n)

2

(�5 + 2n)

2

(�48 + 438n � 1499n

2

+ 2262n

3

� 1564n

4

+ 408n

5

)F (n � 3; k � 1) +

(�2 + n)

2

(�5 + 2n)

2

(�30 + 315n � 1234n

2

+ 2040n

3

� 1472n

4

+ 384n

5

)F (n� 3; k) +

(4620�60777n+323377n

2

�877489n

3

+1368286n

4

�1301332n

5

+768088n

6

�274720n

7

+54528n

8

�4608n

9

)F (n�

2; k � 6) +

6(54560�678836n+3449671n

2

�9051747n

3

+13777595n

4

�12881718n

5

+7516424n

6

�2669792n

7

+528240n

8

�

44640n

9

)F (n � 2; k � 5) +

3(1111220�13537307n+67552480n

2

�174914274n

3

+263743652n

4

�244991544n

5

+142333856n

6

�50424608n

7

+

9964992n

8

� 842112n

9

)F (n � 2; k � 4) +

2(3901920 � 47144952n + 233568020n

2

� 601630463n

3

+ 903866249n

4

� 837509378n

5

+ 485772632n

6

�
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171925088n

7

+ 33960720n

8

� 2869920n

9

)F (n� 2; k � 3) +

3(1111220�13537307n+67552480n

2

�174914274n

3

+263743652n

4

�244991544n

5

+142333856n

6

�50424608n

7

+

9964992n

8

� 842112n

9

)F (n � 2; k � 2) +

6(54560�678836n+3449671n

2

�9051747n

3

+13777595n

4

�12881718n

5

+7516424n

6

�2669792n

7

+528240n

8

�

44640n

9

)F (n � 2; k � 1) +

(4620�60777n+323377n

2

�877489n

3

+1368286n

4

�1301332n

5

+768088n

6

�274720n

7

+54528n

8

�4608n

9

)F (n�

2; k) +

(�1620+23877n�145122n

2

+450785n

3

�801882n

4

+864164n

5

�573048n

6

+228128n

7

�49920n

8

+4608n

9

)F (n�

1; k � 4) +

2(23760� 273456n+1309143n

2

� 3432274n

3

+5460939n

4

� 5490946n

5

+3498672n

6

� 1364896n

7

+296400n

8

�

27360n

9

)F (n � 1; k � 3) +

6(82980 � 1012233n + 5179098n

2

� 14316173n

3

+ 23624922n

4

� 24292164n

5

+ 15663016n

6

� 6141184n

7

+

1335360n

8

� 123264n

9

)F (n � 1; k � 2) +

2(23760� 273456n+1309143n

2

� 3432274n

3

+5460939n

4

� 5490946n

5

+3498672n

6

� 1364896n

7

+296400n

8

�

27360n

9

)F (n � 1; k � 1) +

(�1620+23877n�145122n

2

+450785n

3

�801882n

4

+864164n

5

�573048n

6

+228128n

7

�49920n

8

+4608n

9

)F (n�

1; k) +

n

2

(�1 + 2n)

2

(5475� 16711n + 20026n

2

� 11768n

3

+ 3392n

4

� 384n

5

)F (n;k � 2) +

2n

2

(�1 + 2n)

2

(22644 � 68651n + 81827n

2

� 47902n

3

+ 13780n

4

� 1560n

5

)F (n; k � 1) +

n

2

(�1 + 2n)

2

(5475� 16711n + 20026n

2

� 11768n

3

+ 3392n

4

� 384n

5

)F (n;k) = 0:

It was computed by the Mathematica program FindRecurrence, which is described in Chap-

ter 4. The resulting recurrence for the sum is a second order recurrence and equals

b

2

(n) SUM(n� 2) + b

1

(n) SUM(n� 1) + b

0

(n) SUM(n) = 0

where

b

2

(n) = 9(3n� 5)(3n� 4)(6n� 11)(6n� 7)(36n

3

� 48n

2

+ 17n� 2)

b

1

(n) = 6(1296n

7

� 8208n

6

+ 21096n

5

� 28428n

4

+ 21577n

3

� 9168n

2

+ 2013n� 180)

b

0

(n) = n

2

(2n� 1)

2

(36n

3

� 156n

2

+ 221n� 103):

If we investigate the k-free recurrence we see that a couple of elements of S

3;8

do not occur

in the recurrence: their polynomial coe�cients a

i;j

(n) are zero. Deleting those elements from

S

3;8

, we obtain the smaller structure S

Dixon

, which is shown on the right of Figure 2.1. It is an

enormous waste of computation time to take S

3;8

as a structure if the smaller S

Dixon

su�ces:

solving a 25� 24 equation system in 76 seconds compared to solving a 43� 36 system in 3117

seconds.

But is there a systematic way to �nd such more complex, i.e., non-rectangular, structuresets?

Yes, there is. A closer look at the degree formula for the associated polynomial tells us

that certain structuresets, the P-maximal structuresets, are optimal | in the sense that for

any larger structureset the degree of the associated polynomial and therefore the number

of equations is higher. And, most important, we can construct P-maximal structuresets:

given an arbitrary structureset we can �nd the smallest P-maximal structureset containing it

(Verbaeten completion).
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To de�ne P-maximal structuresets we need the notion of structure functions and structure

hyperplanes. Structure functions are linear functions SF(i; j), which we introduce to simplify

the degree formula for the associated polynomial.

De�nition 2.21. Let t be a proper hypergeometric term in the variables n and k =

(k

1

; : : : ; k

r

), and let g 2 Zand h 2 Z

r

with gcd(g;h) = 1. The function SF(i; j) = gi+ h � j

de�ned on R

r+1

is called a structure function of t, i� at least one of the following conditions

is satis�ed:

1. there is a numerator factorial expression a

p

n + b

p

� k + c

p

of t with b

p

6= 0 such that

g = a

p

=gcd(a

p

;b

p

) and h = b

p

=gcd(a

p

;b

p

);

2. there is a denominator factorial expression u

q

n+ v

q

� k+ w

q

of t with v

q

6= 0 such that

g = �u

q

=gcd(u

q

;v

q

) and h = �v

q

=gcd(u

q

;v

q

);

3. for the factorial di�erence (A

t

;B

t

) of t, we have g = �A

t

=gcd(A

t

;B

t

) and h =

�B

t

=gcd(A

t

;B

t

).

We say that a structure function SF corresponds to a a

p

n+b

p

�k+ c

p

(or to u

q

n+ v

q

�k+w

q

or to (A

t

;B

t

)) i� the conditions of 1 (or 2 or 3) are satis�ed. Note that SF may correspond

to several expressions.

We de�ne the multiplicity of a structure function SF as

!

t;SF

=

X

gcd(a

p

;b

p

) +

X

gcd(u

q

;v

q

) + gcd(A

t

;B

t

);

where the sum ranges over the expressions to that SF corresponds.

The set of all structure functions of t is denoted by SF

t

.

We use the concept of structure functions to unify the notion of boundary points. It is easy

to see that if (I;J) is a boundary point | either numerator or denominator or di�erence |

then for the structure function SF corresponding to the de�ning term of the boundary point,

SF(I;J) � SF(i; j) for all (i; j) from the structureset. So the boundary points can now be

de�ned as

De�nition 2.22. Let t be a proper hypergeometric term and S a structureset for t, and let

SF 2 SF

t

. A point (I;J) 2 S is called a boundary point of SF and S i�

SF(I;J) � SF(i; j) for all (i; j) 2 S:

Such a point will be denoted by denoted by (I

SF;S

;J

SF;S

). The hyperplane H

SF;S

= f(i; j) 2

R

r+1

j SF(i; j) = SF(I

SF;S

;J

SF;S

)g is called the structure hyperplane of SF and S.

For single summation terms, i.e., r =1, we usually call a structure hyperplane a structureline.

The simplest property of a structure function SF is that it is constant on H

SF;S

and also

on every hyperplane parallel to H

SF;S

. So, if (I

SF;S

;J

SF;S

) is a boundary point of SF and a
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structure set S, there may be several other points in S that can serve as boundary point for

SF | all the points in S that lie on the hyperplane H

SF;S

.

We use this notation to give a more compact version of the degree formula, making it more

transparent that the degree is just the sum over the maxima of linear functions plus a constant.

Lemma 2.23. Let t be a proper hypergeometric term in n and k with polynomial part P (n;k),

and let S be a structureset for t. The degree of the associated polynomial P

t;S

can now be

written as

deg

k

(P (n;k)) +

X

SF2SF

t

!

t;SF

SF(I

SF;S

;J

SF;S

):

Given a term t and a structureset S, we see that | since the degree formula for the associated

polynomial only depends on the boundary points | we can include all the integer lattice

points (i; j) that satisfy SF(i; j) � SF(I

SF;S

;J

SF;S

) for every structure function SF to the

structureset without increasing the degree of the associated polynomial. Geometrically this

completion process corresponds to taking the intersection of all the integer lattice points

\below" the hyperplanes parallel to H

SF

going through the corresponding boundary points |

the integer lattice points of a convex set.

De�nition 2.24. Let t be a proper hypergeometric term and S be a structureset. S is

called P-maximal i� there does not exist a structureset S

1

such that S � S

1

and deg(P

t;S

) =

deg(P

t;S

1

).

It is immediately clear that following holds.

Lemma 2.25. Let t be a proper hypergeometric term and S be a structureset. S is P-maximal

i�

S = f(i; j) 2Z

r+1

j SF(i; j) � SF(I

SF;S

;J

SF;S

) for every SF 2 SF

t

g:

Note that for trivial terms, like (n � k)!, it may happen that a P-maximal set is in�nite, so

that a P-maximal structureset does not exist (a structureset is by de�nition �nite). This case

is algorithmically simple to handle (see below). But usually P-maximal sets are �nite.

As an example, let us compute and draw the boundary points and structure lines for the

Dixon term

(�1)

k

�

2n

k

�

3

= (�1)

k

(2n)!

3

k!

3

(2n� k)!

3

:

The structure functions of this term are

SF

1

(i; j) = � j

SF

2

(i; j) = � 2i+ j

SF

3

(i; j) = i
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Figure 2.2: The smallest P-maximal structureset of (�1)

k

�

2n

k

�

3

containing S

3;2

.

where the structure functions one and two originate from the denominator factorials, and the

third structure function from the factorial di�erence.

Let us take S

3;2

as structureset; a set of boundary points for this structureset and the three

structure functions is f(0; 0); (0; 2); (3; 0)g. (Note that, e.g., f(1; 0); (0; 2); (3; 1)g would be

another set of boundary points.) Figure 2.2 shows the structureset and the structurelines

through the boundary points.

In Figure 2.2 the points of the structureset S

3;2

are the black points, whereas the white points

are those points that make the set P-maximal. They can be added to the structureset without

increasing the degree of P

t;S

3;2

. It turns out that this enlarged structureset is | up to the

additional point (�1; 0) | the structureset S

Dixon

(see Figure 2.1) on which a recurrence

already exists. Starting with a small structureset we were able to compute nearly exactly the

structureset which allows to �nd a solution much faster.

It was not by chance that the smallest structure for Dixon's summand is nearly a P-maximal

structureset. The following theorem tells us that for irreducible terms with one summation

variable the convex hull of a structure containing no superuous points, always contains a

nontrivial piece of every structureline.

Theorem 2.26. Let t be an irreducible proper hypergeometric term in n and k, let S be a

structureset for t, and let a

i;j

(n) be polynomials, all nonzero, such that the associated polyno-

mial P

t;S

=

P

(i;j)2S

a

i;j

(n)p

i;j

(n; k) = 0. Let SL be a structureline of t and S. Then there

exist at least two points in S \ SL.

Proof. If SL corresponds to a (numerator or denominator) factorial expression (an + bk + c)

then, with (I; J) 2 SL a boundary point, the following divisibility relations for � = (an+ bk+
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c� aI � bJ) hold:

� 6 j p

i;j

for every (i; j) 2 S \ SL;

� j p

i;j

for every (i; j) 2 S n SL:

These divisibility relations hold because t is irreducible and because of formula (2.13) for the

associated polynomial. If we set � = 0, that is substituting k =

a

b

n +

c

b

(remember that

b is nonzero according to the de�nition of a structure function) in the polynomial equation

P

(i;j)2S

a

i;j

(n)p

i;j

(n; k) = 0, then it becomes

P

(i;j)2S\SL

a

i;j

(n)p

i;j

(n;

a

b

n +

c

b

) = 0. Every

summand is a nonzero polynomial, so the equation can only hold if there are at least two

elements in S \ SL.

If SL corresponds to the factorial di�erence then the degree formula (2.14) implies that for

every (i; j) 2 S n SL and every (I; J) 2 S \ SL we have deg

k

(p

i;j

) < deg

k

(p

I;J

). We com-

pare the highest coe�cient of k in the associated polynomial with zero and get an equation

P

(i;j)2S\SL

c

i;j

(n)a

i;j

(n) = 0, where not all c

i;j

(n) are zero. So again S must contain at least

two elements of SL.

The method of computing the smallest P-maximal structureset containing a given structureset

of course also works for examples with r summation variables, involving structure hyperplanes

rather than structurelines. We use this Verbaeten completion of a structureset to improve the

Wilf-Zeilberger method for computing a k-free recurrence; informally this method is described

as follows.

Sister Celine's technique with Verbaeten completion.

� Compute for the term t and the structureset S

I;J

(the rectangular structuresets) the

structure functions and the boundary points.

� Compute the smallest P-maximal structureset S containing S

I;J

(the Verbaeten comple-

tion). If the P-maximal set is in�nite, take only a �nite part of this set, with a size such

that the condition for the existence of a nontrivial nullspace is ful�lled (i.e., the number

of equations is less than the number of unknowns).

� Try to �nd a recurrence for F

t

on this new structureset S. If no recurrence was found

increase I and J and try again.

For irreducible proper hypergeometric terms it is clear what the Verbaeten completion tech-

nique means for the size of the equation system: the fact that the degree of the associated

polynomial remains constant, guarantees us that the number of equations is the same as

before, whereas the number of unknows in the equation system has increased. For reducible

terms, however, we can not make such a clear statement, since it can happen that, due to some

unpredictable cancellations in the associated polynomial, the number of equations increases.

But this increase is small compared to the increase in the number of unknowns. Anyway, in

both cases (irreducible as well as reducible) Verbaeten completion has the following advan-

tages: the equation system that has to be solved to �nd a solution is much smaller, and the

number of unsuccessful tries we have to make to �nd this system, too, is smaller.
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Sister Celine's technique with Verbaeten completion usually is, as empirical results show,

about 10 to 100 times faster than Sister Celine's technique working only with rectangular

structuresets S

I;j

suggested by Wilf and Zeilberger

2

. In the example of Dixon's sum the

speed-up factor is about 30. To put it somehow stronger: computational experience shows

that only with Verbaeten completion k-free recurrences can be computed in reasonable time.

2.6 Verbaeten's Existence Theorem

In his PhD thesis [Ver76] P. Verbaeten gives a proof for the existence of k-free recurrence

relations for proper hypergeometric terms with only one summation variable and without

polynomial part by constructing a structure from a special P-maximal structureset: the min-

imal structure. Since this construction uses to a great part arguments from plane geometry,

this theory is not, at least not in a straightforward way, generalizeable to the multivariate case.

This means that the following existence theory does not contribute anything to algorithms

for the multivariate case, and is only included for the sake of completeness. Thus we proceed

rather short and sketchy. For this condensed description we follow the elegant presentation

in J. Hornegger's diploma thesis [Hor92]. Hornegger and his advisor V. Strehl considerably

simpli�ed Verbaeten's construction (e.g., by using the relation (2.19) and Theorem 2.27).

First we introduce some notations used throughout this subsection. A polygon in R

2

is the

convex hull of a �nite subset of R

2

. Let S be a bounded subset of R

2

. With @S and

�

S we

denote as usual the boundary respectively the interior of S. jSj denotes the number of integer

lattice points in S. A (S) is de�ned as the area of S.

In this section let t be a proper hypergeometric term in the variables n and k without poly-

nomial part. Let SF

i

(x; y) = �

i

x + �

i

y for 1 � i � s be the structure functions of t and !

i

their multiplicity. For every structure function we de�ne the structurevector SV

i

= !

i

�

��

i

�

i

�

.

The structurevectors are such that the corresponding structure function is constant along the

vector and decreases on the left side of it (viewing in direction of the vector). So, if we sort the

structurevectors with respect to the angles they enclose with the nonnegative real axis

3

, we

can form a convex polygon generated in circular manner by the structurevectors (see Figure

2.3). Every corner of this polygon has the formula

P

l

i=1

!

i

�

��

i

�

i

�

for some l, so the corners

are integer lattice points. By de�nition of the factorial di�erence this vectors really form a

(closed) polygon, i.e., the sum of all the vectors is zero. The set of integer lattice points of

this polygon (including the points on the boundary) is a P-maximal structureset. (With one

exception: the minimal structure of terms without �nite P-maximal sets is not P-maximal.

But in this case the enclosing polygon is degenerate; it is only a line.)

This set of integer lattice points is called the minimal structure

4

and denoted by M . Note

that there are exactly !

i

+ 1 integer lattice points on the edge SV

i

of M .

2

But note that if the structuresets S

I;J

are already P-maximal, then there is no speed up at all.

3

In the following, w.l.o.g., we assume that they are already sorted.

4

Note that the minimal structure is not necessarily a structure, but only a structureset.
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SV1

SV2

SV3

SV4

SV5

SV6

0

SV4

SV1

SV2

SV3

SV5

SV6

0

Figure 2.3: The structurevectors and how they form the minimal structure M .

More generally, we easily see that every P-maximal structureset is bounded by multiples of

the structurevectors, i.e., is (possibly after a shift in the plane) contained in a polygon with

corners

P

l

i=1

�

i

SV

i

, where the �

i

are positive real numbers. Of course the total sum of the

vectors must be zero to make sure that the sequence of vectors form a polygon. Note that

the corners of such polygons are not necessarily integer lattice points, but it is tacitly, and

w.l.o.g., assumed that at least one integer lattice point is on every edge of the polygon. We

denote such a structureset in the following with M

�

.

The boundary point of M

�

for the structure function SF

i

is one of the integer lattice points

on the corresponding structure vector. So the degree of the associated polynomial in k, now

denoted by deg(M

�

) is

deg(M

�

) =

s

X

i=1

!

i

SF

i

�

i�1

X

j=1

�

j

SV

j

�

=

X

1�j<i�s

�

j

!

i

!

j

(�

j

�

i

� �

i

�

j

) : (2.17)

The area of the polygon, that contains the structureset M

�

is denoted by A (M

�

) and can be

found by triangulation.

5

A (M

�

) =

1

2

s�1

X

l=1

�

�

�

�

�

�

P

l

i=1

�

i

!

i

�

i

�

P

l+1

j=1

�

j

!

j

�

j

P

l

i=1

�

i

!

i

�

i

P

l+1

j=1

�

j

!

j

�

j

�

�

�

�

�

=

1

2

s�1

X

l=1

l

X

i=1

�

i

�

l+1

!

i

!

l+1

(�

i

�

l+1

� �

l+1

�

i

)

=

1

2

X

1�i<l�s

�

i

�

l

!

i

!

l

(�

i

�

l

� �

l

�

i

)

(2.18)

So the area can be expressed in similar terms as the degree formula, and immediately we get

for the minimal structure M (all �

i

equal to 1) the beautiful relationship

deg(M) = 2A (M) : (2.19)

5

The attentive reader may have noticed that the following sum should only run up to s� 2 to express the

area, but the last determinant is zero, and we add it to make the resulting formula look nicer.
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To continue with the construction, we need to know the number of integer lattice points inside

a polygon. The next theorem establishes a relationship between this number and the area of

the polygon, in the case that the polygon has integer lattice corners.

Theorem 2.27. ([Hor92]) Let P be a polygon whose corners are integer lattice points. Then

we have the following formula

2A (P ) = jP j+ j

�

P j � 2 = 2jP j � j@P j � 2:

Proof. The second equation is trivial, so we just prove the �rst one. We split the proof into two

parts, �rst showing that the formula holds for a polygon A if it holds for two subpolygons, and

in the second step showing that the formula holds for the smallest such subpolygons (special

triangles).

1. Let A

1

and A

2

be two polygons that are disjoint except a common connected piece of

boundary @A

1

\ @A

2

with integer lattice points as corner on each end: P

1

respectively P

2

.

Then the polygon A = A

1

[A

2

has this common boundary as inner points with the exception

of P

1

and P

2

that remain boundary points. Our claim is that if the above formula holds for

both A

1

and A

2

then it holds for the union A:

2A (A

1

[A

2

) = 2A (A

1

) + 2A (A

2

)

= jA

1

j+ j

�

A

1

j � 2 + jA

2

j+ j

�

A

2

j � 2

= jA

1

j+ jA

2

j � j@A

1

\ @A

2

j + j

�

A

1

j+ j

�

A

2

j+ j@A

1

\ @A

2

j � 2 � 2

= jAj+ j

�

Aj � 2:

2. We triangulate the given polygon P and, if there is an integer lattice point in or on the

triangle other then the corners, we split up these triangles again into triangles until we are

left with triangles with integer grid points as corners that have no other integer lattice points

in or on them. It su�ces to prove the claim for these triangles, i.e., to show that their area is

1

2

.

Let, w.l.o.g., (0; 0), a

1

= (x

1

; y

1

), and a

2

= (x

2

; y

2

) be the corners of such a triangle. The

condition that there are no other grid points in the triangle is equivalent to the condition that

the vectors a

1

and a

2

generate the whole integer lattice gridZ

2

, i.e.,Z

2

= fna

1

+ma

2

j n;m 2

Zg. So the transformation matrix A =

�

x

1

x

2

y

1

y

2

�

mapsZ

2

into itself. It follows that the inverse

transformation, too, is an integer matrix. The determinant detA = x

1

y

2

� y

1

x

2

is therefore 1

or �1. Since the area of the triangle is half the absolute value of this determinant the theorem

is proved.

The inner points of the structureset M

�

, denoted by

�

M

�

, are de�ned as the integer lattice

points of the interior of the enclosing structurevector polygon. We are now able to formulate

the �rst existence theorems.
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Theorem 2.28. If the minimal structureM has no inner points, thenM is already a structure

for t.

Proof. By using Theorem 2.27 and equation (2.19) we see that the criterion for the existence

of a nontrivial solution (Corollary 2.16) is satis�ed: deg(M) = 2A (M) = jM j � 2.

If there are inner points in M then it is usually not a structure. From now on we assume that

M contains inner points. We can �nd a P-maximal structure, if we double the length of the

sides of M . Let all �

i

be equal to 2, and call the resulting structureset M

2

.

Theorem 2.29. M

2

is a structure for t.

Proof. Again a nontrivial solution exists because of

deg(M

2

) = A (M

2

) =

1

2

�

jM

2

j+ j

�

M

2

j � 2

�

< jM

2

j � 1;

and Corollary 2.16.

Although we have found a structure for t, we can achieve more. It turns out that the set M

2

is usually far too large (see, e.g., Figure 2.4). The reason is that jM

2

j is a very large upper

bound for for the number of inner points of M

2

.

But we are able to �nd a smaller structure, if we drop the condition of P-maximality. The

idea is that we elongate the minimal structure in the direction of the summation variable.

Theorem 2.30. ([Ver76]) Let M be the minimal structure of t, and let S = f(0; j) j j 2

[0 : : j

�

Mj]g. Then M

S

= M + S = f(i; j

1

+ j

2

) j (i; j

1

) 2 Mand j

2

2 [0 : : j

�

Mj]g is a structure

for t.

