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Abstract

G.P. Egorychev introduced a method which transforms combinatorial sums (e.g. sums
involving binomial coefficients and also non-hypergeometric expressions arising in com-
binatorial context) into integrals. These integrals can be simplified using substitution or
residue-calculus. With the help of this method one can compute combinatorial sums to
which classical algorithms are not applicable. In this thesis we restrict to the residue func-
tional instead of manipulating integral representations. We demonstrate among others how
the Lagrange inversion rule can be applied to find closed forms for combinatorial sums.
The special focus is laid on sums involving Stirling numbers and Bernoulli numbers that
are not that easy to handle in comparison to sums over binomial coefficients. The latter
sums can be handled e.g. with the application of Zeilberger’s algorithm. A related notion
that will be discussed and used are Riordan arrays, a concept which we also use to handle
non-trivial sums.



Zusammenfassung

G.P. Egorychev hat eine Methode vorgestellt, welche kombinatorische Summen (z.B. Sum-
men über Binomialkoeffizienten und nicht hypergeometrischen kombinatorischen Zah-
len) in Integrale transformiert. Diese Integrale können dann mittels Substitution bzw.
Residuen-Kalkül vereinfacht werden. Mit Hilfe dieses Verfahrens kann man geschlossene
Formen für Summen berechnen, auf die klassische Algorithmen nicht anwendbar sind.
In dieser Arbeit wird gezeigt wie zum Beispiel die Lagrange’sche Inversionsregel verwen-
det werden kann, um geschlossene Formen für kombinatorische Summen zu finden. Der
Schwerpunkt ist auf Summen mit Stirlingzahlen und Bernoullizahlen gelegt, welche nicht
so einfach zu handhaben sind wie vergleichsweise Summen über Binomialkoeffizienten
(letztere können z.B. mit dem Zeilberger Algorithmus behandelt werden). Ein verwand-
tes Konzept, das beschrieben wird, ist das des Riordan Arrays welches auch verwendet
werden kann, um nichttrivale Summen zu berechnen.



List of used Symbols

Symbol Name Defined on page

N set of nonnegative integers {0, 1, 2, 3, ...} -

Z,Q,R,C set of integers, rational, real and complex numbers -
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Chapter 1

Introduction

1.1 Overview

This master thesis contributes to problem solving methods related to symbolic summa-
tion and generating functions of combinatorial sequences. During the last years several
creative and effective approaches towards systematic treatments have been introduced.
The Egorychev method is one such attempt.

One of the reasons why the Egorychev method is that powerful is that it takes advantage
of the Lagrange inversion rule in a constructive way to derive a closed form for a gener-
ating function. With this application one can prove complicated identities such as Abel’s
identity

n∑
k=0

(
n

k

)
a(a+ k)k−1(b+ n− k)n−k = (a+ b+ n)n (1.1)

or Gould’s identity

r∑
k=0

r

r − kq

(
r − qk

k

)(
p+ kq

n− k

)
=

(
p+ r

n

)
. (1.2)

A somewhat similar approach is the concept of the Riordan group that also applies the
Lagrange inversion rule for proving combinatorial identities. Clever construction of Rior-
dan arrays makes it easy to discover identities of similar type.

One of the reasons for this thesis was the interest of the author to compute sums that are
not applicable to classical algorithms. The author has attended the Algorithmic Combi-
natorics Seminar of the RISC combinatorics group for several years and got an impression
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of the power of symbolic summation techniques and its utilization in several applications.
In particular, the author wants to mention the work of Dr. Kauers, Dr. Schneider, Dr.
Koutschan and the advisor of this thesis, Prof. Paule. The author wants to thank them
for their enthusiasm and their always present will to give insights in their work and dis-
cussing until all details were understood. We will describe some of their work in the
following chapters and also take a look on how their developments can be applied to solve
symbolic summation problems.

This thesis focusses on combinatorial numbers such as Stirling numbers, Bernoulli num-
bers and binomial coefficients. Combinatorial numbers express some of the most funda-
mental properties of combinatorial objects in mathematics (as for instance the number
of subsets with certain properties, ...) and are in fact not that trivial to handle. A goal
of this master thesis is to present some approaches that can be used to derive closed
form solutions for combinatorial sums. Also several concrete examples are given to see
immediately how the machinery developed by Egorychev and Shapiro/Sprugnoli proves
identities arising (among others) in combinatorial mathematics.

One might speculate that there is a way to automatize the Lagrange inversion rule on a
computer algebra system which would lead to a new algorithmic method that assists in
finding closed forms for combinatorial sums. Especially the inversion rule which boils the
problem down to pattern matching has the potential to be implemented on some computer
algebra system. Unfortunately this is only part of the work as we will see, because we
need some preprocessing steps which is not that easy to automatize. Therefore we still
need to go back to paper and pencil for particular problem classes.

1.2 Software packages we used

In this work the author used several software packages (most of them developed by the
Algorithmic Combinatorics group of RISC Linz) for the Mathematica computer algebra
system. We demonstrate how this packages can be used to solve symbolic summation
problems. The following packages have been used in this thesis (in alphabetical order)

• M. Kauers: Stirling [Kau07]: a Mathematica package for computing recurrence
equations of sums involving Stirling numbers or Eulerian numbers.

• C. Koutschan: Holonomic Functions [Kou09, Kou10]: a Mathematica package for
dealing with multivariate holonomic functions, including closure properties, sum-
mation, and integration.
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• C. Mallinger: Generating Functions [Mal96]: a Mathematica package for manipula-
tions of univariate holonomic functions and sequences.

• P. Paule, M. Schorn [PS95]: the Paule/Schorn implementation of Gosper’s and
Zeilberger’s algorithm in Mathematica.

• M. Petkovšek: Hyper [Pet98]: a Mathematica implementation of Petkovšek’s algo-
rithm Hyper.

• C. Schneider: Sigma [Sch01, Sch04, Sch07]: a Mathematica package for discovering
and proving multi-sum identities.

The packages developed at RISC can be obtained from

http://www.risc.jku.at/research/combinat/software/

1.3 How to read the thesis

The thesis is divided into four chapters, which depend upon each other. In the following
chapter 2 we clarify the notion of combinatorial numbers and recall their combinatorial
interpretation. Further we go into details how to operate on formal power series and
Laurent series. The central element in this thesis is the notion of residue functional. A
detailed account will be devoted to its application on Laurent series. Finally we will
investigate how this is related to the concept of residue appearing in complex analysis.
Chapter 3 is devoted to the notion of Riordan arrays that closely relates to manipulating
power series on coefficient level. We examine ways of characterizing Riordan arrays by
its A- and Z-sequence. At the end of the day we want to apply the developed machinery
to solve problems in the area of symbolic summation and computing closed forms for
generating functions. This will be the main focus in chapter 4. This chapter will also
provide some new aspects (to the author’s opinion). We apply Egorychev’s approach, to
Gould’s identity (1.2) and to a generalization of Abel’s identity (4.12) that is based on
Riordan arrays. The power of the Egorychev method on multi-sum identities is demon-
strated on an American Mathematical Monthly problem (see section 4.2) that has been
worked out (with input provided by the BSI Problems group, Bonn). An application of
Mathematica packages is discussed to solve this kind of problems. As the name suggests,
the next section 4.3 shows a recent American Mathematical Monthly problem that was
solved by deriving a residue representation and evaluating it explicitly in closed form.
During the examination of a symbolic sum involving Fibonacci numbers the author could
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generalize the shape of the summand to evaluate sums with binomial coefficients and
C-finite sequences. This generalization (Thm. 4.4.5) includes an exercise of [Wil06, Ex.
4.16] as special case. Next we will show how to derive a residue representation for an
explicit formula for Stirling numbers of the second kind (4.34) (that reflects the gener-
ating function). Stirling numbers are also subject in the identities (4.36), (4.37) that
are out of scope for the known methods introduced in [PWZ96]. For proving an identity
(equality of two binomial sums) that is needed for computing the generating function of
Jacobi polynomials we will make use of the method of coefficients although Zeilberger’s
algorithm as well as the Snake Oil method would also be applicable. Finally we give a
summation example involving harmonic numbers and present several ways to compute it
in closed form. The final subsection is a remark on asymptotic analysis.

1.4 Acknowledgements

I joined the combinatorics group at RISC in spring 2008. Since that time I had the
honor of learning from experts at this group both in theoretical lectures and practical
research. My first thank undoubtedly goes to the leader of this group and the advisor
of this thesis, Prof. Peter Paule. With his enthusiasm and his advices he handled to
motivate me in writing this thesis. He also introduced the classic tools in his lectures and
showed where still further research could be done. The author was financially supported
by the Doctoral Program Computational Mathematics (W1214) whom I want to thank
too. Further I want to thank Dr. Schneider for introducing me to his Sigma package,
Dr. Koutschan for demonstrating his HolonomicFunctions package and Dr. Kauers for
his inauguration on his Stirling package (and challenging exercises from his side that are
part of this thesis). Dr. Kauers also was so kind to provide a LATEX package for fancy
typesetting of Mathematica source code listings. I want to express my acknowledgements
to the faculty of RISC for teaching me that much in symbolic algorithms. They never
got tired of answering my questions. Also among the PhD students I want to say thank
you for helpful scientific (and non-scientific) discussions, especially to my friends Jakob
Ablinger, Silviu Radu and Clemens Raab. Finally I must not forget to thank my family,
who made all this possible.
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Chapter 2

Preliminaries

2.1 Combinatorial notions

In chapter 6 of the book [GKP94] there is a comprehensive repertoire on combinatorial
numbers. As mentioned in the introduction we will have a look at some of them to
summarize the most important ones.

Definition 2.1.1 (Rising/falling factorials)
Let R be an arbitrary ring with unity, x ∈ R, k ∈ N. We define the rising (resp. falling)
factorial by (see [GKP94, p.47/48])

xk = x(x+ 1) . . . (x+ k − 1), k ≥ 1, (2.1)

xk = x(x− 1) . . . (x− k + 1), k ≥ 1, (2.2)

x0 = x0 = 1. (2.3)

Definition 2.1.2 (Binomial coefficients)
Let R be a commutative ring containing Q and let λ ∈ R and k ∈ Z. Then(

λ

k

)
:=

λk

k!
=

λ(λ− 1) . . . (λ− k + 1)

k(k − 1) . . . 1
, k ≥ 0, (2.4)(

λ

k

)
:= 0, k < 0. (2.5)

For the case that n, k ∈ N we have the formula:(
n

k

)
=

n!

k!(n− k)!
=

(
n

n− k

)
, (2.6)

and the usual convention that
(
n
k

)
= 0 when k > n.
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Theorem 2.1.1 (Binomial theorem, [KP11], p. 87-89)
The binomial theorem states that for n ∈ N and any a, b ∈ K we have

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k. (2.7)

As we have seen in Def. 2.1.2 it is also useful to consider the cases where n ∈ −N. In
this case we have for n ∈ N, a, b ∈ K:

(a+ b)−n =
∞∑
k=0

(
−n

k

)
akb−n−k =

∞∑
k=0

(−n)k

k!
akb−n−k. (2.8)

Definition 2.1.3 (Stirling numbers of the 1st kind)
Let n, k ∈ N. The signless Stirling numbers of the 1st kind count the number of permuta-
tions of n objects with exactly k cycles. We will denote them by

S1(n, k). (2.9)

Definition 2.1.4 (Stirling numbers of the 2nd kind)
Let n, k ∈ N. The symbol

S2(n, k) (2.10)

stands for the number of ways to partition a set of n objects into k nonempty subsets.

Definition 2.1.5 (Bernoulli numbers)
Let n ∈ N. The sequence of Bernoulli numbers (see [FB07, p.114, Ex. 3])

(Bn)n≥0 (2.11)

is recursively defined by

B0 = 1,
n∑

k=0

(
n+ 1

k

)
Bk = 0, n ≥ 1.

Definition 2.1.6 (The Kronecker symbol)
The Kronecker Symbol is given by

δ(n, k) =

{
1, n = k,

0, n ̸= k.
(2.12)
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2.2 Manipulation of power series

In this section we summarize the most basic facts concerning power series. For a detailed
treatment see [GCL92, Wil06, GKP94, KP11].

For any commutative ring R containing Q as a subring, the notation R[[x]] denotes the
set of all expressions of the form

A(x) ∈ R[[x]] : A(x) =
∞∑
k=0

akx
k, ak ∈ R. (2.13)

In other words R[[x]] denotes the set of all formal power series in the indeterminate x over
the ring R. We call A(x) =

∑∞
k=0 akx

k the (ordinary) generating function associated to
the sequence (ak)k≥0.
The order ord(A(x)) of a nonzero power series A(x) is the least integer k such that ak ̸= 0.
The exceptional case where ak = 0 for all k is called the zero power series. It is common
to define the order of the zero power series to be infinity. For a nonzero power series
A(x) =

∑∞
k=0 akx

k ∈ R[[x]] with ord(A(x)) = l the term alx
l is called the low order term

of A(x), al is called the low order coefficient, and a0, also written A(0), is called the
constant term.

2.2.1 Operations on formal power series

It is usual to define the binary operations of addition and multiplication in the set R[[x]]
as follows. If

a(x) =
∞∑
k=0

akx
k and b(x) =

∞∑
k=0

bkx
k,

then the power series addition is defined by

c(x) = a(x) + b(x) =
∞∑
k=0

ckx
k,

where
ck = ak + bk, k ≥ 0.

Power series multiplication is defined by

d(x) = a(x) · b(x) =
∞∑
k=0

dkx
k,
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where
dk = a0bk + · · ·+ akb0, k ≥ 0.

If K a field, (K[[x]],+, ·) forms a commutative ring with unity 1 = 1 + 0 · x+ 0 · x2 + ....

Lemma 2.2.1 (K[[x]],+, ·) is an integral domain.

Lemma 2.2.2 (K[[x]],+, ·) is a principal ideal domain.

Lemma 2.2.3
Let R be any commutative ring containing Q as a subring. The units (invertible elements)
in R[[x]] are all power series A(x) whose constant terms A(0) are units in the coefficient
domain R.

Proof. If a(x) =
∑∞

k=0 akx
k is a unit in R[[x]] then there must exist a power series b(x) =∑∞

k=0 bkx
k such that a(x)b(x) = 1. By the definitions of power series multiplication we

must have

1 = a0b0,

0 = a0b1 + a1b0,
...

0 = a0bn + a1bn−1 + · · ·+ anb0, etc.

Thus, a0 is a unit in R with a−1
0 = b0. Conversely, if a0 is a unit in R then the above

equation can be solved for the bk as follows:

b0 = a−1
0 ,

b1 = −a−1
0 (a1b0),

...

bn = −a−1
0 (a1bn−1 + · · ·+ anb0), etc.

This way, we construct b(x) such that a(x)b(x) = 1, so a(x) is a unit in R[[x]]. 2

Lemma 2.2.4 If the coefficient domain R (an arbitrary ring with unity) is an integral
domain then R[[x]] is also an integral domain.

Proof. We have to show that for given a(x), b(x) ∈ R[[x]] such that

a(x) =
∞∑
k=0

akx
k ̸= 0, b(x) =

∞∑
k=0

bkx
k ̸= 0,

8



where for k ∈ N: ak, bk ∈ R, we have that their product a(x)b(x) is not equal to zero.
Because a(x) ̸= 0 there exist ai ̸= 0 for some i ∈ N and similar j ∈ N such that bj ̸= 0.
Let i, j be minimal with this property. The product a(x)b(x) is given by

c(x) :=
∞∑
n=0

cnx
n = a(x)b(x),

where

cn =
n∑

k=0

akbn−k, n ≥ 0.

By assumption ak = 0 for k < i and bn−k = 0 for n− k < j or k > n− j. Therefore, for
n = i+ j we find

ci+j =

i+j∑
k=0

akbi+j−k = aibj.

The coefficient domain R is by assumption an integral domain and therefore free of zero
divisors. ai and bj are nonzero, so ci+j is nonzero. Therefore c(x) ̸= 0. 2

Theorem and Definition 2.2.1 (General binomial theorem, [KP11], p.89)
For λ ∈ R, (R a commutative ring containing Q as a subring) the expression (1 + x)λ

does not have a meaning as formal power series. We still have

(1 + x)λ =
∞∑
n=0

(
λ

n

)
xn, x ∈ K, |x| < 1, (2.14)

as analytic power series. Therefore it is reasonable to take

(1 + x)λ :=
∞∑
n=0

(
λ

n

)
xn ∈ R[[x]] (2.15)

as the definition of the symbol (1 + x)λ. With this definition, we can prove, the multipli-
cation law

(1 + x)λ(1 + x)µ = (1 + x)λ+µ (2.16)

in R[[x]]. By applying the definition of product in R[[x]] this is equivalent to the identity

n∑
k=0

(
λ

k

)(
µ

n− k

)
=

(
λ+ µ

n

)
n ≥ 0, λ, µ ∈ R, (2.17)

that is known as Vandermonde convolution ([GKP94, p. 170, (5.27)]).
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Now we consider the notion of limit in K[[x]]. With this we can define composition of
formal power series.

Definition 2.2.1 ([KP11], p.24)
A sequence (ak(x))k≥0 of formal power series in K[[x]] converges to another formal power
series a(x) ∈ K[[x]] if the ak(x) get arbitrarily close to a(x). Formally, (ak(x))k≥0 con-
verges to a(x) in K[[x]] if and only if

lim
k→∞

ord(a(x)− ak(x)) = ∞,

i.e., if and only if

∀n ∈ N ∃k0 ∈ N ∀k ≥ k0 : ord(a(x)− ak(x)) > n.

Definition 2.2.2 (Composition of power series)
Let a(x) =

∑∞
n=0 anx

n, b(x) ∈ K[[x]] be such that ord(b(x)) ≥ 1. Consider the sequence
(ck(x))k≥0 defined by

ck(x) =
k∑

j=0

ajb(x)
j.

The composition of a(x) and b(x) is defined by

a(b(x)) :=
∞∑
n=0

anb(x)
n := lim

k→∞
ck(x) = c(x). (2.18)

The composition of power series is compatible with addition and multiplication as the
following theorem shows.

Theorem 2.2.1 ([KP11], p.26)
For every fixed u(x) ∈ K[[x]] with ord(u(x)) ≥ 1 the map

Φu : K[[x]] −→ K[[x]],

a(x) 7−→ a(u(x)),

is a ring homomorphism.

Proof. See [KP11, p. 26, Thm. 2.6] 2

Note that 1
x

/∈ K[[x]] but lies in its quotient field, i.e. 1
x
∈ K((x)), the field of formal

Laurent series.

10



2.2.2 Formal Laurent series

By Lemma 2.2.1 K[[x]] is an integral domain. So one can construct the quotient field:

K((x)) =

{
a(x)

b(x)
: a(x), b(x) ∈ K[[x]] ∧ b(x) ̸= 0

}
.

We call this construction the field of formal Laurent series over K.

Lemma 2.2.5
K((x)) =

{
xkc(x) : k ∈ Z, c(x) ∈ K[[x]]

}
.

Proof. For one inclusion take f(x) ∈ K((x)). Hence f(x) = a(x)
b(x)

for some a(x), b(x) ∈
K[[x]] and b(x) ̸= 0. If we extract xi such that

a(x) =
∞∑
n=0

anx
n = xi

∞∑
n=0

αnx
n

︸ ︷︷ ︸
=:α(x)

,

with α0 ̸= 0 and do the same for

b(x) =
∞∑
n=0

bnx
n = xj

∞∑
n=0

βnx
n

︸ ︷︷ ︸
=:β(x)

,

with β0 ̸= 0,we find by Lemma 2.2.3 a multiplicative inverse of β(x). Hence the expression

a(x)

b(x)
=

xiα(x)

xjβ(x)
= xi−j α(x)

β(x)︸ ︷︷ ︸
∈K[[x]]

is well defined and of the desired form.

