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Chapter 1

Introduction

Systems of linear first order ordinary differential equations play a central
role in many areas of applied mathematics. Classical textbooks on this sub-
ject show how to solve such systems in the case of constant coefficients and
leave the solution for more general coefficients to numerical methods. In an
attempt to tackle such systems symbolically, a natural first step is to reduce
a system to a higher order equation in a single unknown, which we will call
a scalar equation (Note that the inverse operation of transforming a higher
order differential equation into a system is easy by introducing one addi-
tional variable for each derivative of the unknown). A classical method to
achieve this ‘uncoupling’ is the cyclic vector algorithm, which is the topic
of section (3.2). This method is unsatisfactory because it gives uncoupled
equations with very large coefficients. Furthermore, it does not generalize
to certain other kinds of linear operator equations, such as difference or
g-difference equations. These operators are of interest e.g. in the task of
proving combinatorial identities automatically. Chyzak [11] describes an al-
gorithm generalizing Zeilberger’s ‘creative telescoping’ summation algorithm
[23],[24],[20], that is capable of proving a large class of identities involving
summation and integration. It uses the unified framework of Ore operators
that encompasses (g-)difference operators, differential operators and many
others. One step of this algorithm consists of solving a linear Ore operator
system with rational function coefficients for rational function solutions. Un-
coupling this system with one of the methods described in this thesis allows
to solve it by appealing to one of the algorithms for finding rational function
solutions of (higher order) differential-, difference or ¢-difference equations
in one unknown [1],[3],[4],[5]. We formulate all uncoupling algorithms for an
arbitrary coefficient field, but our implementations require the coefficients
to be rational functions.

Chapter (2) introduces the algebraic ingredients that are the theoretical
base of the uncoupling algorithms in the later chapters. It begins with the
definition of Ore polynomials. Following [10] we show how many kinds of
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6 CHAPTER 1. INTRODUCTION

higher order linear operators can be interpreted as polynomials with a non-
commutative multiplication arising from the composition of operators. These
polynomials form rings that are free of zero divisors and allow to divide a
polynomial by another one on the right, which leads to a generalization of the
(extended) Euclidean Algorithm. Thus we can compute a greatest common
right divisor and a least common left multiple of two Ore polynomials. In
section (2.6), which is based on [20], we describe in detail how some linear
operators that arise in practice fit into the Ore framework. In section (2.7)
we deal with the central object of interest of this thesis, that is linear systems
of Ore operator equations. It turns out that in the literature on uncoupling
[6],[10],[25] two ways of encoding such systems in terms of pseudo-linear
maps (= Ore operators) are used. One of them requires the study of pseudo-
linear maps an finite dimensional vector spaces, which is somewhat similar
to (in fact, generalizes) linear algebra [10]. Theorem (2.28) provides the
connection between those two types of Ore operator systems.

Section (3) presents Ziircher’s uncoupling algorithm. Tt proceeds in two
stages, a characteristic which is shared with the algorithms in sections (5.1)
and (5.2). First the system is transformed into an equivalent system with
a ‘nice’ matrix (in the case of Ziircher’s algorithm, a block diagonal matrix
where each block is a companion matrix). In the second stage, this normal
form is used to derive higher order scalar equations. For readers who wish
to implement Ziircher’s algorithm (or one of the other three uncoupling al-
gorithms from this thesis) we give a pseudo-code listing. Furthermore we
analyze the complexity of the algorithm in the worst case and in a certain
‘nondegenerate’ case, the latter arising most of the time in practice. Fi-
nally we outline the ‘uncoupling by cyclic vectors’ method and point out its
connection with Ziircher’s algorithm.

In Chapter (4) the theory of Ore polynomials is employed in a variant
of Gaussian elimination based on the least common left multiple. This algo-
rithm is less complicated than the other uncoupling algorithms we present,
but it returns scalar equations of rather high order (in general, larger than
the dimension of the system) with coefficients of high degree.

Whereas Ziircher’s algorithm is based on pseudo-linear algebra and Gaus-
sian Elimination on the extended Euclidean Algorithm in Ore polynomial
rings, the uncoupling algorithm by Abramov and Zima (section 5.1) requires
no theoretical background except the notion of Ore operator introduced in
section (2.5). It proceeds in two stages, like Ziircher’s algorithm. First the
system matrix is transformed into a block-triangular form, then higher order
scalar equations are deduced. We give a detailed description of both stages
and prove that the block-triangular system is indeed equivalent to the origi-
nal one. Theorem (5.3) shows that linearly independent solution vectors for
the system can be obtained from linearly independent solutions of the un-
coupled equations. Then we analyze the complexity of Abramov and Zima’'s
algorithm in a practically important nondegenerate case.



In section (5.2) we present a new variant of Ziircher’s algorithm. Instead
of a block-diagonal normal form it transforms the system matrix into a
block-triangular matrix (but in a different way than Abramov and Zima’s
algorithm). The deduction of the scalar equations resembles the second stage
of Abramov and Zima’s algorithm. The idea of our ‘incomplete Ziircher’
algorithm is to reduce the amount of computation in the first stage for the
price of a more complicated deduction of the scalar equations.

Chapter (6) presents our Mathematica package that implements the four
algorithms described in this thesis. Then we give some computational ex-
amples and compare the methods. One of the key points is that Gaussian
elimination is rather inefficient, as already pointed out above. However, it
has to be mentioned that all available uncoupling algorithms lead to a blow
up in the coefficients of the equations. Sometimes uncoupling can be avoided.
For instance, there are direct methods for finding the rational solutions of
differential [8] and difference [2] systems with rational coefficients.
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Chapter 2

Ore Polynomials and Ore
Operators

2.1 Notation

All rings and fields in this thesis have characteristic zero. Fields are com-
mutative. We write K (z) and K ((x)) for the field of rational functions and
formal laurent series with coefficients from a field K, respectively. For any
field K, K* = K\{0}. The letter N denotes the set of nonnegative integers:

N={0,1,2,...},

and Q the set (field) of rational numbers. The ring of n X n matrices over
a ring R is written as Mat(n, R). A is the transpose of a matrix or vector
A. T stands for the identity matrix. idys denotes the identity mapping of
a set M. The notation K[0;0,d] for skew polynomial rings will be defined
in section (2.3). The degree of a (skew) polynomial p is written as deg(p),
with deg(0) = —oo. For a vector space V, V* is the dual vector space. An
equation in one variable is called ‘scalar equation’.

Program listings use a self-explanatory pseudo-code. Comments are en-
closed in (* ... *).

2.2 Motivation and Preliminaries
The set of linear differential operators of the form
n
3w
k=0
with rational function coefficients a; € Q(z) forms a ring, if addition is
defined pointwise and the product of two operators by composition. If we

replace D by an indeterminate over K := Q(z), say 0, we obtain a ring of

9



10 CHAPTER 2. ORE POLYNOMIALS AND ORE OPERATORS

polynomials in 0, where + is defined as usual, and - is associative, distribu-
tive, but not commutative and has the following property:

The degree of a product is the sum of the degrees of the factors. (2.1)

Rings of this kind were first studied by Ore in [19]. In the same vein, linear
difference operators with rational function coefficients

n
S aat
k=0

can be viewed as an algebra of noncommutative polynomials.

We will make the relationship between such polynomials and linear op-
erators such as D or A precise in section (2.5); but now let us stick to the
polynomial viewpoint and check what the above property implies for the
product 9-a of the indeterminate @ and an element a € K*. The result must
be a polynomial of degree 1:

0a =ad+a forsome acK'd cK
For a,b € K we must have, by distributivity,
d(a+b)=0a+0b=ad+a +bd+b = (a+b)o+ad+V,
and
dab= (a0 +d')b=adb+a'b=a (b0 + V') + a'b = abd + ab’ + a'b.
Hence the map

c:K — K
a — a

is a field monomorphism, and the map

0: K —- K

a — d

is additive and satisfies the skew Leibniz rule §(ab) = o(a)db + da b. This
gives rise to

Definition 2.1 Let 0 : K — K be a monomorphism. An additive map ¢ :
K — K is called a o-derivation (or pseudo-derivation) if

d(ab) = o(a)ob + da b (2.2)

for all a,b € K.
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It is customary to write da instead of d(a).

Example 2.2 Some examples of o-derivations:

(1) If o = idg, § is a derivation on K and the pair (K 9) is called a
differential field.

(11) For any o € K, the map o := a (0 — idg) is a o-derivation, called an
inner o-deriwation. Proof:

da(ab) = a(o(ab) —ab) = o(a)a(o(b) —b) + a(o(a) —a)b
= o(a)dab+ daa b.

O

Lemma 2.3 Let 0 be a monomorphism on K and 6 be a o-derivation on
K. Then,

(i) If o # idg then there is an element o € K such that 6 = §,.

(ii) If 6 # 0 then there is an element 8 € K such that o = 5§ + idk.
Proof. Let a,b € K. Expanding both sides of §(ab) = d(ba) via (2.2) yields
o(a)ob+ da b = o(b)da + b a,

hence

(o(a) —a)db= (o(b) —b) da. (2.3)

(i) We can choose a € K with o(a) # a. Then (2.3) implies § = 6, with
a=da/(o(a) — a).

(i1) If § # 0 we can find a € K with da # 0. Let 8 = (o(a) — a) /da. Then
it follows from (2.3) that o = 5 + idk.

0

By (i) of the preceding lemma and the fact that inner o-derivations are
trivial if ¢ = idg, we find that we always have one of the following three
cases:

(i) o =idg and § =0
(ii) o = idg and ¢ is an outer (i.e., non-inner) o-derivation

(iii) o # idg and ¢ is an inner o-derivation
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2.3 Univariate Ore Polynomials

Definition 2.4 Let o be a monomorphism on K and § be a o-derivation.
The ring of Ore polynomials K[0; 0,d] is the ring of polynomials in O with
coefficients from K with the usual polynomial addition, and the multiplication
given by

da=o0(a)0+da for aekK (2.4)

and extended by associativity and distributivity.

Using (2.4) and associativity, the product of two monomials is (a,b €
K,m,n € Nyn > 0):

(@d™) (b0™) = (ad™") (3B) O™ = (ad™") (o(B)O™ +5b ™). (2.5)

By induction, this defines the product of two monomials in all cases. For
polynomials with arbitrary degrees distributivity yields

(gaﬁ’) jﬁ;bﬁj =ii(ai6i) (6;0") -

i=0 j=0

Note that we can write any polynomial A € K[0;0,0] in the form A =
S a;0" with a; € K, i.e., as the sum of monomials with 0 on the right, by
applying (2.4) iteratively. Thus we can talk about ‘coefficients’ and ‘degree’
as for ordinary polynomials.

We argued at the beginning of this chapter that any multiplication of
polynomials with property (2.1) must satisfy (2.4) for some o, §. Now we
will show that the converse holds, too.

Theorem 2.5 Let O = K[0;0,0] be a ring of skew polynomials. Then for
p,q € O:
deg(pq) = deg(p) + deg(q).

Proof: Suppose p,q # 0 and let ad™ and bd™ be the leading monomials of
p and ¢, respectively. By applying (2.5) iteratively, we find that the leading
monomial of pq is ac™(h)0" ™. Now since ab # 0 and o is a monomorphism
deg(pq) = m + n follows. O
Clearly, this implies

Corollary 2.6 Rings of skew polynomials are free of zero-divisors.

Hence we have the cancellation rules

pg=pr = p(g—r)=0 = ¢g=r, and
gp=mp = (¢q—7)p=0 = g=r
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for any p,q,r € K[0;0,0], p # 0.

Any ring of Ore polynomials K[0; o, d] is a K-algebra. Therefore, we will
sometimes speak of Ore algebras instead of rings of skew or Ore polynomials.
Throughout this thesis, we consider only univariate Ore polynomials. In [11],
[12] multivariate Ore algebras are introduced and employed in the task of
automatically proving identities involving summations and integrations.

2.4 The Euclidean Algorithm

Let O = K[0; 0, ] be a ring of Ore polynomials, A, B € O\{0}, ad" and bo™
be their leading monomials. We want to divide A by B on the right, i.e.,
find Q,R € O s.t. A= QB+ R and deg(R) < deg(B). In the case n < m,
we simply have

A=0B+ A.
If n > m, the right division can be done as follows: With
a n—m
Qo := ma ;
we have
_ L n—mi qm n—1
QB = Unfm(b)a bo™ + O(0" )
_ L n—m—1 m n—1
= (D) 0 (o(b)0 4+ 6b) ™ + 00" ™)
_ a n—m—1 m—+1 n—1y _ _
= 70n7m(b)8 o(b)o +0@00" )=...
_ a n—m n n—1y _ n n—1
= 70n_m(b)a H)0" + 00" ) =ad" + 00" ),

where O(8"~!) stands for any Ore polynomial of degree less than n, hence
the leading monomial of QyB is a0". By induction on the degree, we can
assume that there are Q1, R € O s.t.

A—QoB=QiB+ R and deg(R) < deg(B).
Then we have
A=QB+ R and deg(R) < deg(B)

with Q := Qo+ Q1. R =: rrem(A, B) is called the right-remainder of A and
B, and @Q =: rquo(A, B) is called their right quotient.

In general, we do not require the K-endomorphism o to be surjective. But if
this is the case, that is, ¢ is an automorphism, there is a similar left division
algorithm: With

a

Qo:=0 ™ (b

Jor
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we have
BQy = bdmo™ (%) gn=m 4 09" )

bt (o7 (2) 0+ 00 () 0+ 00"
a

= pomlo (5) grmtl L 0@y = ... =

— bo" (%) 9" + 00" ) = ad” + O™ V),

and we can divide A — B(Q)g recursively by B on the left to obtain Q, R € O
s.t.

A=BQ+ R and deg(R) < deg(B).

Analogously to right division, left-quotient and left-remainder can be defined
by lquo(A4, B) := @ and Irem(A, B) := R, respectively.

Now we can write down the extended (right) Euclidean Algorithm, which,
as we will show, yields a greatest common right divisor and a least common
left multiple of A, B € O:

Algorithm 2.7

Ry+ A, Ry« B

Ap <1, A1 0

By + 0, B +1

141

while R; #0 do
1411+ 1
Qi1+ rquo(R; 2, R; 1)
R; + rrem(Ri_g, Ri—l)
Aj Ao — Qi1
Bi <+~ Bi_2 — Qi—1B;i_1

n < 1.

This algorithm terminates because deg(R;) < deg(R;—1), 1 <i < n.

Lemma 2.8 For0<:i<mn
(i) Ri = A;jA + B;B,
(7i) Rp—1 right divides R;.

Proof.
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(i) Induction on 7. The claim holds for ¢ = 0,1, and if it holds for i — 2
and 7 — 1, then

AiA+B,B = (Ai2—Qi14; 1)A+(Bi2—-Q;i1B;1)B
Ai 9A+ B 9B — Qi1 (A; 1A+ B; 1B)
R; 5 —rquo(R; 2, R; 1)R; 1

= rrem(R;_9,R;—1) = R;.

(ii) Here we apply induction on 7 backwards. R,, 1 right divides both R,, =
0 and itself, and from

R 2=0Qi 1R 1+ R;
we see that R, 1 right divides R; o if it right divides R; ; and R;.

O

The following theorem shows that the above algorithm does indeed compute

a greatest common right divisor and a least common left multiple of A and
B.

Theorem 2.9 (Correctness of the Euclidean Algorithm)
(1) Rp—1 =:gerd(A, B) is a greatest common right divisor of A and B.

(ii)) A,A=—B,B =:lclm(A, B) is a least common left multiple of A and
B.

Proof.
(i) By lemma (2.8) (i),
R, 1= AnflA + anlBa

hence any common right divisor of A and B right divides R,,_;1. On the
other hand, lemma (2.8) (ii) implies that R,,_; right divides A = Ry
and B = Rl.