Proof. Let SV

i

=

�

��

i

�

i

�

bet the structurevectors of t, let M

S;P

and S

P

be the smallest P-

maximal structuresets containingM

S

respectively S, and let �

i

SV

i

be the vectors that generate

the polygon containing S

P

. It is easy to see that the polygon of M

S;P

is generated by the

vectors (�

i

+ 1) SV

i

and that its area A (M

S;P

) is A (M

S

) +A (S

P

).

The degree of M

S

is, since the structure functions are linear, easily determined.

deg(M + S) =

X

SF2SF

max

(i;j+j

0

)2M

S

SF(i; j + j

0

)

=

X

SF2SF

( max

(i;j)2M

SF(i; j)+ max

(0;j

0

)2S

SF(0; j

0

)) = deg(M) + deg(S)
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The area of M

S

is equal the area of M

S;P

minus the area of S

P

. With the abbreviation

�

i;j

= !

i

!

j

(�

i

�

j

� �

j

�

i

) we get by using (2.18)

A (M

S

) = A (M

S;P

)� A (S

P

)

=

1

2

X

i<j

(�

i

+ 1)(�

j

+ 1)�

i;j

�

1

2

X

i<j

�

i

�

j

�

i;j

=

X

i<j

�

i

�

i;j

+

1

2

X

i<j

�

i;j

= deg(S) +

1

2

deg(M):

Above we used that

P

i<j

�

i

�

i;j

=

P

i<j

�

j

�

i;j

, which holds because �

i;j

= ��

j;i

and

P

i

�

i;j

=

P

j

�

i;j

= 0.

With

j@M

S

j = j@M j+ 2(jSj � 1) = j@M j+ 2j

�

M j = 2A (M) + 2

= deg(M) + 2

we have, since M

S

has only integer lattice corners,

deg(M

S

) = deg(M) + deg(S) = A (M

S

) +

1

2

deg(M)

= jM

S

j �

1

2

j@M

S

j � 1 +

1

2

deg(M) = jM

S

j � 2

which, by Corollary 2.16, completes the proof.

This structure is smaller thanM

2

(see the example below), especially the order of the resulting

recurrence in the main variable is smaller. This order is just the maximal �rst coordinate of

the minimal structure, i.e., the sum over the positive values of the �rst components of the

structure vectors:

pp

X

p=1

b

+

p

+

qq

X

q=1

(�v

q

)

+

+

�

�

pp

X

p=1

b

p

+

qq

X

q=1

v

q

�

+

:

This is exactly the degree bound given in Corollary 2.20.

As an example let us compute the minimal structure M , the structure M

2

and the structure

M

S

for the summand (�1)

k

(2n)!

3

k!

3

(2n�k)!

3

of Dixon's sum (Figure 2.4). The structurevectors

(computed from the structure functions given above) are (already sorted)

�

1

0

�

,

�

0

1

�

, and

�

�1

�2

�

.

The multiplicities of the structure functions are 3, 6, and 3. From this we can compute M

and M

2

. To compute M

S

we count the inner points of M : there are four. Figure 2.4 shows

that M is too small to be a structure, and that M

2

is too large to be useful. We also see that

the structure M

S

is smaller than the structure S

3;16

, which is predicted by Corollary 2.20.

The size of the equation system for M

S

is 31� 32. This is even smaller then the size of the

system for S

3;8

, which is the smallest structure of the form S

I;J

. It follows that, at least for

this special example, Verbaeten's existence theory is superior to the Wilf-Zeilberger theory.
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Figure 2.4: M , M

2

, and M

S

for (�1)

k

�

2n

k

�

3

.

Both existence theorems, Theorem 2.19 as well as Theorem 2.30, use the size of the equation

system as the criterion for the existence of a nontrivial nullspace (Theorem 2.15). It is clear

that in this way we cannot �nd S

Dixon

, which the smallest structure for Dixon's summand

(see Figure 2.1), a priori. The corresponding equation system has size 25 � 24: it has a

nontrivial solution although the number of equations is larger than the number of unknowns.

Not only that this happens almost always for terms with several summation variables, the size

of the equation systems such that the number of unknowns exceeds the number of equations

is incredibly large | much larger than the equation systems that actually have nontrivial

solutions. This implies that an existence theory that predicts structures for summands with

several summation variables is of little algorithmic value. It is far more e�cient just to start

with small structuresets and increase them in case no solution has been found. So we did not

make a serious attempt to generalize Verbaeten's existence theory to the multivariate case.

2.7 Recurrences for Binomial Terms

We already mentioned that there is subtle detail in the relationship between the binomial

function

�

n

k

�

and its interpretation as a proper hypergeometric term

�(n+1)

�(k+1)�(n�k+1)

, namely

that the term is not well-de�ned for n 2 �N. Therefore the k-free recurrence does not

necessarily hold for these critical values. Why is it interesting to know whether the recurrence

holds for such values or not?

� It's natural: The k-free recurrence for

n!

k!(n�k)!

that we �nd with Sister Celine's technique

is F (n; k) � F (n � 1; k) � F (n � 1; k � 1) = 0, which is also the basic recurrence for

the binomial coe�cient. So the question for the larger region of validity of a such found

recurrence is a natural one.
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� It's necessary: Many summands of multivariate sums contain functions like

�

i+j

i

�

where

i and j are summation variables. If we sum w.r.t. i; j 2 [0 : : n] we have to sum the

recurrence over a slightly larger domain to get standard boundary conditions (see Section

3.3). It is therefore necessary to know that the recurrence holds for i+ j < 0.

We would like to show that a binomial function satis�es a given recurrence at the singular

values. But this is not always possible. Take the trivial example

�

n

n

�

. The corresponding

proper hypergeometric term is

n!

n!

and the simplest recurrence found is F

t

(n)� F

t

(n� 1) = 0,

which does not hold for the binomial coe�cient for n = 0. Another function, where exactly

the same happens, is

�

n

k

��

k

n

�

. The reason for the failure is obvious: some of the factorials in

the proper hypergeometric term cancel.

But the problem of singular values arises also in examples that are not so trivial. Consider

the following three sums.

n

X

i=0

n

X

j=0

�

i+ j

i

�

2

�

2n� i� j

n � i

�

2

(2.20)

n

X

i=0

n

X

j=0

�

i+ j

j

�

2

�

2n� i� j

n � j

�

2

(2.21)

n

X

i=0

n

X

j=0

�

i+ j

i

��

i+ j

j

��

2n� i� j

n� i

��

2n� i� j

n� j

�

(2.22)

The three sums are equal, since the summands are the same within the summation range.

But outside of the summation range the summands are three di�erent functions. All three

summands have the same factorial interpretation:

(i+ j)!

2

(2n� i� j)!

2

i!

2

j!

2

(n� i)!

2

(n� j)!

2

:

We compute a recurrence for the proper hypergeometric function, and in order to get a recur-

rence for one of the above sums we have to know that the summands satis�es this recurrence

outside of the summation range. For which of the summands does the recurrence hold?

We have the following general problem. Given a (not necessarily proper) hypergeometric

function F (n;k) and the rational functions R

i;j

= F (n � i;k � j)=F (n;k), show that the

recurrence relation

P

i;j

a

i;j

R

i;j

= 0 implies the recurrence relation

P

i;j

a

i;j

F (n� i;k� j) = 0.

The argument we used in Theorem 2.8 to prove this for proper hypergeometric functions

cannot be applied here: it is no longer true that F (n;k) 6= 0 implies that every R

i;j

is well-

de�ned. Just consider the binomial coe�cients

�

0

0

�

and

�

�1

0

�

. Of course one could �nd those

critical values and (if there are only �nitely many) check that the recurrence holds for them

by plugging in and evaluating, but we would prefer a more general and less tedious method.

In the following we present several ways of extending | not necessarily k-free | recurrences

to singular values. We will take advantage of the more general de�nition of term evaluation.

A proper hypergeometric function F

t

(n;k) is de�ned for almost all complex values of n and k

and a recurrence found by Sister Celine's technique holds for all these values.
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2.7.1 Binomials as Polynomials

Recall that for every �xed integer k the binomial coe�cient

�

n

k

�

is a polynomial in n of degree

at most k. Therefore any polynomial recurrence like

�

n

k

�

�

�

n � 1

k

�

�

�

n � 1

k � 1

�

;

for �xed integer k, is a polynomial in n. If this polynomial is zero for enough values of n,

then it is identically zero. We already know that for every �xed integer k the Pascal triangle

recurrence holds for all n 2 C n f�1;�2; : : :g, so the polynomial is zero and therefore the

recurrence also holds for n 2 f�1;�2; : : :g. This is called a proof by polynomial argument.

The polynomial argument also works for the summand of (2.20), which for �xed integers n

and i is a polynomial in j, and of (2.21), a polynomial in i for �xed integers n and j. But

it fails for (2.22), as it fails for all binomial terms that do not have a variable in the upper

argument of every binomial coe�cient that does not occur in any lower argument.

2.7.2 Limits of Proper Hypergeometric Functions

Taking limits of proper hypergeometric functions is the most frequently used method. It is

based on the fact that every proper hypergeometric function F

t

(n;k) is continuous in D

t

.

Now let F (n;k) be an extension of F

t

(n;k), i.e. let F be a function de�ned on D � D

t

such

that F and F

t

coincide on D

t

. Suppose we have the recurrence

X

(i;j)2S

a

i;j

F

t

(n� i;k� j) = 0

for F

t

and we want to show that it also holds for F at the value (n;k) 2 D with (n;k) =2 D

t

.

For this purpose we take a sequence (n

l

;k

l

)

l2N

such that (n

l

;k

l

) 2 D

t

and (n

l

� i;k

l

� j) 2 D

t

for all l and for all (i; j) and such that lim

l!1

(n

l

;k

l

) = (n;k). If lim

l!1

F

t

(n

l

� i;k

l

� j) =

F (n � i;k� j) for all (i; j), it follows from the continuity of the polynomial coe�cients a

i;j

that

X

(i;j)2S

a

i;j

F (n� i;k� j) = 0:

We have quite a freedom of how to take the limit, we even may take iterated limits. Note that

depending on how the limit is taken we possibly get di�erent results, e.g., for (n; i; j) 2Z

3

we

have

lim

~

i!i

(

~

i+ j)!

2

(2n�

~

i� j)!

2

~

i!

2

j!

2

(n�

~

i)!

2

(n� j)!

2

=

�

i+ j

j

�

2

�

2n � i� j

n � j

�

2

lim

~

j!j

(i+

~

j)!

2

(2n� i�

~

j)!

2

i!

2

~

j!

2

(n� i)!

2

(n�

~

j)!

2

=

�

i+ j

i

�

2

�

2n� i� j

n� i

�

2
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The method of taking limits again fails for the summand of (2.22), and we were incapable of

�nding a general method that shows that a recurrence for the factorial term also holds for this

summand. It is interesting that the recurrence we found via Sister Celine's technique holds

for the summand of (2.22), as we have shown by plugging in the critical values. It is a open

question, if there exists some other general method that is able to establish this.

As a by-product note that we are able to give a di�erent proof of Theorem 2.8 by simply

taking a limit whenever one of the rational functions R

t;i;j

is not de�ned.

2.7.3 Introducing a New Variable

We now show that with a simple trick | introducing a new variable into the term and then

taking a limit | we can always overcome the problem of singularities.

It is possible to get a recurrence for the function

�

n

n

�

that holds for all values n 2 C in the

following way. First �nd a recurrence for the more general function

�

n+�

n

�

: the recurrence we

get is nF (n) = (n + �)F (n � 1). This recurrence holds for all values of n 2 C and for all

nonzero and su�ciently small � 2 C . If we let � ! 0 we get for every n 2 C the recurrence

nF (n) = nF (n � 1) for

�

n

n

�

.

As another example take

(i+j+�)!

i!j!

. Every recurrence for this function yields in the limit �! 0

a recurrence for the function

F (i; j) =

(

0 if i or j is a negative integer

�

i+j

i

�

otherwise.

In this way we compute a recurrence that holds for the summand F (n; i; j) of (2.22). First

�nd a recurrence for

~

F (n; i; j; �) =

(i+ j + �)!

2

(2n� i� j + �)!

2

i!

2

j!

2

(n� i)!

2

(n� j)!

2

:

Since this recurrence holds for all integer values of n; i; j if � is not an integer, and since

lim

�!0

~

F (n; i; j; �) = F (n; i; j), we get a recurrence for F (n; i; j).

This method is general enough to �nd recurrences for every binomial summand. Unfortunately

a new variable usually increases the computation time a lot, so this method should be used

with care. However, it is interesting to note that with a modi�cation of this method we are

able to transform sums with certain nonstandard boundary conditions into sums with standard

boundary conditions (see Subsection 3.4).

2.8 Summary

We give a summary of the main results of this chapter.
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� In Section 2.1 we de�ned Sister Celine's technique, which is a method to compute a

k-free recurrence

X

(i;j)2S

a

i;j

(n)F (n� i;k� j) = 0 (2.23)

for a hypergeometric function F .

� In Section 2.2 we gave some basic de�nitions: proper hypergeometric functions (F

t

),

structuresets (S), and k-free recurrences.

� In Section 2.3 we investigated the central step of Sister Celine's technique: the transfor-

mation of the Ansatz (2.23) into a polynomial equation

P

a

i;j

(n)p

i;j

(n;k), the so-called

associated polynomial. Using the concept of boundary points, we were able to give an

explicit formula for the total degree in k of the associated polynomial.

� In Section 2.4 we proved that every proper hypergeometric function satis�es a k-free

recurrence relation.

� In Section 2.5 we showed that P-maximal structuresets and Verbaeten completion im-

prove the performance of Sister Celine's technique signi�cantly.

� Section 2.6 is devoted to Verbaeten's existence theory for the special case of a single

summation variable.

� In Section 2.7 we investigated the relationship between proper hypergeometric functions

and binomial functions.



Chapter 3

Sister Celine's Technique:

Summation, Certi�cation, and

Generalizations

3.1 Introduction

At the beginning of Chapter 2 we already gave an example of how to compute a recurrence for

a multiple sum

P

k

F (n;k) from a k-free recurrence for the summand F (n;k): by summing

over the k-free recurrence. In this chapter we will investigate this in more detail. In particular,

we will show that we can always transform a k-free recurrence into a certi�cate recurrence,

i.e., a recurrence (in operator notation) of the form

S(n;N) +

r

X

l=1

�

k

l

S

l

(3.1)

where the S

l

themselves are polynomial recurrence operators. This certi�cate recurrence has

the appropriate form for summation: it immediately yields a recurrence for the multiple sum.

Moreover, the certi�cate recurrence certi�es that the sum satis�es this recurrence, since we

can easily verify that a hypergeometric function F is annihilated by (3.1). The certi�cate

recurrence is therefore a computer generated proof.

Di�erent from our approach that uses only polynomial recurrence operators, Wilf and Zeil-

berger ([WZ92a], [WZ92b]) use rational functions for certi�cation, i.e., they present the re-

currence operator for the summand in the form

S(n;N) +

r

X

l=1

�

k

l

p

l

(n;k)

q

l

(n;k)

where the p

l

and q

l

are polynomials (in this context interpreted as multiplication operators).

This rational function approach is more general than the polynomial recurrence operator

39
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approach, but this is not necessarily an advantage. We do not only think that certi�cate

recurrences are simpler (we do not have to bother about the singularities of the rational

functions), but that they are also algorithmically favourable.

The main point is that contrary to the univariate case, there does not exist an e�ective al-

gorithm to compute the rational function certi�cates. The algorithm presented in [WZ92a]

does not solve the main problem | guessing the denominator polynomials q

l

(see Subsec-

tion 3.5.2) | satisfactorily. But in Section 3.5 we describe a generalization of Sister Celine's

technique, which automatically �nds certi�cate recurrences, and this algorithm turns out to

be very e�cient.

From now on we use the operator notation introduced in Section 1.2 for recurrences. Let

F (n;k) be a function that satis�es a k-free recurrence relation

X

(i;j)2S

a

i;j

(n)F (n� i;k� j) = 0:

As usual we denote by N , K

i

the forward-shift operators in the variables n, respectively k

i

.

We can write the recurrence in operator form

�

X

(i;j)2S

a

i;j

(n)N

�i

K

�j

�

F (n;k) = 0: (3.2)

To get rid of shift operators with negative exponents we multiply (3.2) with N

�I

K

�J

, where

I = min

(i;j)2S

�i and J

s

= min

(i;j)2S

�j

s

. Thus we have

P (n;N;K)F (n;k) = 0:

where P is an element of R[n]hN;Ki (R is the ring over which the polynomials a

i;j

are de�ned

| for proper hypergeometric functions this is C [�]).

Note that in a large part of the next sections the given summand does not need to be (proper)

hypergeometric any more. It usually su�ces that F (n;k) satis�es a k-free recurrence relation.

3.2 Certi�cate Recurrences

The recurrence (2.2) for the trinomial function from the beginning of Chapter 2 equals

1

(x + yI + zIJ � NIJ)F (n; i; j) = 0:

Let us see how we can transform this recurrence into a certi�cate recurrence. First divide the

recurrence operator by (J � 1) (the division is commutative since the recurrence is free of j)

such that the recurrence operator equals

x+ yI + zI �NI + (J � 1) (zI �NI):

1

Here I is the shift operator in the variable i, not the identity operator, which will be written as unit 1.
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The remainder of this division is free of J and we divide it by (I � 1) and get the recurrence

operator in certi�cate form:

x+ y + z �N + (I � 1) (y+ z �N) + (J � 1) (zI �NI): (3.3)

This transformation is not unique: dividing �rst by (I � 1) and then by (J � 1) gives di�erent

delta parts. But the principal part, here x+ y + z �N , is always the same.

This certi�cate recurrence has the appropriate form for summation: if we sum then the cer-

ti�cate parts telescope and, if the summation bounds are naturally induced, the principal

part of the certi�cate recurrence yields a homogeneous recurrence relation for the sum (see

Section 3.3). So the advantages of certi�cate recurrences are that they are as easily veri�able

as k-free recurrences and, more important, that we can directly read o� a recurrence for the

sum from the principal part.

De�nition 3.1. Let n;k = (k

1

; : : : ; k

r

) be variables, N;K = (K

1

; : : : ; K

r

) the forward-shift

operators in these variables, and R a ring. A certi�cate recurrence operator over R in n with

delta parts in k is an element of R[n;k]hN;Ki of the form

P (n;N) +

r

X

i=1

(K

i

� 1)S

i

(n;k; N;K);

where S

i

2 R[n;k]hN;Ki, and P 2 R[n]hNi. We call P the principal part of the certi�cate

recurrence. A certi�cate recurrence operator is nontrivial i� its principal part does not equal

zero.

It is important to keep in mind that the delta parts may contain the summation variables.

If we expand the delta parts in a certi�cate recurrence we get an ordinary (but not k-free)

recurrence operator. Of course many properties of k-free recurrences, like the relationship

between a recurrence for the R

t;i;j

and a recurrence for F

t

or the possibility of taking limits

to prove that a recurrence holds for an extended function, are equally valid for certi�cate

recurrences.

Let us now give a proof that such a certi�cate form can always be computed from a k-free

recurrence. This is done as in the example above by dividing the recurrence operator �rst

by (K

1

� 1), the remainder of this division by (K

2

� 1), and so on. The remainder of the

last division is free of all K

l

and forms the principal part. The problem is that a division by

(K

l

� 1) can yield a trivial remainder. This problem was neglected in [WZ92a], but we can

overcome this by a simple \noncommutative trick". The key is the behaviour of an operator

of the form (K � 1)S by left-multiplication with k:

k(K � 1)S = kKS � kS = K(k � 1)S � kS � (k � 1)S + (k � 1)S

= (K � 1)(k � 1)S � S:

This can be generalized and completes the proof of the main theorem of [WZ92a].
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Theorem 3.2. Let F (n;k), k = (k

1

; : : : ; k

r

), be a function that is annihilated by a recurrence

operator P 2 R[n]hN;Ki, free of k. Then F is also annihilated by a nontrivial certi�cate

recurrence operator in n with delta parts in k, and it can be constructed from P by successive

divisions by (K

l

� 1), l from 1 to r.

Proof. We show that for every l 2 [1 : : r+1] we can �nd S

j

2 R[n;k]hN;K

j

; : : : ; K

r

i for every

j 2 [1 : : l� 1] and a nontrivial R

l

2 R[n]hN;K

l

; : : : ; K

r

i such that

P

l

=

l�1

X

j=1

(K

j

� 1)S

j

(n;k; N;K

j

; : : : ; K

r

) + R

l

(n;N;K

l

; : : : ; K

r

): (3.4)

annihilates F . The theorem follows from this since P

r+1

is the desired certi�cate recurrence.

We prove the claim inductively: For l = 1 take P

1

= R

1

= P .

Assume that for some l 2 [1 : : r] we have an recurrence operator P

l

of the form (3.4) that

annihilates F . We show that by division of R

l

by (K

l

� 1) we can construct the recurrence

operator P

l+1

.

Let S 2 R[n]hN;K

l

; : : : ; K

r

i and i 2 N

0

be such that R

l

= (K

l

�1)

i

S and S is not divisible by

(K

l

� 1). If i > 0 then we multiply R

l

with k

i

l

, the i-th falling factorial of k

l

, from the left and

get with the rules of noncommutative multiplication and the abbreviation

�

S for (K

l

� 1)

i�1

S,

k

i

l

R

l

= k

i

l

K

l

�

S � k

i

l

�

S = K

l

(k

l

� 1)

i

�

S � (k

l

� 1)

i

�

S + (k

l

� 1)

i

�

S � k

i

l

�

S

= (K

l

� 1)(k

l

� 1)

i

�

S � (k

i

l

� (k

l

� 1)

i

)

�

S

= (K

l

� 1)(k

l

� 1)

i

�

S � i(k

l

� 1)

i�1

�

S:

The last term can be reduced according to the same scheme, and �nally we get, including the

case i = 0,

k

i

l

R

l

= (K

l

� 1)

�

i

X

m=1

(�1)

m�1

i

m�1

(k

l

�m)

i�(m�1)

(K

l

� 1)

i�m

S

�

+ (�1)

i

i!S:

Since S is not divisible by (K

l

� 1) we can write (�1)

i

i!S = (K

l

� 1)

�

S

l

+ R

l+1

, where

�

S

l

2 R[n]hN;K

l

; : : : ; K

r

i and R

l+1

2 R[n]hN;K

l+1

; : : : ; K

r

i is nontrivial.

Multiplying the whole recurrence P

l

with k

i

l

from the left we therefore get the recurrence

l�1

X

j=1

(K

j

� 1) k

i

l

S

j

+ (K

l

� 1)

�

�

S

l

+

i

X

m=1

(�1)

m�1

i

m�1

(k

l

�m)

i�(m�1)

(K

l

� 1)

i�m

S

�

+ R

l+1

(n;N;K

l+1

; : : : ; K

r

)

that annihilates F . This is the recurrence operator P

l+1

of the form (3.4).
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Corollary 3.3. (The fundamental theorem of hypergeometric summation, [WZ92a].) Every

proper hypergeometric function F

t

(n;k) satis�es a nontrivial certi�cate recurrence in n with

delta parts in k.

