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Chapter 1

Introdution

Systems of linear �rst order ordinary di�erential equations play a entral

role in many areas of applied mathematis. Classial textbooks on this sub-

jet show how to solve suh systems in the ase of onstant oeÆients and

leave the solution for more general oeÆients to numerial methods. In an

attempt to takle suh systems symbolially, a natural �rst step is to redue

a system to a higher order equation in a single unknown, whih we will all

a salar equation (Note that the inverse operation of transforming a higher

order di�erential equation into a system is easy by introduing one addi-

tional variable for eah derivative of the unknown). A lassial method to

ahieve this `unoupling' is the yli vetor algorithm, whih is the topi

of setion (3.2). This method is unsatisfatory beause it gives unoupled

equations with very large oeÆients. Furthermore, it does not generalize

to ertain other kinds of linear operator equations, suh as di�erene or

q-di�erene equations. These operators are of interest e.g. in the task of

proving ombinatorial identities automatially. Chyzak [11℄ desribes an al-

gorithm generalizing Zeilberger's `reative telesoping' summation algorithm

[23℄,[24℄,[20℄, that is apable of proving a large lass of identities involving

summation and integration. It uses the uni�ed framework of Ore operators

that enompasses (q-)di�erene operators, di�erential operators and many

others. One step of this algorithm onsists of solving a linear Ore operator

system with rational funtion oeÆients for rational funtion solutions. Un-

oupling this system with one of the methods desribed in this thesis allows

to solve it by appealing to one of the algorithms for �nding rational funtion

solutions of (higher order) di�erential-, di�erene or q-di�erene equations

in one unknown [1℄,[3℄,[4℄,[5℄. We formulate all unoupling algorithms for an

arbitrary oeÆient �eld, but our implementations require the oeÆients

to be rational funtions.

Chapter (2) introdues the algebrai ingredients that are the theoretial

base of the unoupling algorithms in the later hapters. It begins with the

de�nition of Ore polynomials. Following [10℄ we show how many kinds of
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6 CHAPTER 1. INTRODUCTION

higher order linear operators an be interpreted as polynomials with a non-

ommutative multipliation arising from the omposition of operators. These

polynomials form rings that are free of zero divisors and allow to divide a

polynomial by another one on the right, whih leads to a generalization of the

(extended) Eulidean Algorithm. Thus we an ompute a greatest ommon

right divisor and a least ommon left multiple of two Ore polynomials. In

setion (2.6), whih is based on [20℄, we desribe in detail how some linear

operators that arise in pratie �t into the Ore framework. In setion (2.7)

we deal with the entral objet of interest of this thesis, that is linear systems

of Ore operator equations. It turns out that in the literature on unoupling

[6℄,[10℄,[25℄ two ways of enoding suh systems in terms of pseudo-linear

maps (= Ore operators) are used. One of them requires the study of pseudo-

linear maps an �nite dimensional vetor spaes, whih is somewhat similar

to (in fat, generalizes) linear algebra [10℄. Theorem (2.28) provides the

onnetion between those two types of Ore operator systems.

Setion (3) presents Z�urher's unoupling algorithm. It proeeds in two

stages, a harateristi whih is shared with the algorithms in setions (5.1)

and (5.2). First the system is transformed into an equivalent system with

a `nie' matrix (in the ase of Z�urher's algorithm, a blok diagonal matrix

where eah blok is a ompanion matrix). In the seond stage, this normal

form is used to derive higher order salar equations. For readers who wish

to implement Z�urher's algorithm (or one of the other three unoupling al-

gorithms from this thesis) we give a pseudo-ode listing. Furthermore we

analyze the omplexity of the algorithm in the worst ase and in a ertain

`nondegenerate' ase, the latter arising most of the time in pratie. Fi-

nally we outline the `unoupling by yli vetors' method and point out its

onnetion with Z�urher's algorithm.

In Chapter (4) the theory of Ore polynomials is employed in a variant

of Gaussian elimination based on the least ommon left multiple. This algo-

rithm is less ompliated than the other unoupling algorithms we present,

but it returns salar equations of rather high order (in general, larger than

the dimension of the system) with oeÆients of high degree.

Whereas Z�urher's algorithm is based on pseudo-linear algebra and Gaus-

sian Elimination on the extended Eulidean Algorithm in Ore polynomial

rings, the unoupling algorithm by Abramov and Zima (setion 5.1) requires

no theoretial bakground exept the notion of Ore operator introdued in

setion (2.5). It proeeds in two stages, like Z�urher's algorithm. First the

system matrix is transformed into a blok-triangular form, then higher order

salar equations are dedued. We give a detailed desription of both stages

and prove that the blok-triangular system is indeed equivalent to the origi-

nal one. Theorem (5.3) shows that linearly independent solution vetors for

the system an be obtained from linearly independent solutions of the un-

oupled equations. Then we analyze the omplexity of Abramov and Zima's

algorithm in a pratially important nondegenerate ase.
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In setion (5.2) we present a new variant of Z�urher's algorithm. Instead

of a blok-diagonal normal form it transforms the system matrix into a

blok-triangular matrix (but in a di�erent way than Abramov and Zima's

algorithm). The dedution of the salar equations resembles the seond stage

of Abramov and Zima's algorithm. The idea of our `inomplete Z�urher'

algorithm is to redue the amount of omputation in the �rst stage for the

prie of a more ompliated dedution of the salar equations.

Chapter (6) presents our Mathematia pakage that implements the four

algorithms desribed in this thesis. Then we give some omputational ex-

amples and ompare the methods. One of the key points is that Gaussian

elimination is rather ineÆient, as already pointed out above. However, it

has to be mentioned that all available unoupling algorithms lead to a blow

up in the oeÆients of the equations. Sometimes unoupling an be avoided.

For instane, there are diret methods for �nding the rational solutions of

di�erential [8℄ and di�erene [2℄ systems with rational oeÆients.

Aknowledgements

I want to thank Fr�ed�eri Chyzak and Manuel Bronstein for reasons suh

as disussions and providing me with opies of papers. Speial thanks goes

to my thesis advisor Peter Paule for suggesting the topi and guiding me

through the work.
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Chapter 2

Ore Polynomials and Ore

Operators

2.1 Notation

All rings and �elds in this thesis have harateristi zero. Fields are om-

mutative. We write K(x) and K((x)) for the �eld of rational funtions and

formal laurent series with oeÆients from a �eld K, respetively. For any

�eld K , K

�

= K nf0g. The letter N denotes the set of nonnegative integers:

N = f0; 1; 2; : : :g;

and Q the set (�eld) of rational numbers. The ring of n � n matries over

a ring R is written as Mat(n;R). A

t

is the transpose of a matrix or vetor

A. I stands for the identity matrix. id

M

denotes the identity mapping of

a set M . The notation K [�;�; Æ℄ for skew polynomial rings will be de�ned

in setion (2.3). The degree of a (skew) polynomial p is written as deg(p),

with deg(0) = �1. For a vetor spae V , V

�

is the dual vetor spae. An

equation in one variable is alled `salar equation'.

Program listings use a self-explanatory pseudo-ode. Comments are en-

losed in (* : : : *).

2.2 Motivation and Preliminaries

The set of linear di�erential operators of the form

n

X

k=0

a

k

D

k

with rational funtion oeÆients a

k

2 Q(x) forms a ring, if addition is

de�ned pointwise and the produt of two operators by omposition. If we

replae D by an indeterminate over K := Q(x), say �, we obtain a ring of

9



10 CHAPTER 2. ORE POLYNOMIALS AND ORE OPERATORS

polynomials in �, where + is de�ned as usual, and � is assoiative, distribu-

tive, but not ommutative and has the following property:

The degree of a produt is the sum of the degrees of the fators: (2.1)

Rings of this kind were �rst studied by Ore in [19℄. In the same vein, linear

di�erene operators with rational funtion oeÆients

n

X

k=0

a

k

�

k

an be viewed as an algebra of nonommutative polynomials.

We will make the relationship between suh polynomials and linear op-

erators suh as D or � preise in setion (2.5); but now let us stik to the

polynomial viewpoint and hek what the above property implies for the

produt � �a of the indeterminate � and an element a 2 K

�

. The result must

be a polynomial of degree 1:

�a = �a� + a

0

for some �a 2 K

�

; a

0

2 K :

For a; b 2 K we must have, by distributivity,

� (a+ b) = �a+ �b = �a� + a

0

+

�

b� + b

0

=

�

�a+

�

b

�

� + a

0

+ b

0

;

and

�ab =

�

�a� + a

0

�

b = �a�b+ a

0

b = �a

�

�

b� + b

0

�

+ a

0

b = �a

�

b� + �ab

0

+ a

0

b:

Hene the map

� : K ! K

a 7! �a

is a �eld monomorphism, and the map

Æ : K ! K

a 7! a

0

is additive and satis�es the skew Leibniz rule Æ(ab) = �(a)Æb + Æa b. This

gives rise to

De�nition 2.1 Let � : K ! K be a monomorphism. An additive map Æ :

K ! K is alled a �-derivation (or pseudo-derivation) if

Æ(ab) = �(a)Æb + Æa b (2.2)

for all a; b 2 K .
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It is ustomary to write Æa instead of Æ(a).

Example 2.2 Some examples of �-derivations:

(i) If � = id

K

, Æ is a derivation on K and the pair (K ; Æ) is alled a

di�erential �eld.

(ii) For any � 2 K , the map Æ

�

:= � (� � id

K

) is a �-derivation, alled an

inner �-derivation. Proof:

Æ

�

(ab) = � (�(ab)� ab) = �(a)� (�(b) � b) + � (�(a)� a) b

= �(a)Æ

�

b+ Æ

�

a b:

�

Lemma 2.3 Let � be a monomorphism on K and Æ be a �-derivation on

K . Then,

(i) If � 6= id

K

then there is an element � 2 K suh that Æ = Æ

�

.

(ii) If Æ 6= 0 then there is an element � 2 K suh that � = �Æ + id

K

.

Proof. Let a; b 2 K . Expanding both sides of Æ(ab) = Æ(ba) via (2.2) yields

�(a)Æb + Æa b = �(b)Æa + Æb a;

hene

(�(a)� a) Æb = (�(b)� b) Æa: (2.3)

(i) We an hoose a 2 K with �(a) 6= a. Then (2.3) implies Æ = Æ

�

with

� = Æa= (�(a)� a).

(ii) If Æ 6= 0 we an �nd a 2 K with Æa 6= 0. Let � = (�(a)� a) =Æa. Then

it follows from (2.3) that � = �Æ + id

K

.

�

By (i) of the preeding lemma and the fat that inner �-derivations are

trivial if � = id

K

, we �nd that we always have one of the following three

ases:

(i) � = id

K

and Æ = 0

(ii) � = id

K

and Æ is an outer (i.e., non-inner) �-derivation

(iii) � 6= id

K

and Æ is an inner �-derivation
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2.3 Univariate Ore Polynomials

De�nition 2.4 Let � be a monomorphism on K and Æ be a �-derivation.

The ring of Ore polynomials K [�; �; Æ℄ is the ring of polynomials in � with

oeÆients from K with the usual polynomial addition, and the multipliation

given by

�a = �(a)� + Æa for a 2 K (2.4)

and extended by assoiativity and distributivity.

Using (2.4) and assoiativity, the produt of two monomials is (a; b 2

K ;m; n 2 N; n > 0):

(a�

n

) (b�

m

) =

�

a�

n�1

�

(�b) �

m

=

�

a�

n�1

� �

�(b)�

m+1

+ Æb �

m

�

: (2.5)

By indution, this de�nes the produt of two monomials in all ases. For

polynomials with arbitrary degrees distributivity yields

 

n

X

i=0

a

i

�

i

!

0

�

m

X

j=0

b

j

�

j

1

A

=

n

X

i=0

n

X

j=0

�

a

i

�

i

� �

b

j

�

j

�

:

Note that we an write any polynomial A 2 K [�; �; Æ℄ in the form A =

P

n

i=0

a

i

�

i

with a

i

2 K , i.e., as the sum of monomials with � on the right, by

applying (2.4) iteratively. Thus we an talk about `oeÆients' and `degree'

as for ordinary polynomials.

We argued at the beginning of this hapter that any multipliation of

polynomials with property (2.1) must satisfy (2.4) for some �, Æ. Now we

will show that the onverse holds, too.

Theorem 2.5 Let O = K [�;�; Æ℄ be a ring of skew polynomials. Then for

p; q 2 O:

deg(pq) = deg(p) + deg(q):

Proof: Suppose p; q 6= 0 and let a�

n

and b�

m

be the leading monomials of

p and q, respetively. By applying (2.5) iteratively, we �nd that the leading

monomial of pq is a�

n

(b)�

n+m

. Now sine ab 6= 0 and � is a monomorphism

deg(pq) = m+ n follows. �

Clearly, this implies

Corollary 2.6 Rings of skew polynomials are free of zero-divisors.

�

Hene we have the anellation rules

pq = pr ) p (q � r) = 0 ) q = r; and

qp = rp ) (q � r) p = 0 ) q = r
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for any p; q; r 2 K [�; �; Æ℄, p 6= 0.

Any ring of Ore polynomials K [�; �; Æ℄ is a K -algebra. Therefore, we will

sometimes speak of Ore algebras instead of rings of skew or Ore polynomials.

Throughout this thesis, we onsider only univariate Ore polynomials. In [11℄,

[12℄ multivariate Ore algebras are introdued and employed in the task of

automatially proving identities involving summations and integrations.

2.4 The Eulidean Algorithm

Let O = K [�; �; Æ℄ be a ring of Ore polynomials, A;B 2 Onf0g, a�

n

and b�

m

be their leading monomials. We want to divide A by B on the right, i.e.,

�nd Q;R 2 O s.t. A = QB + R and deg(R) < deg(B). In the ase n < m,

we simply have

A = 0B +A:

If n � m, the right division an be done as follows: With

Q

0

:=

a

�

n�m

(b)

�

n�m

;

we have

Q

0

B =

a

�

n�m

(b)

�

n�m

b�

m

+O(�

n�1

)

=

a

�

n�m

(b)

�

n�m�1

(�(b)� + Æb) �

m

+O(�

n�1

)

=

a

�

n�m

(b)

�

n�m�1

�(b)�

m+1

+O(�

n�1

) = : : : =

=

a

�

n�m

(b)

�

n�m

(b)�

n

+O(�

n�1

) = a�

n

+O(�

n�1

);

where O(�

n�1

) stands for any Ore polynomial of degree less than n, hene

the leading monomial of Q

0

B is a�

n

. By indution on the degree, we an

assume that there are Q

1

; R 2 O s.t.

A�Q

0

B = Q

1

B +R and deg(R) < deg(B):

Then we have

A = QB +R and deg(R) < deg(B)

with Q := Q

0

+Q

1

. R =: rrem(A;B) is alled the right-remainder of A and

B, and Q =: rquo(A;B) is alled their right quotient.

In general, we do not require the K -endomorphism � to be surjetive. But if

this is the ase, that is, � is an automorphism, there is a similar left division

algorithm: With

Q

0

:= �

�m

�

a

b

�

�

n�m
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we have

BQ

0

= b�

m

�

�m

�

a

b

�

�

n�m

+O(�

n�1

)

= b�

m�1

�

�

�m+1

�

a

b

�

� + Æ�

�m

�

a

b

��

�

n�m

+O(�

n�1

)

= b�

m�1

�

�m+1

�

a

b

�

�

n�m+1

+O(�

n�1

) = : : : =

= b�

0

�

a

b

�

�

n

+O(�

n�1

) = a�

n

+O(�

n�1

);

and we an divide A�BQ

0

reursively by B on the left to obtain Q;R 2 O

s.t.

A = BQ+R and deg(R) < deg(B):

Analogously to right division, left-quotient and left-remainder an be de�ned

by lquo(A;B) := Q and lrem(A;B) := R, respetively.

Now we an write down the extended (right) Eulidean Algorithm, whih,

as we will show, yields a greatest ommon right divisor and a least ommon

left multiple of A;B 2 O:

Algorithm 2.7

R

0

 A, R

1

 B

A

0

 1, A

1

 0

B

0

 0, B

1

 1

i 1

while R

i

6= 0 do

i i+ 1

Q

i�1

 rquo(R

i�2

; R

i�1

)

R

i

 rrem(R

i�2

; R

i�1

)

A

i

 A

i�2

�Q

i�1

A

i�1

B

i

 B

i�2

�Q

i�1

B

i�1

n i.

This algorithm terminates beause deg(R

i

) < deg(R

i�1

), 1 � i � n.

Lemma 2.8 For 0 � i � n

(i) R

i

= A

i

A+B

i

B,

(ii) R

n�1

right divides R

i

.

Proof.
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(i) Indution on i. The laim holds for i = 0; 1, and if it holds for i � 2

and i� 1, then

A

i

A+B

i

B = (A

i�2

�Q

i�1

A

i�1

)A+ (B

i�2

�Q

i�1

B

i�1

)B

= A

i�2

A+B

i�2

B �Q

i�1

(A

i�1

A+B

i�1

B)

= R

i�2

� rquo(R

i�2

; R

i�1

)R

i�1

= rrem(R

i�2

; R

i�1

) = R

i

:

(ii) Here we apply indution on i bakwards. R

n�1

right divides both R

n

=

0 and itself, and from

R

i�2

= Q

i�1

R

i�1

+R

i

we see that R

n�1

right divides R

i�2

if it right divides R

i�1

and R

i

.

�

The following theorem shows that the above algorithm does indeed ompute

a greatest ommon right divisor and a least ommon left multiple of A and

B.

Theorem 2.9 (Corretness of the Eulidean Algorithm)

(i) R

n�1

=: grd(A;B) is a greatest ommon right divisor of A and B.

(ii) A

n

A = �B

n

B =: llm(A;B) is a least ommon left multiple of A and

B.

Proof.

(i) By lemma (2.8) (i),

R

n�1

= A

n�1

A+B

n�1

B;

hene any ommon right divisor of A and B right divides R

n�1

. On the

other hand, lemma (2.8) (ii) implies that R

n�1

right divides A = R

0

and B = R

1

.

(ii) Beause of lemma (2.8) (i) and the terminating ondition of the while-

loop, we have

A

n

A+B

n

B = R

n

= 0;

hene A

n

A = �B

n

B is a ommon left multiple of A and B. To see

that it is nonzero, �rst we note

deg(R

i

) < deg(R

i�1

) and deg(Q

i�1

) = deg(R

i�2

)� deg(R

i�1

)
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for 2 � i � n. By indution on i, we show

deg(A

i

) = deg(B)� deg(R

i�1

) and deg(B

i

) = deg(A)� deg(R

i�1

)

for 2 � i � n. We have deg(A

2

) = deg(1) = 0 = deg(B) � deg(R

1

),

deg(A

3

) = deg(A

1

�Q

2

A

2

) = deg(Q

2

) = deg rquo(B;R

2

) = deg(B)�

deg(R

2

), and the indution step is

deg(A

i

) = deg(A

i�2

�Q

i�1

A

i�1

) = deg(Q

i�1

) + deg(A

i�1

)

= deg(Q

i�1

) + deg(B)� deg(R

i�2

) = deg(B)� deg(R

i�1

):

The seond assertion is shown analogously. Hene we have deg(A

n

) =

deg(B) � deg(R

n�1

) � 0 and deg(B

n

) = deg(A) � deg(R

n�1

) � 0,

so A

n

6= 0 and B

n

6= 0. This shows that A

n

A = �B

n

B is nonzero.