(ii) Because of lemma (2.8) (i) and the terminating condition of the while-
loop, we have
A,A+B,B=R, =0,

hence A,A = —B,B is a common left multiple of A and B. To see
that it is nonzero, first we note

deg(R;) < deg(R;—1) and deg(Q;—1) = deg(R;—2) —deg(R;—1)
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for 2 < ¢ < n. By induction on 7, we show
deg(A;) = deg(B) —deg(R;—1) and deg(B;) = deg(A) — deg(R;i—1)

for 2 < ¢ < n. We have deg(As) = deg(1) = 0 = deg(B) — deg(Ry),
deg(A3z) = deg(A; — Q242) = deg(Q2) = degrquo(B, Ry) = deg(B) —
deg(R2), and the induction step is

deg(A;) = deg(Ai—2 — Qi—1A4;—1) = deg(Qi—1) + deg(4;_1)
= deg(Qi-1) + deg(B) — deg(R;—2) = deg(B) — deg(Ri-1).

The second assertion is shown analogously. Hence we have deg(A,) =
deg(B) — deg(R,—1) > 0 and deg(B,) = deg(A) — deg(R,_1) > 0,
so A, # 0 and B,, # 0. This shows that A, A = —B,B is nonzero.
In order to show that it is a least common left multiple of A and
B, suppose CA = —DB is some common left multiple of A and B
and define C; by Cy = —D, Cy = C and C; = C;_9 — C;_1Q;—; for
2 < ¢ < n. We show each of the assertions

Ci-1Ri—C;Ri—1 = 0 (2.6)
Cic1Ai — CiAimy = (-1)'C
Ci1Bi — CiBi.i = (~1)'D

(1 <i < n) by induction. The induction bases ¢ = 1 are obvious, and
the induction steps are

Ci-1iR; — CiRi_1 = Ci_irrem(R;_o,R;_1)
— (Cij—2 — Ci_irquo(R;—2, R;_1)) Ri—1
= Ci1Rio—CiaR; 1 =0,
Cic14; —CiAi—1 = Cii (Aima — Qi1 A1) — (Cima — Ci1Qi—1) Ai—y
= Ci_14i_o—Ci_gAi_1 = (=1)'C, and
Ci-1B; = CiBi_1 = Ci_1(Bi—2 — Qi—1Bi—1) — (Ci—a — C;_1Qi—1) Bi—1

= Ci_1Bi2 — Ci_9B;_1 = (-1)'D.

(2.6) implies that C,R,_1 = Cp_1R,, = 0, hence C,, = 0. (2.7) and
(2.8) then show that A, right divides C, and B, right divides D.
Therefore, A,A = —B,B is indeed a (nonzero) least common left
multiple of A and B.

O
In the extended Euclidean Algorithm we can save some computation time

by omitting the computation of the B;. By Lemma (2.8)(i), B,—1 and
B,, can be determined eventually by B, 1 = rquo(R,,—1 — A,_14, B) and
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B, = rquo(—A, A, B), respectively. This observation is mentioned (for the
Euclidean Algorithm for integers) in [16]. For a different algorithmic ap-
proach to greatest common left divisors, see [17], where the theory of sub-
resultants is generalized to Ore polynomials.

For an example of a computation with the Euclidean Algorithm, see
example (2.25).

More information about the theory of skew polynomials can be found in
[13].

2.5 Ore Polynomials as Linear Operators
Let K, 0,0 be as above and V' a K-vector space.

Definition 2.10 An additive map 0 : V — V is called pseudo-linear (w.r.t.
o and ) if

O(au) = o(a)fu+ da u for any a €K ueV.

Pseudo-linear maps are sometimes called Ore operators. This term is used
in situations where the pseudo-linear map is supposed to specialize to a
linear operator like D or A in applications, such as in section (2.6) or at the
beginning of section (2.7). We will not use it for the pseudo-linear maps on
finite dimensional vector spaces considered later in section (2.7).

Example 2.11

(1) For any K-vectorspace V', every homomorphism h : V — V is pseudo-
linear w.r.t. o0 = idg and § = 0.

(i) If K, o, 0 are as usual, § is a pseudo-linear map on K w.r.t. o and 9.
(11i) o is pseudo-linear w.r.t. o and 0.

In section (2.6) we will describe in detail that the differentiation operator
D, the difference operator A and several other types of linear operators that
arise in practice can be viewed as Ore operators (pseudo-linear maps).

Definition 2.12 The constant field of K w.r.t. o and J is
Const, s :={a € K | 0(a) = a and da = 0}.
Const, 5 is a subfield of K because it is the intersection of the subfields
inv(o) ={a € K| o(a) =a}

and
ker(0) ={a € K| 6a = 0}.

Since any subfield of K must contain (an isomorphic copy of) Q, it follows



18 CHAPTER 2. ORE POLYNOMIALS AND ORE OPERATORS

Corollary 2.13 o|g = idg and d|gp = 0. O

Lemma 2.14 Let V' be a vector space over K and 0 : V. — V be pseudo-
linear (w.r.t. ¢ and 6). Then 6 is Const, s-linear.

Proof. Let ¢ € Const, s and u,v € V. Then,
O(cu +v) = 0(cu) + 0v = (o(c)0u + dc u) + Ov = cOu + Ov.
[l

In the case V = K, that is, the vector space of a field over itself, we can
characterize all pseudo-linear maps; furthermore, the following lemma shows
that in this case there are infinitely many pseudo-linear maps for any pair

(0,0).
Lemma 2.15 For any c € K, the map 0. : K — K given by
b.a = c o(a) + da

is pseudo-linear. Conversely, for any pseudo-linear map 0 : K — K there is
an element ¢ € K such that 0 = 6..

Proof. 0. is additive because o and § are. Furthermore, for a,b € K we have
O.(ab) = c o(ab) + d(ab) = ¢ o(a)o(b) + o(a)db + da b = o(a)f.b + da b.
To show the converse, we write
Oa =0(a 1) = o(a)fl + da,

hence 6 = 0. with ¢ = 01. O

We will encounter several cases where we do not have K = V as in lemma
(2.15), but at least K C V; then the proof of lemma (2.15) asserts that the
action of # on K is determined by o,d and 61.

So far skew polynomials and pseudo-linear maps are separate concepts. The
connection between them is provided by

Definition 2.16 Given a ring of skew polynomials O = K[0;0,d], a K-
vector space V', and a pseudo-linear (w.r.t. o and 0) map 0 : V. — V the
action xg : O XV =V is defined by

(271: aﬁ') *p U = 2”: a;0'u
=0 =0

for any u e V.
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By this definition and the following theorem we can view any Ore algebra
KJ[0; 0, 0] as an algebra of linear operators once we find a vector space V' and
a pseudolinear (w.r.t. o and §) map 6:V — V.

If there is no ambiguity from the context, we will write % instead of .

Theorem 2.17 The operation *¢ turns V into a left O-module.

Proof. It is clear that we have for p,q € O, u,v € V:

e (p+q)xu=p*u+q=*u,

e px(u+v)=prxu+p*v,

o lxu=u.
What remains to show is

o (pq)xu=px(qg*u).
We first prove by induction on n that

(@d"bO™) * u = ad" * (bA™ * u) (2.9)
for any n,m >0, a,b € Kand u € V. If n = 0, then
(abd™) x u = abd™u = a x (b0™u) .

If (2.9) holds for n — 1, we obtain

(@0"b0™) xu = ((a0"1) (o(b)d™ + b ™)) * u
= (a0 to(0)0™) xu+ (a0 b O™) xu
ad" ' x (0 (D)0 ¥ u) + ad™ " x (6b O™ * u)
= ad" "% (a(b)0™ " u + 0b 0™u) = ad" " 0 (b0™u)
= ad" x (b *xu).

*

For p =" a;0',q = ;nobafe(’)wehave by (2.9),

0 j=0 i=0 j=0

(pq) xu = ( Z az8l jaj) *uzZZ((aiBibjaj)*u)

— Z: (a;0" * (0;07 xu)) =p* (g*u).
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We conclude this outline of the theory of pseudo-linear maps with the defini-
tion of the adjoint of a pseudo-linear map. This concept will be of importance
in section (3.2), where cyclic vectors are discussed. First, recall that in linear
algebra the adjoint map

AT VA VA
fo= (v f((v)))

of a vector space homomorphism ¢ : V' — V is introduced. This notion can
be generalized to pseudo-linear maps, provided that o is surjective.

Lemma 2.18 Let V' be a vector space over K, o : K — K be an automor-
phism, § : K — K be a o-derivation and 0 : V — V be pseudo-linear (w.r.t.
o and §). Then for all f € V*, the map s defined by

Y V. oK
z o H(f(0r) — o (6(f(x)))

is an element of V*.

Proof. We have to show that ¢ is linear. Therefore, let z,y € V and a € K
Then

“HfOaz + ) — o7 (0(f (az + 1))

“Hf(o(@)fz +da z + 0y)) — o~ (6(af(z) + f(y)))

“Ho(a)f(0z) + daf (z) + f(0y)) — 0 (0(a)df () + da f(z))

—o1(6f(y))

= a0 (f(8z)) + 0" (da)o ™" (f(2)) + o7 (f(8y))
—a0_1(5f(:v)) “(da)o " (f ( ) =o' (0f(y)

= a(o7'(f(b2)) - _1(5f(:v))) “H(f0y)) — o0 ()

Yrlar +y) =

I
99 9

Definition 2.19 The adjoint 0* of 0 is defined by
o*. V¥ SV
[y
with the 1 from the preceding lemma.

In the case where 6 is a linear map, we have ¢ = idg and § = 0, and the
definition of the adjoint map from linear algebra is recovered. In general, 6*
is not pseudo-linear w.r.t. o and J, but w.r.t. o= and —o 16, as we will
now show.
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Theorem 2.20 Let6:V — V be pseudo-linear w.r.t. ¢ and 6. Then —o

is a o~ '-derivation, and 0* : V* — V* is pseudo-linear w.r.t. o~ and
-1

—o ).

Proof. —o~'4 is a 0~ '-derivation because for a,b € K

—o 16(ab) = —0 16(ba) = —o* (o(b)da + b a) =
—o Y(a)o (b)) — oL (da)b.

Now let f,g € V*, £ € V and a € K We have

0" (af +g)(x) = o~ ((af +g) (02)) — o 6 ((af +g) (=)
= o !(af(0x) + g(0z)) — 07" (o(f(x))da + 0 (z) a + dg())
o~ a)o T (f(02)) + 0 (g(02)) — f(z)o~ " (da)
—o Ha)o! (5f( )) o~ (dg())
= o7 '(a) (07 (f(82)) — 07 (§f(2)))
~o~ ' (0a) f(z) + 1(9(990))—0_1(59(56))
= o '(a)f" f(z) ~ _1(5a)f(x)+9*g(:v),

X

hence

0" (af +9) =0 (a)0"f — o' (0a)f +0%g.

2.6 Examples

We saw in example (2.11) that linear maps on vector spaces are special cases
of pseudo-linear maps. In this section we give several examples of pseudo-
linear maps that are important in applications.

Shift Operator and Difference Operator

For any field K, the set KN of K-sequences is a commutative ring if addi-
tion and multiplication are defined componentwise. The shift operator F is
defined by

E: K" — K"
Eu(n) :=u(n + 1),

and the difference operator A : KN — KN is defined by

A= F —id.
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In order to view F and A as pseudo-linear maps, we wish to endow K with
a vector space structure over the field of rational functions K (z). However,
the natural scalar multiplication

(r(z)u) (n) := r()|z=nu(n)

(r € K(z), u € KV) is not well-defined, because ~ might have poles in N.
Therefore, following [20], we introduce the quotient ring

S(K) := KV/I,

where
o0
I:= U kerEF ¢ KN
k=0

is the ideal of eventually zero sequences. In other words, we identify se-
quences that differ only at finitely many places. The elements of S(K) are
called germs (of sequences). Let ¢ : KN — S(K) be the canonical epimor-
phism. Since

ker($) = (4B)7(0) = B~ g7 (0) = B (1) = | ker ¥ = 1.
k=0

the isomorphism theorem gives rise to an isomorphism

E:KY/I — im¢E
a+I — ¢F(a),

which is in fact an automorphism of S(K) and satisfies ¢F = E¢, since

Ed(a) = E(a+I) = ¢E(a)

for any a € KN. E is called the shift operator on S(K). For simplicity, we
will write a for an equivalence class a + I € S(K) and E instead of E.

To complete the setup, we wish to embed K (z) into S(K). This is done
by

Lemma 2.21 The map

- S(K)
= (r(n))pen

is a ring monomorphism. (Note that we can ignore the finitely many n for
which r(n) is undefined.)
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Proof. 1 is apparently additive and multiplicative. To see that it is one-one,
let r1,m79 € K(x). If (r1) = (re), there are infinitely many n € N s.t.
ri(n) = rqo(n). Writing r; = p;/q; with polynomials p;,q; € Klz|, i = 1,2,
we get p1(n)ga2(n) = p2(n)gi(n) at infinitely many points, hence r = ry. O

This lemma shows that
R(K) = ¢(K(x))

is a subfield of S(K) isomorphic to K(z), called the field of rational se-
quences. Clearly, S(K) is a vector space over R(K), if scalar multiplication
is defined componentwise.

Now we are ready to study the behaviour of the shift operator on S(K).
Let u,v € S(K), r € R(K). We have

E(u+wv)(n) = (u+v)(n+1)=un+1)+v(n+1)=(Eu+ Ev)(n),
E(ru)(n) = (ru)(n+1) =r(n+Du(n+1) = (Er Bu)(n),

and

Alu+v) = FElu+v)—(ut+v)=FEu—u+ Ev—v=Au+ Av,
A(ru) = E(ru)—ru=Er Eu—Er u+ Er v —ru= ErAu+ Ar u.

We read off that

E :S(K) — S(K) is a pseudo-linear map w.r.t. 0 = FE, § =0,
and that

A:S(K)— S(K) is a pseudo-linear map w.r.t. o = E, § = A.

(We do not distinguish between F, A and the restrictions F|g k), Alr(k)-)
Upon setting K = R(K), S(K) is a module over the ring of Ore polyno-
mials K[9; F/, A] due to theorem (2.17), applied with § = A. By an abuse of
notation, we will write K[A; F, A] instead of K[0; E, A]. K[A; E, A] is the
algebra of difference operators with rational function coefficients.
Similarly, K[F; E, 0] is the algebra of shift operators with rational func-
tion coefficients.

Differential Operator

A differential field (K, D) is a field K with a derivation D : K — K| i.e., an
additive mapping that satisfies the Leibniz rule

D(ab) = aDb+ Da b (2.10)

for all a,b € K. For example, let K = K((z)), the field of formal Laurent
series over a field K, and D be the usual differentiation operator on K ((x)).
Considering K as a vector space over itself, we find, looking at (2.10):
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D : K((xz)) = K((z)) is a pseudo-linear map w.r.t. o = idg, 6 = D.

By theorem (2.17) the ring of Ore polynomials K[0;idk, D] (which we will
write sloppily as K[D;idg, D]) can be viewed as an algebra of differential
operators on K.

g-Shift, g-Difference and g-Differential Operator

Let K be a field and z, ¢ be indeterminates. There is a unique automorphism
Q of K= K(q)(x) that fixes K(q) and satisfies

Qz = qx,

called the g¢-shift operator. The operator A, := @ — id is called the g¢-
difference operator. Since

Q(rf)(z) = r(qz)f(qzr) =Qr Qf foranyr, [ ek
Ag(rf) = Qrf)—rf=QrQf —Qr f+Qr f—rf=0QrAyf +Ayr f

Q : K — K is a pseudo-linear map w.r.t. o =@, § =0,
and
A, : K — Kis a pseudo-linear map w.r.t. 0 = Q, 6 = A,.

