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Chapter 1

Introdu
tion

Systems of linear �rst order ordinary di�erential equations play a 
entral

role in many areas of applied mathemati
s. Classi
al textbooks on this sub-

je
t show how to solve su
h systems in the 
ase of 
onstant 
oeÆ
ients and

leave the solution for more general 
oeÆ
ients to numeri
al methods. In an

attempt to ta
kle su
h systems symboli
ally, a natural �rst step is to redu
e

a system to a higher order equation in a single unknown, whi
h we will 
all

a s
alar equation (Note that the inverse operation of transforming a higher

order di�erential equation into a system is easy by introdu
ing one addi-

tional variable for ea
h derivative of the unknown). A 
lassi
al method to

a
hieve this `un
oupling' is the 
y
li
 ve
tor algorithm, whi
h is the topi


of se
tion (3.2). This method is unsatisfa
tory be
ause it gives un
oupled

equations with very large 
oeÆ
ients. Furthermore, it does not generalize

to 
ertain other kinds of linear operator equations, su
h as di�eren
e or

q-di�eren
e equations. These operators are of interest e.g. in the task of

proving 
ombinatorial identities automati
ally. Chyzak [11℄ des
ribes an al-

gorithm generalizing Zeilberger's `
reative teles
oping' summation algorithm

[23℄,[24℄,[20℄, that is 
apable of proving a large 
lass of identities involving

summation and integration. It uses the uni�ed framework of Ore operators

that en
ompasses (q-)di�eren
e operators, di�erential operators and many

others. One step of this algorithm 
onsists of solving a linear Ore operator

system with rational fun
tion 
oeÆ
ients for rational fun
tion solutions. Un-


oupling this system with one of the methods des
ribed in this thesis allows

to solve it by appealing to one of the algorithms for �nding rational fun
tion

solutions of (higher order) di�erential-, di�eren
e or q-di�eren
e equations

in one unknown [1℄,[3℄,[4℄,[5℄. We formulate all un
oupling algorithms for an

arbitrary 
oeÆ
ient �eld, but our implementations require the 
oeÆ
ients

to be rational fun
tions.

Chapter (2) introdu
es the algebrai
 ingredients that are the theoreti
al

base of the un
oupling algorithms in the later 
hapters. It begins with the

de�nition of Ore polynomials. Following [10℄ we show how many kinds of

5



6 CHAPTER 1. INTRODUCTION

higher order linear operators 
an be interpreted as polynomials with a non-


ommutative multipli
ation arising from the 
omposition of operators. These

polynomials form rings that are free of zero divisors and allow to divide a

polynomial by another one on the right, whi
h leads to a generalization of the

(extended) Eu
lidean Algorithm. Thus we 
an 
ompute a greatest 
ommon

right divisor and a least 
ommon left multiple of two Ore polynomials. In

se
tion (2.6), whi
h is based on [20℄, we des
ribe in detail how some linear

operators that arise in pra
ti
e �t into the Ore framework. In se
tion (2.7)

we deal with the 
entral obje
t of interest of this thesis, that is linear systems

of Ore operator equations. It turns out that in the literature on un
oupling

[6℄,[10℄,[25℄ two ways of en
oding su
h systems in terms of pseudo-linear

maps (= Ore operators) are used. One of them requires the study of pseudo-

linear maps an �nite dimensional ve
tor spa
es, whi
h is somewhat similar

to (in fa
t, generalizes) linear algebra [10℄. Theorem (2.28) provides the


onne
tion between those two types of Ore operator systems.

Se
tion (3) presents Z�ur
her's un
oupling algorithm. It pro
eeds in two

stages, a 
hara
teristi
 whi
h is shared with the algorithms in se
tions (5.1)

and (5.2). First the system is transformed into an equivalent system with

a `ni
e' matrix (in the 
ase of Z�ur
her's algorithm, a blo
k diagonal matrix

where ea
h blo
k is a 
ompanion matrix). In the se
ond stage, this normal

form is used to derive higher order s
alar equations. For readers who wish

to implement Z�ur
her's algorithm (or one of the other three un
oupling al-

gorithms from this thesis) we give a pseudo-
ode listing. Furthermore we

analyze the 
omplexity of the algorithm in the worst 
ase and in a 
ertain

`nondegenerate' 
ase, the latter arising most of the time in pra
ti
e. Fi-

nally we outline the `un
oupling by 
y
li
 ve
tors' method and point out its


onne
tion with Z�ur
her's algorithm.

In Chapter (4) the theory of Ore polynomials is employed in a variant

of Gaussian elimination based on the least 
ommon left multiple. This algo-

rithm is less 
ompli
ated than the other un
oupling algorithms we present,

but it returns s
alar equations of rather high order (in general, larger than

the dimension of the system) with 
oeÆ
ients of high degree.

Whereas Z�ur
her's algorithm is based on pseudo-linear algebra and Gaus-

sian Elimination on the extended Eu
lidean Algorithm in Ore polynomial

rings, the un
oupling algorithm by Abramov and Zima (se
tion 5.1) requires

no theoreti
al ba
kground ex
ept the notion of Ore operator introdu
ed in

se
tion (2.5). It pro
eeds in two stages, like Z�ur
her's algorithm. First the

system matrix is transformed into a blo
k-triangular form, then higher order

s
alar equations are dedu
ed. We give a detailed des
ription of both stages

and prove that the blo
k-triangular system is indeed equivalent to the origi-

nal one. Theorem (5.3) shows that linearly independent solution ve
tors for

the system 
an be obtained from linearly independent solutions of the un-


oupled equations. Then we analyze the 
omplexity of Abramov and Zima's

algorithm in a pra
ti
ally important nondegenerate 
ase.
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In se
tion (5.2) we present a new variant of Z�ur
her's algorithm. Instead

of a blo
k-diagonal normal form it transforms the system matrix into a

blo
k-triangular matrix (but in a di�erent way than Abramov and Zima's

algorithm). The dedu
tion of the s
alar equations resembles the se
ond stage

of Abramov and Zima's algorithm. The idea of our `in
omplete Z�ur
her'

algorithm is to redu
e the amount of 
omputation in the �rst stage for the

pri
e of a more 
ompli
ated dedu
tion of the s
alar equations.

Chapter (6) presents our Mathemati
a pa
kage that implements the four

algorithms des
ribed in this thesis. Then we give some 
omputational ex-

amples and 
ompare the methods. One of the key points is that Gaussian

elimination is rather ineÆ
ient, as already pointed out above. However, it

has to be mentioned that all available un
oupling algorithms lead to a blow

up in the 
oeÆ
ients of the equations. Sometimes un
oupling 
an be avoided.

For instan
e, there are dire
t methods for �nding the rational solutions of

di�erential [8℄ and di�eren
e [2℄ systems with rational 
oeÆ
ients.
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Chapter 2

Ore Polynomials and Ore

Operators

2.1 Notation

All rings and �elds in this thesis have 
hara
teristi
 zero. Fields are 
om-

mutative. We write K(x) and K((x)) for the �eld of rational fun
tions and

formal laurent series with 
oeÆ
ients from a �eld K, respe
tively. For any

�eld K , K

�

= K nf0g. The letter N denotes the set of nonnegative integers:

N = f0; 1; 2; : : :g;

and Q the set (�eld) of rational numbers. The ring of n � n matri
es over

a ring R is written as Mat(n;R). A

t

is the transpose of a matrix or ve
tor

A. I stands for the identity matrix. id

M

denotes the identity mapping of

a set M . The notation K [�;�; Æ℄ for skew polynomial rings will be de�ned

in se
tion (2.3). The degree of a (skew) polynomial p is written as deg(p),

with deg(0) = �1. For a ve
tor spa
e V , V

�

is the dual ve
tor spa
e. An

equation in one variable is 
alled `s
alar equation'.

Program listings use a self-explanatory pseudo-
ode. Comments are en-


losed in (* : : : *).

2.2 Motivation and Preliminaries

The set of linear di�erential operators of the form

n

X

k=0

a

k

D

k

with rational fun
tion 
oeÆ
ients a

k

2 Q(x) forms a ring, if addition is

de�ned pointwise and the produ
t of two operators by 
omposition. If we

repla
e D by an indeterminate over K := Q(x), say �, we obtain a ring of

9



10 CHAPTER 2. ORE POLYNOMIALS AND ORE OPERATORS

polynomials in �, where + is de�ned as usual, and � is asso
iative, distribu-

tive, but not 
ommutative and has the following property:

The degree of a produ
t is the sum of the degrees of the fa
tors: (2.1)

Rings of this kind were �rst studied by Ore in [19℄. In the same vein, linear

di�eren
e operators with rational fun
tion 
oeÆ
ients

n

X

k=0

a

k

�

k


an be viewed as an algebra of non
ommutative polynomials.

We will make the relationship between su
h polynomials and linear op-

erators su
h as D or � pre
ise in se
tion (2.5); but now let us sti
k to the

polynomial viewpoint and 
he
k what the above property implies for the

produ
t � �a of the indeterminate � and an element a 2 K

�

. The result must

be a polynomial of degree 1:

�a = �a� + a

0

for some �a 2 K

�

; a

0

2 K :

For a; b 2 K we must have, by distributivity,

� (a+ b) = �a+ �b = �a� + a

0

+

�

b� + b

0

=

�

�a+

�

b

�

� + a

0

+ b

0

;

and

�ab =

�

�a� + a

0

�

b = �a�b+ a

0

b = �a

�

�

b� + b

0

�

+ a

0

b = �a

�

b� + �ab

0

+ a

0

b:

Hen
e the map

� : K ! K

a 7! �a

is a �eld monomorphism, and the map

Æ : K ! K

a 7! a

0

is additive and satis�es the skew Leibniz rule Æ(ab) = �(a)Æb + Æa b. This

gives rise to

De�nition 2.1 Let � : K ! K be a monomorphism. An additive map Æ :

K ! K is 
alled a �-derivation (or pseudo-derivation) if

Æ(ab) = �(a)Æb + Æa b (2.2)

for all a; b 2 K .
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It is 
ustomary to write Æa instead of Æ(a).

Example 2.2 Some examples of �-derivations:

(i) If � = id

K

, Æ is a derivation on K and the pair (K ; Æ) is 
alled a

di�erential �eld.

(ii) For any � 2 K , the map Æ

�

:= � (� � id

K

) is a �-derivation, 
alled an

inner �-derivation. Proof:

Æ

�

(ab) = � (�(ab)� ab) = �(a)� (�(b) � b) + � (�(a)� a) b

= �(a)Æ

�

b+ Æ

�

a b:

�

Lemma 2.3 Let � be a monomorphism on K and Æ be a �-derivation on

K . Then,

(i) If � 6= id

K

then there is an element � 2 K su
h that Æ = Æ

�

.

(ii) If Æ 6= 0 then there is an element � 2 K su
h that � = �Æ + id

K

.

Proof. Let a; b 2 K . Expanding both sides of Æ(ab) = Æ(ba) via (2.2) yields

�(a)Æb + Æa b = �(b)Æa + Æb a;

hen
e

(�(a)� a) Æb = (�(b)� b) Æa: (2.3)

(i) We 
an 
hoose a 2 K with �(a) 6= a. Then (2.3) implies Æ = Æ

�

with

� = Æa= (�(a)� a).

(ii) If Æ 6= 0 we 
an �nd a 2 K with Æa 6= 0. Let � = (�(a)� a) =Æa. Then

it follows from (2.3) that � = �Æ + id

K

.

�

By (i) of the pre
eding lemma and the fa
t that inner �-derivations are

trivial if � = id

K

, we �nd that we always have one of the following three


ases:

(i) � = id

K

and Æ = 0

(ii) � = id

K

and Æ is an outer (i.e., non-inner) �-derivation

(iii) � 6= id

K

and Æ is an inner �-derivation
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2.3 Univariate Ore Polynomials

De�nition 2.4 Let � be a monomorphism on K and Æ be a �-derivation.

The ring of Ore polynomials K [�; �; Æ℄ is the ring of polynomials in � with


oeÆ
ients from K with the usual polynomial addition, and the multipli
ation

given by

�a = �(a)� + Æa for a 2 K (2.4)

and extended by asso
iativity and distributivity.

Using (2.4) and asso
iativity, the produ
t of two monomials is (a; b 2

K ;m; n 2 N; n > 0):

(a�

n

) (b�

m

) =

�

a�

n�1

�

(�b) �

m

=

�

a�

n�1

� �

�(b)�

m+1

+ Æb �

m

�

: (2.5)

By indu
tion, this de�nes the produ
t of two monomials in all 
ases. For

polynomials with arbitrary degrees distributivity yields

 

n

X

i=0

a

i

�

i

!

0

�

m

X

j=0

b

j

�

j

1

A

=

n

X

i=0

n

X

j=0

�

a

i

�

i

� �

b

j

�

j

�

:

Note that we 
an write any polynomial A 2 K [�; �; Æ℄ in the form A =

P

n

i=0

a

i

�

i

with a

i

2 K , i.e., as the sum of monomials with � on the right, by

applying (2.4) iteratively. Thus we 
an talk about `
oeÆ
ients' and `degree'

as for ordinary polynomials.

We argued at the beginning of this 
hapter that any multipli
ation of

polynomials with property (2.1) must satisfy (2.4) for some �, Æ. Now we

will show that the 
onverse holds, too.

Theorem 2.5 Let O = K [�;�; Æ℄ be a ring of skew polynomials. Then for

p; q 2 O:

deg(pq) = deg(p) + deg(q):

Proof: Suppose p; q 6= 0 and let a�

n

and b�

m

be the leading monomials of

p and q, respe
tively. By applying (2.5) iteratively, we �nd that the leading

monomial of pq is a�

n

(b)�

n+m

. Now sin
e ab 6= 0 and � is a monomorphism

deg(pq) = m+ n follows. �

Clearly, this implies

Corollary 2.6 Rings of skew polynomials are free of zero-divisors.

�

Hen
e we have the 
an
ellation rules

pq = pr ) p (q � r) = 0 ) q = r; and

qp = rp ) (q � r) p = 0 ) q = r
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for any p; q; r 2 K [�; �; Æ℄, p 6= 0.

Any ring of Ore polynomials K [�; �; Æ℄ is a K -algebra. Therefore, we will

sometimes speak of Ore algebras instead of rings of skew or Ore polynomials.

Throughout this thesis, we 
onsider only univariate Ore polynomials. In [11℄,

[12℄ multivariate Ore algebras are introdu
ed and employed in the task of

automati
ally proving identities involving summations and integrations.

2.4 The Eu
lidean Algorithm

Let O = K [�; �; Æ℄ be a ring of Ore polynomials, A;B 2 Onf0g, a�

n

and b�

m

be their leading monomials. We want to divide A by B on the right, i.e.,

�nd Q;R 2 O s.t. A = QB + R and deg(R) < deg(B). In the 
ase n < m,

we simply have

A = 0B +A:

If n � m, the right division 
an be done as follows: With

Q

0

:=

a

�

n�m

(b)

�

n�m

;

we have

Q

0

B =

a

�

n�m

(b)

�

n�m

b�

m

+O(�

n�1

)

=

a

�

n�m

(b)

�

n�m�1

(�(b)� + Æb) �

m

+O(�

n�1

)

=

a

�

n�m

(b)

�

n�m�1

�(b)�

m+1

+O(�

n�1

) = : : : =

=

a

�

n�m

(b)

�

n�m

(b)�

n

+O(�

n�1

) = a�

n

+O(�

n�1

);

where O(�

n�1

) stands for any Ore polynomial of degree less than n, hen
e

the leading monomial of Q

0

B is a�

n

. By indu
tion on the degree, we 
an

assume that there are Q

1

; R 2 O s.t.

A�Q

0

B = Q

1

B +R and deg(R) < deg(B):

Then we have

A = QB +R and deg(R) < deg(B)

with Q := Q

0

+Q

1

. R =: rrem(A;B) is 
alled the right-remainder of A and

B, and Q =: rquo(A;B) is 
alled their right quotient.

In general, we do not require the K -endomorphism � to be surje
tive. But if

this is the 
ase, that is, � is an automorphism, there is a similar left division

algorithm: With

Q

0

:= �

�m

�

a

b

�

�

n�m
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we have

BQ

0

= b�

m

�

�m

�

a

b

�

�

n�m

+O(�

n�1

)

= b�

m�1

�

�

�m+1

�

a

b

�

� + Æ�

�m

�

a

b

��

�

n�m

+O(�

n�1

)

= b�

m�1

�

�m+1

�

a

b

�

�

n�m+1

+O(�

n�1

) = : : : =

= b�

0

�

a

b

�

�

n

+O(�

n�1

) = a�

n

+O(�

n�1

);

and we 
an divide A�BQ

0

re
ursively by B on the left to obtain Q;R 2 O

s.t.

A = BQ+R and deg(R) < deg(B):

Analogously to right division, left-quotient and left-remainder 
an be de�ned

by lquo(A;B) := Q and lrem(A;B) := R, respe
tively.

Now we 
an write down the extended (right) Eu
lidean Algorithm, whi
h,

as we will show, yields a greatest 
ommon right divisor and a least 
ommon

left multiple of A;B 2 O:

Algorithm 2.7

R

0

 A, R

1

 B

A

0

 1, A

1

 0

B

0

 0, B

1

 1

i 1

while R

i

6= 0 do

i i+ 1

Q

i�1

 rquo(R

i�2

; R

i�1

)

R

i

 rrem(R

i�2

; R

i�1

)

A

i

 A

i�2

�Q

i�1

A

i�1

B

i

 B

i�2

�Q

i�1

B

i�1

n i.

This algorithm terminates be
ause deg(R

i

) < deg(R

i�1

), 1 � i � n.

Lemma 2.8 For 0 � i � n

(i) R

i

= A

i

A+B

i

B,

(ii) R

n�1

right divides R

i

.

Proof.
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(i) Indu
tion on i. The 
laim holds for i = 0; 1, and if it holds for i � 2

and i� 1, then

A

i

A+B

i

B = (A

i�2

�Q

i�1

A

i�1

)A+ (B

i�2

�Q

i�1

B

i�1

)B

= A

i�2

A+B

i�2

B �Q

i�1

(A

i�1

A+B

i�1

B)

= R

i�2

� rquo(R

i�2

; R

i�1

)R

i�1

= rrem(R

i�2

; R

i�1

) = R

i

:

(ii) Here we apply indu
tion on i ba
kwards. R

n�1

right divides both R

n

=

0 and itself, and from

R

i�2

= Q

i�1

R

i�1

+R

i

we see that R

n�1

right divides R

i�2

if it right divides R

i�1

and R

i

.

�

The following theorem shows that the above algorithm does indeed 
ompute

a greatest 
ommon right divisor and a least 
ommon left multiple of A and

B.

Theorem 2.9 (Corre
tness of the Eu
lidean Algorithm)

(i) R

n�1

=: g
rd(A;B) is a greatest 
ommon right divisor of A and B.

(ii) A

n

A = �B

n

B =: l
lm(A;B) is a least 
ommon left multiple of A and

B.

Proof.

(i) By lemma (2.8) (i),

R

n�1

= A

n�1

A+B

n�1

B;

hen
e any 
ommon right divisor of A and B right divides R

n�1

. On the

other hand, lemma (2.8) (ii) implies that R

n�1

right divides A = R

0

and B = R

1

.