In order to show that it is a least ommon left multiple of A and

B, suppose CA = �DB is some ommon left multiple of A and B

and de�ne C

i

by C

0

= �D, C

1

= C and C

i

= C

i�2

� C

i�1

Q

i�1

for

2 � i � n. We show eah of the assertions

C

i�1

R

i

� C

i

R

i�1

= 0 (2.6)

C

i�1

A

i

� C

i

A

i�1

= (�1)

i

C (2.7)

C

i�1

B

i

�C

i

B

i�1

= (�1)

i

D (2.8)

(1 � i � n) by indution. The indution bases i = 1 are obvious, and

the indution steps are

C

i�1

R

i

� C

i

R

i�1

= C

i�1

rrem(R

i�2

; R

i�1

)

� (C

i�2

� C

i�1

rquo(R

i�2

; R

i�1

))R

i�1

= C

i�1

R

i�2

� C

i�2

R

i�1

= 0;

C

i�1

A

i

� C

i

A

i�1

= C

i�1

(A

i�2

�Q

i�1

A

i�1

)� (C

i�2

� C

i�1

Q

i�1

)A

i�1

= C

i�1

A

i�2

� C

i�2

A

i�1

= (�1)

i

C; and

C

i�1

B

i

� C

i

B

i�1

= C

i�1

(B

i�2

�Q

i�1

B

i�1

)� (C

i�2

� C

i�1

Q

i�1

)B

i�1

= C

i�1

B

i�2

� C

i�2

B

i�1

= (�1)

i

D:

(2.6) implies that C

n

R

n�1

= C

n�1

R

n

= 0, hene C

n

= 0. (2.7) and

(2.8) then show that A

n

right divides C, and B

n

right divides D.

Therefore, A

n

A = �B

n

B is indeed a (nonzero) least ommon left

multiple of A and B.

�

In the extended Eulidean Algorithm we an save some omputation time

by omitting the omputation of the B

i

. By Lemma (2.8)(i), B

n�1

and

B

n

an be determined eventually by B

n�1

= rquo(R

n�1

� A

n�1

A;B) and
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B

n

= rquo(�A

n

A;B), respetively. This observation is mentioned (for the

Eulidean Algorithm for integers) in [16℄. For a di�erent algorithmi ap-

proah to greatest ommon left divisors, see [17℄, where the theory of sub-

resultants is generalized to Ore polynomials.

For an example of a omputation with the Eulidean Algorithm, see

example (2.25).

More information about the theory of skew polynomials an be found in

[13℄.

2.5 Ore Polynomials as Linear Operators

Let K ; �; Æ be as above and V a K -vetor spae.

De�nition 2.10 An additive map � : V ! V is alled pseudo-linear (w.r.t.

� and Æ) if

�(au) = �(a)�u+ Æa u for any a 2 K ; u 2 V:

Pseudo-linear maps are sometimes alled Ore operators. This term is used

in situations where the pseudo-linear map is supposed to speialize to a

linear operator like D or � in appliations, suh as in setion (2.6) or at the

beginning of setion (2.7). We will not use it for the pseudo-linear maps on

�nite dimensional vetor spaes onsidered later in setion (2.7).

Example 2.11

(i) For any K -vetorspae V , every homomorphism h : V ! V is pseudo-

linear w.r.t. � = id

K

and Æ = 0.

(ii) If K , �, Æ are as usual, Æ is a pseudo-linear map on K w.r.t. � and Æ.

(iii) � is pseudo-linear w.r.t. � and 0.

In setion (2.6) we will desribe in detail that the di�erentiation operator

D, the di�erene operator � and several other types of linear operators that

arise in pratie an be viewed as Ore operators (pseudo-linear maps).

De�nition 2.12 The onstant �eld of K w.r.t. � and Æ is

Const

�;Æ

:= fa 2 K j �(a) = a and Æa = 0g :

Const

�;Æ

is a sub�eld of K beause it is the intersetion of the sub�elds

inv(�) = fa 2 K j �(a) = ag

and

ker(Æ) = fa 2 K j Æa = 0g :

Sine any sub�eld of K must ontain (an isomorphi opy of) Q , it follows
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Corollary 2.13 �j

Q

= id

Q

and Æj

Q

= 0. �

Lemma 2.14 Let V be a vetor spae over K and � : V ! V be pseudo-

linear (w.r.t. � and Æ). Then � is Const

�;Æ

-linear.

Proof. Let  2 Const

�;Æ

and u; v 2 V . Then,

�(u+ v) = �(u) + �v = (�()�u+ Æ u) + �v = �u+ �v:

�

In the ase V = K , that is, the vetor spae of a �eld over itself, we an

haraterize all pseudo-linear maps; furthermore, the following lemma shows

that in this ase there are in�nitely many pseudo-linear maps for any pair

(�; Æ).

Lemma 2.15 For any  2 K , the map �



: K ! K given by

�



a =  �(a) + Æa

is pseudo-linear. Conversely, for any pseudo-linear map � : K ! K there is

an element  2 K suh that � = �



.

Proof. �



is additive beause � and Æ are. Furthermore, for a; b 2 K we have

�



(ab) =  �(ab) + Æ(ab) =  �(a)�(b) + �(a)Æb + Æa b = �(a)�



b+ Æa b:

To show the onverse, we write

�a = �(a 1) = �(a)�1 + Æa;

hene � = �



with  = �1. �

We will enounter several ases where we do not have K = V as in lemma

(2.15), but at least K � V ; then the proof of lemma (2.15) asserts that the

ation of � on K is determined by �; Æ and �1.

So far skew polynomials and pseudo-linear maps are separate onepts. The

onnetion between them is provided by

De�nition 2.16 Given a ring of skew polynomials O = K [�;�; Æ℄, a K -

vetor spae V , and a pseudo-linear (w.r.t. � and Æ) map � : V ! V the

ation �

�

: O � V ! V is de�ned by

 

n

X

i=0

a

i

�

i

!

�

�

u =

n

X

i=0

a

i

�

i

u

for any u 2 V .
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By this de�nition and the following theorem we an view any Ore algebra

K [�; �; Æ℄ as an algebra of linear operators one we �nd a vetor spae V and

a pseudolinear (w.r.t. � and Æ) map � : V ! V .

If there is no ambiguity from the ontext, we will write � instead of �

�

.

Theorem 2.17 The operation �

�

turns V into a left O-module.

Proof. It is lear that we have for p; q 2 O, u; v 2 V :

� (p+ q) � u = p � u+ q � u,

� p � (u+ v) = p � u+ p � v,

� 1 � u = u.

What remains to show is

� (pq) � u = p � (q � u) :

We �rst prove by indution on n that

(a�

n

b�

m

) � u = a�

n

� (b�

m

� u) (2.9)

for any n;m � 0, a; b 2 K and u 2 V . If n = 0, then

(ab�

m

) � u = ab�

m

u = a � (b�

m

u) :

If (2.9) holds for n� 1, we obtain

(a�

n

b�

m

) � u =

��

a�

n�1

� �

�(b)�

m+1

+ Æb �

m

��

� u

=

�

a�

n�1

�(b)�

m+1

�

� u+

�

a�

n�1

Æb �

m

�

� u

= a�

n�1

�

�

�(b)�

m+1

� u

�

+ a�

n�1

� (Æb �

m

� u)

= a�

n�1

�

�

�(b)�

m+1

u+ Æb �

m

u

�

= a�

n�1

� � (b�

m

u)

= a�

n

� (b�

m

� u) :

For p =

P

n

i=0

a

i

�

i

; q =

P

m

j=0

b

j

�

j

2 O we have, by (2.9),

(pq) � u =

0

�

n

X

i=0

m

X

j=0

�

a

i

�

i

� �

b

j

�

j

�

1

A

� u =

n

X

i=0

m

X

j=0

��

a

i

�

i

b

j

�

j

�

� u

�

=

n

X

i=0

m

X

j=0

=

�

a

i

�

i

�

�

b

j

�

j

� u

��

= p � (q � u) :

�
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We onlude this outline of the theory of pseudo-linear maps with the de�ni-

tion of the adjoint of a pseudo-linear map. This onept will be of importane

in setion (3.2), where yli vetors are disussed. First, reall that in linear

algebra the adjoint map

�

�

: V

�

! V

�

f 7! (v 7! f(�(v)))

of a vetor spae homomorphism � : V ! V is introdued. This notion an

be generalized to pseudo-linear maps, provided that � is surjetive.

Lemma 2.18 Let V be a vetor spae over K , � : K ! K be an automor-

phism, Æ : K ! K be a �-derivation and � : V ! V be pseudo-linear (w.r.t.

� and Æ). Then for all f 2 V

�

, the map  

f

de�ned by

 

f

: V ! K

x 7! �

�1

(f(�x))� �

�1

(Æ(f(x)))

is an element of V

�

.

Proof. We have to show that  

f

is linear. Therefore, let x; y 2 V and a 2 K .

Then

 

f

(ax+ y) = �

�1

(f(�(ax+ y)))� �

�1

(Æ(f(ax+ y)))

= �

�1

(f(�(a)�x+ Æa x+ �y))� �

�1

(Æ(af(x) + f(y)))

= �

�1

(�(a)f(�x) + Æaf(x) + f(�y))� �

�1

(�(a)Æf(x) + Æa f(x))

��

�1

(Æf(y))

= a�

�1

(f(�x)) + �

�1

(Æa)�

�1

(f(x)) + �

�1

(f(�y))

�a�

�1

(Æf(x)) � �

�1

(Æa)�

�1

(f(x))� �

�1

(Æf(y))

= a

�

�

�1

(f(�x))� �

�1

(Æf(x))

�

+ �

�1

(f(�y))� �

�1

(Æf(y))

= a 

f

(x) +  

f

(y):

�

De�nition 2.19 The adjoint �

�

of � is de�ned by

�

�

: V

�

! V

�

f 7!  

f

with the  

f

from the preeding lemma.

In the ase where � is a linear map, we have � = id

K

and Æ = 0, and the

de�nition of the adjoint map from linear algebra is reovered. In general, �

�

is not pseudo-linear w.r.t. � and Æ, but w.r.t. �

�1

and ��

�1

Æ, as we will

now show.
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Theorem 2.20 Let � : V ! V be pseudo-linear w.r.t. � and Æ. Then ��

�1

Æ

is a �

�1

-derivation, and �

�

: V

�

! V

�

is pseudo-linear w.r.t. �

�1

and

��

�1

Æ.

Proof. ��

�1

Æ is a �

�1

-derivation beause for a; b 2 K

��

�1

Æ(ab) = ��

�1

Æ(ba) = ��

�1

(�(b)Æa + Æb a) =

��

�1

(a)�

�1

(Æb)� �

�1

(Æa)b:

Now let f; g 2 V

�

, x 2 V and a 2 K . We have

�

�

(af + g)(x) = �

�1

((af + g) (�x))� �

�1

Æ ((af + g) (x))

= �

�1

(af(�x) + g(�x))� �

�1

(�(f(x))Æa + Æf(x) a+ Æg(x))

= �

�1

(a)�

�1

(f(�x)) + �

�1

(g(�x)) � f(x)�

�1

(Æa)

��

�1

(a)�

�1

(Æf(x)) � �

�1

(Æg(x))

= �

�1

(a)

�

�

�1

(f(�x))� �

�1

(Æf(x))

�

��

�1

(Æa)f(x) + �

�1

(g(�x)) � �

�1

(Æg(x))

= �

�1

(a)�

�

f(x)� �

�1

(Æa)f(x) + �

�

g(x);

hene

�

�

(af + g) = �

�1

(a)�

�

f � �

�1

(Æa)f + �

�

g:

�

2.6 Examples

We saw in example (2.11) that linear maps on vetor spaes are speial ases

of pseudo-linear maps. In this setion we give several examples of pseudo-

linear maps that are important in appliations.

Shift Operator and Di�erene Operator

For any �eld K, the set K

N

of K-sequenes is a ommutative ring if addi-

tion and multipliation are de�ned omponentwise. The shift operator E is

de�ned by

E : K

N

! K

N

Eu(n) := u(n+ 1);

and the di�erene operator � : K

N

! K

N

is de�ned by

� := E � id:
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In order to view E and � as pseudo-linear maps, we wish to endow K

N

with

a vetor spae struture over the �eld of rational funtions K(x). However,

the natural salar multipliation

(r(x)u) (n) := r(x)j

x=n

u(n)

(r 2 K(x), u 2 K

N

) is not well-de�ned, beause r might have poles in N.

Therefore, following [20℄, we introdue the quotient ring

S(K) := K

N

=I;

where

I :=

1

[

k=0

kerE

k

� K

N

is the ideal of eventually zero sequenes. In other words, we identify se-

quenes that di�er only at �nitely many plaes. The elements of S(K) are

alled germs (of sequenes). Let � : K

N

! S(K) be the anonial epimor-

phism. Sine

ker(�E) = (�E)

�1

(0) = E

�1

�

�1

(0) = E

�1

(I) =

1

[

k=0

kerE

k+1

= I;

the isomorphism theorem gives rise to an isomorphism

~

E : K

N

=I ! im�E

a+ I 7! �E(a);

whih is in fat an automorphism of S(K) and satis�es �E =

~

E�, sine

~

E�(a) =

~

E(a+ I) = �E(a)

for any a 2 K

N

.

~

E is alled the shift operator on S(K). For simpliity, we

will write a for an equivalene lass a+ I 2 S(K) and E instead of

~

E.

To omplete the setup, we wish to embed K(x) into S(K). This is done

by

Lemma 2.21 The map

 : K(x) ! S(K)

r(x) 7! (r(n))

n2N

is a ring monomorphism. (Note that we an ignore the �nitely many n for

whih r(n) is unde�ned.)
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Proof.  is apparently additive and multipliative. To see that it is one-one,

let r

1

; r

2

2 K(x). If  (r

1

) =  (r

2

), there are in�nitely many n 2 N s.t.

r

1

(n) = r

2

(n). Writing r

i

= p

i

=q

i

with polynomials p

i

; q

i

2 K[x℄, i = 1; 2,

we get p

1

(n)q

2

(n) = p

2

(n)q

1

(n) at in�nitely many points, hene r

1

= r

2

. �

This lemma shows that

R(K) :=  (K(x))

is a sub�eld of S(K) isomorphi to K(x), alled the �eld of rational se-

quenes. Clearly, S(K) is a vetor spae over R(K), if salar multipliation

is de�ned omponentwise.

Now we are ready to study the behaviour of the shift operator on S(K).

Let u; v 2 S(K), r 2 R(K). We have

E(u+ v)(n) = (u+ v)(n+ 1) = u(n+ 1) + v(n+ 1) = (Eu+Ev)(n);

E(ru)(n) = (ru)(n+ 1) = r(n+ 1)u(n+ 1) = (Er Eu)(n);

and

�(u+ v) = E(u+ v)� (u+ v) = Eu� u+Ev � v = �u+�v;

�(ru) = E(ru)� ru = Er Eu�Er u+Er u� ru = Er�u+�r u:

We read o� that

E : S(K)! S(K) is a pseudo-linear map w.r.t. � = E, Æ = 0,

and that

� : S(K)! S(K) is a pseudo-linear map w.r.t. � = E, Æ = �.

(We do not distinguish between E, � and the restritions Ej

R(K)

, �j

R(K)

.)

Upon setting K = R(K), S(K) is a module over the ring of Ore polyno-

mials K [�;E;�℄ due to theorem (2.17), applied with � = �. By an abuse of

notation, we will write K [�;E;�℄ instead of K [�;E;�℄. K [�;E;�℄ is the

algebra of di�erene operators with rational funtion oeÆients.

Similarly, K [E;E; 0℄ is the algebra of shift operators with rational fun-

tion oeÆients.

Di�erential Operator

A di�erential �eld (K ; D) is a �eld K with a derivation D : K ! K , i.e., an

additive mapping that satis�es the Leibniz rule

D(ab) = aDb+Da b (2.10)

for all a; b 2 K . For example, let K = K((x)), the �eld of formal Laurent

series over a �eld K, and D be the usual di�erentiation operator on K((x)).

Considering K as a vetor spae over itself, we �nd, looking at (2.10):
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D : K((x))! K((x)) is a pseudo-linear map w.r.t. � = id

K

, Æ = D.

By theorem (2.17) the ring of Ore polynomials K [�; id

K

;D℄ (whih we will

write sloppily as K [D; id

K

;D℄) an be viewed as an algebra of di�erential

operators on K .

q-Shift, q-Di�erene and q-Di�erential Operator

LetK be a �eld and x, q be indeterminates. There is a unique automorphism

Q of K = K(q)(x) that �xes K(q) and satis�es

Qx = qx;

alled the q-shift operator. The operator �

q

:= Q � id is alled the q-

di�erene operator. Sine

Q(rf)(x) = r(qx)f(qx) = Qr Qf for any r; f 2 K ;

�

q

(rf) = Q(rf)� rf = Qr Qf �Qr f +Qr f � rf = Qr�

q

f +�

q

r f

we have:

Q : K ! K is a pseudo-linear map w.r.t. � = Q, Æ = 0,

and

�

q

: K ! K is a pseudo-linear map w.r.t. � = Q, Æ = �

q

:

The q-di�erentiation operator is de�ned by

D

q

: K ! K

f(x) 7!

f(qx)� f(x)

qx� x

=

�

q

f(x)

�

q

x

:

By writing

D

q

(rf)(x) =

r(qx)f(qx)� r(qx)f(x) + r(qx)f(x)� r(x)f(x)

qx� x

= Qr(x) D

q

f(x) +D

q

r(x) f(x)

and observing that D

q

is additive we �nd:

D

q

: K ! K is a pseudo-linear map w.r.t. � = Q, Æ = D

q

.

The examples of Ore operators and Ore algebras presented in this setion

are summarized, together with some others, in the following table from [12℄.

In all these examples, olumns one, two, and three give the ation of �, �
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and Æ, respetively. The fourth olumn shows the ommutation rule of the

orresponding Ore polynomial ring. We set K = K(x) for some �eld K, and

r denotes an arbitrary element from K(x).

Operator �f(x) �(r)(x) Ær(x) (� � r)(x)

Identity f(x) r(x) 0 r(x)�f(x)

Di�erentiation f

0

(x) r(x) r

0

(x) r(x)� + r

0

(x)

Shift f(x+ 1) r(x+ 1) 0 r(x+ 1)�

Di�erene �f(x) r(x+ 1) �r(x) r(x+ 1)� +�r(x)

q-Shift f(qx) r(qx) 0 r(qx)�

q-Di�erene �

q

f(x) r(qx) �

q

r(x) r(qx)� +�

q

r

q-Di�erentiation

f(qx)�f(x)

qx�x

r(qx)

r(qx)�r(x)

qx�x

r(qx)� +D

q

r(x)

Eulerian operator xf

0

(x) r(x) xr

0

(x) r(x)� + xr

0

(x)

Mahlerian operator f(x

p

) r(x

p

) 0 r(x

p

)�

Divided di�erenes

f(x)�f(a)

x�a

r(a)

r(x)�r(a)

x�a

r(a)� +

r(x)�r(a)

x�a

2.7 Pseudo-linear Equations

Let W be a vetor spae over K , # :W !W a pseudo-linear map, a

ij

2 K ,

r

i

2W for 1 � i; j � n. Consider the system of equations

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

.