Note that for terms with only one summation variable k it is possible to settle the problem

of a possibly vanishing remainder in a di�erent way. In [GKP94] and [PWZ96] it is proved,

assuming that F is hypergeometric (this is not required in the above proof), that in this case

a k-free recurrence for F with lower order in K exists. A generalization of this argument

to the multivariate case fails. Furthermore note that the case that a division yields a trivial

remainder is a hypothetical one: this never happened in any example we considered.

Algorithmically the division of a recurrence by a factor (K�1) is just a sequence of additions,

since

J

X

j=0

a

j

K

j

= (K � 1)

�

J�1

X

j=0

�

J

X

i=j+1

a

i

�

K

j

�

+

J

X

j=0

a

j

:

Under the assumption that no remainder vanishes, the principal part of the certi�cate recur-

rence we get from the k-free recurrence

P

a

i;j

N

i

K

j

equals

P

i

(

P

j

a

i;j

)N

i

. We see that in this

case the principal part is independent of the order in which the divisions are performed.

It is also possible to consider k-free recurrence operators of the more general form

P

(i;j)2S

a

i;j

(n)N

�i

K

�j

with an arbitrary structureset set S. Such a recurrence can analo-

gously be transformed into a principal part plus delta parts, where the principal part is now

of the form

P

i

b

i

(n)N

�i

K

�J(i)

with J

l

(i) = max

(i;j)2S

j

l

.

Assuming that no remainder vanishes, the certi�cate recurrences computed from k-free recur-

rences have the property that the polynomial coe�cients of the recurrence operators in the

delta parts are again free of the summation variables. This is a superuous property since

only the principal part of a certi�cate recurrence has to be free of the summation variables. It

is likely that an algorithm, which looks for certi�cate recurrences with delta parts containing

the summation variables, �nds much simpler recurrences. Indeed, although there is no direct

existence theory for this kind of recurrences, such an algorithm turns out to be very e�cient

(see Section 3.5).

3.3 Summation with Standard Boundary Conditions

In this section we deal with summation of functions with standard boundary conditions. The

summation range of such a sum is the support of the function and outside of this support

there are enough values for which the function is de�ned. So we can sum the recurrence over

a larger domain and get a homogeneous recurrence relation for the sum.

As an example, consider again the trinomial sum f(n) =

P

i

P

j

�

n

j

��

j

i

�

x

i

y

j�i

z

n�j

. We already

know that the summand F (n; i; j) is annihilated by the certi�cate recurrence operator (3.3).

The fundamental property of certi�cate recurrences and of summation with standard boundary

conditions is that if we sum the recurrence over a domain that is somewhat larger than the
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support of the function, then the delta parts telescope and the boundary values are not in the

support and vanish. Let us apply the recurrence operator (3.3) to F and sum for i and j from

�1 to 1:

1

X

i=�1

1

X

j=�1

�

(x+ y + z)F (n; i; j)� F (n+ 1; i; j)

+ (I � 1)

�

(y + z)F (n; i; j)� F (n + 1; i; j)

�

+ (J � 1)

�

zF (n; i+ 1; j)� F (n + 1; i+ 1; j)

�

�

= 0: (3.5)

The (I� 1) part telescopes and since lim

i!1

F (n; i; j) = lim

i!�1

F (n; i; j) = 0 for all n 2 N

0

and j 2Zwe get

1

X

i=�1

1

X

j=�1

(I � 1)

�

(y + z)F (n; i; j)� F (n + 1; i; j)

=

1

X

j=�1

�

lim

i!1

((y+z)F (n; i; j)�F (n+1; i; j))� lim

i!�1

((y+z)F (n; i; j)�F (n+1; i; j))

�

= 0;

and similarly the sum of the (J�1) part vanishes. Thus (3.5) yields a homogeneous recurrence

relation for the sum: (x+ y + z)f(n)� f(n+ 1) = 0.

We now de�ne the functions that allow summation with standard boundary conditions: those

are called the admissible functions. This important notion was introduced and investigated

by Wilf and Zeilberger in [WZ92a] (although we here give a slightly more general de�nition).

We will here and in the following assume that F is only a function of n and k and does not

involve any additional parameter. It is easily seen that the following de�nitions and theorems

can be generalized in a straightforward way to functions F (n;k;�).

De�nition 3.4. Let F (n;k) be a function de�ned on D � Z

r+1

, let P (n;k; N;K) 2

R[n;k]hN;Ki be a recurrence operator, and let I 2 N

0

and J 2 N

r

0

be the orders of P in

n respectively k.

� The set

N

F

:= fn 2Zj 8i 2 [0 : : I ] 9k such that (n+ i;k) 2 Dg

is called the range of n. For every n 2 N

F

we de�ne

Supp

F

(n) = fk j (n;k) 2 D and F (n;k) 6= 0g

Summ

F;I;J

(n) = fk j (n+ i;k+ j) 2 D for all i 2 [0 : : I ] and j 2 [0 : :J]g;

the support, respectively the summation range of F .

� The function F is called summable w.r.t. the recurrence P i�
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{ for all n 2 N

F

we have n + 1 2 N

F

, and

{ for all n 2 N

F

all the sums in

X

k2Summ

F;I;J

(n)

P (n;k; N;K)F (n;k)

exist.

� The function F is called admissible w.r.t. the recurrence P i� for all n 2 N

F

and for all

i 2 [0 : : I ] and j 2 [0 : :J] we have

Supp

F

(n + i)� j � Summ

F;I;J

(n):

Note that the summation range Summ

F;I;J

(n) is de�ned such that we formally can form the

sum

P

k2Summ

F;I;J

(n)

P (n;k; N;K)F (n;k), and the summability condition assures us that this

sum actually exists. The summability condition is only necessary if the support of F is in�nite.

If F is summable w.r.t. a k-free recurrence P this merely means that for all n 2 N

F

the sum

P

k2Supp

F

(n)

F (n;k) exists. The most important condition is admissibility: it guarantees us a

large enough zone of zeros around the support of F .

It is easy to see that the most important case, i.e., an everywhere de�ned function with

compact support, is summable and admissible w.r.t. to every recurrence. But the de�nition

is more general, in�nite convergent sums and in�nite formal power series are included as well

as the de�nition for standard summation given in [WZ92a].

Nearly all the interesting identities, which we prove in Chapter 5, involve sums with standard

boundary conditions. For example, the summands of the sums

X

k

X

j

�

n

k

��

n+ k

k

��

k

j

�

3

; and

1

X

r=0

(�1)

r

z

n+2r

2

n+2r

r! �(n+ r + 1)

;

are admissible and summable functions and both sums range over the support of the summand.

Below we prove that for such sums the principal part of a certi�cate recurrence operator

annihilating the summand is a recurrence operator annihilating the sum.

Let F (n;k) be annihilated by the k-free recurrence operator

P

I

i=0

P

J

j=0

a

i;j

(n)N

i

K

j

with

orders I in n and J in k. The de�nition of a summable and admissible function is exactly

what is needed to compute a homogeneous recurrence relation for the sum

f(n) =

X

k2Supp

F

(n)

F (n;k):

The summation range Summ

F;I;J

(n) is de�ned such that the recurrence can be summed, so if

F is summable w.r.t. the recurrence we get

I

X

i=0

J

X

j=0

a

i;j

(n)

X

k2Summ

F;I;J

(n)

F (n + i;k+ j) = 0
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and if the function is admissible w.r.t. the recurrence then we have

X

k2Summ

F;I;J

(n)

F (n + i;k+ j) =

X

k2Supp

F

(n+i)�j

F (n + i;k+ j) = f(n+ i)

and we get the following recurrence relation for f(n):

I

X

i=0

�

J

X

j=0

a

i;j

(n)

�

f(n + i) = 0:

The problem is that the coe�cients of this recurrence, i.e., the sums of the polynomials, may

all be zero, so that we get no recurrence at all. But using certi�cate recurrences instead, we

always get a nontrivial recurrence for the sum.

Theorem 3.5. Let the function F (n;k), de�ned on D �Z

r+1

, be annihilated by the nontrivial

certi�cate recurrence operator P = S

0

(n;N) +

P

r

i=1

(K

i

� 1)S

i

2 R[n;k]hN;Ki. Let F be

admissible and summable w.r.t. the recurrence P (expanded to normal form). Then the sum

f(n) =

X

k2Supp(n)

F (n;k);

de�ned on N

F

, is annihilated by S

0

(n;N) 2 R[n]hNi.

Proof. If we expand the delta operators the certi�cate recurrence can be written in normal

form as

P =

I

X

i=0

J

X

j=0

a

i;j

(n;k)N

i

K

j

with certain polynomials a

i;j

(n;k) 2 R[n;k]. It is easily seen (cf. Theorem 3.7) that the

principal part of the certi�cate recurrence equals

S

0

(n;N) =

I

X

i=0

J

X

j=0

a

i;j

(n;k� j)N

i

:

Therefore all the polynomials

P

J

j=0

a

i;j

(n;k � j) are free of k and at least one of them is

nonzero. Thus we can, as above, sum the whole recurrence relation over the summation range

and interchange the polynomial coe�cients and the summation sign as follows

I

X

i=0

J

X

j=0

X

k2Summ

F;I;J

(n)

a

i;j

(n;k)F (n+ i;k+ j) =

I

X

i=0

J

X

j=0

X

k2Supp(n+i)

a

i;j

(n;k� j)F (n+ i;k) =

I

X

i=0

�

J

X

j=0

a

i;j

(n;k� j)

�

X

k2Supp(n+i)

F (n + i;k) = 0:

Therefore f(n) is annihilated by S

0

(n;N).



CHAPTER 3. SISTER CELINE'S TECHNIQUE | PART 2 47

3.4 The Problems with Nonstandard Boundary Conditions

Unfortunately there are multiple sums that do not �t into the above standard summation

framework. This means that we either do not sum over the support of the summand or that

the summand is not de�ned for su�ciently many values outside of the support. We can still

sum the recurrence but we will usually get an inhomogeneous recurrence relation for the sum.

Telescoping eliminates only one summation sign, so the inhomogeneous parts of the recurrence

will themselves be sums. Two simple examples for nonstandard summation that have closed

form evaluations are (see Sections 5.5 and 5.6)

X

i

n

X

j=0

�

i+ j

i

�

2

�

4n� 2i� 2j

2n � 2i

�

= (2n+ 1)

�

2n

n

�

2

(3.6)

X

k

1

X

k

2

�k

1

(k

1

� k

2

)

�

n

k

1

��

n

k

2

�

= n 4

n�1

�

3

2

�

n�1

(2)

n�1

: (3.7)

Computing a recurrence for a sum with nonstandard boundary conditions can be a tedious

task, as can be seen from the following example.

Suppose the summand of (3.6), denoted by F (n; i; j), is annihilated by the certi�cate recur-

rence operator

P

p

a

p

(n)N

p

+(I�1)S

1

+(J�1)

P

p;q

b

p;q

(n; i; j)N

p

J

q

. We apply the operator

to F and �rst sum over all integers i and the (I � 1) part vanishes. Then we sum w.r.t. j

from 0 to n and get the following inhomogeneous recurrence relation for the sum f(n):

X

p

a

p

(n)f(n+ p) �

X

p

a

p

(n)

X

i

n+p

X

j=n+1

F (n + p; i; j) +

X

i

X

p;q

b

p;q

(n; i; n+ 1)F (n+ p; i+ q; n+ 1) �

X

i

X

p;q

b

p;q

(n; i; 0)F (n+ p; i+ q; 0) = 0:

(3.8)

The last three sums are the boundary values and have to be simpli�ed, e.g., by computing a

closed form or by �nding a recurrence relation annihilating them all. This is usually a tedious

and nontrivial task. Because of these di�culties we will compute sums with nonstandard

boundary conditions only if the recurrences are simple.

There is an alternative approach to sums with nonstandard boundary conditions. We can use

the method already mentionend in Subsection 2.7.3: introducing a new variable. With this

method we are able to �nd homogeneous recurrence relations for sums with certain summation

bounds automatically. The disadvantage is that the recurrences are rather huge.

Let t be a proper hypergeometric term in the variables n and k, and let � be a variable not

occurring in t. Suppose that we are given a summation range S(n) that is de�ned as a convex

set of the form

S(n) = fk 2Z

r

j f

i

n+ g

i

� k+ h

i

� 0 for i = [1 : :M ]g (3.9)
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where M 2 N, f

i

2 Z, g

i

2 Z

r

, and h

i

2 C . Suppose also that F

t

is well-de�ned in S(n). We

want to compute a homogeneous recurrence relation for the sum

f(n) =

X

k2S(n)

F (n;k):

Let

~

t be the proper hypergeometric term that is obtained if we replace in t every numerator

factorial expression (a

p

n+b

p

�k+ c

p

) that is zero or a negative integer for some (n;k) 2Z

r+1

by (a

p

n+ b

p

� k+ c

p

+ �). Thus F

~

t

is well-de�ned for all integer values of n and k as long as

� is nonzero and small. Now de�ne the term s as

s =

~

t

M

Y

i=1

�(f

i

n+ g

i

� k+ h

i

+ �+ 1)

�(f

i

n+ g

i

� k+ h

i

+ 1)

:

The proper hypergeometric function F

s

of s is well-de�ned for every integer tuple (n;k) 2

Z

r+1

for su�ciently small nonzero �. We de�ne the function F (n;k) for (n;k) 2 Z

r+1

as

lim

�!0

F

s

(n;k), and get

F (n;k) =

(

F

t

(n;k) if k 2 S(n)

0 if k =2 S(n):

The sum of F over S(n) now has standard boundary conditions, thus a recurrence relation

for F immediately gives us a homogeneous recurrence relation for f(n). A recurrence for F

can be found by setting � to zero in a recurrence for F

s

. Note that the recurrence is nontrivial

(if � divides every term of the recurrence then it can be cancelled), but it might happen

that the principal part of a certi�cate recurrence vanishes (although this was never observed).

However, using k-free recurrences, we can always �nd a homogeneous recurrence relation for

a nonstandard sum of this type.

We have just proved

Theorem 3.6. Let F (n;k) be a proper hypergeometric function, and let S(n) be a summation

range as de�ned in (3.9). Then the sum

P

k2S(n)

F (n;k) satis�es a homogeneous polynomial

recurrence relation.

In order to get a homogeneous recurrence relation for (3.7) we only have to �nd a recurrence

for

(k

1

� k

2

)

n!

2

(k

1

� k

2

+ �)!

k

1

!(n� k

1

)!k

2

!(n� k

2

)!(k

1

� k

2

)!

:

It is not always necessary to multiply the term with new factors. Sometimes it is su�cient to

introduce the � into an already existing factorial expression, e.g., the term

(i+ j + �)!

2

(4n� 2i� 2j + �)!

i!

2

j!

2

(2n� 2i)!(2n� 2j)!

transforms (3.6) into a sum with standard boundary conditions.
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3.5 Generalizations of Sister Celine's Technique

Even with P-maximal structuresets, the ability of Sister Celine's technique to �nd recurrences

for multiple sums is poor. The k-free recurrences are usually large, and we need a lot of time

to �nd them. Therefore there is a need for faster algorithms. In this section we introduce

two algorithms that are generalizations of Sister Celine's technique. It was already mentioned

that the certi�cate recurrences computed with Sister Celine's technique have the superuous

property that the recurrence operators in the delta parts are (nearly always) free of the sum-

mation variables. The main idea for generalizations is that we look for certi�cate recurrences

with the property that only the principal part is free of the summation variables.

First we show that under certain conditions every polynomial recurrence | and not only k-free

recurrences | can be transformed into a certi�cate recurrence. The fact that nearly all these

conditions correspond to systems of linear equations enables us to state the �rst generalization.

Then we show that a part of the transformation into a certi�cate recurrence can be done a

priori. This is our second generalization. Both algorithms use P-maximal structuresets, and

it turns out that this is essential for their performance.

Unfortunately for none of the two generalizations we have an existence theory. The criterion we

used for k-free recurrences | the size of the equation system | fails. A nontrivial certi�cate

recurrence by de�nition has a nontrivial principal part, but not every solution of the linear

equation systems (the central part of both algorithms is again the computation of the nullspace

of a linear equation system) yields such a nontrivial principal part. This implies that there is

no guarantee that any simpler certi�cate recurrence can be found. Hence our algorithms have

to prove their value empirically: our implementations were able to solve dozens of examples

(e.g., most identities that are proved in Chapter 5) that are beyond the computational power

of Sister Celine's technique.

To get an impression for the observation that certi�cate recurrences whose delta parts contain

the summation variables can be considerably simpler, compare the k-free recurrence given

in Section 2.5 with the following, much simpler, \non-k-free" certi�cate recurrence operator

annihilating (�1)

k

�

2n

k

�

3

:

6(2n+ 1)

2

(3n+ 1)(3n+ 2) + 2(n+ 1)

2

(2n+ 1)

2

N �

�

k

(�14 + 9k� 24k

2

� 132n+ 135kn� 63k

2

n � 518n

2

+ 306kn

2

� 42k

2

n

2

� 816n

3

+

192kn

3

� 440n

4

+ (35 + 57k + 24k

2

+ 114n+ 165kn+ 63k

2

n + 122n

2

+ 138kn

2

+

42k

2

n

2

+ 48n

3

+ 24kn

3

+ 8n

4

) K � 2(1 + n)

2

(1 + 2n)

2

N � 2(1 + n)

2

(1 + 2n)

2

KN):

Note that the above recurrence yields a �rst order recurrence for Dixon's sum f(n) =

P

k

(�1)

k

�

2n

k

�

3

:

f(n+ 1) = �3

(3n+ 1)(3n+ 2)

(n+ 1)

2

f(n):

For nearly all double sum examples we considered, we found \non-k-free" certi�cate recur-

rences that are far simpler than the \k-free" certi�cate recurrences (if we were able to compute
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them at all). We give two simple double sum examples to illustrate this. The summand of

the double sum in

X

i

X

j

�

r

i

��

s

j

��

t

n� i� j

�

=

�

r + s + t

n

�

; (3.10)

a generalization of the Vandermonde identity, is annihilated by the k-free certi�cate recurrence

operator (the simplest we have found)

(n � r � s � t) + (3n� 2r � 2s� 2t+ 3)N + (3n� r � s � t + 6)N

2

+ (n+ 3)N

3

+

�

i

((n� s� t + 1)N + (n� s + 2)N

2

+ (n� t+ 2)N

2

J + (n+ 3)N

3

J) +

�

j

((n� r � t + 1)N + (2n� r � t + 4)N

2

+ (n+ 3)N

3

);

and also by the non-k-free certi�cate recurrence operator

(n� r � s � t) + (n+ 1)N + �

i

(iN) + �

j

(jN): (3.11)

The summand of the double sum in

X

i

X

j

(�1)

i+j

�

i+ j

i

��

n

i

��

n

j

�

= 1 (3.12)

(a special case of an orthogonality relation, see Subsection 4.1.2) is annihilated by the k-free

recurrence operator

(n+ 1) � (2n+ 3)N + (n+ 2)N

2

+

�

i

((n+ 1)� (n+ 1) J

2

+ (n+ 1) I � 2 (n+ 1) IJ + (n+ 1) IJ

2

� (2n+ 3)NJ +

(2n+ 3)NIJ � (2n+ 3)NIJ

2

+ (n+ 2)N

2

J

2

(n + 2)N

2

IJ

2

) +

�

j

(�(2n+ 3)N + (n+ 2)N

2

+ (n+ 2)N

2

J);

and also by the non-k-free operator

(n+ 1)� (n+ 1)N +

�

i

(�(n+ 2 i+ 1) + (1 + 2 i+ n) J � (n+ 1)NJ) +

�

j

(2 (n� j)� (n+ 1)N):

(3.13)

These simple non-k-free certi�cate recurrences were computed by the Mathematica imple-

mentations of the generalizations of Sister Celine's technique (the functions FindRecurrence

and FindCertificate, see Chapter 4), which are described below. Note that in the above

non-k-free certi�cate recurrences the degree of the polynomials in the summation variables is

quite small, at most 1 or 2.

Let us remark here that we have implemented various other generalizations, among them an

algorithm similar to the approach of Wilf and Zeilberger ([WZ92a]) with rational functions as

certi�cates, and a naive direct certi�cate recurrence �nder (without P-maximal structuresets).

But all these programs turned out to be much slower and much more cumbersome to use.
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3.5.1 Recurrences Containing the Summation Variables

Let

I

X

i=0

J

X

j=0

a

i;j

(n;k)N

i

K

j

(3.14)

be a homogeneous polynomial recurrence operator, where the polynomial coe�cient may de-

pend on k. Let us perform the transformation process that leads to a certi�cate recurrence

on it. We divide (3.14) by (K

1

� 1), the remainder of the division by (K

2

� 1), and so on. As-

suming that every remainder is nonzero, we are able to give the remainder of the last division

explicitly. It is easy to see that, in the case of a single summation variable k, we have

I

X

i=0

J

X

j=0

a

i;j

(n; k)N

i

K

j

=

(K � 1)

�

I

X

i=0

J�1

X

j=0

�

J

X

l=j+1

a

i;l

(n; k+ j � l)

�

N

i

K

j

�

+

I

X

i=0

�

J

X

j=0

a

i;j

(n; k� j)

�

N

i

:

In the multivariate case therefore the very last remainder equals

I

X

i=0

�

J

X

j=0

a

i;j

(n;k� j)

�

N

i

: (3.15)

The recurrence (3.14) can be written as a nontrivial certi�cate recurrence in n with delta parts

in k, if the last remainder (3.15) is nontrivial and does not depend on the variables k. This

proves the following theorem.

Theorem 3.7. Let P =

P

I

i=0

P

J

j=0

a

i;j

(n;k)N

i

K

j

2 R[n;k]hN;Ki, for some ring R, be a

nontrivial recurrence operator. If for all i 2 [0 : : I ]

J

X

j=0

a

i;j

(n;k� j) 2 R[n] (3.16)

and if there is an i 2 [0 : : I] such that

J

X

j=0

a

i;j

(n;k� j) 6= 0; (3.17)

then P can be written as a nontrivial certi�cate recurrence in n with delta parts in k, i.e.,

P =

I

X

i=0

�

J

X

j=0

a

i;j

(n;k� j)

�

N

i

+

r

X

l=1

�

k

l

S

l

for some S

l

2 R[n;k]hN;Ki.
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Consider again the identity (3.12). It is easily seen that the summand of its double sum is

annihilated by

2(i+ j + 1) + (n� 2i� 2j � 3)J � (n+ 2i+ 3)I + (n+ 2i+ 3)IJ � (n+ 1)NIJ: (3.18)

The conditions of Theorem 3.7 are ful�lled and, indeed, this recurrence can be written as the

certi�cate recurrence (3.13).

We are able to give an algorithm to �nd non-k-free recurrences that can be written as a

certi�cate recurrence with k-free principal part; informally it is described as follows.

First generalization of Sister Celine's technique.

� The input consists of a proper hypergeometric term t in the hypergeometric variables n

and k = (k

1

; : : : ; k

r

) and the additional parameters �, and a P-maximal structureset S

for t. For the recurrence operator we make an Ansatz of the form

X

(i;j)2S

�

M

i;j

X

l=0

a

i;j;l

(n)k

l

�

N

�i

K

�j

(3.19)

where the M

i;j

2 N

r

0

are degree bounds for the generic polynomials. These degree

bounds have to be given as input, too, since we have no theory that tells us how we

should choose these bounds. We usually set all the degree bounds to a constant.

Note that due to a notational conict | N and K denote forward-shift operators but

our recurrences involve backward shifted terms F (n� i;k� j) | the shift operators in

the Ansatz have negative exponents.