(ii) Be
ause of lemma (2.8) (i) and the terminating 
ondition of the while-

loop, we have

A

n

A+B

n

B = R

n

= 0;

hen
e A

n

A = �B

n

B is a 
ommon left multiple of A and B. To see

that it is nonzero, �rst we note

deg(R

i

) < deg(R

i�1

) and deg(Q

i�1

) = deg(R

i�2

)� deg(R

i�1

)
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for 2 � i � n. By indu
tion on i, we show

deg(A

i

) = deg(B)� deg(R

i�1

) and deg(B

i

) = deg(A)� deg(R

i�1

)

for 2 � i � n. We have deg(A

2

) = deg(1) = 0 = deg(B) � deg(R

1

),

deg(A

3

) = deg(A

1

�Q

2

A

2

) = deg(Q

2

) = deg rquo(B;R

2

) = deg(B)�

deg(R

2

), and the indu
tion step is

deg(A

i

) = deg(A

i�2

�Q

i�1

A

i�1

) = deg(Q

i�1

) + deg(A

i�1

)

= deg(Q

i�1

) + deg(B)� deg(R

i�2

) = deg(B)� deg(R

i�1

):

The se
ond assertion is shown analogously. Hen
e we have deg(A

n

) =

deg(B) � deg(R

n�1

) � 0 and deg(B

n

) = deg(A) � deg(R

n�1

) � 0,

so A

n

6= 0 and B

n

6= 0. This shows that A

n

A = �B

n

B is nonzero.

In order to show that it is a least 
ommon left multiple of A and

B, suppose CA = �DB is some 
ommon left multiple of A and B

and de�ne C

i

by C

0

= �D, C

1

= C and C

i

= C

i�2

� C

i�1

Q

i�1

for

2 � i � n. We show ea
h of the assertions

C

i�1

R

i

� C

i

R

i�1

= 0 (2.6)

C

i�1

A

i

� C

i

A

i�1

= (�1)

i

C (2.7)

C

i�1

B

i

�C

i

B

i�1

= (�1)

i

D (2.8)

(1 � i � n) by indu
tion. The indu
tion bases i = 1 are obvious, and

the indu
tion steps are

C

i�1

R

i

� C

i

R

i�1

= C

i�1

rrem(R

i�2

; R

i�1

)

� (C

i�2

� C

i�1

rquo(R

i�2

; R

i�1

))R

i�1

= C

i�1

R

i�2

� C

i�2

R

i�1

= 0;

C

i�1

A

i

� C

i

A

i�1

= C

i�1

(A

i�2

�Q

i�1

A

i�1

)� (C

i�2

� C

i�1

Q

i�1

)A

i�1

= C

i�1

A

i�2

� C

i�2

A

i�1

= (�1)

i

C; and

C

i�1

B

i

� C

i

B

i�1

= C

i�1

(B

i�2

�Q

i�1

B

i�1

)� (C

i�2

� C

i�1

Q

i�1

)B

i�1

= C

i�1

B

i�2

� C

i�2

B

i�1

= (�1)

i

D:

(2.6) implies that C

n

R

n�1

= C

n�1

R

n

= 0, hen
e C

n

= 0. (2.7) and

(2.8) then show that A

n

right divides C, and B

n

right divides D.

Therefore, A

n

A = �B

n

B is indeed a (nonzero) least 
ommon left

multiple of A and B.

�

In the extended Eu
lidean Algorithm we 
an save some 
omputation time

by omitting the 
omputation of the B

i

. By Lemma (2.8)(i), B

n�1

and

B

n


an be determined eventually by B

n�1

= rquo(R

n�1

� A

n�1

A;B) and
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B

n

= rquo(�A

n

A;B), respe
tively. This observation is mentioned (for the

Eu
lidean Algorithm for integers) in [16℄. For a di�erent algorithmi
 ap-

proa
h to greatest 
ommon left divisors, see [17℄, where the theory of sub-

resultants is generalized to Ore polynomials.

For an example of a 
omputation with the Eu
lidean Algorithm, see

example (2.25).

More information about the theory of skew polynomials 
an be found in

[13℄.

2.5 Ore Polynomials as Linear Operators

Let K ; �; Æ be as above and V a K -ve
tor spa
e.

De�nition 2.10 An additive map � : V ! V is 
alled pseudo-linear (w.r.t.

� and Æ) if

�(au) = �(a)�u+ Æa u for any a 2 K ; u 2 V:

Pseudo-linear maps are sometimes 
alled Ore operators. This term is used

in situations where the pseudo-linear map is supposed to spe
ialize to a

linear operator like D or � in appli
ations, su
h as in se
tion (2.6) or at the

beginning of se
tion (2.7). We will not use it for the pseudo-linear maps on

�nite dimensional ve
tor spa
es 
onsidered later in se
tion (2.7).

Example 2.11

(i) For any K -ve
torspa
e V , every homomorphism h : V ! V is pseudo-

linear w.r.t. � = id

K

and Æ = 0.

(ii) If K , �, Æ are as usual, Æ is a pseudo-linear map on K w.r.t. � and Æ.

(iii) � is pseudo-linear w.r.t. � and 0.

In se
tion (2.6) we will des
ribe in detail that the di�erentiation operator

D, the di�eren
e operator � and several other types of linear operators that

arise in pra
ti
e 
an be viewed as Ore operators (pseudo-linear maps).

De�nition 2.12 The 
onstant �eld of K w.r.t. � and Æ is

Const

�;Æ

:= fa 2 K j �(a) = a and Æa = 0g :

Const

�;Æ

is a sub�eld of K be
ause it is the interse
tion of the sub�elds

inv(�) = fa 2 K j �(a) = ag

and

ker(Æ) = fa 2 K j Æa = 0g :

Sin
e any sub�eld of K must 
ontain (an isomorphi
 
opy of) Q , it follows
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Corollary 2.13 �j

Q

= id

Q

and Æj

Q

= 0. �

Lemma 2.14 Let V be a ve
tor spa
e over K and � : V ! V be pseudo-

linear (w.r.t. � and Æ). Then � is Const

�;Æ

-linear.

Proof. Let 
 2 Const

�;Æ

and u; v 2 V . Then,

�(
u+ v) = �(
u) + �v = (�(
)�u+ Æ
 u) + �v = 
�u+ �v:

�

In the 
ase V = K , that is, the ve
tor spa
e of a �eld over itself, we 
an


hara
terize all pseudo-linear maps; furthermore, the following lemma shows

that in this 
ase there are in�nitely many pseudo-linear maps for any pair

(�; Æ).

Lemma 2.15 For any 
 2 K , the map �




: K ! K given by

�




a = 
 �(a) + Æa

is pseudo-linear. Conversely, for any pseudo-linear map � : K ! K there is

an element 
 2 K su
h that � = �




.

Proof. �




is additive be
ause � and Æ are. Furthermore, for a; b 2 K we have

�




(ab) = 
 �(ab) + Æ(ab) = 
 �(a)�(b) + �(a)Æb + Æa b = �(a)�




b+ Æa b:

To show the 
onverse, we write

�a = �(a 1) = �(a)�1 + Æa;

hen
e � = �




with 
 = �1. �

We will en
ounter several 
ases where we do not have K = V as in lemma

(2.15), but at least K � V ; then the proof of lemma (2.15) asserts that the

a
tion of � on K is determined by �; Æ and �1.

So far skew polynomials and pseudo-linear maps are separate 
on
epts. The


onne
tion between them is provided by

De�nition 2.16 Given a ring of skew polynomials O = K [�;�; Æ℄, a K -

ve
tor spa
e V , and a pseudo-linear (w.r.t. � and Æ) map � : V ! V the

a
tion �

�

: O � V ! V is de�ned by

 

n

X

i=0

a

i

�

i

!

�

�

u =

n

X

i=0

a

i

�

i

u

for any u 2 V .
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By this de�nition and the following theorem we 
an view any Ore algebra

K [�; �; Æ℄ as an algebra of linear operators on
e we �nd a ve
tor spa
e V and

a pseudolinear (w.r.t. � and Æ) map � : V ! V .

If there is no ambiguity from the 
ontext, we will write � instead of �

�

.

Theorem 2.17 The operation �

�

turns V into a left O-module.

Proof. It is 
lear that we have for p; q 2 O, u; v 2 V :

� (p+ q) � u = p � u+ q � u,

� p � (u+ v) = p � u+ p � v,

� 1 � u = u.

What remains to show is

� (pq) � u = p � (q � u) :

We �rst prove by indu
tion on n that

(a�

n

b�

m

) � u = a�

n

� (b�

m

� u) (2.9)

for any n;m � 0, a; b 2 K and u 2 V . If n = 0, then

(ab�

m

) � u = ab�

m

u = a � (b�

m

u) :

If (2.9) holds for n� 1, we obtain

(a�

n

b�

m

) � u =

��

a�

n�1

� �

�(b)�

m+1

+ Æb �

m

��

� u

=

�

a�

n�1

�(b)�

m+1

�

� u+

�

a�

n�1

Æb �

m

�

� u

= a�

n�1

�

�

�(b)�

m+1

� u

�

+ a�

n�1

� (Æb �

m

� u)

= a�

n�1

�

�

�(b)�

m+1

u+ Æb �

m

u

�

= a�

n�1

� � (b�

m

u)

= a�

n

� (b�

m

� u) :

For p =

P

n

i=0

a

i

�

i

; q =

P

m

j=0

b

j

�

j

2 O we have, by (2.9),

(pq) � u =

0

�

n

X

i=0

m

X

j=0

�

a

i

�

i

� �

b

j

�

j

�

1

A

� u =

n

X

i=0

m

X

j=0

��

a

i

�

i

b

j

�

j

�

� u

�

=

n

X

i=0

m

X

j=0

=

�

a

i

�

i

�

�

b

j

�

j

� u

��

= p � (q � u) :

�
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We 
on
lude this outline of the theory of pseudo-linear maps with the de�ni-

tion of the adjoint of a pseudo-linear map. This 
on
ept will be of importan
e

in se
tion (3.2), where 
y
li
 ve
tors are dis
ussed. First, re
all that in linear

algebra the adjoint map

�

�

: V

�

! V

�

f 7! (v 7! f(�(v)))

of a ve
tor spa
e homomorphism � : V ! V is introdu
ed. This notion 
an

be generalized to pseudo-linear maps, provided that � is surje
tive.

Lemma 2.18 Let V be a ve
tor spa
e over K , � : K ! K be an automor-

phism, Æ : K ! K be a �-derivation and � : V ! V be pseudo-linear (w.r.t.

� and Æ). Then for all f 2 V

�

, the map  

f

de�ned by

 

f

: V ! K

x 7! �

�1

(f(�x))� �

�1

(Æ(f(x)))

is an element of V

�

.

Proof. We have to show that  

f

is linear. Therefore, let x; y 2 V and a 2 K .

Then

 

f

(ax+ y) = �

�1

(f(�(ax+ y)))� �

�1

(Æ(f(ax+ y)))

= �

�1

(f(�(a)�x+ Æa x+ �y))� �

�1

(Æ(af(x) + f(y)))

= �

�1

(�(a)f(�x) + Æaf(x) + f(�y))� �

�1

(�(a)Æf(x) + Æa f(x))

��

�1

(Æf(y))

= a�

�1

(f(�x)) + �

�1

(Æa)�

�1

(f(x)) + �

�1

(f(�y))

�a�

�1

(Æf(x)) � �

�1

(Æa)�

�1

(f(x))� �

�1

(Æf(y))

= a

�

�

�1

(f(�x))� �

�1

(Æf(x))

�

+ �

�1

(f(�y))� �

�1

(Æf(y))

= a 

f

(x) +  

f

(y):

�

De�nition 2.19 The adjoint �

�

of � is de�ned by

�

�

: V

�

! V

�

f 7!  

f

with the  

f

from the pre
eding lemma.

In the 
ase where � is a linear map, we have � = id

K

and Æ = 0, and the

de�nition of the adjoint map from linear algebra is re
overed. In general, �

�

is not pseudo-linear w.r.t. � and Æ, but w.r.t. �

�1

and ��

�1

Æ, as we will

now show.
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Theorem 2.20 Let � : V ! V be pseudo-linear w.r.t. � and Æ. Then ��

�1

Æ

is a �

�1

-derivation, and �

�

: V

�

! V

�

is pseudo-linear w.r.t. �

�1

and

��

�1

Æ.

Proof. ��

�1

Æ is a �

�1

-derivation be
ause for a; b 2 K

��

�1

Æ(ab) = ��

�1

Æ(ba) = ��

�1

(�(b)Æa + Æb a) =

��

�1

(a)�

�1

(Æb)� �

�1

(Æa)b:

Now let f; g 2 V

�

, x 2 V and a 2 K . We have

�

�

(af + g)(x) = �

�1

((af + g) (�x))� �

�1

Æ ((af + g) (x))

= �

�1

(af(�x) + g(�x))� �

�1

(�(f(x))Æa + Æf(x) a+ Æg(x))

= �

�1

(a)�

�1

(f(�x)) + �

�1

(g(�x)) � f(x)�

�1

(Æa)

��

�1

(a)�

�1

(Æf(x)) � �

�1

(Æg(x))

= �

�1

(a)

�

�

�1

(f(�x))� �

�1

(Æf(x))

�

��

�1

(Æa)f(x) + �

�1

(g(�x)) � �

�1

(Æg(x))

= �

�1

(a)�

�

f(x)� �

�1

(Æa)f(x) + �

�

g(x);

hen
e

�

�

(af + g) = �

�1

(a)�

�

f � �

�1

(Æa)f + �

�

g:

�

2.6 Examples

We saw in example (2.11) that linear maps on ve
tor spa
es are spe
ial 
ases

of pseudo-linear maps. In this se
tion we give several examples of pseudo-

linear maps that are important in appli
ations.

Shift Operator and Di�eren
e Operator

For any �eld K, the set K

N

of K-sequen
es is a 
ommutative ring if addi-

tion and multipli
ation are de�ned 
omponentwise. The shift operator E is

de�ned by

E : K

N

! K

N

Eu(n) := u(n+ 1);

and the di�eren
e operator � : K

N

! K

N

is de�ned by

� := E � id:
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In order to view E and � as pseudo-linear maps, we wish to endow K

N

with

a ve
tor spa
e stru
ture over the �eld of rational fun
tions K(x). However,

the natural s
alar multipli
ation

(r(x)u) (n) := r(x)j

x=n

u(n)

(r 2 K(x), u 2 K

N

) is not well-de�ned, be
ause r might have poles in N.

Therefore, following [20℄, we introdu
e the quotient ring

S(K) := K

N

=I;

where

I :=

1

[

k=0

kerE

k

� K

N

is the ideal of eventually zero sequen
es. In other words, we identify se-

quen
es that di�er only at �nitely many pla
es. The elements of S(K) are


alled germs (of sequen
es). Let � : K

N

! S(K) be the 
anoni
al epimor-

phism. Sin
e

ker(�E) = (�E)

�1

(0) = E

�1

�

�1

(0) = E

�1

(I) =

1

[

k=0

kerE

k+1

= I;

the isomorphism theorem gives rise to an isomorphism

~

E : K

N

=I ! im�E

a+ I 7! �E(a);

whi
h is in fa
t an automorphism of S(K) and satis�es �E =

~

E�, sin
e

~

E�(a) =

~

E(a+ I) = �E(a)

for any a 2 K

N

.

~

E is 
alled the shift operator on S(K). For simpli
ity, we

will write a for an equivalen
e 
lass a+ I 2 S(K) and E instead of

~

E.

To 
omplete the setup, we wish to embed K(x) into S(K). This is done

by

Lemma 2.21 The map

 : K(x) ! S(K)

r(x) 7! (r(n))

n2N

is a ring monomorphism. (Note that we 
an ignore the �nitely many n for

whi
h r(n) is unde�ned.)
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Proof.  is apparently additive and multipli
ative. To see that it is one-one,

let r

1

; r

2

2 K(x). If  (r

1

) =  (r

2

), there are in�nitely many n 2 N s.t.

r

1

(n) = r

2

(n). Writing r

i

= p

i

=q

i

with polynomials p

i

; q

i

2 K[x℄, i = 1; 2,

we get p

1

(n)q

2

(n) = p

2

(n)q

1

(n) at in�nitely many points, hen
e r

1

= r

2

. �

This lemma shows that

R(K) :=  (K(x))

is a sub�eld of S(K) isomorphi
 to K(x), 
alled the �eld of rational se-

quen
es. Clearly, S(K) is a ve
tor spa
e over R(K), if s
alar multipli
ation

is de�ned 
omponentwise.

Now we are ready to study the behaviour of the shift operator on S(K).

Let u; v 2 S(K), r 2 R(K). We have

E(u+ v)(n) = (u+ v)(n+ 1) = u(n+ 1) + v(n+ 1) = (Eu+Ev)(n);

E(ru)(n) = (ru)(n+ 1) = r(n+ 1)u(n+ 1) = (Er Eu)(n);

and

�(u+ v) = E(u+ v)� (u+ v) = Eu� u+Ev � v = �u+�v;

�(ru) = E(ru)� ru = Er Eu�Er u+Er u� ru = Er�u+�r u:

We read o� that

E : S(K)! S(K) is a pseudo-linear map w.r.t. � = E, Æ = 0,

and that

� : S(K)! S(K) is a pseudo-linear map w.r.t. � = E, Æ = �.

(We do not distinguish between E, � and the restri
tions Ej

R(K)

, �j

R(K)

.)

Upon setting K = R(K), S(K) is a module over the ring of Ore polyno-

mials K [�;E;�℄ due to theorem (2.17), applied with � = �. By an abuse of

notation, we will write K [�;E;�℄ instead of K [�;E;�℄. K [�;E;�℄ is the

algebra of di�eren
e operators with rational fun
tion 
oeÆ
ients.

Similarly, K [E;E; 0℄ is the algebra of shift operators with rational fun
-

tion 
oeÆ
ients.

Di�erential Operator

A di�erential �eld (K ; D) is a �eld K with a derivation D : K ! K , i.e., an

additive mapping that satis�es the Leibniz rule

D(ab) = aDb+Da b (2.10)

for all a; b 2 K . For example, let K = K((x)), the �eld of formal Laurent

series over a �eld K, and D be the usual di�erentiation operator on K((x)).

Considering K as a ve
tor spa
e over itself, we �nd, looking at (2.10):
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D : K((x))! K((x)) is a pseudo-linear map w.r.t. � = id

K

, Æ = D.

By theorem (2.17) the ring of Ore polynomials K [�; id

K

;D℄ (whi
h we will

write sloppily as K [D; id

K

;D℄) 
an be viewed as an algebra of di�erential

operators on K .

q-Shift, q-Di�eren
e and q-Di�erential Operator

LetK be a �eld and x, q be indeterminates. There is a unique automorphism

Q of K = K(q)(x) that �xes K(q) and satis�es

Qx = qx;


alled the q-shift operator. The operator �

q

:= Q � id is 
alled the q-

di�eren
e operator. Sin
e

Q(rf)(x) = r(qx)f(qx) = Qr Qf for any r; f 2 K ;

�

q

(rf) = Q(rf)� rf = Qr Qf �Qr f +Qr f � rf = Qr�

q

f +�

q

r f

we have:

Q : K ! K is a pseudo-linear map w.r.t. � = Q, Æ = 0,

and

�

q

: K ! K is a pseudo-linear map w.r.t. � = Q, Æ = �

q

:

The q-di�erentiation operator is de�ned by

D

q

: K ! K

f(x) 7!

f(qx)� f(x)

qx� x

=

�

q

f(x)

�

q

x

:

By writing

D

q

(rf)(x) =

r(qx)f(qx)� r(qx)f(x) + r(qx)f(x)� r(x)f(x)

qx� x

= Qr(x) D

q

f(x) +D

q

r(x) f(x)

and observing that D

q

is additive we �nd:

D

q

: K ! K is a pseudo-linear map w.r.t. � = Q, Æ = D

q

.

The examples of Ore operators and Ore algebras presented in this se
tion

are summarized, together with some others, in the following table from [12℄.

In all these examples, 
olumns one, two, and three give the a
tion of �, �
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and Æ, respe
tively. The fourth 
olumn shows the 
ommutation rule of the


orresponding Ore polynomial ring. We set K = K(x) for some �eld K, and

r denotes an arbitrary element from K(x).