#y

n

= a

n1

y

1

+ : : : + a

nn

y

n

+ r

n

in the unknowns y = (y

1

; : : : ; y

n

) 2W

n

, whih we will write briey as

#y = Ay + r (2.11)

with

#

0

B

�

y

1

.

.

.

y

n

1

C

A

:=

0

B

�

#y

1

.

.

.

#y

n

1

C

A

;

A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and r = (r

1

; : : : ; r

n

) 2 W

n

. A salar equation

(of higher order) is then an equation of the form

m

X

k=0

a

k

#

k

z = �; (2.12)

where a

k

2 K , � 2 W and z 2 W is unknown. We all suh an equation

`salar' beause it ontains only one unknown. In hapter (4) and setion

(5.1) we will present two algorithms that redue the problem of solving (2.11)

to the solution of equations of the form (2.12).
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The onept of pseudo-linear maps aptures a variety of systems of linear

operator equations:

Example 2.22 Let W = K = K((x)) for some �eld K and # = D. Then

(2.11) beomes a system of �rst order linear ordinary di�erential equations

Dy

1

= a

11

y

1

+ : : : + a

1n

y

n

+ r

1

.

.

.

Dy

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.23 Let K = R(K) for some �eld K, W = S(K) and # = E.

Then (2.11) beomes a system of �rst order linear di�erene equations

Ey

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

.

Ey

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.24 Let K be any �eld, W = K and # = id

K

. Then (2.11)

beomes a system of algebrai linear equations

y

1

= a

11

y

1

+ : : : + a

1n

y

n

+ r

1

.

.

.

y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

�

Example 2.25 This example shows that the Eulidean Algorithm for Ore

polynomials is useful for working with pseudo-linear equations. Consider the

di�erene equations

�

1

x

y(x)+

�1� x� 3x

2

� x

3

(1 + x) (2 + x)

y(x+1)+

(�1 + x) (1 + x)

2 + x

y(x+2) = 0 (2.13)

and

�

1

1 + x

y(x) +

2 + x

2

1 + x

y(x+ 1) + (2 + 2x) y(x+ 2) = 0: (2.14)

Let us apply the Eulidean Algorithm to the operators

A = �

1

x

+

�1� x� 3x

2

� x

3

(1 + x) (2 + x)

E +

(�1 + x) (1 + x)

2 + x

E

2
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and

B = �

1

1 + x

+

2 + x

2

1 + x

E + (2 + 2x)E

2

;

where E is the forward shift Ex = x + 1. The loop of algorithm (2.7) is

exeuted two times, and yields the relations

0A+ 1B = �

1

1+x

+

2+x

2

1+x

E + (2 + 2x)E

2

;

1A+

1�x

4+2x

B =

1

x

+ xE;

�

2x(2+x)

4+5x+3x

2

+

4(2+x)(3+x)

12+11x+3x

2

E

�

A+

�

4+6x+2x

2

4+5x+3x

2

�

2x(2+x)

12+11x+3x

2

E

�

B = 0:

We read o�

grd(A;B) =

1

x

+ xE

and

llm(A;B) =

�

2x (2 + x)

4 + 5x+ 3x

2

+

4 (2 + x) (3 + x)

12 + 11x+ 3x

2

E

�

A:

By dividing A, B by their grd on the right, we �nd that the equations

�

�1 +

x� 1

x+ 2

E

��

1

x

+ xE

�

y(x) = 0;

�

x

1 + x

+ 2E

��

1

x

+ xE

�

y(x) = 0

are equivalent to (2.13) and (2.14), respetively. Furthermore, the di�erene

equation llm(A;B)y = 0, or

�

2(2+x)

4+5x+3x

2

y(x)�

2

(

48+64x+53x

2

+37x

3

+17x

4

+3x

5

)

(4+5x+3x

2

)(12+11x+3x

2

)

y(x+ 1)

�

2

(

48+152x+195x

2

+119x

3

+35x

4

+3x

5

)

(4+5x+3x

2

)(12+11x+3x

2

)

y(x+ 2) +

4x(2+x)

2

12+11x+3x

2

y(x+ 3) = 0

is solved by all solutions of (2.13) and all solutions of (2.14).

A more sophistiated appliation of the Eulidean Algorithm to systems

of pseudo-linear equations is the Gaussian Elimination Algorithm of hapter

(4). �

There is a less obvious, but elegant way to model linear operator systems

suh as di�erene and di�erential systems using pseudo-linear maps, by on-

sidering pseudo-linear maps on �nite dimensional vetor spaes:

Let V be a vetor spae over K , � : V ! V be pseudo-linear and suppose

that dimV = n is �nite. This assumption makes � amenable to tehniques

similar to linear algebra. Indeed, the study of pseudo-linear maps on �nite
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dimensional vetor spaes is an area alled `pseudo-linear algebra` with ori-

gins in the 1930s ([15℄).

Let B = (b

1

; : : : ; b

n

) be a basis for V . For a vetor x =

P

n

k=1

x

k

b

k

we

write (x)

B

for the oordinates of x w.r.t. B:

x =

n

X

k=1

x

k

b

k

() (x)

B

=

0

B

�

x

1

.

.

.

x

n

1

C

A

2 K

n

:

We de�ne M

B

(�) = (t

ik

)

1�i;k�n

, the matrix of � w.r.t. B, by

�b

k

=

n

X

i=1

t

ik

b

i

:

Then we have

�x = �

n

X

k=1

x

k

b

k

=

n

X

k=1

(�(x

k

)�b

k

+ Æx

k

b

k

)

=

n

X

k=1

�(x

k

)

n

X

i=1

t

ik

b

k

+

n

X

i=1

Æx

i

b

i

=

n

X

i=1

 

n

X

k=1

t

ik

�(x

k

) + Æx

i

!

b

i

:

This shows that

(�x)

B

=M

B

(�)� ((x)

B

) + Æ ((x)

B

) ; (2.15)

where � and Æ are applied omponentwise. Conversely, any n by n matrix

over K gives rise to a pseudo-linear map via (2.15). For � = id and Æ = 0,

this is familiar from linear algebra.

If A = (a

ik

) 2 Mat(n;K ) is invertible, we an transform

B = fb

1

; : : : ; b

n

g

into the new basis

AB =

�

b

0

1

; : : : ; b

0

n

	

given by

b

0

k

=

n

X

i=1

a

ik

b

k

;

that is,

��

b

0

1

�

B

; : : : ;

�

b

0

n

�

B

�

= A:

The matrix of � assoiated with this new basis is then

T

0

= A

�1

T�(A) +A

�1

Æ(A); (2.16)
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whih an be shown as follows: With the notation A

�1

= (a

(�1)

ik

) we have

b

j

= A

�1

b

0

j

=

P

n

l=1

a

(�1)

lj

b

0

l

and thus

�b

0

k

= �

n

X

i=1

a

ik

b

i

=

n

X

i=1

�(a

ik

)�b

i

+

n

X

j=1

Æ(a

jk

)b

j

=

n

X

j=1

 

n

X

i=1

�(a

ik

)t

ji

+ Æ(a

jk

)

!

b

j

=

n

X

l=1

n

X

j=1

a

(�1)

lj

 

n

X

i=1

t

ji

�(a

ik

) + Æa

jk

!

b

0

l

:

The following example shows how a system of di�erential equations an

be enoded by a pseudo-linear map.

Example 2.26 Let (K ; Æ) be a di�erential �eld (f. example (2.2)(i))with

derivation Æ and T 2 Mat(n;K ). Then the map � : K

n

! K

n

given by

�

0

B

�

y

1

.

.

.

y

n

1

C

A

= T

0

B

�

y

1

.

.

.

y

n

1

C

A

+

0

B

�

Æy

1

.

.

.

Æy

n

1

C

A

is pseudo-linear w.r.t. id

K

, Æ. Let r 2 K

n

, then the equation

�y = r

is a system of di�erential equations. �

In the ase of di�erene equations, some rewriting has to be done before

we an assign a pseudo-linear map to a system of equations:

Example 2.27 Let K be a �eld, E be an automorphism of K (we do not

restrit E to the forward shift introdued in setion (2.6)), M 2 Mat(n;K )

and r 2 K

n

. We want to write the system of di�erene equations

Ey =My + r (2.17)

in the form

�y = f

for some pseudo-linear map � : K

n

! K

n

. Applying � := E

�1

to both sides

of My �Ey = �r gives

�(M)�(y) � y = ��(r);
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whih an be rewritten as

(�(M)� I) �(y) + �(y)� y = ��(r):

By (ii) of example (2.2), Æ := �� id

K

is a �-derivation. Summing up, if we

de�ne � to be the mapping pseudo-linear w.r.t. � and Æ whose matrix w.r.t.

the anonial basis of K

n

is �(M)� I, then (2.17) is equivalent to

�y = f

with f = ��(r). �

These examples show that an equation

�y = f (2.18)

in a �nite dimensional vetor spae enodes a system of pseudo-linear equa-

tions. We will use this term for systems of the form (2.11), too and make it

lear in eah situation whih type of system we mean. The relation between

them (in the ase where � is an automorphism) is provided by

Theorem 2.28 Let K be a �eld, � : K ! K be an automorphism, Æ : K ! K

a �-derivation, � : K

n

! K

n

be pseudo-linear w.r.t. � and Æ and f 2 K

n

.

Then there is a pseudo-linear map # : K ! K , a matrix A 2 Mat(n;K ) and

a vetor r 2 K

n

s.t. for all y 2 K

n

�y = f (2.19)

if and only if

#y = Ay + r:

In short, (2.18) is a speial ase of (2.11).

Proof. Let T be the matrix of � assoiated with the anonial basis of K

n

.

Then equation (2.19) is equivalent to

T�(y) + Æy = f:

By applying �

�1

on both sides, this is further equivalent to

�

�1

(T )y + �

�1

Æ(y) = �

�1

(f)

() �

�1

Æ(y) = ��

�1

(T )y + �

�1

(f):

Now for all a; b 2 K we have

Æ(ab) = Æ(ba) = �(b)Æa + Æb a;

hene

�

�1

Æ(ab) = �

�1

(a)�

�1

Æ(b) + �

�1

Æ(a)b;

i.e., �

�1

Æ is a �

�1

-derivation. Furthermore # := �

�1

Æ is a pseudo-linear

map w.r.t. �

�1

and �

�1

Æ (f. example (2.11)), and (2.19) is equivalent to

#y = Ay + r with A = ��

�1

(T ) and r = �

�1

(f). �

The main idea of this proof is mentioned in [11℄.



Chapter 3

Blok Diagonal

Deomposition

In this hapter we onsider pseudo-linear equations of the type

�x = r; (3.1)

where � is a pseudo-linear map w.r.t. � and Æ on a vetor spae V of �nite

dimension n. Additionally, we assume that � is an automorphism. Speial

ases inlude systems of di�erene or di�erential equations where the un-

knowns are in a �eld, as indiated by examples (2.26) and (2.27). On the

other hand, Mahlerian operators are examples of pseudo-linear maps where

� is not an automorphism.

In the proess of solving (3.1) a natural �rst step is to �nd a hange

of bases that transforms the matrix assoiated with � into a simple form,

e.g. a diagonal matrix. However, we annot hope for a normal form of this

type in general, beause we even annot always ahieve it in the speial ase

where � is a linear map. In this hapter we will present an algorithm that

proeeds in two steps. First it omputes a basis w.r.t. whih the matrix of

� is blok-triangular and eah blok is a ompanion matrix. Afterwards this

normal form is used to obtain higher order unoupled equations for some of

the unknowns and additional linear algebrai (i.e., without appliations of

operators to the unknowns) equations to determine the remaining unknowns.

The algorithm, whih is due to Bruno Z�urher, is a generalization of an

algorithm by Danilewski [14℄. Our exposition losely follows [25℄.

31
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3.1 Z�urher's Algorithm

3.1.1 A Normal Form for Pseudo-linear Maps

Matries of the type

0

B

B

B

B

B

B

�

0 1 0 : : : 0

0 0 1

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : : : : 0 1



0



1

: : : 

n�2



n�1

1

C

C

C

C

C

C

A

with 

i

2 K are alled ompanion matries. In [25℄, Z�urher gave an algo-

rithmi proof of

Theorem 3.1 Let V be a �nite dimensional vetor spae, � : V ! V be

pseudo-linear w.r.t. � and Æ, where � is an automorphism. Then there is a

basis of V suh that the matrix of � w.r.t. to this basis is of the form

diag(C

1

; : : : C

m

);

where the C

i

, 1 � i � m, are ompanion matries.

Suppose we are given a basis B of V , and let T = M

B

(�) be the matrix

assoiated with �. Beause of formula (2.16), the problem is equivalent to

�nding a regular matrix A suh that A

�1

T�(A) + A

�1

ÆA is of the desired

form. We will onstrut suh an A as a produt of ertain elementary ma-

tries. For eah of those elementary matries we desribe the e�et that the

orresponding basis transformation has on T as well as the e�et on the

basis. For the latter, we an assume (by starting with B = I) that our basis

is of the form BB.

(i) For a 2 K nf0g and 1 � i � n, let

D

i

(a) :=

0

B

B

B

B

B

B

B

B

B

�

i

#

1

.

.

.

1

i! a

1

.

.

.

1

1

C

C

C

C

C

C

C

C

C

A

:

D

i

(a) is an invertible matrix with D

i

(a)

�1

= D

i

(a

�1

): If we write E

ik

for the n�n matrix with 1 at position (i; k) and 0 elsewhere, we have
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�(D

i

(a)) = D

i

(�(a)) and ÆD

i

(a) = Æa E

ii

beause of orollary (2.13).

By (2.16), the hange of bases B

0

= D

i

(a)B modi�es T = (t

ik

) in the

following way:

D1: multiply olumn i by �(a)

D2: multiply line i by a

�1

D3: add a

�1

Æa to the entry t

ii

.

The e�et of the basis transformation on B is given by (noteD

i

(a) (BB) =

(BD

i

(a))B ):

D1

0

: multiply olumn i by a.

(ii) Let a 2 K , 1 � i 6= k � n. Then

C

ik

(a) :=

0

B

B

B

B

B

�

k

#

1

.

.

.

i! a

.

.

.

1

1

C

C

C

C

C

A

is an invertible matrix withC

ik

(a)

�1

= C

ik

(a

�1

), �(C

ik

(a)) = C

ik

(�(a))

and ÆC

ik

(a) = Æa E

ik

. A hange of bases by C

ik

(a) has the e�ets

C1: add �(a) times olumn i to olumn k

C2: add �a times line k to line i

C3: add Æa to the entry t

ik

.

on T , and onerning B:

C1

0

: add a times olumn i to olumn k.

(iii) For 1 � i 6= k � n

P

ik

=

0

B

B

B

B

B

B

B

B

B

�

i

#

k

#

1

.

.

.

i! 0 1

k ! 1 0

.

.

.

1

1

C

C

C

C

C

C

C

C

C

A

is alled a permutation matrix. Of ourse we have P

�1

ik

= P

ki

, �(P

ik

) =

P

ik

and ÆP

ik

= 0. A hange of bases by P

ik

indues the following

operations on T :
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P1: exhange olumn i and olumn k

P2: exhange line i and line k

And it modi�es B by

P2

0

: exhange olumn i and olumn k.

After with these three types of elementary matries, we introdue the rota-

tion matrix

R =

0

B

B

B

B

B

B

B

B

B

�

0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1 : : : 0

1

C

C

C

C

C

C

C

C

C

A

:

It satis�es �(R) = R and Æ(R) = 0 and its inverse is given by

R

�1

=

0

B

B

B

B

B

B

B

B

B

�

0 : : : 1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0

1

C

C

C

C

C

C

C

C

C

A

:

The orresponding bases hange amounts to

R1: All olumns are shifted by 1 to the right (olumn n beomes the �rst

olumn)

R2: All lines are shifted by 1 downwards (line n beomes the �rst line)

And the e�et on B is given by

R1

0

: All olumns are shifted by 1 to the right (olumn n beomes the �rst

olumn).

In linear algebra it is shown that any hange of bases an be expressed as

a produt of basis hanges of the types C, D, and P . R = P

1n

: : : P

n�1;n

is

introdued to simplify the notation in what follows. The proof of theorem

(3.1) requires the following �ve lemmata:
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Lemma 3.2 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : : : : 0

i! � : : : : : : � � : : : : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

with i < n: (3.2)

If there is an element t

il

6= 0 with i < l � n, then there is a basis hange A

s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� : : : : : : � � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

i.e. we an inrease the size of the ompanion blok by 1.

Proof. We show how A an be onstruted as a produt of elementary ma-

tries. To keep notation simple, the assoiated matries of � that our in

the intermediate steps are denoted again by T = (t

ik

). First, by the basis

hange P

i+1;l

, t

i;i+1

beomes nonzero. The remaining entries of the a�eted

olumns i + 1 and l are either 0 (rows 1; : : : ; i � 1) or not of interest (rows

i+ 1; : : : ; n). P2 does not hange the ordered part of T either.

Now we an perform the basis hange D

i+1

(�

�1

(t

�1

i;i+1

)). D1 sets t

i;i+1

to 1, and D2 and D3 do not modify lines 1; : : : ; i.
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What remains to do is to set t

ik

, 1 � k � n, k 6= i+ 1, to 0. Suppose we

have done this up to k < m:

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

m

#

i

#

i+1

#

0 1 : : : 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1 0 : : : : : : 0

i! 0 : : : 0 � : : : � 1 � : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The basis hange C

i+1;m

(�

�1

(�t

im

)) sets t

im

to 0 by operation C1. It is easy

to hek that C1, C2 and C3 do not hange the ordered part of T . �

Lemma 3.3 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : : : : 0

i! � : : : : : : � 0 : : : : : : 0

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

A

:

Then there is a basis hange A s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i! � : : : : : : � 0 : : : 0

� 0 : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

A

: (3.3)

Instead of enlarging the ompanion blok, we erase all olumns below it exept

the �rst one.
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Proof. Again, we proeed indutively to delete the spei�ed entries. Let

t

mu

= 0 for i < m � N and l < u � i (where 2 � l � i) as well as t

ml

= 0

for i < m < k (where i < k � n). So T is of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

l

#

i

#

k

#

0 1 : : : 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l!

.

.

.

.

.

.

0 : : : 1

.

.

.

.

.

.

i! � : : : : : : � 0 : : : : : : 0

� : : : � 0 : : : : : : 0 � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 0

k ! � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � 0 : : : 0 � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Operation C1 of the basis hange C

k;l�1

(t

kl

) adds a multiple of olumn k to

olumn l�1. The elements with row indies 1; : : : ; i are not hanged, beause

olumn k is zero there, and the other elements of olumn i are irrelevant.

C2 sets t

kl

to zero without destroying the order of T . C3 does no harm. �

The following lemma is needed for the proof of lemma (3.5).