For the other direction take f(x) ∈
{
xkc(x) : k ∈ Z, c(x) ∈ K[[x]]

}
: by definition f(x) =

xkc(x) for some k ∈ Z, c(x) ∈ K[[x]]. If k ∈ N0 we have:

xkc(x) = xk

∞∑
n=0

cnx
n =

∞∑
n=0

cnx
n+k =

∞∑
n=k

cn−kx
n,

and by setting a(x) =
∑∞

n=k cn−kx
n and b(x) = 1 = 1 + 0 · x + 0 · x2 + ... we have

xkc(x) = a(x)
b(x)

∈ K((x)).

For k ∈ −N we get the desired form by setting a(x) = c(x) and b(x) =
∑∞

n=0 bnx
n = x−k,

i.e. (bn)n≥0 : (δ(−k, n))n≥0. 2
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This Lemma gives the justification to view a formal Laurent series as follows

K((x)) =

{
∞∑

n=−∞

anx
n an ∈ K ∧ finitely many an ̸= 0 where n < 0

}
.

Notation: For k ∈ Z:

Kk((x)) := { f ∈ K((x)) | ord(f(x)) = k} ⊂ K((x)). (2.19)

Definition 2.2.3 (Coefficient functional)
Let

f(x) =
∑
k∈Z

fkx
k ∈ K((x)).

We will frequently use the notation

⟨xn⟩ f(x) := fn, n ∈ Z.

We define
f(0) := ⟨x0⟩ f(x) = f0.

An elementary property of this functional is given by

⟨xn⟩ xkf(x) = ⟨xn−k⟩f(x), n, k ∈ Z.

In subsection 2.2.4 we will give ⟨x−1⟩ f(x) a special name.

2.2.3 Differentiation and integration

If R is a commutative ring (resp. a field) and D : R → R is such that

D(a+ b) = D(a) +D(b), (2.20)

D(a · b) = D(a)b+ aD(b) (2.21)

for all a, b ∈ R, then D is called a (formal) derivation on R and the pair (R,D) is called a
differential ring (resp. a differential field). Next we define the formal derivative on K((x)).

Definition 2.2.4 (Formal derivative)
Let, for k0 ∈ Z,

a(x) = x−k0

∞∑
k=0

akx
k ∈ K((x)).

12



A derivation on the field of formal Laurent series is given by

Dx : K((x)) −→ K((x)),

a(x) = x−k0

∞∑
k=0

akx
k 7−→ Dx(a(x)) := −k0x

−k0−1

∞∑
k=0

akx
k + x−k0

∞∑
k=0

ak+1(k + 1)xk.

Notation: For f(x) ∈ K((x)) we also write:

f ′(x) := Dx(f(x)),

f ′′(x) := D2
x(f(x)) := Dx(Dx(f(x))),

f (k)(x) := Dk
x(f(x)) := Dx(. . . Dx︸ ︷︷ ︸

k times

(f(x)) . . . ), etc.

Note that this definition contains the ring of formal power series as special case by setting
k0 = 0, i.e. f(x) =

∑∞
k=0 akx

k and

Dx(f(x)) = Dx

(
∞∑
k=0

akx
k

)
=

∞∑
k=1

akkx
k−1 =

∞∑
k=0

ak+1(k + 1)xk. (2.22)

We will not distinguish the symbol Dx for K((x)) resp. K[[x]].

Lemma 2.2.6 (K[[x]], Dx) is a differential ring.

Lemma 2.2.7 (K((x)), Dx) is a differential field.

Lemma 2.2.8
Let f(x), (fn(x))n≥0 be in K((x)) such that limn→∞ ord(fn(x)) = ∞ and

f(x) =
∞∑
n=0

fn(x)

Then:

• For k ∈ Z

⟨xk⟩ f(x) =
∞∑
n=0

⟨xk⟩ fn(x)

•

Dx(f(x)) =
∞∑
n=0

Dx(fn(x))

13



Proof. By definition of the infinite sum we have that

⟨xk⟩ f(x) = ⟨xk⟩
∞∑
n=0

fn(x) = ⟨xk⟩ lim
N→∞

N∑
n=0

fn(x)

Now, because of our assumption that limn→∞ ord(fn(x)) = ∞, we know that there exists
an index M such that for all m ≥ M we have that ord(fm(x)) > k. Hence we can split
the sum.

= ⟨xk⟩ lim
N→∞

(
M∑
n=0

fn(x) +
N∑

n=M+1

fn(x)

)

= ⟨xk⟩
M∑
n=0

fn(x) + ⟨xk⟩ lim
N→∞

N∑
n=M+1

fn(x)

We have chosen M such that ∀i ∈ N: ord(fM+i(x)) > k, hence the second sum does not
contribute to ⟨xk⟩. Now we use a linearity argument, i.e.,

⟨xk⟩
M∑
n=0

fn(x) =
M∑
n=0

⟨xk⟩fn(x),

which proves the theorem, by our choice of M . For the second statement, we plug in the
definition of the infinite sum:

Dx(f(x)) = Dx

(
∞∑
n=0

fn(x)

)
= Dx

(
lim

N→∞

N∑
n=0

fn(x)

)
Now, because limn→∞ ord(fn(x)) = ∞ we know that for all K ∈ N there exists M ∈ N
such that for all m ≥ M : ord(fm(x)− f(x)) > K. Hence, we find that

Dx

(
lim

N→∞

N∑
n=0

fn(x)

)
= Dx

(
lim

N→∞

(
M∑
n=0

fn(x) +
N∑

n=M+1

fn(x)

))

= Dx

(
M∑
n=0

fn(x)

)
+Dx

(
lim

N→∞

(
N∑

n=M+1

fn(x)

))

By our choice of M , we know that the second sum is of the form

N∑
n=M+1

fn(x) = xK+1g(x), g(x) ∈ K[[x]].

14



If we differentiate this expression we get

Dx(x
K+1g(x)) = (K + 1)xKg(x) + xK+1Dx(g(x)) −→ 0.

as K tends to infinity. Again the linearity property of the Dx operator,

Dx

(
M∑
n=0

fn(x)

)
=

M∑
n=0

Dx (fn(x)) ,

proves our claim. 2

Proposition 2.2.1 The following rules hold for f(x), g(x) ∈ K((x)), n ∈ N:

•
Dx

(
f(x)

g(x)

)
=

Dx(f(x))g(x)− f(x)Dx(g(x))

g(x)2
, g(x) ̸= 0, (2.23)

•
Dx (f(x)

n) = n · f(x)n−1Dx(f(x)), (2.24)

• If f(x) ∈ K0((x)), ord(g(x)) ≥ 1:

Dx (f(g(x))) = Dt(f(t))|t=g(x)Dx(g(x))

= f ′(g(x))g′(x)
(2.25)

Proof. For the first statement we show that Dx(1) = 0. Indeed,

Dx(1) = Dx(1 · 1) = 1 ·Dx(1) + 1 ·Dx(1) = Dx(1) +Dx(1) ⇒ Dx(1) = 0.

From this we find that:

0 = Dx(1) = Dx

(
g(x)

g(x)

)
= g(x)Dx

(
1

g(x)

)
+

1

g(x)
Dx(g(x))

⇒ Dx

(
1

g(x)

)
= − 1

g(x)2
Dx(g(x))

Now we can apply the product rule (2.21):

Dx

(
f(x)

g(x)

)
= f(x)Dx

(
1

g(x)

)
+

1

g(x)
Dx(f(x))

= f(x)

(
−Dx(g(x))

g(x)2

)
+

1

g(x)
Dx(f(x))

=
Dx(f(x))g(x)− f(x)Dx(g(x))

g(x)2
.
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For the second statement we apply induction on n. The base cases n = 0, 1 are trivial
from the definition. Now let us suppose that for fixed n we have that

Dx(f(x)
n) = nf(x)n−1Dx(f(x))

We consider now

Dx(f(x)
n+1) = Dx(f(x)

nf(x)) = f(x)nDx(f(x)) + f(x)Dx(f(x)
n)

= f(x)nDx(f(x)) + nf(x)nDx(f(x))

= (n+ 1)f(x)nDx(f(x)),

which proves the statement.

For the third statement let f(x) =
∑∞

k=0 fkx
k. By Lemma 2.2.8 we can exchange sum-

mation and limit. From this we find that

Dx(f(g(x)) = Dx

(
∞∑
k=0

fkg(x)
k

)
= Dx

(
lim
n→∞

n∑
k=0

fkg(x)
k

)

= lim
n→∞

n∑
k=0

Dx(fkg(x)
k) = lim

n→∞

n∑
k=0

fkDx(g(x)
k)

= lim
n→∞

n∑
k=1

fkkg(x)
k−1Dx(g(x)) = Dx(g(x)) lim

n→∞

n∑
k=1

fkkg(x)
k−1

= Dt(f(t))|t=g(x)Dx(g(x)) = g′(x)f ′(g(x)),

that proves the chain-rule. 2

Example 2.2.1 The exponential ex is a shortcut notation for the formal power series

eαx := exp(αx) :=
∞∑
k=0

αk

k!
xk ∈ K[[x]], α ∈ K.

It’s formal derivative is given by

Dx(e
αx) = Dx

(
∞∑
k=0

αk

k!
xk

)
=

∞∑
k=0

αk+1

(k + 1)!
(k + 1)xk = α

∞∑
k=0

αk

k!
xk = αeαx. (2.26)

This power series satisfies:

eαx · eβx =

(
∞∑
k=0

αk

k!
xk

)(
∞∑
k=0

βk

k!
xk

)
=

∞∑
n=0

xn

n!

(
n∑

k=0

(
n

k

)
αkβn−k

)
(2.7)
=

∞∑
n=0

(α+ β)n

n!
xn = e(α+β)x, α, β ∈ K.

(2.27)
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Similar relations hold for (1 + x)λ ∈ R[[x]] (R a commutative ring containing Q as a
subring). We do not carry out the proof in detail, but state the identity for sake of
completeness (as we will need it in chapter 4):

Dx((1 + x)λ) = Dx

(
∞∑
k=0

(
λ

k

)
xk

)
= λ · (1 + x)λ−1. (2.28)

Definition 2.2.5 (Formal integral)
The formal integral of the formal power series

f(x) =
∞∑
k=0

akx
k ∈ K[[x]]

is defined by∫
x

: K[[x]] −→ K[[x]],

f(x) =
∞∑
k=0

akx
k 7−→

∫
x

f(x) =

∫
x

∞∑
k=0

akx
k :=

∞∑
k=0

ak
k + 1

xk+1 =
∞∑
k=1

ak−1

k
xk.

Proposition 2.2.2 ([KP11], p.20, Thm. 2.3)
For all a(x) ∈ K[[x]]:

•
Dx

(∫
x

a(x)

)
= a(x), (2.29)

• ∫
x

Dxa(x) = a(x)− a(0), (2.30)

•
⟨xn⟩ a(x) = 1

n!
(Dn

x(a(x))|x=0. (2.31)

Proof. Throughout the proof, let a(x) =
∑∞

k=0 akx
k ∈ K[[x]]. The first statement is

obtained as follows:

Dx

(∫
x

a(x)

)
= Dx

(∫
x

∞∑
k=0

akx
k

)
= Dx

(
∞∑
k=1

ak−1

k
xk

)

=
∞∑
k=0

ak
k + 1

(k + 1)xk =
∞∑
k=0

akx
k = a(x).
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For the second statement we calculate∫
x

Dx(a(x)) =

∫
x

Dx

(
∞∑
k=0

akx
k

)
=

∫
x

∞∑
k=0

ak+1(k + 1)xk

=
∞∑
k=0

ak+1

k + 1
(k + 1)xk+1 =

∞∑
k=0

ak+1x
k+1

=
∞∑
k=1

akx
k = a(x)− a(0).

To prove (2.31) we proceed by induction on n. The base case n = 0 is easily checked:

⟨x0⟩a(x) = a0 =
1

0!
a(0).

Now suppose for some fixed n ∈ N we have that:

⟨xn⟩ a(x) = 1

n!
Dn

x(a(x))|x=0

The connection to the coefficient of xn+1 is given by the derivative as follows

⟨xn+1⟩ a(x) = ⟨xn⟩ Dx(a(x)) ·
1

n+ 1

=
1

n!
Dn

x (Dx(a(x))) |x=0
1

n+ 1

=
1

(n+ 1)!
Dn+1

x (a(x))|x=0.

2

2.2.4 The concept of res

Definition 2.2.6 (res-functional)
If

C(x) =
∞∑

k=−∞

ckx
k ∈ K((x)),

then we define the formal residue res of C(x) to be the coefficient of x−1, i.e.,

res
x

C(x) := ⟨x−1⟩ C(x) = c−1.

18



Remark: res
x

A(x) is a purely formal operation; more precisely, a linear functional on

the K-vector space K((x)). We will set this later into a context to the analytic meaning
in complex analysis, but whenever we talk of application of the res-operator we mean
extraction of the coefficient of x−1.

Lemma 2.2.9 (Coefficient formula)
If

A(x) =
∞∑
k=0

akx
k ∈ K[[x]]

is the generating function for the sequence (ak)k≥0 it follows that

ak = ⟨xk⟩A(x) = res
x

A(x)x−k−1, k ≥ 0.

Lemma 2.2.10 For all A(x) ∈ K((x)): res
x

Dx(A(x)) = 0

Proof. If we consider

A(x) = a−n0x
−n0 + ...+ a−1x

−1 + a0 + a1x+ a2x
2 + ...

then
Dx(A(x)) = −n0a−n0x

−n0−1 + ...+ (−1)a−1x
−2 + 0 + a1 + 2a2x+ ...

and hence ⟨x−1⟩Dx(A(x)) = 0. 2

Lemma 2.2.11 ([Ros97], p. 41, Lemma 48)
Let g(x) ∈ K1((x)), n ∈ Z. Then:

res
x

Dx(g(x))

g(x)n+1
= δ(n, 0).

Proof. For n ̸= 0 we have

Dx(g(x))g(x)
−n−1 = − 1

n
Dx(g(x)

−n),

which has residue zero by Lemma 2.2.10.

For n = 0, we write g(x) = x/h(x) where h(x) =
∑∞

k=0 hkx
k ∈ K[[x]] such that h0 ̸= 0.

By Lemma 2.2.3 such a representation of g(x) exists. With this substitution, we have

Dx(g(x))

g(x)
=

1

g(x)

(
Dx

(
x

h(x)

))
=

h(x)

x

(
h(x)− xDx(h(x))

h(x)2

)
=

1

x
− Dx(h(x))

h(x)
.
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1/h(x) is a well defined power series of order 0, the power series Dx(h(x)) has order ≥ 0,
so the product Dx(h(x))

1
h(x)

has order ord(Dx(h(x)))+ord(1/h(x)) ≥ 0. Therefore

res
x

Dx(g(x))

g(x)
= res

x

(
1

x
− Dx(h(x))

h(x)

)
= res

x

(
1

x

)
+ res

x

(
Dx(h(x))

h(x)

)
= 1.

2

For computing with formal Laurent series we need the following important theorem

Theorem 2.2.2 (Lagrange, [Ros97], p. 38, Thm. 42)
Let f(x), g(x) ∈ K[[x]] formal power series with ord(g(x)) = 1 and let (an)n≥0 ∈ KN be
such that

f(x) =
∞∑
n=0

ang(x)
n. (2.32)

Then we have that

a0 = ⟨x0⟩ f(x), (2.33)

am = res
x

f(x)Dx(g(x))g(x)
−m−1, m ≥ 1. (2.34)

Proof. Several different proofs are given in [Ros97]. One of them goes like this:

The first statement on a0 is immediate since g(x) does not contribute. Hence, we have
that

f(0) = ⟨x0⟩f(x) = a0.

The statement on general am essentially relies on Lemma 2.2.11. If we multiply both sides
of (2.32) by Dx(g(x))g(x)

−m−1 (for m ∈ N,m ≥ 1) we get by Lemma 2.2.8:

f(x)Dx(g(x))g(x)
−m−1 =

∞∑
n=0

an
Dx(g(x))

g(x)m−n+1
. (2.35)

If we now apply the res-functional we find by Lemma 2.2.11 and Lemma 2.2.8 that

res
x

f(x)Dx(g(x))g(x)
−n−1 = res

x

∞∑
n=0

an
Dx(g(x))

g(x)m−n+1

=
∞∑
n=0

an res
x

Dx(g(x))

g(x)m−n+1

=
∞∑
n=0

anδ(n,m) = am.

2
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In concrete examples (see section 4.1.2) we will find it useful, as in the proof of Lemma
2.2.11, to consider a power series of order 1 as a quotient of two power series as follows:

g(x) :=
x

h(x)
, (2.36)

where h(x) ∈ K0((x)). If we apply Thm. 2.2.2 to this choice, use the chain-rule in K[[x]]
(see Proposition 2.2.2) and multiply both sides of (2.32) by g(x)−m, we find by Lemma
2.2.8 that:

Dx(f(x)) =
∞∑
n=1

anng(x)
n−1Dx(g(x)),

Dx(f(x))

g(x)m
=

∞∑
n=1

ann
Dx(g(x))

g(x)m−n+1
.

Now we apply on both sides the res-functional together with Lemma 2.2.8 and Lemma
2.2.11:

res
x

Dx(f(x))g(x)
−m =

∞∑
n=1

ann res
x

Dx(g(x))

g(x)m−n+1

=
∞∑
n=1

annδ(m,n)

= m · am.

If we finally expand g(x) according to (2.36) we get that:

m · am = res
x

Dx(f(x))g(x)
−m

= ⟨x−1⟩ Dx(f(x))h(x)
mx−m

= ⟨xm−1⟩ Dx(f(x))h(x)
m.

Corollary 2.2.1
Under the assumptions (and with the notions) of Thm. 2.2.2 where h(x) ∈ K0((x)) and

g(x) =
x

h(x)
,

we have for m ≥ 1:

am = res
x

f(x)Dx(g(x))g(x)
−m−1 =

1

m
⟨xm−1⟩Dx(f(x))h(x)

m. (2.37)
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Remark: An alternative derivation of Cor. 2.2.1 from Thm. 2.2.2 is straight-forward
from the identity

0 = ⟨x−1⟩ 1
m
Dx

(
f(x)g(x)−m

)
, m ≥ 1. (2.38)

Theorem 2.2.3 (Implicit function theorem, [KP11], Thm. 2.9, p. 33)
Let a(x, y) ∈ K[[x, y]] be such that

a(0, 0) = 0 and (Dya)(0, 0) ̸= 0. (2.39)

Then there exists a unique formal power series f(x) ∈ K[[x]] with f(0) = 0 such that
a(x, f(x)) = 0.

Proof. See [KP11, p.34]. 2

Theorem 2.2.4 (Existence of a unique compositional inverse)
Let r(x) ∈ K[[x]] with ord(r(x)) = 1. Then there exists a unique R(x) ∈ K[[x]] with
ord(R(x)) = 1 such that

r(R(x)) = x. (2.40)

Proof. In Thm. 2.2.3 set
a(x, y) := r(y)− x ∈ K[[x, y]]. (2.41)

Clearly, a(0, 0) = r(0)− 0 = 0. The partial derivative (Dya)(x, y) is given by

(Dya)(x, y) = (Dyr)(y), and (Dyr)(0) ̸= 0,

because ord(r(y)) = 1. Hence, (Dya)(0, 0) ̸= 0. By theorem 2.2.3 there exists some unique
R(x) ∈ K[[x]] with R(0) = 0 such that

0 = a(x,R(x)) = r(R(x))− x.