Operator �f(x) �(r)(x) Ær(x) (� � r)(x)

Identity f(x) r(x) 0 r(x)�f(x)

Di�erentiation f

0

(x) r(x) r

0

(x) r(x)� + r

0

(x)

Shift f(x+ 1) r(x+ 1) 0 r(x+ 1)�

Di�eren
e �f(x) r(x+ 1) �r(x) r(x+ 1)� +�r(x)

q-Shift f(qx) r(qx) 0 r(qx)�

q-Di�eren
e �

q

f(x) r(qx) �

q

r(x) r(qx)� +�

q

r

q-Di�erentiation

f(qx)�f(x)

qx�x

r(qx)

r(qx)�r(x)

qx�x

r(qx)� +D

q

r(x)

Eulerian operator xf

0

(x) r(x) xr

0

(x) r(x)� + xr

0

(x)

Mahlerian operator f(x

p

) r(x

p

) 0 r(x

p

)�

Divided di�eren
es

f(x)�f(a)

x�a

r(a)

r(x)�r(a)

x�a

r(a)� +

r(x)�r(a)

x�a

2.7 Pseudo-linear Equations

Let W be a ve
tor spa
e over K , # :W !W a pseudo-linear map, a

ij

2 K ,

r

i

2W for 1 � i; j � n. Consider the system of equations

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

.

#y

n

= a

n1

y

1

+ : : : + a

nn

y

n

+ r

n

in the unknowns y = (y

1

; : : : ; y

n

) 2W

n

, whi
h we will write brie
y as

#y = Ay + r (2.11)

with

#

0

B

�

y

1

.

.

.

y

n

1

C

A

:=

0

B

�

#y

1

.

.

.

#y

n

1

C

A

;

A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and r = (r

1

; : : : ; r

n

) 2 W

n

. A s
alar equation

(of higher order) is then an equation of the form

m

X

k=0

a

k

#

k

z = �; (2.12)

where a

k

2 K , � 2 W and z 2 W is unknown. We 
all su
h an equation

`s
alar' be
ause it 
ontains only one unknown. In 
hapter (4) and se
tion

(5.1) we will present two algorithms that redu
e the problem of solving (2.11)

to the solution of equations of the form (2.12).
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The 
on
ept of pseudo-linear maps 
aptures a variety of systems of linear

operator equations:

Example 2.22 Let W = K = K((x)) for some �eld K and # = D. Then

(2.11) be
omes a system of �rst order linear ordinary di�erential equations

Dy

1

= a

11

y

1

+ : : : + a

1n

y

n

+ r

1

.

.

.

Dy

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.23 Let K = R(K) for some �eld K, W = S(K) and # = E.

Then (2.11) be
omes a system of �rst order linear di�eren
e equations

Ey

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

.

Ey

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.24 Let K be any �eld, W = K and # = id

K

. Then (2.11)

be
omes a system of algebrai
 linear equations

y

1

= a

11

y

1

+ : : : + a

1n

y

n

+ r

1

.

.

.

y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.25 This example shows that the Eu
lidean Algorithm for Ore

polynomials is useful for working with pseudo-linear equations. Consider the

di�eren
e equations

�

1

x

y(x)+

�1� x� 3x

2

� x

3

(1 + x) (2 + x)

y(x+1)+

(�1 + x) (1 + x)

2 + x

y(x+2) = 0 (2.13)

and

�

1

1 + x

y(x) +

2 + x

2

1 + x

y(x+ 1) + (2 + 2x) y(x+ 2) = 0: (2.14)

Let us apply the Eu
lidean Algorithm to the operators

A = �

1

x

+

�1� x� 3x

2

� x

3

(1 + x) (2 + x)

E +

(�1 + x) (1 + x)

2 + x

E

2
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and

B = �

1

1 + x

+

2 + x

2

1 + x

E + (2 + 2x)E

2

;

where E is the forward shift Ex = x + 1. The loop of algorithm (2.7) is

exe
uted two times, and yields the relations

0A+ 1B = �

1

1+x

+

2+x

2

1+x

E + (2 + 2x)E

2

;

1A+

1�x

4+2x

B =

1

x

+ xE;

�

2x(2+x)

4+5x+3x

2

+

4(2+x)(3+x)

12+11x+3x

2

E

�

A+

�

4+6x+2x

2

4+5x+3x

2

�

2x(2+x)

12+11x+3x

2

E

�

B = 0:

We read o�

g
rd(A;B) =

1

x

+ xE

and

l
lm(A;B) =

�

2x (2 + x)

4 + 5x+ 3x

2

+

4 (2 + x) (3 + x)

12 + 11x+ 3x

2

E

�

A:

By dividing A, B by their g
rd on the right, we �nd that the equations

�

�1 +

x� 1

x+ 2

E

��

1

x

+ xE

�

y(x) = 0;

�

x

1 + x

+ 2E

��

1

x

+ xE

�

y(x) = 0

are equivalent to (2.13) and (2.14), respe
tively. Furthermore, the di�eren
e

equation l
lm(A;B)y = 0, or

�

2(2+x)

4+5x+3x

2

y(x)�

2

(

48+64x+53x

2

+37x

3

+17x

4

+3x

5

)

(4+5x+3x

2

)(12+11x+3x

2

)

y(x+ 1)

�

2

(

48+152x+195x

2

+119x

3

+35x

4

+3x

5

)

(4+5x+3x

2

)(12+11x+3x

2

)

y(x+ 2) +

4x(2+x)

2

12+11x+3x

2

y(x+ 3) = 0

is solved by all solutions of (2.13) and all solutions of (2.14).

A more sophisti
ated appli
ation of the Eu
lidean Algorithm to systems

of pseudo-linear equations is the Gaussian Elimination Algorithm of 
hapter

(4). �

There is a less obvious, but elegant way to model linear operator systems

su
h as di�eren
e and di�erential systems using pseudo-linear maps, by 
on-

sidering pseudo-linear maps on �nite dimensional ve
tor spa
es:

Let V be a ve
tor spa
e over K , � : V ! V be pseudo-linear and suppose

that dimV = n is �nite. This assumption makes � amenable to te
hniques

similar to linear algebra. Indeed, the study of pseudo-linear maps on �nite
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dimensional ve
tor spa
es is an area 
alled `pseudo-linear algebra` with ori-

gins in the 1930s ([15℄).

Let B = (b

1

; : : : ; b

n

) be a basis for V . For a ve
tor x =

P

n

k=1

x

k

b

k

we

write (x)

B

for the 
oordinates of x w.r.t. B:

x =

n

X

k=1

x

k

b

k

() (x)

B

=

0

B

�

x

1

.

.

.

x

n

1

C

A

2 K

n

:

We de�ne M

B

(�) = (t

ik

)

1�i;k�n

, the matrix of � w.r.t. B, by

�b

k

=

n

X

i=1

t

ik

b

i

:

Then we have

�x = �

n

X

k=1

x

k

b

k

=

n

X

k=1

(�(x

k

)�b

k

+ Æx

k

b

k

)

=

n

X

k=1

�(x

k

)

n

X

i=1

t

ik

b

k

+

n

X

i=1

Æx

i

b

i

=

n

X

i=1

 

n

X

k=1

t

ik

�(x

k

) + Æx

i

!

b

i

:

This shows that

(�x)

B

=M

B

(�)� ((x)

B

) + Æ ((x)

B

) ; (2.15)

where � and Æ are applied 
omponentwise. Conversely, any n by n matrix

over K gives rise to a pseudo-linear map via (2.15). For � = id and Æ = 0,

this is familiar from linear algebra.

If A = (a

ik

) 2 Mat(n;K ) is invertible, we 
an transform

B = fb

1

; : : : ; b

n

g

into the new basis

AB =

�

b

0

1

; : : : ; b

0

n

	

given by

b

0

k

=

n

X

i=1

a

ik

b

k

;

that is,

��

b

0

1

�

B

; : : : ;

�

b

0

n

�

B

�

= A:

The matrix of � asso
iated with this new basis is then

T

0

= A

�1

T�(A) +A

�1

Æ(A); (2.16)
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whi
h 
an be shown as follows: With the notation A

�1

= (a

(�1)

ik

) we have

b

j

= A

�1

b

0

j

=

P

n

l=1

a

(�1)

lj

b

0

l

and thus

�b

0

k

= �

n

X

i=1

a

ik

b

i

=

n

X

i=1

�(a

ik

)�b

i

+

n

X

j=1

Æ(a

jk

)b

j

=

n

X

j=1

 

n

X

i=1

�(a

ik

)t

ji

+ Æ(a

jk

)

!

b

j

=

n

X

l=1

n

X

j=1

a

(�1)

lj

 

n

X

i=1

t

ji

�(a

ik

) + Æa

jk

!

b

0

l

:

The following example shows how a system of di�erential equations 
an

be en
oded by a pseudo-linear map.

Example 2.26 Let (K ; Æ) be a di�erential �eld (
f. example (2.2)(i))with

derivation Æ and T 2 Mat(n;K ). Then the map � : K

n

! K

n

given by

�

0

B

�

y

1

.

.

.

y

n

1

C

A

= T

0

B

�

y

1

.

.

.

y

n

1

C

A

+

0

B

�

Æy

1

.

.

.

Æy

n

1

C

A

is pseudo-linear w.r.t. id

K

, Æ. Let r 2 K

n

, then the equation

�y = r

is a system of di�erential equations. �

In the 
ase of di�eren
e equations, some rewriting has to be done before

we 
an assign a pseudo-linear map to a system of equations:

Example 2.27 Let K be a �eld, E be an automorphism of K (we do not

restri
t E to the forward shift introdu
ed in se
tion (2.6)), M 2 Mat(n;K )

and r 2 K

n

. We want to write the system of di�eren
e equations

Ey =My + r (2.17)

in the form

�y = f

for some pseudo-linear map � : K

n

! K

n

. Applying � := E

�1

to both sides

of My �Ey = �r gives

�(M)�(y) � y = ��(r);
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whi
h 
an be rewritten as

(�(M)� I) �(y) + �(y)� y = ��(r):

By (ii) of example (2.2), Æ := �� id

K

is a �-derivation. Summing up, if we

de�ne � to be the mapping pseudo-linear w.r.t. � and Æ whose matrix w.r.t.

the 
anoni
al basis of K

n

is �(M)� I, then (2.17) is equivalent to

�y = f

with f = ��(r). �

These examples show that an equation

�y = f (2.18)

in a �nite dimensional ve
tor spa
e en
odes a system of pseudo-linear equa-

tions. We will use this term for systems of the form (2.11), too and make it


lear in ea
h situation whi
h type of system we mean. The relation between

them (in the 
ase where � is an automorphism) is provided by

Theorem 2.28 Let K be a �eld, � : K ! K be an automorphism, Æ : K ! K

a �-derivation, � : K

n

! K

n

be pseudo-linear w.r.t. � and Æ and f 2 K

n

.

Then there is a pseudo-linear map # : K ! K , a matrix A 2 Mat(n;K ) and

a ve
tor r 2 K

n

s.t. for all y 2 K

n

�y = f (2.19)

if and only if

#y = Ay + r:

In short, (2.18) is a spe
ial 
ase of (2.11).

Proof. Let T be the matrix of � asso
iated with the 
anoni
al basis of K

n

.

Then equation (2.19) is equivalent to

T�(y) + Æy = f:

By applying �

�1

on both sides, this is further equivalent to

�

�1

(T )y + �

�1

Æ(y) = �

�1

(f)

() �

�1

Æ(y) = ��

�1

(T )y + �

�1

(f):

Now for all a; b 2 K we have

Æ(ab) = Æ(ba) = �(b)Æa + Æb a;

hen
e

�

�1

Æ(ab) = �

�1

(a)�

�1

Æ(b) + �

�1

Æ(a)b;

i.e., �

�1

Æ is a �

�1

-derivation. Furthermore # := �

�1

Æ is a pseudo-linear

map w.r.t. �

�1

and �

�1

Æ (
f. example (2.11)), and (2.19) is equivalent to

#y = Ay + r with A = ��

�1

(T ) and r = �

�1

(f). �

The main idea of this proof is mentioned in [11℄.



Chapter 3

Blo
k Diagonal

De
omposition

In this 
hapter we 
onsider pseudo-linear equations of the type

�x = r; (3.1)

where � is a pseudo-linear map w.r.t. � and Æ on a ve
tor spa
e V of �nite

dimension n. Additionally, we assume that � is an automorphism. Spe
ial


ases in
lude systems of di�eren
e or di�erential equations where the un-

knowns are in a �eld, as indi
ated by examples (2.26) and (2.27). On the

other hand, Mahlerian operators are examples of pseudo-linear maps where

� is not an automorphism.

In the pro
ess of solving (3.1) a natural �rst step is to �nd a 
hange

of bases that transforms the matrix asso
iated with � into a simple form,

e.g. a diagonal matrix. However, we 
annot hope for a normal form of this

type in general, be
ause we even 
annot always a
hieve it in the spe
ial 
ase

where � is a linear map. In this 
hapter we will present an algorithm that

pro
eeds in two steps. First it 
omputes a basis w.r.t. whi
h the matrix of

� is blo
k-triangular and ea
h blo
k is a 
ompanion matrix. Afterwards this

normal form is used to obtain higher order un
oupled equations for some of

the unknowns and additional linear algebrai
 (i.e., without appli
ations of

operators to the unknowns) equations to determine the remaining unknowns.

The algorithm, whi
h is due to Bruno Z�ur
her, is a generalization of an

algorithm by Danilewski [14℄. Our exposition 
losely follows [25℄.

31
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3.1 Z�ur
her's Algorithm

3.1.1 A Normal Form for Pseudo-linear Maps

Matri
es of the type

0

B

B

B

B

B

B

�

0 1 0 : : : 0

0 0 1

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : : : : 0 1




0




1

: : : 


n�2




n�1

1

C

C

C

C

C

C

A

with 


i

2 K are 
alled 
ompanion matri
es. In [25℄, Z�ur
her gave an algo-

rithmi
 proof of

Theorem 3.1 Let V be a �nite dimensional ve
tor spa
e, � : V ! V be

pseudo-linear w.r.t. � and Æ, where � is an automorphism. Then there is a

basis of V su
h that the matrix of � w.r.t. to this basis is of the form

diag(C

1

; : : : C

m

);

where the C

i

, 1 � i � m, are 
ompanion matri
es.

Suppose we are given a basis B of V , and let T = M

B

(�) be the matrix

asso
iated with �. Be
ause of formula (2.16), the problem is equivalent to

�nding a regular matrix A su
h that A

�1

T�(A) + A

�1

ÆA is of the desired

form. We will 
onstru
t su
h an A as a produ
t of 
ertain elementary ma-

tri
es. For ea
h of those elementary matri
es we des
ribe the e�e
t that the


orresponding basis transformation has on T as well as the e�e
t on the

basis. For the latter, we 
an assume (by starting with B = I) that our basis

is of the form BB.

(i) For a 2 K nf0g and 1 � i � n, let

D

i

(a) :=

0

B

B

B

B

B

B

B

B

B

�

i

#

1

.

.

.

1

i! a

1

.

.

.

1

1

C

C

C

C

C

C

C

C

C

A

:

D

i

(a) is an invertible matrix with D

i

(a)

�1

= D

i

(a

�1

): If we write E

ik

for the n�n matrix with 1 at position (i; k) and 0 elsewhere, we have
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�(D

i

(a)) = D

i

(�(a)) and ÆD

i

(a) = Æa E

ii

be
ause of 
orollary (2.13).

By (2.16), the 
hange of bases B

0

= D

i

(a)B modi�es T = (t

ik

) in the

following way:

D1: multiply 
olumn i by �(a)

D2: multiply line i by a

�1

D3: add a

�1

Æa to the entry t

ii

.

The e�e
t of the basis transformation on B is given by (noteD

i

(a) (BB) =

(BD

i

(a))B ):

D1

0

: multiply 
olumn i by a.

(ii) Let a 2 K , 1 � i 6= k � n. Then

C

ik

(a) :=

0

B

B

B

B

B

�

k

#

1

.

.

.

i! a

.

.

.

1

1

C

C

C

C

C

A

is an invertible matrix withC

ik

(a)

�1

= C

ik

(a

�1

), �(C

ik

(a)) = C

ik

(�(a))

and ÆC

ik

(a) = Æa E

ik

. A 
hange of bases by C

ik

(a) has the e�e
ts

C1: add �(a) times 
olumn i to 
olumn k

C2: add �a times line k to line i

C3: add Æa to the entry t

ik

.

on T , and 
on
erning B:

C1

0

: add a times 
olumn i to 
olumn k.

(iii) For 1 � i 6= k � n

P

ik

=

0

B

B

B

B

B

B

B

B

B

�

i

#

k

#

1

.

.

.

i! 0 1

k ! 1 0

.

.

.

1

1

C

C

C

C

C

C

C

C

C

A

is 
alled a permutation matrix. Of 
ourse we have P

�1

ik

= P

ki

, �(P

ik

) =

P

ik

and ÆP

ik

= 0. A 
hange of bases by P

ik

indu
es the following

operations on T :
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P1: ex
hange 
olumn i and 
olumn k

P2: ex
hange line i and line k

And it modi�es B by

P2

0

: ex
hange 
olumn i and 
olumn k.

After with these three types of elementary matri
es, we introdu
e the rota-

tion matrix

R =

0

B

B

B

B

B

B

B

B

B

�

0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1 : : : 0

1

C

C

C

C

C

C

C

C

C

A

:

It satis�es �(R) = R and Æ(R) = 0 and its inverse is given by

R

�1

=

0

B

B

B

B

B

B

B

B

B

�

0 : : : 1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0

1

C

C

C

C

C

C

C

C

C

A

:

The 
orresponding bases 
hange amounts to

R1: All 
olumns are shifted by 1 to the right (
olumn n be
omes the �rst


olumn)

R2: All lines are shifted by 1 downwards (line n be
omes the �rst line)

And the e�e
t on B is given by

R1

0

: All 
olumns are shifted by 1 to the right (
olumn n be
omes the �rst


olumn).

In linear algebra it is shown that any 
hange of bases 
an be expressed as

a produ
t of basis 
hanges of the types C, D, and P . R = P

1n

: : : P

n�1;n

is

introdu
ed to simplify the notation in what follows. The proof of theorem

(3.1) requires the following �ve lemmata:
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Lemma 3.2 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : : : : 0

i! � : : : : : : � � : : : : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

with i < n: (3.2)

If there is an element t

il

6= 0 with i < l � n, then there is a basis 
hange A

s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� : : : : : : � � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

i.e. we 
an in
rease the size of the 
ompanion blo
k by 1.

Proof. We show how A 
an be 
onstru
ted as a produ
t of elementary ma-

tri
es. To keep notation simple, the asso
iated matri
es of � that o

ur in

the intermediate steps are denoted again by T = (t

ik

). First, by the basis


hange P

i+1;l

, t

i;i+1

be
omes nonzero. The remaining entries of the a�e
ted


olumns i + 1 and l are either 0 (rows 1; : : : ; i � 1) or not of interest (rows

i+ 1; : : : ; n). P2 does not 
hange the ordered part of T either.

Now we 
an perform the basis 
hange D

i+1

(�

�1

(t

�1

i;i+1

)). D1 sets t

i;i+1

to 1, and D2 and D3 do not modify lines 1; : : : ; i.
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What remains to do is to set t

ik

, 1 � k � n, k 6= i+ 1, to 0. Suppose we

have done this up to k < m:

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

m

#

i

#

i+1

#

0 1 : : : 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1 0 : : : : : : 0

i! 0 : : : 0 � : : : � 1 � : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The basis 
hange C

i+1;m

(�

�1

(�t

im

)) sets t

im

to 0 by operation C1. It is easy

to 
he
k that C1, C2 and C3 do not 
hange the ordered part of T . �

Lemma 3.3 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : : : : 0

i! � : : : : : : � 0 : : : : : : 0

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

A

:

Then there is a basis 
hange A s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i! � : : : : : : � 0 : : : 0

� 0 : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

A

: (3.3)

Instead of enlarging the 
ompanion blo
k, we erase all 
olumns below it ex
ept

the �rst one.
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Proof. Again, we pro
eed indu
tively to delete the spe
i�ed entries. Let

t

mu

= 0 for i < m � N and l < u � i (where 2 � l � i) as well as t

ml

= 0

for i < m < k (where i < k � n). So T is of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

l

#

i

#

k

#

0 1 : : : 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l!