� We have to determine the unknowns a

i;j;l

(n) as polynomials in n and � such that the

recurrence operator can be written as a certi�cate recurrence with a principal part free

of k. Condition (3.16) of Theorem 3.7 for the Ansatz turns into the condition that

X

j2S(i)

M

i;j

X

l=0

a

i;j;l

(n)(k+ j)

l

2 C [n;�]; (3.20)

for every i, where S(i) = fj j (i; j) 2 Sg. By expanding these polynomials and com-

paring the coe�cient of every nontrivial monomial in k with zero, we get for every i

a homogeneous linear equation system (over the integers) for the a

i;j;l

: the reduction

systems. Solving the reduction systems (they always have nontrivial solutions) we get

that some of the a

i;j;l

(the reducible unknowns) can be expressed as linear combinations

of the remaining unknowns (which are linearly independent in the space of solutions of

the reductions systems).

� We replace the reducible a

i;j;l

in the Ansatz by these linear combinations and get

the reduced Ansatz involving a lower number of unknowns. The solutions of this re-

duced Ansatz yield certi�cate recurrences with a k-free principal part, but, since condi-

tion (3.17) can not be used, it is possible that these certi�cate recurrences are trivial.
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� The reduced Ansatz is solved for the remaining unknowns in the usual way: apply the

operator to F

t

(n;k) and divide by F

t

(n;k) to get a rational equation for the unknowns;

multiply with a common denominator, compare the coe�cients of every monomial in

k with zero to get a homogeneous linear equation system for the remaining unknowns.

It remains to write the solutions of this equation system as certi�cate recurrences, can-

celling the trivial ones.

As a remark let us state an open question: is it possible to replace the condition (3.17) of

Theorem 3.7 by an \algorithmically simpler" condition, i.e., a condition that can be used in

the Ansatz before setting up and solving the equation system? If so then it should be possible

to develop an existence theory for non-k-free certi�cate recurrences that is not based on the

existence theorem for k-free recurrences.

3.5.2 A Direct Attack on Certi�cate Recurrences

In this subsection we investigate the possibility of looking directly for certi�cate recurrences.

We consider several approaches, but surprisingly none of them turns out to be better than

the �rst generalization of Sister Celine's technique (Subsection 3.5.1); only one approach |

the one that allows us to use P-maximal structuresets | is equally successful. So in this

subsection we state a negative result: we tried to �nd a signi�cantly faster algorithm than the

�rst generalization and failed.

First let us investigate the method of Wilf and Zeilberger [WZ92a], i.e., we look for a recurrence

operator of the form

I

X

i=0

a

i

(n)N

i

+

r

X

l=1

�

k

l

p

l

(n;k)

q

l

(n;k)

:

The di�culty is that in order to get a linear equation system we have to know (in addition

to the knowledge of a degree bound in k for p

l

) the denominator polynomials q

l

. For the case

of one summation variable it is possible (with Gosper's algorithm) to get this denominator

polynomial. For several summation variables this is a di�cult problem: if we add two arbitrary

rational functions, the cancellation of denominator factors can be arbitrarily complicated. This

problem was not solved in [WZ92a] in a satisfying way | Zeilberger's implementation

2

of this

algorithm requests those denominators as input. Of course there are certain promising ways

of guessing such denominator factors, e.g., one could use the product of denominators of the

rational functions F (n � i;k� j)=F (n;k) for (i; j) from a certain structureset S. But none

of these approaches turned out to be successful. Although we tried hard to write a fast

implementation of the Wilf-Zeilberger method, the programs were di�cult to use, slow, and

yielded results of unmanageable size.

2

available from Zeilberger's homepage: http://www.math.temple.edu/~zeilberg
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The next idea was to use recurrence operators in the delta parts, i.e., to try an Ansatz of the

form

I

X

i=0

a

i

(n)N

i

+

r

X

l=1

�

k

l

X

(i;j)2S

l

b

l;i;j

(n;k)N

i

K

j

(3.21)

for the recurrence operator. How shall we choose the structuresets S

l

? It is quite reasonable

to take the sets that we get when we transform a recurrence

P

I

i=0

P

J

j=0

a

i;j

N

i

K

j

. with a

rectangular structureset S

I;J

into a certi�cate recurrence. It is easy to see that we have to

take S

l

= f(i; 0; : : : ; 0; j

l

; : : : ; j

r

) 2 S

I;J

j (i; 0; : : : ; 0; j

l

+ 1; : : : ; j

r

) 2 S

I;J

g for this purpose.

Although this method is easier to use (and usually faster) than the Wilf-Zeilberger approach, it

is still not not as successful as the generalization of Sister Celine's technique given above. The

reason for this is that we did not use the successful tool for k-free recurrences, the P-maximal

structureset. But it is not possible to use P-maximal structuresets for the Ansatz (3.21) since

the transformation of a recurrence into a certi�cate recurrence inevitably destroys the shape

of the structureset. The structureset of the certi�cate recurrence is larger, but the new points

in it do not yield any additional information.

Instead we have to use an Ansatz of pre-certi�cate form, i.e., a recurrence operator that is

nearly a certi�cate recurrence and allows us to use P-maximal structuresets. Such an Ansatz

has the general form

X

(i;j)2S

0

a

i;j

(n;k)N

i

K

j

+

r

X

l=1

�

k

l

X

(i;j)2S

l

b

l;i;j

(n;k)N

i

K

j

(3.22)

with the additional condition that

P

j

a

i;j

(n;k� j) is free of k (cf. Theorem 3.7). Given an

arbitrary structureset S we have to determine the sets S

i

for i = 0; 1; : : : ; r such that every

recurrence with structureset S can be written in the form (3.22), such that the structureset of

the pre-certi�cate recurrence (i.e., the structureset of the recurrence obtained by expanding

the delta operators in the generic form (3.22)) is not larger than S, and such that the S

i

are

as small as possible. Especially the last condition is vital for the performance of the method

and is di�cult to achieve due to an unpleasant property of (pre-)certi�cate recurrences: a

recurrence can be written as a (pre-)certi�cate recurrence in many di�erent ways.

To �nd the S

i

we have to �nd out how much of the transformation into a certi�cate recurrence

can be done without enlarging the structureset. Let us investigate the transformation of an

arbitrary, not necessarily k-free, recurrence relation

P

(i;j)2S

a

i;j

(n;k)F (n� i;k� j) with an

arbitrary (possibly P-maximal) structureset S into a certi�cate recurrence. The operator

representation of this recurrence is

X

(i;j)2S

a

i;j

(n;k)N

�i

K

�j

: (3.23)

For the sake of simplicity we �rst take only one summation variable, i.e., the recurrence equals

P

(i;j)2S

a

i;j

(n; k)N

�i

K

�j

. Instead of dividing the recurrence by (K � 1), we now regard the
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transformation into a certi�cate recurrence as a reduction problem. It is easily seen that every

monomial a

i;j

(n; k)N

�i

K

�j

can | without enlarging the structureset | be written as

a

i;j

(n; k� 1)N

�i

K

�j�1

+ (K � 1)a

i;j

(n; k � 1)N

�i

K

�j�1

;

if (i; j+1) 2 S. The monomial a

i;j

(n; k�1)N

�i

K

�j�1

can, if (i; j+2) 2 S, be further reduced

and so on until a reduction is no longer possible, that is if eventually (i; j + l) =2 S for some

l 2 N. If we reduce all the monomials of the recurrence in this way completely, we have (with

certain polynomials b

i;j

and c

i;j

)

X

(i;j)2S

a

i;j

N

�i

K

�j

=

X

(i;j)2S

0

b

i;j

N

�i

K

�j

+ (K � 1)

X

(i;j)2S

1

c

i;j

N

�i

K

�j�1

; (3.24)

where S

0

= f(i; j) 2 S j (i; j + 1) =2 Sg and S

1

= f(i; j) 2 S j (i; j + 1) 2 Sg. We see that

the structureset of the r.h.s. of (3.24) is again S. If S is a P-maximal structureset then the

(K � 1)-free part of (3.24) equals

P

i

b

i;max(i)

N

�i

K

�max(i)

where max(i) is the largest j such

that (i; j) 2 S.

This reduction can applied to recurrences with more summation variables than one, but in

order to make the result unique we have to specify the order in which the reductions are

performed. For this purpose we de�ne the reducibility of an element of a structureset.

De�nition 3.8. Let S � Z

r+1

be a structureset, and let p 2 [1 : : r]. An element

(i; j

1

; : : : ; j

p

; : : : ; j

r

) 2 S is said to be reducible to (i; j

1

; : : : ; j

p

+ 1; : : : ; j

r

) w.r.t. to S

and p, i� (i; j

1

; : : : ; j

p

+ 1; : : : ; j

r

) 2 S and there is no q 2 [1 : : r] with q < p and

(i; j

1

; : : : ; j

q

+ 1; : : : ; j

p

; : : : ; j

r

) 2 S. If an element is not reducible w.r.t. S and p for all

p 2 [1 : : r], then it is called irreducible w.r.t. S.

Let (i; j

1

; : : : ; j

r

) 2 S be reducible to (i; j

1

; : : : ; j

p

+ 1; : : : ; j

r

) w.r.t. to S and p. We can also

reduce the corresponding monomial of recurrence (3.23), i.e., we can write

a

i;j

(n;k)N

�i

K

�j

1

1

� � �K

�j

r

r

=
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i;j
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� 1)(a
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1
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�j
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� � �K

�j

r

r

)

without enlarging the structureset. Note that, due to our de�nition of reducibility, this mono-

mial (more exactly, the corresponding element of the structureset) can be reduced in one and

only one way: we cannot reduce it w.r.t. q < p and we may not reduce it w.r.t. q > p.

If we reduce all the monomials in the recurrence (3.23) completely (i.e., we reduce the part

with no (K

p

� 1) in front until it is irreducible), then we can write the recurrence in the form

X
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(n;k)N

�i

K

�j

1

1

� � �K

�j

r

r

+

r

X

l=1

(K

l

� 1)

X

(i;j)2S

l

c

l;i;j

(n;k)N

�i

K

�j

1

1

� � �K

�j

l

�1

l

� � �K
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(3.25)
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with certain b

i;j

; c

l;i;j

2 R[n;k], and

S

0

= f(i; j) 2 S j (i; j) is irreducible w.r.t. Sg

S

l

= f(i; j) 2 S j (i; j) is reducible w.r.t. S and lg:

This is exactly the pre-certi�cate recurrence we were looking for. A part of the transformation

into a certi�cate recurrence has been performed, and this without destroying the shape of the

structureset. Note that jSj =

P

r

i=0

jS

i

j, i.e., we did not introduce any additional monomial

N

i

K

j

. It is interesting to see that if we work with a structureset of the form S

I;J

then (3.25)

is already (up to a shift) in certi�cate recurrence form.

As an example, let us consider the recurrence (3.18). The structureset of this recurrence equals

f(0; 0; 0); (0; 0;�1); (0;�1; 0); (0;�1;�1); (�1;�1;�1)g: (3.26)

We see that (0; 0; 0) and (�1;�1;�1) are irreducible, that (0; 0;�1) and (0;�1; 0) are reducible

to (0; 0; 0), and that (0;�1;�1) is reducible to (0; 0;�1), which in turn is reducible to (0; 0; 0).

For the reducible monomials of the recurrence we have

(n� 2i� 2j � 3)J = (n� 2i� 2j � 1) + (J � 1)(n� 2i� 2j � 1)

(n+ 2i+ 3)I = (n+ 2i+ 1) + (I � 1)(n+ 2i+ 1)

(n+ 2i+ 3)IJ = (n+ 2i+ 1)J + (I � 1)((n+ 2i+ 1)J)

= (n+ 2i+ 1) + (I � 1)((n+ 2i+ 1)J) + (J � 1)(n+ 2i+ 1):

So the recurrence (3.18) can be written as the pre-certi�cate

(n+ 1) � (n+ 1)NIJ + (I � 1)(�(n+ 2i+ 1) + (n+ 2i+ 1)J) + (J � 1)(2(n� j)):

Note that this pre-certi�cate recurrence is actually di�erent from the certi�cate recur-

rence. The decomposition of the structureset (3.26) into structuresets S

0

, S

1

, and S

2

according to (3.25) is: S

0

= f(0; 0; 0); (�1;�1;�1)g, S

1

= f(0;�1; 0); (0;�1;�1)g, and

S

2

= f(0; 0;�1)g.

We are now able to give the second generalization of Sister Celine's technique; informally it

is described as follows.

Second generalization of Sister Celine's technique.

� The input are a proper hypergeometric function F

t

(n;k) and a P-maximal structureset

S for it. We make an Ansatz of the form (3.25) with

b

i;j

(n; k) =

M

i;j

X

m=0

b

i;j;m

(n)k

m

and c

l;i;j

(n; k) =

M

l;i;j

X

m=0

c

l;i;j;m

(n)k

m

:

As before, the degree bounds M

i;j

and M

l;i;j

have to be given by the user.
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� We have to �nd the unknown polynomials such that, when we write the (K

l

� 1)-free

part of the pre-certi�cate recurrence as a certi�cate recurrence, the principal part of this

certi�cate recurrence is free of k. We do this as above, by setting up and solving the

reduction systems for the b

i;j

(n;k), and by reducing the Ansatz.

� The reduced Ansatz is then solved as usual, i.e., by solving a homogeneous linear equa-

tion system.

Let us compare the the pre-certi�cate method with the �rst generalization of Sister Celine's

technique of the previous subsection. If the degree bounds are chosen to be constant, then the

computational power of both generalizations is the same, i.e., they �nd the same solutions. The

advantage of the pre-certi�cate method is that the reduction systems are much smaller. But

since these reduction systems are equation systems over the integers, not much time is spent

to solve them. Indeed, experiments with our Mathematica implementations FindRecurrence

and FindCertificate, which are described in Chapter 4, show that the performances of both

algorithms are nearly identical.

3.6 Summary

We give a short summary of the main results of this chapter.

� In Section 3.2 we introduced the notion of a certi�cate recurrence, i.e., a recurrence

operator of the form S

0

(n;N) +

P

r

l=1

�

l

S

l

(n;k; N;K). We gave the �rst complete

proof that every k-free recurrence can be transformed into a certi�cate recurrence with

nontrivial S

0

.

� In Section 3.3 we investigated sums with standard boundary conditions and showed

that the principal part S

0

(n;N) of a certi�cate recurrence annihilating the summand is

a recurrence annihilating the sum.

� Section 3.4 was devoted to sums with nonstandard boundary conditions.

� In Section 3.5 we gave two e�cient generalizations of Sister Celine's technique. The

�rst generalization is based on the observation that under certain simple conditions also

recurrences that are not necessarily free of the summation variables, can be transformed

into certi�cate recurrences. For the second generalization we used the fact that a part

of the transformation into a certi�cate recurrence can be done a priori.



Chapter 4

My Mathematica Package

MultiSum

4.1 Description of MultiSum

The Mathematica package MultiSum contains functions to generate computer proofs of hy-

pergeometric multisum identities. It is loaded into the Mathematica session by

In[1]:= <<MultiSum.m

Out[1]= MultiSum - Kurt Wegschaider - RISC Linz - 1996-7

The most important function of MultiSum is FindRecurrence, which computes certi�cate

recurrences for a proper hypergeometric function by using the generalization of Sister Celine's

technique as described in Subsection 3.5.1. For proving identities we have two other useful

functions: SumCertificate to extract the recurrence for the sum (with standard boundary

conditions) from a certi�cate recurrence and CheckRecurrence to check whether a proper

hypergeometric function satis�es a recurrence or not. As a very simple example let us see how

we can use the package to prove the trinomial identity

P

i;j

�

n

j

��

j

i

�

x

i

y

j�i

z

n�j

= (x+ y + z)

n

.

In[2]:= FindRecurrence[ Binomial[n,j] Binomial[j,i] x^i y^(j-i) z^(n-j),

n, {i,j}]

Size of equation system : 3x4

Out[2]= {-(x + y + z) F[-1 + n, -1 + i, -1 + j] + F[n, -1 + i, -1 + j] ==

Delta[i, y F[-1 + n, -1 + i, -1 + j] + z F[-1 + n, -1 + i, j] -

F[n, -1 + i, j]] +

58
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Delta[j, z F[-1 + n, -1 + i, -1 + j] - F[n, -1 + i, -1 + j]]}

In[3]:= SumCertificate[%]

Out[3]= {-(x + y + z) SUM[-1 + n] + SUM[n] == 0}

In[4]:= CheckRecurrence[ %, (x+y+z)^n]

Out[4]= {True}

and the identity follows from checking the case n = 0.

As an alternative to FindRecurrence we implemented the functions FindCertificate and

FindRationalCertificate, primarily to test whether algorithms that directly look for certi�-

cates are superior (they are not). Additionally, MultiSum contains several other functions,

like SimplifyRecurrence or CertificateToRecurrence, to support manipulations of recur-

rences.

Computing a recurrence for the summand of a multisum can require a long time, so it is

important to improve that part of the program, that uses the largest amount of time: the

computation of the nullspace of a matrix. Mathematica provides the function NullSpace but

it only works well for very small equation systems. Therefore we replaced it by the function

ENullSpace, written by E. Aichinger, which turns out to be much more e�cient than the

Mathematica built-in algorithm. The most e�cient nullspace function we currently have is

CNullSpace, which was also written by E. Aichinger ([Aic97]). CNullSpace is a Mathematica

function that calls a C program and uses Mathematica's MathLink facility ([Wol93]) and the

computer algebra C library SACLIB ([C

+

93]).

Once installed, CNullSpace can be easily used by typing the following commands.

In[5]:= <<sacLink.m

In[6]:= Setup

--- Usage: CNullSpace [ Matrix ] ---

In[7]:= SetOptions[ MultiSum, EquationSolver -> CNullSpace]

Out[7]= {EquationSolver -> CNullSpace, WZ -> False, Protocol -> Automatic,

TrivialSolutions -> False, VerbaetenBound -> 500,

RepeatedDivision -> True}

By setting the option EquationSolver to the name of an arbitrary nullspace function the user

of MultiSum is free to use any nullspace function he wishes. There are a few other options,
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described in detail later, that regulate the behaviour of the functions of MultiSum, e.g.,

Protocol controls the amount of information (e.g., the size of the equation system) printed

during the computation and WZ is used to switch Verbaeten completion on or o�.

MultiSum also provides the possibility to get online information about the usage of every

function and option, e.g.,

In[8]:= ? FindRecurrence

displays information how to use FindRecurrence.

4.1.1 The Input Structure

All the recurrence �nding programs take as input the summand of the given multiple sum, the

main variable(s), and the summation variable(s). Additionally, the input may contain orders

for the recurrence, structuresets or degreebounds. In the following we describe the structure

of the input.

Every Mathematica symbol can serve as a variable, e.g., n, k1, or var. The main variable(s),

from now on denoted by MainVars, and the summation variable(s), denoted by SumVars,

are either variables or list of variables. The functions look for certi�cate recurrences for the

summand in MainVars with delta parts in SumVars. Thus the resulting recurrence for the

standard sum will be a recurrence in the MainVars. Usually SumVars is a list of variables and

MainVars is a single variable, but occasionally the sum involves two discrete main variables

and it may be of advantage to look for a recurrence in both of them.

The Summand is de�ned, similar to the input for the Paule-Schorn implementation of Zeil-

berger's algorithm ([PS95]), as

Summand := < hgterm >

< hgterm > := < simpleterm >

or Power[ < hgterm > , < integer > ]

or Times[ < hgterm > , < hgterm > ]

< simpleterm > := < rational >

or Binomial[< intlinpoly > , < intlinpoly >]

or Factorial[ < intlinpoly > ]

or Gamma[ < intlinpoly > ]

or Power[ < constrational > , < intlinpoly > ]

where < integer > is an arbitrary integer, < rational > is any rational function, < intlinpoly >

is a polynomial that is integer-linear in the MainVars and SumVars, and < constrational > is

a rational function that does neither contain the MainVars nor the SumVars. As usual, the

mathematica expressions Power[x,y], Times[x,y], and Factorial[x] may be abbreviated

by x^y, x*y, and x!. Note that the de�nition of the Summand di�ers in two points from

the de�nition of a proper hypergeometric term: a rational function can be used instead of

the polynomial part, and the term may contain binomial coe�cients. The binomial coe�cient
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Binomial[n,k] is interpreted as n! / (k! (n-k)!), and the resulting recurrence is a recur-

rence for the Gamma functions, and does, as already mentioned several times in Section 2.7,

not necessarily hold for the binomial coe�cient if n is a negative integer.

To look for recurrences we need a structureset and the simplest way to de�ne one is by specify-

ing orders for the recurrence. The order(s) for the recurrence in the main variable(s), denoted

byMainOrders, is a nonnegative integer if MainVars is a single variable, and is a list of nonneg-

ative integers if MainVars is list of variables. Similarly, SumOrders is a nonnegative integer or

a list of nonnegative integers, depending on SumVars. If MainOrders or SumOrders are lists

then they must have the same length as MainVars respectively SumVars. The structureset

de�ned by these orders is a rectangular Wilf-Zeilberger structureset.

We also may explicitly give a structureset as input. StructureSetmust have the following form:

StructureSet := f < strctelem >, : : : , < strctelem >g

< strctelem > := f < integer >, : : : , < integer > g

where the last list has the same length as MainVars and SumVars together.

The generalizations of Sister Celine's technique require a degree bound for the unknown poly-

nomial coe�cients in the SumVars. DegreeBound must have the following form

DegreeBound := < nonneginteger >

or f < nonneginteger >, : : : , < nonneginteger > g

or Fillup + < integer >

where the list is of the same length as SumVars. If DegreeBound is a list of integers then the

degree of every polynomial coe�cient in the i-th summation variable is bounded by the i-th

element of DegreeBound, if DegreeBound is a single integer then it is a bound for the degree in

every summation variable. The symbol Fillup speci�es that for every polynomial coe�cient

the degree bound is chosen to be maximal such that the resulting polynomial equation has the

same degree in the SumVars as with polynomial coe�cients free of the SumVars (so that the

linear equation system has the same number of equations). We may add an arbitrary integer

to Fillup. However, Fillup is hardly ever used, since small integer values like 1 or 2 are

usually su�cient for the degree bound.

The output of FindRecurrence and the related functions is a list of certi�cate recurrences

that involve the symbol F to denote the given summand and the symbol Delta[var, term]

to denote the forward-shift di�erence operator in the variable var. The output of the function

SumCertificate is a list of recurrences involving only the symbol SUM, which denotes the sum

with standard boundary conditions of the summand.

4.1.2 FindRecurrence and Su�cientSet

The function FindRecurrence is the central function ofMultiSum. It tries to �nd certi�cate

recurrences for a hypergeometric Summand in the MainVars with delta parts in the SumVars.

The certi�cate recurrences are either the certi�cate form of k-free recurrences computed with

Sister Celine's technique (if no DegreeBound is speci�ed) or are certi�cate recurrences com-

puted with the generalization of Sister Celine's technique described in Subsection 3.5.1 (if a
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DegreeBound is speci�ed). FindRecurrence works with P-maximal structuresets by comput-

ing the Verbaeten completion of every structureset, unless we switch o� Verbaeten completion

by setting the options WZ to True.

There are several ways of invoking the function:

FindRecurrence[ Summand, MainVars, MainOrders, SumVars, SumOrder] and

FindRecurrence[ Summand, MainVars, MainOrders, SumVars, SumOrder, DegreeBound]

try to �nd recurrences on the Verbaeten completion of the structureset speci�ed by the orders.