Finally, ord(r(x)) = 1 and (2.40) imply that ord(R(x)) = 1. 2

Corollary 2.2.2 For r(x), R(x) ∈ K[[x]] as in Thm.2.2.4:

r(R(x)) = R(r(x)) = x. (2.42)

Proof. ForR(x), as a consequence of Thm. 2.2.4, there exists s(x) ∈ K[[x]] with ord(s(x)) =
1 such that

R(s(x)) = x. (2.43)

Hence,

r(x)
(2.43)
= r(R(s(x)))

(2.40)
= s(x). (2.44)

2
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Notation: We will denote the unique compositional inverse A(x) ∈ K1((x)) of a(x) ∈
K1((x)) by

a⟨−1⟩(x) := A(x). (2.45)

In particular, in K[[x]]:

a⟨−1⟩(a(x)) = A(a(x)) = a(A(x)) = a(a⟨−1⟩(x)) = x. (2.46)

Example 2.2.2 Consider the formal power series

f(x) := log(1 + x) :=
∞∑
k=1

(−1)k+1

k
xk ∈ K1((x)). (2.47)

By Thm. 2.2.4 this power series has a unique compositional inverse. A detailed investi-
gation of the proof (that involves the implicit function theorem Thm. 2.2.3) gives a way
to construct this compositional inverse. We find that:

f ⟨−1⟩(x) = exp(x)− 1 :=
∞∑
k=1

1

k!
xk ∈ K1((x)). (2.48)

In particular, in K[[x]] we have the relation

log(1 + (exp(x)− 1)) = x, (2.49)

and by Cor. 2.2.2 also that

exp(log(1 + x))− 1 = x ∈ K[[x]]. (2.50)

2.3 Rules for the res-functional

In the book [Ego84], the author comes up with several rules for computing with power
series. In the following we will list this rules for operations on the coefficients of generating
functions of the form A(x) =

∑
k akx

k. Most rules (with exception of the inversion rule
and the change of variables) are simple consequences of Lemma 2.2.9.

Two formal power series coincide if and only if their coefficients are the same. Addition
as we defined it is a K−linear operation. Hence we get the two (trivial) rules

Rule 1 (Removal of res) For A(x), B(x) ∈ K[[x]]:

A(x) = B(x)

if and only if
res

x
A(x)x−k−1 = res

x
B(x)x−k−1, k ≥ 0.
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Rule 2 (Linearity)
For a(x), B(x) ∈ K[[x]], α, β ∈ K:

α res
x

A(x)x−k−1 + β res
x

B(x)x−k−1 = res
x

(αA(x) + βB(x))x−k−1, k ≥ 0.

By Definition 2.2.2 we can, under certain conditions, compose two formal power series.
This definition justifies

Rule 3 (Substitution)
Let A(x) ∈ K[[x]]. If z(t) =

∑∞
k=1 akt

k ∈ K1((t)), then

∞∑
k=0

z(t)k res
x

A(x)x−k−1 = A(z(t)).

This relation remains valid, in the case where A(x) is a polynomial and

z(t) =
∞∑

k=−m

akt
k ∈ K((t)),

with a−m ̸= 0 where m is a positive integer.

The theorem of Lagrange (Thm. 2.2.2) is the basis for numerous non-trivial applications.

Rule 4 (Inversion)
Given f(x) ∈ K[[x]], g(x) ∈ K1((x)), and (an)n≥0 ∈ KN such that

f(x) =
∞∑
n=0

ang(x)
n.

Then Lagrange’s theorem (Thm. 2.2.2) tells that the coefficient an is given by

an = res
x

f(x)Dx(g(x))g(x)
−n−1, n ≥ 1. (2.51)

Rule 5 (Change of variables under the res sign)
For g(t) ∈ K1((t)), f(x) ∈ K((x)) we have that

res
x

f(x) = res
t

f(g(t)) Dt(g(t)),

where the symbol Dt denotes formal differentiation in K((t)).
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Proof. Let

f(x) =
∞∑

k=−∞

fkx
k ∈ K((x)), g(t) =

∞∑
k=1

gkt
k ∈ K1((t)).

For the left hand side we find by Definition 2.2.6 that

res
x

f(x) = ⟨x−1⟩ f(x) = ⟨x−1⟩
∞∑

k=−∞

fkx
k = f−1.

On the other side, we have that

res
t

f(g(t))Dt(g(t)) = res
t

∞∑
k=−∞

fkg(t)
kDt(g(t))

=
∞∑

k=−∞

fk res
t

g(t)kDt(g(t)),

where we used Lemma 2.2.8. Now we realize that g(t)kDt(g(t)) has the primitive function
g(t)k+1/(k + 1) for all k ∈ Z, except k = −1. Hence, the last line is equivalent to

−2∑
k=−∞

fk res
t

1

k + 1
Dt

(
g(t)k+1

)
+ f−1 res

t

Dt(g(t))

g(t)
+

∞∑
k=0

fk res
t

1

k + 1
Dt

(
g(t)k+1

)
.

By Lemma 2.2.10 it follows that all terms except f−1 res
t

Dt(g(t))
g(t)

vanish and hence, by

Lemma 2.2.11

res
t

f(g(t))Dt(g(t)) = f−1 res
t

Dt(g(t))

g(t)
= f−1.

2

Rule 6 (Differentiation)
Let A(x) ∈ K[[x]], k ∈ N:

k res
x

A(x)x−k−1 = res
x

Dx(A(x))x
−k.

Proof. For k = 0, the Rule is trivially true by Lemma 2.2.10. For k ≥ 1 the left hand side
is by Lemma 2.2.9:

k res
x

A(x)x−k−1 = k · ak.

25



The right hand side delivers:

res
x

Dx(A(x))x
−k = ⟨xk−1⟩ Dx(A(x))

= ⟨xk−1⟩
∞∑
k=0

(k + 1)ak+1x
k = ⟨xk−1⟩

∞∑
k=1

kakx
k−1 = k · ak.

2

Rule 7 (Integration)
Let A(x) ∈ K[[x]], k ∈ N:

1

k + 1
res

x
A(x)x−k−1 = res

x

(∫
x

A(x) dx

)
x−k−2.

Proof. The left hand side is given by Lemma 2.2.9:

1

k + 1
res

x
A(x)x−k−1 =

1

k + 1
ak.

The right hand side delivers:

res
x

(∫
x

A(x) dx

)
x−k−2 = ⟨xk+1⟩

(∫
x

A(x) dx

)

= ⟨xk+1⟩

(∫
x

∞∑
k=0

akx
k dx

)
= ⟨xk+1⟩

∞∑
k=0

ak
k + 1

xk+1 =
1

k + 1
ak.

2

2.4 Connection to complex analysis

In [FB07, p. 164, Def. 6.2] one finds

Definition 2.4.1 (Residue) Let a ∈ C be a singularity of an analytic function f ,

f(z) =
∞∑

n=−∞

an(z − a)n

its Laurent expansion in punctured neighborhood of a. The coefficient a−1 in this expan-
sion is called residue of f at a.

Notation: Res(f ; a) = a−1
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Following [FB07, p. 144, Cor. 5.2] we can express any function that is analytic on the
domain

R = {z ∈ C : r < |z − a| < R}, 0 ≤ r < R ≤ ∞,

by a Laurent series, which converges normal1 in the annulus R

f(z) =
∞∑

n=−∞

an(z − a)n, z ∈ R.

Additionally this Laurent expansion is uniquely determined, by

an =
1

2πi

∮
|ζ−a|=ϱ

f(ζ)

(ζ − a)n+1
dζ, n ∈ Z, r < ϱ < R.

As the special case n = −1 we have that

Res(f ; a) = a−1 =
1

2πi

∮
|ζ−a|=ϱ

f(ζ) dζ.

Remark: In the following we will denote by∮
γ

f(ζ) dζ

the path integral of f over a suitable curve γ being closed, piecewise smooth, and positive
oriented (counterclockwise).

We will demonstrate how the residue representations in [Ego84] are connected with the
Coefficient formula Lemma 2.2.9 and generating functions.

Example 2.4.1
The generating function of the binomial coefficient

(
n
k

)
, for fixed n ∈ N, is given by

A(x) =
n∑

k=0

(
n

k

)
xk = (1 + x)n. (2.52)

Because
(
n
k

)
= 0 for k ∈ Z : k < 0 ∨ k > n we can extend the summation interval over

all integers. From Lemma 2.2.9 we know that(
n

k

)
= res

x
(1 + x)nx−k−1.

1A series of functions f0 + f1 + f2 + . . . where fn : D ⊂ C → C, n ∈ N, is called normal convergent
in D if for every a ∈ D there exists a neighborhood U and nonnegative (Mn)n≥0 such that |fn(z)| ≤ Mn

for all z ∈ U ∩D and all n ∈ N and
∑∞

n=0 Mn converges.

27



Using the residue integral, in complex analysis this can be rewritten as(
n

k

)
=

1

2πi

∮
γ

(1 + x)nx−k−1 dx.

Sometimes we have to consider the exponential generating function as the following ex-
ample shows.

Example 2.4.2
The exponential generating function of the sequence of Bernoulli numbers is given by

B(x) =
∞∑
k=0

Bk

k!
xk =

x

ex − 1
. (2.53)

Hence, we find that

Bk = k! · res
x

B(x)x−k−1 = k! · res
w

(ex − 1)−1x−k,

or, in terms of complex analysis:

Bk =
k!

2πi

∮
γ

(ex − 1)−1x−k dx.

Remark: Note that the residue representations are not necessarily uniquely defined.
The same applies to various possible representations of binomial coefficients. To cite
[GKP94, p. 204] binomial coefficients are like chameleons, changing their appearance
easily. The following two lemmas will state binomial coefficient identities and yield a
different generating function than the classic binomial theorem.

Lemma 2.4.1 (Negating the upper index) For n, k ∈ N:(
−n

k

)
= (−1)k

(
n+ k − 1

k

)
.

Proof.(
−n

k

)
=

(−n)k

k!
=

(−n)(−n− 1)(−n− 2)...(−n− k + 1)

k!

= (−1)k
n(n+ 1)(n+ 2)...(n+ k − 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

2
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Lemma 2.4.2 For n ∈ N: (
2n

n

)
= (−4)n

(
−1/2

n

)
.

Proof. Following [GKP94, p. 186] we start by considering nn(n− 1/2)n for integer n ≥ 0.
We claim that

nn(n− 1/2)n =
(2n)2n

4n
, (2.54)

which is obvious by expanding the left hand side according to its definition:

nn(n− 1/2)n = n(n− 1/2)(n− 1)(n− 3/2)(n− 2) . . . (1/2)

=
2n(2n− 1)(2n− 2) . . . (1)

22n

=
(2n)2n

22n
=

(2n)!

22n
.

If we now divide both sides of (2.54) by n!2 we obtain the identity(
n

n

)(
n− 1/2

n

)
=

1

4n

(
2n

n

)
⇐⇒ 4n

(
n− 1/2

n

)
=

(
2n

n

)
The result now follows by negating the upper index (Lemma 2.4.1) on the left hand side.(

2n

n

)
= 4n

(
n− 1/2

n

)
= (−4)n

(
1/2− n+ n− 1

n

)
= (−4)n

(
−1/2

n

)
2

Remark: A more direct proof is obtained by computing the shift quotient a(n+1)/a(n)
for both sides of the identity in Lemma 2.4.2. Equality of these quotients reduces the proof
of showing equality at the initial value n = 0. With the help of these lemmas we can
now give a summary of several possible residue representations for selected combinatorial
numbers as introduced in the beginning.

Remark: ex is defined as in example 2.2.1, log(1−x) is the formal power series (see also
example 2.2.2)

log(1− x) := −
∞∑
k=1

1

k
xk ∈ K1((x)).
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binomial coefficient
(
α
k

)
res

x
(1 + x)αx−k−1 α ∈ K, k ∈ N

binomial coefficient
(
m+n−1

n

)
res

x
(1− x)−mx−n−1 m,n ∈ N

binomial coefficient
(
2n
n

)
res

x
(1− 4x)−1/2x−n−1 n ∈ N

exponential function αn

n!
, res

x
eαxx−n−1 α ∈ K, n ∈ N

Bernoulli numbers Bn n! res
x

(ex − 1)−1x−n n ∈ N

Stirling numbers of 1st kind S1(n, k)
n!
k!
res

x
(− log(1− x))kx−n−1 n, k ∈ N, 0 ≤ k ≤ n

Stirling numbers of 2nd kind S2(n, k)
n!
k!
res

x
(ex − 1)kx−n−1 n, k ∈ N, 0 ≤ k ≤ n

Table 2.1: Residue Representations, as in [Ego84]

Proof. [Identities in table 2.1] The first identity is a consequence of Thm. and Def. 2.2.1.
For the second one we apply the binomial theorem Thm. 2.1.1 in connection with Lemma
2.4.1 (see also [GKP94, p. 199, eq. (5.56)]:

∞∑
n=0

(
m+ n− 1

n

)
xn =

∞∑
n=0

(
−m

n

)
(−1)nxn = (1− x)−m,

and hence (
m+ n− 1

n

)
= res

x
(1− x)−mx−n−1.

For the third identity we take again the binomial theorem Thm. 2.2.1 into account,
combined with Lemma 2.4.2:

∞∑
n=0

(
2n

n

)
xk =

∞∑
n=0

(
−1/2

n

)
(−4)nxn = (1− 4x)−1/2,

therefore (
2n

n

)
= res

x
(1− 4x)−1/2x−n−1.
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The fourth identity goes back to the definition of ex:

eαx =
∞∑
n=0

αn

n!
xn,

and is a simple application of Lemma 2.2.9:

αn

n!
= res

x
eαxx−n−1.

The fifth identity is derived in example 2.4.2. For proving the remaining identities for
Stirling numbers we use without proof that the generating functions of Stirling numbers
are given as follows (k ∈ N fixed):

(− log (1− x))k = k!
∞∑
n=0

S1(n, k)
xn

n!
,

(ex − 1)k = k!
∞∑
n=0

S2(n, k)
xn

n!
.

Multiplying the identities by n!
k!

and applying Lemma 2.2.9 we get the desired identities:

S1(n, k) =
n!

k!
res

x
(− log(1− x))kx−n−1,

S2(n, k) =
n!

k!
res

x
(ex − 1)kx−n−1.

2
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Chapter 3

The Riordan group

3.1 The Riordan array approach

In 1991, Louis Shapiro et. al. published the paper [SGWW91] in honor of John Riordan
describing the concept of the Riordan group. We will use the definition from [Spr94]
which is slightly different from Shapiro’s original one.

Consider the infinite matrix M = (mn,k)n,k≥0 with entries in K. If we multiply the matrix
M by the infinite vector (1, x, x2, ...) = (xk)k≥0 from the left, we get an infinite row vector
for the generating functions of the columns:

(1, x, x2, x3, . . . ) ·


m0,0 m0,1 m0,2 m0,3 . . .

m1,0 m1,1 m1,2 m1,3 . . .

m2,0 m2,1 m2,2 m2,3 . . .
...

...
...

...
. . .

 =

= (C0(x), C1(x), C2(x), C3(x), . . . ).

If we can write each of these generating functions (Ck(x))k≥0 in the form

Ck(x) =
∞∑
n=0

mn,kx
n = g(x)(x · f(x))k, (3.1)

with f(x), g(x) ∈ K[[x]] such that f(0) ̸= 0 and g(0) ̸= 0, we call M a Riordan matrix.
More precisely, we define:
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Definition 3.1.1 Let f(x), g(x) ∈ K[[x]] be such that f(0) ̸= 0 and g(0) ̸= 0. An infinite
matrix M = (mn,k)n,k≥0 with entries in K is called a Riordan array for (g(x), f(x)) if

mn,k = ⟨xn⟩ g(x)(x · f(x))k, n, k ≥ 0. (3.2)

Notation: In this case we write

M = R (g(x), f(x)) . (3.3)

Remark: As we can see, a Riordan array M always has to be a lower triangular matrix
(because of the factor xk which forces zero entries above the main diagonal).

For a Riordan array (mn,k)n,k≥0 = R (g(x), f(x)) consider the usual matrix vector product,
as follows: 

m0,0 m0,1 m0,2 m0,3 . . .

m1,0 m1,1 m1,2 m1,3 . . .

m2,0 m2,1 m2,2 m2,3 . . .
...

...
...

...
. . .




a0

a1

a2
...

 =


b0

b1

b2
...

 (3.4)

where the generating function of the resulting vector has the form

B(x) =
∞∑
k=0

bkx
k = a0C0(x) + a1C1(x) + a2C2(x) + . . .

= a0g(x) + a1g(x)xf(x) + a2g(x)x
2f(x)2 + . . .

= g(x)(a0 + a1xf(x) + a2x
2f(x)2 + . . . )

= g(x)A(xf(x)).

(3.5)

where A(x) ∈ K[[x]] is the generating function of the sequence a = (a0, a1, a2, . . . ). We
summarize in form of a Lemma.

Lemma 3.1.1 Let R(g(x), f(x)) be a Riordan array. Let A(x) =
∑∞

k=0 akx
k, B(x) =∑∞

n=0 bnx
n ∈ K[[x]]. Then the matrix vector relation

R(g(x), f(x)) (ak)
T
k≥0 = (bn)

T
n≥0 (3.6)

is equivalent to
g(x)A(xf(x)) = B(x). (3.7)
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Example 3.1.1 (Pascal’s triangle)
Consider the infinite matrix defined by

M = (mn,k)n,k≥0 =

((
n

k

))
n,k≥0

=



1 0 0 0 0 . . .

1 1 0 0 0 . . .

1 2 1 0 0 . . .

1 3 3 1 0 . . .
...

...
...

...
...

. . .


(3.8)

The generating function of the first column is the geometric series, hence

C0(x) = g(x) =
∞∑
n=0

mn,0x
n =

∞∑
n=0

xn =
1

1− x
. (3.9)

The generating function of the second column can also be computed easily:

C1(x) = g(x)(xf(x)) =
∞∑
n=0

mn,1x
n =

∞∑
n=0

nxn =
1

1− x

(
x

1− x

)
. (3.10)

and already from this we can conjecture that g(x) = f(x) = 1
1−x

, and

M = (mn,k)n,k≥0 =

((
n

k

))
n,k≥0

= R
(

1

1− x
,

1

1− x

)
. (3.11)

To prove the statement in general we have to prove that the generating function of the
k-th’s column is given by

Ck(x) =
1

1− x

(
x

1− x

)k

, k ≥ 0. (3.12)

by equation (3.1) and (3.2) this remains to proving that

⟨xn⟩ 1

1− x

(
x

1− x

)k

=

(
n

k

)
, n, k ≥ 0. (3.13)

This is also not too hard because

⟨xn⟩ 1

1− x

(
x

1− x

)k

= ⟨xn−k⟩ 1

(1− x)k+1
= ⟨xn−k⟩(1− x)−k−1 (3.14)
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Now we have by the binomial theorem 2.1.1 that

(1− x)−k−1 =
∞∑
n=0

(
−k − 1

n

)
(−1)nxn,

and hence,

⟨xn−k⟩(1− x)−k−1 = (−1)n−k

(
−k − 1

n− k

)
=

(
k + 1 + n− k − 1

n− k

)
=

(
n

n− k

)
=

(
n

k

)
,

where we used Lemma 2.4.1 and the elementary symmetry property.

It is remarkable, that g(x) and f(x) could also be guessed with the help of Mallinger’s
GeneratingFunctions package ([Mal96]), written in Mathematica, in the following way:

Mathematica 7.0 - Listing

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger c⃝ RISC Linz V 0.69 (28-Sep-2009)

In[2]:= PascalTriangle[n ] := Table[Table[Binomial[m,k], {k, 0, n}], {m, 0, n}];

In[3]:= GuessAE[Transpose[PascalTriangle[10]][[1]], g[x]]

Out[3]= {{1 + (−1 + x)g[x] == 0, g[0] == 1}, ”ogf”}

In[4]:= GuessAE[Transpose[PascalTriangle[10]][[2]], f [x]]

Out[4]= {{−x2 + (x− 2x2 + x3)f [x] == 0, f [0] == 0}, ”ogf”}

As the name of the procedures already suggests, this is nothing but guessing of generating
functions. It provides possible candidates for f(x) and g(x) which do not necessary need
to correspond to the actual elements of the Riordan matrix.

Next we want to compute the row sums of Pascal’s triangle. This is equivalent to compute
the sums

bn :=
n∑

k=0

(
n

k

)
, n ≥ 0. (3.15)

In matrix notation we compute the row sums by multiplying M from right with the vector
(1, 1, 1, ...)T . This vector has the generating function

A(x) =
∞∑
k=0

xk =
1

1− x
. (3.16)
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Hence, by relation (3.5) we find that

R
(

1

1− x
,

1

1− x

)

1

1

1
...

 =


b0

b1

b2
...