Lemma 3.4 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

k+1

#

i+1

#

0 1 : : : 0 0 : : : 0

.

.

.

.

.

.

k ! � : : : � 1 � : : : �

k + 1! � : : : : : : � 1 � : : : �

0 : : : : : : 0

.

.

.

1

.

.

.

.

.

.

i+ 1! � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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Then there is a basis hange A s.t.

A

�1

T�(A)+A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

k+1

#

i+1

#

0 1 : : : 0 0 : : : 0

.

.

.

.

.

.

k ! 0 : : : 0 1 0 : : : 0

k + 1! � : : : : : : � 1 � : : : �

0 : : : : : : 0

.

.

.

1

.

.

.

.

.

.

i+ 1! � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

That is, the disorder in line k an be shifted to line k + 1.

Proof. We have to delete t

kl

for l = 1; : : : ; k + 1; i + 2; : : : ; n. Let l be one

of these row indies. The basis hange C

k+1;l

(�

�1

(�t

kl

)) does exatly what

we want: C1 erases t

kl

and modi�es t

k+1;l

, and C2 and C3 only a�et the

irrelevant entries of line k + 1. �

Lemma 3.5 Let the assoiated matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i! � : : : : : : � 0 : : : 0

� 0 : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

A

where i < n:

If there is an element t

k1

6= 0 for some k = i+1; : : : ; n, then there is a basis

hange A s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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In other words, we an inrease the size of the ompanion blok, while main-

taining the zero blok below it.

Proof. First we show that we may assume t

k1

= 0 for i < k < n and t

n1

=1.

Namely, let t

k1

6= 0 for some i < k < n. The basis hange P

kn

auses t

n1

6= 0

without destroying the form of T . Now the basis hange D

n

(t

n1

) is well-

de�ned, D1,D2,D3 do not a�et the order of T , and D2 sets t

n1

= 1. If now

there is still an element t

k1

6= 0 for some i < k < n, it an be deleted by

C

kn

(t

k1

). Apart from this deletion, C1,C2,C3 just a�et the irrelevant lower

right blok of T . So we have shown that the assumption is allowed.

A basis hange by R leads from

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

0 1 0 0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 1

.

.

.

.

.

.

.

.

.

i! � : : : : : : � 0 : : : 0 0

0 : : : : : : 0 � : : : � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : : : : 0 � : : : � �

1 0 : : : 0 � : : : � �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

to

R

�1

TR =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

� 1 0 : : : 0 � : : : �

0 0 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 : : : 1

.

.

.

.

.

.

i+ 1! 0 � : : : : : : � 0 : : : 0

� 0 : : : : : : 0 � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� 0 : : : : : : 0 � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Exept the �rst line the (i + 1) � (i + 1) upper left blok is in ompanion

form. The disorder in the �rst line is now shifted downwards by applying

lemma (3.4) iteratively, until the desired form is attained. �

Before proving theorem (3.1) we make sure that a basis hange on a blok-

diagonal matrix T behaves as expeted:

Lemma 3.6 Let T

1

, T

2

be matries with entries from K of sizes n

1

� n

1

and n

2

� n

2

, respetively. Let further � : K

n

1

+n

2

! K

n

1

+n

2

be the pseudo-

linear map whose matrix w.r.t. the anonial basis is

�

T

1

0

0

T

2

�

and A be an
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invertible n

2

� n

2

matrix. Then the basis hange

�

I

0

0

A

�

turns the matrix of

� into

�

T

1

0

0 A

�1

T

2

�(A) +A

�1

ÆA

�

:

Proof. Beause of formula (2.16), the matrix that we seek is

�

I 0

0 A

�1

��

T

1

0

0 T

2

�

�

��

I 0

0 A

��

+

�

I 0

0 A

�1

�

Æ

�

I 0

0 A

�

=

�

T

1

0

0 A

�1

T

2

�(A)

�

+

�

0 0

0 A

�1

ÆA

�

=

�

T

1

0

0 A

�1

T

2

�(A) +A

�1

ÆA

�

;

where �(I) = I and ÆI = 0 follow from orollary (2.13). �

Proof of theorem (3.1). Indution on n. For n = 1 there is nothing to show,

beause any 1� 1 matrix is in ompanion form.

Suppose the assertion of the theorem holds for 1; : : : ; n � 1. By taking

i = 1 if neessary, T is of the form (3.2). With a seond indution on i, the

size of the ompanion blok, we show that we an either inrease this blok

by 1 or split o� a diret fator of size i from T . Therefore, let T be of the

form (3.2) for some i. If i = n, we are done. If i < n and there is an element

t

ik

6= 0 for some i < k � n, we an inrease the size of the ompanion blok

to i+ 1 by lemma (3.2). If, on the other hand, all these entries are zero, we

apply lemma (3.3) to obtain a matrix of the form (3.3).

If now there is a nonzero entry among t

1k

, i < k � n, lemma (3.5) in-

reases the ompanion blok by 1. If all those elements are 0, the ompanion

blok is a diret fator of T , and we an apply the indution hypothesis (on

n) on the lower right blok. The basis hanges that we need to bring the

lower right blok into the desired form will not interfere with the upper left

ompanion blok beause of lemma (3.6). �

This proof gives rise to the following algorithm to �nd the blokdiagonal

normal form:

rationalForm(T,�,Æ)

n := size(T)

i := 1

while i<n repeat

if t

i;i+1

6= 0 or : : : or t

i;n

6= 0 then

expand ompanion blok of T by lemma (3.2)

i := i + 1

else
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apply lemma (3.3) to T

if t

i+1;1

6= 0 or : : : or t

n;1

6= 0 then

expand ompanion blok of T by lemma (3.5)

i := i + 1

else (* T = diag(C; T

0

) where C is a ompanion matrix *)

R:=rationalForm(T

0

,�,Æ)

return diag(C,R)

end

end

end

return T

end

In order to ompute the orresponding basis hange, the elementary matries

from the proofs of the preeding lemmas are multiplied together (from the

right). However, in an eÆient implementation, we will not multiply the full

matries T or B, the latter being the urrent basis hange, by elementary

matries, but we will just update the matrix entries whih are a�eted by

the urrent step. Furthermore, we will not all the proedure reursively, but

instead introdue a variable i0 that is 1 plus the size of the left upper part of

T that is already in blokdiagonal form. i0 is initialized with 1 and updated

whenever we split o� a diret fator of T . Row and olumn operations are

performed only on elements with row and olumn indies greater than or

equal to i0. Then the algorithm may take the following expliit form:

Algorithm 3.7 rationalForm by Bruno Z�urher

rationalForm(T; �; Æ)

n := Size(T)

i0 := 1; i := 1

B := identity matrix of size n

while i < n

j := i+1

while j � n and t

ij

= 0

j := j + 1

if j � n then

transformLemma2(T,i0,i,j,�,Æ,B)

i := i + 1

else

transformLemma3(T,i0,i,�,Æ,B)

i1 := i + 1

while i1 � n and t

i1;i0

= 0

i1 := i1 + 1

if i1 � n then
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transformLemma5(T,i0,i,i1,�,Æ,B)

i := i + 1

else

i := i + 1

i0 := i

end

end

end

return T,B

end

transformP(T,i0,i,k,B)

n := Size(T)

for j := i0 to n

s := t

ji

; t

ji

:= t

jk

; t

jk

:= s

s := b

ji

; b

ji

:= b

jk

; b

jk

:= s

end

for j := i0 to n

s := t

ij

; t

ij

:= t

kj

; t

kj

:= s

end

end

transformR(T,i0,B)

n := Size(T)

for i := i0 to n



i

:= t

in

for i := i0 to n

for j := n downto i0+1

t

ij

:= t

i;j�1

for i := i0 to n

t

i;i0

:= 

i

for i := i0 to n



i

:= t

ni

for j := i0 to n

for i := n downto i0+1

t

ij

:= t

i�1;j

for i := i0 to n

t

i0;i

:= 

i

for i := i0 to n
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i

:= b

in

for j := n downto i0+1

for i := i0 to n

b

ij

:= b

i;j�1

for i := i0 to n

b

i;i0

:= 

i

end

transformLemma2(T,i0,i,l,�,Æ,B)

n := Size(T)

transformP(T,i0,i+1,l,B)

a := �

�1

(t

�1

i;i+1

)

for j := i to n

t

j;i+1

:= t

j;i+1

* �(a) (* D1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

/ a (* D2 *)

t

i+1;i+1

:= t

i+1;i+1

+ Æ(a) / a (* D3 *)

for j := i0 to n

b

j;i+1

:= a * b

j;i+1

(* basis hange *)

for k := i0 to i

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

if k < i

t

i+1;k+1

:= t

i+1;k+1

- a (* C2 *)

else

for j := i to n

t

i+1;j

:= t

i+1;j

- a * t

ij

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)

for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis hange *)

end

for k := i+2 to n

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

- a * t

kj

(* C2 *)

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)
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for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis hange *)

end

end

transformLemma3(T,i0,i,�,Æ,B)

n := Size(T)

for l := i downto i0+1

for k := i+1 to n

a := t

kl

for j := i+1 to n

t

j;l�1

:= t

j;l�1

+ �(a) * t

jk

(* C1 *)

t

kl

:= 0 (* C2 *)

t

k;l�1

:= t

k;l�1

+ Æ(a) (* C3 *)

for j := i0 to n

b

j;l�1

:= b

j;l�1

+ a * b

jk

(* basis hange *)

end

end

end

transformLemma4(T,i0,i,k,�,Æ,B)

n := Size(T)

for l := i0 to k

a := �

�1

(-t

kl

)

t

kl

:= 0 (* C1 *)

t

k+1;l

:= t

k+1;l

+ �(a) * t

k+1;k+1

if k < i

t

i+1;l

:= t

i+1;l

+ �(a) * t

i+1;k+1

if l < k

t

k+1;l+1

:= t

k+1;l+1

- a (* C2 *)

else

for j := i0 to k+1

t

k+1;j

:= t

k+1;j

- a * t

kj

for j := i+2 to n

t

k+1;j

:= t

k+1;j

- a * t

kj

end

t

k+1;l

:= t

k+1;l

+ Æ(a) (* C3 *)

for j := i0 to n

b

jl

:= b

jl

+ a * b

j;k+1

(* basis hange *)

end
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for l := i+2 to n

a := �

�1

(-t

kl

)

t

kl

:= 0 (* C1 *)

t

k+1;l

:= t

k+1;l

+ �(a) * t

k+1;k+1

if k < i

t

i+1;l

:= t

i+1;l

+ �(a) * t

i+1;k+1

t

k+1;i0

:= t

k+1;i0

- a * t

l;i0

(* C2 *)

for j := i+2 to n

t

k+1;j

:= t

k+1;j

- a * t

lj

t

k+1;l

:= t

k+1;l

+ Æ(a) (* C3 *)

for j := i0 to n

b

jl

:= b

jl

+ a * b

j;k+1

(* basis hange *)

end

end

transformLemma5(T,i0,i,k,�,Æ,B)

n := Size(T)

transformP(T,i0,k,n,B)

a := t

n;i0

for j := i+1 to n

t

jn

:= �(a) * t

jn

(* D1 *)

t

n;i0

:= 1 (* D2 *)

for j := i+1 to n

t

nj

:= t

nj

/ a

t

nn

:= t

nn

+ Æ(a) / a (* D3 *)

for j := i0 to n

b

jn

:= a * b

jn

(* basis hange *)

for l := i+1 to n

if t

l;i0

!= 0

a := t

l;i0

for j := i+1 to n

t

jn

:= t

jn

+ �(a) * t

jl

(* C1 *)

t

l;i0

:= t

l;i0

- a (* C2 *)

for j := i+1 to n

t

lj

:= t

lj

- a * t

nj

t

ln

:= t

ln

+ Æ(a) (* C3 *)

for j := i0 to n

b

jn

:= b

jn

+ a * b

jl

(* basis hange *)

end

end
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transformR(T,i0,B)

for j := i0 to i

transformLemma4(T,i0,i,j,�,Æ,B)

end �

3.1.2 Dedution of Salar Equations

After we have transformed a system of Ore operator equations into an equiv-

alent system with a ompanion matrix, we an dedue higher order salar

equations. In the setting of Z�urher's algorithm it is not immediately lear

what we mean by a salar equation. In the di�erential ase, it is an equation

of the form

m

X

i=0



i

D

i

y = �; 

i

; � 2 K ;

while in the di�erene ase we desire equations of the form

m

X

i=0



i

E

i

y = �; 

i

; � 2 K :

The point is that the operator we are interested in an be either � or Æ.

We will disuss the omputation of unoupled salar equations in the two

important speial ases listed above. In [25℄ a more general approah is given.

There it is shown how to turn the normal form omputed by algorithm (3.7)

into unoupled equations of the form

m

X

i=0



i

#

i

�

y = �; 

i

; � 2 K ;

where � 2 K is an arbitrary parameter and #

�

: K ! K is the pseudo-linear

map w.r.t. �

�1

, ��

�1

Æ � � (� � id)

#

�

= ��

�1

� �

�1

Æ � �

�

�

�1

� id

�

:

This overs both of the two speial ases above: In the di�erential ase

� = id, Æ = �D (of ourse, we ould also work with Æ = D) we set � = 0

to obtain #

0

= D. In the di�erene ase we set � = E

�1

, Æ = E

�1

� id (f.

example (2.27) and `Di�erene Equations' below) and � = 1, whih yields

#

1

= E.

Di�erential Equations

Let (K ;D) be a di�erential �eld, T an n � n matrix with entries in K and

v 2 K

n

. Consider the system of di�erential equations

Dy = Ty + v: (3.4)
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We set � = id

K

, Æ = �D and � : K

n

! K

n

the pseudo-linear map whose

matrix w.r.t. the anonial basis is T , that is,

�y = Ty + Æy:

If we apply Z�urher's algorithm on � and assume w.l.o.g. that it returns

only one ompanion blok, we get a ompanion matrix C and an invertible

matrix A s.t. �z = Cz+ Æz with z = A

�1

y. Upon setting w = A

�1

v, y 2 K

n

solves (3.4) if and only if z = A

�1

y solves

Dz = Cz + w: (3.5)

This system is of the form

Dz

1

= z

2

+ w

1

.

.

. (3.6)

Dz

n�1

= z

n

+ w

n�1

Dz

n

=

n�1

X

i=0



i

z

i+1

+w

n

:

From this we get z

2

= Dz

1

� w

1

, z

3

= Dz

2

� w

3

= D

2

z

1

�Dw

1

� w

2

, and,

indutively,

z

i+1

= z

(i)

1

�

i

X

j=1

w

(i�j)

j

for 1 � i < n:

Plugging this into the last equation of (3.6) yields

z

(n)

1

�

n�1

X

j=1

w

(n�j)

j

=

n�1

X

i=0



i

z

(i)

1

�

n�1

X

i=0



i

i

X

j=1

w

(i�j)

j

+ w

n

;

whih is a salar di�erential equation for z

1

. If this equation an be solved,

the other z

i

are omputed from (3.6), and the original variables y

i

by y = Az.

Di�erene Equations

Let

Ey =My + v (3.7)

be a system of di�erene equations, where M is an n � n matrix with en-

tries from K and v 2 K

n

. One again, we do not restrit E to the forward

shift introdued in setion (2.6). Speial ases inlude linear algebrai sys-

tems (E = id

K

) and ordinary systems of di�erene equations with rational

funtion oeÆients (K = R(K); Ex = x+ 1).
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Let � = E

�1

, Æ = � � id

K

and � : K

n

! K

n

be the pseudo-linear map

whose matrix w.r.t. the anonial basis of K

n

is �(M) � I. Then we have

Ey =My + v

() �y = ��(v):

(f. example (2.27).) Applying Z�urher's algorithm to � yields, assuming

w.l.o.g. that it returns only one ompanion blok, a ompanion matrix C

and an invertible matrix A s.t.

�z = C�(z) + Æz; where z = A

�1

y:

Hene (3.7) is equivalent to

C�(z) + Æz = �A

�1

�(v)

() E(C)z + z �Ez = �E(A

�1

)v

() Ez = (E(C) + I) z + w;

where w = E(A

�1

)v. This system is of the form

Ez

1

= z

1

+ z

2

+ w

1

.

.

. (3.8)

Ez

n�1

= z

n�1

+ z

n

+ w

n�1

Ez

n

=

n�1

X

i=0

E(

i

)z

i+1

+ z

n

+ w

n

;

whih, by using the di�erene operator � = E � id

K

, an be written as

�z

1

= z

2

+w

1

.

.

. (3.9)

�z

n�1

= z

n

+ w

n�1

�z

n

=

n�1

X

i=0

E(

i

)z

i+1

+ w

n

:

This implies

z

i+1

= �

i

z

1

�

i

X

j=1

�

i�j

w

j

for 1 � i < n: (3.10)

In partiular, if we take i = n� 1 and apply � on both sides, we obtain

�z

n

= �

n

z

1

�

n�1

X

j=1

�

n�j

w

j

: (3.11)
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Inserting (3.10) and (3.11) into the last equation of (3.9) yields the unoupled

di�erene equation

�

n

z

1

�

n�1

X

j=1

�

n�j

w

j

=

n�1

X

i=0

E(

i

)

0

�

�

i

z

1

�

i

X

j=1

�

i�j

w

j

1

A

+ w

n

()

n�1

X

i=0

E(

i

)�

i

z

1

��

n

z

1

=

n�1

X

i=0

E(

i

)

i

X

j=1

�

i�j

w

j

�

n�1

X

j=1

�

n�j

w

j

�w

n

for z

1

.

3.1.3 Complexity

Now that we made the omputations that Z�urher's unoupling algorithm

performs expliit, it is straightforward to ount the number of additions

and multipliations in K that it performs. We just onsider algorithm (3.7),

beause it is readily heked that the seond step of Z�urher's algorithm, i.e.,

the dedution of the salar equations, requires O(n

2

) arithmetial operations

in K , whih is asymptotially less than the omplexity of algorithm (3.7), as

we will see.

To begin with, the number of multipliations in the proedure transformLemma2,

whih we will abbreviate by L2

�

(n; i

0

; i), is

L2

�

(n; i

0

; i) = (n� i+ 1) + (n� i

0

+ 1) + 1 + (n� i

0

+ 1)

+ (i� i

0

) ((n� i+ 1) + (n� i

0

+ 1))

+ ((n� i+ 1) + (n� i+ 1) + (n� i

0

+ 1))

+ (n� i� 1) ((n� i+ 1) + (n� i

0

+ 1) + (n� i

0

+ 1)) :

If we restrit i

0

to the ase i

0

= 1 and ount only the leading terms this

simpli�es to

L2

�

(n; 1; i) = i (2n� i) + (n� i) (3n� i) +O(n)

= 3n

2

� 2in+O(n):

For the number of additions we �nd

L2

+

(n; i

0

; i) = 1 + (i� i

0

) ((n� i+ 1) + 1 + 1 + (n� i

0

+ 1))

+ ((n� i+ 1) + (n� i+ 1) + 1 + (n� i

0

+ 1))

+ (n� i� 1) ((n� i+ 1) + (n� i

0

+ 1) + 1 + (n� i

0

+ 1)) ;

and

L2

+

(n; 1; i) = i (2n� i) + (n� i) (3n� i) +O(n)

= 3n

2

� 2in+O(n):

This allows to analyze the omplexity of algorithm (3.7) in an important

speial ase:
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Theorem 3.8 (nondegenerate ase) If the �rst if ondition in algorithm

(3.7) is always satis�ed throughout the exeution, then the algorithm needs

2n

3

+O(n

2

)

multipliations in K . The same is true for the number of additions in K .

