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Preface

Invariant theory has its origin in the 18th and 19th century. Mathematicians

like C.F. Gauss, A. Cayley, J. Sylvester and P. Gordon studied invariant

theory. Then in 1890 D. Hilbert solved the fundamental problem whether

invariant rings are �nitely generated as algebras with nonconstructive meth-

ods, which were considered to be �theology� at that time. Hilbert responded

the criticism in 1893 with a constructive proof. Hilbert's striking results

seem to have killed invariant theory for a long time. But with the rise of

computers, mathematicians and computer scientists again gained interest in

invariant theory.

In this thesis we are concerned with constructive invariant theory of �nite

matrix groups over arbitrary �elds following the book of B. Sturmfels [43]

an the work of G. Kemper [22], [23]. We provide a theoretical study of the

existing algorithms, present a new algorithm for the intersection of invariant

rings, and a Mathematica implementation of almost all presented algorithms

in the Invariants package.

The structure of this thesis is as follows :

In Chapter 1 we state the required background from commutative algebra

and representation theory. Only those results are proved where the author

was not able to �nd a direct proof in the literature. For all other proofs

we give a reference. Chapter 2 is an introduction to invariant theory of

�nite groups and forms the theoretical heart of this thesis. In Section 2.1 we

treat the symmetric polynomials and in Section 2.2 we give an introduction

to invariant theory from a representation theoretic point of view. Section

contains the �niteness theorems of E. Noether and D. Hilbert. In Section

2.4 we present Molien's Theorem and in Section 2.5 consider the Cohen-

Macaulay property of invariant rings. All stated results, which will be used

later, are proved. Chapter 3 contains the description of algorithms for

computing invariant rings. In Section 3.1 we describe the algorithms of Dade

and Kemper for the computation of primary invariants, a straightforward

algorithm for the computation of secondary invariants in the nonmodular

case and Kemper's algorithm for the computation of secondary invariants

4



CONTENTS 5

in the modular case. In Section 3.2 we present a new algorithm for the

computation of the intersection of invariant rings. Chapter 4 is devoted

to the study selected topics. In Section 4.1 we study the invariant theory

of complex representations of �nite abelian groups and present algorithms

for the computation of primary and secondary invariants and fundamental

invariants without using Gröbner bases. In Section 4.2 we study of invariant

theory of the tensor and exterior algebra and prove an analogue to Molien's

theorem. For the tensor algebra we solve the problem of the �nite generation

of the invariant ring for Abelian groups. A summation example from R.

Stanley together with a slight generalization is presented in Section 4.3. In

Section 4.4 we show how the invariant theory of SL

d

(C) can be used to prove

theorems in projective geometry. Chapter 5 contains a documentation of

my Mathematica package Invariants.

What's new

Some results of this thesis seem to be new, namely :

Section 3.1.1 : Proposition 18.

Section 3.2 : All results with the exception of Lemma 13.

Section 4.1 : All algorithms.

Section 4.2.1 : All results.

Section 4.3 : The generalization to characters.
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Chapter 1

Preliminaries

In this chapter we state the necessary prerequisites in representation theory

and commutative algebra.

Convention With N we denote the positive integers without 0; with N

0

the positive integers containing 0 and with C the complex numbers.

For n 2 N the elements of N

n

0

will be denoted with bold letters, i.e.

we write � 2 N

n

0

and � = (�

1

; �

2

; :::; �

n

): For any � we de�ne j�j :=

P

n

i=1

�

i

: If x

1

; x

2

; :::; x

n

are variables then x

�

:=

Q

n

i=1

x

�

i

i

: With K we

denote an arbitrary �eld. Any reference to a Theorem (Proposition,

Lemma, ...) in this thesis is of the form Theorem C:S:N which denotes

Theorem N in Section S of chapter C:

1.1 Groups, Rings and Modules.

We present some basic notions of algebra and refer to any algebra book for

more details.

De�nition 1 Let G be a nonempty set and � : G � G ! G be a binary

operation. G is a group i� the following 3 conditions are satis�ed.

(a) 91

G

2 G : 8� 2 G 1

G

� � = � � 1

G

= �;

(b) 8� 2 G : 9� 2 G � � � = � � � = 1

G

;8� 2 G

(c) 8�; �; � 2 G : (� � � ) � � = � � (� � �):

The group G is Abelian (commutative) i� 8�; � 2 G : � � � = � � �: The set

[�] := f� � � � �

�1

j � 2 Gg is the conjugacy class of � 2 G:

Note that the conjugacy classes of G are a partition of G:

De�nition 2 Let R be a nonempty set, + : R�R! R and � : G �G! G

be binary operations. R is a ring i� the following 4 conditions are satis�ed.

6



CHAPTER 1. PRELIMINARIES 7

(a) R is an Abelian group w.r.t. +;

(b) 8r; s; t 2 R : (r � s) � t = r � (s � t);

(c) 8r; s; t 2 R : (r + s) � t = r � s+ r � t;

(d) 8r; s; t 2 R : r � (s+ t) = r � s+ r � t:

R is commutative i� 8r; s 2 R : r � s = s � r: R is a ring with unity i�

91

R

2 R : 8r 2 r 1

R

� r = r: An element r 2 R is called nilpotent i� there

exists n 2 N s.t. r

n

= 0:

De�nition 3 Let R � S be commutative rings with unity. A map � : S ! R

is a projection i� � is surjective and � j

R

= id: The map � is R�linear i�

�(r � s) = r � �(s) for all r 2 R and s 2 S:

We will now introduce the concept of group actions which plays an impor-

tant not only in representation theory, but also in many areas of mathematics,

e.g. in algebraic combinatorics. For more details on group actions we refer

to Kerber [25]

De�nition 4 Let G be a group and M be a nonempty set. A group-action

of G on M is a map

G �M ! M;

(�;m) 7! �x

s.t.

1

G

m = m;

� (�m) = (�� )m

for all m 2M and �; � 2 G: M is called a (left) G�set.

Since all rings in this thesis contain a unit element, we de�ne modules

only over rings with unity.

De�nition 5 Let R be a ring w.r.t. the operations +

R

and �

R

, M be a

nonempty set, and + : M � M ! M and � : R � M ! M be binary

operations. M is an R�module i�

(a) M is an Abelian group w.r.t. +;

(b) 8r; s 2 R : 8m 2M (r �

R

s) �m = r � (s �m);

(c) 8r 2 R : 8m;n 2M r � (m+ n) = r �m+ r � n;

(d) 8r; s 2 R : 8m 2M (r +

R

s) �m = r �m+ s �m;

(e) 8m 2M : 1

R

�m = m:

We say that R acts on M or that M is a left R�module. M is �nitely

generated i� there exists a set m

1

;m

2

; :::;m

k

of elements of M s.t. for all

f 2 M we have f =

P

k

i=1

r

i

�

R

m

i

for some r

i

2 R: hm

1

;m

2

; :::;m

k

i

R

:=

f

P

k

i=1

r

i

�

R

m

i

j r

i

2 Rg: A submodule I of R, considered as an R�module is

called and ideal. The ideal I is prime if 8r; s 2 R : r � s 2 I; r =2 I ) s 2 I:
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1.2 Representation Theory

In part one we de�ne basic notions of representation theory of �nite groups,

omitting all proofs. We consider only complex representations, because all

properties which we need are invariant w.r.t. complex conjugation, and refer

to Fulton and Harris [14], Sagan [34] or Simon [41] for the proofs and further

details. Part two is devoted to the investigation of invariant subspaces and

we prove some results which will be used in Chapter 2.