 , (3.17)

i.e.,

B(x) =
∞∑
n=0

bnx
n = g(x)A(xf(x)) (3.18)

where we apply the insertion homomorphism Φxf(x) to A(x) = (1−x)−1 as in Thm. 2.2.1,

=
1

1− x
· 1

1− x
1−x

=
1

1− 2x
. (3.19)

Therefore for the nth row we find that

bn =
n∑

k=0

(
n

k

)
= ⟨xn⟩ 1

1− 2x
= 2n, n ≥ 0. (3.20)

The alternating row sum is multiplication of M by (1,−1, 1,−1, ...)T = ((−1)k)k≥0. Again
we get for A(x) a geometric series

A(x) =
∞∑
k=0

(−x)k =
1

1 + x
, (3.21)

and the relation

R
(

1

1− x
,

1

1− x

)


1

−1

1
...

 =


d0

d1

d2
...

 , (3.22)

Again (3.5), and application of the insertion homomorphism Φxf(x) to A(x) = (1 + x)−1

gives

D(x) =
∞∑
n=0

dnx
n = g(x)A(xf(x)) =

1

1− x

1

1 + x
1−x

= 1, n ≥ 0. (3.23)

We get the identity
n∑

k=0

(−1)k
(
n

k

)
= δ(n, 0), n ≥ 0. (3.24)
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3.2 Characterization of Riordan arrays

Let RA denote the set of all Riordan arrays over K, i.e. the set of all infinite lower
triangular matrices with entries in K, that can be characterized in the way described in
Def. 3.1.1. If M1 = R(g(x), f(x)) ∈ RA and M2 = R(h(x), l(x)) ∈ RA are two Riordan
arrays, one might want to compute the usual matrix product (row by column - product)
to obtain another Riordan array. So let

M1 = (an,k)n,k≥0, M2 = (bn,k)n,k≥0, (3.25)

such that

an,k = ⟨xn⟩g(x)(xf(x))k, (3.26)

bn,k = ⟨xn⟩h(x)(xl(x))k. (3.27)

We compute the matrix product

M := (cn,k) := M1 ·M2 = R (g(x), f(x)) · R (h(x), l(x)) , (3.28)

this means, computing the entry cn,k as for matrices,

cn,k =
∞∑
j=0

an,jbj,k. (3.29)

Let M = (M (0),M (1),M (2), ...), where

M (k) =


c0,k

c1,k

c2,k
...

 = kth column of M (3.30)

The generating function of the kth column is given by

M (k)(x) :=
∞∑
n=0

cn,kx
n =

∞∑
n=0

xn

(
∞∑
j=0

an,jbj,k

)
=

∞∑
j=0

bj,k

(
∞∑
n=0

an,jx
n

)

=
∞∑
j=0

bj,kg(x)(xf(x))
j = g(x)

∞∑
j=0

bj,k(xf(x))
j

Lemma 3.1.1
= g(x)h(xf(x)) (xf(x)l(xf(x)))k

(3.31)
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From this we can read off that the usual matrix product of Riordan arrays gives again a
Riordan array as

· : RA×RA −→ RA,

(R(g(x), f(x))︸ ︷︷ ︸
M1

,R(h(x), l(x))︸ ︷︷ ︸
M2

) 7−→ M1 ·M2 (3.32)

where
M1 ·M2 = R(g(x)h(xf(x)), f(x)l(xf(x))) (3.33)

Obviously, the operation · : RA×RA → RA on the set of Riordan matrices is an asso-
ciative binary operation.

It is also clear that the identity matrix I := R(1, 1) is the (right and left) neutral element
w.r.t ·.

If we now want to find an inverse element w.r.t. our operation · we consider the product

R(g(x), f(x)) · R(h(x), l(x)) = R(g(x)h(xf(x)), f(x)l(xf(x))) = R(1, 1). (3.34)

The formal power series
F (x) := xf(x) (3.35)

has order 1, and by Thm. 2.2.4 a unique compositional inverse F ⟨−1⟩(x). Hence, we
choose h(x) and l(x) such that

h(x) :=
1

g(F ⟨−1⟩(x))
, (3.36)

l(x) :=
1

f(F ⟨−1⟩(x))
. (3.37)

If we plug this in, we find that

R(g(x), f(x)) · R(h(x), l(x))

(3.32)
= R(g(x)h(xf(x)), f(x)l(xf(x)))

(3.35)
= R(g(x)h(F (x)), f(x)l(F (x)))

(3.36),(3.37)
= R

(
g(x)

1

g(F ⟨−1⟩(F (x)))
, f(x)

1

f(F ⟨−1⟩(F (x)))

)
(2.46)
= R

(
g(x)

1

g(x)
, f(x)

1

f(x)

)
= R(1, 1).

The unique (right- and left-)inverse of a Riordan array R(g(x), f(x)), as we constructed
it, will be denoted by R(g(x), f(x))−1.
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Theorem 3.2.1
The set of Riordan matrices RA with the operation · (short: (RA, ·)) is group
Let us examine, when an array (dn,k)n,k≥0 is a Riordan array.

Theorem 3.2.2 ([HS09], p. 3963, Thm. 2.1)
An infinite lower triangular array D = (dn,k)n,k≥0 in K is a Riordan array if and only if
a sequence A = (a0 ̸= 0, a1, a2, ...) in KN exists such that for every n, k ∈ N the following
relation holds:

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + . . . (3.38)

Remark: The sum is actually finite since dn,k = 0 for k > n.

Proof. ([Spr06, p. 58, Thm. 5.3.1]) ′′ ⇒′′: Let us suppose that D = (dn,k)n,k≥0 is the
Riordan array R(g(x), f(x)), i.e.

dn,k = ⟨xn⟩g(x)(xf(x))k, (3.39)

and let us consider the Riordan array R(g(x)f(x), f(x)). We define the Riordan array
R(A(x), B(x)) by the relation

R(A(x), B(x)) = R(g(x), f(x))−1 · R(g(x)f(x), f(x))

⇔ R(g(x), f(x)) · R(A(x), B(x)) = R(g(x)f(x), f(x)).

Because (RA, ·) is a group, the Riordan array R(A(x), B(x)) is well defined. We will later
see, that A(x) is the generating function of the sequence A. By performing the product
on the left hand side we find that:

g(x)A(xf(x)) = g(x)f(x) and f(x)B(xf(x)) = f(x).

From the latter identity we get that B(xf(x)) = 1 ⇒ B(x) = 1. Therefore

R(g(x), f(x)) · R(A(x), 1) = R(g(x)f(x), f(x)).

The Riordan array on the left hand side is

R(g(x), f(x)) · R(A(x), 1) = R(g(x)A(xf(x)), f(x))

and its general element fn,k is

fn,k = ⟨xn⟩ g(x)A(xf(x))(xf(x))k

= ⟨xn⟩
∞∑
j=0

aj(xf(x))
jg(x)(xf(x))k

Lem.2.2.8
=

∞∑
j=0

aj⟨xn⟩ g(x)(xf(x))k+j

(3.39)
=

∞∑
j=0

ajdn,k+j
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The right hand side evaluates to:

⟨xn⟩ g(x)f(x)(x(f(x))k = ⟨xn+1⟩ xg(x)f(x)(xf(x))k = dn+1,k+1.

By equating these two quantities, we get the identity (3.38).

′′ ⇐′′: If the first column of a Riordan matrix (i.e. the sequence of elements (dk,0)k≥0) is
given, relation (3.38) constructs the Riordan matrix recursively (by repeated application
of (3.38)). Let g(x) be the generating function of the first column (we assume d0,0 is not
zero), A(x) the generating function of the sequence A = (ak)k≥0. Consider the functional
equation (recall that F (x) := xf(x))

f(x) = A(F (x)), (3.40)

where f(x) ∈ K0((x)). Then, F (x) has order 1, and by Thm. 2.2.4 a unique compositional
inverse F ⟨−1⟩(x) exists. In particular, (3.40) implies that

A(x) = f(F ⟨−1⟩(x)). (3.41)

Therefore we can consider the Riordan array

D̂ := R(g(x), f(x))

The generating function of the first column coincide by construction, the generating func-
tion for the kth column match by recurrence relation (3.38). 2

The sequenceA = (ak)k≥0 is called theA− sequence of the Riordan arrayD = R(g(x), f(x)).
As we have seen in the proof of the theorem, its generating function A(x) =

∑∞
k=0 akx

k,
satisfies the functional equation

f(x) = A(xf(x)), (3.42)

and it only depends on f(x).
Conversely, A(x) can be determined by the relation:

A(x) = f(F ⟨−1⟩(x)), where F (x) := xf(x). (3.43)

Another type of characterization is obtained through the following observation

Theorem 3.2.3 ([Spr06] p. 58, Thm. 5.3.2)
Let M := (dn,k)n,k≥0 = R(g(x), f(x)) be a Riordan array. Then a unique sequence Z =
(zk)k≥0 exists such that every element in column 0 can be expressed as a linear combination
of all the elements in the preceding row, i.e.

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + . . . (3.44)
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Proof. Let z0 = d1,0
d0,0

. Now, due to the fact that (dn,k)n,k≥0 is a lower triangular matrix,

we can uniquely determine the value of z1 by expressing d2,0 in terms of the elements in
row 1, i.e.

d2,0 = z0d1,0 + z1d1,1 ⇔ z1 =
d0,0d2,0 − d21,0

d0,0d1,1
.

In the same way, we determine z2 by expressing d3,0 in terms of the elements in row 2,
and by substituting the values just obtained for z0 and z1. By proceeding the same way,
we determine the sequence Z in a unique way. 2

The sequence Z is called the Z−sequence for the Riordan array. It characterizes column
0 except for the first element. Let A(t) =

∑∞
k=0 akt

k be the generating function of the
A-sequence (ak)k≥0, Z(t) =

∑∞
k=0 zkt

k the generating function of the Z-sequence (zk)k≥0.
For d0,0 ∈ K\{0}, we can say that the triple

(d0,0, A(t), Z(t))

completely characterizes a Riordan array. The next theorem is a way how to compute
g(x) given f(x) and the Z−sequence of a Riordan array.

Theorem 3.2.4 ([MRSV97], p. 5, Thm. 2.3)
Let M = (dn,k)n,k≥0 = R(g(x), f(x)) be a Riordan array and let Z(t) =

∑∞
n=0 znt

n be the
generating function of the array’s Z−sequence (zk)k≥0. Then:

g(x) =
g(0)

1− xZ(xf(x))
. (3.45)

Proof. By the preceding Theorem, the Z−sequence exists and is unique, and equation
(3.44) is valid for every n ∈ N. Relation (3.44) translates to

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + . . .

⟨xn+1⟩g(x) =
∞∑
k=0

zk⟨xn⟩g(x)(xf(x))k

⟨xn⟩g(x)− g(0)

x
= ⟨xn⟩g(x)Z(xf(x))

Because two power series are identical if and only if their coefficients coincide, we have
equality above, because the last line holds for all n ∈ N. Hence, we find that

g(x)− g(0)

x
= g(x)Z(xf(x)) ⇔ g(x) =

g(0)

1− xZ(xf(x))
.

2
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Note: This relation can be inverted and this gives us a formula for the generating function
of the Z−sequence (F (x) := xf(x)):

g(x)− g(0)

xg(x)
= Z(xf(x)) ⇒ Z(y) =

g(F ⟨−1⟩(x))− g(0)

F ⟨−1⟩(x)g(F ⟨−1⟩(x))
. (3.46)

There is a non-trivial connection between the generating functions of the A− and the Z−
sequence and the functions g(x) and f(x). In particular the following holds:

Theorem 3.2.5 ([MRSV97], p. 6, Thm. 2.4)
Let D = R(g(x), f(x)) ∈ RA. Then g(x) = f(x) if and only if A(x) = g(0) + xZ(x)

Proof. ′′ ⇐′′: Let us assume that A(x) = g(0) + xZ(x) or what is the same Z(x) =
(A(x)− g(0))/x. By the preceding theorem we have

g(x) =
g(0)

1− xZ(xf(x))
=

g(0)

1− (xA(xf(x))− g(0)x)/(xf(x))
=

g(0)xf(x)

g(0)x
= f(x),

because, by (3.42) we have that A(xf(x)) = f(x).

′′ ⇒′′: By (3.45) and from the hypothesis g(x) = f(x) we find that:

g(x) =
g(0)

1− xZ(xf(x))
=

g(0)

1− xZ(xg(x))

⇔ g(x)− xg(x)Z(xg(x)) = g(0).

Now we apply (3.42) and the hypothesis:

f(x) = A(xf(x)) ⇒ g(x) = A(xg(x)),

to obtain the identity:
A(xg(x)) = g(0) + xg(x)Z(xg(x)).

or, with G(x) := xg(x):
A(G(x)) = g(0) +G(x)Z(G(x)).

Setting x = G⟨−1⟩(x) gives the desired equality. 2
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Chapter 4

Application to Symbolic Summation

4.1 The Identities of Abel and Gould

Wilf and Zeilberger provide an algorithm for proving summation identities of the form∑
k

summand(n, k) = answer(n), n ≥ 0. (4.1)

where summand(n, k) and answer(n) are nice.

For a given sum

f(n) =
∑
k

F (n, k), (4.2)

where F is doubly hypergeometric (that is both F (n+1, k)/F (n, k) and F (n, k+1)/F (n, k)
are rational functions of n and k) every proper hypergeometric term F (n, k) satisfies a
k-free recurrence [PWZ96, Thm. 4.4.1, p. 65]. A proper hypergeometric term can be
written in the form

P (n, k)

∏u
i=0(ain+ bik + ci)!∏v
i=0(uin+ vik + wi)!

xk, (4.3)

where P (n, k) ∈ K[n, k], x ∈ K, an, bn, un, vn ∈ N, u, v ∈ N.

So there exist I, J ∈ N and polynomials ai,j(n) such that the recurrence

I∑
i=0

J∑
j=0

ai,j(n)F (n− j, k − i) = 0 (4.4)

holds at every point (n, k) where F (n, k) ̸= 0. Further there are bounds for I, J given.
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However, there are combinatorial sums that are not doubly hypergeometric in the sense
defined above. For instance, if we try to prove the identity of Abel ([GKP94, p. 202,
(5.64)])

n∑
k=0

(
n

k

)
a(a+ k)k−1(b+ n− k)n−k = (a+ b+ n)n, a, b ∈ K, n ≥ 0. (4.5)

with the Paule/Schorn implementation of Zeilberger’s algorithm [PS95] we get the nega-
tive answer

Mathematica 7.0 - Listing

In[1]:= << zb.m
Fast Zeilberger Package by Peter Paule and Markus Schorn (enhanced by Axel Riese)
c⃝ RISC Linz V 3.54 (02/23/05)

(* We are looking for a recurrence in n of order 1 *)

In[2]:= Zb[Binomial[n, k]a(a + k)k−1(b + n − k)n−k, {k, 0, n}, n, 1]
Zb::badfac : The factor (b− k + n)−k+n cannot be handled

Similar difficulties arise by trying to prove the identity of Gould ([GKP94, p. 202, (5.62)])

S(n) :=
n∑

k=0

((
r − qk

k

)
+ q

(
r − qk − 1

k − 1

))(
p+ qk

n− k

)
=

(
p+ r

n

)
, (4.6)

where p, q, r ∈ N, n ≥ 0. If we expand the binomial coefficient due to (2.6), and do some
simplification we have

S(n) =
n∑

k=0

r

r − qk

(
r − qk

k

)(
p+ qk

n− k

)
, n ≥ 0, (4.7)

where we assume that r − qk ̸= 0 for any choice of r, q, k ∈ N.

If we use Zeilberger’s algorithm to compute a recurrence for S(n) we get

Mathematica 7.0 - Listing

In[1]:= Zb

[
r

r − kq
Binomial[r − kq, k]Binomial[p + kq, n − k], {k, 0, n}, n, 1

]
Zb::intlin : p+ kq is not integer-linear in k
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If we try to solve the specialized problem where we set q = 0, we get the summation
problem

n∑
k=0

(
r

k

)(
p

n− k

)
=

(
p+ r

n

)
, p, r ∈ N, n ≥ 0, (4.8)

which is Vandermonde’s convolution formula (2.17). Zeilberger’s algorithm produces the
order 1 recurrence

Mathematica 7.0 - Listing

In[2]:= Zb [Binomial[r, k]Binomial[p, n − k], {k, 0, n}, n, 1]
If ’n’ is a natural number, then:

Out[2]= {(−n+ p+ r)SUM[n] + (−1− n)SUM[1 + n] == 0}

If we set q = 1 we do not succeed in finding a order 1 recurrence, but a recurrence of
order 2:

Mathematica 7.0 - Listing

In[3]:= Zb

[
r

r − k
Binomial[r − k, k]Binomial[p + k, n − k], {k, 0, n}, n, 2

]
If ’n’ is a natural number, then:

Out[3]= {(n− p− r)(1+n− p− r)SUM[n] + (3+2n− r)(1+n− p− r)SUM[1+n] + (2+n)(2+n− r)SUM[2+n] == 0}

If we plug in further values for q we get higher order for the recurrences obtained. In
particular for the values up to 3 we get:

Value for q Order of Recurrence for S(n) Computation Time

0 1 0.015 s

1 2 0.125 s

2 4 16.411 s

3 6 5581.14 s ≈ 93 min

This is not really satisfactory because the complexity of solving the problem depends on
the input parameter q. For every fixed integer value q we have that

F (n, k) = r · (r − qk − 1)!(p+ qk)!

k!(n− k)!(r + q − qk)!(p− n+ 2qk)!
(4.9)
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is a proper hypergeometric term, and therefore f(n) =
∑

k F (n, k) satisfies a k-free re-
currence. In the following, we present ways of how to compute the sum for general q.

4.1.1 Applying the Egorychev Method

Example 4.1.1 (Abel’s Identity) 1 Because of
(
n
k

)
= 0 for k > n we can extend the

summation interval to the nonnegative integers. As a preprocessing step we need to do
some algebraic manipulations.

n∑
k=0

(
n

k

)
a(a+ k)k−1(b+ n− k)n−k =

∞∑
k=0

(
n

k

)
a(a+ k)k−1(b+ n− k)n−k

=
∞∑
k=0

(
n

k

)
(a+ k − k)(a+ k)k−1(b+ n− k)n−k

= n!
∞∑
k=0

(a+ k)k − k(a+ k)k−1

k!

(b+ n− k)n−k

(n− k)!
,

where we have expanded the binomial coefficient as
(
n
k

)
= n!

k!(n−k)!
. The first part involves

(a+ k)k − k(a+ k)k−1

k!
=

(a+ k)k

k!
+

(a+ k)k−1

(k − 1)!
,

that is valid for k ≥ 1.

We will need to take care of this, when we apply the inversion rule 4.

= n!
∞∑
k=1

(
(a+ k)k

k!
+

(a+ k)k−1

(k − 1)!

)
(b+ n− k)n−k

(n− k)!

= n!
∞∑
k=1

(
res

u
(e(a+k)uu−k−1)− res

u
(e(a+k)uu−k)

)
res

w
e(b+n−k)ww−n+k−1

= n! res
w

e(b+n)ww−n−1

∞∑
k=1

(we−w)k res
u

((1− u)e(a+k)uu−k−1)︸ ︷︷ ︸
f(w)

.

Now we can apply the Lagrange Inversion Formula (see Thm.2.2.2) and by pattern match-
ing we find for k ≥ 1:

res
u

(1− u)e(a+k)uu−k−1 = res
u

f(u)Du((ue
−u))(ue−u)−k−1

= res
u

f(u)(1− u)ekuu−k−1,

1Example 2.1.6 [Ego84, p. 48]
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and we can take f(u) = eau. Finally we get for the original sum

= n! res
w

e(b+n)ww−n−1

∞∑
k=1

(we−w)k res
u

((1− u)e(a+k)uu−k−1)︸ ︷︷ ︸
=eaw

= n! res
w

e(a+b+n)ww−n−1 = (a+ b+ n)n.

Example 4.1.2 (Gould’s Identity) 2 We start the computation by our original sum-
mand

n∑
k=0

((
r − qk

k

)
+ q

(
r − kq − 1

k − 1

))(
p+ qk

n− k

)
.