FindRecurrence[ Summand, MainVars, SumVars] and

FindRecurrence[ Summand, MainVars, SumVars,DegreeBound]

�nd recurrences by trying higher and higher orders until a recurrence has been found.

FindRecurrence[ Summand, MainVars, SumVars, StructureSet] and

FindRecurrence[ Summand, MainVars, SumVars, StructureSet, DegreeBound]

tries to �nd recurrences on the Verbaeten completion of StructureSet.

We demonstrate how the function is used by proving the identity (a certain orthogonality

relation, see [AP92])

X

i

X

j

(�1)

i+j

�

i+ j

i

��

m

i

��

n

j

�

= �

n;m

; integers n;m � 0: (4.1)

A recurrence for the summand is easily found:

In[8]:= FindRecurrence[ (-1)^(i+j) Binomial[i+j,i] Binomial[m,i]

Binomial[n,j], n, {i,j}]

Size of equation system : 2x2

Size of equation system : 7x5

Size of equation system : 16x11

Out[8]= {(-m + n) F[n, -1 + i, -2 + j] ==

Delta[i, -(n F[-1 + n, -1 + i, -2 + j]) + 2 n F[-1 + n, -1 + i, -1 + j] -

n F[-1 + n, -1 + i, j] + (-1 - 2 n) F[n, -1 + i, -1 + j] +

(1 + 2 n) F[n, -1 + i, j] + (-1 - n) F[1 + n, -1 + i, j]] +

Delta[j, n F[-1 + n, -1 + i, -2 + j] + (m - n) F[n, -1 + i, -2 + j]]}

which proves the identity if n 6= m. We can also use the function call

In[8]:= FindRecurrence[ (-1)^(i+j) Binomial[i+j,i] Binomial[m,i]

Binomial[n,j], n, 1, {i,j}, {1,1}]
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to get the same result. We �nd a simple recurrence for the summand in the case n = m by using

a small DegreeBound. Note that the following recurrence yields a �rst order recurrence for the

double sum, whereas the simplest k-free recurrence we found is of order 2 (see Section 3.5).

In[9]:= FindRecurrence[ (-1)^(i+j) Binomial[i+j,i] Binomial[n,i]

Binomial[n,j], n, {i,j}, {1,0}]

Size of equation system : 4x2

Size of equation system : 13x8

Out[9]= {n F[-1 + n, -1 + i, -1 + j] - n F[n, -1 + i, -1 + j] ==

Delta[i, -(n F[-1 + n, -1 + i, -1 + j]) + n F[-1 + n, -1 + i, j] +

(-2 + 2 i - n) F[n, -1 + i, j]] +

Delta[j, n F[n, -1 + i, -1 + j]]}

To see that looking for recurrences with more than one main variable can be advantageous,

we call

In[10]:= FindRecurrence[ (-1)^(i+j) Binomial[i+j,i] Binomial[m,i]

Binomial[n,j], {n,m}, {0,0}, {i,j}, {1,1}]

and �nd among the six solutions the following simple one, that can be used to prove (4.1)

without having to consider the case n = m separately.

Out[10]= {-(1 + n) F[n, m, -1 + i, -1 + j] +

(1 + m) F[1 + n, 1 + m, -1 + i, -1 + j] ==

Delta[i, (1 + n) F[n, m, -1 + i, -1 + j] + (-1 - n) F[n, m, -1 + i, j] +

(2 + m + n) F[1 + n, m, -1 + i, j] +

(-1 - m) F[1 + n, 1 + m, -1 + i, j]] +

Delta[j, (-1 - m) F[1 + n, 1 + m, -1 + i, -1 + j]]}

In[11]:= SumCertificate[ % ]

Out[11]= {-(1 + n) SUM[n, m] + (1 + m) SUM[1 + n, 1 + m] == 0}
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We also implemented the function SufficientSet that returns a structureset such that a

k-free recurrence exists on it, i.e., such that the number of unknowns exceeds the number of

equations:

SufficientSet[ Summand, MainVars, SumVars]

If it is called with single variables, then the su�cient set according to Verbaeten's theory is

returned. If MainVars or SumVars is a list of variables (even consisting of only one element),

then the structureset is found by trying higher and higher orders for the recurrence. It is

recommended not to use it for multisums: the structuresets are extremely large (e.g., the

structureset suggested for the simple example above has more then 300 elements). If the

options WZ is set to True then only rectangular Wilf-Zeilberger structuresets are used.

4.1.3 FindCerti�cate and FindRationalCerti�cate

We also implemented functions that directly look for a certi�cate recurrence: as described in

Section 3.5.2 an Ansatz for the recurrence of the form

X

(i;j)2S

0

a

i;j

F (n � i;k� j) +

r

X

l=0

�

k

l

X

(i;j)2S

l

b

l;i;j

F (n� i;k� j)

is made. The function to compute certi�cate recurrences with this approach | the second

generalization of Sister Celine's technique | is called FindCertificate. As described, the

structuresets S

l

can be computed from a usual structureset, so FindCertificate can be used

in exactly the same way as FindRecurrence| the only di�erence is that the DegreeBound is

no longer optional.

FindCertificate[ Summand, MainVars, MainOrders, SumVars, SumOrder, DegreeBound]

FindCertificate[ Summand, MainVars, SumVars, DegreeBound]

FindCertificate[ Summand, MainVars, SumVars, StructureSet, DegreeBound]

Not only that this function is used in the same way as FindRecurrence, it also has the same

computational power. But we also can use FindCertificate in an essentially di�erent way,

by giving the sets S

l

as input:

FindCertificate[ Summand, MainVars, MainStructureSet, SumVars, ListOfSumStructure-

Sets, DegreeBound]

where ListOfSumStructureSets is a list of structuresets (one structureset for every summa-

tion variable). This function call is not very useful to �nd recurrences (too many parameters

to specify), nevertheless we give an example of how to use it. The identity (a generalized

Vandermonde identity, see p. 248 in [GKP94])

X

i

X

j

�

r

i

��

s

j

��

t

n � i� j

�

=

�

r + s+ t

n

�

; integer n;

can be proved with the following recurrence.
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In[12]:= FindCertificate[ Binomial[r,i] Binomial[s,j] Binomial[t,n-i-j],

n, {{1,0,0},{0,0,0}}, {i,j}, { {{0,0,0}}, {{0,0,0}} },1]

Size of equation system : 13x10

Out[12]=

{(-1 + n - r - s - t) F[-1 + n, i, j] + n F[n, i, j] ==

Delta[i, -(i F[n, i, j])] + Delta[j, -(j F[n, i, j])]}

We also implemented a function that tries to �nd certi�cate recurrences that have rational

functions as certi�cates, i.e., the approach described by Wilf and Zeilberger in [WZ92a]. As

already mentioned there is no satisfying way to �nd the denominators of the rational functions,

so as in Zeilberger's implementation we have to give them as input:

FindRationalCertificate[ Summand, MainVars, MainOrders, SumVars, ListOfPolynomi-

als, DegreeBound]

where ListOfPolynomials is a list of polynomials (one for each summation variable) which

are used as denominators. The program was only added to our package for demonstra-

tion purposes: we showed that usually such a rational function approach is much slower

even when we know the denominators (we got these denominators by transforming the delta

parts of a certi�cate recurrence found by FindRecurrence into rational functions by using

CertificateToRational).

4.1.4 Miscellaneous Functions and Options

The following functions are provided to support the manipulation of recurrences. They can

be called either with a single recurrence or a list of recurrences (except RecurrencePlus).

� SumCertificate[ Certi�cateRecurrence] computes the recurrence for the sum with stan-

dard boundary conditions from a given certi�cate recurrence for the summand.

� CheckRecurrence[ Recurrence, Term] returns True if the hypergeometric Term satis�es

Recurrence, False otherwise. The recurrence may be any recurrence that a function of

MultiSum returns (e.g., FindRecurrence, SumCertificate).

� CertificateToRecurrence[ Certi�cateRecurrence] transforms a certi�cate recurrence

into a pure recurrence (without delta parts).

� RecurrenceToCertificate[ Recurrence] transforms a pure recurrence into a certi�cate

recurrence. The function assumes that there is only one main variable, otherwise the

number of main variables has to given as second argument: RecurrenceToCertificate[

Recurrence, NumberOfMainVars]. The behaviour of the function is controlled by the

option RepeatedDivision.

� RecurrencePlus[ Recurrence1, Recurrence2] adds the two recurrences.
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� RecurrenceTimes[ Recurrence, Factor] multiplies Recurrence with Factor.

� SimplifyRecurrence[ Recurrence] simpli�es a recurrence by, e.g., factoring the polyno-

mial coe�cients.

� ShiftRecurrence[ Recurrence] shifts Recurrence to a normal form, i.e., a recurrence

without negative shifts.

� ShiftRecurrence[Recurrence, f Variable, Integer g] shifts the recurrence in the Variable

by Integer.

� CertificateToRational[ Certi�cateRecurrence, Term] transforms the delta parts of a

certi�cate recurrence into rational multiples of Term.

� RecurrenceToRational[ Recurrence, Term] transforms a whole recurrence into a ratio-

nal multiple of Term (is 0 if Term satis�es the recurrence).

There are six options that control the behaviour of the functions. They are either set perma-

nently, e.g., by

SetOptions[ MultiSum, Protocol -> True, EquationSolver -> CNullSpace]

or for only one function call by appending the option(s) as last argument(s):

FindRecurrence[ Binomial[n,k], n, k, WZ -> True, Protocol -> False]

The current value of the options can be displayed with Options[ MultiSum].

� EquationSolver contains the name of the nullspace algorithm.

� WZ: if set to True then no Verbaeten completion is done with the structuresets.

� Protocol controls the amount of information printed: with Automatic only the size of

the equation system is printed, with True more information like the Verbaeten comple-

tion of the structureset are printed, with All nearly all intermediate results are printed

(for debugging purposes only), and with None (or any other value) nothing is printed.

� VerbaetenBound is the maximal number of tuples returned by the subprogram comput-

ing the Verbaeten completion (in case of an in�nite set of integer lattice points satisfying

the inequalities).

� TrivialSolutions: if set to True, solutions with trivial principal part are included into

the set solutions returned by FindRecurrence and related programs.

� RepeatedDivision controls the behaviour of the function RecurrenceToCertificate.

This option is usually only used by function calls inside the package itself.

RecurrenceToCertificate transforms a pure recurrence into a certi�cate recurrence

by dividing the recurrence operator successively by the delta operators. If the option

is set to False then every division by a delta operator is performed exactly once, so

the resulting recurrence may have trivial principal part. If it is True or any other value

then it multiple divisions and multiplications with summation variables (according to

Theorem 3.2) are allowed.
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4.2 Running Time

We improved Sister Celine's technique considerably by using Verbaeten completion and certi�-

cate recurrences that contain the summation variables. Now it is time give numerical evidence

that the programs we implemented are faster than previous implementations. In the following

we give the running times, which were used to compute recurrences for the summands of the

following four double sums

1

:

(1)

X

j

X

k

�

n

k

��

n+ k

k

��

k

j

�

3

(2)

X

i

X

j

�

i+ j

i

��

n � i

j

��

n � j

n� i� j

�

(3)

X

i

X

j

�

i+ j

i

��

m� i+ j

j

��

n � j + i

n� j

��

m+ n� i� j

m� i

�

(4)

X

i

n

X

j=0

�

i+ j

i

�

2

�

4n� 2i� 2j

2n� 2i

�

The following table contains the size of the equation system, the order of the resulting re-

currence for the double sum, and the running time (in seconds) used to compute certi�cate

recurrences for the summands. We used the function FindRecurrencewith Verbaeten comple-

tion and Aichinger's SACLIB CNullSpace and computed certi�cate recurrences that contain

the summation variables.

time in seconds size of equation system order of recurrence

(1) 5 27� 21 2

(2) 10 33� 19 2

(3) 86 50� 23 2

(4) 325 63� 48 1

This table and the following tables contain only the time actually used to compute the

recurrence, it does not include the unsuccessful tries with smaller parameters: e.g., the time

given for (2) is the time used by the function call

In[1]:= FindRecurrence[ Binomial[i+j,i] Binomial[n-i,j] Binomial[n-j,n-i-j],

n, 1, fi,jg, f1,0g, 1].

In the following we check how the choice of the nullspace algorithm, Verbaeten completion,

and the use of certi�cate recurrences with summation variables inuence the running time.

The computations were done in Mathematica 2.2 on a SGI workstation.

Since most of the computation time is used for solving a system of linear equation, we �rst

check how the running time is a�ected by using other Nullspace programs. The following table

contains the running times for the computation of the same recurrences consumed by three

di�erent Nullspace algorithms.

1

See Chapter 5 for more details on these double sums.
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Aichinger's SACLIB Aichinger's Mathematica Mathematica built-in

CNullSpace ENullSpace NullSpace

(1) 5 15 8

(2) 10 35 60

(3) 86 731 |

(4) 325 5460 |

We easily see that the Mathematica built-in NullSpace works quite well for small examples,

but is prohibitively slow for all larger equation systems: we were not able to compute the ex-

amples (3) and (4) with it. It is therefore necessary to replace it, preferably by a program that,

like CNullSpace, does not work inside of Mathematica. But also E. Aichinger's Mathematica

ENullSpace algorithm is a reasonable alternative to the the built-in function.

Next we check the inuence of Verbaeten completion on the running time. The following table

contains the times used to �nd the certi�cate recurrences if we use only WZ structuresets (i.e.,

rectangular structuresets S

I;J

).

time in seconds size of equation system

(1) 280 75� 84

(2) 140 88� 39

(3) 1175 98� 39

(4) 13130 148� 98

We see that the equation systems are much larger and that the e�ect on the running time is

tremendous.

Let us compare our generalization of Sister Celine's technique with the usual Sister Celine

technique, i.e., let us compute k-free recurrences. Since k-free recurrences are usually much

larger than recurrences containing the summation variables, the time used to �nd them is

much higher. Indeed, we were unable to �nd k-free recurrences for the summands of (3) and

(4).

time in seconds size of equation system order of recurrence

(1) 145 62� 40 7

(2) 5 27� 11 3

Note that (2) is one of the rare examples where a k-free recurrence can be found in smaller

time than a certi�cate recurrence.

What happens if we compute k-free recurrences by using rectangular Wilf-Zeilberger structure-

sets instead of P-maximal structuresets (i.e., no Verbaeten completion). This table contains

the times used to �nd the same k-free recurrences as above:

time in seconds size of equation system

(1) | 320� 128

(2) 618 189� 36

Just a look at the size of the equation systems will convince everybody of the superiority of

the Verbaeten completion technique.

Now we investigate our functions to �nd certi�cate recurrences directly: FindCertificate

and FindRationalCertificate. The following table contains the running time in seconds
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and in brackets the size of the equation systems and the maximal degree (in the summation

variables) of the polynomials in the delta parts.

FindCertificate with FindRationalCertificate

P-maximal structuresets

(1) 4 (27� 21, 2) 131 (66� 42, 5)

(2) 9 (33� 19, 1) 183 (94� 59, 6)

(3) 70 (50� 23, 1) 45090 (111� 75, 5)

(4) 387 (63� 48, 2) 48 (53� 33, 3)

Using FindCertificate with P-maximal structuresets we have to solve equation systems of

the same size as we had when we used FindRecurrence, and we found the same solutions

in nearly the same time. Thus the behaviour of the fastest versions of FindRecurrence and

FindCertificate is (nearly) identical.

Let us turn to the program FindRationalCertificate, i.e., our implementation of Zeil-

berger's approach to compute rational function certi�cates. Since we have no natural way

of �nding the denominators of the rational certi�cates a priori, the question arises, what

denominators we have chosen as input. We simply transformed the solution we got with

FindRecurrence into rational function certi�cates, and used their denominators as input. It

is interesting that they turned out to be smaller than those originally used in [WZ92a]; for

instance, a dramatic di�erence can be observed for Strehl's example ([Str94]) in Section 5.2.

Even with this a priori knowledge, FindRationalCertificate usually does not have a chance

against FindRecurrence. The only exception is example (4), for which we found a signi�cantly

simpler recurrence with rational certi�cates: a recurrence of order 0 (see Section 5.5).



Chapter 5

Some Computer Generated Proofs

5.1 Introduction

In this chapter we give, using our Mathematica package MultiSum, computer generated

proofs of several binomial summation identities. The central part of a proof is the certi�cate

recurrence for the proper hypergeometric summand, and this recurrence can be veri�ed in-

dependently. Although the creative part of these proofs | �nding the recurrence | is done

by the computer, there remain some steps that have to be done by the human. These steps

include checking that enough initial values of the conjectured identity are identical (which

can be nontrivial if the term contains additional parameters), computing a recurrence for the

sum (which is only a problem if the sum has nonstandard boundary conditions), and showing

that a recurrence that we found for the proper hypergeometric interpretation of the bino-

mial summand also holds for the binomial summand itself (only a problem outside the set of

well-de�ned values of the proper hypergeometric term).

We would like to emphasize that without showing that the recurrence holds for the binomial

summand and not just for the proper hypergeometric function, most of the proofs are not com-

plete (semi-rigorous ?). The main problem is the di�erence between the binomial coe�cient

�

n

k

�

and its proper hypergeometric interpretation n!=(k!(n� k)!): the latter is not de�ned for

n 2 f�1;�2; : : :g. But the standard summation technique (De�nition 3.4 and Theorem 3.5)

requires that the recurrence holds for enough values outside of the summation range, so it is

very often necessary to show that the recurrence holds for the binomial summand at these

negative values. This problem was already investigated in Section 2.7, where we showed that

we can usually overcome the problem by using a polynomial argument or a limit argument.

There are only a few examples, e.g.,

X

i

X

j

�

r

i

��

s
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t

n� i� j

�

=

�

r + s + t

n

�

;

where it not necessary to make such considerations (here because the summation variables do

not occur in a numerator factorial). Sometimes such a proof can be achieved by a polynomial

70
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argument, e.g., the summand of

n

X

i=0

n

X

j=0

�

i+ j

i

�

2

�

4n� 2i� 2j

2n� 2i

�

is a polynomial in j if n and i are �xed integers, and if a polynomial recurrence holds for

enough values of j it holds for all j. But for most sums we will use a limit argument, e.g., the

summand

X

i

X

j
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i+j
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i+ j
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can be handled by replacing every i by i+ � and taking the limit

lim

�!0

(�1)

i+j+�

(i+ j + �)!n!m!

(i+ �)! j! (i+ �)! (n� i� �)! j! (m� j)!
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Here we used (and will frequently use in this chapter) that for arbitrary integers x, y,

lim

�!0

(x+ y + �)!

x! (y+ �)!

=

�

x+ y

x

�

:

Note that, as usual, x! is de�ned as �(x+1) for nonintegral x, and that the binomial coe�cient

is de�ned (see Section 1.2) as

�

x

y

�

= lim

�!0

(x+ �)!

y! (x� y + �)!

;

where x; y 2 C and where y is an integer whenever x is a negative integer. Sometimes the

limit arguments can be quite involved (see, e.g., the Carlitz sums), and in rare instances we

cannot achieve our goal. But usually we can use limit arguments to reduce the number of

critical points, i.e., the points where we do not know whether the recurrence holds or not: if

we get two di�erent sets of critical points with two limit arguments it su�ces to worry only

about those values where the recurrence involves values from both sets (see, e.g., the Carlitz

sums).

All the recurrences in this chapter are computed with FindRecurrence, i.e., the implemen-

tation of the �rst generalization of Sister Celine's technique (Subsection 3.5.1). To every

recurrence we state the function call that computed it and the consumed running time. All

computations were done in Mathematica 2.2 on a SGI workstation and used E. Aichinger's

CNullSpace function ([Aic97]).

5.2 The Ap�ery-Schmidt-Strehl Identity

The beautiful identity
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; integer n � 0 (5.1)
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originated from a number-theoretical question that A. L. Schmidt had asked, and was proved

in six di�erent ways by V. Strehl in [Str94]. In his proof of the irrationality of �(3) (see

[vdP78]) Ap�ery used that the famous Ap�ery numbers

P

k

�

n

k

�

2

�

n+k

k

�

2

are annihilated by the

recurrence operator

(n+ 1)

3

� (2n+ 3)(17n

2

+ 51n+ 39)N + (n+ 2)

3

N

2

: (5.2)

We prove (5.1) by showing that the double sum satis�es the same recurrence relation. Among

Strehl's proofs of identity (5.1) there is also one computed by D. Zeilberger with his program

for �nding rational certi�cates. It is instructive to compare the \monstrously looking" rational

certi�cates given in [Str94] with our simple and elegant certi�cate recurrence (5.3) given below.

Proof of (5.1). The factorial interpretation of the summand is the proper hypergeometric

function

F
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(n+ k)! k!
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3
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:

We �rst show that every recurrence for F

t

(n; k; j) also holds for the binomial summand
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. Since F and F

t

coincide on the set of well-de�ned values of F

t

, we

only have to show that the recurrence holds for every n, j and k with n 2 N

0

and j; k 2 Z

(negative values for k are the only problem). For such n; k; j we have
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and, by using a limit argument, we conclude that every recurrence for F

t

is also satis�ed by

F (n; j; k) for all n 2 N

0

and j; k 2Z.

Our programs �nd the following recurrence operator annihilating F

t

(n; j; k):
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where
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:

Thus the left hand side satis�es the famous Ap�ery recurrence (5.1).
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For the sake of completeness, let us also prove with MultiSum (an obvious alternative would

be Zeilberger's fast algorithm) that the Ap�ery numbers satisfy the recurrence (5.2). A certi�-

cate recurrence annihilating

�
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2
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):

Thus both sums satisfy the same recurrence relation and it remains to compare the initial

values: for n = 0 both sums equal 1, for n = 1 they both evaluate to 5.

It might be instructive to illustrate how the recurrence (5.3) could be obtained by using the

tools from the package MultiSum. First lets try to �nd a k-free recurrence and, indeed, we

�nd one (in 226 seconds) which yields a recurrence for the sum of order seven.

In[4]:= SumCertificate[ FindRecurrence [ Binomial[n,k] Binomial[ n+k,k]

Binomial[k,j]^3, n, {j, k}, 0]]

Size of equation system : 2x2

Size of equation system : 14x8

Size of equation system : 32x20

Size of equation system : 39x26

Size of equation system : 72x50

Out[4]=

3

{(2 - n) (-3 + n) (1 + n) (1 + 2 n) (3 + 2 n) (5 + 2 n) (-4 + 3 n)

SUM[-4 + n] + (-2 + n) (1 + n) (-5 + 2 n) (3 + 2 n) (5 + 2 n)

2 3 4

(-412 - 107 n + 863 n - 533 n + 93 n ) SUM[-3 + n] +

(-3 + 2 n) (3 + 2 n) (5 + 2 n)

2 3 4 5 6

(872 + 4222 n - 5779 n - 1688 n + 4866 n - 2166 n + 297 n )

SUM[-2 + n] + (-5 + 2 n) (-1 + 2 n) (5 + 2 n)

2 3 4 5 6

(1032 - 2402 n - 419 n + 4676 n - 454 n - 1594 n + 201 n )

SUM[-1 + n] + (-5 + 2 n) (1 + 2 n) (5 + 2 n)

2 3 4 5 6

(-1032 - 2402 n + 419 n + 4676 n + 454 n - 1594 n - 201 n ) SUM[n] +

(-5 + 2 n) (-3 + 2 n) (3 + 2 n)



CHAPTER 5. SOME COMPUTER GENERATED PROOFS 74

2 3 4 5 6

(-872 + 4222 n + 5779 n - 1688 n - 4866 n - 2166 n - 297 n )

SUM[1 + n] + (-1 + n) (2 + n) (-5 + 2 n) (-3 + 2 n) (5 + 2 n)

2 3 4

(412 - 107 n - 863 n - 533 n - 93 n ) SUM[2 + n] +

3

(-1 + n) (2 + n) (3 + n) (-5 + 2 n) (-3 + 2 n) (-1 + 2 n) (4 + 3 n)

SUM[3 + n] == 0}

Note that the recurrence for this example is from SUM[n-4] to SUM[n+3] which is due to the

Verbaeten completion. The user might want to normalize this range; for this purpose the

function ShiftRecurrence can be used.