1.2.1 Basics

In the sequel let G be a �nite group and V be a �nite dimensionalC�vector-

space of dimension d: With GL(V ) we denote the set of all invertible linear

transformations of V: We write C

d

instead of V if we have �xed a basis for

V and GL

d

(C) instead of GL(V ): If fe

1

; e

2

; :::; e

d

g is a basis of V then the

coordinate representation of v =

P

d

i=1

�

i

e

i

is abbreviated by bv; i.e. bv =

0

B

B

B

@

�

1

�

2

.

.

.

�

d

1

C

C

C

A

and bv

i

= �

i

: The coordinate representation of v

�

2 V

�

is the row

vector (�

1

; �

2

; :::; �

d

). By h ; i we denote the usual inner product of V;i.e.,

for v;w 2 V we have hv; vi = hbv; bwi =

P

d

i=1

bv

i

bw

i

: If M 2 GL

d

(C) then M

ij

denotes the matrix entry in the i�th row and j�th column. M

i

denotes the

i�th row.

De�nition 6 A (complex) representation of G is a homomorphism

� : G! GL(V )

� 7�! �(�):

The integer d is the degree of the representation. If we have chosen a basis

of V then

� : G! GL

d

(C)

is called a matrix representation.

The trivial representation is the homomorphism �

triv

(�) := 1

GL(V )

for all

� 2 G: In the sequel we do not distinguish between the linear map �(�) :

V ! V; v 7! �(�)(v) and the corresponding matrix representation �(�) :

C

d

! C

d

;bv 7! �(�) � bv:
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De�nition 7 If � and �

0

are matrix representations of G with degree m and

m

0

respectively, then the sum of � and �

0

is the matrix representation of degree

m+m

0

; de�ned by

� � �

0

: G �! GL

m+m

0

(C)

� 7�!

�

�(�) 0

0 �

0

(�)

�

:

We abbreviate the sum �� �� :::� �

| {z }

n times

with n�:

Equipped with the action \ � " of G on V , de�ned by

� � v := �(�) � v (1.1)

for all � 2 G and v 2 V; the vectorspace V is called a G�space.

De�nition 8 A subspace W � V is G�invariant if for all w 2 W and

� 2 G we have �(�)(w) 2 W: The restriction of � on W; denoted by �

W

; is

also a representation of G with degree dimW: The representation � is called

reducible if W is nontrivial, otherwise we say that � is irreducible. If there

exists a subspace W

0

s.t. V = W �W

0

and W and W

0

are G�invariant then

� is called completely reducible.

Note that all complex representations of �nite groups are completely re-

ducible.

With the choice of a suitable basis for V we can decompose the matrix

representation � into �

W

and �

W

0

; i.e. � = �

W

� �

W

0

:

De�nition 9 Let V; V

0

be complex vectorspaces of dimension d and ' : V !

V

0

be an isomorphism. Two representations � : G! GL

d

(V); and �

0

: G!

GL

d

(V

0

) are equivalent, which we denote with �

�

=

�

0

; i� for all � 2 G the

diagram

V

�(�)

�! V

' # ' #

V

0

�

0

(�)

�! V

0

commutes:

From now on we consider matrix representations. For matrix representa-

tions �; �

0

we obtain

�

�

=

�

0

() 9M 2 GL

d

(C)8� 2 G : �(�) = M

�1

�

0

(�)M:

It is one of the aims of representation theory to decompose a given rep-

resentation of G in simpler (irreducible, if possible) ones: Let k denote the

number of conjugacy classes of G:
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Theorem 1 (a) There are only �nitely many non-equivalent irreducible com-

plex representations �

1

; :::; �

k

of G: Furthermore each (�nite dimensional)

representation � of G can be decomposed uniquely into irreducible ones, i.e.

there exist a

1

; :::; a

k

2 N

0

s.t.

�

�

=

a

1

�

1

� :::� a

k

�

k

: (1.2)

(b) Let d

i

denote the degree of the representation �

i

: Then

jGj =

k

X

i=1

d

2

i

:

Let fe

�

j � 2 Gg be a basis of the jGj �dimensional vectorspace C

jGj

.

The linear extension of the group action � � e

�

:= e

��

is equivalent to the

regular representation �

reg

:=

P

k

i=1

d

i

�

i

:

Corollary 1 If G is Abelian then k = jGj and d

i

= 1 for 1 � i � jGj :

A very important tool for studying representations are characters. Let

M 2 GL

d

(C) we de�ne trace(M) :=

P

d

i=1

M

ii

:

De�nition 10 Let � be a matrix representation of G: The mapping �

�

(�) :=

trace(�(�)) is the character of �: A character is linear i� there exists a

representation � of degree 1 s.t. � = �

�

:

We omit � if the representation is clear from the context. Note that the

linearity of �

�

implies that �(�) � bv = �

�

(�)bv for all � 2 G and v 2 V and

that the representation � is irreducible.

Lemma 1 A character � is linear i� � is a group homomorphism � : G!

Cnf0g:

Proof. Let � be linear and � be a representation of degree 1 s.t. � = �

�

:

So �(�) = �

�

(�) = �(�): Conversely assume that � is a group homomor-

phism. Then �(1

G

) = 1 and � : G ! GL

1

(C); �(�) := �(�) is the required

representation.

Since trace(A) = trace(BAB

�1

) the characters are class functions on G;

i.e. they are constant on each conjugacy class. For two arbitrary characters

�;�

0

of representations of G an inner product h ; i

G

can be de�ned as follows

h�;�

0

i

G

:=

1

jGj

X

�2G

�(�)�

0

(�

�1

):
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This inner product provides a simple test for irreducibility, see, e.g., Fulton

and Harris [14], Sagan [34] or Simon [41].

Let �

1

; �

2

; :::; �

k

be the irreducible, non-equivalent representations of G

with �

1

= �

triv

and de�ne �

i

:= �

�

i

: Let �

�

=

a

1

�

1

� ::: � a

k

�

k

be the

decomposition of � : G! GL

d

(C) according to Theorem 1.2.1.

Theorem 2 (a) The representation � is irreducible i�




�

�

; �

�

�

G

= 1:

(b) The degree of � equals �

�

(1

G

); hence d

i

= �

i

(1

G

).

(c) We have a

i

=




�

�

; �

i

�

G

:

Proof. For the proof of (a) and (c) we refer, e.g., .to Fulton and Harris [14],

corollary 2.15 and corollary 2.16 respectively. (b) follows from trace(�(1

G

)) =

d:

For the regular representation we have �

reg

(e) =

P

k

i=1

d

2

i

= jGj : Note

that the characters �

1

; �

2

; :::; �

k

are orthonormal w.r.t. h ; i

G

; i.e. for i; j 2

f1; 2; :::; kg we have




�

i

; �

j

�

G

= �

i;j

: If the characters �

1

; �

2

; :::; �

k

are known

then any matrix representation � can be decomposed according to Theorem

1.2.1 as follows : �

�

=




�

�

; �

i

�

G

�

1

� :::�




�

�

; �

i

�

G

�

k

: It is su�cient to have

a table of the values of the characters �

1

; �

2

; :::; �

k

on the conjugacy classes

of G which is called the character table.