.

.

.

.

.

.

0 : : : 1

.

.

.

.

.

.

i! � : : : : : : � 0 : : : : : : 0

� : : : � 0 : : : : : : 0 � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 0

k ! � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � 0 : : : 0 � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Operation C1 of the basis 
hange C

k;l�1

(t

kl

) adds a multiple of 
olumn k to


olumn l�1. The elements with row indi
es 1; : : : ; i are not 
hanged, be
ause


olumn k is zero there, and the other elements of 
olumn i are irrelevant.

C2 sets t

kl

to zero without destroying the order of T . C3 does no harm. �

The following lemma is needed for the proof of lemma (3.5).

Lemma 3.4 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

k+1

#

i+1

#

0 1 : : : 0 0 : : : 0

.

.

.

.

.

.

k ! � : : : � 1 � : : : �

k + 1! � : : : : : : � 1 � : : : �

0 : : : : : : 0

.

.

.

1

.

.

.

.

.

.

i+ 1! � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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Then there is a basis 
hange A s.t.

A

�1

T�(A)+A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

k+1

#

i+1

#

0 1 : : : 0 0 : : : 0

.

.

.

.

.

.

k ! 0 : : : 0 1 0 : : : 0

k + 1! � : : : : : : � 1 � : : : �

0 : : : : : : 0

.

.

.

1

.

.

.

.

.

.

i+ 1! � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

That is, the disorder in line k 
an be shifted to line k + 1.

Proof. We have to delete t

kl

for l = 1; : : : ; k + 1; i + 2; : : : ; n. Let l be one

of these row indi
es. The basis 
hange C

k+1;l

(�

�1

(�t

kl

)) does exa
tly what

we want: C1 erases t

kl

and modi�es t

k+1;l

, and C2 and C3 only a�e
t the

irrelevant entries of line k + 1. �

Lemma 3.5 Let the asso
iated matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i! � : : : : : : � 0 : : : 0

� 0 : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

A

where i < n:

If there is an element t

k1

6= 0 for some k = i+1; : : : ; n, then there is a basis


hange A s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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In other words, we 
an in
rease the size of the 
ompanion blo
k, while main-

taining the zero blo
k below it.

Proof. First we show that we may assume t

k1

= 0 for i < k < n and t

n1

=1.

Namely, let t

k1

6= 0 for some i < k < n. The basis 
hange P

kn


auses t

n1

6= 0

without destroying the form of T . Now the basis 
hange D

n

(t

n1

) is well-

de�ned, D1,D2,D3 do not a�e
t the order of T , and D2 sets t

n1

= 1. If now

there is still an element t

k1

6= 0 for some i < k < n, it 
an be deleted by

C

kn

(t

k1

). Apart from this deletion, C1,C2,C3 just a�e
t the irrelevant lower

right blo
k of T . So we have shown that the assumption is allowed.

A basis 
hange by R leads from

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1

.

.

.

.

.

.

.

.

.

i! � : : : : : : � 0 : : : 0 0

0 : : : : : : 0 � : : : � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : : : : 0 � : : : � �

1 0 : : : 0 � : : : � �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

to

R

�1

TR =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

� 1 0 : : : 0 � : : : �

0 0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 : : : 1

.

.

.

.

.

.

i+ 1! 0 � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Ex
ept the �rst line the (i + 1) � (i + 1) upper left blo
k is in 
ompanion

form. The disorder in the �rst line is now shifted downwards by applying

lemma (3.4) iteratively, until the desired form is attained. �

Before proving theorem (3.1) we make sure that a basis 
hange on a blo
k-

diagonal matrix T behaves as expe
ted:

Lemma 3.6 Let T

1

, T

2

be matri
es with entries from K of sizes n

1

� n

1

and n

2

� n

2

, respe
tively. Let further � : K

n

1

+n

2

! K

n

1

+n

2

be the pseudo-

linear map whose matrix w.r.t. the 
anoni
al basis is

�

T

1

0

0

T

2

�

and A be an
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invertible n

2

� n

2

matrix. Then the basis 
hange

�

I

0

0

A

�

turns the matrix of

� into

�

T

1

0

0 A

�1

T

2

�(A) +A

�1

ÆA

�

:

Proof. Be
ause of formula (2.16), the matrix that we seek is

�

I 0

0 A

�1

��

T

1

0

0 T

2

�

�

��

I 0

0 A

��

+

�

I 0

0 A

�1

�

Æ

�

I 0

0 A

�

=

�

T

1

0

0 A

�1

T

2

�(A)

�

+

�

0 0

0 A

�1

ÆA

�

=

�

T

1

0

0 A

�1

T

2

�(A) +A

�1

ÆA

�

;

where �(I) = I and ÆI = 0 follow from 
orollary (2.13). �

Proof of theorem (3.1). Indu
tion on n. For n = 1 there is nothing to show,

be
ause any 1� 1 matrix is in 
ompanion form.

Suppose the assertion of the theorem holds for 1; : : : ; n � 1. By taking

i = 1 if ne
essary, T is of the form (3.2). With a se
ond indu
tion on i, the

size of the 
ompanion blo
k, we show that we 
an either in
rease this blo
k

by 1 or split o� a dire
t fa
tor of size i from T . Therefore, let T be of the

form (3.2) for some i. If i = n, we are done. If i < n and there is an element

t

ik

6= 0 for some i < k � n, we 
an in
rease the size of the 
ompanion blo
k

to i+ 1 by lemma (3.2). If, on the other hand, all these entries are zero, we

apply lemma (3.3) to obtain a matrix of the form (3.3).

If now there is a nonzero entry among t

1k

, i < k � n, lemma (3.5) in-


reases the 
ompanion blo
k by 1. If all those elements are 0, the 
ompanion

blo
k is a dire
t fa
tor of T , and we 
an apply the indu
tion hypothesis (on

n) on the lower right blo
k. The basis 
hanges that we need to bring the

lower right blo
k into the desired form will not interfere with the upper left


ompanion blo
k be
ause of lemma (3.6). �

This proof gives rise to the following algorithm to �nd the blo
kdiagonal

normal form:

rationalForm(T,�,Æ)

n := size(T)

i := 1

while i<n repeat

if t

i;i+1

6= 0 or : : : or t

i;n

6= 0 then

expand 
ompanion blo
k of T by lemma (3.2)

i := i + 1

else
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apply lemma (3.3) to T

if t

i+1;1

6= 0 or : : : or t

n;1

6= 0 then

expand 
ompanion blo
k of T by lemma (3.5)

i := i + 1

else (* T = diag(C; T

0

) where C is a 
ompanion matrix *)

R:=rationalForm(T

0

,�,Æ)

return diag(C,R)

end

end

end

return T

end

In order to 
ompute the 
orresponding basis 
hange, the elementary matri
es

from the proofs of the pre
eding lemmas are multiplied together (from the

right). However, in an eÆ
ient implementation, we will not multiply the full

matri
es T or B, the latter being the 
urrent basis 
hange, by elementary

matri
es, but we will just update the matrix entries whi
h are a�e
ted by

the 
urrent step. Furthermore, we will not 
all the pro
edure re
ursively, but

instead introdu
e a variable i0 that is 1 plus the size of the left upper part of

T that is already in blo
kdiagonal form. i0 is initialized with 1 and updated

whenever we split o� a dire
t fa
tor of T . Row and 
olumn operations are

performed only on elements with row and 
olumn indi
es greater than or

equal to i0. Then the algorithm may take the following expli
it form:

Algorithm 3.7 rationalForm by Bruno Z�ur
her

rationalForm(T; �; Æ)

n := Size(T)

i0 := 1; i := 1

B := identity matrix of size n

while i < n

j := i+1

while j � n and t

ij

= 0

j := j + 1

if j � n then

transformLemma2(T,i0,i,j,�,Æ,B)

i := i + 1

else

transformLemma3(T,i0,i,�,Æ,B)

i1 := i + 1

while i1 � n and t

i1;i0

= 0

i1 := i1 + 1

if i1 � n then
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transformLemma5(T,i0,i,i1,�,Æ,B)

i := i + 1

else

i := i + 1

i0 := i

end

end

end

return T,B

end

transformP(T,i0,i,k,B)

n := Size(T)

for j := i0 to n

s := t

ji

; t

ji

:= t

jk

; t

jk

:= s

s := b

ji

; b

ji

:= b

jk

; b

jk

:= s

end

for j := i0 to n

s := t

ij

; t

ij

:= t

kj

; t

kj

:= s

end

end

transformR(T,i0,B)

n := Size(T)

for i := i0 to n




i

:= t

in

for i := i0 to n

for j := n downto i0+1

t

ij

:= t

i;j�1

for i := i0 to n

t

i;i0

:= 


i

for i := i0 to n




i

:= t

ni

for j := i0 to n

for i := n downto i0+1

t

ij

:= t

i�1;j

for i := i0 to n

t

i0;i

:= 


i

for i := i0 to n
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i

:= b

in

for j := n downto i0+1

for i := i0 to n

b

ij

:= b

i;j�1

for i := i0 to n

b

i;i0

:= 


i

end

transformLemma2(T,i0,i,l,�,Æ,B)

n := Size(T)

transformP(T,i0,i+1,l,B)

a := �

�1

(t

�1

i;i+1

)

for j := i to n

t

j;i+1

:= t

j;i+1

* �(a) (* D1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

/ a (* D2 *)

t

i+1;i+1

:= t

i+1;i+1

+ Æ(a) / a (* D3 *)

for j := i0 to n

b

j;i+1

:= a * b

j;i+1

(* basis 
hange *)

for k := i0 to i

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

if k < i

t

i+1;k+1

:= t

i+1;k+1

- a (* C2 *)

else

for j := i to n

t

i+1;j

:= t

i+1;j

- a * t

ij

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)

for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis 
hange *)

end

for k := i+2 to n

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

- a * t

kj

(* C2 *)

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)
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for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis 
hange *)

end

end

transformLemma3(T,i0,i,�,Æ,B)

n := Size(T)

for l := i downto i0+1

for k := i+1 to n

a := t

kl

for j := i+1 to n

t

j;l�1

:= t

j;l�1

+ �(a) * t

jk

(* C1 *)

t

kl

:= 0 (* C2 *)

t

k;l�1

:= t

k;l�1

+ Æ(a) (* C3 *)

for j := i0 to n

b

j;l�1

:= b

j;l�1

+ a * b

jk

(* basis 
hange *)

end

end

end

transformLemma4(T,i0,i,k,�,Æ,B)

n := Size(T)

for l := i0 to k

a := �

�1

(-t

kl

)

t

kl

:= 0 (* C1 *)

t

k+1;l

:= t

k+1;l

+ �(a) * t

k+1;k+1

if k < i

t

i+1;l

:= t

i+1;l

+ �(a) * t

i+1;k+1

if l < k

t

k+1;l+1

:= t

k+1;l+1

- a (* C2 *)

else

for j := i0 to k+1

t

k+1;j

:= t

k+1;j

- a * t

kj

for j := i+2 to n

t

k+1;j

:= t

k+1;j

- a * t

kj

end

t

k+1;l

:= t

k+1;l

+ Æ(a) (* C3 *)

for j := i0 to n

b

jl

:= b

jl

+ a * b

j;k+1

(* basis 
hange *)

end
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for l := i+2 to n

a := �

�1

(-t

kl

)

t

kl

:= 0 (* C1 *)

t

k+1;l

:= t

k+1;l

+ �(a) * t

k+1;k+1

if k < i

t

i+1;l

:= t

i+1;l

+ �(a) * t

i+1;k+1

t

k+1;i0

:= t

k+1;i0

- a * t

l;i0

(* C2 *)

for j := i+2 to n

t

k+1;j

:= t

k+1;j

- a * t

lj

t

k+1;l

:= t

k+1;l

+ Æ(a) (* C3 *)

for j := i0 to n

b

jl

:= b

jl

+ a * b

j;k+1

(* basis 
hange *)

end

end

transformLemma5(T,i0,i,k,�,Æ,B)

n := Size(T)

transformP(T,i0,k,n,B)

a := t

n;i0

for j := i+1 to n

t

jn

:= �(a) * t

jn

(* D1 *)

t

n;i0

:= 1 (* D2 *)

for j := i+1 to n

t

nj

:= t

nj

/ a

t

nn

:= t

nn

+ Æ(a) / a (* D3 *)

for j := i0 to n

b

jn

:= a * b

jn

(* basis 
hange *)

for l := i+1 to n

if t

l;i0

!= 0

a := t

l;i0

for j := i+1 to n

t

jn

:= t

jn

+ �(a) * t

jl

(* C1 *)

t

l;i0

:= t

l;i0

- a (* C2 *)

for j := i+1 to n

t

lj

:= t

lj

- a * t

nj

t

ln

:= t

ln

+ Æ(a) (* C3 *)

for j := i0 to n

b

jn

:= b

jn

+ a * b

jl

(* basis 
hange *)

end

end
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transformR(T,i0,B)

for j := i0 to i

transformLemma4(T,i0,i,j,�,Æ,B)

end �

3.1.2 Dedu
tion of S
alar Equations

After we have transformed a system of Ore operator equations into an equiv-

alent system with a 
ompanion matrix, we 
an dedu
e higher order s
alar

equations. In the setting of Z�ur
her's algorithm it is not immediately 
lear

what we mean by a s
alar equation. In the di�erential 
ase, it is an equation

of the form

m

X

i=0




i

D

i

y = �; 


i

; � 2 K ;

while in the di�eren
e 
ase we desire equations of the form

m

X

i=0




i

E

i

y = �; 


i

; � 2 K :

The point is that the operator we are interested in 
an be either � or Æ.

We will dis
uss the 
omputation of un
oupled s
alar equations in the two

important spe
ial 
ases listed above. In [25℄ a more general approa
h is given.

There it is shown how to turn the normal form 
omputed by algorithm (3.7)

into un
oupled equations of the form

m

X

i=0




i

#

i

�

y = �; 


i

; � 2 K ;

where � 2 K is an arbitrary parameter and #

�

: K ! K is the pseudo-linear

map w.r.t. �

�1

, ��

�1

Æ � � (� � id)

#

�

= ��

�1

� �

�1

Æ � �

�

�

�1

� id

�

:

This 
overs both of the two spe
ial 
ases above: In the di�erential 
ase

� = id, Æ = �D (of 
ourse, we 
ould also work with Æ = D) we set � = 0

to obtain #

0

= D. In the di�eren
e 
ase we set � = E

�1

, Æ = E

�1

� id (
f.

example (2.27) and `Di�eren
e Equations' below) and � = 1, whi
h yields

#

1

= E.

Di�erential Equations

Let (K ;D) be a di�erential �eld, T an n � n matrix with entries in K and

v 2 K

n

. Consider the system of di�erential equations

Dy = Ty + v: (3.4)
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We set � = id

K

, Æ = �D and � : K

n

! K

n

the pseudo-linear map whose

matrix w.r.t. the 
anoni
al basis is T , that is,

�y = Ty + Æy:

If we apply Z�ur
her's algorithm on � and assume w.l.o.g. that it returns

only one 
ompanion blo
k, we get a 
ompanion matrix C and an invertible

matrix A s.t. �z = Cz+ Æz with z = A

�1

y. Upon setting w = A

�1

v, y 2 K

n

solves (3.4) if and only if z = A

�1

y solves

Dz = Cz + w: (3.5)

This system is of the form

Dz

1

= z

2

+ w

1

.

.

. (3.6)

Dz

n�1

= z

n

+ w

n�1

Dz

n

=

n�1

X

i=0




i

z

i+1

+w

n

:

From this we get z

2

= Dz

1

� w

1

, z

3

= Dz

2

� w

3

= D

2

z

1

�Dw

1

� w

2

, and,

indu
tively,

z

i+1

= z

(i)

1

�

i

X

j=1

w

(i�j)

j

for 1 � i < n:

Plugging this into the last equation of (3.6) yields

z

(n)

1

�

n�1

X

j=1

w

(n�j)

j

=

n�1

X

i=0




i

z

(i)

1

�

n�1

X

i=0




i

i

X

j=1

w

(i�j)

j

+ w

n

;

whi
h is a s
alar di�erential equation for z

1

. If this equation 
an be solved,

the other z

i

are 
omputed from (3.6), and the original variables y

i

by y = Az.

Di�eren
e Equations

Let

Ey =My + v (3.7)

be a system of di�eren
e equations, where M is an n � n matrix with en-

tries from K and v 2 K

n

. On
e again, we do not restri
t E to the forward

shift introdu
ed in se
tion (2.6). Spe
ial 
ases in
lude linear algebrai
 sys-

tems (E = id

K

) and ordinary systems of di�eren
e equations with rational

fun
tion 
oeÆ
ients (K = R(K); Ex = x+ 1).
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Let � = E

�1

, Æ = � � id

K

and � : K

n

! K

n

be the pseudo-linear map

whose matrix w.r.t. the 
anoni
al basis of K

n

is �(M) � I. Then we have

Ey =My + v

() �y = ��(v):

(
f. example (2.27).) Applying Z�ur
her's algorithm to � yields, assuming

w.l.o.g. that it returns only one 
ompanion blo
k, a 
ompanion matrix C

and an invertible matrix A s.t.

�z = C�(z) + Æz; where z = A

�1

y:

Hen
e (3.7) is equivalent to

C�(z) + Æz = �A

�1

�(v)

() E(C)z + z �Ez = �E(A

�1

)v

() Ez = (E(C) + I) z + w;

where w = E(A

�1

)v. This system is of the form

Ez

1

= z

1

+ z

2

+ w

1

.

.

. (3.8)

Ez

n�1

= z

n�1

+ z

n

+ w

n�1

Ez

n

=

n�1

X

i=0

E(


i

)z

i+1

+ z

n

+ w

n

;

whi
h, by using the di�eren
e operator � = E � id

K

, 
an be written as

�z

1

= z

2

+w

1

.

.

. (3.9)

�z

n�1

= z

n

+ w

n�1

�z

n

=

n�1

X

i=0

E(


i

)z

i+1

+ w

n

:

This implies

z

i+1

= �

i

z

1

�

i

X

j=1

�

i�j

w

j

for 1 � i < n: (3.10)

In parti
ular, if we take i = n� 1 and apply � on both sides, we obtain

�z

n

= �

n

z

1

�

n�1

X

j=1

�

n�j

w

j

: (3.11)
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Inserting (3.10) and (3.11) into the last equation of (3.9) yields the un
oupled

di�eren
e equation

�

n

z

1

�

n�1

X

j=1

�

n�j

w

j

=

n�1

X

i=0

E(


i

)

0

�

�

i

z

1

�

i

X

j=1

�

i�j

w

j

1

A

+ w

n

()

n�1

X

i=0

E(


i

)�

i

z

1

��

n

z

1

=

n�1

X

i=0

E(


i

)

i

X

j=1

�

i�j

w

j

�

n�1

X

j=1

�

n�j

w

j

�w

n

for z

1

.

3.1.3 Complexity

Now that we made the 
omputations that Z�ur
her's un
oupling algorithm

performs expli
it, it is straightforward to 
ount the number of additions

and multipli
ations in K that it performs. We just 
onsider algorithm (3.7),

be
ause it is readily 
he
ked that the se
ond step of Z�ur
her's algorithm, i.e.,

the dedu
tion of the s
alar equations, requires O(n

2

) arithmeti
al operations

in K , whi
h is asymptoti
ally less than the 
omplexity of algorithm (3.7), as

we will see.