Although we are able to prove the identity with the above recurrence, we prefer to �nd a

second order recurrence relation. So we try again with the degree bound 1, and this time we

�nd a recurrence of order 3 in 300 seconds.

In[5]:= SumCertificate[ FindRecurrence [ Binomial[n,k] Binomial[ n+k,k]

Binomial[k,j]^3, n, {j, k}, 1]]

Size of equation system : 2x2

Size of equation system : 24x20

Size of equation system : 48x62

Out[5]=

4

{(-1 + n) n (1 + 2 n) SUM[-2 + n] +

2 3

(1 - 2 n) (1 - n) n (-5 + 7 n + 17 n - 33 n ) SUM[-1 + n] +

2 3

(1 - n) n (1 + 2 n) (-5 - 7 n + 17 n + 33 n ) SUM[n] +

3

(-1 + n) n (1 + n) (-1 + 2 n) SUM[1 + n] == 0}

To �nd a second order recurrence we have to use the degree bound 2. The program needs 40

seconds to �nd it.

In[6]:= SumCertificate[ FindRecurrence [ Binomial[n,k] Binomial[ n+k,k]

Binomial[k,j]^3, n, {j, k}, 2]]

Size of equation system : 2x2

Size of equation system : 36x40
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Out[6]=

3

{(-1 + n) n (1 + n) SUM[-2 + n] +

2

(1 - 2 n) (-1 - n) n (-5 + 17 n - 17 n ) SUM[-1 + n] +

4

n (1 + n) SUM[n] == 0}

To be honest, with the above functions calls we did not �nd exactly one recurrence each time,

but sets of solutions (2, 11, respectively 2 solutions). The reason is that the automatic choice

of the orders is not always the best. With a more specialized choice of the parameters we can

�nd smaller sets of solutions in shorter time:

In[7]:= FindRecurrence [ Binomial[n,k] Binomial[ n+k,k] Binomial[k,j]^3,

n, 0, {j, k}, {0,1}, 2]]

Size of equation system : 27x21

Out[7]=

3

{n F[-1 + n, -1 + j, -1 + k] -

2

(1 + 2 n) (5 + 17 n + 17 n ) F[n, -1 + j, -1 + k] +

3

(1 + n) F[1 + n, -1 + j, -1 + k] ==

3

Delta[j, -(n F[-1 + n, -1 + j, k]) +

2 2 2

2 (1 + 2 n) (6 - 12 j + 6 j + k + 3 j k - 3 k + 4 n + 4 n )

F[n, -1 + j, -1 + k] + (1 + 2 n)

2 2 2

(-23 + 48 j - 24 j - 22 k + 24 j k - 6 k + n + n ) F[n, -1 + j, k] -

3

(1 + n) F[1 + n, -1 + j, k]] +

3

Delta[k, -(n F[-1 + n, -1 + j, -1 + k]) +

2 2 2

(1 + 2 n) (-7 + 24 j - 24 j - 10 k + 24 j k - 6 k + n + n )

3

F[n, -1 + j, -1 + k] - (1 + n) F[1 + n, -1 + j, -1 + k]]}

yields exactly one solution in only 5 seconds.
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5.3 Two Summation Problems of Carlitz

In the problem section of the American Mathematical Monthly (problem E1999, [Car68]), L.

Carlitz asked for proofs of the following two statements.

1. Put

S

n

=

X

i+j+k=n

�

i+ j

i

��

j + k

j

��

k + i

k

�

; integer n � 0:

Show that S

n

� S

n�1

=

�

2n

n

�

.

2. Put

R

m;n

=

X

i+j+k�min(n;m)

�

i+ j

i

��

j + k

j

��

m� i� j

k

��

n� j � k

i

�

; integers m;n � 0:

Show that R

m;n

� 2R

m�1;n�1

=

�

n+m

m

�

.

Note that the �rst problem is equivalent to proving the identity

X

i

X

j

�

i+ j

i

��

n� i

j

��

n� j

n � i� j

�

=

n

X

k=0

�

2k

k

�

: (5.4)

Proof of (5.4). The summand of the double sum in (5.4) can be written as the proper hyper-

geometric function

f(n; i; j) =

(i+ j)! (n� i)! (n� j)!

i!

2

j!

2

(n� i� j)!

2

:

For n 2 N

0

, and i; j 2Zwe have

lim

�!0

lim

�!0

f(n+ �+ �; i+ �; j + �) =

�

i+ j

i

��

n� i

n � i� j

��

n � j

n� i� j

�

and we see that it coincides with the binomial summand

�

i+j

i

��

n�i

j

��

n�j

n�i�j

�

unless j < �i < �n.

But this implies j � �n � 2, so the recurrence, given below, holds also for the binomial

summand for all n 2 N

0

and i; j 2Zas can be seen without explicitly checking at the critical

values: the recurrence is of order one in j and the critical values are too far away from the

summation range.

Note that such substitutions like n ! n + � + � are easily found and that we also can use

other substitutions. But unfortunately no limit of the proper hypergeometric term (with such

a substitution) exactly yields the given summand.
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The function f(n; i; j) and thus the summand of (5.4) is annihilated by

1

� 2 (3 + 2n) + (8 + 5n)N + (�2� n)N

2

�

�

i

(4 (1� i+ n) + 2 (�1 + i� n) J + (�5 + 4 i+ 3 j � 4n)N + (�3� 5 i� 3 j + n) J N +

(2 + n) J N

2

)�

�

j

(2 (1+ 2 i) + (�3� 4 i� 3 j � n)N + (2 + n)N

2

)

The recurrence annihilating the double sum thus is

((n+ 2)N � (4n+ 6))(N � 1)

and we can easily check that the sum on the right hand side of (5.4) is also annihilated by

this operator. It remains to check the initial values: for n = 0 and n = 1 both sides are 1

respectively 2.

It is interesting that we can also �nd

2

a simple k-free recurrence for the summand of the

double sum in (5.4). But then the resulting recurrence for the sum is a third order recurrence.

Proof that R

m;n

� 2R

m�1;n�1

=

�

m+n

m

�

. The proper hypergeometric function corresponding to

the summand of the triple sum is

f(m;n; i; j; k) =

(i+ j)! (j+ k)! (m� i� j)! (n� j � k)!

i!

2

j!

2

k!

2

(m� i� j � k)! (n� i� j � k)!

and we easily see that

lim

�!0

lim

!0

lim

�!0

lim

�!0

f(n+ � + � + ;m+ �; i+ �; j + �; k+ )

=

�

i+ j

i

��

j + k

j

��

m� i� j

k

��

n� j � k

n� i� j � k

�

(5.5)

and, similarly,

lim

�!0

lim

�!0

lim

�!0

lim

!0

f(n+ �;m+ � + � + ; i+ �; j + �; k+ )

=

�

i+ j

j

��

j + k

k

��

m� i� j

m� i� j � k

��

n � j � k

i

�

(5.6)

Note that if n � m then R

m;n

equals the sum w.r.t. to i; j; k 2 Zover (5.5), a sum with

standard boundary conditions. For n � m we have to take (5.6) as summand to get standard

boundary conditions.

1

FindRecurrence[ Binomial[i+j, i] Binomial[n-i, j] Binomial[n-j, n-i-j], n, 1, fi,jg,

f1,0g, 1] in 10 seconds solving a 33� 19 equation system.

2

FindRecurrence[ Binomial[i+j, i] Binomial[n-i, j] Binomial[n-j, n-i-j], n, 0, fi,jg,

f1,1g] in 5 seconds solving a 27� 11 equation system.



CHAPTER 5. SOME COMPUTER GENERATED PROOFS 78

The following recurrence

3

annihilates f(m;n; i; j; k) and thus both (5.5) and (5.6).

2M + 2N � 2MN �M

2

N �M N

2

+M

2

N

2

�

�

i

(K � J M �KM �KN + J M N +KM N � J KM N + J KM

2

N + J KM N

2

�

J KM

2

N

2

)�

�

j

(�1�M �KN +M N +KM

2

N +KM N

2

�KM

2

N

2

)�

�

k

(1�M � 2N +MN +M

2

N +MN

2

�M

2

N

2

)

If n < m we apply the above recurrence to (5.5) and sum w.r.t. i; j; k 2 Zand the sums

involved are R

m;n

, R

m+1;n

, R

m;n+1

, R

m+1;n+1

, R

m+1;n+2

, R

m+2;n+1

, and R

m+2;n+2

. Thus we

get a recurrence for R

m;n

(n < m), which factors into

4

(NM �M �N) (NM � 2):

The left factor of this recurrence annihilates

�

m+n+2

m+1

�

. Similarly, if m < n we can apply the

recurrence to (5.6), sum w.r.t. to all i; j; k 2 Zand get the same recurrence for R

m;n

(if

m < n).

We cannot use the above recurrence in the case n = m, since the summation involves sums

with nonstandard boundary conditions (because then n-shifts and m-shifts are involved with

n+�

1

> m+�

1

and with n+�

2

< m+�

2

so that neither standard summation over (5.5) nor

standard summation over (5.6) always yield R

n;m

). We have to handle this case separately. If

n = m then the summand equals

�

i+j

i

��

j+k

j

��

n�i�j

k

��

n�j�k

n�i�j�k

�

and is annihilated by

5

� 4 (3+ 2n) + 2 (5+ 3n)N + (�2� n)N

2

�

�

i

((6 + 4 i+ 3n)K + (�4� 2 j � n) J N + (2 j + 4 k � 3n)KN + (�4� 2 j � n) J KN +

(2 + n) J KN

2

)�

�

j

(6� 4 i+ 5n+ (�2� 2 j � n)N � 2 (4 + 2 k + n)KN + (2 + n)KN

2

)�

�

k

(6 + 4 i+ 3n+ (�8 + 2 j � 5n)N + (2 + n)N

2

)

and summing w.r.t. i; j; k 2Zyields the recurrence

((n+ 2)N � 2(3 + 2n)) (N � 2)

annihilating R

n;n

. The left factor (n + 2)N � 2(2n+ 3) annihilates

�

2n+2

n+1

�

and it remains to

check the initial values: R

m+1;1

� 2R

m;0

= m+ 2 and R

1;n+1

� 2R

0;n

= n+ 2.

3

FindRecurrence[ Binomial[i+j, i] Binomial[j+k, j] Binomial[m-i-j, k] Binomial[n-j-k, i],

fn,mg, f0,0g, fi,j,kg, f0,1,0g] in 28 seconds. This returns two linearly independent solutions, which we

have to combine to get this simple recurrence.

4

Note that in this chapter every factorization of a recurrence operator are done by hand.

5

FindRecurrence[ Binomial[i+j, i] Binomial[j+k, j] Binomial[n-i-j, k] Binomial[n-j-k,

n-i-j-k], n, 0, fi,j,kg, f0,1,0g, 1] in 30 seconds.
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5.4 Another Summation Problem of Carlitz

The following identities, for nonnegative integers n and m, are due to Carlitz [Car64]:

X

i+k=m

X

j+l=n

�

i+ j

i

��

j + k

j

��

k + l

k

��

i+ l

l

�

=

(m+ n + 1)!

m!n!

X

k

1

2k + 1

�

m

k

��

n

k

�

=

m

X

i=0

n

X

j=0

�

i+ j

i

�

2

�

n+m� i� j

m� i

�

; (5.7)

where n and m are nonnegative integers. The �rst sum can be rewritten as

X

i

X

j

�

i+ j

i

��

m� i+ j

j

��

n� j + i

n � j

��

m+ n � i� j

m� i

�

: (5.8)

Let us denote the sum (5.8) by F

m;n

and the two last sums in (5.7) by G

m;n

, respectively

H

m;n

.

Proof. The proper hypergeometric term corresponding to the summand of F

m;n

is

f(m;n; i; j) =

(i+ j)! (m+ j � i)! (m+ n� i� j)! (n+ i� j)!

i!

2

j!

2

(m� i)!

2

(n� j)!

2

:

Let n;m 2 N

0

and i; j 2Z. It is easily seen that

lim

�!0

lim

�!0

f(m;n+ �; i+ �; j) =

�

i+ j

j

��

m� i+ j

j

��

n� j + i

i

��

m+ n � i� j

m� i

�

(5.9)

which equals the binomial summand of F

m;n

unless j > n. Taking a di�erent limit we get

lim

�!0

lim

�!0

lim

!0

f(m+ �; n+ � + ; i+ �; j + �)

=

�

i+ j

i

��

m+ j � i

m� i

��

n � j + i

n� j

��

m+ n� i� j

m� i

�

(5.10)

which equals the binomial summand of F

m;n

unless j < 0. To get a recurrence for the binomial

summand of F

n;m

we take the limit of a recurrence for the proper hypergeometric function

f(m;n; i; j). So for those values of n;m; i; j 2 Zsuch that the recurrence does not involve

a j-n-shift with j + � > n + �, we take the limit (5.9), and for those values such that the

recurrence does not involve a j-shift with j + � < 0 we take the limit (5.10). Therefore

each recurrence for the proper hypergeometric function also holds for the binomial summand,

except possibly at those values where the recurrence involves a shift with j+� < 0 and a shift

with j + � > n. The recurrence, given below, is of order one in j, so that this is impossible

for this recurrence and for nonnegative n.
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The function f(m;n; i; j) and thus the summand of F

m;n

is annihilated by the recurrence

operator

6

�(m+ n + 4)M

2

+ 2(n+ 2)M

2

N + (m+ n+ 4)N

2

� 2(m+ 2)MN

2

+ (m� n)M

2

N

2

�

�

i

((m+ n+ 4)M

2

� (n+ 2)M

2

N � (n+ 2)JM

2

N + (m+ 2)JMN

2

�

(m� n)JM

2

N

2

)�

�

j

(�(n+ 2)M

2

N � (m+ n + 4)N

2

+ 2(m+ 2)MN

2

� (m� n)M

2

N

2

)

The resulting recurrence operator annihilating F

n;m

factors nicely into

�(M +N +MN) ((m+ n+ 3)M � (m+ n+ 3)N + (m� n)MN) (5.11)

It turns out that the summand of G

m;n

and therefore G

m;n

itself is annihilated by the right

factor of (5.11), namely by

7

(m+ n+ 3)M � (m+ n+ 3)N + (m� n)MN:

The summand of H

m;n

is annihilated by the simple recurrence operator NM � N �M , so

summing it w.r.t. all i and w.r.t. j = 0; : : : ; n+1 yields the following inhomogeneous recurrence

relation

(MN �M �N)H

m;n

=

X

i

�

n+ i+ 1

i

�

2

�

n +m+ 1� i� (n+ 1)

m+ 1� i

�

=

�

m+ n + 2

n + 1

�

2

The last equality holds because the summand of the sum w.r.t. i is zero unless i = m + 1.

Since the recurrence (5.11) for F

m;n

can also be written as

((m� n)NM + (m+ n + 4)M � (m+ n + 4)N) (MN �M �N)

and the left factor of it annihilates

�

m+n+2

n+1

�

2

we only have to check the initial values. Because

of symmetry it su�ces to check the identities for (0; m) and (1; m),m 2 N. For the �rst case,

i.e., n = 0 and m 2 N:

F

m;0

=

X

i

�

i

i

��

m� i

m� i

�

= m+ 1;

G

m;0

= m+ 1;

H

m;0

=

m

X

i=0

�

i

i

�

2

�

m� i

m� i

�

= m+ 1;

6

FindRecurrence[ Binomial[i+j, i] Binomial[m-i+j, j] Binomial[n-j+i, n-j] Binomial[m+n-i-j,

m-i], fn,mg, fi,jg] in 53 seconds.

7

FindRecurrence[(m+n+1)!/((2k+1) m! n!) Binomial[m,k] Binomial[n,k], fn,mg, fkg] in less than

1 second.
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for the second case, i.e., n = 1 and m 2 N:

F

m;1

= 2

m

X

i=0

(m� i+ 1)(i+ 1) =

1

3

(m+ 1)(m+ 2)(m+ 3);

G

m;1

=

1

3

(m+ 1)(m+ 2)(m+ 3);

H

m;1

=

m+1

X

i=1

i +

m+1

X

i=1

i

2

=

1

3

(m+ 1)(m+ 2)(m+ 3):

The identity F

m;n

= G

m;n

can also be proved (as in [WZ92a]) by �nding a recurrence in n:

the summand of F

m;n

is annihilated by

8

� 2 (2 +m+ n)

2

(3 +m+ n) + (3 +m+ n) (14+ 3m+ 15n+ 2mn+ 4n

2

)N �

(2 + n)

2

(5 + 2n)N

2

�

�

i

((2 +m+ n) (3 +m+ n) (2� 2 i+ 2m+ n) + (�16 + 13 i� 4 j � 3 i j � 17m+

3 im+ 3 j m� i j m� 3m

2

+ j m

2

� 20n+ 13 i n� 4 j n� i j n� 17mn+ 2 imn+

j mn� 2m

2

n� 8n

2

+ 3 i n

2

� j n

2

� 4mn

2

� n

3

)N + (1 + j) (�2 + i�m� n)

(3 +m+ n) J N + (2 + n) (5� 2 i+ 5 j +m+ j m+ 2n� i n+ 2 j n) J N

2

)�

�

j

((�20� 10 i� 2 j � 4m� 2 im� 5 j m� j m

2

� 28n� 9 i n� j n� 4mn� imn�

2 j mn� 13n

2

� 2 i n

2

�mn

2

� 2n

3

)N + (2 + n)

2

(5 + 2n)N

2

)

and we are able to �nd, by Zeilberger's fast algorithm, the same recurrence for G

n;m

.

5.5 The Andrews-Paule Sums

The identity

n

X

i=0

n

X

j=0

�

i+ j

i

�

2

�

4n� 2i� 2j

2n� 2i

�

= (2n+ 1)

�

2n

n

�

2

; integer n � 0; (5.12)

was stated as problem E3376 in the American Mathematical Monthly by R. Blodgett. It

was solved by G. Andrews and P. Paule ([AP92], [AP93]) by proving the more general iden-

tity (5.14). Note that P. Paule also gave two direct proofs of (5.12) by applying Zeilberger's

algorithm in a nontrivial way ([AP93]).

8

FindRecurrence[ Binomial[i+j, i] Binomial[m-i+j, j] Binomial[n-j+i, n-j] Binomial[m+n-i-j,

m-i], n, 0, fi,jg, 1, 1] in 86 seconds.
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Let us denote the double sum in (5.12) by f(n). It is not di�cult to �nd a recurrence for the

summand of f(n): it is annihilated by

9

16 (1+ n)

2

(1 + 2n)

2

(5 + 4n)� (1 + n) (1 + 2n)

2

(3 + 2n)

2

N �

�

i

(a

1

(n; i; j)+ a

2

(n; i; j)I + a

3

(n; i; j)J + a

4

(n; i; j)JN + a

5

(n; i; j)IJN +

a

6

(n; i; j)J

2

N + a

7

(n; i; j)IJ

2

N)�

�

j

(b

1

(n; i; j)+ b

2

(n; i; j)J + b

3

(n; i; j)N + b

4

(n; i; j)JN)

where a

1

; : : : ; a

7

, and b

1

; : : : ; b

4

are polynomials of degree at most 2 in i and j. But since the

sum has nonstandard boundary conditions, we have to compute boundary values, which is

di�cult for larger recurrences. So we prefer to prove the following generalizations that satisfy

simpler recurrences:

n

X

i=0

m

X

j=0

�

i+ j

i

�

2

�

2m+ 2n� 2i� 2j

2n� 2i

�

= (m+ n+ 1)

�

m+ n

m

�

2

; (5.13)

b

m

2

c

X

i=0

b

n

2

c

X

j=0

�

i+ j

i

�

2

�

m+ n� 2i� 2j

n� 2i

�

=

b

m+n+1

2

c! b

m+n+2

2

c!

b

m

2

c! b

m+1

2

c! b

n

2

c! b

n+1

2

c!

: (5.14)

Let us call the double sums in (5.13) and (5.14) g(n;m), respectively h(n;m).

The Andrews-Paule Proof of (5.14). The summand of (5.14) is annihilated by the recurrence

operator

10

NM �N �M ; summing it w.r.t. i 2Zand j = 0; : : : ; b

m+1

2

c we get

h(n + 1; m+ 1)� h(n + 1; m)� h(n;m+ 1)

= [m odd]

X

i

�

i+

m+1

2

i

�

2

�

n� 2i

n� 2i+ 1

�

= [m odd][n odd]

�

m+n+2

2

m+1

2

�

2

;

where [m odd] is de�ned, following [GKP94], as 1 ifm is odd and 0 otherwise. The last equality

holds because the summand of the sum w.r.t. i is nonzero only if 2i = n + 1. Verifying that

the r.h.s. of (5.14) satis�es the same recurrence and comparing the initial values h(n; 0) =

h(0; n) = b

n

2

c + 1 proves (5.14) (and also (5.12) and (5.13)). This is exactly the proof given

by Andrews and Paule ([AP92], [AP93]).

The creative part in the above proof consists of �nding the closed form for h(n;m). It would

be highly desirable to �nd a proof without a priori knowledge of this closed form. This can

be easily achieved if we can �nd a two-dimensional Gosper representation for the summand

of h(n;m): h(n;m; i; j) = (�

i

h

1

) + (�

j

h

2

). From one of P. Paule's proofs ([Pau92]) of

9

FindRecurrence[ Binomial[i+j, i]

2

Binomial[4n-2i-2j, 2n-2i], n, 0, fi,jg, f1,1g, 2] in 325

seconds.

10

FindRecurrence[ Binomial[i+j, i]

2

Binomial[n+m-2i-2j, n-2i], fn,mg, fi,jg] in less than 1

second.
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identity (5.14) one can derive that such a Gosper representation exists for the summand of

f(n) (although this was not explicitly done in [Pau92]). So it is likely that there also exists

a Gosper representation for h(n;m; i; j). In our context such a representation is a certi�cate

recurrence with a principal part consisting of exactly one term. Unfortunately we are unable

to �nd it directly with our programs, but it can be computed with a linear combination of

certi�cate recurrences found by FindRecurrence.

The function FindRecurrence delivers the following two recurrences

11

annihilating the sum-

mand h(n;m; i; j) of h(n;m):

� (m+ n + 2) + (n+ 1)N �

�

i

((m+ n� i� 2j + 1)� (n+ 1)N + i N

2

� i J N

2

)�

�

j

((i+ 2j + 1)� i N

2

);

(5.15)

and

(m+ n+ 2)� (3n+ 2m+ 9)N + 2 (n+ 3)N

2

�

�

i

(�(m+ n+ i+ 3) + (2m+ 3n+ 9)N � (2n� i+ 2j + 6)N

2

�

(i� 2j � 2) J N

2

)�

�

j

((i+ 1)� (i� 2j)N

2

):

(5.16)

We combine the two recurrences (we may add two recurrences, multiply a recurrence with a

polynomial, and shift a recurrence) to obtain a certi�cate recurrence with a one-term princi-

pal part. Indeed, the linear combination

1

2

(n + 2)((5.15)+ (5.16)) � (n + 3)N (5.15) yields

the recurrence (5.17), which is the desired Gosper representation. Note that these manipu-

lations can be done with the MultiSum functions RecurrencePlus, RecurrenceTimes, and

ShiftRecurrence.