The g-differentiation operator is defined by

D;:K — K
flgz) — f(z) _ Agf(z)
fl@) = qr — - qu '
By writing
Dy(rf)(x) = r(qz)f(qz) — r(qz)f(z) + r(qz)f(z) — r(z)f(z)

qr — T

= Qr(z) Dyf(z) + Dyr(z) f(z)
and observing that D, is additive we find:

D, : K — Kis a pseudo-linear map w.r.t. ¢ = Q, 6 = D,.

The examples of Ore operators and Ore algebras presented in this section
are summarized, together with some others, in the following table from [12].
In all these examples, columns one, two, and three give the action of 6, o
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and ¢, respectively. The fourth column shows the commutation rule of the
corresponding Ore polynomial ring. We set K = K (z) for some field K, and
r denotes an arbitrary element from K (zx).

Operator 0f(x) o(r)(z) dr(x) (0-r)(x)
Identity f(z) r(z) 0 r(z)of(x)
Differentiation f'(z) r(z) r'(z) r(z)d + r'(x)
Shift flz+1) | r(z+1) 0 r(z+1)0
Difference Af(x) |r(z+1)| Ar(z) | r(z+1)0+ Ar(z)
g-Shift f(gz) r(qr) 0 r(qz)0
g-Difference Agf(z) r(gx) Agr(z) r(qz)0 + Agr
g-Differentiation % r(qz) % r(qz)0 + Dyr(z)
Eulerian operator zf'(z) r(z) zr'(x) r(z)d + zr'(z)
Mabhlerian operator f(zP) r(zP) 0 r(zP)0
Divided differences w r(a) Mx{z:g(a) r(a)0 + w

2.7 Pseudo-linear Equations

Let W be a vector space over K, ¢ : W — W a pseudo-linear map, a;; € K,
r; € W for 1 <i,j <n. Consider the system of equations

dy1 = anyr+...+ampys + 11

ﬁyn = anyY1+ ...+ anpyYyn +71n

in the unknowns y = (y1,...,yn) € W™, which we will write briefly as

dy=Ay+r (2.11)
with
Y1 dy1
Y = )
Yn Yyn

A = (a;j)1<ij<n € Mat(n,K) and r = (r,...,r,) € W". A scalar equation
(of higher order) is then an equation of the form

m

Zakﬁkz = p, (2.12)

k=0

where a;, € K, p € W and z € W is unknown. We call such an equation
‘scalar’ because it contains only one unknown. In chapter (4) and section
(5.1) we will present two algorithms that reduce the problem of solving (2.11)
to the solution of equations of the form (2.12).
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The concept of pseudo-linear maps captures a variety of systems of linear
operator equations:

Example 2.22 Let W = K = K((x)) for some field K and 9 = D. Then
(2.11) becomes a system of first order linear ordinary differential equations

Dy, = anyi+...+amyn +71

Dy, = apyi+...+ @unyn +mn.
O

Example 2.23 Let K = R(K) for some field K, W = S(K) and ¥ = E.
Then (2.11) becomes a system of first order linear difference equations

Eyi = anyr+...+amyn+1m

Ey, = aniy1 +...+ appyn + ry.
O

Example 2.24 Let K be any field, W = K and ¢ = idg. Then (2.11)
becomes a system of algebraic linear equations

Y1 = a1y1 +... +aipYn + 71

Yn = OpiY1+ ...+ GuplYn + Tn-
O

Example 2.25 This ezample shows that the Euclidean Algorithm for Ore
polynomials is useful for working with pseudo-linear equations. Consider the
difference equations

—1—z—32%2-2° - T T
—iy(:v)Jr tl+$)(32+fc) y(x+1)+( 1+2l$+ )y(a:+2):0 (2.13)
and
$2
—H%y(fv) + 211 —y(@+1) +(2+27) y(z +2) =0. (2.14)

Let us apply the Euclidean Algorithm to the operators

1 —1—z—32%—2° -1 1
A=_L, x—3z° — 1 (—14+2)( —I—x)EQ
x (1+2)(2+2) 24z




2.7. PSEUDO-LINEAR EQUATIONS 27

and

1 2 + 22
B—_ n +x
1+ =z 1+

where E is the forward shift Ex = x + 1. The loop of algorithm (2.7) is
executed two times, and yields the relations

E+ (2 +2z) E?,

2
VAT 1B =~y + BP0 B
1— _ 1
1A+ {55B = ; +2E,
20(2+a) | 4(2+a)(3+a) A46r42r’ _ _20(24w) =
(4+I5:p+§z2 + 12+1:11:I+3xx2 E) A+ <4+5§+3§2 - 124?1lrrﬂrx?’fr2 E) B=0.
We read off
1
gerd(A,B) = — +zF
xr
and (2+7)  42+7)(3+)
20 (24«7 42+2)B+7
llm(A4, B) = E)A.
cm( ’ ) (4+5$+3$2 12+ 11z + 322 >

By dividing A, B by their gcrd on the right, we find that the equations

<1f_$+2E> <é+xE> y(z) =0

are equivalent to (2.13) and (2.14), respectively. Furthermore, the difference
equation lclm(A, B)y =0, or

2(2-+x) 2(48+642+5322+372°+1724 +32%) 1
(z) = (A+52+322)(12+11z+322) y(z+1)

T 4+5z+322
2(48+1522+19522+1192°+352+32°) 4z (2+2)2
(A+52+322)(12+112+322) y(@ +2) + mrmazy(@ +3) =0

is solved by all solutions of (2.13) and all solutions of (2.14).
A more sophisticated application of the Fuclidean Algorithm to systems
of pseudo-linear equations is the Gaussian Elimination Algorithm of chapter

(4)- 0

There is a less obvious, but elegant way to model linear operator systems
such as difference and differential systems using pseudo-linear maps, by con-
sidering pseudo-linear maps on finite dimensional vector spaces:

Let V' be a vector space over K, 6 : V. — V be pseudo-linear and suppose
that dim V' = n is finite. This assumption makes # amenable to techniques
similar to linear algebra. Indeed, the study of pseudo-linear maps on finite
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dimensional vector spaces is an area called ‘pseudo-linear algebra‘ with ori-
gins in the 1930s ([15]).

Let B = (b,...,b,) be a basis for V. For a vector z = Y _, x3b; we
write (z)g for the coordinates of z w.r.t. B:

n I
I:Z:Bkbk = (r)p= e K.
k=1

In

We define Mp(0) = (tir)1<ik<n, the matrix of § w.r.t. B, by

n
0by, = Z tirbi.
=1

Then we have

n

n
Ox = HZxkbk = Z (O’(l‘k)ebk + 52% bk)
k=1

k=1
= ZO’(:ITk) Ztikbk + Z 5:171 bi = Z (Z tikO'(il?k) + (5IZ> bi.
k=1 i=1 i=1 i=1 \k=1
This shows that
(0z)p = Mp(0)o ((z)s) + 6 ((z)B), (2.15)

where o and § are applied componentwise. Conversely, any n by n matrix
over K gives rise to a pseudo-linear map via (2.15). For ¢ = id and § = 0,
this is familiar from linear algebra.

If A = (a;;) € Mat(n,K) is invertible, we can transform

B:{bla"'abn}

into the new basis
AB = {b'l,...,b;l}

given by
n
b =Y aikbr,
i=1

that is,
() () ) = A

The matrix of 0 associated with this new basis is then

T = A7'To(A) + A7'5(A), (2.16)
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which can be shown as follows: With the notation A~! = (az(k_l)) we have
by =AW, =YL, al(j_l)bg and thus

01)2: = HZazkbz
=1

= Z o(aix)0b; + Z d(ajk)b;

i=1 j=1

= Z (Z o(aik)tji + 5(ajk)> b
j=1 \i=1

= Zzal(]_l) (Z tjia(aik) + 5ajk> b;

The following example shows how a system of differential equations can
be encoded by a pseudo-linear map.

Example 2.26 Let (K, 0) be a differential field (cf. example (2.2)(i))with
derivation 0 and T € Mat(n,K). Then the map 0 : K* — K" given by

Y1 Y1 oy1
o = |=T7| : |+]| :
Yn Yn OYn
is pseudo-linear w.r.t. idg, 6. Let r € K™, then the equation
Oy =r

is a system of differential equations. O

In the case of difference equations, some rewriting has to be done before
we can assign a pseudo-linear map to a system of equations:

Example 2.27 Let K be a field, E be an automorphism of K (we do not
restrict E to the forward shift introduced in section (2.6)), M € Mat(n,K)
and r € K. We want to write the system of difference equations

Ey=My+r (2.17)

in the form

Oy = f
for some pseudo-linear map 0 : K* — K. Applying o := E~" to both sides
of My — Ey = —r gives

o(M)o(y) —y = —o(r),
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which can be rewritten as

(a(M) =T)o(y) +oly) —y = —a(r).
By (ii) of example (2.2), § := o —idx is a o-derivation. Summing up, if we
define 0 to be the mapping pseudo-linear w.r.t. o and § whose matriz w.r.t.
the canonical basis of K" is (M) — I, then (2.17) is equivalent to

Oy = f
with f = —o(r). O
These examples show that an equation

Oy =f (2.18)
in a finite dimensional vector space encodes a system of pseudo-linear equa-
tions. We will use this term for systems of the form (2.11), too and make it
clear in each situation which type of system we mean. The relation between
them (in the case where ¢ is an automorphism) is provided by

Theorem 2.28 Let K be a field, o : K — K be an automorphism, § : K —» K
a o-derivation, 6 : K* — K" be pseudo-linear w.r.t. o and § and f € K".
Then there is a pseudo-linear map 9 : K — K, a matriz A € Mat(n,K) and
a vector r € K" s.t. for all y € K"

Oy = f (2.19)

if and only if
Yy = Ay +r.

In short, (2.18) is a special case of (2.11).
Proof. Let T be the matrix of # associated with the canonical basis of K.
Then equation (2.19) is equivalent to
To(y) + 0y = f.
By applying o~ ! on both sides, this is further equivalent to
o Ty +o'a(y) = o '(f)

= o l(y) = o (T)y + o7 (f).

Now for all a,b € K we have
d(ab) = é(ba) = o(b)da + b a,

hence

o~ 18(ab) = o= (a)o " 8(b) + 07 (a)b,
i.e., 071§ is a o '-derivation. Furthermore ¥ := o~'§ is a pseudo-linear

map w.r.t. 0 ' and 01§ (cf. example (2.11)), and (2.19) is equivalent to
Yy = Ay +r with A = —o~1(T) and r = o~ 1(f). O

The main idea of this proof is mentioned in [11].



Chapter 3

Block Diagonal
Decomposition

In this chapter we consider pseudo-linear equations of the type
Oxr =, (3.1)

where 6 is a pseudo-linear map w.r.t. ¢ and ¢ on a vector space V of finite
dimension n. Additionally, we assume that ¢ is an automorphism. Special
cases include systems of difference or differential equations where the un-
knowns are in a field, as indicated by examples (2.26) and (2.27). On the
other hand, Mahlerian operators are examples of pseudo-linear maps where
o is not an automorphism.

In the process of solving (3.1) a natural first step is to find a change
of bases that transforms the matrix associated with € into a simple form,
e.g. a diagonal matrix. However, we cannot hope for a normal form of this
type in general, because we even cannot always achieve it in the special case
where @ is a linear map. In this chapter we will present an algorithm that
proceeds in two steps. First it computes a basis w.r.t. which the matrix of
f is block-triangular and each block is a companion matrix. Afterwards this
normal form is used to obtain higher order uncoupled equations for some of
the unknowns and additional linear algebraic (i.e., without applications of
operators to the unknowns) equations to determine the remaining unknowns.
The algorithm, which is due to Bruno Ziircher, is a generalization of an
algorithm by Danilewski [14]. Our exposition closely follows [25].

31
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3.1 Zircher’s Algorithm

3.1.1 A Normal Form for Pseudo-linear Maps

Matrices of the type

0 1 0 0
0 0 1

0 0 1
cho C1 oo Cp—2 Cp—1

with ¢; € K are called companion matrices. In [25], Ziircher gave an algo-
rithmic proof of

Theorem 3.1 Let V be a finite dimensional vector space, 8 : V. — V be
pseudo-linear w.r.t. o and §, where o is an automorphism. Then there is a
basis of V' such that the matriz of 8 w.r.t. to this basis is of the form

diag(Ch,...Cp),
where the C;, 1 <14 < m, are companion matrices.

Suppose we are given a basis B of V, and let T = Mp(f) be the matrix
associated with 6. Because of formula (2.16), the problem is equivalent to
finding a regular matrix A such that A='To(A) + A7'5A is of the desired
form. We will construct such an A as a product of certain elementary ma-
trices. For each of those elementary matrices we describe the effect that the
corresponding basis transformation has on T as well as the effect on the
basis. For the latter, we can assume (by starting with B = TI) that our basis
is of the form BB.

(i) For a € K\{0} and 1 < i < n, let

1

D;(a) is an invertible matrix with D;(a) ! = D;(a™!). If we write Ej,
for the n x n matrix with 1 at position (i, k) and 0 elsewhere, we have
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o(D;(a)) = D;(o(a)) and 0D;(a) = da Ej; because of corollary (2.13).
By (2.16), the change of bases B = D;(a)B modifies T' = (t;) in the
following way:

D1: multiply column i by o(a)
D2: multiply line i by a~!
D3: add a~'da to the entry ;.

The effect of the basis transformation on B is given by (note D;(a) (BB) =
(BDj(a)) B ):

D1’: multiply column i by a.
(ii) Let a € K, 1 <i # k < n. Then

Cik(a) ==

1

is an invertible matrix with Cj;(a) ' = Cix(a™ 1), 0(Cir(a)) = Cir(o(a))
and 0Cj;(a) = da Ej,. A change of bases by Cj,(a) has the effects

Cl: add o(a) times column 7 to column &
C2: add —a times line k to line 7
C3: add da to the entry t;.

on T, and concerning B:

C1': add a times column % to column k.

(iii) For 1 <i#k<n

) k
+ +
1
17— 0 1
Py, =
k— 1 0

1

is called a permutation matriz. Of course we have PZEI = Py, 0(Pi) =
Py, and 0FP;, = 0. A change of bases by Pj; induces the following
operations on 71"
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P1: exchange column ¢ and column k&

P2: exchange line ¢ and line k&
And it modifies B by

P2": exchange column 4 and column k.

After with these three types of elementary matrices, we introduce the rota-
tion matriz

0 1 ... 0

R=
.1
1 ... 0

It satisfies 0(R) = R and 6(R) = 0 and its inverse is given by

0 ... 1
1

R =
0 ... 1 0

The corresponding bases change amounts to

R1: All columns are shifted by 1 to the right (column n becomes the first
column)

R2: All lines are shifted by 1 downwards (line n becomes the first line)
And the effect on B is given by

R1’: All columns are shifted by 1 to the right (column n becomes the first
column).

In linear algebra it is shown that any change of bases can be expressed as
a product of basis changes of the types C, D, and P. R = Py,, ... P,_1, is
introduced to simplify the notation in what follows. The proof of theorem
(3.1) requires the following five lemmata:
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Lemma 3.2 Let the matrixz of 0 be of the form

!
0 1 0 O 0
ES * ES ES

If there is an element t;; # 0 with ¢ <1 < n, then there is a basis change A
ER A

1+1
1
0 1 O 0 ... 0
A—ITO_(A)+A—16A: . 0o ... 1 0 ... 0 ,
t+1—=] x ... x % ... %
£ * £ £
* * * *

i.e. we can increase the size of the companion block by 1.