To begin with, the number of multipli
ations in the pro
edure transformLemma2,

whi
h we will abbreviate by L2

�

(n; i

0

; i), is

L2

�

(n; i

0

; i) = (n� i+ 1) + (n� i

0

+ 1) + 1 + (n� i

0

+ 1)

+ (i� i

0

) ((n� i+ 1) + (n� i

0

+ 1))

+ ((n� i+ 1) + (n� i+ 1) + (n� i

0

+ 1))

+ (n� i� 1) ((n� i+ 1) + (n� i

0

+ 1) + (n� i

0

+ 1)) :

If we restri
t i

0

to the 
ase i

0

= 1 and 
ount only the leading terms this

simpli�es to

L2

�

(n; 1; i) = i (2n� i) + (n� i) (3n� i) +O(n)

= 3n

2

� 2in+O(n):

For the number of additions we �nd

L2

+

(n; i

0

; i) = 1 + (i� i

0

) ((n� i+ 1) + 1 + 1 + (n� i

0

+ 1))

+ ((n� i+ 1) + (n� i+ 1) + 1 + (n� i

0

+ 1))

+ (n� i� 1) ((n� i+ 1) + (n� i

0

+ 1) + 1 + (n� i

0

+ 1)) ;

and

L2

+

(n; 1; i) = i (2n� i) + (n� i) (3n� i) +O(n)

= 3n

2

� 2in+O(n):

This allows to analyze the 
omplexity of algorithm (3.7) in an important

spe
ial 
ase:
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Theorem 3.8 (nondegenerate 
ase) If the �rst if 
ondition in algorithm

(3.7) is always satis�ed throughout the exe
ution, then the algorithm needs

2n

3

+O(n

2

)

multipli
ations in K . The same is true for the number of additions in K .

Proof: The i-th pass of the outer loop requires L2

�

(n; 1; i) multipli
ations,

hen
e the total number is given by

n�1

X

i=1

L2

�

(n; 1; i) = (n� 1) 3n

2

� 2n

n�1

X

i=1

i+O(n

2

)

= 2n

3

+O(n

2

):

We have seen above that the leading (i.e. quadrati
) terms of L2

+

(n; 1; i)

are the same as those of L2

�

(n; 1; i), so the result holds for plus as well. �

We 
ontinue by 
ounting the operations of the remaining pro
edures, en-

abling us to analyze the 
omplexity in the worst 
ase. For transformLemma3,

we have

L3

�

(n; i

0

; i) = (i� i

0

) (n� i) ((n� i) + (n� i

0

+ 1)) ;

L3

�

(n; 1; i) = i (n� i) (2n� i) +O(n

2

)

= 2in

2

� 3i

2

n+ i

3

+O(n

2

):

L3

+

(n; i

0

; i) = (i� i

0

) (n� i) ((n� i) + 1 + (n� i

0

+ 1)) ;

L3

+

(n; 1; i) = i (n� i) (2n� i) +O(n

2

)

= 2in

2

� 3i

2

n+ i

3

+O(n

2

):

For transformLemma4, we give the number of operations for k < i. If k = i,

there is one more multipli
ation and addition in ea
h pass of the �rst for

loop, whi
h do not 
ontribute to the leading terms.

L4

�

(n; i

0

; i; k) = (k � i

0

) (1 + 1 + (n� i

0

+ 1))

+ (1 + 1 + (k � i

0

+ 2) + (n� i� 1) + (n� i

0

+ 1))

+ (n� i� 1) (1 + 1 + 1 + (n� i� 1) + (n� i

0

+ 1)) ;

L4

�

(n; 1; i; k) = kn+ (n� i) (2n� i) +O(n)

= 2n

2

� 3in+ kn+ i

2

+O(n):

L4

+

(n; i

0

; i; k) = (k � i

0

) (1 + 1 + 1 + 1 + (n� i

0

+ 1))

+ (1 + 1 + (k � i

0

+ 2) + (n� i� 1) + 1 + (n� i

0

+ 1))

+ (n� i� 1) (1 + 1 + 1 + (n� i� 1) + 1 + (n� i

0

+ 1)) ;

L4

+

(n; 1; i; k) = kn+ (n� i) (2n� i) +O(n)

= 2n

2

� 3in+ kn+ i

2

+O(n):
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In the pro
edure transformLemma5 some operations are only performed if


ertain matrix elements are nonzero. We give the number of operations in

the worst 
ase.

L5

�

(n; i

0

; i) = (n� i) + (n� i) + 1 + (n� i

0

+ 1)

+ (n� i) ((n� i) + (n� i) + (n� i

0

+ 1))

+

i

X

k=i

0

L4

�

(n; i

0

; i; k);

L5

�

(n; 1; i) =

i

X

k=1

L4

�

(n; 1; i; k) +O(n

2

)

= 2in

2

�

5

2

i

2

n+ i

3

+O(n

2

):

L5

+

(n; i

0

; i) = 1 + (n� i) ((n� i) + 1 + (n� i) + 1 + (n� i

0

+ 1))

+

i

X

k=i

0

L4

+

(n; i

0

; i; k);

L5

+

(n; 1; i) = 2in

2

�

5

2

i

2

n+ i

3

+O(n

2

):

Putting these results together, we obtain

Theorem 3.9 (worst 
ase) In the worst 
ase, algorithm (3.7) performs

2

3

n

4

+O(n

3

)

multipli
ations in K . The same is true for the number of additions in K .

Proof: The worst 
ase obviously arises if we have to in
rease the 
ompanion

blo
k with lemma (3.3) and lemma (3.5) in ea
h pass of the outer loop,

without ever splitting o� a dire
t fa
tor. The number of multipli
ations in

this 
ase is

n�1

X

i=1

(L3

�

(n; 1; i) + L5

�

(n; 1; i)) =

n�1

X

i=1

�

4in

2

�

11

2

i

2

n+ 2i

3

�

+O(n

3

)

=

2

3

n

4

+O(n

3

):

Again, this is true for the number of additions, too, be
ause L3

+

(n; 1; i)

and L5

+

(n; 1; i) have the same leading terms as L3

�

(n; 1; i) and L5

�

(n; 1; i),

respe
tively. �
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In the worst 
ase des
ribed in the pre
eding theorem, all appli
ations of

lemma (3.3) ex
ept the �rst one are useless, be
ause the matrix entries that

are to be erased are already zero. This 
ould be avoided by testing all those

entries and performing the operations from lemma (3.3) only if one of them

is nonzero. However, the resulting worst 
ase 
omplexity would still be O(n

4

)

(we might have to apply lemma (3.3) in every se
ond pass of the outer loop,

and the 
ontribution of lemma (3.5) alone a

ounts for O(n

4

) overall time

anyways). Furthermore the 
ase where lemma (3.3) and lemma (3.5) have

to be applied is rather rare, hen
e we did not in
lude this re�nement in

the algorithm. From a pra
ti
al point of view, theorem (3.8) des
ribes the

running time of algorithm (3.7) mu
h better than theorem (3.9).

3.2 Some Remarks on Cy
li
 Ve
tors

The use of 
y
li
 ve
tors is a 
lassi
al method to un
ouple systems of linear

ordinary di�erential equations. We start with the basi
 de�nition (for the

general pseudo-linear 
ase):

De�nition 3.10 Let V be an n-dimensional ve
tor spa
e and � : V ! V be

pseudo-linear. A ve
tor z 2 V is 
alled 
y
li
 ve
tor i� the set

�

z; �z; : : : ; �

n�1

z

	

is a basis of V .

If z is a 
y
li
 ve
tor, �

n

z 
an be written as

�

n

z = 


0

x+ 


1

�z + : : :+ 


n�1

�

n�1

z

for some 


0

; : : : ; 


n�1

2 K . The matrix of � w.r.t. to the basis generated by

x is then easily seen to be

0

B

B

B

B

B

B

B

�

0 0 : : : 0 


0

1 0

.

.

. 


1

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 


n�2

0 : : : 1 


n�1

1

C

C

C

C

C

C

C

A

;

a transposed 
ompanion matrix. Suppose we wish to un
ouple the pseudo-

linear system �y = r. We have already seen how to derive an un
oupled

higher order equation from a 
ompanion matrix, hen
e it would be better if

the above matrix were transposed. Therefore we 
onsider the matrix of the

adjoint map �

�

.
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Theorem 3.11 Let T be the matrix of � w.r.t. a basis fb

1

; : : : ; b

n

g of V .

Then the matrix T

�

of �

�

w.r.t. the dual basis is given by T

�

= �

�1

(T

t

).

Theorem 3.12 Upon identifying V and V

��

, we have �

��

= �.

These two theorems, the proofs of whi
h are straightforward veri�
ations

(see [25℄), imply

Corollary 3.13 Let � 2 V

�

be a 
y
li
 ve
tor of �

�

. Then the matrix of �

w.r.t. to the basis of V that is dual to f�; �

�

�; : : : ; �

�n�1

�g is a 
ompanion

matrix.

Thus we 
an un
ouple system (3.1) if we 
an 
ompute a 
y
li
 ve
tor for �

�

.

The drawba
k of this approa
h is that it does not always work in the

general Ore setting: The adjoint �

�

need not admit a 
y
li
 ve
tor, the

simplest 
ounter example being the linear map � = id

V

(for n > 1).

However, 
y
li
 ve
tors are known to exist in the (ordinary) di�erential


ase K = R((x)), V = R((x))

n

, Æ = D, � = id

K

. It is even possible to �nd a


y
li
 ve
tor whose 
omponents are polynomials of degree less than n, and

the probability that a ve
tor 
hosen at random is 
y
li
 is 1; see [7℄ and the

referen
es given there. A straightforward way to 
ompute a 
y
li
 ve
tor is

to test for random 
andidates whether the set of their pseudo-derivatives is

linearly independent.

Even in 
ases where a 
y
li
 ve
tor 
an be found, it turns out that

the 
oeÆ
ients of the un
oupled equations obtained in this way are very


ompli
ated in 
omparison to other un
oupling methods. Therefore, and

be
ause this thesis is 
on
erned with algorithms for the general Ore setting,

we deal with the 
y
li
 ve
tor method no further.

We 
on
lude these remarks by 
iting the following interesting interpreta-

tion of Z�ur
her's algorithm, whi
h is given in more detail and proved in [25℄:

Z�ur
her's Algorithm 
an be used to 
ompute a dire
t sum de
omposition

V

�

= U

1

� : : :� U

m

;

where U

i

is a �

�

-invariant subspa
e of V

�

generated by a 
y
li
 ve
tor �

i

.

m is the number of 
ompanion blo
ks in the blo
k-diagonal normal form

of the matrix of �. Hen
e the un
oupling algorithm by Bruno Z�ur
her 
an

be viewed as a re�ned 
y
li
 ve
tor method that works for pseudo-linear

systems in general.
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Chapter 4

Gaussian Elimination

At �rst glan
e it may seem surprising that Gaussian elimination 
an be

applied to systems of linear operator equations. The key point is to 
onsider

matri
es of Ore operators instead of the 
oeÆ
ient matrix of the system.

The resulting algorithm resembles fra
tion free Gaussian elimination over

Z.

Let O = K [#;�; Æ℄ be an Ore algebra that operates on the left module

W , A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and r = (r

1

; : : : ; r

n

)

t

2 W

n

. The system

of equations

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

. (4.1)

#y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:


an be written as

My = r; (4.2)

where

M =

0

B

B

B

B

�

#� a

11

�a

12

: : : �a

1n

�a

21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�a

n�1;n

�a

n1

: : : �a

n;n�1

#� a

1n

1

C

C

C

C

A

2 Mat(n;O): (4.3)

The produ
t My is of 
ourse de�ned by using the outer multipli
ation of

the left O-module W . With this en
oding of system (4.1) we 
an perform

Gaussian elimination by using the least 
ommon left multiple introdu
ed

in se
tion (2.4). Suppose a

21

6= 0 (otherwise we pro
eed with a

31

) and let

a; b 2 O be s.t.

l
lm(#� a

11

;�a

12

) = a (#� a

11

) = �ba

12

:

55
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a and b 
an be 
omputed with algorithm (2.7) (
f. theorem (2.9(ii)). If

we multiply the �rst equation by a on the left, the se
ond one by b and

subtra
t the �rst equation from the se
ond, we have generated a zero entry

at position (2; 1). Analogously, we 
an erase the entries at positions (i; 1),

3 � i � n by applying the extended Eu
lidean Algorithm to ea
h of the

pairs (# � a

11

;�a

i1

), where a

i1

6= 0. We then pro
eed as in the ordinary

Gaussian elimination algorithm to triangularize system (4.2). In the general

step, the matrix is of the form

0

B

B

B

B

B

B

B

B

�

m

11

: : : : : : m

1n

0

.

.

.

.

.

.

m

kk

: : : m

kn

m

k+1;k

: : : m

k+1;n

.

.

.

.

.

.

.

.

.

0 : : : m

nk

: : : m

nn

1

C

C

C

C

C

C

C

C

A

for some 1 � k < n. If now m

kk

= 0, we look for a nonzero entry among

m

ij

, k � i � n, k � j � n. If no su
h m

ij

exists, we are done. If, on the

other hand, there is su
h m

ij

6= 0, we swap lines i and k and 
olumns j and

k. Hen
e we 
an assume m

kk

6= 0. We eliminate the nonzero entries among

m

ik

, k + 1 � i � n as des
ribed above. Finally the system will be of the

form

0

B

B

B

B

B

B

B

B

�

m

11

: : : : : : m

1n

0

.

.

.

.

.

.

m

ll

: : : m

ln

0 : : : 0

.

.

.

.

.

.

.

.

.

0 : : : 0 : : : 0

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

�

y

1

.

.

.

.

.

.

y

n

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

�

s

1

.

.

.

.

.

.

s

n

1

C

C

C

C

C

C

C

C

A

for some 1 � l � n, s = (s

1

; : : : ; s

n

)

t

2W

n

. If not all s

i

, l < i � n are zero,

the system has no solution. If they are zero (in parti
ular, if l = n) (4.1) is

equivalent to the un
oupled system

m

11

y

1

+ : : : : : : + m

1n

y

n

= s

1

.

.

.

.

.

.

m

ll

y

l

+ : : : + m

ln

y

n

= s

l

:

(4.4)

Note that unlike the other un
oupling algorithms presented in this thesis,

whi
h return s
alar equations whose order sum to the dimension of the initial

system, Gaussian elimination in general returns s
alar equations of higher

order, depending on the degrees of the Ore polynomials in (4.4).

Of 
ourse, this algorithm works for anyM 2 Mat(n;O), not just those of the

spe
ial form (4.3) that arises from system (4.1). In the following program

listing, the variable perm keeps tra
k of the 
olumn 
hanges in the system

matrix, whi
h indu
e 
hanges in the order of the unknowns.
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Algorithm 4.1

perm=(1,...,n) (* identity permutation *)

for k = 2,...,n

if there is m

pq

6=0, k�p�n, k�q�n then

swap rows k and p, 
olumns k and q, r

k

and r

p

perm[p℄ := q; perm[q℄ := p

else stop

for i = k,...,n

determine a,b s.t. a m

kk

= b m

ik

for j = k,...,n

m

ij

:= a * m

kj

- b * m

ij

r

i

:= a * r

k

- b * r

i

end

end

Apparently, analyzing the 
omplexity of this algorithm would be a rather

diÆ
ult task. One would have to deal with the 
omplexity of the Eu
lidean

Algorithm in Ore polynomial rings and to keep tra
k of the degrees of the

matrix entries during the exe
ution of the elimination algorithm. We 
on�ne

ourselves with mentioning that empiri
al eviden
e shows Gaussian elimina-

tion to be less eÆ
ient than the other three algorithms in this thesis. It

usually takes more time and returns equations of high order and with large


oeÆ
ients.
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Chapter 5

Blo
k Triangular

De
omposition

5.1 The Un
oupling Algorithm by Abramov and

Zima

5.1.1 The Problem

Let K [#;�; Æ℄ be an Ore algebra that operates on the left module W . Given

a linear system of equations

#y = Ay + r (5.1)

where A = (a

ij

)

1�i;j�n

2Mat(n;K ) and r = (r

1

; : : : ; r

n

)

t

2W

n

, we want to

redu
e the problem of �nding the solutions to that of solving higher order

s
alar equations. This 
an be a
hieved by an algorithm due to Abramov and

Zima [6℄, whi
h is a generalization of an un
oupling algorithm for di�erential

systems by Murray and Miller [18℄. Its goal is to �nd an equivalent system

(y�equations; z�equations; T�equations)

in y = (y

1

; : : : ; y

n

)

t

2W

n


onsisting of the following 
omponents:

(i) y-equations:

l

1

X

j=0

�

1j

#

j

y

i

1

= �

1

l

2

X

j=0

�

2j

#

j

y

i

2

=

i

2

�1

X

k=1

l

2

�1

X

j=0

�

�

2kj

#

j

z

k

+ �

2

(5.2)

.

.

.

l

s

X

j=0

�

sj

#

j

y

i

s

=

i

s

�1

X

k=1

l

s

�1

X

j=0

�

�

skj

#

j

z

k

+ �

s

;

59
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where �

ij

; �

�

ikj

2 K , �

kl

k

= 1 and �

i

2 W . The index set I =

fi

1

; : : : ; i

s

g with 1 = i

1

< : : : < i

s

� n is given by the algorithm.

The l

k

are de�ned by l

k

= i

k+1

� i

k

for 1 � k < s and l

s

= n� i

s

+ 1,

whi
h implies l

1

+ : : :+ l

s

= n.

(ii) z-equations: The new variables z

i

from (i) satisfy:

z

i

= y

i

for i 2 I (5.3)

and

z

i

= #z

i�1

+

i�1

X

k=1

�

ik

z

k

+ �

i

for 1 < i � n; i =2 I (5.4)

where �

ik

2 K and �

i

2W .

(iii) T -equations: Finally we get a linear system of equations that do not


ontain appli
ations of the #-operator:

Ty = z; (5.5)

where T 2 Mat(n;K ) is a non-singular upper triangular matrix. In

a

ordan
e with (5.3), for i 2 I the i-th line of T is e

i

, the ve
tor with

1 at position i and zero elsewhere.

It has to be noted that the algorithm might 
hange the order of y

2

; : : : ; y

n

.

We did not in
lude this possible renumbering in the above spe
i�
ation in

order not to blow up notation.

5.1.2 Solution of the Initial System from the Un
oupled Sys-

tem

Before des
ribing how we 
an transform (5.1) into the un
oupled system

AZ, we will outline how system (5.1) 
an be solved using AZ, if we assume

that we have an algorithm for �nding solutions of s
alar equations.

First we solve equation 1 of (5.2) for y

1

. We use one of these solutions to


ompute z

j

, 2 � j < i

2

by (5.4). Of 
ourse, these z

j

are uniquely determined

by y

1

. Then we plug y

1

(= z

1

) and z

j

, 2 � j < i

2

into the se
ond equation of

(5.2), yielding a s
alar equation for y

i

2

, and so on. Afterwards we use (5.5) to


ompute the remaining y

i

from y

i

1

; : : : ; y

i

s

and the z

j

, j 2 f1; : : : ; ng nI. As

already mentioned, we �nally might have to restore the order of y

2

; : : : ; y

n

,

whi
h might have been permuted by the un
oupling algorithm.

5.1.3 The Algorithm

We begin the presentation of the algorithm by following [6℄. There, only the

beginning of the 
omputation is des
ribed in detail, and it is brie
y outlined
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how to pro
eed. We add a detailed des
ription of the general step, both of the

�rst stage of the algorithm (
omputation of an equivalent system with blo
k

triangular matrix) and the se
ond stage (dedu
tion of s
alar equations).