A Computer Generated Proof of (5.14). The summand h(n;m; i; j) of h(n;m) is annihilated

by

(m+ 1)N �

�

i

�

�(1 + i+ j)(2 + n) + (2 + 3i+ 6j �m+ n+ in+ 2jn)N + (i� j)(2+ n)N

2

�

(�1 + i� j)(2+ n)N

2

J � i(3 + n)N

3

+ i(3 + n)N

3

J

�

�

�

j

�

(1 + i+ j)(2 + n)� (1 + i+ 2j)(3+ n)N � (i� j)(2 + n)N

2

+ i(3 + n)N

3

�

:

(5.17)

Summing this recurrence w.r.t. all i and w.r.t. j = 0; : : : ; b

m

2

c we get

(m+ 1) h(n+ 1; m) = b

2

� b

1

;

where the boundary values b

1

and b

2

are

b

1

=

X

i

�

(i+ 1)(n+ 2) h(n;m; i; 0)� (i+ 1)(n+ 3) h(n+ 1; m; i; 0)

� i(n+ 2) h(n+ 2; m; i; 0)+ i(n+ 3) h(n+ 3; m; i; 0)

�

11

FindRecurrence[ Binomial[i+j, i]

2

Binomial[n+m-2i-2j, n-2i], n, 0, fi,jg, f0,1g, 1] in 4

seconds.
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b

2

=

X

i

�

(i+

j

m

2

k

+ 2)(n+ 2) h(n;m; i;

j

m

2

k

+ 1)

� (i+ 2

j

m

2

k

+ 3)(n+ 3) h(n+ 1; m; i;

j

m

2

k

+ 1)

� (i�

j

m

2

k

� 1)(n+ 2) h(n+ 2; m; i;

j

m

2

k

+ 1)

+ i(n+ 3) h(n+ 3; m; i;

j

m

2

k

+ 1)

�

:

We easily see that i h(n+ 2; m; i; 0) = i h(n;m; i� 1; 0) and that i h(n+ 3; m; i; 0) = i h(n+

1; m; i � 1; 0) so that the �rst boundary value b

1

is zero. The second boundary value can

be evaluated since h(n + �;m; i;

�

m

2

�

+ 1) is zero unless 2i = n + � or 2i = n + � � 1. We

distinguish between odd and even n and between odd and even m, and obtain b

2

as

12

:

1

(m+ 1)

b

2

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

m+n+2

2

�

!

2

�

n

2

�

!

�

n+2

2

�

!

�

m

2

�

!

2

m even; n even;

�

m+n+1

2

�

!

�

m+n+3

2

�

!

�

n+1

2

�

!

2

�

m

2

�

!

2

m even; n odd;

�

m+n+1

2

�

!

�

m+n+3

2

�

!

�

n

2

�

!

�

n+2

2

�

!

�

m�1

2

�

!

�

m+1

2

�

!

m odd; n even;

�

m+n+2

2

�

!

2

�

n+1

2

�

!

2

�

m�1

2

�

!

�

m+1

2

�

!

m odd; n odd:

We replace n by n � 1, and use the oor and the ceiling function to get a closed form for

h(n;m):

h(n;m) =

�

m+n+1

2

�

!

�

m+n+1

2

�

!

�

n

2

�

!

�

n

2

�

!

�

m

2

�

!

�

m

2

�

!

:

It is easily seen that this closed form can be rewritten as the r.h.s. of (5.14).

Let us turn to a Gosper representation of the summand f(n; i; j) of f(n), i.e., a certi�-

cate recurrence with principal part consisting of one term: a(n)f(n; i; j) = �

i

(S

1

f(n; i; j))+

�

j

(S

2

f

2

(n; i; j)). As above, we are unable to �nd it directly with FindRecurrence, but we can

compute it with a linear combination of certi�cate recurrences returned by FindRecurrence.

Unfortunately, the recurrences S

1

and S

2

in the delta parts are too large to compute

boundary values. It is a surprise that, by using the function FindRationalCertificate,

we are able to compute a much simpler representation with rational function certi�cates:

f(n; i; j) = �

i

(R

1

f(n; i; j))+�

j

(R

2

f(n; i; j)). But note that we shall use FindRecurrence in

an implicit way: To get suitable denominator polynomials for the rational functions R

1

and R

2

,

we transform a polynomial certi�cate recurrence (found by FindRecurrence) into a recurrence

with rational certi�cates (by using CertificateToRational) and FindRationalCertificate

12

Of course we used a computer algebra system for the tedious simpli�cations.
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returns the simple recurrence given below. Note that this is the only example where we found

a recurrence with rational function certi�cates that is signi�cantly simpler than any certi�cate

recurrence with polynomial recurrence operators that we found.

A WZ{style Proof of (5.12). The summand f(n; i; j) of f(n) satis�es the following recurrence

relation

13

(2n+ 1) f(n; i; j) = �

i

(R

1

f(n; i; j)) + �

j

(R

2

f(n; i; j))

where

R

1

=

i

2

(1� 2 i� j � 3 i j � 2 j

2

+ 5n� i n+ j n� 4 i j n� 4 j

2

n+ 6n

2

+ 2 i n

2

+ 6 j n

2

)

(1 + j)

2

(1� 2 i+ 2n)

R

2

=

(2 i� 4 i

2

+ j � 3 i j � n+ 9 i n� 4 i

2

n + 3 j n � 4 i j n� 2n

2

+ 6 i n

2

+ 2 j n

2

)

1� 2 i+ 2n

Summing w.r.t. all i and w.r.t. j = 0; : : : ; n we get

(2n+ 1)

X

i

n

X

j=0

�

i+ j

i

�

2

�

4n� 2i� 2j

2n� 2i

�

=

X

i

1� i� 4 i

2

+ 3n+ 2 i n� 4 i

2

n+ 3n

2

+ 2 i n

2

+ 2n

3

1� 2 i+ 2n

�

2n� 2i� 2

2n� 2i

��

n+ i+ 1

i

�

2

+

X

i�0

�2 i+ 4 i

2

+ n � 9 i n+ 4 i

2

n+ 2n

2

� 6 i n

2

1� 2 i+ 2n

�

4n� 2i

2n� 2i

�

:

The last sum is zero, as can be checked with Gosper's algorithm, and the �rst sum evaluates

to (n + 1)

2

�

2n+1

n

�

2

(because the summand is zero unless i = n). So we get the closed form

f(n) = (2n+ 1)

�

2n

n

�

2

.

In the editorial comment to the solution of the AMM problem E3376 A. A. Jagers stated the

similar looking sum

n

X

i=0

n

X

j=0

�

i+ j

j

�

2

�

2n� i� j

n� j

�

2

=

1

2

�

4n+ 2

2n+ 1

�

(5.18)

which was generalized to

n

X

i=0

m

X

j=0

�

i+ j

j

�

2

�

n +m� i� j

n� j

�

2

=

1

2

�

2m+ 2n + 2

2n+ 1

�

(5.19)

by P. Paule.

13

FindRationalCertificate[ Binomial[i+j, i]

2

Binomial[4n-2i-2j, 2n-2i], n, 0, fi,jg, f (j+1)

2

(2n-2i+1), (2n-2i+1) g, 3] in 48 seconds.
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Proof of (5.19). The summand of (5.19) is annihilated by

14

(2 +m+ n) (3 + 2m+ 2n)� (1 + n) (3 + 2n)N �

�

i

(�3� 5 i� 3 j �m� 2 im� j m� 2n� 3 i n� 2 j n+ (3� i+ 3 j +m+ j m+ 2n�

i n+ 2 j n) J N)�

�

j

(�3 + 5 i+ 3 j � 6m+ 2 im+ j m� 2m

2

� 5n+ 3 i n+ 2 j n� 4mn� 2n

2

+

(1 + n) (3 + 2n)N)

Taking the sum w.r.t. j and i with 0 � i � m we observe that the boundary values are zero.

Thus we get a homogeneous recurrence relation for the double sum

(2 +m+ n) (3 + 2m+ 2n)� (1 + n) (3 + 2n)N

which also annihilates the right hand side. Once again the identity follows from checking the

case n = 0.

Alternative Proof of (5.19). Instead of considering a sum with nonstandard boundary con-

ditions, we can also take

�

i+j

i

��

i+j

j

��

n+m�i�j

n�j

��

n+m�i�j

m�i

�

as summand and get a sum with

standard boundary condition. However, we were unable to show that every recurrence for the

corresponding proper hypergeometric functions yields a recurrence for this binomial summand:

neither a polynomial argument nor a limit argument worked. So we have to check by plugging

in whether the binomial summand satis�es the above recurrence at the critical values (these

are i = �1 and i = m) and, indeed, it does.

5.6 The Sums of John Essam

John Essam ([Ess96]) asked for proofs of the following two identities:

n

X

k

2

=0

k

2

X

k

1

=0

(k

2

� k

1

+ 1)

n!(n+ 1)!

k

1

!(k

2

+ 1)!(n� k

1

+ 1)!(n� k

2

)!

= 4

n

�

3

2

�

n

(2)

n

n

X

k

3

=0

k

3

X

k

2

=0

k

2

X

k

1

=0

(k

2

� k

1

+ 1)(k

3

� k

1

+ 2)(k

3

� k

2

+ 1) n!(n+ 1)!(n+ 2)!

k

1

!(k

2

+ 1)!(k

3

+ 2)!(n� k

1

+ 2)!(n� k

2

+ 1)!(n� k

3

)!

= 8

n

�

3

2

�

n

(3)

n

:

Essam stated that he was able to prove the �rst one using the method of k-free recurrences,

but was unable to handle the triple sum. In the following we give proofs of both identities by

showing the equivalent forms

X

k

1

X

k

2

�k

1

k

1

� k

2

n

�

n

k

1

��

n

k

2

�

= 4

n�1

�

3

2

�

n�1

(2)

n�1

(5.20)

X

k

1

X

k

2

�k

1

X

k

3

�k

2

(k

1

� k

2

)(k

1

� k

3

)(k

2

� k

3

)

n

2

(n� 1)

�

n

k

1

��

n

k

2

��

n

k

3

�

= 8

n�2

�

3

2

�

n�2

(3)

n�2

: (5.21)

14

FindRecurrence[ Binomial[i+j, j]

2

Binomial[n+m-i-j, n-j]

2

, n, 0, fi,jg, f1,0g, 1] in 4

seconds.



CHAPTER 5. SOME COMPUTER GENERATED PROOFS 87

Finding recurrences for the summands is simple: our implementation returns very simple re-

currences within a few seconds. The nontrivial parts of the proofs come from the simpli�cation

of the boundary values.

Proof of (5.20). In the following let f(n; k

1

; k

2

) denote the summand of the double sum on the

l.h.s. of (5.20), and let f(n; k

1

) =

P

k

2

�k

1

f(n; k

1

; k

2

) and f(n) =

P

k

1

f(n; k

1

). A recurrence

operator annihilating f(n; k

1

; k

2

) is easily found:

(NK

1

K

2

�K

1

K

2

�K

1

�K

2

� 1)f(n; k

1

; k

2

) = 0:

We �rst sum the recurrence w.r.t. k

2

from �1 to k

1

and we get

f(n + 1; k

1

+ 1)� 2f(n; k

1

)� 2f(n; k

1

+ 1) = f(n; k

1

; k

1

+ 1)� f(n; k

1

+ 1; k

1

+ 1):

The last boundary term f(n; k

1

+ 1; k

1

+ 1) is zero, and summing w.r.t. k

1

yields

f(n+ 1)� 4f(n) =

X

k

1

�1

n

�

n

k

1

��

n

k

1

+ 1

�

= �

1

n

�

2n

n + 1

�

:

The last equality holds by Vandermonde convolution. Therefore, a recurrence operator anni-

hilating the double sum is

((n+ 2)N � 2(2n+ 1)) (N � 4)

and we can check that it also annihilates the conjectured closed form. Comparing the initial

values completes the proof. Note that 4f(n)� f(n+ 1) = C

n

, the n-th Catalan number.

Proof of (5.21). Let us denote the summand of the triple sum on the l.h.s. of (5.21) by

f(n; k

1

; k

2

; k

3

), and let f(n; k

1

; k

2

) =

P

k

3

�k

2

f(n; k

1

; k

2

; k

3

), f(n; k

1

) =

P

k

2

�k

1

f(n; k

1

; k

2

),

and f(n) =

P

k

1

f(n; k

1

). Again, we easily �nd a recurrence relation for the summand:

(NK

1

K

2

K

3

�K

1

K

2

K

3

�K

1

K

2

�K

1

K

3

�K

2

K

3

�K

1

�K

2

�K

3

� 1) f(n; k

1

; k

2

; k

3

) = 0:

(5.22)

Summing recurrence (5.22) w.r.t. to k

3

(with k

3

� k

2

) yields an inhomogeneous recurrence

relation for f(n; k

1

; k

2

).

(NK

1

K

2

� 2K

1

K

2

� 2K

1

� 2K

2

� 2) f(n; k

1

; k

2

) = f(n; k

1

; k

2

; k

2

+ 1)

+ f(n; k

1

+ 1; k

2

; k

2

+ 1)� f(n; k

1

; k

2

+ 1; k

2

+ 1)� f(n; k

1

+ 1; k

2

+ 1; k

2

+ 1)

The last two boundary terms are zero. Summing this recurrence w.r.t. k

2

(with k

2

� k

1

) gives

(NK

1

� 4K

1

� 4) f(n; k

1

) =

X

k

2

�k

1

f(n; k

1

; k

2

; k

2

+ 1)

+

X

k

2

�k

1

f(n; k

1

+ 1; k

2

; k

2

+ 1) + 2f(n; k

1

; k

1

+ 1)� 2f(n; k

1

+ 1; k

1

+ 1):
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The last boundary term is again zero, and summing w.r.t. k

1

yields the following inhomoge-

neous recurrence relation for f(n).

f(n + 1)� 8f(n) =

X

k

1

X

k

2

�k

1

f(n; k

1

; k

2

; k

2

+ 1)

+

X

k

1

X

k

2

�k

1

f(n; k

1

+ 1; k

2

; k

2

+ 1) + 2

X

k

1

X

k

3

�k

1

+1

f(n; k

1

; k

1

+ 1; k

3

) (5.23)

It is possible to �nd a closed form for the boundary values. Using the fact that f(n; k

1

; k

2

; k

3

) =

0 if k

1

= k

2

or k

1

= k

3

or k

2

= k

3

, the boundary values can be rewritten as

2

X

k

1

X

k

2

�k

1

f(n; k

1

; k

2

; k

2

+ 1) + 2

X

k

1

X

k

2

�k

1

f(n; k

1

; k

1

+ 1; k

2

): (5.24)

Interchanging the order of summation in the second sum and renaming the summation vari-

ables gives

2

X

k

1

X

k

2

�k

1

f(n; k

1

; k

1

+ 1; k

2

) = 2

X

k

2

X

k

1

�k

2

f(n; k

1

; k

1

+ 1; k

2

)

= 2

X

k

1

X

k

2

�k

1

f(n; k

2

; k

2

+ 1; k

1

):

Thus we can, by using the symmetry relation f(n; k

1

; k

2

; k

3

) = f(n; k

3

; k

1

; k

2

), write the two

sums (5.24) as one sum with standard boundary conditions

2

X

k

1

X

k

2

f(n; k

1

; k

2

; k

2

+1) =

�2

n

2

(n� 1)

X

k

1

X

k

2

(k

1

�k

2

)(k

1

�k

2

�1)

�

n

k

1

��

n

k

2

��

n

k

2

+ 1

�

:

(5.25)

The inner sum w.r.t k

1

can be evaluated in closed form

X

k

1

(k

1

� k

2

)(k

1

� k

2

� 1)

�

n

k

1

�

= 2

n�2

(4k

2

+ 4k

2

2

� 4k

2

n� n+ n

2

);

and the remaining sum w.r.t. k

2

, too, can be evaluated in closed form

X

k

2

(4k

2

+ 4k

2

2

� 4k

2

n� n+ n

2

)

�

n

k

2

��

n

k

2

+ 1

�

=

3n(n� 1)

2n� 1

�

2n

n+ 1

�

:

Thus we have found a closed form for the boundary values, and recurrence (5.22) for f(n)

now equals

f(n+ 1)� 8f(n) =

�3 2

n�1

n(2n� 1)

�

2n

n+ 1

�

:

A homogeneous recurrence operator annihilating f(n) is therefore

((n+ 2)N � (8n� 4))(N � 8):

Checking that the r.h.s. of (5.21) is annihilated by this recurrence operator and comparing

the initial values completes the proof.
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Second Proof of (5.20). The identity (5.20) can also be proved entirely by the computer, using

the method explained in Section 3.4. We multiply the summand of the double sum with

(k

1

�k

2

+�)!

(k

1

�k

2

)!

and get the function

f

�

(n; k

1

; k

2

) =

(k

1

� k

2

+ �)!n! (n� 1)!

(k

1

� k

2

� 1)! k

1

! k

2

! (n� k

1

)! (n� k

2

)!

:

Now the the double sum on the l.h.s. of (5.20) equals

P

k

1

P

k

2

lim

�!0

f

�

(n; k

1

; k

2

), which has

standard boundary conditions. So we can compute a recurrence for the double sum from the

following recurrence

15

that annihilates f

�

(n; k

1

; k

2

).

8n (1 + 2n) + (�6 + 5 �+ �

2

� 14n+ 4 � n� 8n

2

)N + (2 + n) (1� �+ n)N

2

�

�

k

1

(n (1 + n) + (�3� � + 4 k

1

� 7n)nK

2

� n (1 + n)K

1

K

2

+ (�4� � � 8 k

1

� 4n)nK

2

2

+

(�5� 4 k

1

� n)nK

1

K

2

2

+ (4� �� 2 k

1

� � k

1

+ 7n� � n � 2 k

1

n + 3n

2

)K

2

N + (1 + n)

(�2 k

1

+ n)K

1

K

2

N + (2� 4 �� �

2

+ 2 k

1

+ � k

1

+ 7n� 3 � n+ 2 k

1

n+ 5n

2

)K

2

2

N +

(2� 2 �� � k

1

+ 8n� � n+ 4 k

1

n+ 2n

2

)K

1

K

2

2

N + (�1 + � � n) (2 + n)K

2

2

N

2

+

(�1 + �� n) (2 + n)K

1

K

2

2

N

2

) �

�

k

2

((�8� �� 16n)n+ (�4� �� 8 k

1

� 4n)nK

2

+ (6� 5 �� �

2

+ 14n� 4 � n+ 8n

2

)N +

(2� 4 �� �

2

+ 2 k

1

+ � k

1

+ 7n� 3 � n+ 2 k

1

n + 5n

2

)K

2

N + (�1 + �� n) (2 + n)N

2

+

(�1 + �� n) (2 + n)K

2

N

2

):

The recurrence operator annihilating the double sum is

8n (1 + 2n) + (�6� 14n� 8n

2

)N + (2 + n) (1 + n)N

2

: (5.26)

Again, checking that the r.h.s. is annihilated by (5.26) and comparing initial values completes

the proof.

The computer failed, due to a memory overow, to �nd a proof for (5.21) in the same way.

5.7 Miscellaneous Sums

5.7.1 A Sum of Hoon Hong

Recently, Hoon Hong ([Hon96]) needed a closed form evaluation of the following sum

X

p;q;P;Q;i;j

(�1)

i+p+P

�

n

i

��

i

p

��

i

P

��

j

q

��

j

Q

�

(5.27)

15

FindRecurrence[(k1-k2+�)! n! (n-1)! / ((k1 - k2 -1)! k1! k2! (n-k1)! (n-k2)!), n,

1, fk1,k2g, f1,1g, f1,0g] in 16 seconds.
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where p+ q = r, P +Q = R, p+ Q = u, q + P = v, and i+ j = n, and where r; R; u; v; n are

arbitrary integers.

Solving the system of constraints, the six-fold sum (5.27) reduces to the two-fold sum

X

i;q

(�1)

i+r+v

�

n

i

��

i

r � q

��

i

v � q

��

n� i

q

��

n � i

u� r+ q

�

: (5.28)

Proof of (5.28). The summand of (5.28) can be written as the proper hypergeometric term

n! i! (n� i)!

(r� q)! (i� r+ q)! (v� q)! (i� v + q)! q! (n� i� q)! (u� r + Q)! (n� i� u+ r � q)!

and we see that for the critical values i < 0 and i > n a limit argument extends every

recurrence for the proper hypergeometric function to a recurrence for the binomial summand.

The following recurrence operator

16

annihilates the summand of (5.28):

(n+ 1� u� v)N + �

i

((i+ 2q � r � v)N) + �

q

((n+ 1� i� 2q + r � u)N � (n+ 1)):

This immediately yields that the sum is zero if u+ v 6= n.

We set u = n� v and now the summand is annihilated by

17

(n+ 1)

2

� (n+ 1� r)(n+ 1� v)N +

�

i

((i+ 2q + iq + q

2

� r � v � rv)N) +

�

Q

((n+ 1)(n+ q + 2)� (n+ 2)(r+ v � q � n� 1)N):

By checking equality at the initial values n = 0 and for the zeroes of the leading coe�cients

n = v and n = r we prove the get the closed form evaluation

�

n

v

��

n

r

�

for the sum (5.28) if u+ v = n.

5.7.2 A Sum of Suzie Dent

The following identity is due to Suzie Dent ([Den96]). The double sum is \an eigenvalue of

a certain incidence matrix indexed by partitions". Let v and k be nonnegative integers with

k � 2v, then

k

X

s=0

X

b�0

(�1)

b

�

s

b

��

k � s

2v � b

��

k � 2v

s� b

�

=

�

k � v

k � 2v

�

2

k�2v

: (5.29)

16

FindRecurrence[ (-1)

i+r+v

Binomial[n, i] Binomial[i, r-q] Binomial[i, v-q] Binomial[n-i, q]

Binomial[n-i, u-r+q], n, 0, fi,qg, f0,1g, 1] in 8 seconds.

17

FindRecurrence[ (-1)

i+r+v

Binomial[n, i] Binomial[i, r-q] Binomial[i, v-q] Binomial[n-i, q]

Binomial[n-i, n-v-r+q], n, 1, fi,qg, f0,1g, f1,2g] in 83 seconds.
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Proof of (5.29). It easily seen that the double sum is a standard sum, i.e., we can sum b

and s over all integer values, and that a limit argument extends every recurrence for the

proper hypergeometric interpretation of (�1)

b

�

s

b

��

k�s

2v�b

��

k�2v

s�b

�

to a recurrence for the binomial

summand itself. The binomial summand is annihilated by

18

2(v � k � 1) + (k � 2v + 1)K �

�

b

(1 + b+ k � 2v + (b� s � 1)KS) � �

s

((b� s)K):

The right hand side of (5.29) is also annihilated by 2(v� k� 1) + (k� 2v + 1)K, so checking

the initial value for k = 2v proves the identity.