As an example we compute the character table of S

3

: The group S

3

=

fe; (12); (13); (23); (123); (213)g is generated by the elements (12) and (123)

and has three conjugacy classes K

1

= feg;K

2

= f(12); (13); (23)g and K

3

=

f(123); (213)g: We have to �nd three non-equivalent irreducible represen-

tations of degree d

1

; d

2

; d

3

s.t. d

2

1

+ d

2

2

+ d

2

3

= 6: Firstly we analyze the

trivial representation �

triv

: S

3

! C, � 7! 1 for all � 2 S

3

and the

alternating representation �

alt

: S

3

! C, � 7! sign(�): Both are irre-

ducible since h�

triv

; �

triv

i =

1

6

(1 + 1 + 1 + 1 + 1 + 1) = 1 and h�

alt

; �

alt

i =

1

6

(1 + (�1)

2

+ (�1)

2

+ (�1)

2

+1+ 1) = 1: So d

1

= d

2

= 1: It remains to �nd

�

3

of degree 2: As a third one we consider the permutation representation

�

perm

: S

3

! GL

3

(C); (1.3)

(12) 7�!

0

@

0 1 0

1 0 0

0 0 1

1

A

;

(123) 7�!

0

@

0 0 1

1 0 0

0 1 0

1

A

:

If fe

1

; e

2

; e

3

g is a basis for C

3

then the space spanned by he

1

+ e

2

+ e

3

i is

an S

3

� invariant subspace of C

3

. Hence �

perm

is reducible (this follows also



CHAPTER 1. PRELIMINARIES 12

from the fact that the third representation must have degree 2) and we can

split o� �

1

and �

2

from �

perm

: Since




�

triv

; �

perm

�

=

1

6

(3+1+1+1+0+0) = 1

and




�

alt

; �

perm

�

=

1

6

(3 � 1 � 1 � 1 + 0 + 0) = 0 we can split o� �

triv

and

obtain the representation �

3

because �

3

does not contain any of the two

representations �

1

and �

2

and has degree 2: Since we know the characters �

1

and �

2

and �

3

(e) = 2 we can compute the two missing values of �

3

from the

orthogonality of the characters. The orthogonality yields the equations

0 = h�

triv

; �

3

i

G

=

1

6

(2 + 3�

3

(K

2

) + 2�

3

(K

3

));

0 = h�

alt

; �

3

i

G

=

1

6

(2� 3�

3

(K

2

) + 2�

3

(K

3

)):

So S

3

has the character table

S

3

K

1

K

2

K

3

�

1

1 1 1

�

2

1 �1 1

�

3

2 0 �1

.

Note that for permutation groups the regular representation coincides

with the permutation representation.

1.2.2 Invariant Subspaces

Let G be a �nite group with non-equivalent irreducible representations �

1

; �

2

;

:::; �

k

and let �

1

; �

2

; :::; �

k

be the corresponding characters. Let � : G !

GL

d

(C) be a representation of G with degree d and assume that for the

chosen basis we have � = a

1

�

1

� :::� a

k

�

k

for some a

i

2 N

0

: Set V = C

d

:

De�nition 11 Let a

i

6= 0: We denote the maximal invariant subspace of �

i

with V

�(G)

�

i

: If a

i

= 0 then we set V

�(G)

�

i

= f0g:

Proposition 1 Let �

i

be linear. Then

V

�(G)

�

i

= fv 2 V j 8� 2 G : �(�) � bv = �

i

(�)bvg:

Proof. After a suitable reordering of the �

0

i

s assume that i = 1 (note that

�

1

need not be the trivial representation). It follows from the decomposition

that �(�) is a block-diagonal matrix for � 2 G and that the block a

1

�

1

a�ects

precisely the �rst a

1

coordinates.

From character theory we obtain the following result.

Lemma 2 Let �

j

be s.t. �

j

is linear. Then dimension of V

�(G)

�

i

equals




�

�

; �

i

�

; i.e.,

dimV

�(G)

�

i

=

1

jGj

X

�2G

�

�

(�)�

i

(�

�1

):
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The computation of a basis for this subspace is an important topic in

invariant theory and can be done by an application of the Reynolds operator

R

�(G)

�

i

(v) :=

1

jGj

X

�2G

�

i

(�

�1

)� � v

to a basis of V: Note how the action \ � " depends on �; cf. (1:1). In Chapter

2 we take V = K[x

1

; x

2

; :::; x

n

]

d

and consider the action of a matrix group

G � GL

n

(C) by linear substitution in the variables. We are interested in the

computation of a basis for V

�(G)

�

i

for linear characters �

i

:

Proposition 2 (a) Let �

i

be linear. Then the Reynolds operator is a pro-

jection onto V

�(G)

�

i

:

(b) Let i 6= j and �

i

; �

j

be linear. Then we have V

�(G)

�

i

\ V

�(G)

�

j

= f0g:

Proof. (a) Let v 2 V

�(G)

�

i

: Then R

�(G)

�

i

(v) =

1

jGj

P

�2G

�

i

(�

�1

)� � v =

1

jGj

P

�2G

�

i

(�

�1

)�

i

(�)v = h�;�i

G

v = v. Now assume v =2 V

�(G)

�

i

and con-

sider � � R

�(G)

�

i

(v) = � �

1

jGj

P

�2G

�

i

(�

�1

)� � v =

1

jGj

P

�2G

�

i

(�

�1

)�� � v =

1

jGj

P

�2G

�

i

(�

�1

�)� � v = �

i

(� )

1

jGj

P

�2G

�

i

(�

�1

)� � v = �

i

(� )R

�(G)

�

i

(v):

For the proof of (b) we assume v 2 V

�(G)

�

i

: Since �

i

6= �

j

there exits � 2 G

s.t. �

i

(�) 6= �

j

(�); hence �

i

(�)v = �(�) � v = �

j

(�)v which implies v = 0:

1.3 Artinian and Noetherian Rings

Let R be a commutative ring with unity and M be an R�module.

De�nition 12 M satis�es the ascending chain condition (ACC) i� every

strictly ascending sequence of submodules

M

1

(M

2

( :::

is �nite. Conversely, M satis�es the descending chain condition (DCC) i�

every strictly descending sequence of submodules

M

1

)M

2

) :::

is �nite.

De�nition 13 M is a Noetherian (Artinian) R�module i� M satis-

�es the ACC (DCC). The ring R is Noetherian (Artinian) i� it is a

Noetherian (Artinian) module over itself.
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Note that any ideal I �R is a submodule of the R�module R and vice

versa.

Proposition 3 The following conditions are equivalent :

(a) R is Noetherian,

(b) Every ideal of R has a �nite basis,

(c) Every collection of ideals has a maximal element.

Proof. See, e.g., Zariski and Samuel [49] vol. I, ch. III, Theorem 15 of 10.

We now state Hilbert's Basis Theorem, which was the �rst step in his

proof that the ring of invariants is �nitely generated.

Theorem 3 (Hilbert 1890) If R is Noetherian then R[t] is Noetherian.

Proof. See, e.g., Cox et. al. [9] ch. 2, Theorem 4 of � 5 or Eisenbud [13]

Theorem 1.2 of ch. 1.

Corollary 2 The polynomial ring K[x

1

; x

2

; :::; x

n

] is Noetherian.

We present two useful criteria for checking whether a ring is Noetherian.

Proposition 4 (a) The homomorphic image of a Noetherian ring is Noetherian.

(b) If R is Noetherian and M is a �nitely generated R�module then M is

Noetherian.

(c) M is Noetherian i� each submodule of M is �nitely generated.

Proof. (a) See, e.g., Eisenbud [13], corollary 1.3 of ch. 2. (b) See, e.g.,

Eisenbud [13], Proposition 1.4 of ch. 1.