Written out in full, system (5.1) reads:

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

. (5.6)

#y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

Eliminate y

2

from the right hand sides:

If a

12

= : : : = a

1n

= 0, we 
an take the �rst equation of (5.6) as the

�rst equation of (5.2). Continue reading at `repeat the whole pro
ess' (with

l = 1).

If, on the other hand, a

1j

6= 0 for some j � 2 (w.l.o.g. j = 2, sin
e we


an reenumerate unknowns), we introdu
e a new variable

z

2

= a

12

y

2

+ : : :+ a

1n

y

n

: (5.7)

If we use this relation to eliminate y

2

from the right hand sides of equations

2 to n, we get a system of the form

#y

1

= a

11

y

1

+ z

2

+ r

1

#y

2

= b

21

y

1

+ b

22

z

2

+ b

23

y

3

+ : : : + b

2n

y

n

+ r

2

(5.8)

.

.

.

#y

n

= b

n1

y

1

+ b

n2

z

2

+ b

n3

y

3

+ : : :+ b

nn

y

n

+ r

n

:

Eliminate y

2

from the left hand side:

In order to get rid of #y

2

in equation 2 above, we pro
eed as follows:

Appli
ation of # to (5.7) yields

#z

2

= �(a

12

)#y

2

+ Æ(a

12

)y

2

+ : : :+ �(a

1n

)#y

n

+ Æ(a

1n

)y

n

: (5.9)

We use (5.7), (5.8) to eliminate y

2

; #y

2

; : : : ; #y

n

from (5.9) and take the

result as our new se
ond equation. Thus we have arrived at a system of the

form

#y

1

= a

11

y

1

+ z

2

+ r

1

#z

2

= 


21

y

1

+ 


22

z

2

+ 


23

y

3

+ : : : + 


2n

y

n

+ s

2

#y

3

= b

31

y

1

+ b

32

z

2

+ b

33

y

3

+ : : : + b

3n

y

n

+ r

3

(5.10)

.

.

.

#y

n

= b

n1

y

1

+ b

n2

z

2

+ b

n3

y

3

+ : : :+ b

nn

y

n

+ r

n

:
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By looking at the �rst equation we see that we have made a �rst step towards

triangularization of system (5.6).

Iteration:

If at least one of 


23

; : : : ; 


2n

(w.l.o.g. 


23

) is nonzero, we introdu
e the

new unknown z

3

:

z

3

= 


23

y

3

+ : : :+ 


2n

y

n

;

and pro
eed analogously to steps 1 and 2 to eliminate y

3

, and so on. If

we 
ontinue in this fashion, at some point we will have to stop elimination,

either be
ause we have eliminated y

2

; : : : ; y

n

or be
ause the next equation to

be 
onsidered does not 
ontain any of the remaining y

i

. Suppose the latter

happens after eliminating l�1 variables, then our system will have the form

#y

1

= d

11

y

1

+ z

2

+ r

1

#z

2

= d

21

y

1

+ d

22

z

2

+ z

3

+ s

2

.

.

.

#z

l�1

= d

l�1;1

y

1

+ d

l�1;2

z

2

+ : : :+ d

l�1;l�1

z

l�1

+ z

l

+ u

l�1

#z

l

= d

l;1

y

1

+ d

l;2

z

2

+ : : :+ d

l;l�1

z

l�1

+ d

l;l

z

l

+ u

l

#y

l+1

= d

l+1;1

y

1

+ d

l+1;2

z

2

+ : : :+ d

l+1;l

z

l

+ d

l+1;l+1

y

l+1

+ : : :+ d

l+1;n

y

n

+ u

l+1

.

.

.

#y

n

= d

n;1

y

1

+ d

n;2

z

2

+ : : :+ d

n;l

z

l

+ d

n;l+1

y

l+1

+ : : :+ d

n;n

y

n

+ u

n

:

(5.11)

We set l

1

= l and i

2

= l + 1 (Re
all i

1

= 1). Equations 1 to l � 1 of (5.11)

yield the �rst l � 1 equations of (5.4).

Dedu
e a s
alar equation:

We 
an get an equation of order l in y

1

from the �rst l equations of

(5.11) as follows: The �rst equation allows to express z

2

via y

1

and #y

1

. If

we apply # to the �rst equation, we 
an write #z

2

in terms of y

1

, #y

1

and

#

2

y

1

. By the se
ond equation, we 
an now express z

3

and #z

3

via y

1

, #y

1

,

#

2

y

1

and #

3

y

1

, and so on.

Finally, we plug the expressions for z

l

and #z

l

obtained from equation

l � 1 into equation l, whi
h gives the �rst equation of (5.2).

If we 
olle
t the equations by whi
h the variables z

2

; : : : ; z

l

were introdu
ed,

we get a triangular algebrai
 linear system

z

2

= a

12

y

2

+a

13

y

3

+ : : : : : : + a

1n

y

n

z

3

= 


23

y

3

+ : : : : : : + 


2n

y

n

.

.

.

.

.

.

.

.

.

z

l

= e

l�1;l

y

l

+ : : : + e

l�1;n

y

n

:

(5.12)
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Repeat the whole pro
ess: (only if l < n, whi
h we will 
all the degen-

erate 
ase)

In equations l+1; : : : ; n of (5.11) we 
onsider y

1

; z

2

; : : : ; z

l

as known and

perform the same transformations. This yields the se
ond equation of (5.2),

the equations for i

2

< i < i

3

of (5.4) and so on. Let s be the number of

times we repeat the pro
ess des
ribed so far. Finally, the #-free system that


onsists of (5.12), its su

eding 
ounterparts and the equations z

j

= y

j

; j 2 I

yield (5.5). (5.3) is just a de�nition whi
h simpli�es notation several times.

Before giving the pseudo
ode of the algorithm, we will des
ribe the gen-

eral step of the 
omputation in detail.

By taking i = � = 1 if ne
essary, we 
an assume that our system has the

form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

#z

1

.

.

.

.

.

.

#z

i�1

#z

i

.

.

.

#y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

A

1

0

.

.

.

A

��1

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

a

i�1;i

�

: : : a

i�1;i�1

1 0 : : : 0

a

i;i

�

: : : a

i;i�1

a

i;i

a

i;i+1

: : : a

in

.

.

.

.

.

.

� a

n;i

�

: : : : : : a

nn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

1

.

.

.

.

.

.

z

i�1

z

i

.

.

.

y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ r; (5.13)

where A

1

; : : : ; A

��1

are of the form

0

B

B

B

B

B

�

� 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : � 1 0

� : : : � 1

� : : : �

1

C

C

C

C

C

A

: (5.14)
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If now a

i;i+1

= : : : = a

in

= 0, we add i

�

to I and by writing

A

�

=

0

B

B

B

B

B

B

�

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0

a

i�1;i

�

: : : a

i�1;i�1

1

a

i;i

�

: : : a

i;i�1

a

i;i

1

C

C

C

C

C

C

A

;

we are on
e again in situation (5.13), with � in
reased by 1. Now suppose

a

i;i+1

6= 0. (If a

i;i+1

= 0 but a

i;j

6= 0 for some i+ 1 < j � n, we swap lines

i + 1 and j, 
olumns i + 1 and j of a and the 
omponents i + 1 and j of

r. Of 
ourse, we have to keep tra
k of these permutations to restore them

eventually.)

As des
ribed above, we introdu
e the new variable

z

i+1

= a

i;i+1

y

i+1

+ : : :+ a

in

y

n

: (5.15)

If we express y

i+1

by this equation, we get

y

i+1

= a

�1

i;i+1

z

i+1

�

n

X

j=i+2

b

j

y

j

(5.16)

with b

j

:= a

ij

=a

i;i+1

. The b

j

are introdu
ed to de
rease the amount of 
om-

putation; we will need them two times in what follows. We use this expression

for y

i+1

to eliminate y

i+1

from equations i + 1; : : : ; n. For i + 1 � k � n,

plugging in (5.16) for y

i+1

(but not for #y

i+1

) gives the equations

#y

k

= a

k1

z

1

+ : : : + a

ki

z

i

+

a

k;i+1

a

i;i+1

z

i+1

+ (a

k;i+2

� a

k;i+1

b

i+2

) y

i+2

+

+ : : : + (a

kn

� a

k;i+1

b

n

) y

n

+ r

k

: (5.17)

We denote by a

�

kj

for i+ 1 � k � n, 1 � j � n the matrix entries updated

a

ording to (5.17).

Applying # to (5.15) gives

#z

i+1

= �(a

i;i+1

)#y

i+1

+ Æ(a

i;i+1

)y

i+1

+ : : :+ �(a

in

)#y

n

+ Æ(a

in

)y

n

: (5.18)

This will be
ome our new equation i + 1, on
e we have eliminated y

i+1

,

#y

i+1

; : : : ; #y

n

, using (5.16) and (5.17). To do so, we multiply (5.16)by

Æ(a

i;i+1

), whi
h yields

Æ(a

i;i+1

)y

i+1

=

Æa

i;i+1

a

i;i+1

z

i+1

� Æ(a

i;i+1

)b

i+2

y

i+2

� : : : � Æ(a

i;i+1

)b

n

y

n

; (5.19)

and (5.17) by �(a

ik

), giving

�(a

ik

)#y

k

= �(a

ik

)a

�

k1

z

1

+ : : :+ �(a

ik

)a

�

ki

z

i

+ �(a

ik

)a

�

k;i+1

z

i+1

+

+�(a

ik

)a

�

k;i+2

y

i+2

+ : : :+ �(a

ik

)a

�

kn

y

n

+ �(a

ik

)r

k

(5.20)
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for i+ 1 � k � n. Using this in (5.18), we get an equation of the form

#z

i+1

= a

��

i+1;1

z

1

+: : : a

��

i+1;i+1

z

i+1

+a

��

i+1;i+2

y

i+2

+: : :+a

��

i+1;n

y

n

+r

�

i+1

; (5.21)

by whi
h we repla
e equation i + 1. r

i+1

is the only 
omponent of r that

has to be updated, hen
e we set r

�

j

= r

j

for 1 � j � n, j 6= i+ 1. We have

arrived at the system

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

#z

1

.

.

.

.

.

.

#z

i�1

#z

i

#z

i+1

.

.

.

#y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

A

1

0

.

.

.

A

��1

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

a

i�1;i

�

: : : a

i�1;i�1

1 0 : : : 0

a

i;i

�

: : : a

i;i�1

a

i;i

1 0 : : : 0

a

��

i+1;i

�

: : : a

��

i+1;i�1

a

��

i+1;i

�

a

��

i+1;i+1

: : : a

��

i+1;n

.

.

.

.

.

.

� a

�

n;i

�

: : : : : : a

�

nn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

1

.

.

.

.

.

.

z

i�1

z

i

z

i+1

.

.

.

y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ r

�

; (5.22)

whi
h is of the form (5.13) with i in
reased by one.

Finally, we dis
uss the dedu
tion of the y-equations. When we are done with

the triangularization, we have transformed the system into the form

#z =

0

B

�

A

1

0

.

.

.

� A

s

1

C

A

z + r

where A

k

is an l

k

by l

k

blo
k of the form (5.14). We have already des
ribed

how the �rst equation of (5.2) is obtained. The k-th of these equations is to
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be dedu
ed from the l

k

equations

#z

i

k

= a

i

k

1

z

1

+ : : :+ a

i

k

i

k

z

i

k

+ z

i

k

+1

+ r

i

k

.

.

.

#z

i

k+1

�2

= a

i

k+1

�2;1

z

1

+ : : : + a

i

k+1

�2;i

k+1

�2

z

i

k+1

�2

+ z

i

k+1

�1

+ r

i

k+1

�2

#z

i

k+1

�1

= a

i

k+1

�1;1

z

1

+ : : : + a

i

k+1

�1;i

k+1

�1

z

i

k+1

�1

+ r

i

k+1

�1

in the same way, by expressing z

i

k

+1

via the �rst equation and #z

i

k

+1

by

applying # to the �rst equation, plugging this into the remaining equations,

and so on. In this pro
ess, we apply # l

k

� 1 times to z

j

, 1 � j < i

k

, and

l

k

times to z

i

k

, whi
h explains the order of the equations (5.2).

Let us view this pro
ess in more detail. We will en
ounter equations with

higher order pseudo-derivatives of several of the z

i

, so we introdu
e new


oeÆ
ients d

i;t;j

, where the third index marks the order of the appli
ation

of #. They are initialized by d

i;j;0

= a

i;j

, 1 � i; j � n. To keep notation

simple, we do not 
hange the names of these 
oeÆ
ients and the r

i

, even if

they are updated by the steps des
ribed below. Now the k-th blo
k of the

triangularized system (1 � k � s) takes the form

#z

i

k

=

i

k

X

t=1

d

i

k

;t;0

z

t

+ z

i

k

+1

+ r

i

k

.

.

. (5.23)

#z

i

k+1

�1

=

i

k

X

t=1

d

i

k+1

�1;t;0

z

t

+

i

k+1

�1

X

t=i

k

+1

d

i

k+1

�1;t;0

z

t

+ r

i

k+1

�1

:

(We set i

s+1

= n + 1 for 
onvenien
e of notation.) Let 1 � m � l

k

� 1

and suppose we have eliminated z

i

k

+1

; : : : ; z

i

k

+m�1

from (5.23). Then we


ontinue by expressing z

i

k

+m

and #z

i

k

+m

by the m-th equation, whi
h will

be of the form (with new 
oeÆ
ients d

i;t;j

!)

#

m

z

i

k

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+ z

i

k

+m

+ r

i

k

+m�1

; (5.24)

(in the �rst step m = 1, this is the �rst equation of (5.23)) and substituting

the result for z

i

k

+m

and #z

i

k

+m

in the m+ 1-st equation

#z

i

k

+m

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m;t;j

#

j

z

t

+ d

i

k

+m;i

k

+m;0

z

i

k

+m

+ [m < l

k

� 1℄ z

i

k

+m+1

+ r

i

k

+m

: (5.25)

(For m = 1, this is the se
ond equation of (5.23)). Here we made use of

the notation [false℄ = 0 and [true℄ = 1. Then we substitute for z

i

k

+m

in the



5.1. THE UNCOUPLING ALGORITHM BY ABRAMOV AND ZIMA 67

remaining equations

#z

i

k

+i

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+i;t;j

#

j

z

t

+

i

k

+i

X

t=i

k

+m

d

i

k

+i;t;0

z

t

+ [i < l

k

� 1℄ z

i

k

+i+1

+ r

i

k

+i

; m < i < l

k

� 1: (5.26)

Expressing z

i

k

+m

via (5.24) yields

z

i

k

+m

= �

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+ #

m

z

i

k

� r

i

k

+m�1

(5.27)

and, 
onsequently,

#z

i

k

+m

= �

i

k

X

t=1

m�1

X

j=0

�

�(d

i

k

+m�1;t;j

)#

j+1

z

t

+ Æ(d

i

k

+m�1;t;j

)#

j

z

t

�

+#

m+1

z

i

k

� #r

i

k

+m�1

= �

i

k

X

t=1

�

m�1

X

j=1

�(d

i

k

+m�1;t;j�1

)#

j

z

t

+ �(d

i

k

+m�1;t;m�1

)#

m

z

t

+Æ(d

i

k

+m�1;t;0

)z

t

) +

m�1

X

j=1

Æ(d

i

k

+m�1;t;j

)#

j

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

= �

i

k

X

t=1

�

Æ(d

i

k

+m�1;t;0

)z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

�

#

j

z

t

+�(d

i

k

+m�1;t;m�1

)#

m

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

:

Plugging this into (5.25), we get

�

i

k

X

t=1

�

Æ(d

i

k

+m�1;t;0

)z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

�

#

j

z

t

+�(d

i

k

+m�1;t;m�1

)#

m

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m;t;j

#

j

z

t

+ d

i

k

+m;i

k

+m;0

 

�

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+#

m

z

i

k

� r

i

k

+m�1

!

+ [m < l

k

� 1℄ z

i

k

+m+1

+ r

i

k

+m

;
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that is,

#

m+1

z

i

k

=

i

k

X

t=1

 

(Æd

i

k

+m�1;t;0

+ d

i

k

+m;t;0

� d

i

k

+m;i

k

+m;0

d

i

k

+m�1;t;0

) z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

+ d

i

k

+m;t;j

�d

i

k

+m;i

k

+m;0

d

i

k

+m�1;t;j

�

#

j

z

t

+ �(d

i

k

+m�1;t;m�1

)#

m

z

t

!

+d

i

k

+m;i

k

+m;0

#

m

z

i

k

+ [m < l

k

� 1℄ z

i

k

+m+1

+ #r

i

k

+m�1

�d

i

k

+m;i

k

+m;0

r

i

k

+m�1

+ r

i

k

+m

(5.28)

as our newm+1-st equation. (In the last stepm = l

k

�1, this is an un
oupled

equation for z

i

k

; note that z

1

; : : : ; z

i

k

�1

are assumed as known when we are

dealing with the k-th blo
k.) What remains to do is to insert (5.27) into

(5.26), yielding the equations

#z

i

k

+i

=

i

k

X

t=1

m�1

X

j=0

(d

i

k

+i;t;j

� d

i

k

+i;i

k

+m;0

d

i

k

+m�1;t;j

)#

j

z

t

+ d

i

k

+i;i

k

+m;0

#

m

z

i

k

+

i

k

+i

X

t=i

k

+m+1

d

i

k

+i;t;0

z

t

+ [i < l

k

� 1℄ z

i

k

+i+1

+ r

i

k

+i

�d

i

k

+i;i

k

+m;0

r

i

k

+m�1

; m < i � l

k

� 1:

This 
ompletes the general step of the dedu
tion of the y-equation for the

k-th blo
k. When we have done this for all 1 � k � s, 1 � m � l

k

� 1, the

last equation (namely, (5.28) for m = l

k

� 1) of ea
h blo
k is an un
oupled

higher order equation for z

i

k

:

#

l

k

z

i

k

=

i

k

X

t=1

l

k

�1

X

j=0

d

i

k+1

�1;t;j

#

j

z

t

+ r

i

k+1

�1

; 1 � k � s:

(Note i

s+1

= n+ 1) These equations form (5.2).
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Algorithm 5.1 by Abramov and Zima

I := f1g; perm := (1,...,n) (* identity permutation *)

T=0 (* zero matrix; T=t

ij

*)

(* �rst stage: transformation into blo
k triangular shape *)

for i = 1,...,n-1

(* look for variable with nonzero 
oeÆ
ient *)

j0 := i + 1

while j0 <= n and a

i;j

= 0

j0 := j0 + 1

if j0 <= n then

(* swap variables i+1 and j0 *)

perm[i+1℄ := j0; perm[j0℄ := i+1

(* swap equations i+1 and j0 *)

for j = 1,...,n

s := a

i+1;j

; a

i+1;j

:= a

j0;j

; a

j0;j

:= s

(* swap entries i+1 and j0 of the right hand side *)

s := r

i+1

; r

i+1

:= r

j0

; r

i+1

:= s

(* swap variables i+1 and j0 in equations i,...,n *)

(* and swap 
olumns i+1 and j0 of T *)

for j = i,...,n

s := a

j;i+1

; a

j;i+1

:= a

j;j0

; a

j;j0

:= s

s := t

j;i+1

; t

j;i+1

:= t

j;j0

; t

j;j0

:= s

(* update T *)

for j = i+1,...,n

t

i+1;j

:= a

i;j

for j = i+2,...,n

b

j

:= a

i;j

/ a

i;i+1

(* eliminate variable i+1 from the right hand sides *)

for k = i+1,...,n

for j = i+2,...,n

a

k;j

:= a

k;j

- a

k;i+1

* b

j

a

k;i+1

:= a

k;i+1

/ a

i;i+1

(* initialize the 
oeÆ
ients of the new equation i+1 *)

for j = 1,...,i




j

:= 0

(* eliminate variable i+1 from the new equation i+1 *)
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i+1

:= Æ(a

i;i+1

) / a

i;i+1

for j = i+2,...,n




j

:= -Æ(a

i;i+1

) * b

j

(* eliminate # of variables i+1,..,n from new equation i+1 *)

r

i+1

:= 0

for k = i+1,...,n

for j = 1,...,n




j

:= 


j

+ �(a

i;k

) * a

k;j

r

i+1

:= r

i+1

+ �(a

i;k

) * r

k

(* update the 
oeÆ
ient matrix with the new equation i+1 *)

for j = 1,...,n

a

i+1;j

:= 


j

(* update equation i *)

a

i;i+1

:= 1;

for j = i+2,...,n

a

ij

:= 0

end

else (* there is no variable suitable for elimination *)

I := I [ i+1

t

i+1;i+1

:= 1

for j = i+2,...,n

t

i+1;j

:= 0

end

end
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(* se
ond stage: dedu
tion of the y-equations *)

s := |I|

fi

1

,...,i

s

g := I; i

s+1

:= n+1

for i = 1,...,n

for j = 1,...,n

d

i;j;0

:= a

i;j

for k = 1,...,s

for m = 1,...,i

k+1

-i

k

-1

for t = 1,...,i

k

d

i

k

+m;t;0

:= Æ(d

i

k

+m�1;t;0

) + d

i

k

+m;t;0

- d

i

k

+m;i

k

+m;0

* d

i

k

+m�1;t;0

for j = 1,...,m-1

d

i

k

+m;t;j

:= �(d

i

k

+m�1;t;j�1

) + Æ(d

i

k

+m�1;t;j

)

+ d

i

k

+m;t;j

- d

i

k

+m;i

k

+m;0

* d

i

k

+m�1;t;j

d

i

k

+m;t;m

:= �(d

i

k

+m�1;t;m�1

)

end

d

i

k

+m;i

k

;m

:= d

i

k

+m;i

k

;m

+ d

i

k

+m;i

k

+m;0

r

i

k

+m

:= r

i

k

+m

+ #(r

i

k

+m�1

) - d

i

k

+m;i

k

+m;0

* r

i

k

+m�1

d

i

k

+m;i

k

+m;0

:= 0

for i = m+1,...,i

k+1

-i

k

-1

for t = 1,...,i

k

for j = 0,...,m-1

d

i

k

+i;t;j

:= d

i

k

+i;t;j

- d

i

k

+i;i

k

+m;0

* d

i

k

+m�1;t;j

d

i

k

+i;i

k

;m

:= d

i

k

+i;i

k

+m;0

r

i

k

+i

:= r

i

k

+i

- d

i

k

+i;i

k

+m;0

* r

i

k

+m�1

d

i

k

+i;i

k

+m;0

:= 0

end

end

end

5.1.4 Corre
tness

Theorem 5.2 The solutions of the un
oupled system AZ are exa
tly the

solutions of (5.1).