Proof: The i-th pass of the outer loop requires L2

�

(n; 1; i) multipliations,

hene the total number is given by

n�1

X

i=1

L2

�

(n; 1; i) = (n� 1) 3n

2

� 2n

n�1

X

i=1

i+O(n

2

)

= 2n

3

+O(n

2

):

We have seen above that the leading (i.e. quadrati) terms of L2

+

(n; 1; i)

are the same as those of L2

�

(n; 1; i), so the result holds for plus as well. �

We ontinue by ounting the operations of the remaining proedures, en-

abling us to analyze the omplexity in the worst ase. For transformLemma3,

we have

L3

�

(n; i

0

; i) = (i� i

0

) (n� i) ((n� i) + (n� i

0

+ 1)) ;

L3

�

(n; 1; i) = i (n� i) (2n� i) +O(n

2

)

= 2in

2

� 3i

2

n+ i

3

+O(n

2

):

L3

+

(n; i

0

; i) = (i� i

0

) (n� i) ((n� i) + 1 + (n� i

0

+ 1)) ;

L3

+

(n; 1; i) = i (n� i) (2n� i) +O(n

2

)

= 2in

2

� 3i

2

n+ i

3

+O(n

2

):

For transformLemma4, we give the number of operations for k < i. If k = i,

there is one more multipliation and addition in eah pass of the �rst for

loop, whih do not ontribute to the leading terms.

L4

�

(n; i

0

; i; k) = (k � i

0

) (1 + 1 + (n� i

0

+ 1))

+ (1 + 1 + (k � i

0

+ 2) + (n� i� 1) + (n� i

0

+ 1))

+ (n� i� 1) (1 + 1 + 1 + (n� i� 1) + (n� i

0

+ 1)) ;

L4

�

(n; 1; i; k) = kn+ (n� i) (2n� i) +O(n)

= 2n

2

� 3in+ kn+ i

2

+O(n):

L4

+

(n; i

0

; i; k) = (k � i

0

) (1 + 1 + 1 + 1 + (n� i

0

+ 1))

+ (1 + 1 + (k � i

0

+ 2) + (n� i� 1) + 1 + (n� i

0

+ 1))

+ (n� i� 1) (1 + 1 + 1 + (n� i� 1) + 1 + (n� i

0

+ 1)) ;

L4

+

(n; 1; i; k) = kn+ (n� i) (2n� i) +O(n)

= 2n

2

� 3in+ kn+ i

2

+O(n):
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In the proedure transformLemma5 some operations are only performed if

ertain matrix elements are nonzero. We give the number of operations in

the worst ase.

L5

�

(n; i

0

; i) = (n� i) + (n� i) + 1 + (n� i

0

+ 1)

+ (n� i) ((n� i) + (n� i) + (n� i

0

+ 1))

+

i

X

k=i

0

L4

�

(n; i

0

; i; k);

L5

�

(n; 1; i) =

i

X

k=1

L4

�

(n; 1; i; k) +O(n

2

)

= 2in

2

�

5

2

i

2

n+ i

3

+O(n

2

):

L5

+

(n; i

0

; i) = 1 + (n� i) ((n� i) + 1 + (n� i) + 1 + (n� i

0

+ 1))

+

i

X

k=i

0

L4

+

(n; i

0

; i; k);

L5

+

(n; 1; i) = 2in

2

�

5

2

i

2

n+ i

3

+O(n

2

):

Putting these results together, we obtain

Theorem 3.9 (worst ase) In the worst ase, algorithm (3.7) performs

2

3

n

4

+O(n

3

)

multipliations in K . The same is true for the number of additions in K .

Proof: The worst ase obviously arises if we have to inrease the ompanion

blok with lemma (3.3) and lemma (3.5) in eah pass of the outer loop,

without ever splitting o� a diret fator. The number of multipliations in

this ase is

n�1

X

i=1

(L3

�

(n; 1; i) + L5

�

(n; 1; i)) =

n�1

X

i=1

�

4in

2

�

11

2

i

2

n+ 2i

3

�

+O(n

3

)

=

2

3

n

4

+O(n

3

):

Again, this is true for the number of additions, too, beause L3

+

(n; 1; i)

and L5

+

(n; 1; i) have the same leading terms as L3

�

(n; 1; i) and L5

�

(n; 1; i),

respetively. �
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In the worst ase desribed in the preeding theorem, all appliations of

lemma (3.3) exept the �rst one are useless, beause the matrix entries that

are to be erased are already zero. This ould be avoided by testing all those

entries and performing the operations from lemma (3.3) only if one of them

is nonzero. However, the resulting worst ase omplexity would still be O(n

4

)

(we might have to apply lemma (3.3) in every seond pass of the outer loop,

and the ontribution of lemma (3.5) alone aounts for O(n

4

) overall time

anyways). Furthermore the ase where lemma (3.3) and lemma (3.5) have

to be applied is rather rare, hene we did not inlude this re�nement in

the algorithm. From a pratial point of view, theorem (3.8) desribes the

running time of algorithm (3.7) muh better than theorem (3.9).

3.2 Some Remarks on Cyli Vetors

The use of yli vetors is a lassial method to unouple systems of linear

ordinary di�erential equations. We start with the basi de�nition (for the

general pseudo-linear ase):

De�nition 3.10 Let V be an n-dimensional vetor spae and � : V ! V be

pseudo-linear. A vetor z 2 V is alled yli vetor i� the set

�

z; �z; : : : ; �

n�1

z

	

is a basis of V .

If z is a yli vetor, �

n

z an be written as

�

n

z = 

0

x+ 

1

�z + : : :+ 

n�1

�

n�1

z

for some 

0

; : : : ; 

n�1

2 K . The matrix of � w.r.t. to the basis generated by

x is then easily seen to be

0

B

B

B

B

B

B

B

�

0 0 : : : 0 

0

1 0

.

.

. 

1

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 

n�2

0 : : : 1 

n�1

1

C

C

C

C

C

C

C

A

;

a transposed ompanion matrix. Suppose we wish to unouple the pseudo-

linear system �y = r. We have already seen how to derive an unoupled

higher order equation from a ompanion matrix, hene it would be better if

the above matrix were transposed. Therefore we onsider the matrix of the

adjoint map �

�

.
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Theorem 3.11 Let T be the matrix of � w.r.t. a basis fb

1

; : : : ; b

n

g of V .

Then the matrix T

�

of �

�

w.r.t. the dual basis is given by T

�

= �

�1

(T

t

).

Theorem 3.12 Upon identifying V and V

��

, we have �

��

= �.

These two theorems, the proofs of whih are straightforward veri�ations

(see [25℄), imply

Corollary 3.13 Let � 2 V

�

be a yli vetor of �

�

. Then the matrix of �

w.r.t. to the basis of V that is dual to f�; �

�

�; : : : ; �

�n�1

�g is a ompanion

matrix.

Thus we an unouple system (3.1) if we an ompute a yli vetor for �

�

.

The drawbak of this approah is that it does not always work in the

general Ore setting: The adjoint �

�

need not admit a yli vetor, the

simplest ounter example being the linear map � = id

V

(for n > 1).

However, yli vetors are known to exist in the (ordinary) di�erential

ase K = R((x)), V = R((x))

n

, Æ = D, � = id

K

. It is even possible to �nd a

yli vetor whose omponents are polynomials of degree less than n, and

the probability that a vetor hosen at random is yli is 1; see [7℄ and the

referenes given there. A straightforward way to ompute a yli vetor is

to test for random andidates whether the set of their pseudo-derivatives is

linearly independent.

Even in ases where a yli vetor an be found, it turns out that

the oeÆients of the unoupled equations obtained in this way are very

ompliated in omparison to other unoupling methods. Therefore, and

beause this thesis is onerned with algorithms for the general Ore setting,

we deal with the yli vetor method no further.

We onlude these remarks by iting the following interesting interpreta-

tion of Z�urher's algorithm, whih is given in more detail and proved in [25℄:

Z�urher's Algorithm an be used to ompute a diret sum deomposition

V

�

= U

1

� : : :� U

m

;

where U

i

is a �

�

-invariant subspae of V

�

generated by a yli vetor �

i

.

m is the number of ompanion bloks in the blok-diagonal normal form

of the matrix of �. Hene the unoupling algorithm by Bruno Z�urher an

be viewed as a re�ned yli vetor method that works for pseudo-linear

systems in general.
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Chapter 4

Gaussian Elimination

At �rst glane it may seem surprising that Gaussian elimination an be

applied to systems of linear operator equations. The key point is to onsider

matries of Ore operators instead of the oeÆient matrix of the system.

The resulting algorithm resembles fration free Gaussian elimination over

Z.

Let O = K [#;�; Æ℄ be an Ore algebra that operates on the left module

W , A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and r = (r

1

; : : : ; r

n

)

t

2 W

n

. The system

of equations

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

. (4.1)

#y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

an be written as

My = r; (4.2)

where

M =

0

B

B

B

B

�

#� a

11

�a

12

: : : �a

1n

�a

21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�a

n�1;n

�a

n1

: : : �a

n;n�1

#� a

1n

1

C

C

C

C

A

2 Mat(n;O): (4.3)

The produt My is of ourse de�ned by using the outer multipliation of

the left O-module W . With this enoding of system (4.1) we an perform

Gaussian elimination by using the least ommon left multiple introdued

in setion (2.4). Suppose a

21

6= 0 (otherwise we proeed with a

31

) and let

a; b 2 O be s.t.

llm(#� a

11

;�a

12

) = a (#� a

11

) = �ba

12

:

55
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a and b an be omputed with algorithm (2.7) (f. theorem (2.9(ii)). If

we multiply the �rst equation by a on the left, the seond one by b and

subtrat the �rst equation from the seond, we have generated a zero entry

at position (2; 1). Analogously, we an erase the entries at positions (i; 1),

3 � i � n by applying the extended Eulidean Algorithm to eah of the

pairs (# � a

11

;�a

i1

), where a

i1

6= 0. We then proeed as in the ordinary

Gaussian elimination algorithm to triangularize system (4.2). In the general

step, the matrix is of the form

0

B

B

B

B

B

B

B

B

�

m

11

: : : : : : m

1n

0

.

.

.

.

.

.

m

kk

: : : m

kn

m

k+1;k

: : : m

k+1;n

.

.

.

.

.

.

.

.

.

0 : : : m

nk

: : : m

nn

1

C

C

C

C

C

C

C

C

A

for some 1 � k < n. If now m

kk

= 0, we look for a nonzero entry among

m

ij

, k � i � n, k � j � n. If no suh m

ij

exists, we are done. If, on the

other hand, there is suh m

ij

6= 0, we swap lines i and k and olumns j and

k. Hene we an assume m

kk

6= 0. We eliminate the nonzero entries among

m

ik

, k + 1 � i � n as desribed above. Finally the system will be of the

form

0

B

B

B

B

B

B

B

B

�

m

11

: : : : : : m

1n

0

.

.

.

.

.

.

m

ll

: : : m

ln

0 : : : 0

.

.

.

.

.

.

.

.

.

0 : : : 0 : : : 0

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

�

y

1

.

.

.

.

.

.

y

n

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

�

s

1

.

.

.

.

.

.

s

n

1

C

C

C

C

C

C

C

C

A

for some 1 � l � n, s = (s

1

; : : : ; s

n

)

t

2W

n

. If not all s

i

, l < i � n are zero,

the system has no solution. If they are zero (in partiular, if l = n) (4.1) is

equivalent to the unoupled system

m

11

y

1

+ : : : : : : + m

1n

y

n

= s

1

.

.

.

.

.

.

m

ll

y

l

+ : : : + m

ln

y

n

= s

l

:

(4.4)

Note that unlike the other unoupling algorithms presented in this thesis,

whih return salar equations whose order sum to the dimension of the initial

system, Gaussian elimination in general returns salar equations of higher

order, depending on the degrees of the Ore polynomials in (4.4).

Of ourse, this algorithm works for anyM 2 Mat(n;O), not just those of the

speial form (4.3) that arises from system (4.1). In the following program

listing, the variable perm keeps trak of the olumn hanges in the system

matrix, whih indue hanges in the order of the unknowns.



57

Algorithm 4.1

perm=(1,...,n) (* identity permutation *)

for k = 2,...,n

if there is m

pq

6=0, k�p�n, k�q�n then

swap rows k and p, olumns k and q, r

k

and r

p

perm[p℄ := q; perm[q℄ := p

else stop

for i = k,...,n

determine a,b s.t. a m

kk

= b m

ik

for j = k,...,n

m

ij

:= a * m

kj

- b * m

ij

r

i

:= a * r

k

- b * r

i

end

end

Apparently, analyzing the omplexity of this algorithm would be a rather

diÆult task. One would have to deal with the omplexity of the Eulidean

Algorithm in Ore polynomial rings and to keep trak of the degrees of the

matrix entries during the exeution of the elimination algorithm. We on�ne

ourselves with mentioning that empirial evidene shows Gaussian elimina-

tion to be less eÆient than the other three algorithms in this thesis. It

usually takes more time and returns equations of high order and with large

oeÆients.
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Chapter 5

Blok Triangular

Deomposition

5.1 The Unoupling Algorithm by Abramov and

Zima

5.1.1 The Problem

Let K [#;�; Æ℄ be an Ore algebra that operates on the left module W . Given

a linear system of equations

#y = Ay + r (5.1)

where A = (a

ij

)

1�i;j�n

2Mat(n;K ) and r = (r

1

; : : : ; r

n

)

t

2W

n

, we want to

redue the problem of �nding the solutions to that of solving higher order

salar equations. This an be ahieved by an algorithm due to Abramov and

Zima [6℄, whih is a generalization of an unoupling algorithm for di�erential

systems by Murray and Miller [18℄. Its goal is to �nd an equivalent system

(y�equations; z�equations; T�equations)

in y = (y

1

; : : : ; y

n

)

t

2W

n

onsisting of the following omponents:

(i) y-equations:

l

1

X

j=0

�

1j

#

j

y

i

1

= �

1

l

2

X

j=0

�

2j

#

j

y

i

2

=

i

2

�1

X

k=1

l

2

�1

X

j=0

�

�

2kj

#

j

z

k

+ �

2

(5.2)

.

.

.

l

s

X

j=0

�

sj

#

j

y

i

s

=

i

s

�1

X

k=1

l

s

�1

X

j=0

�

�

skj

#

j

z

k

+ �

s

;

59
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where �

ij

; �

�

ikj

2 K , �

kl

k

= 1 and �

i

2 W . The index set I =

fi

1

; : : : ; i

s

g with 1 = i

1

< : : : < i

s

� n is given by the algorithm.

The l

k

are de�ned by l

k

= i

k+1

� i

k

for 1 � k < s and l

s

= n� i

s

+ 1,

whih implies l

1

+ : : :+ l

s

= n.

(ii) z-equations: The new variables z

i

from (i) satisfy:

z

i

= y

i

for i 2 I (5.3)

and

z

i

= #z

i�1

+

i�1

X

k=1

�

ik

z

k

+ �

i

for 1 < i � n; i =2 I (5.4)

where �

ik

2 K and �

i

2W .

(iii) T -equations: Finally we get a linear system of equations that do not

ontain appliations of the #-operator:

Ty = z; (5.5)

where T 2 Mat(n;K ) is a non-singular upper triangular matrix. In

aordane with (5.3), for i 2 I the i-th line of T is e

i

, the vetor with

1 at position i and zero elsewhere.

It has to be noted that the algorithm might hange the order of y

2

; : : : ; y

n

.

We did not inlude this possible renumbering in the above spei�ation in

order not to blow up notation.

5.1.2 Solution of the Initial System from the Unoupled Sys-

tem

Before desribing how we an transform (5.1) into the unoupled system

AZ, we will outline how system (5.1) an be solved using AZ, if we assume

that we have an algorithm for �nding solutions of salar equations.

First we solve equation 1 of (5.2) for y

1

. We use one of these solutions to

ompute z

j

, 2 � j < i

2

by (5.4). Of ourse, these z

j

are uniquely determined

by y

1

. Then we plug y

1

(= z

1

) and z

j

, 2 � j < i

2

into the seond equation of

(5.2), yielding a salar equation for y

i

2

, and so on. Afterwards we use (5.5) to

ompute the remaining y

i

from y

i

1

; : : : ; y

i

s

and the z

j

, j 2 f1; : : : ; ng nI. As

already mentioned, we �nally might have to restore the order of y

2

; : : : ; y

n

,

whih might have been permuted by the unoupling algorithm.

5.1.3 The Algorithm

We begin the presentation of the algorithm by following [6℄. There, only the

beginning of the omputation is desribed in detail, and it is briey outlined
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how to proeed. We add a detailed desription of the general step, both of the

�rst stage of the algorithm (omputation of an equivalent system with blok

triangular matrix) and the seond stage (dedution of salar equations).

Written out in full, system (5.1) reads:

#y

1

= a

11

y

1

+ : : :+ a

1n

y

n

+ r

1

.

.

. (5.6)

#y

n

= a

n1

y

1

+ : : :+ a

nn

y

n

+ r

n

:

Eliminate y

2

from the right hand sides:

If a

12

= : : : = a

1n

= 0, we an take the �rst equation of (5.6) as the

�rst equation of (5.2). Continue reading at `repeat the whole proess' (with

l = 1).

If, on the other hand, a

1j

6= 0 for some j � 2 (w.l.o.g. j = 2, sine we

an reenumerate unknowns), we introdue a new variable

z

2

= a

12

y

2

+ : : :+ a

1n

y

n

: (5.7)

If we use this relation to eliminate y

2

from the right hand sides of equations

2 to n, we get a system of the form

#y

1

= a

11

y

1

+ z

2

+ r

1

#y

2

= b

21

y

1

+ b

22

z

2

+ b

23

y

3

+ : : : + b

2n

y

n

+ r

2

(5.8)

.

.

.

#y

n

= b

n1

y

1

+ b

n2

z

2

+ b

n3

y

3

+ : : :+ b

nn

y

n

+ r

n

:

Eliminate y

2

from the left hand side:

In order to get rid of #y

2

in equation 2 above, we proeed as follows:

Appliation of # to (5.7) yields

#z

2

= �(a

12

)#y

2

+ Æ(a

12

)y

2

+ : : :+ �(a

1n

)#y

n

+ Æ(a

1n

)y

n

: (5.9)

We use (5.7), (5.8) to eliminate y

2

; #y

2

; : : : ; #y

n

from (5.9) and take the

result as our new seond equation. Thus we have arrived at a system of the

form

#y

1

= a

11

y

1

+ z

2

+ r

1

#z

2

= 

21

y

1

+ 

22

z

2

+ 

23

y

3

+ : : : + 

2n

y

n

+ s

2

#y

3

= b

31

y

1

+ b

32

z

2

+ b

33

y

3

+ : : : + b

3n

y

n

+ r

3

(5.10)

.