Proof. We show how A can be constructed as a product of elementary ma-
trices. To keep notation simple, the associated matrices of 8 that occur in
the intermediate steps are denoted again by T = (¢;;). First, by the basis
change P 1, t; ;+1 becomes nonzero. The remaining entries of the affected
columns i 4+ 1 and [ are either 0 (rows 1,...,7 — 1) or not of interest (rows
i+1,...,n). P2 does not change the ordered part of T either.

Now we can perform the basis change D; (0 (¢, ,)). D1 sets t; ;1

B,0+1
to 1, and D2 and D3 do not modify lines 1, ... 4.
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What remains to do is to set £, 1 < k <mn, k# 1+ 1, to 0. Suppose we
have done this up to k < m:

m 7 i+1
+ i 4
0 1 0 0 0
T : 1 .
1—=>10 ... O x ..k 1 *
* * * *
* * * *

The basis change Ci1,m(0 (—tim)) sets tin, to 0 by operation C1. It is easy
to check that C1, C2 and C3 do not change the ordered part of T'. O

Lemma 3.3 Let the matriz of 8 be of the form

1

0 1 0 0 ... ... 0

1 0 0

T=1i— 0 0

* % *

Then there is a basis change A s.t.
1
0 1 0 0 0
0 ... 1 0 ... 0
A ' To(A)+A A= i« ... ... = 0 ... 0 |. (33

x 0 * *

Instead of enlarging the companion block, we erase all columns below it except
the first one.
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Proof. Again, we proceed inductively to delete the specified entries. Let
tmu =0 for i <m < N and [ < u <1 (where 2 <[ < i) as well as t,,;y =0
for i <m < k (where i < k < n). So T is of the form

l i k
{ { 4
0 1 0 O ... 0
[ —
T=1— * 0
* * 0 * *
0 O
k — * % :
* * 0 ... 0 =« *

Operation C1 of the basis change C},;_;(tx) adds a multiple of column & to
column [ —1. The elements with row indices 1, ..., 7 are not changed, because
column k is zero there, and the other elements of column i are irrelevant.
C2 sets tg; to zero without destroying the order of T'. C3 does no harm. [

The following lemma is needed for the proof of lemma (3.5).

Lemma 3.4 Let the matriz of 0 be of the form

k+1 i+1
1 1
0 1 0o 0 ... 0
k— * * * *
k+1— *
T — 0 0
1
1+ 1— *
* 0 0 = *
* 0 0 = *



38 CHAPTER 3. BLOCK DIAGONAL DECOMPOSITION

Then there is a basis change A s.t.

k+1 i+1
{ il
0 1 ... 0 0
k— 0O ... 0 1 0
E+1 =1+« ... ... * 1 *
A 'To(A)+A16A = 0 0
1
+1—= | x ... *
* 0 0 =
* 0 ... 0 *

That is, the disorder in line k can be shifted to line k + 1.

Proof. We have to delete tg; for [ = 1,...,k+ 1,24+ 2,...,n. Let [ be one
of these row indices. The basis change Cjy1,(0 ! (—t)) does exactly what
we want: Cl erases tj; and modifies £ ;, and C2 and C3 only affect the
irrelevant entries of line k£ + 1. O

Lemma 3.5 Let the associated matriz of @ be of the form

1
0 1 0 0 0
1 0 ... 0
T=4—=]x% ... ... = 0 ... 0 where i < n.
0 0 = *
* 0 . 0 .. %
If there is an element ty1 # 0 for some k =i+ 1,...,n, then there is a basis
change A s.t.
i+1
1
0 1 0 0 ... 0
A7 'To(A) + A7 16A =
1+ 1—=1 % ... ce. ok
* 0 0 = *
* 0 0 *
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In other words, we can increase the size of the companion block, while main-
taining the zero block below it.

Proof. First we show that we may assume t5; = 0 for ¢ < & < n and t,1=1.
Namely, let t51 # 0 for some 7 < k < n. The basis change Py, causes t,; # 0
without destroying the form of T. Now the basis change D, (t,1) is well-
defined, D1,D2,D3 do not affect the order of T', and D2 sets t,; = 1. If now
there is still an element t5y # 0 for some 7 < k < m, it can be deleted by
Cin(tk1). Apart from this deletion, C1,C2,C3 just affect the irrelevant lower
right block of T'. So we have shown that the assumption is allowed.
A basis change by R leads from

1
0 1 0 0 0 0
0o ... 1 Do
T:i—> ¥ ... ... % 0 ... 0 O
0 0 = %k
0 = * ok
1 0 0 =
to
i+1
1
* 1 0 * *
0 1 0 O 0
R'TR= : !
1+1—=]10 =« * 0
* 0 0 * *
* 0 ... ... 0 * ...k

Except the first line the (i + 1) x (i + 1) upper left block is in companion
form. The disorder in the first line is now shifted downwards by applying
lemma (3.4) iteratively, until the desired form is attained. O

Before proving theorem (3.1) we make sure that a basis change on a block-
diagonal matrix T' behaves as expected:

Lemma 3.6 Let Ty, To be matrices with entries from K of sizes n1 X ny
and no X na, respectively. Let further § : K172 — KM T2 be the pseudo-

linear map whose matriz w.r.t. the canonical basis is (1(;1 192) and A be an
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inwvertible no X mo matriz. Then the basis change (ég) turns the matriz of

0 into
T 0
0 A‘sza(A) + A716A )

Proof. Because of formula (2.16), the matrix that we seek is

o) (5 a)-(Ch ) +(oam)e(a %)
:<7(;1 A‘nga(A) >+(8 A—?M):(](;l A—lTQU(AO)+A—15A>,

where o(I) = I and §I = 0 follow from corollary (2.13). O

Proof of theorem (8.1). Induction on n. For n = 1 there is nothing to show,
because any 1 x 1 matrix is in companion form.

Suppose the assertion of the theorem holds for 1,...,n — 1. By taking
i =1 if necessary, T is of the form (3.2). With a second induction on i, the
size of the companion block, we show that we can either increase this block
by 1 or split off a direct factor of size ¢ from T. Therefore, let T' be of the
form (3.2) for some i. If i = n, we are done. If i < n and there is an element
tir # 0 for some 7 < k < n, we can increase the size of the companion block
to i 4+ 1 by lemma (3.2). If, on the other hand, all these entries are zero, we
apply lemma (3.3) to obtain a matrix of the form (3.3).

If now there is a nonzero entry among tx, i < k < n, lemma (3.5) in-
creases the companion block by 1. If all those elements are 0, the companion
block is a direct factor of T', and we can apply the induction hypothesis (on
n) on the lower right block. The basis changes that we need to bring the
lower right block into the desired form will not interfere with the upper left
companion block because of lemma (3.6). O

This proof gives rise to the following algorithm to find the blockdiagonal
normal form:

rationalForm(T,o,d)
size(T)
i:=1

n :

while i<n repeat
if ti,i+1 ?é 0 or ... or ti,n 7é 0 then
expand companion block of T by lemma (3.2)
i:=1i+1
else
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apply lemma (3.3) to T
if ti+1’1 ?é 0 or ... or tn,l ?é 0 then
expand companion block of 7" by lemma (3.5)
i:=1+1
else (x T = diag(C,T") where C is a companion matriz *)
R:=rationalForm(T’',o,d)
return diag(C,R)
end
end
end
return T
end

In order to compute the corresponding basis change, the elementary matrices
from the proofs of the preceding lemmas are multiplied together (from the
right). However, in an efficient implementation, we will not multiply the full
matrices T or B, the latter being the current basis change, by elementary
matrices, but we will just update the matrix entries which are affected by
the current step. Furthermore, we will not call the procedure recursively, but
instead introduce a variable 10 that is 1 plus the size of the left upper part of
T that is already in blockdiagonal form. i0 is initialized with 1 and updated
whenever we split off a direct factor of T. Row and column operations are
performed only on elements with row and column indices greater than or
equal to 10. Then the algorithm may take the following explicit form:

Algorithm 3.7 rationalForm by Bruno Ziurcher

rationalForm(T, o, d)

n := Size(T)
i0 :=1; i := 1
B := identity matrix of size n
while i < n
j 1= i+l
while j < n and tij = 0
ji=j+1

if j < n then
transformLemma2(T,i0,i,j,0,d,B)

i:=1i+1

else
transformLemma3(T,i0,i,0,d,B)
il (=1 + 1

while i1l < n and ti1i0 = 0
il =il + 1
if i1 < n then
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transformlLemma5(T,i0,i,i1,0,0,B)

i:=1+1
else
i:=1i+1
i0 := 1
end
end
end
return T,B
end
transformP(T,i0,1i,k,B)
n := Size(T)
for j := 10 to n
s = tji; tiji = tijx; tjx = s
s = bji; bji = bjk; bjk = 8
end
for j := 10 to n
8 = tij; tij = Tyj; txy = 8
end
end
transformR(T,10,B)
n := Size(T)
for i := i0 to n
C; = tin
for i := i0 to n
for j := n downto i0+1
tij = tij—1
for i := i0 to n
tiio = Ci
for i := i0 to n
Ci = tni
for j := i0 to n
for i := n downto i0O+1
tij = ti15
for i :=i0 ton
tioi = Ci

for i := i0 to n
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Ci
for j :=

= bin

n downto i0+1

for i := i0 to n
bij = bij_1

for i :=
bi io
end

i0 ton

transformLemma2(T,i0,i,1,0,0,B)
n := Size(T)
transformP(T,10,i+1,1,B)

a := Uﬁl(t;}+1)

for j :=
ty,i+1
for j :=
Tit1,j
tit1,it1
for j :=

bjit+1

for k :
a :

for j

iton
= tji41 * o(a)
i0 ton
=tiy1,; / a (*

= titei41 t 0(a) / a

i0 ton
= a * bjit1 (*

i0 to i
o™ (~tix)
:= 1 ton

tix 1= tjx + o(a) * t

if k

<i

(x DI *)

D2 %)
(x D3 %)

basis change *)

it (x C1 %)

Titiktt = bigpixyr — @ (x C2 %)

else

for j :=1i ton

Titik
for j

tit1,y = Bit13
= tipx + 6(a)
i0 ton

bjk = bjk + a * bj,i+1

end

for k :=
a :=
for j

i+2 ton
o (~tiK)
:= 1 ton

- a k tij

(x O3 *)

(* basis change *)

tjx = tjx + 0(a) * 541 (x C1 *)

for j

:= i0 to n

Bitej #= Bipry - @ *

Titik

i= tip1x + 0(a)

ty;j (x C2 %)
(x C3 *)

43
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for j := i0 ton
bjx = bjx + a * byt (* basis change *)
end
end

transformLemma3(T,i0,i,0,0,B)

n := Size(T)
for 1 := i downto iO+1
for k := i+1 to n
a =t
for j := i+l ton
tji-1 = tj1-1 + o(a) * tyx (x C1 %)
tgr = 0 (x C2 %)
tri-1 = tkio1 + 0(a) (x O3 *)
for j := i0 to n
bj1-1 = bj1-1 *+ a * bjx (* basis change *)
end
end

end

transformlLemma4 (T,i0,i,k,0,0,B)

n := Size(T)
for 1 := i0 to k
a = 0'71(_tk1)
tia =0 (x C1 *)
trp11 0= trpr1 + 0(@) * trprkgr
if k < 1
tiv11 = tipen + 0(a) * tipixqt
if 1 < k
P11t = trp1141 - 2 (x C2 %)
else
for j := i0 to k+1
trt1,j = Brge,; — @k Ty
for j := i+2 to n
Brt1,j 0% Trtr,j — @ * By
end
tut1, = trp1n + 0(a) (x C3 x)
for j := i0 ton
bj1 = bj1 + a * bjxi1 (* basis change *)

end
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for 1 :
a
tr =0

i+2 ton
o™ (tx)

(x C1 %)

trt1,1 = trp1n + 0(2) * trpixtt

if k < i
tiri1

tk+1,40 = T

= tit11 * 0(a) * Tit1x1
k+1,i0 ~ @ * t1io0 (x C2 x)

for j := i+2 to n

trt1,5

= Teiry A K Ty

trr11 = trpin + 6(a) (x O3 %)
for j := i0 to n

bj1
end
end

=bj1 + a * bjxt1 (* basis change *)

transformLemma5(T,i0,i,k,0,d,B)

n := Size(T)

transformP(T,i0,k,n,B)

a = tnjio

for j := i+l ton

tin := o(a)

tnio =1 (x D2 *)
for j := i+l ton
tny = tnj / a
tpn = tpp + 0(a) / a (x D3 *)

for j := i0 ton
bjn = a * bjs (x basis change *)
for 1 := i+l ton
if t1,i0 =0
a = tiio
for j := i+l ton
tin 1= tjn + 0(a) * tjy (x C1 *)
t1i0 := t1i0 - @ (x C2 %)
for j := i+l ton
t1; = t1; - a * ty;
tin 1=t + d(2) (x C3 %)
for j := i0 ton
bjn := bjn + a * bj (x basis change *)
end

end

45
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transformR(T,i0,B)
for j := 10 to 1
transformLemma4 (T,i0,i,j,0,d,B)
end ]

3.1.2 Deduction of Scalar Equations

After we have transformed a system of Ore operator equations into an equiv-
alent system with a companion matrix, we can deduce higher order scalar
equations. In the setting of Ziircher’s algorithm it is not immediately clear
what we mean by a scalar equation. In the differential case, it is an equation
of the form

m -
ZCiDly:pa CiaPGK
1=0

while in the difference case we desire equations of the form
m
ZciEzy =p, c,peEK
i=0

The point is that the operator we are interested in can be either o or §.
We will discuss the computation of uncoupled scalar equations in the two
important special cases listed above. In [25] a more general approach is given.
There it is shown how to turn the normal form computed by algorithm (3.7)
into uncoupled equations of the form

m .
Zczﬂf@y:p, CiapeK

i=0
where s € K is an arbitrary parameter and 9, : K — K is the pseudo-linear
map w.r.t. o', —0 716 — k(00 — id)
Op=ro =015 —k (0_1 — id) .
This covers both of the two special cases above: In the differential case
o =id, § = —D (of course, we could also work with § = D) we set K =0
to obtain ¥y = D. In the difference case we set 0 = E~ 1, § = E~! —id (cf.

example (2.27) and ‘Difference Equations’ below) and x = 1, which yields
Y = E.

Differential Equations

Let (K, D) be a differential field, T an n X n matrix with entries in K and
v € K". Consider the system of differential equations

Dy =Ty +wv. (3.4)
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We set 0 = idg, 6 = —D and 0 : K* — K" the pseudo-linear map whose
matrix w.r.t. the canonical basis is T, that is,

Oy =Ty + dy.

If we apply Zircher’s algorithm on # and assume w.l.o.g. that it returns
only one companion block, we get a companion matrix C' and an invertible
matrix A s.t. 0z = Cz 4 6z with z = A~ 'y. Upon setting w = A~ 'v, y € K»
solves (3.4) if and only if z = A~!y solves

Dz=Cz+w. (3.5)
This system is of the form
Dz = z0+4+w
(3.6)
Dz, 1 = z,+w, 1

n—1
Dz, = E CiZit+1 + Wy
i=0

From this we get zo0 = Dzy — w1, 23 = Dzs — w3 = D?z — Dwy — ws, and,
inductively,

i
Zig1 = zgl) - Zwy—” for 1<i<mn.
j=1

Plugging this into the last equation of (3.6) yields

M= (=) _ S () S (i)

n n—j) _ G ) 1—j

20— E w; = E iz — E Ci w; + wn,
j=1 i=0 i=0 j=1

which is a scalar differential equation for z;. If this equation can be solved,
the other z; are computed from (3.6), and the original variables y; by y = Az.