(c) Let 0 6= N � M be a submodule and �

1

be a nontrivial element of

N: We set �

i

:= Nn




�

1

; �

2

; :::; �

i�1

�

and claim h�

1

; �

2

; :::; �

n

i = N for some

n 2 N: Otherwise the sequence h�

1

i ( h�

1

; �

2

i ( ::: is strictly ascending and

contradicts the assumption that M is Noetherian. Conversely assume that

N

1

( N

2

( ::: is a strictly ascending chain. The submodule N =

S

i

N

i

has

a �nite basis and which is contained in N

j

for some j 2 N:

1.4 Graded Algebras, Modules and the Hilbert

Series

De�nition 14 A commutative ring R; which has a decomposition

R =

1

M

d=0

R

d
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as abelian groups w.r.t. +; that satis�es

R

i

R

j

� R

i+j

for all i; j 2 N

is called a graded ring. An element of R

d

for some d 2 N is called a

homogenous element of degree d:

A simple example of a graded ring is the polynomial ring K[x

1

; x

2

; :::; x

n

]:

Let K[x

1

; x

2

; :::; x

n

]

d

denote the vectorspace of homogenous polynomials of

degree d; then

K[x

1

; x

2

; :::; x

n

] =

1

M

d=0

K[x

1

; x

2

; :::; x

n

]

d

:

De�nition 15 Let R be a graded ring and M be an R�module. M is called

a graded module if it has a decomposition

M =

1

M

i=0

M

i

as abelian groups and

R

i

M

j

�M

i+j

for all i; j 2 N:

De�nition 16 A K�algebra is a commutative ring S with unity s.t. the

following two conditions hold :

(a) S is a K�vectorspace,

(b) 8c 2 K8r; s 2 S : c(r � s) = cr � s = r � cs = (r � s)c:

S is graded i� S is graded as a ring and each component S

d

is aK�vectorspace.

S is �nitely generated as aK�algebra i� there exists a �nite set ff

1

; :::; f

m

g �

S s.t. the homomorphism

' : K[y

1

; y

2

; :::; y

m

]! S;

p(y

1

; y

2

; :::; y

m

) 7! p(f

1

; f

2

; :::; f

m

):

is surjective. In this case we denote S with K[f

1

; f

2

; :::; f

m

]: If we replace K

by a commutative ring R (with unity) and require that S is an R�module,

then S is called an R�algebra.

Note that any (graded) K�algebra is a (graded) module over itself with

basis f1g:
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De�nition 17 Let R be a graded K�algebra and M be a graded R�module.

The Hilbert series of M is de�ned by

H(M; t) :=

1

X

d=0

dim

K

(M

d

) � t

d

;

where dim

K

(M

d

) denotes the dimension of M

d

as a K�vectorspace. The

Hilbert function of M is the numerical function H

M

(d) := dim

K

(M

d

):

For details on the Hilbert function and series we refer to Stanley [37] and

Eisenbud [13]. The next result is an important tool for the computation of

the Hilbert series in invariant theory.

Lemma 3 Let �

1

; �

2

:::; �

n

2 K[x

1

; x

2

; :::; x

n

] be algebraically independent,

homogenous elements of degree d

1

; d

2

; :::; d

n

respectively. Then

H(K[�

1

; �

2

; :::; �

n

]; t) =

n

Y

i=1

1

1� t

d

i

:

Proof. See, e.g., Sturmfels [43], Lemma 2.2.3 of ch. 2.

In the sequel let R be a noetherian commutative ring with unity.

De�nition 18 The (Krull-)dimension of R; denoted with dimR; is the

supremum of the lengths of chains of distinct prime ideals of R: The length

of the chain

P

r

) P

r�1

) ::: ) P

0

is taken to be r: The dimension of an ideal I E R is the dimension of R=I:

The next theorem is a di�erent characterization of the dimension of a

K�algebra R. We denote the maximal number of algebraically independent

elements of R over K with transdeg

K

R:

Theorem 4 Let R be a �nitely generated graded K�algebra with no nilpo-

tent elements. Then

dimR = transdeg

K

R:

Proof. See, e.g., Zariski and Samuel [49], vol. II, ch. VII. � 7 or Eisenbud

[13], Theorem A in section 8:2:1:

Proposition 5 Let I E R be an ideal. For any prime ideal P E R which is

minimal over I we have dimR=I = dimR=P:
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Proof. Let

P

r

) P

r�1

) ::: ) P

1

) P � I (1.4)

be a chain with prime ideals P

1

; :::; P

r

E R of maximal length. If I is not

prime then f0g is not a prime ideal inR=I and the chain (1:4)maps bijectively

to a maximal chain of length r in R=I: Conversely, the assumption that I is

prime implies that P = I and the length of the chain (1:4) equals r:

De�nition 19 Let f

1

; f

2

; :::; f

m

2 K[x

1

; x

2

; :::; x

n

] for some m 2 N: The set

V

K

(f

1

; f

2

; :::; f

m

) := fv 2 K

n

j f

1

(v) = f

2

(v) = ::: = f

m

(v) = 0g is the

variety of f

1

; f

2

; :::; f

m

: A subset V � K

n

is an (a�ne algebraic) variety

i� there exist g

1

; g

2

; :::; g

m

0

2 K[x

1

; x

2

; :::; x

n

] s.t. V

K

(g

1

; g

2

; :::; g

m

0

) = V:

The ideal I

K

(V) = ff 2 K[x

1

; x

2

; :::; x

n

] j f(v) = 0 for all v 2 Vg is the

ideal of V:

Proposition 6 Let K denote the algebraic closure of K ,V � K

n

be an

a�ne algebraic variety and I = hf

1

; f

2

; :::; f

m

i E K[x

1

; x

2

; :::; x

n

] s.t. V

K

(f

1

; f

2

;

:::; f

m

) = V. Then the following conditions are equivalent.

(a) V is �nite.

(b) R=I is Artinian.

(c) dim I = 0:

Proof. For the proof of (a) , (b) we refer, e.g., to Eisenbud [13], corollary

2.15 of ch. 2. The proof of (b) , (c) follows, e.g., from Proposition 1.4.5

and from Theorem 2.14 of ch. 2 of Eisenbud [13].

De�nition 20 Let R � S be commutative rings with unity.

(a) f 2 S is integral over R i� there exists a polynomial p 2 R[t] s.t.

p(f) = 0:

(b) S is integral over R if R � S and each s 2 S is integral over R:

Proposition 7 (a) Let R � S be commutative rings with unity. If S is

generated by elements integral over R then S is integral over R:

(b) Let R � S � T be commutative rings with unity s.t. S is integral over R

and T is integral over S: Then T is integral over R:

Proof. (a) see, e.g., Eisenbud [13], Theorem.4.2 of ch. 4.

(b)See, e.g., Bosch [5], corollary 5 of section 3:3:

Proposition 8 An R�algebra S is �nitely generated as an R�module i� S

is generated as an R�algebra by �nitely many integral elements.

Proof. See, e.g., Eisenbud [13], corollary 4.5 of ch. 4



CHAPTER 1. PRELIMINARIES 18

Proposition 9 Let R � S be commutative Noetherian rings with unity s.t.

S is integral over R: Then dimR = dimS:

Proof. Follows, e.g., from Eisenbud [13], proposition 9.2 of ch. 9

Theorem 5 (Noether Normalization Lemma) Let R be aK�algebra of Krull

dimension n which is generated as a K�algebra by �nitely many homogenous

elements. Then there exist n algebraically independent homogenous elements

�

1

; �

2

:::; �

n

2 R s.t. R is a �nitely generated as a K[�

1

; �

2

:::; �

n

]�module.