Reasoning similar as above on
(
p+qk
n−k

)
we can extend the summation interval to range over

all nonnegative integers. Applying the substitutions from Table 2.1 we get

=
∞∑
k=0

((
r − qk

k

)
+ q

(
r − kq − 1

k − 1

))(
p+ qk

n− k

)
=

∞∑
k=0

(
res

u
(1 + u)r−kqu−k−1 + q res

u
((1 + u)r−kq−1u−k)

)
res

w
((1 + w)p+qkw−n+k−1)

= res
w

(1 + w)pw−n−1

∞∑
k=0

(w(1 + w)q)k res
u

((1 + u)r−kq−1u−k−1(1 + u+ qu))︸ ︷︷ ︸
f(w)

.

As in Abel’s identity we now have to apply the Lagrange Inversion Formula (Thm.2.2.2)
to compute the sum:

res
u

(1 + u+ qu)(1 + u)r−kq−1u−k−1 = res
u

f(u)Du(u(1 + u)q)(u(1 + u)q)−k−1

!
= res

u
f(u)(1 + u+ qu)(1 + u)−kq−1u−k−1,

and we can take f(u) = (1 + u)r; therefore the original sum equals

= res
w

(1 + w)pw−n−1

∞∑
k=0

(w(1 + w)q)k res
u

((1 + u)r−kq−1u−k−1(1 + u+ qu))︸ ︷︷ ︸
=(1+w)r

= res
w

(1 + w)p+rw−n−1 =

(
p+ r

n

)
.

2See [Ego84, p. 80, exercise 2.4.3.e Hagen’s identity]
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4.1.2 Applying the Riordan Array paradigm

The problem was investigated in [Spr95]. For computation Sprugnoli constructs an Rior-
dan Array where we can read off the solution.

Theorem 4.1.1 ([Spr95], p. 218, Thm. 3.1)
Let (mn,k)n,k≥0 = R(g(x), f(x)) be a Riordan array and let h(x) be the generating function

of a sequence (hk)k≥0. If (ĥk)k≥0 is the sequence, whose generating function is

ĥ(f)(x) := h(F ⟨−1⟩(x)), where F (x) = xf(x)

then:
∞∑
k=0

mn,kĥk = ⟨xn⟩ g(x)h(x) (4.10)

Proof. We follow the proof given in [Spr95, p. 218].

From Lemma 3.1.1 we have for the sequence (ĥk)k≥0:

∞∑
k=0

mn,kĥk = ⟨xn⟩ g(x)ĥf (xf(x))

= ⟨xn⟩ g(x)h(F ⟨−1⟩(xf(x)))

= ⟨xn⟩ g(x)h(x).

2

Example 4.1.3 We apply Thm. 4.1.1 to the Riordan array

D = R(g(x), f(x)) = R
(
e(b+n)x, e−x

)
with h(x) = eax, where a, b ∈ K. Note that h(x) is the generating function of the sequence
(ak/k!)k≥0. We get that

mn,k = ⟨xn⟩g(x)(xf(x))k = ⟨xn⟩ e(b+n)x(xe−x)k
(2.27)
= ⟨xn−k⟩ e(b+n−k)x =

(b+ n− k)n−k

(n− k)!
.

Because of ĥ(f)(x) = h(F ⟨−1⟩(x)) we have ĥ0 = ĥ(f)(0) = h0 = 1, and

ĥ(f) =
∞∑
n=0

ĥk(xe
−x)k = h(x).
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Consequently, by the Lagrange inversion formula given in Cor. 2.2.1, for k ≥ 1:

ĥk =
1

k
⟨xk−1⟩ h′(x)ekx

(2.26)
=

a

k
⟨xk−1⟩eaxekx (2.27)

=
a

k
⟨xk−1⟩e(a+k)x = a

(a+ k)k−1

k!
(4.11)

By formula (4.10) we have that

∞∑
k=0

mn,kĥk =
∞∑
k=0

a
(a+ k)k−1

k!

(b+ n− k)n−k

(n− k)!
= ⟨xn⟩ g(x)h(x)

(2.27)
= ⟨xn⟩ e(a+b+n)x =

(a+ b+ n)n

n!
,

which can be rewritten as
n∑

k=0

(
n

k

)
a(a+ k)k−1(b+ n− k)n−k = (a+ b+ n)n.

Example 4.1.4 (Generalized Abel’s identity) 3 If one instead considers the Riordan
array

D = R(g(x), f(x)) = R
(
e(b+dn)x, e−dx

)
and h(x) = eax, where a, b, d ∈ K, n ∈ N, one gets as general entry

mn,k = ⟨xn⟩ e(b+dn)x(xe−dx)k
(2.27)
= ⟨xn−k⟩ e(b+dn−dk)x (b+ d(n− k))n−k

(n− k)!
.

Similar as above, we have that ĥ0 = ĥ(f)(0) = h0 = 1, and for k ≥ 1:

ĥk =
1

k
⟨xk−1⟩ h′(x)ekx

(2.26)
=

a

k
⟨xk−1⟩eaxekdx (2.27)

=
a

k
⟨xk−1⟩e(a+kd)x = a

(a+ kd)k−1

k!
.

Hence
∞∑
k=0

mn,kĥk =
∞∑
k=0

a
(a+ dk)k−1

k!

(b+ d(n− k))n−k

(n− k)!

= ⟨xn⟩ g(x)h(x) (2.27)
= ⟨xn⟩ e(a+b+dn)x =

(a+ b+ dn)n

n!
.

The resulting identity can rewritten as

n∑
k=0

(
n

k

)
a(a+ dk)k−1(b+ d(n− k))n−k = (a+ b+ dn)n, (4.12)

which is not present in [Spr95].

3See [Rio68, p. 18, Equ. (13)]

49



Example 4.1.5 Consider the Riordan array

D = R(g(x), f(x)) = R ((1 + x)p, (1 + x)q) , p, q ∈ N,

and h(x) = (1 + x)r, where r ∈ N. By Thm. 4.1.1 we obtain that

mn,k = ⟨xn⟩ (1 + x)p(x(1 + x)q)k = ⟨xn−k⟩ (1 + x)p+qk =

(
p+ qk

n− k

)
.

Furthermore, ĥ0 = ĥ(f)(0) = h0 = 1 and

ĥk =
1

k
⟨xk−1⟩ h′(x)f(x)−k =

1

k
⟨xk−1⟩ Dx((1 + x)r)((1 + x)q)−k

(2.28),(2.16)
=

r

k
⟨xk−1⟩ (1 + x)r−1−qk =

r

k

(
r − 1− qk

k − 1

)
=

r

r − qk

(
r − qk

k

)
So we finally find

n∑
k=0

r

r − qk

(
r − qk

k

)(
p+ qk

n− k

)
= ⟨xn⟩ g(x)h(x) (2.16)

= ⟨xn⟩ (1 + x)p+r =

(
p+ r

n

)
.

4.2 Multi-Sum Identities

The machinery developed by Egorychev is not restricted to one single summation quan-
tifier as the following American Mathematical Monthly Problem shows.

Example: The American Mathematical Monthly, Problem 11033.4

Proposed by M.N. Deshpande and R.M. Welukar, Institute of Science, Nagpur, India.
Let

P (m,n, r) :=
r∑

k=0

(−1)k
(
m+ n− 2(k + 1)

n

)(
r

k

)
(4.13)

Let m,n and r be integers such that 0 ≤ r ≤ n ≤ m− 2. Show that P (m,n, r) is positive
and that

n∑
r=0

P (m,n, r) =

(
m+ n

n

)
(4.14)

We start by considering the inner sum P (m,n, r). The summation over k can be extended
to range over the nonnegative integers because the binomial coefficient forces the summand

4The American Mathematical Monthly, Vol. 110, No. 8 (Oct., 2003), p. 742
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to vanish identically for k > r. Afterwards we can replace the binomial coefficient by our
residue functional.

P (m,n, r) =
r∑

k=0

(−1)k
(
m+ n− 2(k + 1)

n

)(
r

k

)
=

∞∑
k=0

(−1)k
(
m+ n− 2(k + 1)

n

)(
r

k

)
=

∞∑
k=0

(−1)k res
u

(1 + u)m+n−2−2ku−n−1 res
w

(1 + w)rw−k−1

= res
u

(1 + u)m+n−2u−n−1

∞∑
k=0

(−(1 + u)−2)k res
w

(1 + w)rw−k−1.

after pulling out the factors not depending on the summation index. Now we can take
into account the substitution rule 3. The remaining sums simplifies to

∞∑
k=0

(−(1 + u)−2)k res
w

(1 + w)rw−k−1 =

(
1− 1

(1 + u)2

)r

.

This gives us for the inner sum the residue representation

P (m,n, r) = res
u

(1 + u)m+n−2−2rur(2 + u)ru−n−1. (4.15)

The BSI Problems Group, Bonn, Germany claimed in their solution5 of the problem that
the original sum P (m,n, r) can be rewritten in the following way

r∑
k=0

(−1)k
(
m+ n− 2(k + 1)

n

)(
r

k

)
=

m−2∑
k=0

(
r

k

)(
n− r +m− 2− k

n− r

)
. (4.16)

If this is the case we have proven that P (m,n, r) is indeed positive since we are adding
up non-negative quantities. (Note that by the assumptions on m,n, r the quantity
n − r + m − 2 − k for 0 ≤ k ≤ m − 2 is always positive and so is the binomial coef-
ficient (i.e. Lemma 2.4.1 is never invoked)).

We will present two proofs: The first one takes into account that the summands are both
hypergeometric. Hence, with the help of Zeilberger’s algorithm we can find recurrence
relations for the free variables r,m, n of both sums. If they coincide (up to a constant
multiple) it remains to check initial values to ensure equivalence.

5The American Mathematical Monthly, Vol. 112, No. 5 (May, 2005), p. 471, ”Expansion By Inclusion-
Exclusion”
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Mathematica 7.0 - Listing

(* We are looking for a recurrence in r of order 2 *)

In[1]:= Zb[(−1)kBinomial[m + n − 2(k + 1), n]Binomial[r, k], {k, 0, r}, r, 2]
If ’r’ is a natural number, then:

Out[1]= {4(n − r)(1 + r)SUM[r] + (14 − 4m − 13n + 2mn + n2 + 22r − 4mr − 8nr + 8r2)SUM[1 + r] − (−5 + m + n −
2r)(−4 +m+ n− 2r)SUM[2 + r] == 0}

In[2]:= Zb[Binomial[r, k]Binomial[n − r + m − 2 − k, n − r], {k, 0,m − 2}, r, 2]
If ‘-2 + m’ is a natural number and none of {-2 + n - r, r} is a negative integer, then:

Out[2]= {−4(n− r)(1 + r)SUM[r] + (−14+ 4m+13n− 2mn− n2 − 22r+4mr+8nr− 8r2)SUM[1+ r] + (−5+m+ n−
2r)(−4 +m+ n− 2r)SUM[2 + r] == 0}

(* We are looking for a recurrence in m of order 2 *)

In[3]:= Zb[(−1)kBinomial[m + n − 2(k + 1), n]Binomial[r, k], {k, 0, r},m, 2]
If ’r’ is a natural number, then:

Out[3]= {(−1 +m+ n− 2r)SUM[m] + (1 + n)SUM[1 +m]−mSUM[2 +m] == 0}

In[4]:= Zb[Binomial[r, k]Binomial[n − r + m − 2 − k, n − r], {k, 0,m − 2},m, 2]
If ‘-2 + m’ is a natural number and none of {n - r, r} is a negative integer, then:

Out[4]= {(1−m− n+ 2r)SUM[m] + (−1− n)SUM[1 +m] +mSUM[2 +m] == 0}

(* We are looking for a recurrence in n of order 2 *)

In[5]:= Zb[(−1)kBinomial[m + n − 2(k + 1), n]Binomial[r, k], {k, 0, r},m, 2]
If ’r’ is a natural number, then:

Out[5]= {(−1 +m+ n− 2r)SUM[n] + (−1− 2m− 3n+ 4r)SUM[1 + n] + 2(2 + n− r)SUM[2 + n] == 0}

In[6]:= Zb[Binomial[r, k]Binomial[n − r + m − 2 − k, n − r], {k, 0,m − 2},m, 2]
If ‘-2 + m’ is a natural number and none of {n - r, r} is a negative integer, then:

Out[6]= {(1−m− n+ 2r)SUM[n] + (1 + 2m+ 3n− 4r)SUM[1 + n]− 2(2 + n− r)SUM[2 + n] == 0}

Another way is to derive an residue representation of “their” sum. If they coincide we have
proven that they express the same value. First we notice that by assumption r ≤ m− 2
and therefore the summand vanishes for k > r. So we first change the bounds of our
summation and replace the second binomial coefficient.

m−2∑
k=0

(
r

k

)(
n− r +m− 2− k

n− r

)
=

r∑
k=0

(
r

k

)(
n− r +m− 2− k

n− r

)
=

r∑
k=0

(
r

k

)
res

u
(1 + u)n+m−r−2−ku−n+r−1

= res
u

(1 + u)m+n−r−2u−n+r−1

r∑
k=0

(
r

k

)
(1 + u)−k.
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Now apply the binomial theorem and get

res
u

(1 + u)m+n−r−2u−n+r−1

r∑
k=0

(
r

k

)
(1 + u)−k = res

u
(1 + u)m+n−r−2u−n+r−1

(
1 +

1

1 + u

)r

= res
u

(1 + u)m+n−2−2rur (2 + u)r u−n−1,

in accordance with (4.15). This proves identity (4.16). We note that identity (4.16) could
be derived by reading our proof of (4.16) backwards.

Finally we note that the identity (4.14) we want to prove here is in fact not very hard
once we plug in (4.15). We pull out the factors not depending on r and remain with a
simple geometric series.

S(m,n) :=
n∑

r=0

P (m,n, r) =
n∑

r=0

res
u

(1 + u)m+n−2−2rur(2 + u)ru−n−1

= res
u

(1 + u)m+n−2u−n−1

n∑
r=0

(
u(2 + u)

(1 + u)2

)r

.

The geometric series evaluates to

n∑
r=0

(
u(2 + u)

(1 + u)2

)r

= (1 + u)2 − un+1(2 + u)n+1(1 + u)−2n,

and hence

S(m,n) = res
u

(1 + u)m+nu−n−1 + res
u

(1 + u)m−n−2(2 + u)n+1 =

(
m+ n

n

)
+ 0,

because by assumption m ≥ n+ 2.

2

4.3 Another Mathematical Monthly Problem

Manuel Kauers together with Sheng-Lang Ko came in their work to meet the sum

S(n) := (−1)n
n∑

k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k). (4.17)
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It was posed as an Mathematical Monthly problem (The American Mathematical Monthly,
Problem 11545, Vol. 118, No. 1 (Jan. 2011), p.84) to find a simple closed form for the
sum. Again we will apply the Egorychev method to give a simple closed form solution.

As in the previous section we start by extending the summation interval to go over all
nonnegative integers. This can be done, because the binomial coefficient

(
2n
n+k

)
= 0 for

k > n. So from now on let us consider the infinite version of the sum

(−1)n
n∑

k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k) = (−1)n

∞∑
k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k).

We start by expanding the binomial coefficient and by replacing S1(n+k, k) according to
its residue representations. We recall the generating function

∞∑
k=0

S1(k,m)

k!
xk =

(− log(1− x))m

m!
. (4.18)

Identity (4.18) gives us the residue representation

S1(n+ k, k) =
(n+ k)!

k!
res

u
(− log(1− u))ku−n−k−1. (4.19)

With cancellation we get the representation

(−1)n
∞∑
k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k)

= (−1)n(2n)!
∞∑
k=0

(−1)k

(n+ k)!(n− k)!

(n+ k)!

k!
res

u
(− log(1− u))ku−n−k−1

= (−1)n
(2n)!

n!
res

u
u−n−1

∞∑
k=0

(
n

k

)(
− log(1− u)

u

)k

.

This sum can now be simplified by the binomial theorem 2.1.1 and rule 3 (note that the
generating function is a polynomial) and we find that

S(n) = (−1)n
(2n)!

n!
res

u

(
1− log(1− u)

u

)n

u−n−1.
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Plugging in the series representation of the logarithm and after some simplification we
find

(−1)n
(2n)!

n!
res

u

(
1− log(1− u)

u

)n

u−n−1 = (−1)n
(2n)!

n!
res

u

(
−u

2
− u2

3
− u3

4
− . . .

)n

u−n−1

=
(2n)!

n!
res

u
u−1

(
1

2
+

u

3
+

u2

4
+ . . .

)n

=
(2n)!

n!
⟨u0⟩

(
1

2
+

u

3
+

u2

4
+ . . .

)n

,

which gives

S(n) =
(2n)!

n!2n
. (4.20)

Remark: A fraction free representation would be over the double factorial notion. In
particular we define that for n ∈ N:

n!! :=


n · (n− 2) . . . 5 · 3 · 1 n > 0 odd,

n · (n− 2) . . . 6 · 4 · 2 n > 0 even,

1 n = −1, 0.

(4.21)

Lemma 4.3.1 For n ∈ N:
(2n)!

n!2n
= (2n− 1)!!. (4.22)

Proof. Both sides satisfy the recurrence

f(n+ 1)− (2n+ 1)f(n) = 0, n ≥ 0.

Initial values match. 2

Summarizing we have proven

(−1)n
n∑

k=0

(−1)k
(

2n

n+ k

)
S1(n+ k, k) =

(2n)!

n!2n
= (2n− 1)!!. (4.23)

4.4 Symbolic Sums involving C-finite sequences

In this section we will simplify the sum

F (n) :=
n∑

k=0

(
n

k

)
Fk, n ≥ 0. (4.24)
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where (Fk)k≥0 denotes the sequence of Fibonacci numbers defined by the recurrence

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2, n ≥ 2.

Afterwards we will extend this example to work for arbitrary C-finite sequences. (A pre-
cise definition will follow.)

As we have seen in the example involving Pascal’s triangle, the binomial coefficients can
be represented by the Riordan array

M = (mnk)n,k≥0 =

((
n

k

))
n,k≥0

= R
(

1

1− x
,

1

1− x

)
,

Furthermore by Lemma 3.1.1 we have for any sequence A = (a0, a1, a2, ...) with generating
function A(x) that

R(g(x), f(x))A(x) = g(x)A(xf(x)),

which in case of the binomial coefficient gives

n∑
k=0

(
n

k

)
ak = ⟨xn⟩ 1

1− x
A

(
x

1− x

)
, (4.25)

which is known as Euler’s transform. We recall

Lemma 4.4.1 The generating function of the sequence of Fibonacci numbers is given by

A(x) =
∞∑
k=0

Fkx
k =

x

1− x− x2
.

Then, using Lemma 4.4.1 together with the insertion homomorphism Φx/(1−x) 2.2.1, one
obtains

Corollary 4.4.1 The value of

F (n) =
n∑

k=0

(
n

k

)
Fk

is given by

F (n) = ⟨xn⟩ 1

1− x
A

(
x

1− x

)
= ⟨xn⟩ x

1− 3x+ x2
.
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One might find this answer not very satisfactory since the extraction of a certain coefficient
might be a cumbersome task. But in the case where we have to extract a coefficient from
a rational function we have the following result

Theorem 4.4.1 ([GKP94], p. 340, Rational Expansion Theorem)
Let R(z) ∈ K[[z]] with

R(z) =
P (z)

Q(z)
,

where P (z), Q(z) ∈ K[z] such that Q(z) = q0(1 − ρ1z) . . . (1 − ρlz), ρ1, ...ρl ∈ K pairwise
distinct, and deg(P (z)) < l. Then

⟨zn⟩ R(z) = a1ρ
n
1 + · · ·+ alρ

n
l , n ≥ 0,

where

ak = −ρk
P (1/ρk)

(DxQ)(1/ρk)
, 1 ≤ k ≤ l. (4.26)

Example 4.4.1 (Contd.) Let P (x) = x,Q(x) = 1− 3x + x2. From Corollary 4.4.1 we
know that

n∑
k=0

(
n

k

)
Fk = ⟨xn⟩ P (x)

Q(x)
, n ≥ 0.