.

.

#y

n

= b

n1

y

1

+ b

n2

z

2

+ b

n3

y

3

+ : : :+ b

nn

y

n

+ r

n

:
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By looking at the �rst equation we see that we have made a �rst step towards

triangularization of system (5.6).

Iteration:

If at least one of 

23

; : : : ; 

2n

(w.l.o.g. 

23

) is nonzero, we introdue the

new unknown z

3

:

z

3

= 

23

y

3

+ : : :+ 

2n

y

n

;

and proeed analogously to steps 1 and 2 to eliminate y

3

, and so on. If

we ontinue in this fashion, at some point we will have to stop elimination,

either beause we have eliminated y

2

; : : : ; y

n

or beause the next equation to

be onsidered does not ontain any of the remaining y

i

. Suppose the latter

happens after eliminating l�1 variables, then our system will have the form

#y

1

= d

11

y

1

+ z

2

+ r

1

#z

2

= d

21

y

1

+ d

22

z

2

+ z

3

+ s

2

.

.

.

#z

l�1

= d

l�1;1

y

1

+ d

l�1;2

z

2

+ : : :+ d

l�1;l�1

z

l�1

+ z

l

+ u

l�1

#z

l

= d

l;1

y

1

+ d

l;2

z

2

+ : : :+ d

l;l�1

z

l�1

+ d

l;l

z

l

+ u

l

#y

l+1

= d

l+1;1

y

1

+ d

l+1;2

z

2

+ : : :+ d

l+1;l

z

l

+ d

l+1;l+1

y

l+1

+ : : :+ d

l+1;n

y

n

+ u

l+1

.

.

.

#y

n

= d

n;1

y

1

+ d

n;2

z

2

+ : : :+ d

n;l

z

l

+ d

n;l+1

y

l+1

+ : : :+ d

n;n

y

n

+ u

n

:

(5.11)

We set l

1

= l and i

2

= l + 1 (Reall i

1

= 1). Equations 1 to l � 1 of (5.11)

yield the �rst l � 1 equations of (5.4).

Dedue a salar equation:

We an get an equation of order l in y

1

from the �rst l equations of

(5.11) as follows: The �rst equation allows to express z

2

via y

1

and #y

1

. If

we apply # to the �rst equation, we an write #z

2

in terms of y

1

, #y

1

and

#

2

y

1

. By the seond equation, we an now express z

3

and #z

3

via y

1

, #y

1

,

#

2

y

1

and #

3

y

1

, and so on.

Finally, we plug the expressions for z

l

and #z

l

obtained from equation

l � 1 into equation l, whih gives the �rst equation of (5.2).

If we ollet the equations by whih the variables z

2

; : : : ; z

l

were introdued,

we get a triangular algebrai linear system

z

2

= a

12

y

2

+a

13

y

3

+ : : : : : : + a

1n

y

n

z

3

= 

23

y

3

+ : : : : : : + 

2n

y

n

.

.

.

.

.

.

.

.

.

z

l

= e

l�1;l

y

l

+ : : : + e

l�1;n

y

n

:

(5.12)
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Repeat the whole proess: (only if l < n, whih we will all the degen-

erate ase)

In equations l+1; : : : ; n of (5.11) we onsider y

1

; z

2

; : : : ; z

l

as known and

perform the same transformations. This yields the seond equation of (5.2),

the equations for i

2

< i < i

3

of (5.4) and so on. Let s be the number of

times we repeat the proess desribed so far. Finally, the #-free system that

onsists of (5.12), its sueding ounterparts and the equations z

j

= y

j

; j 2 I

yield (5.5). (5.3) is just a de�nition whih simpli�es notation several times.

Before giving the pseudoode of the algorithm, we will desribe the gen-

eral step of the omputation in detail.

By taking i = � = 1 if neessary, we an assume that our system has the

form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

#z

1

.

.

.

.

.

.

#z

i�1

#z

i

.

.

.

#y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

A

1

0

.

.

.

A

��1

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

a

i�1;i

�

: : : a

i�1;i�1

1 0 : : : 0

a

i;i

�

: : : a

i;i�1

a

i;i

a

i;i+1

: : : a

in

.

.

.

.

.

.

� a

n;i

�

: : : : : : a

nn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

1

.

.

.

.

.

.

z

i�1

z

i

.

.

.

y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ r; (5.13)

where A

1

; : : : ; A

��1

are of the form

0

B

B

B

B

B

�

� 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : � 1 0

� : : : � 1

� : : : �

1

C

C

C

C

C

A

: (5.14)
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If now a

i;i+1

= : : : = a

in

= 0, we add i

�

to I and by writing

A

�

=

0

B

B

B

B

B

B

�

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0

a

i�1;i

�

: : : a

i�1;i�1

1

a

i;i

�

: : : a

i;i�1

a

i;i

1

C

C

C

C

C

C

A

;

we are one again in situation (5.13), with � inreased by 1. Now suppose

a

i;i+1

6= 0. (If a

i;i+1

= 0 but a

i;j

6= 0 for some i+ 1 < j � n, we swap lines

i + 1 and j, olumns i + 1 and j of a and the omponents i + 1 and j of

r. Of ourse, we have to keep trak of these permutations to restore them

eventually.)

As desribed above, we introdue the new variable

z

i+1

= a

i;i+1

y

i+1

+ : : :+ a

in

y

n

: (5.15)

If we express y

i+1

by this equation, we get

y

i+1

= a

�1

i;i+1

z

i+1

�

n

X

j=i+2

b

j

y

j

(5.16)

with b

j

:= a

ij

=a

i;i+1

. The b

j

are introdued to derease the amount of om-

putation; we will need them two times in what follows. We use this expression

for y

i+1

to eliminate y

i+1

from equations i + 1; : : : ; n. For i + 1 � k � n,

plugging in (5.16) for y

i+1

(but not for #y

i+1

) gives the equations

#y

k

= a

k1

z

1

+ : : : + a

ki

z

i

+

a

k;i+1

a

i;i+1

z

i+1

+ (a

k;i+2

� a

k;i+1

b

i+2

) y

i+2

+

+ : : : + (a

kn

� a

k;i+1

b

n

) y

n

+ r

k

: (5.17)

We denote by a

�

kj

for i+ 1 � k � n, 1 � j � n the matrix entries updated

aording to (5.17).

Applying # to (5.15) gives

#z

i+1

= �(a

i;i+1

)#y

i+1

+ Æ(a

i;i+1

)y

i+1

+ : : :+ �(a

in

)#y

n

+ Æ(a

in

)y

n

: (5.18)

This will beome our new equation i + 1, one we have eliminated y

i+1

,

#y

i+1

; : : : ; #y

n

, using (5.16) and (5.17). To do so, we multiply (5.16)by

Æ(a

i;i+1

), whih yields

Æ(a

i;i+1

)y

i+1

=

Æa

i;i+1

a

i;i+1

z

i+1

� Æ(a

i;i+1

)b

i+2

y

i+2

� : : : � Æ(a

i;i+1

)b

n

y

n

; (5.19)

and (5.17) by �(a

ik

), giving

�(a

ik

)#y

k

= �(a

ik

)a

�

k1

z

1

+ : : :+ �(a

ik

)a

�

ki

z

i

+ �(a

ik

)a

�

k;i+1

z

i+1

+

+�(a

ik

)a

�

k;i+2

y

i+2

+ : : :+ �(a

ik

)a

�

kn

y

n

+ �(a

ik

)r

k

(5.20)
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for i+ 1 � k � n. Using this in (5.18), we get an equation of the form

#z

i+1

= a

��

i+1;1

z

1

+: : : a

��

i+1;i+1

z

i+1

+a

��

i+1;i+2

y

i+2

+: : :+a

��

i+1;n

y

n

+r

�

i+1

; (5.21)

by whih we replae equation i + 1. r

i+1

is the only omponent of r that

has to be updated, hene we set r

�

j

= r

j

for 1 � j � n, j 6= i+ 1. We have

arrived at the system

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

#z

1

.

.

.

.

.

.

#z

i�1

#z

i

#z

i+1

.

.

.

#y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

A

1

0

.

.

.

A

��1

a

i

�

i

�

1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

a

i�1;i

�

: : : a

i�1;i�1

1 0 : : : 0

a

i;i

�

: : : a

i;i�1

a

i;i

1 0 : : : 0

a

��

i+1;i

�

: : : a

��

i+1;i�1

a

��

i+1;i

�

a

��

i+1;i+1

: : : a

��

i+1;n

.

.

.

.

.

.

� a

�

n;i

�

: : : : : : a

�

nn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�

�

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

1

.

.

.

.

.

.

z

i�1

z

i

z

i+1

.

.

.

y

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+ r

�

; (5.22)

whih is of the form (5.13) with i inreased by one.

Finally, we disuss the dedution of the y-equations. When we are done with

the triangularization, we have transformed the system into the form

#z =

0

B

�

A

1

0

.

.

.

� A

s

1

C

A

z + r

where A

k

is an l

k

by l

k

blok of the form (5.14). We have already desribed

how the �rst equation of (5.2) is obtained. The k-th of these equations is to
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be dedued from the l

k

equations

#z

i

k

= a

i

k

1

z

1

+ : : :+ a

i

k

i

k

z

i

k

+ z

i

k

+1

+ r

i

k

.

.

.

#z

i

k+1

�2

= a

i

k+1

�2;1

z

1

+ : : : + a

i

k+1

�2;i

k+1

�2

z

i

k+1

�2

+ z

i

k+1

�1

+ r

i

k+1

�2

#z

i

k+1

�1

= a

i

k+1

�1;1

z

1

+ : : : + a

i

k+1

�1;i

k+1

�1

z

i

k+1

�1

+ r

i

k+1

�1

in the same way, by expressing z

i

k

+1

via the �rst equation and #z

i

k

+1

by

applying # to the �rst equation, plugging this into the remaining equations,

and so on. In this proess, we apply # l

k

� 1 times to z

j

, 1 � j < i

k

, and

l

k

times to z

i

k

, whih explains the order of the equations (5.2).

Let us view this proess in more detail. We will enounter equations with

higher order pseudo-derivatives of several of the z

i

, so we introdue new

oeÆients d

i;t;j

, where the third index marks the order of the appliation

of #. They are initialized by d

i;j;0

= a

i;j

, 1 � i; j � n. To keep notation

simple, we do not hange the names of these oeÆients and the r

i

, even if

they are updated by the steps desribed below. Now the k-th blok of the

triangularized system (1 � k � s) takes the form

#z

i

k

=

i

k

X

t=1

d

i

k

;t;0

z

t

+ z

i

k

+1

+ r

i

k

.

.

. (5.23)

#z

i

k+1

�1

=

i

k

X

t=1

d

i

k+1

�1;t;0

z

t

+

i

k+1

�1

X

t=i

k

+1

d

i

k+1

�1;t;0

z

t

+ r

i

k+1

�1

:

(We set i

s+1

= n + 1 for onveniene of notation.) Let 1 � m � l

k

� 1

and suppose we have eliminated z

i

k

+1

; : : : ; z

i

k

+m�1

from (5.23). Then we

ontinue by expressing z

i

k

+m

and #z

i

k

+m

by the m-th equation, whih will

be of the form (with new oeÆients d

i;t;j

!)

#

m

z

i

k

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+ z

i

k

+m

+ r

i

k

+m�1

; (5.24)

(in the �rst step m = 1, this is the �rst equation of (5.23)) and substituting

the result for z

i

k

+m

and #z

i

k

+m

in the m+ 1-st equation

#z

i

k

+m

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m;t;j

#

j

z

t

+ d

i

k

+m;i

k

+m;0

z

i

k

+m

+ [m < l

k

� 1℄ z

i

k

+m+1

+ r

i

k

+m

: (5.25)

(For m = 1, this is the seond equation of (5.23)). Here we made use of

the notation [false℄ = 0 and [true℄ = 1. Then we substitute for z

i

k

+m

in the
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remaining equations

#z

i

k

+i

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+i;t;j

#

j

z

t

+

i

k

+i

X

t=i

k

+m

d

i

k

+i;t;0

z

t

+ [i < l

k

� 1℄ z

i

k

+i+1

+ r

i

k

+i

; m < i < l

k

� 1: (5.26)

Expressing z

i

k

+m

via (5.24) yields

z

i

k

+m

= �

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+ #

m

z

i

k

� r

i

k

+m�1

(5.27)

and, onsequently,

#z

i

k

+m

= �

i

k

X

t=1

m�1

X

j=0

�

�(d

i

k

+m�1;t;j

)#

j+1

z

t

+ Æ(d

i

k

+m�1;t;j

)#

j

z

t

�

+#

m+1

z

i

k

� #r

i

k

+m�1

= �

i

k

X

t=1

�

m�1

X

j=1

�(d

i

k

+m�1;t;j�1

)#

j

z

t

+ �(d

i

k

+m�1;t;m�1

)#

m

z

t

+Æ(d

i

k

+m�1;t;0

)z

t

) +

m�1

X

j=1

Æ(d

i

k

+m�1;t;j

)#

j

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

= �

i

k

X

t=1

�

Æ(d

i

k

+m�1;t;0

)z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

�

#

j

z

t

+�(d

i

k

+m�1;t;m�1

)#

m

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

:

Plugging this into (5.25), we get

�

i

k

X

t=1

�

Æ(d

i

k

+m�1;t;0

)z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

�

#

j

z

t

+�(d

i

k

+m�1;t;m�1

)#

m

z

t

�

+ #

m+1

z

i

k

� #r

i

k

+m�1

=

i

k

X

t=1

m�1

X

j=0

d

i

k

+m;t;j

#

j

z

t

+ d

i

k

+m;i

k

+m;0

 

�

i

k

X

t=1

m�1

X

j=0

d

i

k

+m�1;t;j

#

j

z

t

+#

m

z

i

k

� r

i

k

+m�1

!

+ [m < l

k

� 1℄ z

i

k

+m+1

+ r

i

k

+m

;
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that is,

#

m+1

z

i

k

=

i

k

X

t=1

 

(Æd

i

k

+m�1;t;0

+ d

i

k

+m;t;0

� d

i

k

+m;i

k

+m;0

d

i

k

+m�1;t;0

) z

t

+

m�1

X

j=1

�

�(d

i

k

+m�1;t;j�1

) + Æd

i

k

+m�1;t;j

+ d

i

k

+m;t;j

�d

i

k

+m;i

k

+m;0

d

i

k

+m�1;t;j

�

#

j

z

t

+ �(d

i

k

+m�1;t;m�1

)#

m

z

t

!

+d

i

k

+m;i

k

+m;0

#

m

z

i

k

+ [m < l

k

� 1℄ z

i

k

+m+1

+ #r

i

k

+m�1

�d

i

k

+m;i

k

+m;0

r

i

k

+m�1

+ r

i

k

+m

(5.28)

as our newm+1-st equation. (In the last stepm = l

k

�1, this is an unoupled

equation for z

i

k

; note that z

1

; : : : ; z

i

k

�1

are assumed as known when we are

dealing with the k-th blok.) What remains to do is to insert (5.27) into

(5.26), yielding the equations

#z

i

k

+i

=

i

k

X

t=1

m�1

X

j=0

(d

i

k

+i;t;j

� d

i

k

+i;i

k

+m;0

d

i

k

+m�1;t;j

)#

j

z

t

+ d

i

k

+i;i

k

+m;0

#

m

z

i

k

+

i

k

+i

X

t=i

k

+m+1

d

i

k

+i;t;0

z

t

+ [i < l

k

� 1℄ z

i

k

+i+1

+ r

i

k

+i

�d

i

k

+i;i

k

+m;0

r

i

k

+m�1

; m < i � l

k

� 1:

This ompletes the general step of the dedution of the y-equation for the

k-th blok. When we have done this for all 1 � k � s, 1 � m � l

k

� 1, the

last equation (namely, (5.28) for m = l

k

� 1) of eah blok is an unoupled

higher order equation for z

i

k

:

#

l

k

z

i

k

=

i

k

X

t=1

l

k

�1

X

j=0

d

i

k+1

�1;t;j

#

j

z

t

+ r

i

k+1

�1

; 1 � k � s:

(Note i

s+1

= n+ 1) These equations form (5.2).



5.1. THE UNCOUPLING ALGORITHM BY ABRAMOV AND ZIMA 69

Algorithm 5.1 by Abramov and Zima

I := f1g; perm := (1,...,n) (* identity permutation *)

T=0 (* zero matrix; T=t

ij

*)

(* �rst stage: transformation into blok triangular shape *)

for i = 1,...,n-1

(* look for variable with nonzero oeÆient *)

j0 := i + 1

while j0 <= n and a

i;j

= 0

j0 := j0 + 1

if j0 <= n then

(* swap variables i+1 and j0 *)

perm[i+1℄ := j0; perm[j0℄ := i+1

(* swap equations i+1 and j0 *)

for j = 1,...,n

s := a

i+1;j

; a

i+1;j

:= a

j0;j

; a

j0;j

:= s

(* swap entries i+1 and j0 of the right hand side *)

s := r

i+1

; r

i+1

:= r

j0

; r

i+1

:= s

(* swap variables i+1 and j0 in equations i,...,n *)

(* and swap olumns i+1 and j0 of T *)

for j = i,...,n

s := a

j;i+1

; a

j;i+1

:= a

j;j0

; a

j;j0

:= s

s := t

j;i+1

; t

j;i+1

:= t

j;j0

; t

j;j0

:= s

(* update T *)

for j = i+1,...,n

t

i+1;j

:= a

i;j

for j = i+2,...,n

b

j

:= a

i;j

/ a

i;i+1

(* eliminate variable i+1 from the right hand sides *)

for k = i+1,...,n

for j = i+2,...,n

a

k;j

:= a

k;j

- a

k;i+1

* b

j

a

k;i+1

:= a

k;i+1

/ a

i;i+1

(* initialize the oeÆients of the new equation i+1 *)

for j = 1,...,i



j

:= 0

(* eliminate variable i+1 from the new equation i+1 *)
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i+1

:= Æ(a

i;i+1

) / a

i;i+1

for j = i+2,...,n



j

:= -Æ(a

i;i+1

) * b

j

(* eliminate # of variables i+1,..,n from new equation i+1 *)

r

i+1

:= 0

for k = i+1,...,n

for j = 1,...,n



j

:= 

j

+ �(a

i;k

) * a

k;j

r

i+1

:= r

i+1

+ �(a

i;k

) * r

k

(* update the oeÆient matrix with the new equation i+1 *)

for j = 1,...,n

a

i+1;j

:= 

j

(* update equation i *)

a

i;i+1

:= 1;

for j = i+2,...,n

a

ij

:= 0

end

else (* there is no variable suitable for elimination *)

I := I [ i+1

t

i+1;i+1

:= 1

for j = i+2,...,n

t

i+1;j

:= 0

end

end
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(* seond stage: dedution of the y-equations *)

s := |I|

fi

1

,...,i

s

g := I; i

s+1

:= n+1

for i = 1,...,n

for j = 1,...,n

d

i;j;0

:= a

i;j

for k = 1,...,s

for m = 1,...,i

k+1

-i

k

-1

for t = 1,...,i

k

d

i

k

+m;t;0

:= Æ(d

i

k

+m�1;t;0

) + d

i

k

+m;t;0

- d

i

k

+m;i

k

+m;0

* d

i

k

+m�1;t;0

for j = 1,...,m-1

d

i

k

+m;t;j

:= �(d

i

k

+m�1;t;j�1

) + Æ(d

i

k

+m�1;t;j

)

+ d

i

k

+m;t;j

- d

i

k

+m;i

k

+m;0

* d

i

k

+m�1;t;j

d

i

k

+m;t;m

:= �(d

i

k

+m�1;t;m�1

)

end

d

i

k

+m;i

k

;m

:= d

i

k

+m;i

k

;m

+ d

i

k

+m;i

k

+m;0

r

i

k

+m

:= r

i

k

+m

+ #(r

i

k

+m�1

) - d

i

k

+m;i

k

+m;0

* r

i

k

+m�1

d

i

k

+m;i

k

+m;0

:= 0

for i = m+1,...,i

k+1

-i

k

-1

for t = 1,...,i

k

for j = 0,...,m-1

d

i

k

+i;t;j

:= d

i

k

+i;t;j

- d

i

k

+i;i

k

+m;0

* d

i

k

+m�1;t;j

d

i

k

+i;i

k

;m

:= d

i

k

+i;i

k

+m;0

r

i

k

+i

:= r

i

k

+i

- d

i

k

+i;i

k

+m;0

* r

i

k

+m�1

d

i

k

+i;i

k

+m;0

:= 0

end

end

end

5.1.4 Corretness

Theorem 5.2 The solutions of the unoupled system AZ are exatly the

solutions of (5.1).