Proof: From the des
ription of the algorithm is is 
lear that any solution

of (5.1) solves the un
oupled system. As for the 
onverse, we take a 
loser

look at the transition from (5.13) to (5.22). Of 
ourse, equations 1 to i of

(5.22) (whi
h remain un
hanged) together with (5.17) for i+1 � k � n and

(5.15) imply (5.13). But in the next step of the algorithm, equation (5.17)

for k = i + 1 is dis
arded and repla
ed by (5.21), whi
h be
omes the �rst

equation of (5.22). Hen
e we have to verify that (5.22),(5.15) imply (5.17)

for k = i+ 1.
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To see it, suppose z

1

; : : : ; z

i+1

; y

i+2

; : : : ; y

n

satisfy (5.22),(5.15). Taking

into a

ount how equation (5.21), i.e., the i + 1-st equation of (5.22) was

obtained, it reads

#z

i+1

= �(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

+Æ(a

i;i+1

)

0

�

a

�1

i;i+1

z

i+1

�

n

X

j=i+2

b

j

y

j

1

A

+

n

X

t=i+2

0

�

�(a

it

)

0

�

i+1

X

j=1

a

�

tj

z

j

+

n

X

j=i+2

a

�

tj

y

j

+ r

t

1

A

+ Æ(a

it

)y

t

1

A

:

(5.29)

By (5.15) and equations i+2 to n of (5.22) the right hand side further equals

�(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

+ Æ(a

i;i+1

)y

i+1

+

n

X

t=i+2

(�(a

it

)#y

t

+ Æ(a

it

)y

t

) ;

and by 
omparing this to (5.18) (whi
h follows from (5.15)), we have

�(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

= �(a

i;i+1

)#y

i+1

:

Now the validity of (5.17) for k = i+ 1 follows from a

i;i+1

6= 0 and � being

a monomorphism, hen
e �(a

i;i+1

) 6= 0. �

5.1.5 The Solution Spa
e

The proof of the following theorem shows how we 
an �nd a basis for the

solution spa
e of the homogeneous system #y = Ay, provided that we 
an

�nd bases for the solution spa
es of the un
oupled equations. The general

solution of the inhomogeneous system #y = Ay + r 
an then be expressed

by one �xed solution plus the solution spa
e of the homogeneous system.

Theorem 5.3 Let W be a ve
tor spa
e over K , # : W ! W be pseudo-

linear, A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and K � K be a sub�eld of K (e.g.,

K = Const

�;Æ

). If ea
h of the s
alar equations

l

k

X

j=0

�

kj

#

j

y

i

k

= �; k = 1; : : : ; s; (5.30)
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where �

kj

as in (5.2) is obtained by un
oupling the system #y = Ay and

� 2 W is arbitrary, has a solution in W , and if ea
h of the homogeneous

s
alar equations

l

k

X

j=0

�

kj

#

j

y

i

k

= 0; k = 1; : : : ; s (5.31)

has l

k

K-linearly independent solutions in W , then the homogenous pseudo-

linear system

�y = Ay (5.32)

has n K-linearly independent solutions in W

n

.

Proof. We begin by noting that if r = 0 in (5.1), then �

i

= 0 in (5.2) and

�

i

= 0 in (5.4), whi
h is easily seen from the des
ription of the algorithm.

Furthermore, we 
an assume w.l.o.g. that the order of the y

i

is not 
hanged

by the algorithm. In what follows, `linearly independent' means `linearly

independent over K'.

Now let z

(1)

1

; : : : ; z

(i

2

�1)

1

be linearly independent solutions of the �rst

equation of (5.2) (re
all that we 
an use the variables y

i

and z

i

inter-


hangeably for i 2 I). De�ne z

(1)

2

; : : : ; z

(1)

i

2

�1

from z

(1)

1

via (5.4). If we plug

z

(1)

1

; : : : ; z

(1)

i

2

�1

into the se
ond equation of (5.2), we 
an �nd a solution z

(1)

i

2

.

We use (5.4) to 
ompute the 
omponents i

2

+1; : : : ; i

3

�1, and so on. Thus we

have found a ve
tor (throughout this proof, we use bold letters for ve
tors)

z

(1)

=

�

z

(1)

1

; : : : ; z

(1)

n

�

t

s.t.

y

(1)

:= T

�1

z

(1)

where T is as in (5.5) solves (5.32). Analogously we 
onstru
t the ve
tors

z

(2)

; : : : ; z

(i

2

�1)

and y

(2)

; : : : ;y

(i

2

�1)

.

Next we set z

1

= : : : = z

i

2

�1

= 0 in the se
ond equation of (5.2) and solve

it, obtaining l

2

= i

3

� i

2

linearly independent solutions z

(i

2

)

i

2

; : : : ; z

(i

3

�1)

i

2

. We

pro
eed as above to obtain the ve
tors z

(i

2

)

; : : : ; z

(i

3

�1)

and y

(i

2

)

; : : : ;y

(i

3

�1)

.

Analogously we de�ne z

(j)

and y

(j)

, i

3

� j � n. If we let Z be the matrix

whose 
olumns are z

(1)

; : : : ; z

(n)

, then ea
h of the 
olumns of T

�1

Z solves
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(5.32). Z is of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

(1)

1

: : : z

(i

2

�1)

1

0 : : : 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0

z

(1)

i

2

: : : z

(i

2

�1)

i

2

z

(i

2

)

i

2

: : : z

(i

3

�1)

i

2

0 : : :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z

(i

2

)

i

3

�1

: : : z

(i

3

�1)

i

3

�1

0 : : :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 0

z

(i

s

)

i

s

: : : z

(n)

i

s

.

.

.

.

.

.

.

.

.

z

(1)

n

: : : : : : z

(i

s

)

n

: : : z

(n)

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(5.33)

Suppose that

n

X

k=1

�

k

y

(k)

= 0

for some �

k

2 K. Clearly, this implies

n

X

k=1

�

k

z

(k)

= 0

and hen
e, by (5.33),

i

t+1

�1

X

k=i

t

�

k

z

(k)

i

t

= 0; t = 1; : : : ; s:

(On
e again, we set i

s+1

= n+1.) Sin
e ea
h of the sets

n

z

(i

t

)

i

t

; : : : ; z

(i

t+1

�1)

i

t

o

is linearly independent, we have �

k

= 0, 1 � k � n, whi
h establishes the

linear independen
y of the y

(k)

. �

Corollary 5.4 Let K be a �eld, A 2 Mat(n;R(K)) be a matrix of rational

fun
tions over K and � be the forward di�eren
e operator on K = R(K).

Let further �

kj

as in (5.2) be obtained by applying Abramov and Zima's

algorithm to the system of di�eren
e equations

�y = Ay; y 2 S(K)

n

: (5.34)

If �

k0

6= 0 for 1 � k � s, then (5.34) has n K-linearly independent solution

ve
tors in S(K)

n

.
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Proof. The fa
t that (5.30) has a solution is obvious in the di�eren
e 
ase,

and the se
ond requirement of the pre
eding theorem is satis�ed by ap-

pealing to theorem (8.2.1) of [20℄, whi
h asserts that a di�eren
e equation

P

l

j=0

a

j

E

j

y = 0 has exa
tly l K-linearly independent solutions in S(K), if

the a

j

are polynomials from K[x℄ and a

0

; a

l

are nonzero. �

5.1.6 Complexity

In this se
tion we 
onsider the number of operations the un
oupling algo-

rithm by Abramov and Zima performs. First we 
ount the multipli
ations

in K . From algorithm (5.1) we read o� that in the �rst stage, for i + 1 =2 I

the i-th pass of the outer loop requires

n� i� 1 + (n� i)

2

+ n� i+ (n� i) (n+ 1)

= 2n

2

� 3ni+ i

2

+ 3n� 3i� 1

multipli
ations. If i+1 2 I, that is, no variable with nonzero 
oeÆ
ient was

found, no operations are performed in this pass of the outer loop. Hen
e we

need

n�1

X

i=1

i+1=2I

�

2n

2

� 3ni+ i

2

+ 3n� 3i� 1

�

multipli
ations in all. The number of additions in the i-th pass of the outer

loop (again we assume i+ 1 =2 I) is

(n� i) (n� i� 1) + (n� i) (n+ 1)

= 2n

2

� 3in+ i

2

;

yielding a total of

n�1

X

i=1

i+1=2I

�

2n

2

� 3in+ i

2

�

additions. In the se
ond stage, we need

s

X

k=1

l

k

�1

X

m=1

(i

k

(1 +m� 1) + 1 + (l

k

�m� 1) (i

k

m+ 1))

multipli
ations and

s

X

k=1

l

k

�1

X

m=1

(i

k

(2 + 3 (m� 1)) + 3 + (l

k

�m� 1) (i

k

m+ 1))

additions.

These observations lead to
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Theorem 5.5 (nondegenerate 
ase) In the nondegenerate 
ase I = f1g,

algorithm (5.1) performs

n

3

+O(n

2

)

multipli
ations in K . The same is true for the number of additions in K .

Proof: As we have seen above, the number of multipli
ations and additions

of the �rst stage are ea
h of the form

n�1

X

i=1

�

2n

2

� 3ni+ i

2

+O(n)

�

= 2n

2

(n� 1)� 3n

n�1

X

i=1

i+

n�1

X

i=1

i

2

+O(n)

2

=

5

6

n

3

+O(n

2

):

As for the se
ond stage, we have s = 1, l

1

= n and therefore we need

n�1

X

m=1

(m+ 1 + (n�m� 1) (m+ 1)) = (n� 1)n+ (n� 1)

n�1

X

m=1

m�

n�1

X

m=1

m

2

=

n

3

6

+O(n

2

)

multipli
ations and

n�1

X

m=1

(3m+ 2 + (n�m� 1) (m+ 1)) =

n

3

6

+O(n

2

)

additions. Adding the 
omplexities of the �rst and the se
ond stage gives

the desired result. �

5.2 A Variant of Z�ur
her's Algorithm

5.2.1 A Blo
k Triangular Normal Form for Pseudo-Linear

Maps

As in se
tion (3.1) we 
onsider the equation

�y = r

or, equivalently,

T�(y) + Æy = r:

Z�ur
her's algorithm redu
es the matrix of a pseudo-linear map to a blo
k-

diagonal matrix, where the blo
ks are 
ompanion matri
es. In this 
hapter

we present a variant, whi
h we will 
all `in
omplete Z�ur
her's algorithm',

that omits some 
omputations in the pro
ess of obtaining the normal form,
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thus 
omputing only a blo
ktriangular matrix. The latter will be of the same

form as in the un
oupling algorithm by Abramov and Zima. The pri
e will

be a more 
ompli
ated 
omputation for the s
alar equations, whi
h also

resembles Abramov and Zima's algorithm.

We start with a 'redu
ed' version of lemma (3.2):

Lemma 5.6 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

� 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : : : : 0

i! � : : : : : : � � : : : : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

with i < n: (5.35)

If there is an element t

il

6= 0 with i < l � n, then there is a basis 
hange A

s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

� 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� : : : : : : � � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Proof. We show how A 
an be 
onstru
ted as a produ
t of elementary ma-

tri
es. To keep notation simple, the asso
iated matri
es of � that o

ur in

the intermediate steps are denoted again by T = (t

ik

). First, by the basis


hange P

i+1;l

, t

i;i+1

be
omes nonzero. The remaining entries of the a�e
ted


olumns i + 1 and l are either 0 (rows 1; : : : ; i � 1) or not of interest (rows

i+ 1; : : : ; n). P2 does not 
hange the ordered part of T either.

Now we 
an perform the basis 
hange D

i+1

(�

�1

(t

�1

i;i+1

)). D1 sets t

i;i+1

to 1, and D2 and D3 do not modify lines 1; : : : ; i.

What remains to do is to set t

ik

, k = i+2; : : : ; n, to 0. Suppose we have
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done this up to k < m:

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

m

#

� 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : : : : 0

i! � : : : : : : � 1 0 : : : 0 � : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The basis 
hange C

i+1;m

(�

�1

(�t

im

)) sets t

im

to 0 by operation C1. It is easy

to 
he
k that C1, C2 and C3 do not 
hange the ordered part of T . �

Next we take a look at how 
hanges of bases modify blo
k triangular matri-


es.

Lemma 5.7 Let T

11

, T

21

, T

22

be matri
es over K of sizes n

1

� n

1

, n

2

� n

1

and n

2

� n

2

, respe
tively. Let further � : K

n

1

+n

2

! K

n

1

+n

2

be the pseudo-

linear map whose matrix w.r.t. the 
anoni
al basis is

�

T

11

T

12

0

T

22

�

and A be an

invertible n

2

� n

2

matrix. Then the basis 
hange

�

I

0

0

A

�

turns the matrix of

� into

�

T

1

0

A

�1

T

21

A

�1

T

22

�(A) +A

�1

ÆA

�

:

Proof. Be
ause of formula (2.16), the matrix that we seek is

�

I 0

0 A

�1

��

T

11

0

T

21

T

22

�

�

��

I 0

0 A

��

+

�

I 0

0 A

�1

�

Æ

�

I 0

0 A

�

=

�

T

11

0

A

�1

T

21

A

�1

T

22

�(A)

�

+

�

0 0

0 A

�1

ÆA

�

=

�

T

1

0

A

�1

T

21

A

�1

T

22

�(A) +A

�1

ÆA

�

;

where �(I) = I and ÆI = 0 follow from 
orollary (2.13). �

This means that the lower left blo
k of T has to be updated as well whenever

we perform a basis 
hange to modify the lower right blo
k.

After these preparations we 
an formulate and prove

Theorem 5.8 Let V be an n-dimensional ve
tor spa
e, � : V ! V be

pseudo-linear w.r.t. � and Æ, where � is an automorphism. Then there is
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a basis of V su
h that the matrix of � w.r.t. to this basis is of the blo
k

triangular form

0

B

�

A

1

0

.

.

.

� A

m

1

C

A

;

where the A

i

, 1 � i � m, are of the form

0

B

B

B

B

B

�

� 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : � 1 0

� : : : � 1

� : : : �

1

C

C

C

C

C

A

: (5.36)

Proof. Indu
tion on n. For n = 1 there is nothing to show.

Suppose the assertion of the theorem holds for 1; : : : ; n � 1. By taking

i = 1 if ne
essary, T is of the form (5.35). Let i be the size of the upper left

blo
k of type (5.36). If i = n, we are done. If i < n and there is an element

t

ik

6= 0 for some i < k � n, we 
an in
rease the size of the upper left blo
k

to i + 1 by lemma (5.6). If, on the other hand, all these entries are zero,

we apply the indu
tion hypothesis to the lower right part of T . The basis


hanges needed to bring it into the desired form do not interfere with the

ordered part of T by lemma (5.7). �

This proof gives rise to the following algorithm to �nd the blo
k triangular

normal form. The main pro
edure is very simple: If we do not �nd the

nonzero matrix entry ne
essary to in
rease the upper left blo
k of form

(5.36) by lemma (5.6), we just move on to the next line. There are two

di�eren
es between transformL5.4 and transformL2 from algorithm (3.7):

Firstly, transformL5.4 does not erase the elements t

ik

, i

0

� k � i. Se
ondly,

during the base 
hanges D

i+1

(�

�1

(t

�1

i;i+1

)) and C

i+1;k

(�

�1

(�t

ik

)) the lower

left part of T has to be modi�ed a

ording to lemma (5.7). The pro
edure

transformP is the same as in algorithm (3.7).

Algorithm 5.9 triangForm

triangForm(T; �; Æ)

n := Size(T)

i0 := 1; i := 1

B := identity matrix of size n

while i < n

j := i+1

while j � n and t

ij

= 0
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j := j + 1

if j � n then

transformLemma5.4(T,i0,i,j,�,Æ,B)

else

i0 := i + 1

i := i + 1

end

return T,B

end

transformLemma5.4(T,i0,i,l,�,Æ,B)

n := Size(T)

transformP(T,i0,i+1,l,B)

a := �

�1

(t

�1

i;i+1

)

for j := i to n

t

j;i+1

:= t

j;i+1

* �(a) (* D1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

/ a (* D2 *)

t

i+1;i+1

:= t

i+1;i+1

+ Æ(a) / a (* D3 *)

for j := 1 to i0-1

t

i+1;j

:= t

i+1;j

/ a (* update lower left blo
k of T *)

for j := i0 to n

b

j;i+1

:= a * b

j;i+1

(* basis 
hange *)

for k := i+2 to n

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

- a * t

kj

(* C2 *)

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)

for j := 1 to i0-1

(* update lower left blo
k of T *)

t

i+1;j

:= t

i+1;j

- a * t

k;j

for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis 
hange *)

end

end �
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5.2.2 Dedu
tion of S
alar Equations

Di�erential Equations

For a di�erential system

Dy = Ty + v

(see se
tion (3.1.2) for the relevant de�nitions) we pro
eed as in se
tion

(3.1.2), but we use algorithm (5.9) instead of Z�ur
her's algorithm. It returns

(if the blo
k triangular matrix has only one blo
k) a system of the form

Dz

1

= a

11

z

1

+ z

2

+ r

1

.