Proof. See, e.g., Zariski and Samuel [49], vol. II, ch. VII. � 7, Theorem 25,

or Eisenbud [13], Theorem 13:3 in section 13:1:

De�nition 21 Let R and �

1

; �

2

:::; �

n

be as in Theorem 1.4.5. The elements

�

1

; �

2

:::; �

n

are called a homogenous system of parameters (hsop) for

R.

Theorem 6 (Krull's Principal Ideal Theorem) Let R be a graded commuta-

tive ring of Krull dimension n and f

1

; f

2

; :::; f

k

2 R homogenous elements.

Then

dimR= hf

1

; f

2

; :::; f

k

i � n� k:

Proof. See, e.g., Eisenbud [13], Theorem 10.2 of ch. 10.

Lemma 4 Let I = hf

1

; f

2

; :::; f

k

i E K[x

1

; x

2

; :::; x

n

] be an ideal generated by

homogenous polynomials f

1

; f

2

; :::; f

k

: If h 2 I then there exist homogenous

polynomials p

1

; p

2

; :::; p

k

s.t. h =

P

k

i=1

p

i

f

i

and deg p

i

= deg h � deg f

i

or

p

i

= 0:

Proof. Since h 2 I we have h =

P

k

i=1

r

i

f

i

for some r

i

2 K[x

1

; x

2

; :::; x

n

]:

Let d = deg f; d

i

= deg f

i

:and let m be the largest degree of the monomials

occurring in any of the f

i

's. With r

(j)

i

we denote the homogenous component

of r

i

of degree j: Then we have

h =

k

X

i=1

r

(d�d

i

)

i

f

i

| {z }

deg=d

+

k

X

i=1

m

X

j=0;j 6=d

i

r

(j)

i

f

i

| {z }

deg6=d

:

Since h is homogenous of degree d all monomials in the second sum must

cancel, therefore h =

P

k

i=1

r

(d�d

i

)

i

f

i

:
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1.5 Gröbner Basics

The ideal operations (comparison, dimension, intersection) in the presented

algorithms are done with Gröbner bases. We refer to Buchberger [7], [8],

Becker and Weispfennig [3], Cox et. al. [9] and Winkler [47] for further

details. For this section let R = K[x

1

; x

2

; :::; x

n

]:

De�nition 22 A product p =

Q

n

i=1

x

�

i

i

is a monomial of degree j�j =

P

n

i=1

�

i

: (�

1

; �

2

; :::; �

n

) is called the degree vector of p:

In the sequel we identify the monomials of R with their degree vectors.

De�nition 23 Let x

�

and y

�

be monomials. x

�

< y

�

i� there exists k 2

f1; 2; :::; ng s.t. �

i

= �

i

for 1 � i � k� 1 and �

k

< �

k

: x

�

� y

�

i� x

�

< y

�

or x

�

= y

�

: The ordering < is called the lexicographic ordering.

De�nition 24 Let f 2 R:The leading monomial of f; denoted by LM(f); is

the greatest monomial in f w.r.t. < : The leading coe�cient of f; LC(f); is

the coe�cient of LM(f): The leading tern of f is LT (f) = LC(f) � LM(f):

De�nition 25 Let I E R be an ideal. ff

1

; f

2

; :::; f

m

g � I is a Gröbner

basis of I i� hLT (f

1

); LT (f

2

); :::; LT (f

m

)i = hLT (f) j f 2 Ii.

Note that if ff

1

; f

2

; :::; f

m

g is a Gröbner basis of I then I = hf

1

; f

2

; :::; f

m

i :

The main result was introduced by Buchberger in his Ph.D. thesis, cf. [7].

Theorem 7 (Buchberger 1965) For any ideal I E R there exists a �nite

Gröbner basis.

Proof. We refer to (loc. cit.).

1.6 Tensor, Symmetric, and Alternating

Powers

Let K be a �eld, V and W be K�vectorspaces of dimension m and n with

bases fa

1

; a

2

; :::; a

m

g and fb

1

; b

2

; :::; b

n

g:

1

The terminus Gröbner Basics is due to B. Sturmfels.



CHAPTER 1. PRELIMINARIES 20

De�nition 26 The tensor product of V and W is the K�vectorspace V 


W with basis fa

i


 b

j

j 1 � i � m; 1 � j � ng subject to the relations

(a) 8c 2 K; v 2 V;w 2 W : cv 
 w = v 
 cw

(b) 8v; v

0

2 V;w 2 W : (v + v

0

)
 w = v 
 w + v

0


 w

(c) 8v 2 V;w;w

0

2 W : v 
 (w + w

0

) = v 
 w + v 
 w

0

:

For d 2 N the d�th tensor power of V is de�ned inductively by

O

1

V : = V;

O

d

V : = V 


O

d�1

V:

De�nition 27 The symmetric product of V and W is the K�vectorspace

V � W := V 
 W= hv 
 w � w 
 v j v 2 V;w 2 W i :For d 2 N the d�th

symmetric power of V is de�ned inductively by

Sym

1

V : = V;

Sym

d

V : = V � Sym

d�1

V:

Note that v

1

� v

2

= v

2

� v

1

for any v

1

; v

2

2 V:

De�nition 28 The alternating product of V andW is the K�vectorspace

V ^ W := V 
 W= hv 
 v j v 2 V;w 2 W i :For d 2 N the d�th exterior

power of V is de�ned inductively by

^

1

V : = V;

^

d

V : = V ^

^

d�1

V:

Note that v

1

^ v

2

= �v

2

^ v

1

for any v

1

; v

2

2 V:

For details and properties we refer, e.g., to Appendix 2 of Eisenbud [13]

and Appendix B of Fulton and Harris [14].



Chapter 2

Invariant Theory of Finite

Groups

In the �rst section we start with the well known symmetric and alternating

polynomials. Section 2 contains basic de�nitions of invariant theory and in

section 3 we state three �niteness theorems. In Section 4 we present Molien's

Theorem and in section 5 we introduce the Cohen-Macaulay property.

For a historical account we refer, e.g., to Decker and Jong [11] or Smith

[39].

2.1 Symmetric Polynomials

In this section we consider the ring of all symmetric polynomials and demon-

strate a lot of concepts which will be investigated in the latter chapters.

Throughout this section let K be an algebraically closed �eld of characteris-

tic 0 and let n 2 N:

Let S

n

denote the symmetric group of n letters: We de�ne the following

group action \ � " of S

n

on the ring K[x

1

; x

2

; :::; x

n

]. For � 2 S

n

and f 2

K[x

1

; x

2

; :::; x

n

] we de�ne

� � f(x

1

; x

2

; :::; x

n

) := f(x

�

�1

(1)

; x

�

�1

(2)

; :::; x

�

�1

(n)

):

We want to describe the ring

K[x

1

; x

2

; :::; x

n

]

S

n

:= ff 2 K[x

1

; x

2

; :::; x

n

] : 8� 2 S

n

: � � f = fg

which is the invariant ring of S

n

w.r.t. the action \ � ":

De�nition 29 A polynomial f 2 K[x

1

; x

2

; :::; x

n

] is symmetric if and only

if for all � 2 S

n

we have � � f(x

1

; x

2

; :::; x

n

) = f(x

1

; x

2

; :::; x

n

):

21
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So the ringK[x

1

; x

2

; :::; x

n

]

S

n

is just the ring of all symmetric polynomials.