5.7.3 A Sum Found in \Concrete Mathematics"

The following sum with �ve parameters is stated on page 172 of [GKP94]. For integers l;m; n

with n � 0, we have

X

j;k

(�1)

j+k

�

j + k

k + l

��

r

j

��

n

k

��

s+ n � j � k

m� j

�

= (�1)

l

�

n + r

n + l

��

s� r

m� n � l

�

: (5.30)

Proof of (5.30). Call the summand of (5.30) f(n; j; k). The proper hypergeometric term

corresponding to f is

g(n; j; k) = (�1)

j+k

(j + k)! r!n! (s+ n� j � k)!

(k+ l)! (j� l)! j! (r� j)! k! (n� k)! (m� j)! (s+ n �m� k)!

The only dangerous situation is that for integers j; k we have j + k < 0. We take limits

depending on the sign of l: if l is a nonnegative integer then lim

�!0

g(n; j + �; k) = f(n; j; k)

and if l is negative then lim

�!0

g(n; j; k+�) = f(n; j; k). The following recurrence

19

annihilates

g(n; j; k) and thus f(n; j; k):

(1 + n) (l�m+ n) (1 + n+ r) + (1 + n) (1 + l + n) (1 + l�m+ n � r + s)N �

�

j

((1 + n) (1 + j + n) (�2� l+m� 2n� s) +

(1 + k + j k + l + n� j n+ k n + l n) (�2� l +m� 2n� s)KN)�

�

k

((1 + n) (1 + j � k + j l� j m+ 2n+ j n� k n + n

2

� r � j r � k r � l r +mr� n r+ s+

j s+ n s) + (1 + n) (1 + l+ n) (�1� l +m� n+ r � s)N)

and the resulting recurrence for the sum also annihilates the right hand side. By using a

variant of the Vandermonde convolution, we can evaluate the double sum for n = 0,

X

j

(�1)

j

�

j

l

��

r

j

��

s� j

m� j

�

=

X

j

(�1)

j

�

r

l

��

r � l

j � l

��

s � j

m� j

�

= (�1)

l

�

r

l

��

s � r

m� l

�

;

completing the proof.

18

FindRecurrence[ (-1)

b

Binomial[s, b] Binomial[k-s, 2v-b] Binomial[k-2v, s-b], k, 0, fb,sg,

f1,0g, 1] in 7 seconds.

19

FindRecurrence[ (-1)

j+k

Binomial[j+k, k+l] Binomial[r, j] Binomial[n, k] Binomial[s+n-j-k,

m-j], n, 0, fj,kg, 1, 1] in 865 seconds.
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5.7.4 A Summation Identity of Stechkin

The following identity is due to Stechkin [Ste75]:

X

j

1

X

j

2

�

j

2

� j

1

q � j

1

��

r

2

� r

1

� j

2

+ j

1

p� r

1

� q + j

1

��

r

1

j

1

��

r

2

� r

1

j

2

� j

1

��

n� r

2

l � j

2

�

=

�

p

q

��

n� p

l � q

��

r

2

� r

1

p� r

1

�

(5.31)

with nonnegative integers l and q.

Proof of (5.31). It is easily seen that the summand equals

r

1

!(r

2

� r

1

)!(n� r

2

)!

(q � j

1

)!(j

2

� q)!(p� r

1

� q + j

1

)!(r

2

+ q � p� j

2

)!j

1

!(r

1

� j

1

)!(l� j

2

)!(n� r

2

� l+ j

2

)!

;

so we do not have to consider singularities. The summand of (5.31) is annihilated by

20

(l� q) (p� q) + (�1 + l� n+ p� q) (1 + q)Q�

�

j

1

(j

1

(1� j

2

� p+ q + r

2

)Q+ j

1

(1 + j

2

� l + n � r

2

) J

2

Q)�

�

j

2

((1 + q) (j

2

� l + n � r

2

)Q):

The right hand side of (5.31) also satis�es the recurrence for the double sum, so we have to

show that the initial values are identical, i.e., that

X

j

2

�

r

2

� r

1

� j

2

p� r

1

��

r

2

� r

1

j

2

��

n� r

2

l� j

2

�

=

�

n� p

l

��

r

2

� r

1

p� r

1

�

: (5.32)

The summand of (5.32) is annihilated by

21

(�l + n� p) � (1 + l)L � �

j

2

(j

2

L);

completing the proof.

5.7.5 A Certain De�nite Sum

The following identity was proved in [WZ92a] (and was conjectured by Szondy and Varga)

X

j;m

(�1)

j+n

(2n� 2m+ j)!(2k+ 1 + j)!

j!(n�m)!(i+m)!(m� j)!(n�m+ j)!(2k� 2i� 2m+ 1 + j)!

=

2

2n

(2k + 1)!(k� i)!

(i!(2k� 2i+ 1)!n!(k� i� n)!

(5.33)

for n 2 N

0

.

20

FindRecurrence[ Binomial[j2-j1, q-j1] Binomial[r2-r1-j2+j1, p-r1-q+j1] Binomial[r1, j1]

Binomial[r2-r1, j2-j1] Binomial[n-r2, l-j2], q, 0, fj1,j2g, f1,1g, 1] in 60 seconds and the

combination of the two linearly independent solution.

21

FindRecurrence[ Binomial[r2-r1-j2, p-r1] Binomial[r2-r1, j2] Binomial[n-r2, l-j2], l, 0,

j2, 1, 1] in 2 seconds and the combination of the two linearly independent solutions.
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Proof of (5.33). The summand is annihilated by

22

4(i� k + n) + (1 + n)N

�

j

(2(1� j + 2m� 2n)M + (�j +m� n)MN)�

�

m

(2(�1� j + 2m� 2n) + (�1� n)N)

and the identity follows from checking the initial values.

5.7.6 A Sum Found in \A=B"

We found the identity

X

r

X

s

(�1)

n+r+s

�

n

r

��

n

s

��

n+ s

s

��

n+ r

r

��

2n � r � s

n

�

=

X

k

�

n

k

�

4

(5.34)

on page 33 of [PWZ96]. The computer-generated proof for it turned out to be rather long and

was di�cult to �nd.

Proof. We easily see that the singularities are no problem, and that the summand of the

double sum is annihilated by

23

� 360 (1+ n) (2 + n) (3 + 4n) (5 + 4n) (62+ 147n+ 135n

2

+ 58n

3

+ 10n

4

)�

180 (2+ n) (3 + 2n) (7 + 9n+ 3n

2

) (62 + 147n+ 135n

2

+ 58n

3

+ 10n

4

)N +

90 (2 + n)

4

(62 + 147n+ 135n

2

+ 58n

3

+ 10n

4

)N

2

�

�

r

S

r

��

s

S

s

where

S

r

= (10 (�172000 � 930776 n � 2170952 n

2

� 2855018 n

3

� 2318064 n

4

� 1190900 n

5

� 378342 n

6

� 68008 n

7

�

5300 n

8

+100112 r+428544 n r+781492 n

2

r+786140 n

3

r+470726 n

4

r+167685 n

5

r+32901 n

6

r+2744 n

7

r+

46800 r

2

+176904 n r

2

+269892 n

2

r

2

+211266 n

3

r

2

+88416 n

4

r

2

+18342 n

5

r

2

+1404 n

6

r

2

+84640 s+395640 ns+

789872 n

2

s+872290 n

3

s+575146 n

4

s+226344 n

5

s+49224 n

6

s+4564 n

7

s�12224 r s�31616 n r s�18120 n

2

r s+

18910 n

3

r s+28619 n

4

r s+13031 n

5

r s+2060 n

6

r s+23400 r

2

s+76752 n r

2

s+96570 n

2

r

2

s+57348 n

3

r

2

s+

15534 n

4

r

2

s+1404 n

5

r

2

s)N+2 (�694240�4651336 n�12274440 n

2

�16952824 n

3

�13368203 n

4

�6007031 n

5

�

1383578 n

6

�100548 n

7

+8640 n

8

+281200 r�5312 n r�2808372 n

2

r�6265820 n

3

r�6200404 n

4

r�3221278 n

5

r�

857482 n

6

r � 92340 n

7

r + 48080 r

2

� 19720 n r

2

� 474612 n

2

r

2

� 887284 n

3

r

2

� 708137 n

4

r

2

� 266039 n

5

r

2

�

38600 n

6

r

2

+ 194680 s + 869732 ns + 1616744 n

2

s + 1613631 n

3

s + 902483 n

4

s + 250138 n

5

s + 13212 n

6

s �

5760 n

7

s�206800 r s�1123616 n r s�2261768 n

2

r s�2161596 n

3

r s�995294 n

4

r s�178522 n

5

r s�180 n

6

r s+

42040 r

2

s�75700 n r

2

s�484216 n

2

r

2

s�652659 n

3

r

2

s�356329 n

4

r

2

s�70460 n

5

r

2

s)N R+180 (2+n) (3660+

15164 n + 24765 n

2

+ 18673 n

3

+ 4042 n

4

� 3171 n

5

� 2215 n

6

� 414 n

7

+ 4230 r + 20357 n r + 39412 n

2

r +

22

FindRecurrence[ (-1)

j+n

(2n-2m+j)! (2k+1+j)! / (j! (n-m)! (i+m)! (m-j)! (n-m+j)!

(2k-2i-2m+1+j)!), n, 0, fj,mg, f1,1g, 1] in 2800 seconds.

23

FindRecurrence[ (-1)

n+r+s

Binomial[n, r] Binomial[n, s] Binomial[n+s, s] Binomial[n+r, r]

Binomial[2n-r-s, n], n, 2, fr,sg, f1,1 g, f1,2g] in 4517 seconds solving a 127� 81 system.
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39519 n

3

r + 21715 n

4

r + 6209 n

5

r + 722 n

6

r � 970 r

2

� 3419 n r

2

� 4764 n

2

r

2

� 3285 n

3

r

2

� 1122 n

4

r

2

�

152 n

5

r

2

+1680 s+7758 n s+15157 n

2

s+16048 n

3

s+9703 n

4

s+3170 n

5

s+436 n

6

s� 1950 r s� 6231 n r s�

7790 n

2

r s�4736 n

3

r s�1387 n

4

r s�154 n

5

r s�230 r

2

s�659 n r

2

s�694 n

2

r

2

s�319 n

3

r

2

s�54 n

4

r

2

s)S+

(8426800 + 40487696 n+84133600 n

2

+ 98717620 n

3

+71581755 n

4

+32938651 n

5

+ 9454225 n

6

+ 1566287 n

7

+

116790 n

8

+1434440 r+6884004 n r+13898894 n

2

r+15215401 n

3

r+9724138 n

4

r+3635349 n

5

r+745658 n

6

r+

67020 n

7

r�969000 r

2

�2727572 n r

2

�2525230 n

2

r

2

�495193 n

3

r

2

+513846 n

4

r

2

+279671 n

5

r

2

+36070 n

6

r

2

+

883920 s+2732384 ns+2297156 n

2

s� 1443108 n

3

s� 3971824 n

4

s� 2938202 n

5

s� 985130 n

6

s� 128300 n

7

s+

915120 r s + 3848032 n r s + 6563816 n

2

r s + 5732588 n

3

r s + 2638812 n

4

r s + 576188 n

5

r s + 39700 n

6

r s �

318080 r

2

s�616120 n r

2

s+2732 n

2

r

2

s+731838 n

3

r

2

s+557318 n

4

r

2

s+126880 n

5

r

2

s)N S+10 (2 + n)

2

(8396+

33368 n + 52761 n

2

+ 42296 n

3

+ 17914 n

4

+ 3703 n

5

+ 274 n

6

� 11700 r� 38376 n r � 48285 n

2

r � 28674 n

3

r �

7767 n

4

r� 702 n

5

r� 1116 s� 3204 ns� 3753 n

2

s� 2259 n

3

s� 702 n

4

s� 90 n

5

s)N

2

S +180 (2+n) (�13100�

25874 n + 3000 n

2

+ 44770 n

3

+ 43340 n

4

+ 16627 n

5

+ 2085 n

6

� 102 n

7

� 18980 r � 50388 n r � 43950 n

2

r �

7034 n

3

r + 9967 n

4

r + 5351 n

5

r + 766 n

6

r � 6600 r

2

� 20566 n r

2

� 25000 n

2

r

2

� 14678 n

3

r

2

� 4094 n

4

r

2

�

420 n

5

r

2

�11300 s�37508 n s�48899 n

2

s�30697 n

3

s�8648n

4

s�438 n

5

s+168n

6

s�7810 r s�24037 n r s�

28720 n

2

r s�16448 n

3

r s�4413n

4

r s�422 n

5

r s�230 r

2

s�659 n r

2

s�694 n

2

r

2

s�319 n

3

r

2

s�54n

4

r

2

s)RS+

(1172460 + 8293288 n + 22882409 n

2

+ 32565731 n

3

+ 25834446 n

4

+ 11056379 n

5

+ 1963717 n

6

� 136494 n

7

�

71640 n

8

� 476400 r� 100468 n r+4947316 n

2

r+12028321 n

3

r+12866679 n

4

r+7308469 n

5

r+2172893 n

6

r+

269190 n

7

r+30180 r

2

+338260 n r

2

+1000043 n

2

r

2

+1245074 n

3

r

2

+723213 n

4

r

2

+178394 n

5

r

2

+10780 n

6

r

2

�

950060 s � 4293340 ns � 7847041 n

2

s � 7310382 n

3

s� 3455233 n

4

s� 569432 n

5

s+ 125568 n

6

s+ 45000 n

7

s +

48920 r s+87664n r s�249974n

2

r s�940458n

3

r s�1119074n

4

r s�583402n

5

r s�113580n

6

r s+98260 r

2

s+

635996 n r

2

s+ 1428071 n

2

r

2

s+ 1469856 n

3

r

2

s+ 713351 n

4

r

2

s+ 132730 n

5

r

2

s)N RS + 9 (2 + n) (�14180 �

50096 n� 78779 n

2

� 76639 n

3

� 50827 n

4

� 21073 n

5

� 4198 n

6

� 160 n

7

� 32100 r� 123504 n r� 201275 n

2

r �

182287 n

3

r�99355 n

4

r�31393 n

5

r�4470 n

6

r+27060 s+107124 ns+173179 n

2

s+142034 n

3

s+58769n

4

s+

9770 n

5

s+27060 r s+107124 n r s+173179 n

2

r s+142034 n

3

r s+58769 n

4

r s+9770 n

5

r s)N

2

RS +180 (2+

n) (�3480�12684 n�16102 n

2

�4195 n

3

+9671 n

4

+10829 n

5

+4595 n

6

+734 n

7

�2280 r�14126 n r�31622 n

2

r�

34783 n

3

r�20328 n

4

r�6055 n

5

r�722 n

6

r+1200 r

2

+4078 n r

2

+5458 n

2

r

2

+3604 n

3

r

2

+1176 n

4

r

2

+152 n

5

r

2

�

1680 s� 7758n s� 15157n

2

s� 16048n

3

s� 9703n

4

s� 3170n

5

s� 436n

6

s+1950 r s+6231n r s+7790n

2

r s+

4736 n

3

r s+1387 n

4

r s+154 n

5

r s+230 r

2

s+659 n r

2

s+694 n

2

r

2

s+319 n

3

r

2

s+54 n

4

r

2

s)S

2

+(�792560�

2451416 n� 2050124 n

2

+ 473354 n

3

+808028 n

4

� 974976 n

5

� 1457588 n

6

� 637786 n

7

� 96100 n

8

+926520 r+

4002528 n r+7461826 n

2

r+7575890 n

3

r+4253420 n

4

r+1109772 n

5

r+10364 n

6

r� 37040 n

7

r+361880 r

2

+

952608 n r

2

+846338 n

2

r

2

+359038 n

3

r

2

+233548 n

4

r

2

+182040 n

5

r

2

+50420 n

6

r

2

+1664120 s+9325636 n s+

22440698 n

2

s + 29848565 n

3

s + 23601975 n

4

s + 11068439 n

5

s + 2846777 n

6

s + 309550 n

7

s + 539660 r s +

2475196 n r s + 4952497 n

2

r s + 5484282 n

3

r s + 3502537 n

4

r s + 1209296 n

5

r s + 174780 n

6

r s � 98260 r

2

s �

635996 n r

2

s� 1428071 n

2

r

2

s� 1469856 n

3

r

2

s � 713351 n

4

r

2

s � 132730 n

5

r

2

s)N S

2

+ 10 (2 + n)

2

(�9512�

37688 n � 59718 n

2

� 48308 n

3

� 20875 n

4

� 4495 n

5

� 364 n

6

+ 11700 r+ 38376 n r + 48285 n

2

r + 28674 n

3

r +

7767 n

4

r+ 702 n

5

r+ 1116 s+3204 ns+ 3753 n

2

s+ 2259 n

3

s+ 702 n

4

s+ 90 n

5

s)N

2

S

2

+ 720 (2 + n) (1570 +

4907 n + 5725 n

2

+ 2755 n

3

+ 130 n

4

� 321 n

5

� 78 n

6

+ 1210 r + 3701 n r + 4379 n

2

r + 2464 n

3

r + 638 n

4

r +

56 n

5

r) (2� 2n+ r+ s)RS

2

+36 (1 + n) (2 + n) (�3200� 16860 n� 29381 n

2

� 19378 n

3

� 501 n

4

+4492 n

5

+

1340 n

6

+ 6070 r+ 17093 n r+ 16034 n

2

r+ 4418 n

3

r� 1231 n

4

r� 610 n

5

r� 1150 r

2

� 2145 n r

2

� 1325 n

2

r

2

�

270 n

3

r

2

+970 s+933n s� 3181n

2

s� 6187n

3

s� 3871n

4

s� 830n

5

s)N RS

2

+9 (2+n) (�39800� 160240 n�

260442 n

2

�206830 n

3

�72650 n

4

�1610 n

5

+4612n

6

+560 n

7

�28120 r�115968 n r�196418 n

2

r�166698 n

3

r�

68418 n

4

r � 9350 n

5

r + 780 n

6

r � 27060 s � 107124 ns � 173179 n

2

s � 142034 n

3

s � 58769 n

4

s � 9770 n

5

s �

27060 r s� 107124 n r s� 173179 n

2

r s� 142034 n

3

r s� 58769 n

4

r s� 9770 n

5

r s)N

2

RS

2

)
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and

S

s

= (360 (1 + n) (2 + n) (3 + 4n) (5 + 4n) (62 + 147 n + 135 n

2

+ 58n

3

+ 10 n

4

) + 10 (218872 + 1156856 n +

2651570 n

2

+3444050 n

3

+2773896 n

4

+1419266 n

5

+450738 n

6

+81292 n

7

+6380 n

8

� 100112 r� 428544 n r�

781492 n

2

r � 786140 n

3

r � 470726 n

4

r � 167685 n

5

r � 32901 n

6

r � 2744 n

7

r � 46800 r

2

� 176904 n r

2

�

269892 n

2

r

2

� 211266 n

3

r

2

� 88416 n

4

r

2

� 18342 n

5

r

2

� 1404 n

6

r

2

� 84640 s � 395640 n s � 789872 n

2

s �

872290 n

3

s�575146 n

4

s�226344 n

5

s�49224 n

6

s�4564 n

7

s+12224 r s+31616 n r s+18120 n

2

r s�18910 n

3

r s�

28619 n

4

r s�13031n

5

r s�2060 n

6

r s�23400 r

2

s�76752 n r

2

s�96570 n

2

r

2

s�57348n

3

r

2

s�15534 n

4

r

2

s�

1404 n

5

r

2

s)N � 90 (2 + n)

4

(62 + 147 n+ 135 n

2

+ 58 n

3

+ 10 n

4

)N

2

+ 180 (2 + n) (�1800� 4926 n� 945 n

2

+

11853 n

3

+19374 n

4

+13999 n

5

+5031 n

6

+734 n

7

� 4230 r� 20357 n r� 39412 n

2

r� 39519 n

3

r� 21715 n

4

r�

6209 n

5

r� 722 n

6

r+ 970 r

2

+ 3419 n r

2

+ 4764 n

2

r

2

+ 3285 n

3

r

2

+1122 n

4

r

2

+152 n

5

r

2

� 1680 s� 7758 n s�

15157 n

2

s � 16048 n

3

s � 9703 n

4

s � 3170 n

5

s � 436 n

6

s + 1950 r s + 6231 n r s + 7790 n

2

r s + 4736 n

3

r s +

1387 n

4

r s+154n

5

r s+230 r

2

s+659n r

2

s+694 n

2

r

2

s+319n

3

r

2

s+54 n

4

r

2

s)S+10 (�373144�1806936 n�

3756110 n

2

� 4370746 n

3

� 3107581 n

4

� 1379061 n

5

� 372054 n

6

� 55666 n

7

� 3534 n

8

� 23480 r� 116540 n r �

246714 n

2

r�287123 n

3

r�198538 n

4

r�82153 n

5

r�19108 n

6

r�1968 n

7

r+46800 r

2

+165204 n r

2

+231516 n

2

r

2

+

162981 n

3

r

2

+ 59742 n

4

r

2

+ 10575 n

5

r

2

+ 702 n

6

r

2

� 77848 s � 328320 n s � 571898 n

2

s � 525640 n

3

s �

267466 n

4

s� 70257 n

5

s� 6771 n

6

s+ 248 n

7

s� 1712 r s� 7928 n r s� 8940 n

2

r s+ 2872 n

3

r s+ 11294 n

4

r s+

7118 n

5

r s+1448 n

6

r s+23400 r

2

s+76752 n r

2

s+96570 n

2

r

2

s+57348 n

3

r

2

s+15534 n

4

r

2

s+1404 n

5

r

2

s)N S+

10 (2 + n)

2

(�10628�40892 n�63471 n

2

�50567 n

3

�21577 n

4

�4585 n

5

�364 n

6

+11700 r+38376 n r+48285 n

2

r+

28674 n

3

r + 7767 n

4

r + 702 n

5

r + 1116 s + 3204 n s+ 3753 n

2

s+ 2259 n

3

s + 702 n

4

s + 90 n

5

s)N

2

S):

Finding a recurrence annihilating

�

n

k

�

4

is simple:

4 (�3� 4n) (1+ n) (5 + 4n)� 2 (3 + 2n) (7 + 9n+ 3n

2

)N + (2 + n)

3

N

2

�

�

k

((1 + n) (50 + 10 k+ 101n+ 8 k n+ 49n

2

) + (1 + n) (20+ 10 k+ 25n+ 8 k n + 7n

2

)K +

2 (3 + 2n) (7+ 9n+ 3n

2

)N + (44 + 46 k+ 51n+ 66 k n+ 6n

2

+ 24 kn

2

� 6n

3

)KN �

(2 + n)

3

N

2

� (2 + n)

3

KN

2

):

So both sums satisfy the same recurrence relation

4 (�3� 4n) (1+ n) (5 + 4n)� 2 (3 + 2n) (7 + 9n+ 3n

2

)N + (2 + n)

3

N

2

:

It remains to check the initial values: For n = 0 both sums are 1, for n = 1 they are 2.
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delta operators, 8

existence theorem, 21, 32

factorial di�erence, 19

factorial expression (numerator, denominator),

12

FindCertificate, 64

FindRecurrence, 61

forward-shift operators, 8

fundamental theorem, 43

k-free recurrence, 15

limit argument, 36

minimal structure, 29

MultiSum, 58

nonstandard boundary conditions, 47

polynomial argument, 36

proper hypergeometric function, 13

proper hypergeometric term, 12

irreducible, 13

shift operators, 7

Sister Celine's technique, 10
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second generalization, 56

with the Wilf-Zeilberger method, 22

with Verbaeten completion, 28
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structurevector, 29

summable, 44

Verbaeten completion, 28
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