Following Thm. 4.4.1, we have

Q(x) = 1− 3x+ x2 =

(
1− 2

3−
√
5
x

)(
1− 2

3 +
√
5
x

)
,

so we set ρ1 =
2

3−
√
5
and ρ2 =

2
3+

√
5
, and we calculate

a1 = −ρ1
P (1/ρ1)

(DxQ)(1/ρ1)
=

2

−3 +
√
5

P
(

3−
√
5

2

)
(DxQ)

(
3−

√
5

2

) =
1√
5
,

a2 = −ρ2
P (1/ρ2)

(DxQ)(1/ρ2)
=

−2

3 +
√
5

P
(

3+
√
5

2

)
(DxQ)

(
3+

√
5

2

) = − 1√
5
,

and we finally find

n∑
k=0

(
n

k

)
Fk = ⟨xn⟩ x

1− 3x+ x2
=

1√
5

((
2

3−
√
5

)n

−
(

2

3 +
√
5

)n)
, n ≥ 0.

57



Proof. [Proof of Thm. 4.4.1, see [GKP94]]

Let a1, ..., al be as defined in (4.26). Formula (4.26) holds if R(z) = P (z)/Q(z) is equal
to

S(z) =
a1

1− ρ1z
+ · · ·+ al

1− ρlz
.

And we can prove that R(z) = S(z) by showing that the function T (z) = R(z) − S(z)
is not infinite as z → 1/ρk for all k ∈ {1, . . . , l}. For this will show that the rational
function T (z) is never infinite; hence T (z) must be a polynomial. We also can show that
T (z) → 0 as z → ∞; hence T (z) must be zero.

Let αk = 1/ρk. To prove that
lim
z→αk

T (z) ̸= ∞,

it suffices to show that limz→αk
(z−αk)T (z) = 0, because T (z) is a rational function of z.

Thus we want to show that

lim
z→αk

(z − αk)R(z) = lim
z→αk

(z − αk)S(z).

The right-hand limit equals limz→αk
ak(z − αk)/(1− ρkz) = −ak/ρk, because (1− ρkz) =

−ρk(z − αk) and (z − αk)/(1− ρjz) → 0 for j ̸= k. The left-hand limit is

lim
z→αk

(z − αk)
P (z)

Q(z)
= P (αk) lim

z→ak

z − αk

Q(z)
=

P (αk)

(DxQ)(αk)
,

by l’Hôspital’s rule. Thus the theorem is proved.
2

In general the roots of a polynomial are not distinct. For the case that we have got a root
of multiplicity > 1, we use the following theorem.

Theorem 4.4.2 ((General Version), [GKP94], p. 341)
Let R(z) ∈ K[[z]] with

R(z) =
P (z)

Q(z)
,

where P (z), Q(z) ∈ K[z]such that Q(z) = q0(1−ρ1z)
d1 . . . (1−ρlz)

dl , ρ1, ..., ρl ∈ K pairwise
distinct, d1, ..., dl ∈ N\{0} and deg(P (z)) < l. Then

⟨zn⟩ R(z) = f1(n)ρ
n
1 + · · ·+ fl(n)ρ

n
l , n ≥ 0,

where each fk(n) is a polynomial of degree dk − 1 with leading coefficient

ak = (−ρk)
dk

P (1/ρk)dk

(Ddk
x Q)(1/ρk)

=
P (1/ρk)

(dk − 1)!q0
∏

j ̸=k(1− ρj/ρk)dj
. (4.27)
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Example 4.4.2 Consider

rat(x) :=
3x4 + 2x3 + x2 + 1

−4 + 4x+ 7x2 − 6x3 − 4x4 + 2x5 + x6

We compute

−4 + 4x+ 7x2 − 6x3 − 4x4 + 2x5 + x6 = −4
(
1 +

x

2

)2
(1− x)3(1 + x),

and hence q0 = −4, ρ1 = −1
2
, d1 = 2, ρ2 = 1, d2 = 3, ρ3 = −1, d3 = 1. The numbers ρi are

pairwise distinct, deg(P (z)) = 4 < d1 + d2 + d3 = 6. We compute the coefficients ak by
formula (4.27). By the theorem we get

⟨xn⟩ rat(x) =
(

37

108
n+ c1

)
(−2)−n +

(
− 7

36
n2 + c2n+ c3

)
− 3

8
(−1)n︸ ︷︷ ︸

fn

This gives us an Ansatz for the general shape of our expression. If we now compute the
first 3 values (corresponding to 3 unknowns) of the Taylor expansion we get

3x4 + 2x3 + x2 + 1

−4 + 4x+ 7x2 − 6x3 − 4x4 + 2x5 + x6
= −1

4
− 1

4
x− 15

16
x2 +O(x3),

and we can read off f0 = f1 = −1/4 and f2 = −15/16. Equipped with this additional
information we can now set up a linear system of equations

1 0 1

−1/2 1 1

1/4 2 1



c1

c2

c3

 =


1/8

−7/27

19/432


that has the unique solution (11/36, 2/27,−13/72)T . Hence, we find that

⟨xn⟩ rat(x) =
(

37

108
n+

11

36

)
(−2)−n +

(
− 7

36
n2 +

2

27
n− 13

72

)
− 3

8
(−1)n.

Example 4.4.3 (Application: non-congruent triangles)
In [APR01] the following application is described: What is the number of non-congruent
triangles with prescribed perimeter n ∈ N \{0} and sides a, b, c of positive integer length?
The triangles are described via the conditions on the sides

n = a+ b+ c,

1 ≤ a ≤ b ≤ c,

59



and the conditions that we are examining triangles, i.e. the triangle inequalities:

a ≥ b+ c,

b ≥ a+ c,

c ≥ a+ b.

If Tn denotes the number of such tuples, then it is derived in [APR01] that the generating
function is given by

∞∑
n=0

Tnx
n =

x3

(1− x2)(1− x3)(1− x4)
= x3 + x5 + x6 + 2x7 + x8 + 3x9 + . . . (4.28)

If we apply the theorem we get the explicit formula

Tk =
1

48

(
16

3

(
− 1

2
+ i

√
3

2

)k

− (3 + 3i)(−i)k − (3− 3i)(i)k +
1

6

(
1

2
+ i

√
3

2

)
·
(
8− 8

(
1

2
+ i

√
3

2

)
+ 9

(
− 1

2
+ i

√
3

2

))
+

16

3

(
− 1

2
− i

√
3

2

)k

+
1

3

(
1 + 8

(
1

2
+ i

√
3

2

)
−8

(
− 1

2
+ i

√
3

2

))
k + k2 − 3(−1)k

(
1

18

(
19 + 8

(
1

2
+ i

√
3

2

)
− 8

(
− 1

2
+ i

√
3

2

)
+ k

))
,

where i2 = −1, or after further simplification (i.e. rewriting complex numbers to trigono-
metric functions)

Tk =
1

288

(
− 1 + 6k(3 + k)− 36 cos

(
kπ

2

)
+ 64 cos

(
2kπ

3

)
− 9(3 + 2k) cos(kπ)

−36 sin

(
kπ

2

)
− 9i(3 + 2k) sin(kπ)︸ ︷︷ ︸

=0

)
, k ≥ 0.

Note: The trigonometric functions are coding periodicity, e.g., cos(kπ) = (−1)k.

The general case

Definition 4.4.1 (C-Finite sequence) Let α1, α2, ..., αd be elements in K, d ≥ 1, and
αd ̸= 0. The sequence (fn)n≥0 is C-finite if and only if

fn+d + α1fn+d−1 + α2fn+d−2 + · · ·+ αdfn = 0, n ≥ 0.

We will abbreviate the set of C-finite sequences by CF, i.e.,

CF := {(f0, f1, ...) ∈ KN | ∃ (α1, ..., αd) ∈ Kd, αd ̸= 0

∀n ≥ 0 : fn+d + α1fn+d−1 + · · ·+ αdfn = 0}
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The sequence of Fibonacci numbers (Fk)k≥0 is ∈ CF by the choice α1 = α2 = −1. C-
finite sequences have the nice property that their generating function can be expressed a
rational function. In particular we have the following theorem:

Theorem 4.4.3 ([Sta86], p. 202, [KP11], p. 74) Let α1, α2, ..., αd be elements in K,
d ≥ 1 and αd ̸= 0. The following conditions on a function f : N → K are equivalent:

• ∑
n≥0

fnx
n =

P (x)

Q(x)

where Q(x) = 1 + α1x+ α2x
2 + · · ·+ αdx

d ∈ K[x] and P (x) ∈ K[x] is a polynomial
in x of degree less than d.

• For all n ≥ 0,
fn+d + α1fn+d−1 + α2fn+d−2 + · · ·+ αdfn = 0.

• For all n ≥ 0,

fn =
k∑

i=1

Pi(n)γ
n
i

where

1 + α1x+ α2x
2 + · · ·+ αdx

d =
k∏

i=1

(1− γix)
di

and the γi’s are distinct elements in K̄, the algebraic closure of K, and the Pi(x) are
polynomials in K[x] of degree less than di.

Proof. See [Sta86, p. 203] 2

Theorem 4.4.4 Let (Ck)k≥0 ∈ CF. Then:

∞∑
n=0

xn

(
n∑

k=0

(
n

k

)
Ck

)

is a rational function.

Proof. The binomial coefficients correspond to the Riordan array

D = R
(

1

1− x
,

1

1− x

)
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and hence, by (4.25) we find that

∞∑
n=0

xn

(
n∑

k=0

(
n

k

)
Ck

)
=

1

1− x
C

(
x

1− x

)
where C(x) ∈ K[[x]] is the generating function of the sequence (Ck)k≥0. Because of the
assumption that (Ck)k≥0 ∈ CF we know that C(x) is a rational function. Composition
of C(x) by x/(1− x) and multiplication by 1/(1− x) is again a rational function. 2

Theorem 4.4.5 Let (Ck)k≥0 ∈ CF.

• If a, b ∈ N such that 1 ≤ b ≤ a+ 1:

∞∑
n=0

xn

(
n∑

k=0

(
m+ n+ ak

m+ bk

)
Ck

)
∈ K(x).

• If a ∈ N, b ∈ Z such that −1 ≤ b ≤ a− 1:

∞∑
m=0

xm

(
m∑
k=0

(
n+ ak

m+ bk

)
Ck

)
∈ K(x).

Proof. The proof proceeds with the same steps as the proof of the previous theorem. If
we take n ∈ N fixed and consider

⟨xn⟩ 1

(1− x)m+1

(
xb−a

(1− x)b

)k

= ⟨xn⟩ xbk−ak

(1− x)m+1+bk

= ⟨xn−bk+ak⟩ (1− x)−m−1−bk

= (−1)n−bk+ak

(
−m− 1− bk

n− bk + ak

)
=

(
m+ n+ ak

n− bk + ak

)
=

(
m+ n+ ak

m+ bk

)
, m, k ≥ 0.

Similar, for m ∈ N fixed:

⟨xm⟩ (1 + x)n
(

x−b

(1 + x)−a

)k

= ⟨xm⟩ (1 + x)n
xkb

(1 + x)−ka

= ⟨xm+kb⟩ (1 + x)n+ak

=

(
n+ ak

m+ bk

)
, n, k ≥ 0.
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This suggests to consider the Riordan arrays((
m+ n+ ak

m+ bk

))
n,k≥0

= R
(

1

(1− x)m+1
,
xb−a−1

(1− x)b

)
((

n+ ak

m+ bk

))
m,k≥0

= R
(
(1 + x)n,

x−b−1

(1 + x)−a

)
.

To prove that this are indeed Riordan arrays, we convince ourselves (by standard manip-
ulations as above), that by the assumptions on a, b ∈ Z all formal power series involved
have non-zero constant term.

⟨x0⟩ 1

(1− x)m+1
= 1 ̸= 0,

⟨x0⟩ xb−a−1

(1− x)b
=

(
a

b− 1

)
̸= 0,

⟨x0⟩(1 + x)n = 1 ̸= 0,

⟨x0⟩ x−b−1

(1 + x)−a
=

(
a

b+ 1

)
̸= 0.

We find by (3.7) for a, b ∈ N such that 1 ≤ b ≤ a+ 1:

∞∑
n=0

xn

(
n∑

k=0

(
m+ n+ ak

m+ bk

)
Ck

)
=

1

(1− x)m+1
C

(
xb−a

(1− x)b

)
, (4.29)

resp. for a ∈ N, b ∈ Z such that −1 ≤ b ≤ a− 1:

∞∑
m=0

xm

(
m∑
k=0

(
n+ ak

m+ bk

)
Ck

)
= (1 + x)nC(x−b(1 + x)a). (4.30)

Again we take into account that composition and multiplication by rational functions
keeps the sum in the field of rational functions. 2

In Connection with Thm. 4.4.2 we can always compute symbolically the value of

{n,m}∑
k=0

(
n+ ak

m+ bk

)
Ck,

for any (Ck)k≥0 ∈ CF and an appropriate choice of m,n ∈ N, in the way illustrated above.
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Noteworthy is also that, by Thm. 4.4.3, the sequence

(
A{m,n}

)
{m,n}≥0

=

{m,n}∑
k=0

(
n+ ak

m+ bk

)
Ck


{m,n}≥0

,

with (Ck)k≥0 ∈ CF, also satisfies a C-finite recurrence.

Example 4.4.4 ([Wil06], p.162, Ex. 4.16)
If two sequences (fn)n≥0 and (ck)k≥0 are connected by the equations

fn =
∑
k

(
n+ k

m+ 2k

)
ck, n ≥ 0,

where m ≥ 0 is fixed, then their opsgf ’s are connected by

F (x) =
xm

(1− x)m+1
C

(
x

(1− x)2

)
Proof. Let

F (x) =
∞∑
n=0

fnx
n, C(x) =

∞∑
n=0

cnx
n.

Then

⟨xn⟩F (x) = fn =
∑
k

(
n+ k

m+ 2k

)
ck =

n−m∑
k=0

(
n+ k

m+ 2k

)
ck,

because of the ”support” of the binomial coefficient. By (4.29) we have that

⟨xn⟩ xm

(1− x)m+1
C

(
x

(1− x)2

)
= ⟨xn−m⟩ 1

(1− x)m+1
C

(
x2−1

(1− x)2

)
=

n−m∑
k=0

(
n+ k

m+ 2k

)
ck.

Note that the sequence (ck)k≥0 does not has to be necessarily in CF. This restriction
allows us to compute the value in a symbolical fashion (because then we have a rational
generating function) but has not to be necessarily the case. 2

64



As we have seen in this discussion the case where the sequence of coefficients satisfy a
C-finite recurrence can always be fully solved. In particular we can always give an explicit
formula for the general term ck.

The author was pointed to the work of Koutschan [Kou09, Kou10] who examined ap-
plications of the holonomic systems approach. He developed the Mathematica package
HolonomicFunctions which computes the annihilator of the sum

∑n
k=0

(
n
k

)
Fk. We will

present how to proceed in Mathematica.

Mathematica 7.0 - Listing

In[1]:= <<HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 1.3 (25.01.2010)

In[2]:= Annihilator[Sum[Binomial[n, k] ∗ Fibonacci[k], {k, 0, n}], S[n]]

Out[2]= {S2
n − 3Sn + 1}

Hence, if we denote F (n) =
∑n

k=0

(
n
k

)
Fk we know from this that

F (n+ 2)− 3F (n+ 1) + F (n) = 0

holds for n ≥ 0. If we compute initial values we can invoke Thm. 4.4.3 to compute a
closed form for the sum in question.

4.5 An explicit formula for Stirling numbers

From the combinatorial interpretation of Stirling numbers of the second kind, one find a
recurrence relation for these numbers. The Stirling numbers of the second kind satisfy
the recurrence [Wil06, p. 17]

S2(n, k) = S2(n− 1, k − 1) + kS2(n− 1, k). (4.31)

Proof. Take a set with n elements and highlight one particular element, say for instance
the last one. To obtain a partition of the n element set into k blocks we can partition the
n−1 element set (where we excluded our highlighted element) into k blocks and place the
last element into any of these blocks in kS2(n− 1, k) ways, or we can put the last element
in a block by itself and partition the n−1 element set into k−1 blocks in S2(n−1, k−1)
ways. So the total number of ways is given by (4.31)

2
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This recurrence is valid in Z2 with the exceptional point (n, k) ̸= (0, 0) where we have
that S2(0, 0) = 1. (Note that S2(n, k) := 0 if n ·k < 0) Following the derivation in [Wil06]
we define the generating function

fk(x) =
∞∑
n=0

S2(n, k)x
n, (4.32)

and find by the defining recurrence immediately that

fk(x) = xfk−1(x) + kxfk(x), k ≥ 1, f0(x) = 1, (4.33)

leading us to the recurrence

fk(x) =
x

1− kx
fk−1(x), k ≥ 1, f0(x) = 1,

and finally the evaluation

fk(x) =
∞∑
n=0

S2(n, k)x
n =

xk

(1− x)(1− 2x)(1− 3x) . . . (1− kx)
. (4.34)

Wilf now performs partial fraction decomposition to extract the coefficient of xn (which
can be compared to what we did in an earlier section, but is a little more involved because
we deal with a symbolic parameter k rather than a concrete number). After some lengthy
computation he comes up with the representation

S2(n, k) =
k∑

r=1

(−1)k−r rn

r!(k − r)!
, n, k ≥ 0. (4.35)

Special cases of these formulas are of interest. Namely if we set k = 2 we calculate the
sum directly (in fact, the summation quantifier would be an overkill :-) ) we get the nice
formula

2∑
r=1

(−1)2−r rn

r!(2− r)!
= −1 +

2n

2!0!
= 2n−1 − 1.

About this we could have reasoned combinatorially, because if a set of n > 0 elements
is divided into two nonempty subsets one subset contains the last element and the other
subset the first n− 1 objects. There are 2n−1 ways to choose the subset because the n− 1
objects are either inside the subset or not. But we mustn’t put all of those objects in it,
because we want to end up with two nonempty sets. Therefore we subtract 1

S2(n, 2) = 2n−1 − 1, n ∈ N : n > 0.
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In the introductory section we learned that the Stirling numbers of the second kind are
subject to the residue representation

S2(n, k) =
n!

k!
res
w

(ew − 1)kw−n−1.

If we look at the sum representation we find that we can extend the summation interval
because rn will not contribute if r is set to 0 or if r > k. So let us manipulate the sum
by some extensions

k∑
r=1

(−1)k−r rn

r!(k − r)!
=

1

k!

∞∑
r=0

(
k

r

)
(−1)k−rrn

=
n!

k!

∞∑
r=0

(
k

r

)
(−1)k−r r

n

n!
,

Now we can replace the exponential factor by its residue representation involving the
exponential function and pull out factors not depending on the summation index

n!

k!

∞∑
r=0

(
k

r

)
(−1)k−r r

n

n!
=

n!

k!

∞∑
r=0

(
k

r

)
(−1)k−r res

u
eruu−n−1

=
n!

k!
res

u
u−n−1

∞∑
r=0

(
k

r

)
(−1)k−r eru.

The remaining sum can be simplified with the help of the binomial theorem giving us the
residue representation

n!

k!
res

u
u−n−1

∞∑
r=0

(
k

r

)
(−1)k−r eru =

n!

k!
res

u
(eu − 1)ku−n−1.

Hence, we have proven that Wilf’s sum has the same residue representation as the Stirling
numbers of the second kind and therefore its correctness (without the use of the partial
fraction decomposition or the rational expansion theorem).

4.6 Further non-hypergeometric examples

The sequence of Bernoulli Nos. (Bk)k≥0 causes problem’s for computing combinatorial
sums. Similar the Stirling Nos. of both kinds are not nice in the sense defined at the be-
ginning of this chapter . Therefore we need other methods for computing sums involving
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this kind of numbers.

Progress in this direction was made by Kauers [Kau07], who provided an algorithm for
computing sums where

summand(n,m, k) = hyp(n,m, k) · S(an+ bk, cn+ dk),

where S(n, k) are either Stirling numbers of the first or second kind, or Eulerian num-
bers of the first or second kind, a, b, c, d ∈ Z satisfying ad − bc = ±1 and hyp(n,m, k) is
a proper hypergeometric term (i.e. a product of binomials, factorials, exponentials and
polynomials).