Proof: From the desription of the algorithm is is lear that any solution

of (5.1) solves the unoupled system. As for the onverse, we take a loser

look at the transition from (5.13) to (5.22). Of ourse, equations 1 to i of

(5.22) (whih remain unhanged) together with (5.17) for i+1 � k � n and

(5.15) imply (5.13). But in the next step of the algorithm, equation (5.17)

for k = i + 1 is disarded and replaed by (5.21), whih beomes the �rst

equation of (5.22). Hene we have to verify that (5.22),(5.15) imply (5.17)

for k = i+ 1.
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To see it, suppose z

1

; : : : ; z

i+1

; y

i+2

; : : : ; y

n

satisfy (5.22),(5.15). Taking

into aount how equation (5.21), i.e., the i + 1-st equation of (5.22) was

obtained, it reads

#z

i+1

= �(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

+Æ(a

i;i+1

)

0

�

a

�1

i;i+1

z

i+1

�

n

X

j=i+2

b

j

y

j

1

A

+

n

X

t=i+2

0

�

�(a

it

)

0

�

i+1

X

j=1

a

�

tj

z

j

+

n

X

j=i+2

a

�

tj

y

j

+ r

t

1

A

+ Æ(a

it

)y

t

1

A

:

(5.29)

By (5.15) and equations i+2 to n of (5.22) the right hand side further equals

�(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

+ Æ(a

i;i+1

)y

i+1

+

n

X

t=i+2

(�(a

it

)#y

t

+ Æ(a

it

)y

t

) ;

and by omparing this to (5.18) (whih follows from (5.15)), we have

�(a

i;i+1

)

0

�

i+1

X

j=1

a

�

i+1;j

z

j

+

n

X

j=i+2

a

�

i+1;j

y

j

+ r

i+1

1

A

= �(a

i;i+1

)#y

i+1

:

Now the validity of (5.17) for k = i+ 1 follows from a

i;i+1

6= 0 and � being

a monomorphism, hene �(a

i;i+1

) 6= 0. �

5.1.5 The Solution Spae

The proof of the following theorem shows how we an �nd a basis for the

solution spae of the homogeneous system #y = Ay, provided that we an

�nd bases for the solution spaes of the unoupled equations. The general

solution of the inhomogeneous system #y = Ay + r an then be expressed

by one �xed solution plus the solution spae of the homogeneous system.

Theorem 5.3 Let W be a vetor spae over K , # : W ! W be pseudo-

linear, A = (a

ij

)

1�i;j�n

2 Mat(n;K ) and K � K be a sub�eld of K (e.g.,

K = Const

�;Æ

). If eah of the salar equations

l

k

X

j=0

�

kj

#

j

y

i

k

= �; k = 1; : : : ; s; (5.30)
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where �

kj

as in (5.2) is obtained by unoupling the system #y = Ay and

� 2 W is arbitrary, has a solution in W , and if eah of the homogeneous

salar equations

l

k

X

j=0

�

kj

#

j

y

i

k

= 0; k = 1; : : : ; s (5.31)

has l

k

K-linearly independent solutions in W , then the homogenous pseudo-

linear system

�y = Ay (5.32)

has n K-linearly independent solutions in W

n

.

Proof. We begin by noting that if r = 0 in (5.1), then �

i

= 0 in (5.2) and

�

i

= 0 in (5.4), whih is easily seen from the desription of the algorithm.

Furthermore, we an assume w.l.o.g. that the order of the y

i

is not hanged

by the algorithm. In what follows, `linearly independent' means `linearly

independent over K'.

Now let z

(1)

1

; : : : ; z

(i

2

�1)

1

be linearly independent solutions of the �rst

equation of (5.2) (reall that we an use the variables y

i

and z

i

inter-

hangeably for i 2 I). De�ne z

(1)

2

; : : : ; z

(1)

i

2

�1

from z

(1)

1

via (5.4). If we plug

z

(1)

1

; : : : ; z

(1)

i

2

�1

into the seond equation of (5.2), we an �nd a solution z

(1)

i

2

.

We use (5.4) to ompute the omponents i

2

+1; : : : ; i

3

�1, and so on. Thus we

have found a vetor (throughout this proof, we use bold letters for vetors)

z

(1)

=

�

z

(1)

1

; : : : ; z

(1)

n

�

t

s.t.

y

(1)

:= T

�1

z

(1)

where T is as in (5.5) solves (5.32). Analogously we onstrut the vetors

z

(2)

; : : : ; z

(i

2

�1)

and y

(2)

; : : : ;y

(i

2

�1)

.

Next we set z

1

= : : : = z

i

2

�1

= 0 in the seond equation of (5.2) and solve

it, obtaining l

2

= i

3

� i

2

linearly independent solutions z

(i

2

)

i

2

; : : : ; z

(i

3

�1)

i

2

. We

proeed as above to obtain the vetors z

(i

2

)

; : : : ; z

(i

3

�1)

and y

(i

2

)

; : : : ;y

(i

3

�1)

.

Analogously we de�ne z

(j)

and y

(j)

, i

3

� j � n. If we let Z be the matrix

whose olumns are z

(1)

; : : : ; z

(n)

, then eah of the olumns of T

�1

Z solves



74 CHAPTER 5. BLOCK TRIANGULAR DECOMPOSITION

(5.32). Z is of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

z

(1)

1

: : : z

(i

2

�1)

1

0 : : : 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0

z

(1)

i

2

: : : z

(i

2

�1)

i

2

z

(i

2

)

i

2

: : : z

(i

3

�1)

i

2

0 : : :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z

(i

2

)

i

3

�1

: : : z

(i

3

�1)

i

3

�1

0 : : :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 0

z

(i

s

)

i

s

: : : z

(n)

i

s

.

.

.

.

.

.

.

.

.

z

(1)

n

: : : : : : z

(i

s

)

n

: : : z

(n)

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(5.33)

Suppose that

n

X

k=1

�

k

y

(k)

= 0

for some �

k

2 K. Clearly, this implies

n

X

k=1

�

k

z

(k)

= 0

and hene, by (5.33),

i

t+1

�1

X

k=i

t

�

k

z

(k)

i

t

= 0; t = 1; : : : ; s:

(One again, we set i

s+1

= n+1.) Sine eah of the sets

n

z

(i

t

)

i

t

; : : : ; z

(i

t+1

�1)

i

t

o

is linearly independent, we have �

k

= 0, 1 � k � n, whih establishes the

linear independeny of the y

(k)

. �

Corollary 5.4 Let K be a �eld, A 2 Mat(n;R(K)) be a matrix of rational

funtions over K and � be the forward di�erene operator on K = R(K).

Let further �

kj

as in (5.2) be obtained by applying Abramov and Zima's

algorithm to the system of di�erene equations

�y = Ay; y 2 S(K)

n

: (5.34)

If �

k0

6= 0 for 1 � k � s, then (5.34) has n K-linearly independent solution

vetors in S(K)

n

.
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Proof. The fat that (5.30) has a solution is obvious in the di�erene ase,

and the seond requirement of the preeding theorem is satis�ed by ap-

pealing to theorem (8.2.1) of [20℄, whih asserts that a di�erene equation

P

l

j=0

a

j

E

j

y = 0 has exatly l K-linearly independent solutions in S(K), if

the a

j

are polynomials from K[x℄ and a

0

; a

l

are nonzero. �

5.1.6 Complexity

In this setion we onsider the number of operations the unoupling algo-

rithm by Abramov and Zima performs. First we ount the multipliations

in K . From algorithm (5.1) we read o� that in the �rst stage, for i + 1 =2 I

the i-th pass of the outer loop requires

n� i� 1 + (n� i)

2

+ n� i+ (n� i) (n+ 1)

= 2n

2

� 3ni+ i

2

+ 3n� 3i� 1

multipliations. If i+1 2 I, that is, no variable with nonzero oeÆient was

found, no operations are performed in this pass of the outer loop. Hene we

need

n�1

X

i=1

i+1=2I

�

2n

2

� 3ni+ i

2

+ 3n� 3i� 1

�

multipliations in all. The number of additions in the i-th pass of the outer

loop (again we assume i+ 1 =2 I) is

(n� i) (n� i� 1) + (n� i) (n+ 1)

= 2n

2

� 3in+ i

2

;

yielding a total of

n�1

X

i=1

i+1=2I

�

2n

2

� 3in+ i

2

�

additions. In the seond stage, we need

s

X

k=1

l

k

�1

X

m=1

(i

k

(1 +m� 1) + 1 + (l

k

�m� 1) (i

k

m+ 1))

multipliations and

s

X

k=1

l

k

�1

X

m=1

(i

k

(2 + 3 (m� 1)) + 3 + (l

k

�m� 1) (i

k

m+ 1))

additions.

These observations lead to
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Theorem 5.5 (nondegenerate ase) In the nondegenerate ase I = f1g,

algorithm (5.1) performs

n

3

+O(n

2

)

multipliations in K . The same is true for the number of additions in K .

Proof: As we have seen above, the number of multipliations and additions

of the �rst stage are eah of the form

n�1

X

i=1

�

2n

2

� 3ni+ i

2

+O(n)

�

= 2n

2

(n� 1)� 3n

n�1

X

i=1

i+

n�1

X

i=1

i

2

+O(n)

2

=

5

6

n

3

+O(n

2

):

As for the seond stage, we have s = 1, l

1

= n and therefore we need

n�1

X

m=1

(m+ 1 + (n�m� 1) (m+ 1)) = (n� 1)n+ (n� 1)

n�1

X

m=1

m�

n�1

X

m=1

m

2

=

n

3

6

+O(n

2

)

multipliations and

n�1

X

m=1

(3m+ 2 + (n�m� 1) (m+ 1)) =

n

3

6

+O(n

2

)

additions. Adding the omplexities of the �rst and the seond stage gives

the desired result. �

5.2 A Variant of Z�urher's Algorithm

5.2.1 A Blok Triangular Normal Form for Pseudo-Linear

Maps

As in setion (3.1) we onsider the equation

�y = r

or, equivalently,

T�(y) + Æy = r:

Z�urher's algorithm redues the matrix of a pseudo-linear map to a blok-

diagonal matrix, where the bloks are ompanion matries. In this hapter

we present a variant, whih we will all `inomplete Z�urher's algorithm',

that omits some omputations in the proess of obtaining the normal form,
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thus omputing only a bloktriangular matrix. The latter will be of the same

form as in the unoupling algorithm by Abramov and Zima. The prie will

be a more ompliated omputation for the salar equations, whih also

resembles Abramov and Zima's algorithm.

We start with a 'redued' version of lemma (3.2):

Lemma 5.6 Let the matrix of � be of the form

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

� 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : : : : 0

i! � : : : : : : � � : : : : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

with i < n: (5.35)

If there is an element t

il

6= 0 with i < l � n, then there is a basis hange A

s.t.

A

�1

T�(A) +A

�1

ÆA =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i+1

#

� 1 0 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : 0

i+ 1! � : : : : : : � � : : : �

� : : : : : : � � : : : �

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Proof. We show how A an be onstruted as a produt of elementary ma-

tries. To keep notation simple, the assoiated matries of � that our in

the intermediate steps are denoted again by T = (t

ik

). First, by the basis

hange P

i+1;l

, t

i;i+1

beomes nonzero. The remaining entries of the a�eted

olumns i + 1 and l are either 0 (rows 1; : : : ; i � 1) or not of interest (rows

i+ 1; : : : ; n). P2 does not hange the ordered part of T either.

Now we an perform the basis hange D

i+1

(�

�1

(t

�1

i;i+1

)). D1 sets t

i;i+1

to 1, and D2 and D3 do not modify lines 1; : : : ; i.

What remains to do is to set t

ik

, k = i+2; : : : ; n, to 0. Suppose we have
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done this up to k < m:

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

i

#

m

#

� 1 0 0 : : : : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : 1 0 : : : : : : 0

i! � : : : : : : � 1 0 : : : 0 � : : : �

� : : : : : : � � : : : : : : �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� : : : : : : � � : : : : : : �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The basis hange C

i+1;m

(�

�1

(�t

im

)) sets t

im

to 0 by operation C1. It is easy

to hek that C1, C2 and C3 do not hange the ordered part of T . �

Next we take a look at how hanges of bases modify blok triangular matri-

es.

Lemma 5.7 Let T

11

, T

21

, T

22

be matries over K of sizes n

1

� n

1

, n

2

� n

1

and n

2

� n

2

, respetively. Let further � : K

n

1

+n

2

! K

n

1

+n

2

be the pseudo-

linear map whose matrix w.r.t. the anonial basis is

�

T

11

T

12

0

T

22

�

and A be an

invertible n

2

� n

2

matrix. Then the basis hange

�

I

0

0

A

�

turns the matrix of

� into

�

T

1

0

A

�1

T

21

A

�1

T

22

�(A) +A

�1

ÆA

�

:

Proof. Beause of formula (2.16), the matrix that we seek is

�

I 0

0 A

�1

��

T

11

0

T

21

T

22

�

�

��

I 0

0 A

��

+

�

I 0

0 A

�1

�

Æ

�

I 0

0 A

�

=

�

T

11

0

A

�1

T

21

A

�1

T

22

�(A)

�

+

�

0 0

0 A

�1

ÆA

�

=

�

T

1

0

A

�1

T

21

A

�1

T

22

�(A) +A

�1

ÆA

�

;

where �(I) = I and ÆI = 0 follow from orollary (2.13). �

This means that the lower left blok of T has to be updated as well whenever

we perform a basis hange to modify the lower right blok.

After these preparations we an formulate and prove

Theorem 5.8 Let V be an n-dimensional vetor spae, � : V ! V be

pseudo-linear w.r.t. � and Æ, where � is an automorphism. Then there is



5.2. A VARIANT OF Z

�

URCHER'S ALGORITHM 79

a basis of V suh that the matrix of � w.r.t. to this basis is of the blok

triangular form

0

B

�

A

1

0

.

.

.

� A

m

1

C

A

;

where the A

i

, 1 � i � m, are of the form

0

B

B

B

B

B

�

� 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

� : : : � 1 0

� : : : � 1

� : : : �

1

C

C

C

C

C

A

: (5.36)

Proof. Indution on n. For n = 1 there is nothing to show.

Suppose the assertion of the theorem holds for 1; : : : ; n � 1. By taking

i = 1 if neessary, T is of the form (5.35). Let i be the size of the upper left

blok of type (5.36). If i = n, we are done. If i < n and there is an element

t

ik

6= 0 for some i < k � n, we an inrease the size of the upper left blok

to i + 1 by lemma (5.6). If, on the other hand, all these entries are zero,

we apply the indution hypothesis to the lower right part of T . The basis

hanges needed to bring it into the desired form do not interfere with the

ordered part of T by lemma (5.7). �

This proof gives rise to the following algorithm to �nd the blok triangular

normal form. The main proedure is very simple: If we do not �nd the

nonzero matrix entry neessary to inrease the upper left blok of form

(5.36) by lemma (5.6), we just move on to the next line. There are two

di�erenes between transformL5.4 and transformL2 from algorithm (3.7):

Firstly, transformL5.4 does not erase the elements t

ik

, i

0

� k � i. Seondly,

during the base hanges D

i+1

(�

�1

(t

�1

i;i+1

)) and C

i+1;k

(�

�1

(�t

ik

)) the lower

left part of T has to be modi�ed aording to lemma (5.7). The proedure

transformP is the same as in algorithm (3.7).

Algorithm 5.9 triangForm

triangForm(T; �; Æ)

n := Size(T)

i0 := 1; i := 1

B := identity matrix of size n

while i < n

j := i+1

while j � n and t

ij

= 0



80 CHAPTER 5. BLOCK TRIANGULAR DECOMPOSITION

j := j + 1

if j � n then

transformLemma5.4(T,i0,i,j,�,Æ,B)

else

i0 := i + 1

i := i + 1

end

return T,B

end

transformLemma5.4(T,i0,i,l,�,Æ,B)

n := Size(T)

transformP(T,i0,i+1,l,B)

a := �

�1

(t

�1

i;i+1

)

for j := i to n

t

j;i+1

:= t

j;i+1

* �(a) (* D1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

/ a (* D2 *)

t

i+1;i+1

:= t

i+1;i+1

+ Æ(a) / a (* D3 *)

for j := 1 to i0-1

t

i+1;j

:= t

i+1;j

/ a (* update lower left blok of T *)

for j := i0 to n

b

j;i+1

:= a * b

j;i+1

(* basis hange *)

for k := i+2 to n

a := �

�1

(-t

ik

)

for j := i to n

t

jk

:= t

jk

+ �(a) * t

j;i+1

(* C1 *)

for j := i0 to n

t

i+1;j

:= t

i+1;j

- a * t

kj

(* C2 *)

t

i+1;k

:= t

i+1;k

+ Æ(a) (* C3 *)

for j := 1 to i0-1

(* update lower left blok of T *)

t

i+1;j

:= t

i+1;j

- a * t

k;j

for j := i0 to n

b

jk

:= b

jk

+ a * b

j;i+1

(* basis hange *)

end

end �
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5.2.2 Dedution of Salar Equations

Di�erential Equations

For a di�erential system

Dy = Ty + v

(see setion (3.1.2) for the relevant de�nitions) we proeed as in setion

(3.1.2), but we use algorithm (5.9) instead of Z�urher's algorithm. It returns

(if the blok triangular matrix has only one blok) a system of the form

Dz

1

= a

11

z

1

+ z

2

+ r

1

.

.

.