.

.

Dz

n�1

= a

n�1;1

z

1

+ : : :+ a

n�1;n�1

z

n�1

+ z

n

+ r

n�1

Dz

n

= a

n1

z

1

+ : : :+ a

nn

z

n

+ r

n

:

A s
alar equation for z

1


an now be obtained in the same way as in the

algorithm by Abramov and Zima: The �rst equation allows to express z

2

and Dz

2

by z

1

, Dz

1

and D

2

z

1

:

z

2

= Dz

1

� a

11

z

1

� r

1

;

Dz

2

= D

2

z

1

� a

11

Dz

1

�Da

11

z

1

�Dr

1

:

These expressions are plugged into equations 2; : : : ; n, and so on, until we

arrive at an n-th order un
oupled di�erential equation for z

1

.

If the blo
k-triangular matrix returned by algorithm (5.9) has several

blo
ks, we solve the system 
orresponding to the �rst blo
k as des
ribed

above and 
ontinue with the se
ond blo
k, assuming that the variables of

the �rst blo
k are known, i.e., part of the inhomogeneity. This is 
ompletely

analogous to the se
ond stage of Abramov and Zima's algorithm, see there

for details.

Di�eren
e Equations

On
e again we use the same notation as in se
tion (3.1.2). Using the trans-

formations des
ribed there and algorithm (5.9), we 
an redu
e a di�eren
e

system

Ey =My + v

to an equivalent system

Ez = Pz + w;

where P = (p

ij

)

1�i;j�n

= E(C) + I and C is the blo
k-triangular matrix


omputed by algorithm (5.9). Assuming w.l.o.g. that C has only one blo
k,
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this system is of the form

Ez

1

= p

11

z

1

+ z

2

+ w

1

.

.

.

Ez

n�1

= p

n�1;1

z

1

+ : : :+ p

n�1;n�1

z

n�1

+ z

n

+ w

n�1

Ez

n

= p

n1

z

1

+ : : : + p

nn

z

n

+ w

n

:

The dedu
tion of an un
oupled higher order equation for z

1

is now analogous

to the di�erential 
ase.

5.2.3 Complexity

The number of multipli
ations in K required by transformL5.4 is

(n� i+ 1) + (n� i

0

+ 1) + 1 + (i

0

� 1) + (n� i

0

+ 1) +

(n� i+ 1) ((n� i+ 1) + (n� i

0

+ 1) + (i

0

� 1) + (n� i

0

+ 1)) :

For the number of additions we �nd

1 + (n� i+ 1) ((n� i+ 1) + (n� i

0

+ 1) + 1 + (i

0

� 1) + (n� i

0

+ 1)) :

In both 
ases, if we set i

0

= 1 and negle
t terms of order n, we obtain

(n� i) (3n� i) +O(n) = 3n

2

� 4in+ i

2

+O(n);

whi
h leads to

Theorem 5.10 If the �rst if 
ondition in algorithm (5.9) is always satis-

�ed throughout the exe
ution, the un
oupling algorithm `in
omplete Z�ur
her'

requires

3

2

n

3

+O(n

2

)

multipli
ations in K . The same is true for the number of additions.

Proof. As seen above, the �rst stage (i.e., algorithm (5.9)) requires

n�1

X

i=1

�

3n

2

� 4in+ i

2

+O(n)

�

= (n� 1) 3n

2

� 4n

n�1

X

i=1

i+

n�1

X

i=1

i

2

+O(n

2

)

=

4

3

n

3

+O(n

2

)

multipli
ations (resp. additions). The se
ond stage is the same as in Abramov/Zima's

algorithm, where we found its 
omplexity to be

n

3

6

+O(n

2

). �



Chapter 6

Implementation and R�esum�e

6.1 The Mathemati
a Pa
kage

We have implemented the four algorithms that we have des
ribed in the

Mathemati
a pa
kage OreSys.m. The main fun
tions are

Un
oupleDifferentialSystem[equations,variables,helpvariables,x,options℄

Un
oupleDifferen
eSystem[equations,variables,helpvariables,x,options℄

Un
oupleqDifferen
eSystem[equations,variables,helpvariables,x,q,options℄

Un
oupleGeneralDifferen
eSystem[equations,variables,helpvariables,

x,a,b,options℄

Un
oupleAlgebrai
System[equations,variables,helpvariables,options℄.

For instan
e,

Un
oupleDifferentialSystem[fy1'[x℄==x y1[x℄-y2[x℄+1,

2 y2'[x℄-y1[x℄==1/(x-1)g,fy1[x℄,y2[x℄g,fz1[x℄,z2[x℄g,x,

Method->AbramovZima℄

or

Un
oupleqDifferen
eSystem[fy1[q x℄==y1[x℄/x+y2[x℄-x^2,

y2[q x℄==y1[x℄+(x+1)/(x-1)y2[x℄-1g,fy1[x℄,y2[x℄g,fz1[x℄,z2[x℄g,x,q℄.

helpvariables are dummy variables that are used by Abramov/Zima,

Z�ur
her and in
omplete Z�ur
her to express the un
oupled system. They are

not used (and need not be spe
i�ed) if Gaussian elimination is applied.

Un
oupleGeneralDifferen
eSystem is for the 
ase �(x) = ax + b,

Æ = 0, whi
h generalizes the ordinary shift and the q-shift (a and b are


onstants, a 6= 0). Un
oupleAlgebrai
System un
ouples linear algebrai
,

i.e., operator-free, systems.

83
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�

ESUM

�

E

By default all these fun
tions use Abramov and Zima's un
oupling algo-

rithm. The un
oupling algorithm 
an be modi�ed with the option Method:

Method->AbramovZima

Method->Gauss

Method->Zuer
her

Method->In
ompleteZuer
her.

6.2 Examples of Computation

Di�erential System

We give an example from physi
s. Consider an obje
t with mass m that

moves in a plane in
uen
ed by a for
e F = (f

1

; f

2

). A

ording to Newton's

equation `for
e = mass � a

eleration', the position y = y(x) of the obje
t

at time x satis�es:

F (y) = my

00

:

In two dimensions, this reads:

f

1

(y

1

(x); y

2

(x)) = my

00

1

(x)

f

2

(y

1

(x); y

2

(x)) = my

00

2

(x):

Let us assume that f

1

; f

2

are linear and set u

1

= y

0

1

, u

2

= y

0

2

. For the sake

of 
on
reteness, set m = 1 and

f

1

(y

1

; y

2

) = (x

2

� 1)y

1

+

1

x

y

2

;

f

2

(y

1

; y

2

) = �xy

1

+

2

x� 1

y

2

:

Now we have arrived at the linear �rst order di�erential system

u

0

1

(x) = (x

2

� 1)y

1

(x) +

1

x

y

2

(x)

u

0

2

(x) = �xy

1

(x) +

2

x� 1

y

2

(x)

y

0

1

(x) = u

1

(x)

y

0

2

(x) = u

2

(x):

We give the output of ea
h of the four algorithms from the pre
eding 
hapters

applied to this system.
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Z�ur
her:

6�8x+27x

2

�12x

3

+4x

4

�3x

2

+2x

3

z

1

(x) +

�6+4x+22x

2

�60x

3

+52x

4

�14x

5

�3x+8x

2

�7x

3

+2x

4

z

0

1

(x)

+

�6+14x+x

2

�9x

3

�x

4

+5x

5

�2x

6

3x

2

�5x

3

+2x

4

z

00

1

(x) +

�6+2x

�3x+2x

2

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) = z

0

2

(x);

z

4

(x) = z

0

3

(x);

u

1

(x) = z

1

(x);

u

2

(x) =

�2+9x

2

+2x

3

�15x

4

�2x

5

x(�3+2x)

z

1

(x) +

6�6x�8x

2

+4x

3

+3x

4

�3x

5

(�1+x)(�3+2x)

z

2

(x)

+

�2+3x

2

+2x

3

x(�3+2x)

z

3

(x) +

�1+3x

2

�3+2x

z

4

(x);

y

1

(x) =

2�1+3x

2

x(�3+2x)

z

1

(x) +

3�x�x

2

+x

3

(�1+x)(�3+2x)

z

2

(x)�

2

x(�3+2x)

z

3

(x)�

1

�3+2x

z

4

(x);

y

2

(x) =

�2(�1+x)(1+x)

(

�1+3x

2

)

�3+2x

z

1

(x)�

x

(

6�2x

2

+x

4

)

�3+2x

z

2

(x)

+

2(�1+x)(1+x)

�3+2x

z

3

(x) +

(�1+x)x(1+x)

�3+2x

z

4

(x):

Abramov, Zima:

�2�17x�2x

2

+30x

3

+26x

4

+31x

5

�22x

6

+4x

7

x+2x

2

+2x

3

�4x

4

�3x

5

+2x

6

z

1

(x)

+

5+2x�29x

2

�2x

3

+53x

4

+60x

5

+33x

6

�104x

7

�54x

8

+58x

9

+24x

10

�14x

11

x+2x

2

�8x

4

�6x

5

+12x

6

+8x

7

�8x

8

�3x

9

+2x

10

z

0

1

(x)

+

2+3x�18x

2

�24x

3

+18x

4

+14x

5

�8x

6

�12x

7

+8x

8

+3x

9

�2x

10

�x�2x

2

�x

3

+6x

4

+5x

5

�6x

6

�3x

7

+2x

8

z

00

1

(x)

+

2+2x�4x

2

�4x

3

�6x

4

+2x

5

x+2x

2

+2x

3

�4x

4

�3x

5

+2x

6

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) =

�

1� x

2

�

z

1

(x)�

2x

�1+x

2

z

2

(x) + z

0

2

(x);

z

4

(x) =

1

x

2

�1

z

2

(x)�

1�3x

2

x(�1+x

2

)

z

3

(x) + z

0

3

(x);

u

1

(x) = z

1

(x);

�

x

2

� 1

�

u

2

(x) +

1

x

y

2

(x) = z

2

(x);

1

x

y

1

(x)�

2

�1+x

2

y

2

(x) = z

3

(x);

�1�2x�3x

2

+2x

3

(�1+x)

2

x(1+x)

2

y

2

(x) = z

4

(x):
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Gauss:

�

1� x

2

�

y

1

(x)�

1

x

y

2

(x) + u

0

1

(x) = 0;

xy

1

(x)�

2

�1+x

y

2

(x) + u

0

2

(x) = 0;

�

1� x

2

�

y

1

(x)�

1

x

y

2

(x) + y

00

1

(x) = 0;

4�12x+15x

2

�7x

3

+3x

4

+3x

5

�2x

6

�x

3

+3x

4

�3x

5

+x

6

y

2

(x) +

4�8x

x

2

�2x

3

+x

4

y

0

2

(x) +

2�2x+3x

2

�x

3

�x

4

+x

5

�x

3

+x

4

y

00

2

(x)

+

2

x

2

y

(3)

2

(x)�

1

x

y

(4)

2

(x) = 0:

In
omplete Z�ur
her:

6�8x+27x

2

�12x

3

+4x

4

�3x

2

+2x

3

z

1

(x) +

�6+4x+22x

2

�60x

3

+52x

4

�14x

5

�3x+8x

2

�7x

3

+2x

4

z

0

1

(x)

+

�6+14x+x

2

�9x

3

�x

4

+5x

5

�2x

6

3x

2

�5x

3

+2x

4

z

00

1

(x) +

�6+2x

�3x+2x

2

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) =

�

1� x

2

�

z

1

(x)�

2x

�1+x

2

z

2

(x) + z

0

2

(x);

z

4

(x) =

1

x

2

�1

z

2

(x) +

2

(

�1+2x

2

)

x(�1+x

2

)

z

3

(x) + z

0

3

(x);

u

1

(x) = z

1

(x);

u

2

(x) = xz

3

(x) +

�1+3x

2

�3+2x

z

4

(x);

y

1

(x) =

1

�1+x

2

z

2

(x)�

1

�3+2x

z

4

(x);

y

2

(x) =

(�1+x)x(1+x)

�3+2x

z

4

(x):

Di�eren
e System

We apply the four un
oupling algorithms to the following (arbitrarily 
hosen)

system of di�eren
e equations:

y

1

(x+ 1) = y

1

(x) + y

2

(x) + y

3

(x)� y

4

(x)

y

2

(x+ 1) = �xy

1

(x) + y

2

(x) + y

3

(x) + x

y

3

(x+ 1) = y

1

(x) +

1

x

y

4

(x)

y

4

(x+ 1) = y

2

(x) + y

4

(x)� 1:
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Z�ur
her:

�5�7x�x

2

�x

3

�x

4

(�1+x)(1+x)(2+x)

+

�x�2x

2

�1+x

2

z

1

(x) +

�3+x+6x

2

+6x

3

+2x

4

�2�x+2x

2

+x

3

z

1

(x+ 1)

+

4+x�7x

2

�6x

3

�x

4

�2�x+2x

2

+x

3

z

1

(x+ 2) +

�3+3x+3x

2

�2+x+x

2

z

1

(x+ 3)� z

1

(x+ 4) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� z

2

(x) + z

2

(x+ 1);

z

4

(x) = �z

3

(x) +

1+x+x

2

+z

3

(x+1)+xz

3

(x+1)

1+x

;

y

1

(x) = z

1

(x);

y

2

(x) = �

x

2

z

1

(x)

1+x

+

(�1�x)z

2

(x)

�1+x

+

(

�1�x�x

2

)

z

3

(x)

(�1+x)(1+x)

+

z

4

(x)

1�x

;

y

3

(x) =

(

�x+x

2

)

z

1

(x)

1+x

� xz

2

(x)�

z

3

(x)

1+x

� z

4

(x);

y

4

(x) = �

xz

1

(x)

1+x

�

x(1+x)z

2

(x)

�1+x

�

x(2+x)z

3

(x)

(�1+x)(1+x)

�

xz

4

(x)

�1+x

:

Gauss:

�y

1

(x) + y

1

(x+ 1)� y

2

(x)� y

3

(x) + y

4

(x) = 0;

(�1�x)y

2

(x)

x

+

(1+2x)y

2

(x+1)

x+x

2

+

y

2

(x+2)

�1�x

+

(�1�x)y

3

(x)

x

+

y

3

(x+1)

x+1

+ y

4

(x) = 0;

y

3

(x+ 1) +

(�2�x)y

3

(x+2)

x

+

(1+3x)y

3

(x+3)

x+x

2

+

y

3

(x+4)

�1�x

+

(�1�2x)y

4

(x)

x

2

+

(

3+7x+3x

2

)

y

4

(x+1)

x+2x

2

+x

3

+

(

�1�5x�x

2

)

y

4

(x+2)

2x+3x

2

+x

3

+

y

4

(x+3)

3+4x+x

2

= 0;

�268�750x�848x

2

�487x

3

�139x

4

�19x

5

�x

6

(2+x)(�10+40x+73x

2

+43x

3

+11x

4

+x

5

)(158+364x+278x

2

+97x

3

+16x

4

+x

5

)

+

1+3x+2x

2

�10x+40x

2

+73x

3

+43x

4

+11x

5

+x

6

y

4

(x)

+

(

�888�4626x�8338x

2

�7877x

3

�4466x

4

�1574x

5

�337x

6

�40x

7

�2x

8

)

y

4

(x+1)

�3160+3780x+49308x

2

+110346x

3

+126324x

4

+89058x

5

+41429x

6

+13013x

7

+2738x

8

+370x

9

+29x

10

+x

11

+(some terms skipped) +

+

(

�10+366x+929x

2

+850x

3

+367x

4

+76x

5

+6x

6

)

y

4

(x+6)

�3160+3780x+49308x

2

+110346x

3

+126324x

4

+89058x

5

+41429x

6

+13013x

7

+2738x

8

+370x

9

+29x

10

+x

11

+

(�1�x)y

4

(x+7)

316+886x+920x

2

+472x

3

+129x

4

+18x

5

+x

6

= 0:
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Abramov, Zima:

5+7x+x

2

+x

3

+x

4

(�1+x)(1+x)(2+x)

+

(

x+2x

2

)

z

1

(x)

�1+x

2

+

(

3�x�6x

2

�6x

3

�2x

4

)

z

1

(x+1)

�2�x+2x

2

+x

3

+

(

�4�x+7x

2

+6x

3

+x

4

)

z

1

(x+2)

�2�x+2x

2

+x

3

+

(

3�3x�3x

2

)

z

1

(x+3)

�2+x+x

2

+ z

1

(4 + x) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� (1� x) z

1

(x) + z

2

(x+ 1);

z

4

(x) = �

x

1+x

� z

1

(x) +

xz

2

(x)

1+x

�

xz

3

(x)

1+x

+ z

3

(x+ 1);

y

1

(x) = z

1

(x);

y

2

(x) + y

3

(x)� y

4

(x) = z

2

(x);

y

3

(x) +

(1�x)y

4

(x)

x

= z

3

(x);

(1�x)y

4

(x)

x

= z

4

(x):

In
omplete Z�ur
her:

5+7x+x

2

+x

3

+x

4

(�1+x)(1+x)(2+x)

+

(

x+2x

2

)

z

1

(x)

�1+x

2

+

(

3�x�6x

2

�6x

3

�2x

4

)

z

1

(x+1)

�2�x+2x

2

+x

3

+

(

�4�x+7x

2

+6x

3

+x

4

)

z

1

(x+2)

�2�x+2x

2

+x

3

+

(

3�3x�3x

2

)

z

1

(x+3)

�2+x+x

2

+ z

1

(x+ 4) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� (1� x) z

1

(x) + z

2

(x+ 1);

z

4

(x) = �

x

1+x

� z

1

(x) +

xz

2

(x)

1+x

�

x

x+1

z

3

(x) + z

3

(x+ 1);

y

1

(x) = z

1

(x);

y

2

(x) = z

2

(x)� z

3

(x) +

z

4

(x)

1�x

;

y

3

(x) = z

3

(x)� z

4

(x);

y

4

(x) = �

xz

4

(x)

�1+x

:

6.3 Comparison of the Methods

It is not easy to give some general hint on what un
oupling algorithm to use.

After trying our implementation on many example systems, the best strategy

for some parti
ular input seems to be trying several algorithms to �gure out

whi
h one gives the best result (i.e., the un
oupled equations with smallest

order/smallest 
oeÆ
ients, or the shortest running time). Our results on


omplexity need not be signi�
ant for the small dimensional systems where

un
oupling is possible; if n is large (say, n > 15), none of the available

algorithms will un
ouple the system in reasonable time and with reasonably

sized output.
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Gaussian elimination usually gives 
ompli
ated un
oupled equations and

is the only algorithm where the order of the un
oupled equation 
an be larger

than the dimension of the system. However, the di�erential system from the

last se
tion shows that neither of these short
omings happens always.

Z�ur
her's algorithm and our `in
omplete' variant have the minor te
h-

ni
al restri
tion that � must be surje
tive. Empiri
al eviden
e shows that

they both return the same un
oupled higher order equation for the �rst

variable z

1

, provided that in both algorithms we are in the nondegenerate


ase, where the blo
k diagonal (resp. blo
k triangular) matrix has only one

blo
k. The situation 
hanges when one (or both) of these two algorithms

runs into the degenerate 
ase where the system splits into several blo
ks.

This is more likely to o

ur when in
omplete Z�ur
her is applied than with

Z�ur
her's algorithm, be
ause Z�ur
her's algorithm tries to in
rease the 
ur-

rent 
ompanion blo
k by applying lemma (3.5) if lemma (3.2) is not appli-


able. On the other hand, in
omplete Z�ur
her immediately pro
eeds with

the next blo
k if lemma (5.6), whi
h 
orresponds to lemma (3.2), 
annot be

applied. Consequently, there are systems that are de
omposed into several

blo
ks by in
omplete Z�ur
her, but not with Z�ur
her's algorithm. This is de-

sirable be
ause several s
alar equations of small order are easier to handle

than one equation of large order.
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