We put the usual grading on the ringK[x

1

; x

2

; :::; x

n

], i.e. K[x

1

; x

2

; :::; x

n

]

d

:=

ff 2 K[x

1

; x

2

; :::; x

n

] : f homogenous of degree dg. We are also interested in

the generating function

H

S

n

(t) =

X

d=0

dim

K

(K[x

1

; x

2

; :::; x

n

]

S

n

d

) � t

d

which is the Hilbert series of the ring K[x

1

; x

2

; :::; x

n

]

S

n

:

De�nition 30 Let x

1

; x

2

; :::; x

n

be variables. The polynomials �

1

; �

2

; :::; �

n

2

K[x

1

; x

2

; :::; x

n

] de�ned by

�

k

(x

1

; x

2

; :::; x

n

) :=

X

1�i

1

<i

2

<:::<i

k

�n

k

Y

j=1

x

i

j

for 1 � k � n

are the elementary symmetric polynomials. We set �

0

(x

1

; x

2

; :::; x

n

) = 1

and �

n+i

(x

1

; x

2

; :::; x

n

) = 0 for i 2 N: With �

n

k

we denote �

k

(x

1

; x

2

; :::; x

n

) if

the integer n is not clear from the context.

Let f = x

3

+ bx

2

+ cx+ d with roots �

1

; �

2

and �

3

; so f = (x� �

1

)(x�

�

2

)(x� �

3

): Expansion gives

f = x

3

� (�

1

+ �

2

+ �

3

) � x

2

+ (�

1

�

2

+ �

1

�

3

+ �

2

�

3

) � x� �

1

�

2

�

3

:

This means, the coe�cients are elementary symmetric polynomials in the

roots of f ; namely :

b = ��

1

� �

2

� �

3

= ��

1

(�

1

; �

2

; �

3

);

c = �

1

�

2

+ �

1

�

3

+ �

2

�

3

= �

2

(�

1

; �

2

; �

3

);

d = �

1

�

2

�

3

= ��

3

(�

1

; �

2

; �

3

):

Proposition 10 (a) Let k 2 N; k � n: Then �

n+1

k

= �

n

k

+ x

n+1

�

n

k�1

:

(b) Let �

1

; �

2

; :::; �

n

2 K: Then

n

Y

i=1

(x� �

i

) =

n

X

i=0

(�1)

i

x

n�i

�

i

(�

1

; �

2

; :::; �

n

): (2.1)

Proof. (a) Follows from De�nition 2.1.30.

We prove (b) by induction on n: For n = 1 we have x��

1

= x�

0

(�

1

)��

1

(�

1

):

So for a �xed n 2 N assume (2:1). Then we have

Q

n+1

i=1

(x� �

i

) =

P

n

i=0

(�1)

i

x

n�i

�

n

i

�(x��

n+1

) =

P

n

i=0

(�1)

i

x

n+1�i

�

n

i

�

P

n

i=0

(�1)

i

x

n�i

�

n+1

�

n

i

=
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P

n

i=0

(�1)

i

x

n+1�i

�

n

i

+

P

n+1

i=1

(�1)

i

x

n+1�i

�

n+1

�

n

i�1

= x

n+1

�

n

0

+

P

n+1

i=1

(�1)

i

x

n+1�i

(�

n

i

+�

n+1

�

n

i�1

) = x

n+1

+

P

n+1

i=1

(�1)

i

x

n+1�i

�

n+1

i

=

P

n+1

i=0

(�1)

i

x

n+1�i

�

n+1

i

:

The next theorem is due to C.F. Gauss, who needed this theorem for

his second proof of the fundamental theorem of algebra. The proof contains

probably the �rst explicit statement of the lexicographic ordering.

Theorem 8 Every symmetric polynomial f 2 K[x

1

; x

2

; :::; x

n

] can be written

as a unique polynomial in the elementary symmetric polynomials �

1

; �

2

; :::; �

n

:

Proof. We follow the proof of Theorem 3 of � 1 of ch. 7 in Cox et.

al. [9]. We use the lexicographic order on the variables x

1

; x

2

; :::; x

n

: Let

f 2 K[x

1

; x

2

; :::; x

n

] be a symmetric polynomial and let t = a � x

�

1

1

x

�

2

2

:::x

�

n

n

be the leading term of f . Then �

1

� �

2

� ::: � �

n

: Otherwise assume

�

i

< �

i+1

; set � = (i; i+1) 2 S

n

and consider � � f(x

1

; x

2

; :::; x

n

): The mono-

mial x

�

1

1

x

�

2

2

:::x

�

i+1

i

x

�

i

i+1

:::x

�

n

n

is contained in f but it is strictly larger than

x

�

1

1

x

�

2

2

:::x

�

n

n

, a contradiction. Let h = �

�

1

��

2

1

�

�

2

��

3

2

� ::: � �

�

n

n

; then for the

leading term of h we have

LT (h) = LT (�

�

1

��

2

1

�

�

2

��

3

2

� ::: � �

�

n

n

) (2.2)

= LT (�

�

1

��

2

1

)LT (�

�

2

��

3

2

) � ::: � LT (�

�

n

n

)

= x

�

1

��

2

1

(x

1

x

2

)

�

2

��

3

� ::: � (x

1

x

2

� ::: � x

n

)

�

n

= x

�

1

1

x

�

2

2

:::x

�

n

n

:

The polynomial f

1

= f � a � h is symmetric since f and a � h are. Clearly we

have LT (f

1

) < LT (f) and if we repeat the above process we get a sequence

LT (f) > LT (f

1

) > LT (f

2

) > :::: Since < is a well-ordering, the sequence

terminates at f

m

for some m which implies that f

m

= 0: So f = ah +

a

1

h

1

+ ::: + a

m

h

m

: Uniqueness follows if the �

1

; �

2

; :::; �

n

are algebraically

independent. So assume that there exists a nontrivial p 2 K[y

1

; y

2

; :::; y

n

]

s.t. p(�

1

; �

2

; :::; �

n

) = 0: Let a � y

�

1

1

y

�

2

2

:::y

�

n

n

be the leading term of p, then

from (2:2) it follows that LT ( p(�

1

; �

2

; :::; �

n

)) = x

�

1

+�

2

+:::+�

n

1

x

�

2

+:::+�

n

2

:::x

�

n

n

:

Since the map

(�

1

; �

2

; :::; �

n

) 7! (�

1

+ �

2

+ :::+ �

n

; �

2

+ :::+ �

n

; :::; �

n

)

is injective there is nothing to cancel LT ( p(�

1

; �

2

; :::; �

n

)); so p(�

1

; �

2

; :::; �

n

) 6=

0 in K[x

1

; x

2

; :::; x

n

]; a contradiction.

The above theorem implies that K[x

1

; x

2

; :::; x

n

]

S

n

= K[�

1

; �

2

; :::; �

n

] and

that �

1

; �

2

; :::; �

n

are algebraically independent. From Lemma 1.4.3 we ob-

tain

H

S

n

(t) =

n

Y

i=1

1

1� t

i

:
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Example 1 In the case n = 3 the ring of symmetric polynomials equals

K[x

1

; x

2

; x

3

]

S

3

= K[x

1

+ x

2

+ x

3

; x

1

x

2

+ x

1

x

3

+ x

2

x

3

; x

1

x

2

x

3

]

with corresponding Hilbert series

H

S

3

(t) =

1

(1� t)(1� t

2

)(1 � t

3

)

= 1+ t+2 t

2

+3 t

3

+4 t

4

+5 t

5

+7 t

6

+O(t

7

):

2.2 Introduction to Invariant Theory

Many algebraic equations and polynomials have symmetries and according to

F. Klein's �Erlanger Programm� a polynomial describes a geometric property

if it is invariant under the corresponding transformation group. The group

clearly depends on the geometry e.g. a�ne and projective geometry have

di�erent transformation groups. In Section 4.4 we study geometric properties

which are invariant w.r.t. SL

n

(C); i.e. we study projective geometry.