Difference Equations

Let
Ey=My+v (3.7)

be a system of difference equations, where M is an n X m matrix with en-
tries from K and v € K”. Once again, we do not restrict F to the forward
shift introduced in section (2.6). Special cases include linear algebraic sys-
tems (E = idg) and ordinary systems of difference equations with rational
function coefficients (K = R(K), Ez =z + 1).
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Let 0 = E7', § = 0 —idg and 0 : K* — K" be the pseudo-linear map
whose matrix w.r.t. the canonical basis of K" is (M) — I. Then we have

Ey=My+v
= Oy=—0o(v).

(cf. example (2.27).) Applying Ziircher’s algorithm to 6 yields, assuming
w.l.o.g. that it returns only one companion block, a companion matrix C
and an invertible matrix A s.t.

0z = Co(z) + 0z, where z=A"l4.
Hence (3.7) is equivalent to

Co(z)+ 0z =—A"1o(v)
& FE(O)z+z—Ez=-E(A Y
= Ez=(EQC)+1)z+w,

where w = E(A~!)v. This system is of the form

Ez1 = 21 tzgt+w;
(3.8)
Eznn = zn1+zntws
n—1
Ez, = Z E(ci)zit1 + zn + wp,
=0

which, by using the difference operator A = F — idg, can be written as

AZl = zotw
(3.9)
Azp1 = zZp+wp
n—1
Azp, = Z E(ci)zip1 + wp.
i=0
This implies
. i . .
ziv1 = A’z — ZAHUJ]- for 1<i<n. (3.10)
j=1

In particular, if we take ¢ = n — 1 and apply A on both sides, we obtain

n—1
Az, =A"z — Z A"y (3.11)
j=1



3.1. ZURCHER’S ALGORITHM 49

Inserting (3.10) and (3.11) into the last equation of (3.9) yields the uncoupled
difference equation

n—1 n—1 i
Az — Z A"y, = Z E(c;) | Alzy — Z A | 4wy
j=1 i—0 j=1
n—1 ) n—1 7 o n—1 )
— Z E(c))A'zy — A"z = Z E(c;) Z AT, — Z A" w; —wy,
i=0 i=0 =1 j=1

for 2.

3.1.3 Complexity

Now that we made the computations that Zircher’s uncoupling algorithm
performs explicit, it is straightforward to count the number of additions
and multiplications in K that it performs. We just consider algorithm (3.7),
because it is readily checked that the second step of Ziircher’s algorithm, i.e.,
the deduction of the scalar equations, requires O(n?) arithmetical operations
in K, which is asymptotically less than the complexity of algorithm (3.7), as
we will see.
To begin with, the number of multiplications in the procedure transforml.emma?2,
which we will abbreviate by L2, (n,1p,1), is
L2.(n,ig,i) = (n—i+1)+(n—ip+1)+1+(n—1dp+1)

+(@—dp)((n—i+1)+(n—ip+1))

+((n—i+1)+(n—i+1)+(n—ipg+1))

+n—i—-1)((n—i+1)+m—ig+1)+(n—ip+1)).
If we restrict ig to the case 79 = 1 and count only the leading terms this
simplifies to

L2,(n,1,7) = i(2n—i)+ (n—1i)(3n —1i)+O(n)
= 3n% —2in+ O(n).

For the number of additions we find
L2y (n,ip,i) = 14+ @GE—dp)((n—i+1)+1+14+(n—iyp+1))

+(n—i+1)+m—i+1)+1+(n—1d9+1))

+n—i=1)((n—i+1)+(n—dp+1)+1+(n—1ip+1)),
and

L2:(n,1,i) = i(2n—1i)+ (n—1i)(3n —1i) 4+ O(n)
= 3n? —2in+ O(n).

This allows to analyze the complexity of algorithm (3.7) in an important
special case:
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Theorem 3.8 (nondegenerate case) If the first if condition in algorithm
(8.7) is always satisfied throughout the execution, then the algorithm needs

2n* + O(n?)
multiplications in K. The same is true for the number of additions in K.

Proof: The i-th pass of the outer loop requires L2,(n, 1,i) multiplications,
hence the total number is given by

n—1 n—1
> L2(n,1,4) = (n—1)3n>—2n) i+0(n?)
=1 =1

= 2n% + O(n?).

We have seen above that the leading (i.e. quadratic) terms of L2 (n,1,%)
are the same as those of L.2,(n, 1,17), so the result holds for plus as well. [

We continue by counting the operations of the remaining procedures, en-
abling us to analyze the complexity in the worst case. For transformLemma3,
we have
L3.(n,ip,i) = (i—ip)(n—19)((n—1)+ (n—1ip+1)),
L3.(n,1,i) = i(n—1)(2n—i)+0(n?)
= 2in® — 3i%n +i® + O(n?).

L3y(n,ig,7) = (i—ig)(n—19)((n—1)+14+(n—1ip+1)),
L3,(n,1,i) = i(n—1)(2n—i)+0(n?)
= 2in® - 3i’n +i3 + O(n?).
For transformlLemma4, we give the number of operations for k£ < i. If k£ =1,
there is one more multiplication and addition in each pass of the first for
loop, which do not contribute to the leading terms.

L4.(n,io,i,k) = (k—ido)(1+ 14 (n—ip+1))
+(l+1+(k—ip+2)+(n—i—1)+ (n—1ip+1))
+(n—i-1)1+1+1+n—-i-1)+(n—ip+1)),

L4.(n,1,i,k) = kn+(n—1)(2n—1i)+ O(n)

= 2n% —3in +kn+i* + O(n).

L4, (nyigyisk) = (k—ido) (1+1+1+1+(n—ip+1))
+(1+14+(k—ig+2)+(n—i—-1)+14(n—ig+1))
+n—i—1)(1+1+1+m—i—1)+1+(n—ig+1)),

Ldi(n,1,i,k) = kn+ (n—1)(2n—1i)+ O(n)

= 202 —3in+kn+i2+0O(n).
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In the procedure transformLemma5 some operations are only performed if
certain matrix elements are nonzero. We give the number of operations in
the worst case.
L5.(n,ip,i) = (n—i)+(n—1)+1+(n—ip+1)
+(n—1i)((n—1)+(n—1)+(n—1iy+1))
i
+ Z L4*(n77:077:7k)7

k=io
L5.(n,1,i) = Y Ld.(n,1,i,k)+O(n?)
k=1

5
= 2in? — §i2n + 4% + O(n?).

L5y(n,ig,1) = 1+n—9)(n—9)+1+n—i)+1+(n—ig+1))
i
+ > LAy (n,io, i, k),
k=io

L5y (n,1,4) = 2in® — gi2n +i* + 0(n?).

Putting these results together, we obtain

Theorem 3.9 (worst case) In the worst case, algorithm (3.7) performs

2
§n4 +0(n?)

multiplications in K. The same is true for the number of additions in K.

Proof: The worst case obviously arises if we have to increase the companion
block with lemma (3.3) and lemma (3.5) in each pass of the outer loop,
without ever splitting off a direct factor. The number of multiplications in
this case is

n—1 n—1

> (L3u(n,1,d) + Lo (n,1,4) = Y <4m2 — %z‘?n + 22'3) +0(n?)
=1 =1
2 4 3

Again, this is true for the number of additions, too, because L3 (n,1,1)
and L5, (n, 1,7) have the same leading terms as L3(n,1,7) and Lb.(n,1,1),
respectively. O
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In the worst case described in the preceding theorem, all applications of
lemma (3.3) except the first one are useless, because the matrix entries that
are to be erased are already zero. This could be avoided by testing all those
entries and performing the operations from lemma (3.3) only if one of them
is nonzero. However, the resulting worst case complexity would still be O(n?)
(we might have to apply lemma (3.3) in every second pass of the outer loop,
and the contribution of lemma (3.5) alone accounts for O(n?) overall time
anyways). Furthermore the case where lemma (3.3) and lemma (3.5) have
to be applied is rather rare, hence we did not include this refinement in
the algorithm. From a practical point of view, theorem (3.8) describes the
running time of algorithm (3.7) much better than theorem (3.9).

3.2 Some Remarks on Cyclic Vectors

The use of cyclic vectors is a classical method to uncouple systems of linear
ordinary differential equations. We start with the basic definition (for the
general pseudo-linear case):

Definition 3.10 Let V be an n-dimensional vector space and 0 : V — V be
pseudo-linear. A vector z € V is called cyclic vector iff the set

{z, 0z,... ,0”*12“}
is a basis of V.
If z is a cyclic vector, ™z can be written as
0"z = cor +c10z4 ... +cp10™ 1z

for some ¢y, ...,c,—1 € K The matrix of § w.r.t. to the basis generated by
x is then easily seen to be

0 O 0 ¢

1 0 1

0 1 )
: 0 c¢n oo

0 ... 1 cpot

a transposed companion matrix. Suppose we wish to uncouple the pseudo-
linear system Oy = r. We have already seen how to derive an uncoupled
higher order equation from a companion matrix, hence it would be better if
the above matrix were transposed. Therefore we consider the matrix of the
adjoint map 6*.
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Theorem 3.11 Let T be the matriz of 0 w.r.t. a basis {b1,...,b,} of V.
Then the matriz T* of 0% w.r.t. the dual basis is given by T* = o~ (T?).

Theorem 3.12 Upon identifying V and V**, we have 0** = 6.

These two theorems, the proofs of which are straightforward verifications
(see [25]), imply

Corollary 3.13 Let ( € V* be a cyclic vector of 0*. Then the matriz of 0
w.r.t. to the basis of V that is dual to {(,0%C,..., 0" 1(} is a companion
matrix.

Thus we can uncouple system (3.1) if we can compute a cyclic vector for 6*.
The drawback of this approach is that it does not always work in the

general Ore setting: The adjoint 8* need not admit a cyclic vector, the

simplest counter example being the linear map 6 = idy (for n > 1).

However, cyclic vectors are known to exist in the (ordinary) differential
case K=R((x)), V =R((z))", d = D, 0 = idgk. It is even possible to find a
cyclic vector whose components are polynomials of degree less than n, and
the probability that a vector chosen at random is cyclic is 1; see [7] and the
references given there. A straightforward way to compute a cyclic vector is
to test for random candidates whether the set of their pseudo-derivatives is
linearly independent.

Even in cases where a cyclic vector can be found, it turns out that
the coefficients of the uncoupled equations obtained in this way are very
complicated in comparison to other uncoupling methods. Therefore, and
because this thesis is concerned with algorithms for the general Ore setting,
we deal with the cyclic vector method no further.

We conclude these remarks by citing the following interesting interpreta-
tion of Ziircher’s algorithm, which is given in more detail and proved in [25]:
Zircher’s Algorithm can be used to compute a direct sum decomposition

Vi=U1®...0U,,

where U; is a @*-invariant subspace of V* generated by a cyclic vector (;.
m is the number of companion blocks in the block-diagonal normal form
of the matrix of 6. Hence the uncoupling algorithm by Bruno Ziircher can
be viewed as a refined cyclic vector method that works for pseudo-linear
systems in general.
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Chapter 4

Gaussian Elimination

At first glance it may seem surprising that Gaussian elimination can be
applied to systems of linear operator equations. The key point is to consider
matrices of Ore operators instead of the coefficient matrix of the system.
The resulting algorithm resembles fraction free Gaussian elimination over
7.

Let O = K[9;0,6] be an Ore algebra that operates on the left module
W, A= (aij)1<i,j<n € Mat(n,K) and 7 = (rq,...,7,)" € W™. The system
of equations

Yy1 = anyr+...+ayn + 11
(4.1)
ﬂyn = GpiY1 + ...+ GupYn + Tn.
can be written as
My =r, (4.2)
where
9 — a1 —al1Q N —a1n
M=| " " - : € Mat(n,0).  (4.3)
: ’ ’ —On—1,n
—anpl . —an,n,l 9 — A1np

The product My is of course defined by using the outer multiplication of
the left O-module W. With this encoding of system (4.1) we can perform
Gaussian elimination by using the least common left multiple introduced
in section (2.4). Suppose as; # 0 (otherwise we proceed with ag;) and let
a,b € O be s.t.

lclm(19 — a1, —0,12) =a (19 — a11) = —balg.

95
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a and b can be computed with algorithm (2.7) (cf. theorem (2.9(ii)). If
we multiply the first equation by a on the left, the second one by b and
subtract the first equation from the second, we have generated a zero entry
at position (2,1). Analogously, we can erase the entries at positions (i, 1),
3 < ¢ < n by applying the extended Euclidean Algorithm to each of the
pairs (9 — a11, —a;1), where a;; # 0. We then proceed as in the ordinary
Gaussian elimination algorithm to triangularize system (4.2). In the general
step, the matrix is of the form

mi1r ... N min
0
Mgk ce Mkn
Mgk --- Mt
0 ... mpr ... Mgy

for some 1 < k < n. If now my, = 0, we look for a nonzero entry among
mij, k <1 < n, k <j <mn.If nosuch m;; exists, we are done. If, on the
other hand, there is such m;; # 0, we swap lines 4 and k& and columns j and
k. Hence we can assume myg, # 0. We eliminate the nonzero entries among
m;, k+ 1 < i < n as described above. Finally the system will be of the
form

mi ... ce. Min Y1 51
0
my ... My _
0O ... O
o ... 0 ... 0 Un Sn
for some 1 <1< mn, s=(s1,...,5,)" € W". If not all s;, | <i < n are zero,

the system has no solution. If they are zero (in particular, if [ = n) (4.1) is
equivalent to the uncoupled system

muyr + ... coo T MApYn = S1
: (4.4)
muy; + ... + mpYyy, = 8.

Note that unlike the other uncoupling algorithms presented in this thesis,
which return scalar equations whose order sum to the dimension of the initial
system, Gaussian elimination in general returns scalar equations of higher
order, depending on the degrees of the Ore polynomials in (4.4).

Of course, this algorithm works for any M € Mat(n, O), not just those of the
special form (4.3) that arises from system (4.1). In the following program
listing, the variable perm keeps track of the column changes in the system
matrix, which induce changes in the order of the unknowns.
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Algorithm 4.1
perm=(1,...,n) (* identity permutation *)

for

end

k=2,...,n

if there is myq #0, k<p<n, k<qg<n then
swap rows k and p, columns k and q, rx and rp
perm[p] := q; perm[q]l :=p

else stop

for i = k,...,n
determine a,b s.t. a mg = b myy
for j=k,...,n

m;§ :=a*mkj—b*mij

r; :=a*xr, - b *r;

end

Apparently, analyzing the complexity of this algorithm would be a rather
difficult task. One would have to deal with the complexity of the Euclidean
Algorithm in Ore polynomial rings and to keep track of the degrees of the
matrix entries during the execution of the elimination algorithm. We confine
ourselves with mentioning that empirical evidence shows Gaussian elimina-
tion to be less efficient than the other three algorithms in this thesis. It
usually takes more time and returns equations of high order and with large
coefficients.
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Chapter 5

Block Triangular
Decomposition

5.1 The Uncoupling Algorithm by Abramov and
Zima
5.1.1 The Problem

Let K[#¢; 0, 6] be an Ore algebra that operates on the left module W. Given
a linear system of equations

dy=Ay+r (5.1)

where A = (aij),; i<, € Mat(n,K) and r = (ry,.... )" € W, we want to
reduce the problem of finding the solutions to that of solving higher order
scalar equations. This can be achieved by an algorithm due to Abramov and
Zima [6], which is a generalization of an uncoupling algorithm for differential
systems by Murray and Miller [18]. Its goal is to find an equivalent system

(y—equations, z—equations, T —equations)
iny=(yi,...,yn)" € W" consisting of the following components:

(i) y-equations:

I
>y, = p
=0

io—11l>—1

l2

Z agjVy;, = Z Z oV 21 + p2 (5.2)
j=0 k=1 j=0

ls ‘ ‘ is—11ls—1 '

Doty = 3> btz + s,

=0 k=1 j=0

99
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where ozij,a;‘kj € K o, = 1 and p; € W. The index set I =
{i1,...,is} with 1 =43 < ... < iy < n is given by the algorithm.
The [, are defined by Iy = i1 — i for 1 <k <sandls =n—1is+1,
which implies Iy +... + s = n.