Dz

n�1

= a

n�1;1

z

1

+ : : :+ a

n�1;n�1

z

n�1

+ z

n

+ r

n�1

Dz

n

= a

n1

z

1

+ : : :+ a

nn

z

n

+ r

n

:

A salar equation for z

1

an now be obtained in the same way as in the

algorithm by Abramov and Zima: The �rst equation allows to express z

2

and Dz

2

by z

1

, Dz

1

and D

2

z

1

:

z

2

= Dz

1

� a

11

z

1

� r

1

;

Dz

2

= D

2

z

1

� a

11

Dz

1

�Da

11

z

1

�Dr

1

:

These expressions are plugged into equations 2; : : : ; n, and so on, until we

arrive at an n-th order unoupled di�erential equation for z

1

.

If the blok-triangular matrix returned by algorithm (5.9) has several

bloks, we solve the system orresponding to the �rst blok as desribed

above and ontinue with the seond blok, assuming that the variables of

the �rst blok are known, i.e., part of the inhomogeneity. This is ompletely

analogous to the seond stage of Abramov and Zima's algorithm, see there

for details.

Di�erene Equations

One again we use the same notation as in setion (3.1.2). Using the trans-

formations desribed there and algorithm (5.9), we an redue a di�erene

system

Ey =My + v

to an equivalent system

Ez = Pz + w;

where P = (p

ij

)

1�i;j�n

= E(C) + I and C is the blok-triangular matrix

omputed by algorithm (5.9). Assuming w.l.o.g. that C has only one blok,
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this system is of the form

Ez

1

= p

11

z

1

+ z

2

+ w

1

.

.

.

Ez

n�1

= p

n�1;1

z

1

+ : : :+ p

n�1;n�1

z

n�1

+ z

n

+ w

n�1

Ez

n

= p

n1

z

1

+ : : : + p

nn

z

n

+ w

n

:

The dedution of an unoupled higher order equation for z

1

is now analogous

to the di�erential ase.

5.2.3 Complexity

The number of multipliations in K required by transformL5.4 is

(n� i+ 1) + (n� i

0

+ 1) + 1 + (i

0

� 1) + (n� i

0

+ 1) +

(n� i+ 1) ((n� i+ 1) + (n� i

0

+ 1) + (i

0

� 1) + (n� i

0

+ 1)) :

For the number of additions we �nd

1 + (n� i+ 1) ((n� i+ 1) + (n� i

0

+ 1) + 1 + (i

0

� 1) + (n� i

0

+ 1)) :

In both ases, if we set i

0

= 1 and neglet terms of order n, we obtain

(n� i) (3n� i) +O(n) = 3n

2

� 4in+ i

2

+O(n);

whih leads to

Theorem 5.10 If the �rst if ondition in algorithm (5.9) is always satis-

�ed throughout the exeution, the unoupling algorithm `inomplete Z�urher'

requires

3

2

n

3

+O(n

2

)

multipliations in K . The same is true for the number of additions.

Proof. As seen above, the �rst stage (i.e., algorithm (5.9)) requires

n�1

X

i=1

�

3n

2

� 4in+ i

2

+O(n)

�

= (n� 1) 3n

2

� 4n

n�1

X

i=1

i+

n�1

X

i=1

i

2

+O(n

2

)

=

4

3

n

3

+O(n

2

)

multipliations (resp. additions). The seond stage is the same as in Abramov/Zima's

algorithm, where we found its omplexity to be

n

3

6

+O(n

2

). �



Chapter 6

Implementation and R�esum�e

6.1 The Mathematia Pakage

We have implemented the four algorithms that we have desribed in the

Mathematia pakage OreSys.m. The main funtions are

UnoupleDifferentialSystem[equations,variables,helpvariables,x,options℄

UnoupleDiffereneSystem[equations,variables,helpvariables,x,options℄

UnoupleqDiffereneSystem[equations,variables,helpvariables,x,q,options℄

UnoupleGeneralDiffereneSystem[equations,variables,helpvariables,

x,a,b,options℄

UnoupleAlgebraiSystem[equations,variables,helpvariables,options℄.

For instane,

UnoupleDifferentialSystem[fy1'[x℄==x y1[x℄-y2[x℄+1,

2 y2'[x℄-y1[x℄==1/(x-1)g,fy1[x℄,y2[x℄g,fz1[x℄,z2[x℄g,x,

Method->AbramovZima℄

or

UnoupleqDiffereneSystem[fy1[q x℄==y1[x℄/x+y2[x℄-x^2,

y2[q x℄==y1[x℄+(x+1)/(x-1)y2[x℄-1g,fy1[x℄,y2[x℄g,fz1[x℄,z2[x℄g,x,q℄.

helpvariables are dummy variables that are used by Abramov/Zima,

Z�urher and inomplete Z�urher to express the unoupled system. They are

not used (and need not be spei�ed) if Gaussian elimination is applied.

UnoupleGeneralDiffereneSystem is for the ase �(x) = ax + b,

Æ = 0, whih generalizes the ordinary shift and the q-shift (a and b are

onstants, a 6= 0). UnoupleAlgebraiSystem unouples linear algebrai,

i.e., operator-free, systems.

83
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By default all these funtions use Abramov and Zima's unoupling algo-

rithm. The unoupling algorithm an be modi�ed with the option Method:

Method->AbramovZima

Method->Gauss

Method->Zuerher

Method->InompleteZuerher.

6.2 Examples of Computation

Di�erential System

We give an example from physis. Consider an objet with mass m that

moves in a plane inuened by a fore F = (f

1

; f

2

). Aording to Newton's

equation `fore = mass � aeleration', the position y = y(x) of the objet

at time x satis�es:

F (y) = my

00

:

In two dimensions, this reads:

f

1

(y

1

(x); y

2

(x)) = my

00

1

(x)

f

2

(y

1

(x); y

2

(x)) = my

00

2

(x):

Let us assume that f

1

; f

2

are linear and set u

1

= y

0

1

, u

2

= y

0

2

. For the sake

of onreteness, set m = 1 and

f

1

(y

1

; y

2

) = (x

2

� 1)y

1

+

1

x

y

2

;

f

2

(y

1

; y

2

) = �xy

1

+

2

x� 1

y

2

:

Now we have arrived at the linear �rst order di�erential system

u

0

1

(x) = (x

2

� 1)y

1

(x) +

1

x

y

2

(x)

u

0

2

(x) = �xy

1

(x) +

2

x� 1

y

2

(x)

y

0

1

(x) = u

1

(x)

y

0

2

(x) = u

2

(x):

We give the output of eah of the four algorithms from the preeding hapters

applied to this system.
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Z�urher:

6�8x+27x

2

�12x

3

+4x

4

�3x

2

+2x

3

z

1

(x) +

�6+4x+22x

2

�60x

3

+52x

4

�14x

5

�3x+8x

2

�7x

3

+2x

4

z

0

1

(x)

+

�6+14x+x

2

�9x

3

�x

4

+5x

5

�2x

6

3x

2

�5x

3

+2x

4

z

00

1

(x) +

�6+2x

�3x+2x

2

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) = z

0

2

(x);

z

4

(x) = z

0

3

(x);

u

1

(x) = z

1

(x);

u

2

(x) =

�2+9x

2

+2x

3

�15x

4

�2x

5

x(�3+2x)

z

1

(x) +

6�6x�8x

2

+4x

3

+3x

4

�3x

5

(�1+x)(�3+2x)

z

2

(x)

+

�2+3x

2

+2x

3

x(�3+2x)

z

3

(x) +

�1+3x

2

�3+2x

z

4

(x);

y

1

(x) =

2�1+3x

2

x(�3+2x)

z

1

(x) +

3�x�x

2

+x

3

(�1+x)(�3+2x)

z

2

(x)�

2

x(�3+2x)

z

3

(x)�

1

�3+2x

z

4

(x);

y

2

(x) =

�2(�1+x)(1+x)

(

�1+3x

2

)

�3+2x

z

1

(x)�

x

(

6�2x

2

+x

4

)

�3+2x

z

2

(x)

+

2(�1+x)(1+x)

�3+2x

z

3

(x) +

(�1+x)x(1+x)

�3+2x

z

4

(x):

Abramov, Zima:

�2�17x�2x

2

+30x

3

+26x

4

+31x

5

�22x

6

+4x

7

x+2x

2

+2x

3

�4x

4

�3x

5

+2x

6

z

1

(x)

+

5+2x�29x

2

�2x

3

+53x

4

+60x

5

+33x

6

�104x

7

�54x

8

+58x

9

+24x

10

�14x

11

x+2x

2

�8x

4

�6x

5

+12x

6

+8x

7

�8x

8

�3x

9

+2x

10

z

0

1

(x)

+

2+3x�18x

2

�24x

3

+18x

4

+14x

5

�8x

6

�12x

7

+8x

8

+3x

9

�2x

10

�x�2x

2

�x

3

+6x

4

+5x

5

�6x

6

�3x

7

+2x

8

z

00

1

(x)

+

2+2x�4x

2

�4x

3

�6x

4

+2x

5

x+2x

2

+2x

3

�4x

4

�3x

5

+2x

6

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) =

�

1� x

2

�

z

1

(x)�

2x

�1+x

2

z

2

(x) + z

0

2

(x);

z

4

(x) =

1

x

2

�1

z

2

(x)�

1�3x

2

x(�1+x

2

)

z

3

(x) + z

0

3

(x);

u

1

(x) = z

1

(x);

�

x

2

� 1

�

u

2

(x) +

1

x

y

2

(x) = z

2

(x);

1

x

y

1

(x)�

2

�1+x

2

y

2

(x) = z

3

(x);

�1�2x�3x

2

+2x

3

(�1+x)

2

x(1+x)

2

y

2

(x) = z

4

(x):
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Gauss:

�

1� x

2

�

y

1

(x)�

1

x

y

2

(x) + u

0

1

(x) = 0;

xy

1

(x)�

2

�1+x

y

2

(x) + u

0

2

(x) = 0;

�

1� x

2

�

y

1

(x)�

1

x

y

2

(x) + y

00

1

(x) = 0;

4�12x+15x

2

�7x

3

+3x

4

+3x

5

�2x

6

�x

3

+3x

4

�3x

5

+x

6

y

2

(x) +

4�8x

x

2

�2x

3

+x

4

y

0

2

(x) +

2�2x+3x

2

�x

3

�x

4

+x

5

�x

3

+x

4

y

00

2

(x)

+

2

x

2

y

(3)

2

(x)�

1

x

y

(4)

2

(x) = 0:

Inomplete Z�urher:

6�8x+27x

2

�12x

3

+4x

4

�3x

2

+2x

3

z

1

(x) +

�6+4x+22x

2

�60x

3

+52x

4

�14x

5

�3x+8x

2

�7x

3

+2x

4

z

0

1

(x)

+

�6+14x+x

2

�9x

3

�x

4

+5x

5

�2x

6

3x

2

�5x

3

+2x

4

z

00

1

(x) +

�6+2x

�3x+2x

2

z

(3)

1

(x) + z

(4)

1

(x) = 0;

z

2

(x) = z

0

1

(x);

z

3

(x) =

�

1� x

2

�

z

1

(x)�

2x

�1+x

2

z

2

(x) + z

0

2

(x);

z

4

(x) =

1

x

2

�1

z

2

(x) +

2

(

�1+2x

2

)

x(�1+x

2

)

z

3

(x) + z

0

3

(x);

u

1

(x) = z

1

(x);

u

2

(x) = xz

3

(x) +

�1+3x

2

�3+2x

z

4

(x);

y

1

(x) =

1

�1+x

2

z

2

(x)�

1

�3+2x

z

4

(x);

y

2

(x) =

(�1+x)x(1+x)

�3+2x

z

4

(x):

Di�erene System

We apply the four unoupling algorithms to the following (arbitrarily hosen)

system of di�erene equations:

y

1

(x+ 1) = y

1

(x) + y

2

(x) + y

3

(x)� y

4

(x)

y

2

(x+ 1) = �xy

1

(x) + y

2

(x) + y

3

(x) + x

y

3

(x+ 1) = y

1

(x) +

1

x

y

4

(x)

y

4

(x+ 1) = y

2

(x) + y

4

(x)� 1:
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Z�urher:

�5�7x�x

2

�x

3

�x

4

(�1+x)(1+x)(2+x)

+

�x�2x

2

�1+x

2

z

1

(x) +

�3+x+6x

2

+6x

3

+2x

4

�2�x+2x

2

+x

3

z

1

(x+ 1)

+

4+x�7x

2

�6x

3

�x

4

�2�x+2x

2

+x

3

z

1

(x+ 2) +

�3+3x+3x

2

�2+x+x

2

z

1

(x+ 3)� z

1

(x+ 4) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� z

2

(x) + z

2

(x+ 1);

z

4

(x) = �z

3

(x) +

1+x+x

2

+z

3

(x+1)+xz

3

(x+1)

1+x

;

y

1

(x) = z

1

(x);

y

2

(x) = �

x

2

z

1

(x)

1+x

+

(�1�x)z

2

(x)

�1+x

+

(

�1�x�x

2

)

z

3

(x)

(�1+x)(1+x)

+

z

4

(x)

1�x

;

y

3

(x) =

(

�x+x

2

)

z

1

(x)

1+x

� xz

2

(x)�

z

3

(x)

1+x

� z

4

(x);

y

4

(x) = �

xz

1

(x)

1+x

�

x(1+x)z

2

(x)

�1+x

�

x(2+x)z

3

(x)

(�1+x)(1+x)

�

xz

4

(x)

�1+x

:

Gauss:

�y

1

(x) + y

1

(x+ 1)� y

2

(x)� y

3

(x) + y

4

(x) = 0;

(�1�x)y

2

(x)

x

+

(1+2x)y

2

(x+1)

x+x

2

+

y

2

(x+2)

�1�x

+

(�1�x)y

3

(x)

x

+

y

3

(x+1)

x+1

+ y

4

(x) = 0;

y

3

(x+ 1) +

(�2�x)y

3

(x+2)

x

+

(1+3x)y

3

(x+3)

x+x

2

+

y

3

(x+4)

�1�x

+

(�1�2x)y

4

(x)

x

2

+

(

3+7x+3x

2

)

y

4

(x+1)

x+2x

2

+x

3

+

(

�1�5x�x

2

)

y

4

(x+2)

2x+3x

2

+x

3

+

y

4

(x+3)

3+4x+x

2

= 0;

�268�750x�848x

2

�487x

3

�139x

4

�19x

5

�x

6

(2+x)(�10+40x+73x

2

+43x

3

+11x

4

+x

5

)(158+364x+278x

2

+97x

3

+16x

4

+x

5

)

+

1+3x+2x

2

�10x+40x

2

+73x

3

+43x

4

+11x

5

+x

6

y

4

(x)

+

(

�888�4626x�8338x

2

�7877x

3

�4466x

4

�1574x

5

�337x

6

�40x

7

�2x

8

)

y

4

(x+1)

�3160+3780x+49308x

2

+110346x

3

+126324x

4

+89058x

5

+41429x

6

+13013x

7

+2738x

8

+370x

9

+29x

10

+x

11

+(some terms skipped) +

+

(

�10+366x+929x

2

+850x

3

+367x

4

+76x

5

+6x

6

)

y

4

(x+6)

�3160+3780x+49308x

2

+110346x

3

+126324x

4

+89058x

5

+41429x

6

+13013x

7

+2738x

8

+370x

9

+29x

10

+x

11

+

(�1�x)y

4

(x+7)

316+886x+920x

2

+472x

3

+129x

4

+18x

5

+x

6

= 0:
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Abramov, Zima:

5+7x+x

2

+x

3

+x

4

(�1+x)(1+x)(2+x)

+

(

x+2x

2

)

z

1

(x)

�1+x

2

+

(

3�x�6x

2

�6x

3

�2x

4

)

z

1

(x+1)

�2�x+2x

2

+x

3

+

(

�4�x+7x

2

+6x

3

+x

4

)

z

1

(x+2)

�2�x+2x

2

+x

3

+

(

3�3x�3x

2

)

z

1

(x+3)

�2+x+x

2

+ z

1

(4 + x) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� (1� x) z

1

(x) + z

2

(x+ 1);

z

4

(x) = �

x

1+x

� z

1

(x) +

xz

2

(x)

1+x

�

xz

3

(x)

1+x

+ z

3

(x+ 1);

y

1

(x) = z

1

(x);

y

2

(x) + y

3

(x)� y

4

(x) = z

2

(x);

y

3

(x) +

(1�x)y

4

(x)

x

= z

3

(x);

(1�x)y

4

(x)

x

= z

4

(x):

Inomplete Z�urher:

5+7x+x

2

+x

3

+x

4

(�1+x)(1+x)(2+x)

+

(

x+2x

2

)

z

1

(x)

�1+x

2

+

(

3�x�6x

2

�6x

3

�2x

4

)

z

1

(x+1)

�2�x+2x

2

+x

3

+

(

�4�x+7x

2

+6x

3

+x

4

)

z

1

(x+2)

�2�x+2x

2

+x

3

+

(

3�3x�3x

2

)

z

1

(x+3)

�2+x+x

2

+ z

1

(x+ 4) = 0;

z

2

(x) = �z

1

(x) + z

1

(x+ 1);

z

3

(x) = �1� x� (1� x) z

1

(x) + z

2

(x+ 1);

z

4

(x) = �

x

1+x

� z

1

(x) +

xz

2

(x)

1+x

�

x

x+1

z

3

(x) + z

3

(x+ 1);

y

1

(x) = z

1

(x);

y

2

(x) = z

2

(x)� z

3

(x) +

z

4

(x)

1�x

;

y

3

(x) = z

3

(x)� z

4

(x);

y

4

(x) = �

xz

4

(x)

�1+x

:

6.3 Comparison of the Methods

It is not easy to give some general hint on what unoupling algorithm to use.

After trying our implementation on many example systems, the best strategy

for some partiular input seems to be trying several algorithms to �gure out

whih one gives the best result (i.e., the unoupled equations with smallest

order/smallest oeÆients, or the shortest running time). Our results on

omplexity need not be signi�ant for the small dimensional systems where

unoupling is possible; if n is large (say, n > 15), none of the available

algorithms will unouple the system in reasonable time and with reasonably

sized output.
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Gaussian elimination usually gives ompliated unoupled equations and

is the only algorithm where the order of the unoupled equation an be larger

than the dimension of the system. However, the di�erential system from the

last setion shows that neither of these shortomings happens always.

Z�urher's algorithm and our `inomplete' variant have the minor teh-

nial restrition that � must be surjetive. Empirial evidene shows that

they both return the same unoupled higher order equation for the �rst

variable z

1

, provided that in both algorithms we are in the nondegenerate

ase, where the blok diagonal (resp. blok triangular) matrix has only one

blok. The situation hanges when one (or both) of these two algorithms

runs into the degenerate ase where the system splits into several bloks.

This is more likely to our when inomplete Z�urher is applied than with

Z�urher's algorithm, beause Z�urher's algorithm tries to inrease the ur-

rent ompanion blok by applying lemma (3.5) if lemma (3.2) is not appli-

able. On the other hand, inomplete Z�urher immediately proeeds with

the next blok if lemma (5.6), whih orresponds to lemma (3.2), annot be

applied. Consequently, there are systems that are deomposed into several

bloks by inomplete Z�urher, but not with Z�urher's algorithm. This is de-

sirable beause several salar equations of small order are easier to handle

than one equation of large order.
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