The essential idea is that one considers bivariate operators of the form∑
i,j∈Z

pi,j(n, k)N
iKj,

with pi,j ∈ C(n, k), C a field of characteristic zero. These operators act in the following
way on sequences f : Z2 → C(∑

i,j∈Z

pi,j(n, k)N
iKj

)
· f(n, k) =

∑
i,j∈Z

pi,j(n, k)f(n+ i, k + j), n, k ∈ Z.

The set of this operators is denoted by C(n, k)⟨N,K⟩. What is essential is that for a
given bivariate sequence f : Z2 → C the set

{ Q ∈ C(n, k)⟨N,K⟩ : Q · f ≡ 0 } ,

forms a left ideal (called the annihilator ideal) of the ring C(n, k)⟨N,K⟩. If one now
considers an ideal a � C(n, k)⟨N,K⟩ one can show that under certain assumptions that
a ∩ C(n,m1, ...,mr)⟨N,K,M1, ...,Mr⟩ ̸= {0} or in other words the summand satisfies a
nontrivial recurrence relation whose coefficients are free of k. With the help of this one
is able to solve definite and indefinite summation problems. We do not want to go into
details here, but refer the interested reader to the work of Kauers.

With the help of the developed package Kauers was able to prove most identities arising
in [GKP94, p. 265, Table 265] with exception of (6.28) and (6.29) that are not of the
desired form. The Egorychev approach is able to derive this identities by the use of the
substitution rule.
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Example 4.6.1 ([GKP94], p. 265, Equ. (6.28))
We prove the identity

n∑
k=0

S2(k, l)S2(n− k,m)

(
n

k

)
=

(
l +m

l

)
S2(n, l +m), (4.36)

that involves the non-hypergeometric Stirling numbers of second kind. As in a preceding
example we expand the binomial coefficient

(
n
k

)
= n!

k!(n−k)!
and pull out the terms not

depending on k. Further we extend the summation interval and substitute the Stirling
numbers according to Table 2.1.

= n!
n∑

k=0

S2(k, l)S2(n− k,m)
1

k!(n− k)!

= n!
∞∑
k=0

k!

l!
res

w

(
(ew − 1)lw−k−1

) (n− k)!

m!
res

u

(
(eu − 1)mu−n+k−1

) 1

k!(n− k)!

=
n!

l!m!
res

u

(
(eu − 1)mu−n−1

) ∞∑
k=0

uk res
w

(
(ew − 1)lw−k−1

)
.

Now we can apply the substitution rule and expand by (l +m)!

=
n!

l!m!
res

u

(
(eu − 1)mu−n−1

) ∞∑
k=0

uk res
w

(
(ew − 1)lw−k−1

)
︸ ︷︷ ︸

=(eu−1)l

=
n!

l!m!

(l +m)!

(l +m)!
res

u
(eu − 1)l+m u−n−1

=

(
l +m

l

)
n!

(l +m)!
res

u
(eu − 1)l+m u−n−1 =

(
l +m

l

)
S2(n, l +m).

[GKP94, p. 265, eq. (6.29)] is essentially the same but involves (signless) Stirling num-
bers of the first kind instead the second kind. One could take this derivation and replace
e{u,w} − 1 by − log(1− {u,w}).

Exercise 2.4.9 (f) in [Ego84, p. 85] asks for the proof of a similar identity, namely

n−r∑
k=m−r

(
n

k

)
S2(n− k, r)S2(k,m− r) =

(
m

r

)
S2(n,m), r ≤ m ≤ n. (4.37)

The calculation is straightforward and we do not want to present it in full detail. But the
author wants to point out that with the help of the Egorychev method one might gets a
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handle on a more general class than what Kauers calls a proper Stirling-like term.

For handling Stirling Number identities, it is pointed out in [Spr94] that the Riordan
array approach is also applicable.

Lemma 4.6.1 For k ∈ N fixed:

(− log (1− x))k = k!
∞∑
n=0

S1(n, k)
xn

n!
, (4.38)

(ex − 1)k = k!
∞∑
n=0

S2(n, k)
xn

n!
. (4.39)

Let us consider the Riordan array

M := (mn,k), where mn,k := S1(n, k)
k!

n!
.

Then, the Riordan matrix M will look like M = (M (0),M (1),M (2), ...), where

M (0) =


1

0

0
...

 = first column of M , (4.40)

and

M (k) =


S1(0, k)

k!
0!

S1(1, k)
k!
1!

S1(2, k)
k!
2!

...

 = kth column of M , (4.41)

By Lemma 4.6.1, the generating function of the kth column is given by (− log(1 − x))k.
We can reason similar for the Stirling numbers of the second kind, and hence we have
found the Riordan arrays(

S1(n, k)
k!

n!

)
n,k≥0

= R
(
1,−1

x
log (1− x)

)
, (4.42)(

S2(n, k)
k!

n!

)
n,k≥0

= R
(
1,

1

x
(ex − 1)

)
. (4.43)

To see how easy this will work with Riordan arrays we will illustratively show an example.
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Example 4.6.2 ([Spr94])

n∑
k=0

S2(n, k)k!
(−1)k

k + 1
= Bn (4.44)

We start by rewriting the original summand as follows:

n∑
k=0

S2(n, k)k!
(−1)k

k + 1
= n!

n∑
k=0

S2(n, k)
k!

n!

(−1)k

k + 1
(4.45)

As noted above, we can identify by the Stirling numbers of the second kind by the Riordan
array (

S2(n, k)
k!

n!

)
n,k≥0

= R(g(x), f(x)) = R
(
1,

1

x
(ex − 1)

)
.

The sequence
(
(−1)k/(k + 1)

)
k≥0

has the generating function

∞∑
k=0

(−1)k

k + 1
xk =

1

x

∞∑
k=0

(−1)k

k + 1
xk+1 =

1

x

∞∑
k=1

(−1)k−1

k
xk =

1

x

∞∑
k=1

(−1)k+1

k
xk =

log(1 + x)

x
.

(4.46)
Hence, by Lemma 3.1.1 and (2.49) we find that:

B(x) = g(x)A(xf(x)) =
log(1 + (ex − 1))

ex − 1
=

x

ex − 1

and therefore

n!
n∑

k=0

S2(n, k)
k!

n!

(−1)k

k + 1
= n! ⟨xn⟩ x

ex − 1
= Bn.

where the last step is a consequence from (2.53).

4.7 Symbolic Sums involving holonomic sequences

As we have seen in the last section, we sometimes might have to extract the coefficient of xn

of a generating function that is not rational. In particular in examples involving Stirling
numbers we might get generating functions that contain logarithmic resp. exponential
factors. In this case we know by Thm. 4.4.3 that the coefficients will not satisfy a C-finite
recurrence. We start again by a concrete example and generalize afterwards.
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Example 4.7.1 Suppose we want to extract

⟨xn⟩ f(x) := x− log(1 + x) + x log(1 + x)

x2
.

Again we take Mallinger’s package in action to obtain information about the behaviour
of the sequence. For this purpose we start by computing the first 10 values of the Taylor
expansion of the series.

Mathematica 7.0 - Listing

In[1]:= CoefficientList

[
Series

[
x − Log[1 + x] + xLog[1 + x]

x2
, {x, 0, 15}

]
, x

]

Out[1]=

{
3

2
,−

5

6
,
7

12
,−

9

20
,
11

30
,−

13

42
,
15

56
,−

17

72
,
19

90
,−

21

110
,
23

132

}

No obvious pattern is visible from the coefficient list. We have to work a little more to get
a closed form for general fn. If we try Mallinger’s procedures we might obtain a recurrence
relation with polynomial coefficients:

Mathematica 7.0 - Listing

In[2]:= GuessRE

[{
3

2
,−

5

6
,

7

12
,−

9

20
,
11

30
,−

13

42
,
15

56
,−

17

72
,
19

90
,−

21

110
,

23

132

}
, a [n]

]

Out[2]=

{{
(−1− n)a[n] + a[1 + n] + (4 + n)a[2 + n] == 0, a[0] ==

3

2
, a[1] == −

5

6

}
, ”ogf”

}

The initial values are actually no surprise. But the author of this work guesses from the
list of coefficients no person would have come up with this recurrence relation.

How to solve this recurrence equation? There is a built in Mathematica function that can
handle C-finite recurrences and also recurrences of this type. Indeed, if one tries

Mathematica 7.0 - Listing

In[3]:= RSolve

[{
(−1 − n)a[n] + a[1 + n] + (4 + n)a[2 + n] == 0, a[0] ==

3

2
, a[1] == −

5

6

}
, a[n], n

]

Out[3]=

{{
a[n] →

(−1)n(3 + 2n)

(n2 + 3n+ 2)

}}
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one gets already a closed form for the general term. An alternative is to apply Petkovšek’s
algorithm Hyper (see [Pet98] and [PWZ96]) for finding hypergeometric solutions to such
equations (we will come back to this).

The general case
In general it will be the case that the order of the guessed recurrence for the coefficient
sequence will be higher than 2. Let us develop the theory for higher order equations.

Definition 4.7.1 (See [Mal96], p. 10, Def. 1.3.1)
A sequence (an)n≥0 ∈ KN is holonomic (or P-recursive) if and only if (an)n≥0 satisfies a
linear recurrence with polynomial coefficients (holonomic recurrence equation), i.e., there
are polynomials p0, p1, ..., pd ∈ K[x], pd ̸= 0, such that for all n ∈ N :

p0(n)an + p1(n)an+1 + · · ·+ pd(n)an+d = 0 (4.47)

We will call d the order and max(deg(p0(n), ..., pd(n))) the degree of the recurrence.

Similar as before we denote the set of holonomic sequences by PF standing for P-finite.

As it turns out such recurrences does not only appear here but also in cases of definite and
indefinite hypergeometric summation (as in Zeilberger’s creative telescoping respectively
in Gosper’s algorithm). Therefore mathematicians started to investigate the problem of
finding solutions to this kind of equations. We distinguish 3 kind of solutions.

Definition 4.7.2 A sequence (an)n≥0 will be called

• polynomial over K if there is a polynomial f(x) ∈ K[x] such that an = f(n) for all
n ∈ N large enough

• rational over K if there is a rational function f(x) ∈ K(x) such that an = f(n) for
all n ∈ N large enough

• a hypergeometric term over K if there is a rational function r(x) ∈ K(x) such that
an+1 = r(n)an for all n ∈ N large enough

Petkovšek [Pet98] provides an algorithm not only for finding polynomial solutions but also
for computing hypergeometric solutions. The algorithm is inspired by Gosper’s algorithm
[Gos78] that relies on the fact that any rational function r(x) ∈ K(x) can be represented
as

r(x) = Z
A(x)

B(x)

C(x+ 1)

C(x)
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where gcd(A(x), B(x+ k)) = 1 for every non-negative integer k. With the help of this he
was able to formulate an algorithm which takes

Input: Polynomials pi(n) over K for i = 0, 1, ..., d; an extension field F of K

and produces

Output: A hypergeometric solution (an)n≥0 of

p0(n)an + p1(n)an+1 + · · ·+ pd(n)an+d = 0

over F if it exists.

Example 4.7.2 Let us try Petkovšek’s algorithm to solve the recurrence of Example 4.7.1.
Hyper is implemented in his Mathematica package6 Hyper.m:

Mathematica 7.0 - Listing

In[1]:= <<Hyper.m
In[2]:= Hyper[(−1 − n)a[n] + a[1 + n] + (4 + n)a[2 + n] == 0, a[n], Solutions → All]

Out[2]=

{
1 + n

3 + n
,−

(1 + n)(5 + 2n)

(3 + n)(3 + 2n)

}

The two results obtained are actually not the bases for the sequences an but the shift
quotient

yn+1

yn
.

But this order 1 recurrence can now be solved by unfolding the recurrence equation

y
(1)
n+1

y
(1)
n

=
1 + n

3 + n
⇒ y(1)n =

c1
2 + 3n+ n2

,

and analogously

y
(2)
n+1

y
(2)
n

= −(1 + n)(5 + 2n)

(3 + n)(3 + 2n)
⇒ y(2)n =

2(−1)n(3 + 2n)c2
3(1 + n)(2 + n)

.

Taking initial values into account we find that c1 = 0 and c2 =
3
2
giving us the same result

as the Mathematica procedure

an =
(−1)n(3 + 2n)

2 + 3n+ n2
.

6available online at http://vega.fmf.uni-lj.si/~petkovsek/distrib.m, accessed 07.06.2010
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4.8 Symbolic Sums involving trigonometric functions

It is pointed out in Egorychev’s work, that one is able to compute symbolic sums involving
trigonometric terms. In fact, there is no magic behind it, because of Euler’s identity

eix = cos(x) + i sin(x). (4.48)

Manipulation of this formula give the well known representations of sine and cosine

cos(x) =
eix + e−ix

2
, (4.49)

sin(x) =
eix − e−ix

2
. (4.50)

Another way of viewing trigonometric functions is to look to the real part (resp. imaginary
part) of Euler’s exponential function. The idea is to replace any appearance of sine and
cosine by

cos(x) = ℜ(eix), sin(x) = ℑ(eix).

With the help of this substitutions many identities can be traced back to the binomial
theorem. However, in general this will not suffice to compute the sums of interest. For
the identities in [Ego84, par. 2.4.6] additional knowledge on the trigonometric functions
is necessary. As a reminder we state here without proof summary records and the trigono-
metric Pythagorean theorem

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x), (4.51)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), (4.52)

sin(x)2 + cos(x)2 = 1. (4.53)

Further we remark, that not only the Egorychev method is able to handle this kinds
of sums, but also by the Riordan array approach as pointed out in [Spr07] (in fact the
calculation was inspired by [Spr07]). We present two ways to prove the identity7

n∑
k=0

(−1)k
(
n

k

)
cos(kx) = (−2)n cos

(
n(x+ π)

2

)(
sin
(x
2

))n
. (4.54)

7This example appears as exercise 2.4.6 (b) in [Ego84, p. 81]
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4.8.1 Applying the Egorychev Method

As described at the beginning of this section, we replace the disturbing cos(kx) term by
the complex exponential function

n∑
k=0

(−1)k
(
n

k

)
cos(kx) =

∞∑
k=0

(−1)k
(
n

k

)
cos(kx)

=
∞∑
k=0

(−1)k
(
n

k

)
ℜ(eikx)

= ℜ

(
∞∑
k=0

(
n

k

)
(−eix)k

)
.

The remaining sum can now be simplified with the help of the binomial theorem

ℜ

(
∞∑
k=0

(
n

k

)
(−eix)k

)
= ℜ

(
1− eix

)n
= ℜ((1− cos(x)− i sin(x))n).

But how to extract the real part now? Here we need additional knowledge as stated. Let
us rewrite the 1 and expand the sine and cosine as described

ℜ ((1− cos(x)− i sin(x))n) = ℜ

(sin
(x
2

)2
+ cos

(x
2

)2
︸ ︷︷ ︸

=1

−(cos
(x
2

)2
− sin

(x
2

)2
︸ ︷︷ ︸

=cos(x)

)− i sin(x))n



= ℜ

(2 sin
(x
2

)2
− i · 2 sin

(x
2

)
cos
(x
2

)
︸ ︷︷ ︸

=sin(x)

)n


= ℜ

(
2n sin

(x
2

)n
(sin

(x
2

)
− i cos

(x
2

)
)n
)
.

Now we take into account the theorem of Moivre stating that

(cos(x) + i sin(x))n = cos(nx) + i sin(nx), n ∈ Z. (4.55)

But first we need some preprocessing because the imaginary unit i appears at the cosine.
This can be done by some special cases of the summary records. Namely set y = π

2
in

(4.51) to obtain

sin
(
x+

π

2

)
= sin (x) cos

(π
2

)
+ cos (x) sin

(π
2

)
= cos (x) , (4.56)
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and similar

cos
(
x+

π

2

)
= cos (x) cos

(π
2

)
− sin (x) sin

(π
2

)
= − sin (x) . (4.57)

Equipped with this, we rewrite our problem to

ℜ
(
2n sin

(x
2

)n
(sin

(x
2

)
− i cos

(x
2

)
)n
)

= ℜ
(
2n sin

(x
2

)n
(− cos

(x
2
+

π

2

)
− i sin

(x
2
+

π

2

)
)n
)

= ℜ
(
(−2)n sin

(x
2

)n(
cos

(
n(π + x)

2

)
+ i sin

(
n(π + x)

2

)))
.

From this we can read off the real part easily and hence, we have proven our desired sum.

4.8.2 Applying the Riordan Array paradigm

As we have shown earlier, the Riordan array paradigm recognizes this formula as a special
case of Euler’s transformation rule (4.25). Namely if we set

ak =
(
−eix

)k
,

we find the generating function (the geometric series)

A(t) =
∞∑
k=0

akt
k =

∞∑
k=0

(−teix)k =
1

1 + teix
.

Now Euler’s transformation rule tells us that

n∑
k=0

(
n

k

)
ak = ⟨tn⟩ 1

1− t
A

(
t

1− t

)
,

that gives in our case

n∑
k=0

(−1)k
(
n

k

)
cos(kx) = ℜ

(
n∑

k=0

(
n

k

)
(−eix)

)

= ℜ

(
⟨tn⟩ 1

1− t
· 1

1 + eix t
1−t

)
= ℜ

(
⟨tn⟩ 1

1− t(1− eix)

)
= ℜ((1− eix)n).

Now we can reason exact the same way as we did in our Egorychev style solution to obtain
the identity.
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Remark: Whenever we are able to compute our sum this way we get actually two
identities. Namely, by considering the imaginary part of our equation we get the identity
with the sine replaced by the cosine for free. In particular we have proven two identities

n∑
k=0

(−1)k
(
n

k

)
cos(kx) = (−2)n cos

(
n(x+ π)

2

)(
sin
(x
2

))n
, n ≥ 0, (4.58)

n∑
k=0

(−1)k
(
n

k

)
sin(kx) = (−2)n sin

(
n(x+ π)

2

)(
sin
(x
2

))n
, n ≥ 0. (4.59)

4.9 An Identity for Jacobi polynomials P
(α,β)
n (x)

Exercise 4.15 in [Wil06] asks the reader to derive a closed form for the generating func-
tion of the Jacobi polynomials. In the following we will show how to make use of the
Egorychev and of the Snake Oil method to derive a simple closed form.

The Jacobi polynomials are solutions to the Jacobi differential equation [AAR99, p. 297,
(6.3.9)]

(1− x2)y′′(x) + [β − α− (α+ β + 2)x]y′(x) + n(n+ α+ β + 1)y(x) = 0. (4.60)

The first few polynomials are given by

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) =

1

2
[2(α+ 1) + (α+ β + 2)(x− 1)]

P
(α,β)
2 (x) =

1

8
[4(α+ 1)(α+ 2) + 4(α+ β + 3)(α+ 2)(x− 1) + (α+ β + 3)(α+ β + 4)(x− 1)2]

A different definition would be over the Rodrigues formula [AAR99, p. 300, Remark 6.4.1]

P (α,β)
n (x) =

(1− x)−α(1 + x)−β

(−2)nn!

dn

dxn

[
(1− x)n+α(1 + x)n+β

]
, n ≥ 0. (4.61)

In the following we will give the generating function of Jacobi polynomials. We will derive
that ∑

n

P (α,β)
n (x) tn+α+β =

(1 + x− 2t)n+α

2n(x− 1)α(1− t)n+1
.

That solves Wilf’s example [Wil06, Ex. 4.1.15, p. 161]. Following Wilf’s proposal, we
proceed in 3 steps to show this.
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Example 4.9.1 ([Wil06], p. 161, Ex. 4.15)
For all m,n, q ≥ 0, we have∑

r

(
m

r

)(
n− r

n− r − q

)
(t− 1)r =

∑
r

(
m

r

)(
n−m

n− r − q

)
tr.

We will derive a residue representation for both sums in question and show that they are
the same. This proves the claim. Let us first look at the sum at the left hand side.

The convention in Wilf’s book is that the summation index r ranges over the integers. So
the first step, extending the summation interval precipitates. In the next step we replace
the binomial coefficients by their residue representations∑
r

(
m

r

)(
n− r

n− r − q

)
(t− 1)r =

∑
r

res
w

(1 + w)mw−r−1 res
u

(1 + u)n−ru−n+r+q−1 (t− 1)r

= res
u

(1 + u)nu−n+q−1
∑
r

(
(t− 1)u

(1 + u)

)r

res
w

(1 + w)mw−r−1.