(ii) z-equations: The new variables z; from (i) satisfy:

Zi = Ui for 1€1 (5.3)
and
1—1
% =9Yz_1+ Ppm+m for 1<i<n,i¢l (5.4)
k=1

where §;; € Kand 7; € W.

(iii) T-equations: Finally we get a linear system of equations that do not
contain applications of the J-operator:

Ty = z, (5.5)

where T' € Mat(n,K) is a non-singular upper triangular matrix. In
accordance with (5.3), for 4 € I the i-th line of T is e;, the vector with
1 at position ¢ and zero elsewhere.

It has to be noted that the algorithm might change the order of ya, ..., y,.
We did not include this possible renumbering in the above specification in
order not to blow up notation.

5.1.2 Solution of the Initial System from the Uncoupled Sys-
tem

Before describing how we can transform (5.1) into the uncoupled system
AZ, we will outline how system (5.1) can be solved using AZ, if we assume
that we have an algorithm for finding solutions of scalar equations.

First we solve equation 1 of (5.2) for y;. We use one of these solutions to
compute z;, 2 < j < iz by (5.4). Of course, these z; are uniquely determined
by y1. Then we plug yi(= z1) and z;, 2 < j < iy into the second equation of
(5.2), yielding a scalar equation for y;,, and so on. Afterwards we use (5.5) to
compute the remaining y; from y;,,...,y;, and the z;, j € {1,...,n}\I. As
already mentioned, we finally might have to restore the order of ys,...,yp,
which might have been permuted by the uncoupling algorithm.

5.1.3 The Algorithm

We begin the presentation of the algorithm by following [6]. There, only the
beginning of the computation is described in detail, and it is briefly outlined
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how to proceed. We add a detailed description of the general step, both of the

first stage of the algorithm (computation of an equivalent system with block

triangular matrix) and the second stage (deduction of scalar equations).
Written out in full, system (5.1) reads:

dy1 = anyr +...+apys + 11

: (5.6)
ﬁyn = GpY1+ ...+ GupYn + 71n.

Eliminate y, from the right hand sides:

If a1 = ... = a1, = 0, we can take the first equation of (5.6) as the
first equation of (5.2). Continue reading at ‘repeat the whole process’ (with
[=1).

If, on the other hand, ai; # 0 for some j > 2 (w.l.o.g. j = 2, since we
can reenumerate unknowns), we introduce a new variable

29 = a12y2 + ... + A1pYn- (57)

If we use this relation to eliminate y5 from the right hand sides of equations
2 to n, we get a system of the form

Yy1 = anyr +22+ 1
Jy2 = b1y + baozo + bagys + ... + bopyn + 12 (5.8)
ﬂyn = bp1y1 + bpoza + bp3ys + ... + bppyn + 1y

Eliminate y, from the left hand side:
In order to get rid of ¥ys in equation 2 above, we proceed as follows:
Application of 9 to (5.7) yields

P29 = U(alg)’ﬂyg + 6(a12)y2 +...+ U(aln)ﬁyn + 6(a1n)yn. (5.9)

We use (5.7), (5.8) to eliminate yo,Jyo, ..., %y, from (5.9) and take the
result as our new second equation. Thus we have arrived at a system of the
form

Yyr = anyr +20+11
V29 C21Y1 + 2222 + C23Y3 + ... + CoplYyn + S2
19y3 = b31y1 + b3oz9 + b33y3 4+ ...+ bgnyn + 73 (510)

VYn = bnay1 +bp2z2 + bn3ys + ... + bunYn + 7.
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By looking at the first equation we see that we have made a first step towards
triangularization of system (5.6).

Iteration:
If at least one of ¢y3,...,co, (W.l.0.g. co3) is nonzero, we introduce the
new unknown zs:
Z3 = C23Yy3 + ... + ConYn,

and proceed analogously to steps 1 and 2 to eliminate y3, and so on. If
we continue in this fashion, at some point we will have to stop elimination,
either because we have eliminated o, . .., y, or because the next equation to
be considered does not contain any of the remaining y;. Suppose the latter
happens after eliminating [ — 1 variables, then our system will have the form

Yy = diyyr+2z20+ 11
’1922 = d21y1 + d2222 + z3 + S92
V21 = di—a Fdi—ipze .o dim—12-1 + 2w
Yz = digy Fdioze+ . dygizo Hdigy
VY1 = dipay Hdigieze +.ooFdipgz +Hdip ey o diprpYn + g
W = dpgyr Hdpoza+ ..o+ dpgz Hdyg1yipr + oo dppYn + Un.

We set I} =1 and i =1+ 1 (Recall i; = 1). Equations 1 to [ — 1 of (5.11)
yield the first [ — 1 equations of (5.4).

Deduce a scalar equation:

We can get an equation of order [ in y; from the first [ equations of
(5.11) as follows: The first equation allows to express z9 via y; and dy;. If
we apply 9 to the first equation, we can write ¥z5 in terms of y;, ¥y and
¥?y;. By the second equation, we can now express z3 and 9z3 via yi, Jyi,
¥?y; and 93y, and so on.

Finally, we plug the expressions for z; and 9¥2; obtained from equation
[ — 1 into equation [, which gives the first equation of (5.2).

If we collect the equations by which the variables 2o, ..., z; were introduced,
we get a triangular algebraic linear system
Zg = aizy2 +a3yz+ ... ... + QipYn

23 = Cco3ys + ... oo+ Cony
e (5.12)

zp = el-1,Y1 +--. + e—1,nYn-

(5.11)
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Repeat the whole process: (only if | < n, which we will call the degen-
erate case)

In equations [ +1,...,n of (5.11) we consider y1, 22, . .., 2; as known and
perform the same transformations. This yields the second equation of (5.2),
the equations for 75 < i < i3 of (5.4) and so on. Let s be the number of
times we repeat the process described so far. Finally, the 9J-free system that
consists of (5.12), its succeding counterparts and the equations z; = y;, j € T
yield (5.5). (5.3) is just a definition which simplifies notation several times.

Before giving the pseudocode of the algorithm, we will describe the gen-
eral step of the computation in detail.
By taking ¢ = v = 1 if necessary, we can assume that our system has the

form
192’1 A1
Aufl
Qs,i, 1 0
Vz; 1 ai-14, --- @G-1;-1 1 0
¥z @i, - Qig—1  Gij Qitl
IYn * Qniy
z1
X : +r,
Zi-1
2
Yn
where Aq,...,A,_1 are of the form
* 1 0 0
« ...« 1 0 |- (5.14)
* x 1

*
*

0
0
X
0
Qin
Gnn
(5.13)
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If now a;;t1 = ... = aj = 0, we add %, to I and by writing
ai,i, 1 0 - 0
Ay = T E
Ai—1y, .- ai—1,i-1 1
Gig, .- Gii—1 Qi

we are once again in situation (5.13), with v increased by 1. Now suppose
aji+1 7 0. (If aj 341 = 0 but a;; # 0 for some i + 1 < j < n, we swap lines
i+ 1 and 7, columns ¢ + 1 and j of a and the components 7 + 1 and j of
r. Of course, we have to keep track of these permutations to restore them
eventually.)

As described above, we introduce the new variable

Zitl = Qiip1Yit1 ... + QinYn- (5.15)

If we express y;41 by this equation, we get

n
Vil = iz — ) by (5.16)
j=i+2

with b; := a;j/a; ;1. The b; are introduced to decrease the amount of com-
putation; we will need them two times in what follows. We use this expression
for y;1+1 to eliminate y;41 from equations ¢+ 1,...,n. For i +1 < k < n,
plugging in (5.16) for ;11 (but not for Jy;11) gives the equations

Qki+1
Yy = a2+ ...+ agz + ” ?+1 Zig1 + (Qgit2 — Gk ip1biv2) Yigo +
2,04
+... 4 (agn — akit1bp) Yn + T (5.17)

We denote by azj fori+1 <k <n,1<j<n the matrix entries updated
according to (5.17).
Applying ¢ to (5.15) gives

Vzit1 = 0(@iit1)0yit1 + 6(aii11)Yit1 + ... + 0(ain)Iyn + 0(ain)yn- (5.18)

This will become our new equation ¢ + 1, once we have eliminated y;1,
Mit1s- -, Oy, using (5.16) and (5.17). To do so, we multiply (5.16)by
6(ai,i+1), which yields

0a; 41

)

0(aiiv1)yiv1 = Zig1 — 0(@iir1)biv2ivo — - — 0(aii41)bnyn, (5.19)

Qi i+1
and (5.17) by o(a;), giving
o(aik)Vyr = o(aik)ag 21 + ... + olaig)ag;zi + o(ai)ag ;1 ziv1 +
+o(aik)af ;i oYive + .. + o(aik)agpyn + o(aix)ry  (5.20)
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for i + 1 < k < n. Using this in (5.18), we get an equation of the form
Vzip1 = aﬁ1,121+- --aﬁ1,i+1zi+1+aﬁ1,i+2yz’+2+- . -+aﬁl,nyn+7“f+1a (5.21)

by which we replace equation 7 + 1. r; 41 is the only component of r that
has to be updated, hence we set r; =r; for 1 <j <n, j # i+ 1. We have
arrived at the system

192’1 Al
Aufl
Q;,i, 1 0
Vzi 1 i1y, -v Gil,i—1 1 0
9z @ig, oo Qi1 aj; 1
skok skok ok ok
Vziq1 itrg, - Giqi1 Giprg, G141
E3
VYn * xs
21
X : + r¥,
Zi—1
2
Zi+1
Yn

which is of the form (5.13) with ¢ increased by one.

Finally, we discuss the deduction of the y-equations. When we are done with
the triangularization, we have transformed the system into the form

A 0
Jz = z+r

where Ay is an [ by [j block of the form (5.14). We have already described
how the first equation of (5.2) is obtained. The k-th of these equations is to

(5.22)
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be deduced from the [ equations

ﬁzik = G121+ ...+ Qi Ziy, + Zig1 + T,
ﬁzik+1—2 = Qi 2,121 Q=20 2% —2 T Rip -1 T T -2
V21 = Qi 1121+ ot Qi Vi 1%y 1 T Tigy 1

in the same way, by expressing z;, 1 via the first equation and 9z;, 11 by
applying ¢ to the first equation, plugging this into the remaining equations,
and so on. In this process, we apply 9 I — 1 times to z;, 1 < j < i, and
I, times to z;, , which explains the order of the equations (5.2).

Let us view this process in more detail. We will encounter equations with
higher order pseudo-derivatives of several of the z;, so we introduce new
coefficients d;; j, where the third index marks the order of the application
of ¥. They are initialized by d; ;o = a;j, 1 < 4,57 < n. To keep notation
simple, we do not change the names of these coefficients and the r;, even if
they are updated by the steps described below. Now the k-th block of the
triangularized system (1 < k < s) takes the form

1k
Ozi, = Y di 0+ Zig41 + 1,
=1
(5.23)
i tpt1—1
V21 = E dip i 1,402t + E iy 1,602 + Tigyy—1-
t=1 t=ip+1

(We set i311 = n 4 1 for convenience of notation.) Let 1 < m < [ — 1
and suppose we have eliminated z;, 41,...,2j,+m—1 from (5.23). Then we
continue by expressing z;, +m and 9z, +m by the m-th equation, which will
be of the form (with new coefficients d;; ; !)

i m—1

ﬁmzik = Z Z dik+m71,t,j79jzt + Zip4m + Titm—1, (5.24)
t—1 j=0

(in the first step m = 1, this is the first equation of (5.23)) and substituting
the result for z;, 4y, and 9¥2;, 4y, in the m + 1-st equation

i m—1
ﬂzik‘*m - Z Z dik+m,t,j79jzt + digtmiig+m,0 Zig+m
t=1 j=0
+ [m <l — 1] Zig+m41 + Tip+m- (525)

(For m = 1, this is the second equation of (5.23)). Here we made use of
the notation [false] = 0 and [true] = 1. Then we substitute for z;, 1, in the
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remaining equations

i, m—1 ig+i
Vzigri = D > dipyini®z+ Y digyigo 2
=1 j—0 t=ip, +m
+ ['L <l — 1] Zip it F i, m < <lp—1. (5.26)

Expressing z;, +m via (5.24) yields

iy m—1
Ziggm = — 3 Y dippmo109 2 + 92, — iy ymo (5.27)
t=1 j—0
and, consequently,
iy m—1
Vipym = — Z Z (o(diy4m—1,6,))9 2y + 6 (diy4m—1,,))07 21
t=1 j=0

1
+0™ 2 — 7,

iy ,m—1

= - Z (Z 0 (diypm—1,4,j-1)9 2 + 0 (dip 4 m—1,m—1)9"2¢
=1 \j—=1
m—1 ‘
+0(diy+m—1,40)2t) + Z 5(dik+m—1,t,j)ﬂjzt> A
=1

iy m—1
= -> (5(dik+m—1,t,o)zt + Y (0(dip4m—1,0-1) + 0diy ym—1,05) " 2
t=1 j=1
+U(dz‘k+m—1,t,m—1)?9m2t> + 9" — I -
Plugging this into (5.25), we get
ig m—1 ‘
-3 (6(dik+m—1,t,0)zt + ) (0(diyrm—t 1) + 0y tm—1,5) 9 2
t=1 j=1

+U(dik+m—1,t,m—1)?9m2t> + 9" 2 — I fmet

ik m—1 ik m—1
= diptmit, i 2t + diy 4 mjig+mo | — E E diptm—1,t,;07 2
t=1 j=0 t=1 j=0

+9" 2, — Tikerl) +[m <l — 1 Zig4m+t1 + Tig+m,
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that is,

i
m+1 _
9"z, = Z ((5dik+m—1,t,0 + diy 1m0 — dig+mip+m,0 ig+m—1,60) 2t
t=1

m—1
=1

j m
— i tmig+m,0 dik+m1,t,j>19] zt + 0 (diy+m-—1,t;m—1)0 Zt)

iy tmyip+m,09" zip, +[m <l — 1 zig4mt1 + 975 4m—1

=it myig+m,0 Tig+m—1 T Tij+m (5.28)

as our new m+1-st equation. (In the last step m = [, —1, this is an uncoupled
equation for z;,; note that zi,...,z;, 1 are assumed as known when we are
dealing with the k-th block.) What remains to do is to insert (5.27) into
(5.26), yielding the equations

i m—1
Vi = Z Z (dip+ityj — Diptiip+m0 dig+m—1,t5) 2t + diy 143, +m, 00" %,
=1 j—0
ik+i
+ oz + [ <Dy — 1)z + it
t=ip+m+1
—diy im0 Tigtm—1, m <1 <[ —1.