For �nite groups with representations over a �eld of characteristic 0 we

develop invariant theory in the frame of representation theory. If the charac-

teristic of the �eld is greater than 0 we take a purely ring-theoretic approach.

We start with characteristic 0:

Let K be a �eld of characteristic 0 and V be a K�vectorspace of dimen-

sion n: We chose a basis fe

1

; e

2

; :::; e

n

g of V and denote the dual basis of V

�

with X

1

;X

2

; :::;X

n

: We have chosen the isomorphism

�

: V ! V

�

;

v

�

(w) : = hbv; bwi for all w 2 V

Therefore we consider the elements bv of V as column vectors and the elements

bv

�

of V

�

as row vectors. Note that in coordinate representation the map

�

corresponds to the transposition. It follows that (v

�

)

�

= v: Let � : G !

GL

n

(K) be a representation of a �nite group G. The representation � :

G= ker � ! GL

n

(K) is faithful and equivalent to �; so it su�ces to treat

faithful representations.

De�nition 31 The dual representation �

�

of � is de�ned as follows.

�

�

: G! GL(V

�

);

� 7! �

�

(�);

�

�

(�)(v

�

))(w) : =




bv; �(�

�1

) � bw

�

:
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We de�ne a group action � of G on V

�

via

� � f := �

�

(�)(f)

for � 2 G and f 2 V

�

: In the sequel we construct the matrix representation

e� which is equivalent to �

�

: We de�ne

e� : G! GL

n

(K);

� 7! �(�

�1

)

T

and from e�(�� ) = �

�

(��)

�1

�

T

= � (�

�1

�

�1

)

T

= (� (�

�1

) � � (�

�1

))

T

= � (�

�1

)

T

�

� (�

�1

)

T

= e�(�) � e�(� ) it follows that e� is indeed a representation.

Proposition 11 (a) For � 2 G and v;w 2 V we have




bv; �(�

�1

) � bw

�

: =




�(�

�1

)

T

� bv; bw

�

:

(b) The diagram

V

e�(�)

�! V

�

#

�

#

V

�

�

�

(�)

�! V

�

is commutative.

Proof. For the proof of (a) we refer, e.g., to Klingenberg [27], Theorem

3.3.1.

(b) We have to show that (e�(�) � bv)

�

(w) = �

�

(v

�

)(w) for all v;w 2 V: Now

(e�(�) � bv)

�

(w) = he�(�) � bv; bwi =




�(�

�1

)

T

� bv; bw

�

=




bv; �(�

�1

) � bw

�

= �

�

(v

�

)(w):

It follows from the above proposition that the representation that e� is

equivalent to �

�

; hence it is su�cient to consider the properties of the matrix

representation e�:

De�nition 32 Let W be a �nite-dimensional K�vectorspace and �

0

: G !

GL(W ) be a representation of G: The d�th symmetric power of �

0

is the

representation

Sym

d

�

0

: G! GL(Sym

d

W );

Sym

d

�

0

(�)(w

1

� w

2

� ::: � w

d

) = (�

0

(�)(w

1

)) � (�

0

(�)(w

2

)) � ::: � (�

0

(�)(w

d

)) :

If �

0

is a matrix representation we replace �

0

(�)(w

i

) with �

0

(�) � w

i

:
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We extend the group action � to Sym

d

V

�

via

� � f := (Sym

d

�

�

)(f)

for all � 2 G: Hence we can use the representation Sym

d

e� to study the

properties of the group action � on Sym

d

V

�

:

We set K[V ] :=

L

1

d=0

Sym

d

V

�

; and from the isomorphism

� : K[x

1

; x

2

; :::; x

n

]! K[V ];

X

�2N

n

0

a

�

x

�

7�!

M

�2N

n

0

a

�

X

�

we obtain an action of G on the polynomial ring in n variables in the following

way.

G�K[x

1

; x

2

; :::; x

n

] ! K[x

1

; x

2

; :::; x

n

];

� � f : = �

�1

(� � �(f)):

Lemma 5 For all � 2 G we have � �X

i

=

P

n

j=1

�(�

�1

)

ij

X

j

:

Proof. Let v 2 V and (� � X

i

)(bv) = X

i

(�(�

�1

) � bv) =

P

n

j=1

�(�

�1

)

ij

bv

j

=

�

P

n

j=1

�(�

�1

)

ij

X

j

�

(bv):

Proposition 12 For all � 2 G and f 2 K[x

1

; x

2

; :::; x

n

] we have

(� � f)(x

1

; x

2

; :::; x

n

) = f(

0

B

B

B

@

�(�

�1

) �

0

B

B

B

@

x

1

x

2

.

.

.

x

n

1

C

C

C

A

1

C

C

C

A

T

): (2.3)

Proof. Let f =

P

�2N

n

0

a

�

x

�

and � 2 G: We obtain

(� � f)(x

1

; x

2

; :::; x

n

) = �

�1

(� � �(f(x

1

; x

2

; :::; x

n

)))

= �

�1

0

@

� �

M

�2N

n

0

a

�

X

�

1

A

= �

�1

0

@

M

�2N

n

0

a

�

(� �X)

�

1

A

= �

�1

0

@

M

�2N

n

0

a

�

(� �X

1

)

�

1

� (� �X

2

)

�

2

� ::: � (� �X

n

)

�

n

1

A

= �

�1

0

@

M

�2N

n

0

a

�

 

n

X

j=1

�(�

�1

)

1j

X

j

!

�

1

� ::: �

 

n

X

j=1

�(�

�1

)

nj

X

j

!

�

n

1

A
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=

X

�2N

n

0

a

�

 

n

X

j=1

�(�

�1

)

1j

x

j

!

�

1

� ::: �

 

n

X

j=1

�(�

�1

)

nj

x

j

!

�

n

= f

 

n

X

j=1

�(�

�1

)

1j

x

j

;

n

X

j=1

�(�

�1

)

2j

x

j

; :::;

n

X

j=1

�(�

�1

)

nj

x

j

!

as required.

Convention : If G is already a matrix group then we consider the identity

representation , i.e. � = id: If we want to emphasize the representation �

of G we write �(G) instead of G: Otherwise we assume that G is already a

matrix group (the image of �) and neglect the identity representation. If we

emphasize the representation theoretic aspect we denote K[x

1

; x

2

; :::; x

n

] by

K[V ]:

Example 2 Let f = x

2

+ xy + y

2

2 C[x; y] and �

�1

=

1

p

2

�

1 �1

1 1

�

: The

variety of f is an ellipse. Applying �

�1

to f yields

� � f(x; y) = f

 

�

1

p

2

�

1 �1

1 1

�

�

�

x

y

��

T

!

= f(

1

p

2

(x� y);

1

p

2

(x+ y))

=

1

2

(x� y)

2

+

1

2

(x� y)(x+ y) +

1

2

(x+ y)

2

=

3

2

x

2

+

1

2

y

2

:

So we have eliminated the xy term by rotating the axes 45

�

degree and the

ellipse is in normal form. Since a circle remains invariant under rotations,

so does the polynomial x

2

+ y

2

� 1 which follows from an easy calculation.