Now the substitution rule applies and we find that∑
r

(
m

r

)(
n− r

n− r − q

)
(t− 1)r = res

u
(1 + u)n−m(1 + ut)mu−n+q−1. (4.62)

For the right hand side start again by replacing the binomial coefficients∑
r

(
m

r

)(
n−m

n− r − q

)
tr =

∑
r

res
w

(1 + w)mw−r−1 res
u

(1 + u)n−mu−n+r+q−1tr

= res
u

(1 + u)n−mu−n+q−1
∑
r

(ut)r res
w

(1 + w)mw−r−1.

Again, with the help of the substitution rule we find that∑
r

(
m

r

)(
n−m

n− r − q

)
tr = res

u
(1 + u)n−m(1 + ut)mu−n+q−1. (4.63)

The next step in Wilf’s exercise states that the Jacobi polynomials may be defined for
n ≥ 0, by

P (α,β)
n (x) =

∑
k

(
n+ α

k

)(
n+ β

n− k

)(
x− 1

2

)n−k (
x+ 1

2

)k

. (4.64)
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One should now use the result of part (a) to show also that

P (α,β)
n (x) =

∑
j

(
n+ α+ β + j

j

)(
n+ α

j + α

)(
x− 1

2

)j

. (4.65)

To see, why this equation holds, we start by considering (4.64) and pulling out constants∑
k

(
n+ α

k

)(
n+ β

n− k

)(
x− 1

2

)n−k (
x+ 1

2

)k

=

(
x− 1

2

)n∑
k

(
n+ α

k

)(
n+ β

n− k

)(
x+ 1

x− 1

)k

.

By matching with the sum (4.63) and the assignment of the parameters

m = n+ α,

r = k,

n = 2n+ α+ β,

q = n+ α+ β,

t =
x+ 1

x− 1
,

we find, with the help of part (a) (observe that t− 1 = 2
x−1

), that this sum is equal to(
x− 1

2

)n∑
k

(
n+ α

k

)(
n+ β

n− k

)(
x+ 1

x− 1

)k

=

(
x− 1

2

)n∑
k

(
n+ α

k

)(
2n+ α+ β − k

n− k

)(
2

x− 1

)k

=
∑
k

(
n+ α

k

)(
n+ α+ β + (n− k)

n− k

)(
x− 1

2

)n−k

.

If we now reverse the summation interval (this is replacing k by n−k, a bijective mapping
on the summation interval) we get the desired identity

=
∑
k

(
n+ α

n− k

)(
n+ α+ β + k

k

)(
x− 1

2

)k

=
∑
j

(
n+ α+ β + j

j

)(
n+ α

j + α

)(
x− 1

2

)j

.

Finally sub exercise (c) wants the reader to use part (b) and a dash of the Snake Oil to
show that

P (α,β)
n = 2−n(x− 1)−α ⟨tn+α+β⟩

{
(1 + x− 2t)n+α

(1− t)n+1

}
. (4.66)
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To show this, we consider the generating function for Jacobi polynomials

∑
n

P (α,β)
n (x) tn+α+β =

∑
n

tn+α+β

(∑
j

(
n+ α+ β + j

j

)(
n+ α

j + α

)(
x− 1

2

)j
)

=
∑
n

(∑
j

(
n+ α+ β + j

j

)(
n+ α

j + α

)(
x− 1

2

)j
)
tn+α+β.

The next step in the Snake Oil method tells to interchange order of summation and replace
the summation variable. Note that we are actually not summing on n but as we shall
see we are summing on n+ α+ β + j. Therefore we can pull out the binomial coefficient
although it depends on n.

=
∑
j

(
n+ α

j + α

)(
x− 1

2t

)j ∑
n

(
n+ α+ β + j

j

)
tn+α+β+j

=
∑
j

(
n+ α

j + α

)(
x− 1

2t

)j ∑
s

(
s

j

)
ts.

Hence, together with the elementary generating function∑
r

(
r

k

)
xr =

xk

(1− x)k+1
, k ≥ 0. (4.67)

we find that∑
j

(
n+ α

j + α

)(
x− 1

2t

)j ∑
s

(
s

j

)
ts =

1

1− t

∑
j

(
n+ α

j + α

)(
x− 1

2(1− t)

)j

.

Because this ”trick” worked so well, let’s try it once more. We add a factor of
(

x−1
2(1−t)

)α
and apply afterwards the binomial theorem.

1

1− t

∑
j

(
n+ α

j + α

)(
x− 1

2(1− t)

)j

=
1

1− t

(
x− 1

2(1− t)

)−α∑
j

(
n+ α

j + α

)(
x− 1

2(1− t)

)j+α

=
1

1− t

(
x− 1

2(1− t)

)−α∑
s

(
n+ α

s

)(
x− 1

2(1− t)

)s

=
1

1− t

(
x− 1

2(1− t)

)−α(
1 +

x− 1

2(1− t)

)n+α

.
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Further simplification leads to the closed form∑
n

P (α,β)
n (x) tn+α+β =

(1 + x− 2t)n+α

2n(x− 1)α(1− t)n+1
.

4.10 An Example with Harmonic Numbers

Section 6.4 in [GKP94] talks about Harmonic Summation. This are sums that may involve
harmonic numbers, defined by

Hn :=
n∑

k=1

1

k
, n ≥ 1, (4.68)

H0 := 0 (4.69)

The authors show in skillful ways how to prove the identities such as

n−1∑
k=0

Hk = nHn − n (4.70)

n−1∑
k=0

kHk =
n(n− 1)

2
Hn −

n(n− 1)

4
(4.71)

The method that works for their purposes is the concept of summation by parts, a sum-
mation analogue of integration by parts. In their words, [GKP94, (6.69)] reads as

b∑
a

u(x)∆v(x)δx = u(x)v(x)|ba −
b∑
a

v(x+ 1)∆u(x)δx

where ∆u(x) := u(x+ 1)− u(x). Equipped with this knowledge they prove

n−1∑
k=0

(
k

m

)
Hk =

(
n

m+ 1

)(
Hn −

1

m+ 1

)
(4.72)

which includes (4.70) and (4.71) as special cases.

4.10.1 Solution by the Sigma package

In his doctoral thesis [Sch01] Schneider started to develop the Sigma package for symbolic
summation. The algorithm due to Karr can be seen as the discrete analogue to Risch’s
algorithm for indefinite integration. The essential ingredients to his method are
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• Telescoping

• Creative telescoping

• Recurrence solving

We do not want to go into the technical details of difference field theory here, but refer
the interested reader to [Sch04, Sch07], which present various applications including non
trivial examples from particle physics. What we want to present here is the way how to
compute sum (4.72) with the help of Schneider’s package Sigma8.

Mathematica 7.0 - Listing

In[1]:= << Sigma.m
Sigma - A summation package by Chasten Schneider - c⃝RISC Linz - v 0.8 (1/05/10)

In[2]:= mysum = SigmaSum[SigmaBinomial[k,m]SigmaHNumber[1, k], {k, 0, n − 1}];

In[3]:= res = SigmaReduce[mySum]

Out[3]= −Hm +

(
−m+ n

(−1−m)(1 +m)
+

(−1− n)Hn

−1−m

)(n

m

)
+

m∑
k=0

Hk

( k

m

)
(* Since Binomial[k,m]=0 if k<m (this check is not built in), we get: *)

In[4]:= res = res /.
m∑

k=0

Hk

( k

m

)
→ Hm

Out[4]=

(
−m+ n

(−1−m)(1 +m)
+

(−1− n)Hn

−1−m

)(n

m

)

4.10.2 A Guessing try

One possible way to evaluate sums involving harmonic numbers is to guess a recurrence
equation that can be solved. This is in general not the best way, because we can not
assume that we will find one. But for (4.70) we are lucky. We will present how to proceed
in Mathematica by using Mallinger’s package.

Mathematica 7.0 - Listing

In[1]:= Table [Sum[HarmonicNumber[k], {k, 0, n}], {n, 0, 15}]

8Thanks to Dr. Schneider who pointed this way to me
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Out[1]=

{
0, 1,

5

2
,
13

3
,
77

12
,
87

10
,
223

20
,
481

35
,
4609

280
,
4861

252
,
55991

2520
,
58301

2310
,
785633

27720
,
811373

25740
,
835397

24024
,
1715839

45045

}
In[2]:= GuessRE [%, a[n]]

Out[2]= {{(2 + n)2a[n]− (1 + n)(5 + 2n)a[1 + n] + (1 + n)(2 + n)a[2 + n] == 0, a[0] == 0, a[1] == 1}, ”ogf”}

In[3]:= RSolve [%[[1]], a[n], n] // FullSimplify

Out[3]= {{a [n] → (1 + n)(−1 + HarmonicNumber [1 + n])}}

We found the (optimistic) guess that

n∑
k=0

Hk = (1 + n)(−1 +Hn+1).

There are now several ways for verifying that this guess is indeed true. Let’s try by
induction on n. The case n = 0 is indeed trivial because

0∑
k=0

Hk = H0 = 0 = (1 + 0)(−1 + 1)

Now let us suppose the identity holds for n and go to n+ 1. We find that

n+1∑
k=0

Hk =
n∑

k=0

Hk +Hn+1

= (1 + n)(−1 +Hn+1) +Hn+1

= −(1 + n) + (n+ 2)Hn+1.

We finally find that

−(1 + n) + (n+ 2)Hn+1 + 0 = −(n+ 2) + (n+ 2)Hn+1 +
n+ 2

n+ 2

= −(n+ 2) + (n+ 2)

(
Hn+1 +

1

n+ 2

)
= (n+ 2)(−1 +Hn+2).

That proves our claim.

2
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4.10.3 Applying the Egorychev method

Now we will use again the method of coefficients and generating functions to derive result
(4.70). Before we need knowledge about the generating function of harmonic numbers.

Lemma 4.10.1 The generating function of the harmonic numbers is given by

∞∑
n=0

Hnz
n = − log(1− z)

1− z
(4.73)

Proof. An equivalent definition of harmonic numbers is given by the recurrence

H0 = 0

Hn =
1

n
+Hn−1, n ≥ 1.

From the second line we find that

Hn+1 = Hn +
1

n+ 1
, n ≥ 0.

Now

H(z) =
∞∑
n=0

Hn+1z
n+1 =

∞∑
n=0

Hnz
n+1 +

∞∑
n=0

1

n+ 1
zn+1

⇔ H(z) = zH(z)− log(1− z)

⇔ H(z) = − 1

1− z
log(1− z)

2

By Lemma 2.2.9, we know now that the harmonic numbers have the residue representation

Hk = res
z

− log(1− z)

1− z
z−k−1, k ≥ 0. (4.74)

If we now calculate sum (4.70) we find that

n∑
k=0

Hk =
n∑

k=0

res
z

− log(1− z)

1− z
z−k−1

= res
z

− log(1− z)

1− z

1

z

n∑
k=0

z−k

= res
z

− log(1− z)

1− z

z−n−1 − 1

1− z

= res
z

− log(1− z)

(1− z)2
z−n−1 − res

z

log(1− z)

(1− z)2
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By computing a series expansion of the second residue we find

f(z) =
log(1− z)

(1− z)2
= −z − 5

2
z2 − 13

3
z3 +O(z4),

or in other words f(z) ∈ K1((z)). By Lemma 2.2.9 we now find that

n∑
k=0

Hk = ⟨zn⟩
(
− log(1− z)

(1− z)2

)
, n ≥ 0. (4.75)

In other words, we have the generating function

∞∑
n=0

zn

(
n∑

k=0

Hk

)
= − log(1− z)

(1− z)2
. (4.76)

Note that a closed form for the generating function (4.76) could also be derived in a more
elementary way. Namely by taking Lemma 4.10.1 and the following elementary Lemma

Lemma 4.10.2 ([Mal96], p. 26, Cor. 1.4.6 (c))

1

1− z

∞∑
k=0

akz
k =

∞∑
n=0

zn

(
n∑

k=0

ak

)
Proof.

1

1− z

∞∑
k=0

akz
k =

(
∞∑
k=0

zk

)(
∞∑
k=0

akz
k

)
=

∞∑
n=0

(ak · 1) zn

2

If we now set ak = Hk we get immediately

∞∑
n=0

(
n∑

k=0

Hk

)
zn =

1

1− z

∞∑
k=0

Hkz
k = − log(1− z)

(1− z)2

An interesting thing is, that this generating function is holonomic (i.e. a solution to
an ordinary differential equation with polynomial coefficients). The logarithm function
f(z) := − log(1− z) satisfies the differential equation

1− (1− z)f ′(z) = 0, f(0) = 0

The factor (1− z)−2 is solution to the algebraic equation

(1− z)2f(z) = 1, f(0) = 1
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With this knowledge and the help of closure properties we are able to compute a differential
equation for the product (and therefore the generating function (4.76)). An ordinary
differential equation translates to a recurrence relation for the sequence of coefficients.
This is implemented in Mallinger’s package.

Mathematica 7.0 - Listing

In[1]:= DECauchy[{1 − (1 − z)f ′[z] == 0, f [0] == 0}, {(1 − z)2f [z] == 1, f [0] == 1}, f [z]]

Out[1]= {1 + 2(1− 2z + z2)f [z] + (−1 + 3z − 3z2 + z3)f ′[z] == 0, f [0] == 0}

In[2]:= re := DE2RE[{1 + z(1 − 2z + z2)f [z] + (−1 + 3z − 3z2 + z3)f ′[z] == 0, f [0] == 0}, f [z], a[n]]

Out[2]= {(2 + n)2a[n]− (2 + n)(7 + 3n)a[n+ 1] + (2 + n)(8 + 3n)a[n+ 2]− (2 + n)(3 + n)a[n+ 3] == 0,

a[0] == 0, a[1] == 1, a[2] == 5
2
}

In[3]:= re[[1, 1]] /. a[n ] → (1 + n)(−1 + HarmonicNumber[1 + n]) // FullSimplify

Out[3]= 0

In[4]:= re[[2]] /. a[n ] → (1 + n)(−1 + HarmonicNumber[1 + n])

Out[4]= True

4.10.4 Solution by the HolonomicFunctions package

Closure properties allow us to compute a differential equation resp. a recurrence relation
for the generating function

f(z) = − log(1− z)

(1− z)2
.

Koutschan’s HolonomicFunctions package9 is able to derive the differential equation al-
most automatically. Let us demonstrate how this is performed

Mathematica 7.0 - Listing

In[1]:= Annihilator[−Log[1 − z]/(1 − z)2,Der[z]]

Out[1]= {(1− 2z + z2)D2
z + (−5 + 4z)Dz + 4}

In[2]:= ApplyOreOperator[First[%], f [z]] == 0

Out[2]= 4f [z] + (−5 + 5z)f ′[z] + (1− 2z + z2)f ′′[z] == 0

In[3]:= DFiniteDE2RE[%%, z, n]

Out[3]= {(2 + 3n+ n2)S2
n + (−5− 7n− 2n2)Sn + (4 + 4n+ n2)}

9Thanks to Dr. Koutschan for demonstrating examples
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Hence, f(z) satisfies the differential equation

(1− 2z + z2)f ′′(z) + (−5 + 5z)f ′(z) + 4f(z) = 0

and on coefficient level

(2 + 3n+ n2)f(n+ 2) + (−5− 7n− 2n2)f(n+ 1) + (4 + 4n+ n2)f(n) = 0

But how are this differential equations related? In fact they are equivalent, except that the
second is a homogenous differential equation. In particular, if we differentiate Mallinger’s
differential equation

d

dz

(
1 + 2(1− 2z + z2)f [z] + (−1 + 3z − 3z2 + z3)f ′[z] = 0

)
→ (−1 + z)(4f [z] + (−1 + z)(5f ′[z] + (−1 + z)f ′′[z])) = 0

which is (up to multiplication by (−1+z)) exactly Koutschan’s differential equation. The
reason for this is that if f(z) ∈ K[[z]] the linear space spanned by

⟨{
f (k)(z) | k ∈ N

}⟩
K(z)

=

⟨{
dk

dzk
f(z) | k ∈ N

}⟩
K(z)

is a finite dimensional subspace of K((z)) over K(z). Hence there are many ways of
describing the same object. As an example consider (for k ∈ N) the differential equation

dk

dzk
f(z)− f(z) = 0,

and the initial condition
(

dm

dzm
f(z)

)
|z=0 = C0 where 0 ≤ m ≤ k − 1, C0 ∈ K. This system

of differential equations has the unique solution

f(z) = C0e
z,

although there are infinitely many equations describing f(z). With an appropriate choice
of initial values we can ensure uniqueness of the result.

4.10.5 Application of change of variables

In the text examples of [Ego84], Egorychev demonstrates his method by proving the
identity

S(n) :=
n∑

k=1

(−1)k−1

(
n

k

)
Hk =

1

n
.
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In fact he proceeded the same lines as we did and arrives at the residue representation

n∑
k=1

(−1)k−1

(
n

k

)
Hk = res

u

(1 + u)n−1 log(1− u)

un+1
.

But now a miracle happens. If one substitutes

w =
u

1 + u
∈ K1((u)) ↔ u =

w

1− w
,

according to rule 5 we get

res
u

(1 + u)n−1 log(1− u)

un+1
= − res

w

log(1− w)

wn+1
,

or in other words the coefficient of wn in the series expansion of − log(1−w). But this is
known explicitly in closed form. Namely we find that

S(n) = − res
w

log(1− w)

wn+1
=

1

n
.

4.11 Analytic aspects

One reason, why formal power series are that powerful is that we can look at them from
different points of view. So far we have manipulated them in a purely formal way. Let us
now suppose, we have given a generating function in closed form and we want to extract
information about the asymptotic growth of the coefficient sequence. That is, we want to
give an estimate about the size of the n’th element of the sequence (fn)n≥0 that has the
generating function f(z). In general [FS09, p. 226] this will look like

⟨zn⟩ f(z) = ⟨zn⟩
∞∑
n=0

fnz
n = fn = Anθ(n), (4.77)

where we call An the exponential growth part and θ(n) the subexponential part. In [FS09,
p. 227] the two main principles for extracting asymptotic information about the sequence
are described as follows

• First Principle of Coefficient Asymptotics The location of a function’s singu-
larities dictates the exponential growth (An) of its coefficients
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• Second Principle of Coefficients Asymptotics The nature of a function’s sin-
gularities determines the associate subexponential factor (θ(n))

The exponential factor A is related to the radius of convergence of a series. As it turns
out, the rate of growth is given by

A =
1

ρ
=

1

lim sup
n→∞

n
√

|fn|
, (4.78)

where ρ is the first singularity encountered along the positive real axis ([FS09, p. 226]).
With the help of complex analysis one is able to determine formulas for the asymptotic
growth of the coefficients in the power series expansion. We consider the case where we do
not find an explicit closed form as it might be the case in examples involving logarithmic
factors.

Theorem 4.11.1 ([FS09], p.385, Thm. VI.2) Let α be an arbitrary complex number
in C \ Z≤0. The coefficient of zn in the function

f(z) = (1− z)−α

(
1

z
log

(
1

1− z

))β

admits for a large n a full asymptotic expansion in descending powers of log(n),

fn = ⟨zn⟩ f(z) ∼ nα−1

Γ(α)
(log(n))β

[
1 +

C1

log(n)
+

C2

log(n)2
+ . . .

]
where

Ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)
|s=α

Proof. The proof uses complex integration methods and is a consequence of the preceding
theorem VI.1 in [FS09]. For the full details see [FS09, p. 385]. 2

Remark: Γ(α) denotes the Eulerian Gamma function defined by

Γ(α) :=

∫ ∞

0

e−ttα−1 dt (4.79)

In the book there are several special cases pointed out explicitly namely the cases where
α = 1

2
and β = −1. Also the case where α is a nonnegative integer is interesting,

because in this case the Gamma function evaluates to a simple factorial by the well
known interpolation property

∀n ∈ N : Γ(n+ 1) = n!

that is easily proved by integration by parts.
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