This completes the general step of the deduction of the y-equation for the
k-th block. When we have done this for all 1 < k <s,1 <m <l — 1, the
last equation (namely, (5.28) for m = [, — 1) of each block is an uncoupled
higher order equation for z;,:

i lp—1

ﬁlkzik = Z Z di;hLlfl,t,jﬁ]Zt + Tipyr—1o 1<k <s.
t=1 j=0

(Note is41 = n + 1) These equations form (5.2).
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Algorithm 5.1 by Abramov and Zima

I :={1}; perm := (1,...,n) (x identity permutation *)
T=0 (* zero matriz; T=t;; *)
(x first stage: transformation into block triangular shape *)
fori=1,...,n-1

(x look for variable with nonzero coefficient *)

jO =i + 1

while jO <= n and ajj = 0

j0 = jO + 1

if jO <= n then
(x swap variables i+1 and j0 *)
perm[i+1] := jO; perm[jO] := i+l
(x swap equations i+1 and jO *)
for j=1,...,n

S 1S Aig1ji Aiglj 1T 2joj5 2joj TS
(x swap entries i+1 and j0 of the right hand side *)
S 1= Trif1; Tipg = Tjo;5 Tify1 = S

(x swap variables i+1 and j0 in equations i,...,n *)
(x and swap columns i+1 and j0 of T *)

for j=1,...,n
S 1% 35415 3jit1 1T 35505 3jj0 (T
8 1= Tiitts biitt T Tigo; tyjo =8

(x update T *)
for j =1i+1,...,n

Titij 1% A4
for j = i+2,...,n
bj = aij / aiip

(x eliminate variable i+1 from the right hand sides *)
for k = i+1,...,n

for j = i+2,...,n
J

A,j 1T Aj T Akit1 * bj
agit1 = kit / Aiift

(x initialize the coefficients of the new equation i+1 *)
for j =1,...,i
Cj =0

(x eliminate variable i+1 from the new equation i+1 *)
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Cit1 =7 6(ai,i+1) / Qi i41
for j = i+2,...,n
cj := -0(azir1) * by

(x eliminate ¥ of variables i+1,..,n from new equation i+1 *)

riys =0

]
[
+
=
[=]

for k
for j=1,...,n

cj; = ¢35 + a(ai,k) * ag j

=Ty + o(azx) * rg

Tif

(x update the coefficient matriz with the new equation i+1 *)

for j=1,...,n

dit1,j = C

(* update equation 1 *)
aii+1 = 1;
for j = i+2,...,n

aij =0

end

else (x there is no variable suitable for elimination *)

I :=1U i+1
titr,i01 =1
for j = i+2,...,n

tit1,j =0
end

end
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(x second stage: deduction of the y-equations *)

s := |II
{i1,...5is} 1= Ij dsqq 1= ntl
fori=1,...,n

for j=1,...,n
dijo = aij

for k=1,...,s
form=1,... ,ik+1—ik—1
for t = 1,...,i
diygmt,0 = 0(digym—1,£0) + diyqmt,0
= diytmig+mo * dig4m—1,£,0
for j=1,...,m-1

diptmt,j = 0Qdiqm-1t5-1) + 0(di,4m—11,5)
*+ digtmt,j — Ligtmigtm0 * Qigtm 1,t,3
dik—l—m,t,m = U(dik—l—m—l,t,m—i)
end
diptmiem = diggmiem + Aiydmig+m0
Tigtm = Tipgm * 9 (Tipgm—1) = diptmipim0 * Tigtm—1
dijtmictmo = 0
for i = m+l,...,ix; 111
for t = 1,...,ix
for j =0,...,m1
dig+it, 0= digtie,) ~ Qigtiigtmo * digdtm—1,8,3
Aiptiiem = Digti,igtm0
Titi = Tigri ~ Qigti,igtm0 * Tigfm 1
iy ti,igdmo = O
end
end
end

5.1.4 Correctness

Theorem 5.2 The solutions of the uncoupled system AZ are exactly the
solutions of (5.1).

Proof: From the description of the algorithm is is clear that any solution
of (5.1) solves the uncoupled system. As for the converse, we take a closer
look at the transition from (5.13) to (5.22). Of course, equations 1 to 7 of
(5.22) (which remain unchanged) together with (5.17) for i+ 1 < k£ < n and
(5.15) imply (5.13). But in the next step of the algorithm, equation (5.17)
for k =i+ 1 is discarded and replaced by (5.21), which becomes the first
equation of (5.22). Hence we have to verify that (5.22),(5.15) imply (5.17)
for k=144 1.
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To see it, SUPPOSE 21, ..., Zit1,Yit2,-- -, Yn satisfy (5.22),(5.15). Taking
into account how equation (5.21), i.e., the ¢ + 1-st equation of (5.22) was
obtained, it reads

i+1
ﬂzi+1 = a(ai,H_l E al+1 ]Z] + E a2+1 ]y] + Ti4+1
j=1 J=i+2

n
+0(aiip1) | arlazion — Y, by

j=i+2
n i+1 n
+ Z o(ai) Z ayjzj + Z ag;y; +re |+ 0(ai)ye
1=it2 j=1 j=i+2

(5.29)
By (5.15) and equations i+2 to n of (5.22) the right hand side further equals

i+1
o(aiit1) Zaz-i-l g%t Z @i Y5+ vt | +0(aiir1)yir
J=1 j=i+2

+ Z o(ai)y: + d(ai)ye) ,
t=1+2

and by comparing this to (5.18) (which follows from (5.15)), we have

i+1
az 2+1 Z az+1 % + Z 2+1 JYi +ri41 ]| = J(ai,i+1)19yi+1'
Jj=i+2
Now the validity of (5.17) for k =i + 1 follows from a; ;1 # 0 and o being
a monomorphism, hence o(a; ;1) # 0. O

5.1.5 The Solution Space

The proof of the following theorem shows how we can find a basis for the
solution space of the homogeneous system 9y = Ay, provided that we can
find bases for the solution spaces of the uncoupled equations. The general
solution of the inhomogeneous system 9y = Ay + r can then be expressed
by one fixed solution plus the solution space of the homogeneous system.

Theorem 5.3 Let W be a vector space over K, 4 : W — W be pseudo-
linear, A = (a29)1<”<n € Mat(n,K) and K C K be a subfield of K (e.g.,
K = Constyg). If each of the scalar equations

Uk

Z ozkj'l?jyik = i, kE=1,...,s, (5.30)
§=0
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where ay; as in (5.2) is obtained by uncoupling the system Yy = Ay and
w € W is arbitrary, has a solution in W, and if each of the homogeneous
scalar equations

Uk
> gy, =0, E=1,...,s (5.31)
=0

has I, K-linearly independent solutions in W, then the homogenous pseudo-
linear system

Oy = Ay (5.32)

has n K -linearly independent solutions in W™.

Proof. We begin by noting that if » = 0 in (5.1), then p; = 0 in (5.2) and
7; = 0 in (5.4), which is easily seen from the description of the algorithm.
Furthermore, we can assume w.l.o.g. that the order of the y; is not changed
by the algorithm. In what follows, ‘linearly independent’ means ‘linearly
independent over K.

Now let z%l),...,zyrl) be linearly independent solutions of the first
equation of (5.2) (recall that we can use the variables y; and z; inter-

changeably for i € I). Define zél), 2 from 251) via (5.4). If we plug

’ “io—1
z%l), e ,zg)_l into the second equation of (5.2), we can find a solution zg)
We use (5.4) to compute the components io+1, ... ,i3—1, and so on. Thus we

have found a vector (throughout this proof, we use bold letters for vectors)

s.t.

where T is as in (5.5) solves (5.32). Analogously we construct the vectors
z®, ... 227D and y@ . y(2-1),

Next we set z; = ... = z;,_1 = 0 in the second equation of (5.2) and solve
it, obtaining [y = i3 — i linearly independent solutions zg2), . ,zgrl). We
proceed as above to obtain the vectors z(2), ... z(3=1D and y(i2) . y(is=1),

Analogously we define zU) and y), i3 < j < n. If we let Z be the matrix
whose columns are z(1), ...,z then each of the columns of T='Z solves
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(5.32). Z is of the form

AV 0 L .0
0 0
zg) zgz_l) zg2) ZZ(;S_l) 0
TN
0 0
zz(sls) .. zl(:)
z,(Ll) z,(fs) zr(ln)
(5.33)
Suppose that
n
S =0
k=1
for some )\, € K. Clearly, this implies
n
Z Akz(k) =0
k=1
and hence, by (5.33),
it+1—1
Z Akzlgf)zo, t=1,...,s.
k=is
(Once again, we set 1511 = n+1.) Since each of the sets {zftit), . ,zg”rl)
is linearly independent, we have A\, = 0, 1 < k < n, which establishes the
linear independency of the y*). O

Corollary 5.4 Let K be a field, A € Mat(n,R(K)) be a matriz of rational
functions over K and A be the forward difference operator on K = R(K).
Let further oy as in (5.2) be obtained by applying Abramov and Zima’s
algorithm to the system of difference equations

Ay=Ay, yeSK)". (5.34)

If agg # 0 for 1 < k < s, then (5.34) has n K-linearly independent solution
vectors in S(K)".
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Proof. The fact that (5.30) has a solution is obvious in the difference case,
and the second requirement of the preceding theorem is satisfied by ap-
pealing to theorem (8.2.1) of [20], which asserts that a difference equation
Z;ZO a;E7y = 0 has exactly [ K-linearly independent solutions in S(K), if
the a; are polynomials from K|z] and ag, a; are nonzero. O

5.1.6 Complexity

In this section we consider the number of operations the uncoupling algo-
rithm by Abramov and Zima performs. First we count the multiplications
in K From algorithm (5.1) we read off that in the first stage, for i +1 ¢ I
the i-th pass of the outer loop requires

n—i—-1+m—i)4+n—i+m—i)(n+1)
=% —3ni+i2+3n—-3i—1

multiplications. If 4+ 1 € I, that is, no variable with nonzero coefficient was
found, no operations are performed in this pass of the outer loop. Hence we

need
n—1

Z (2n2—3ni+i2+3n—3i—1)
multiplications in all. The number of additions in the i-th pass of the outer
loop (again we assume 7+ 1 ¢ I) is

(n—i)(n—i—1)+(n—1i)(n+1)
= 2n? — 3in + 2,

yielding a total of

n—1
> (2n® = 3in +i%)
itrgr

additions. In the second stage, we need

s lp—1

>N (1 4+m—1)+1+ (I —m—1) (ixm+1))

k=1m=1
multiplications and

s lp—1

Yo (i (2+3(m—1)) + 3+ (Ip —m — 1) (igm + 1))

k=1m=1

additions.
These observations lead to
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Theorem 5.5 (nondegenerate case) In the nondegenerate case I = {1},
algorithm (5.1) performs

n® + O(n?)
multiplications in K. The same is true for the number of additions in K.

Proof: As we have seen above, the number of multiplications and additions
of the first stage are each of the form

n—1 n—1 n—1
Z (2n% —3ni +4> +O0(n)) = 2n*(n—1) —3nZi+Zi2+O(n)2
i=1 =1 =1

5 3

As for the second stage, we have s = 1, [y = n and therefore we need

n—1 n—1 n—1
m+1+(n—-—m-1)(m+1)) = (n—l)n-l—(n—l)Zm—ZmQ
m=1 m=1 m=1
n3
= % + O(n?)

multiplications and

n—1
Z(3m+2+(n—m—1)(m+1)):%3-!-0(112)

m=1

additions. Adding the complexities of the first and the second stage gives
the desired result. O

5.2 A Variant of Zircher’s Algorithm

5.2.1 A Block Triangular Normal Form for Pseudo-Linear
Maps

As in section (3.1) we consider the equation
Oy=r

or, equivalently,
To(y) + oy =r.

Zircher’s algorithm reduces the matrix of a pseudo-linear map to a block-
diagonal matrix, where the blocks are companion matrices. In this chapter
we present a variant, which we will call ‘incomplete Ziircher’s algorithm’,
that omits some computations in the process of obtaining the normal form,
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thus computing only a blocktriangular matrix. The latter will be of the same
form as in the uncoupling algorithm by Abramov and Zima. The price will
be a more complicated computation for the scalar equations, which also
resembles Abramov and Zima’s algorithm.

We start with a reduced’ version of lemma (3.2):

Lemma 5.6 Let the matriz of 0 be of the form

1
* 1 0 0 0
* 0
* £ * £

If there is an element t;; # 0 with ¢ <1 < n, then there is a basis change A
ER

1+1
1
x 1 0O 0 ... 0
A 'To(A)+ A '6A =
1+1—
* * * *
* * * *

Proof. We show how A can be constructed as a product of elementary ma-
trices. To keep notation simple, the associated matrices of 8 that occur in
the intermediate steps are denoted again by T = (¢;;). First, by the basis
change P;; 1, t;;+1 becomes nonzero. The remaining entries of the affected
columns 7 4+ 1 and [ are either 0 (rows 1,...,7 — 1) or not of interest (rows
i+1,...,n). P2 does not change the ordered part of T either.

Now we can perform the basis change Di+1(a*1(ti_’i1+1)). D1 sets ;41
to 1, and D2 and D3 do not modify lines 1, ... 4.

What remains to do is to set t;x, k =14+ 2,...,n, to 0. Suppose we have
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done this up to £k < m:

7 m
{ {
* 1 0 0 0
0o ...
T:i—> ¥ ... ... *x 1 0 ... 0 =«
* ES * ES

The basis change CHLm(a_l(—tim)) sets i, to 0 by operation Cl1. It is easy
to check that C1, C2 and C3 do not change the ordered part of T'. O

Next we take a look at how changes of bases modify block triangular matri-
ces.

Lemma 5.7 Let T11, To1, Too be matrices over K of sizes nq X ni, ng X nq
and no X na, respectively. Let further 6 : KM "2 — KM T2 pe the pseudo-

linear map whose matriz w.r.t. the canonical basis is (%3 ng) and A be an

invertible no X no matriz. Then the basis change (é g) turns the matriz of

0 into
T 0
A_1T21 A_lTQQO'(A) + A" '6A )

Proof. Because of formula (2.16), the matrix that we seek is
I 0 T 0 I 0 n I 0 5 I 0
0 A )\ Ty T )7\ 0 4 0 Al 0 A
_ T 0 n 0 0
o A_1T21 A_lTQQO'(A) 0 A"'6A

A 0
o Aingl AilTQQU(A) + A715A ’

where o(I) = I and §I = 0 follow from corollary (2.13). O

This means that the lower left block of T has to be updated as well whenever
we perform a basis change to modify the lower right block.
After these preparations we can formulate and prove

Theorem 5.8 Let V' be an n-dimensional vector space, 8 : V. — V be
pseudo-linear w.r.t. o and 0, where o is an automorphism. Then there is
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a basis of V' such that the matriz of 0 w.r.t. to this basis is of the block
triangular form

Ay 0

* A,
where the A;, 1 <1 < m, are of the form

x 1 0o ... 0
« ... % 1 0 (5.36)
* .. * 1

Proof. Induction on n. For n = 1 there is nothing to show.

Suppose the assertion of the theorem holds for 1,...,n — 1. By taking
i = 1 if necessary, T is of the form (5.35). Let 4 be the size of the upper left
block of type (5.36). If i = n, we are done. If i < n and there is an element
t;r # 0 for some i < k < m, we can increase the size of the upper left block
to 7 + 1 by lemma (5.6). If, on the other hand, all these entries are zero,
we apply the induction hypothesis to the lower right part of T. The basis
changes needed to bring it into the desired form do not interfere with the
ordered part of T by lemma (5.7). O

This proof gives rise to the following algorithm to find the block triangular
normal form. The main procedure is very simple: If we do not find the
nonzero matrix entry necessary to increase the upper left block of form
(5.36) by lemma (5.6), we just move on to the next line. There are two
differences between transformL5.4 and transformL2 from algorithm (3.7):
Firstly, transformL5.4 does not erase the elements t;, ig < k < . Secondly,
during the base changes DiH(a*l(t;iﬂrl)) and Cjy1 (01 (—ti)) the lower
left part of T has to be modified according to lemma (5.7). The procedure
transformP is the same as in algorithm (3.7).

Algorithm 5.9 triangForm

triangForm(T, o, )

n := Size(T)
i0 :=1; i :=1
B := identity matrix of size n
while i < n
j = i+l

while j < n and tij = 0
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ji=j+1
if j < n then
transformLemmab.4(T,i0,i,j,0,d,B)
else
i0 :=1 + 1
i:=1i+1
end
return T,B
end

transformlLemma5.4(T,i0,i,1,0,0,B)
n := Size(T)
transformP(T,10,i+1,1,B)

a := a‘l(t;i+1)
for j := 1 ton

tiitt = tjip1 * o(a) (x DI *)
for j := i0 to n

Bip1g = by /a (kD2 %)
titti41 = tipri41 + (@) / a (* D3 *)

for j := 1 to i0-1
tit1,j = tiy1; / a (x update lower left block of T *)

for j := i0 to n
bjit1 = a * byiqg (* basis change *)
for k := i+2 to n
a = o ' (~tix)
for j :=1i ton
tik = tjx + 0(a) * tji4 (x C1 %)
for j := i0 ton
Tit1,j 1= Tipe,5 — @ * tyj (x C2 %)
tit1x = tipix + 0(a) (x C3 %)

for j := 1 to i0-1
(*x update lower left block of T *)

Bitrj ¢F Bigrj - @ ¥ tij
for j := i0 ton
bjx = bjx + a * byt (* basis change *)

end
end O
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5.2.2 Deduction of Scalar Equations
Differential Equations

For a differential system
Dy=Ty+wv

(see section (3.1.2) for the relevant definitions) we proceed as in section
(3.1.2), but we use algorithm (5.9) instead of Ziircher’s algorithm. It returns
(if the block triangular matrix has only one block) a system of the form

DZl = a1121 + zZ9 + 71
Dzpyv = ap1gz1+ ...+ 0n_1p-12n-1+2n +1rpn-1
Dz, = apiz1+...4 app2n + ry.

A scalar equation for z; can now be obtained in the same way as in the
algorithm by Abramov and Zima: The first equation allows to express zy
and Dz, by 21, Dz and D?z:

zo = Dz —anz —ri,
D22 = D221 - aHDzl - Da11z1 - D’I“l.
These expressions are plugged into equations 2,...,n, and so on, until we

arrive at an n-th order uncoupled differential equation for z;.

If the block-triangular matrix returned by algorithm (5.9) has several
blocks, we solve the system corresponding to the first block as described
above and continue with the second block, assuming that the variables of
the first block are known, i.e., part of the inhomogeneity. This is completely
analogous to the second stage of Abramov and Zima’s algorithm, see there
for details.

Difference Equations

Once again we use the same notation as in section (3.1.2). Using the trans-
formations described there and algorithm (5.9), we can reduce a difference
system

Ey=My+wv

to an equivalent system
Ez=Pz+ w,

where P = (pi;)i<ij<n = E(C) 4+ I and C is the block-triangular matrix
computed by algorithm (5.9). Assuming w.l.o.g. that C' has only one block,
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this system is of the form

Ezi = prizi+ 20+ w
Ezn1 = ppnajgzi+ .o+ Pnin 1201+ 20 +wn1
Ez, = ppizi+...+ ppnzn +wp.

The deduction of an uncoupled higher order equation for z; is now analogous
to the differential case.

5.2.3 Complexity
The number of multiplications in K required by transformL5.4 is
m—i+1l)+n—dp+1)+14+@Gr—1)+(n—dp+1)+

m—i+)((n—i+1)+n—io+1)+(Go—1)+ (n—1ip+1)).

For the number of additions we find

Il+(n—i+)((n—i+1)+(n—ip+1)+1+(ip—1)+(n—1ip+1)).

In both cases, if we set ¢g = 1 and neglect terms of order n, we obtain

(n—1) (3n — i) + O(n) = 3n? — 4in + i + O(n),
which leads to

Theorem 5.10 If the first if condition in algorithm (5.9) is always satis-
fied throughout the execution, the uncoupling algorithm ‘incomplete Zircher’
requires

3

§n3 + 0(n?)

multiplications in K. The same is true for the number of additions.

Proof. As seen above, the first stage (i.e., algorithm (5.9)) requires

n—1
Z (3n% — 4in + 4% + O(n))
i=1
n—1 n—1
= (n—1)3n? —4nZ7j+Zi2 + 0(n?)
i=1 i=1
= %n?’ +0(n?)

multiplications (resp. additions). The second stage is the same as in Abramov/Zima’s
algorithm, where we found its complexity to be %3 + O(n?). O



Chapter 6

Implementation and Résumé

6.1 The Mathematica Package

We have implemented the four algorithms that we have described in the
Mathematica package OreSys.m. The main functions are

UncoupleDifferentialSystem[equations,variables,helpvariables,x,options]
UncoupleDifferenceSystem[equations,variables,helpvariables,x,options]
UncouplegDifferenceSystem[equations,variables,helpvariables,x,q,options]
UncoupleGeneralDifferenceSystem[equations,variables,helpvariables,
x,a,b,options]
UncoupleAlgebraicSystem[equations,variables,helpvariables,options].

For instance,

UncoupleDifferentialSystem[{yl’ [x]==x y1[x]-y2[x]+1,
2 y2° [x]-y1lx]==1/(x-1) },{y1[x],y2[x]},{z1[x],z2[x]},x,
Method->AbramovZima]

or

UncoupleqgDifferenceSystem[{yl[q x]1==y1[x]/x+y2[x]-x"2,
y2[q x]==y1[x]+(x+1)/(x-1)y2[x]1-1},{y1[x],y2[x]1},{z1[x],z2[x]1},x,q].

helpvariables are dummy variables that are used by Abramov/Zima,
Zircher and incomplete Ziircher to express the uncoupled system. They are
not used (and need not be specified) if Gaussian elimination is applied.

UncoupleGeneralDifferenceSystem is for the case o(z) = ax + b,
d = 0, which generalizes the ordinary shift and the g¢-shift (¢ and b are
constants, a # 0). UncoupleAlgebraicSystem uncouples linear algebraic,
i.e., operator-free, systems.

83
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By default all these functions use Abramov and Zima’s uncoupling algo-
rithm. The uncoupling algorithm can be modified with the option Method:

Method->AbramovZima
Method->Gauss
Method->Zuercher
Method->IncompleteZuercher.

6.2 Examples of Computation

Differential System

We give an example from physics. Consider an object with mass m that
moves in a plane influenced by a force F' = (f1, f2). According to Newton’s
equation ‘force = mass x acceleration’, the position y = y(z) of the object
at time z satisfies:

F(y) =my".
In two dimensions, this reads:
fyi(2),y2(2)) = myi(z)
folyi(z),12(2)) = my; ().

Let us assume that fq, fo are linear and set uy = ¥y}, us = y). For the sake
of concreteness, set m = 1 and

1
filyr,y2) = (2% =Dy + 22

foyi,92) = —zy1 + Y2.

r—1

Now we have arrived at the linear first order differential system

@) = (@ - D)+ o)
whie) = —oy(e) + (o)
W) = w)
() = (o).

We give the output of each of the four algorithms from the preceding chapters
applied to this system.
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Zurcher:

_ 2_ 19,3 4 _ 2_ 203 4 1g4.5
6—8x+27x*—12z°+4x Zl(l‘)-i- 6+4x+22x° —60x°+52x*— 14z P (x)

—3z24223 —3z+8x2 T3 +2x4 1
e Sl o) + e () 2 (@) = 0,
() = 2 (2),
z3(x) = z3(2),
z4(w) = z(x),

uy(z) = z1(z),

us(z) = 72‘}'9124(»3%1721;;147215 z1(z) + ﬁfﬁx(iSI%i;r)%xj;;S;;)szf’ 2(7)
+%ﬁf)ﬁz3($) + _—1313295 za(x),
yi(z) = 2255500 (2) + S () — s 5(7) — @),
o) = DI (o) - 2020 (o)
HIEE s () + S A @),

Abramov, Zima;:

72717xf2x2+3013+2614+311572216+4x7z (:v)
4222 +223 —4x4—3x5+216 1

+5+2x—29x2—2x3+53x4+60x5+33x6—104x7—54x8+58x9+24x10—14x11 o (:C)

r+222—8x%—625+1226+8x7 —8x8—329+2210 1

+ 243z—18z> —2423 +18z* +142° —825—1227+ 8284322 —221° z//(l_)
—x—222—23+6214+525 — 626327 +228 1

2422472423 — 624 +21° (3) (4) _

+z+212+21374x473z5+2z6 1 (:l?) + 2 (,’17) 0,

z(z) = 21 (),
z3(z) = (1 — x2) 21(z) — %faﬂzQ(x) + 2 (z),

() = ey (e) — 2 () + 4(0),

UI(I) = Zl(ilf),
(5’32 - 1) uz(z) + %Zn(»’v) = zo(z),
%yl(x) - %WyQ(x) = z3(z),

_1_ _ 2 3
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Gauss:

(1= 2%) y1(z) — 2ya(z) +u (m) =
zy1 () — Tﬂw( T) + uh(x) =
T) +

(1—22) y1(z) — 2yo(z '(il?

4—1224+1522 =723 +32* +325 —246 4—8x ! 2—2zx+3x2—a3—zt4a® 1
~ 231304 325 140 ya(z) + 22— 213+I4 Yo (f) + 3t ad 5 ()
(3)

+Il2y2 (z) — $y2 ()

Incomplete Ziircher:

_ 2_19..3 4 _ 2_ 0.3 4_ 1475
6—8x+27x°—12x° 44z Zl(I)-l- 6+4x+222°—60x°+522" —14x le(x)

—3x242x3 —3x+8x2—Tx3 4224
2 _ 5_ 9.6 _ 4
+= 6+14IJE),§2 %§3+1211r5x 2 //( ) + 321322 ZE )(517) + ZE )(517) — 0’
z(z) = 2 (2),
Z3(x) = (1 — 172) 21( ) — T_HCZZQ(Z’) + Zé(ﬁ),

2(—1+4222
() + 222 (o) + 24(a),

24 (I) = 121,1

ui(z) = z1(x),

_ 2
uz(z) = w23(x) + _131322 z4(z),

yi(r) = ﬁ%(fﬂ) - %mﬂ(x)a
o) = T2 (o).

Difference System

We apply the four uncoupling algorithms to the following (arbitrarily chosen)
system of difference equations:

pe 1) = (o) (o) + ua(e) — 1a(a)
(o +1) = —ope) + () + () +o
pe+1) = @) + )

w1 = ) + ) - L
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Zurcher:

B 7p_ 2 3 pd 922 _ 2 3 4
5—Tx—x”—x 1:)+ r—2x 1(x)+ 3+z+4+62°+62°+22 zl(x—l—l)

(—1+2)(1+2) 2+ Tt ? —2—zf22%+2°
—i—%zl(m‘ +2)+ %ﬁi”;zl(a@ +3)—z1(x+4) =0,
zo(z) = —z1(z) + z1(x + 1),
z3(z) = =1 — 2 — 23(x) + 22(z + 1),

z4(z) = —z3(2) + 1“”2*23({”:;)“23(“1),

y1(z) = z1(x),

2221 (x —1—z)za(x —1-z—2?)z (7) 24(x
ya(z) = — Hl»(x) +1 71411-2( L+ ( (*1+x)(1)+?:;:) + 14£x)7
—z+z2) 2z (z 2ol
yolw) = LA g2y - 20y (a),

rz1(x z(14+x)za(x z(2+x)z3(x rz4(x
ya(e) = —T) - AEpRE AR -,

Gauss:

—y1(z) +y1(z + 1) = ya(2) — y3(z) + ya(z)

0
(CA-thsle) | (r2oilotl) | selet?) | (Cloosle) 4 ssletl) 4y, () = o,

?

o 4 1
ya(a + 1) 4 (2D | (H00n(rtd) 4 anlatt) 4 (1-2oa)
(3+7x+3x2)y4(x+1) (—1—5x—x2)y4(x+2) ya(z+3)
+ z+2z2+a3 + 2r+3x2+23 + 3ﬁ4x+x2 =0,

—268—7502—84822 —48723 —139x4—192% —26
(2+x)(—10+40x+7322 +43z3+ 1124+ 25) (158+364x+278x2 +97x3 + 161 +25)

14324222
+ 0574057 17325 1 4307 T 1125 a0 Y4 (z)

(8884626783382 787723 —44662* — 157425 — 33725 4027 —22% ) ya(v+1)

T 3760+ 37802+ 4930822 1103462° 1 163242 1 8905827 4142975+ 1301327 1 273825 37027 1 2021011
+(some terms skipped) +
(—10+3662+9292% 48502 +3672" 4+ 762°+62° ) ya (2-+6)

+ —3160+3780x+4930822 +11034623 412632424 +890582° +4142925+1301327 +273828+3702° +29210 4211

n (= 1=2)ys (+7) —0
316+886x+920x2+472x3+12924 +1825+26 :
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Abramov, Zima:

54+7x+z2 43zt (z+212)z1 (z) (37176z2761372x4)z1(1+1)

(—14z)(1+z)(2+x) —1+4z2 —2—z+2x2+23
(—4—x+7x2+6x3+x4)z1(x+2) (3—3x—3x2)z1(x+3)
—2—z+2x2+x3 + —2+z+12 + 21 (4 + I) =0,

ZQ(II?) = —Zl(fI?) +21(I + 1),
z3(x) = —1—2 — (1 — ) 21(x) + 22(x + 1),

2(w) = — 12 — 2 (z) + 28 280 4 (g4 1),

Incomplete Ziircher:

5+ T7o422 423+ 2 (ac+2x2)z1(ac) (3—x—6x2—6x3—2x4)z1(x+1)

(—14z)(1+z)(2+x) —1+4z2 —2—z+2x2+23
(74fx+7x2+613+x4)21 (z+2) (373z73z2)21 (z+3)
—2—z+2x2+23 + —2+4z+x2 + 2 (l‘ + 4) =0,

z(r) = —21(z) + 21(z + 1),
z3(x) =—-1—2— (1 —1x)z1(x) + 22(x + 1),

zi(r) = -7 — z1(2) + Ifj_(;f) — s 2s() +z3(z + 1),

yi(z) = z1(2),

y2() = 2o(x) — 23(z) + AL
y3(z) = 23(z) — 24(z),
ya(z) = —%.

6.3 Comparison of the Methods

It is not easy to give some general hint on what uncoupling algorithm to use.
After trying our implementation on many example systems, the best strategy
for some particular input seems to be trying several algorithms to figure out
which one gives the best result (i.e., the uncoupled equations with smallest
order/smallest coefficients, or the shortest running time). Our results on
complexity need not be significant for the small dimensional systems where
uncoupling is possible; if n is large (say, n > 15), none of the available
algorithms will uncouple the system in reasonable time and with reasonably
sized output.
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Gaussian elimination usually gives complicated uncoupled equations and
is the only algorithm where the order of the uncoupled equation can be larger
than the dimension of the system. However, the differential system from the
last section shows that neither of these shortcomings happens always.

Zircher’s algorithm and our ‘incomplete’ variant have the minor tech-
nical restriction that ¢ must be surjective. Empirical evidence shows that
they both return the same uncoupled higher order equation for the first
variable 21, provided that in both algorithms we are in the nondegenerate
case, where the block diagonal (resp. block triangular) matrix has only one
block. The situation changes when one (or both) of these two algorithms
runs into the degenerate case where the system splits into several blocks.
This is more likely to occur when incomplete Ziircher is applied than with
Zurcher’s algorithm, because Zircher’s algorithm tries to increase the cur-
rent companion block by applying lemma (3.5) if lemma (3.2) is not appli-
cable. On the other hand, incomplete Ziircher immediately proceeds with
the next block if lemma (5.6), which corresponds to lemma (3.2), cannot be
applied. Consequently, there are systems that are decomposed into several
blocks by incomplete Ziircher, but not with Zircher’s algorithm. This is de-
sirable because several scalar equations of small order are easier to handle
than one equation of large order.
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