If char(K) >0 then we de�ne the group action � via

� � f(x

1

; x

2

; :::; x

n

) := f

�

�

�(�

�1

) � (x

1

; :::; x

n

)

T

�

T

�

(2.4)

for � 2 G and f 2 K[x

1

; x

2

; :::; x

n

]:

In the sequel let G be a �nite group with a faithful representation � :

G! GL

n

(K).

De�nition 33 A polynomial f 2 K[x

1

; x

2

; :::; x

n

] is an (absolute) invariant

w.r.t. G i� for all � 2 G

� � f = f:
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The set of all invariant polynomials w.r.t. G is denoted by

K[x

1

; x

2

; :::; x

n

]

G

:= ff 2 K[x

1

; x

2

; :::; x

n

]j8� 2 G : � � f = fg :

If � is a linear character of G then f is a relative �� invariant w.r.t. G

i� for all � 2 G

� � f = �(�)f:

The set of all relative �� invariant polynomials w.r.t. G is denoted by

K[x

1

; x

2

; :::; x

n

]

G

�

:= ff 2 K[x

1

; x

2

; :::; x

n

]j8� 2 G : � � f = �(�)fg :

If char(K) - jGj then we speak of nonmodular invariant theory, otherwise

of modular invariant theory

Proposition 13 The setK[x

1

; x

2

; :::; x

n

]

G

is a graded ring andK[x

1

; x

2

; :::; x

n

]

G

�

is a graded K[x

1

; x

2

; :::; x

n

]

G

module (but not a ring).

Proof. We obtain a grading forK[x

1

; x

2

; :::; x

n

]

G

from (K[x

1

; x

2

; :::; x

n

]

G

)

d

:=

K[x

1

; x

2

; :::; x

n

]

d

\K[x

1

; x

2

; :::; x

n

]

G

: In the same manner we obtain a grading

for K[x

1

; x

2

; :::; x

n

]

G

�

by de�ning (K[x

1

; x

2

; :::; x

n

]

G

�

)

d

:= K[x

1

; x

2

; :::; x

n

]

d

\

K[x

1

; x

2

; :::; x

n

]

G

�

for a linear character � of G.

Let f; g 2 K[x

1

; x

2

; :::; x

n

]

G

and � 2 G: The proof of the �rst claim follows

from (f +g)(x) = f(x)+g(x) and (fg)(x) = f(x)g(x): For a linear character

� of G and h 2 K[x

1

; x

2

; :::; x

n

]

G

�

we have � � (fh)(x) = (� � f(x)) (� � h(x)) =

f(x) (�(�)h(x)) = �(�)(fh)(x):

Remark 1 In general K[x

1

; x

2

; :::; x

n

]

G

�

is not a freeK[x

1

; x

2

; :::; x

n

]

G

�module

which can be seen from the following example. We set R = K[x

1

; x

2

]: Let

G = Z

2

= f1;�1g, � : G ! GL

2

(C) be a representation with �(�1) =

hdiag(�1;�1)i and �(�1) = �1 be a linear character. The invariant ring

equals R

�(Z

2

)

= C[x

2

1

; x

2

2

] � x

1

x

2

C[x

2

1

; x

2

2

]: Since x

1

and x

2

are relative � in-

variants we have R

G

�

= x

1

R

G

+ x

2

R

G

with the nontrivial relation x

1

� x

2

2

�

x

2

� x

1

x

2

= 0:

But we will see in section 2.5 that K[x

1

; x

2

; :::; x

n

]

G

�

is a free K[�

1

; �

2

:::; �

n

]

module provided that K[x

1

; x

2

; :::; x

n

]

G

is Cohen-Macaulay and �

1

; �

2

:::; �

n

is

an hsop for K[x

1

; x

2

; :::; x

n

]

G

:

Let � be a linear character ofG and d 2 N. We can use the representation-

theoretic methods from above to study the homogenous components ofK[V ]

G

and K[V ]

G

�

; namely we consider V

�

= (K[V ]

G

)

1

(or V

�

= (K[V ]

G

�

)

1

) as a

�nite-dimensional K�vectorspace. Then for d 2 N we have Sym

d

V

�

=
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(K[V ]

G

)

d

with induced representation Sym

d

�

�

; which has the same proper-

ties as Sym

d

e�: Let a

1

�

1

� a

2

�

2

� :::a

k

�

k

be the decomposition of Sym

d

e� in

irreducible representations , cf. Theorem 1.2.1 ( k is the number of conju-

gacy classes of G): The number of linearly independent �� invariants equals

the dimension of the invariant subspace of the representation a

j

�

j

which

corresponds to �: We de�ne analogous projection operators for this action.

De�nition 34 Let � be a linear character of G and char(K) - jGj : The

Reynolds operator of G is the map

R

G

�

: K[V ]!K[V ]

G

�

;

R

G

�

(f) : =

1

jGj

X

�2G

�(�

�1

)� � f:

We omit � if it is the trivial character and abbreviate the map R

G

(f) with

f

G

:

The map jGj � R

G

(f) is also called the transfer. If H is a subgroup of

G then one can also de�ne the relative transfer f 7!

P

�2B

� � f for a set of

representatives B of G=H: This map is useful in modular invariant theory,

cf. Smith [39].

Proposition 14 R

G

�

is a K[V ]

G

�linear projection.

Proof. For f 2 K[V ]

G

and g 2 K[V ]we haveR

G

�

(fg)(x) =

1

jGj

P

�2G

�(�

�1

)��

(fg) (x) =

1

jGj

P

�2G

�(�

�1

) (fg) (�

�1

�x) =

1

jGj

P

�2G

�(�

�1

)�f(�

�1

�x)�g(�

�1

�

x) =

1

jGj

P

�2G

�(�

�1

) � f(x) � g(�

�1

�x) = f(x)

1

jGj

P

�2G

�(�

�1

) � g(�

�1

�x) =

(f �R

G

�

(g))(x):

Now let � 2 G;then � �R

G

�

(g)(x) =

1

jGj

P

�2G

�(�

�1

)g(�

�1

�

�1

� x) =

1

jGj

P

�2G

�(�

�1

�)g(�

�1

� x) = �(�)

1

jGj

P

�2G

�(�

�1

)g(�

�1

� x):

Let g

0

2 K[V ]: We have R

G

�

(g + g

0

)(x) =

1

jGj

P

�2G

�(�

�1

)(g + g

0

)(�

�1

� x) =

1

jGj

P

�2G

�(�

�1

) (g(�

�1

� x) + g

0

(�

�1

� x)) = R

G

�

(g)(x) +R

G

�

(g

0

)(x):

For f 2 K[V ] we have R

G

�

(R

G

�

(f))(x) = R

G

�

�

1

jGj

P

�2G

�(�

�1

)� � f

�

(x) =

1

jGj

P

�2G

�(�

�1

)

1

jGj

P

�2G

�(�

�1

)f(�

�1

�

�1

� x) =

1

jGj

P

�2G

�(�

�1

)

1

jGj

P

�2G

�(��

�1

)f(�

�1

� x) =

1

jGj

P

�2G

�(�

�1

)�(�)R

G

�

(f)(x)=R

G

�

(f)(x):

We continue the example of the permutation representation from Section

1.2.1.
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Example 3 Let � : S

3

! GL

n

(K) be the permutation representation of S

3

over a �eld with characteristic 0: Let V

�

be the dual space of K

3

with basis

X

1

;X

2

;X

3

; hence V

�

�

=

K[x

1

; x

2

; x

3

]

1

: We consider the dual representation

�

�

on V

�

and the representation Sym

2

e� on Sym

2

V:

An arbitrary element f 2 V

�

equals aX

1

+ bX

2

+ cX

3

for some a; b; c 2 K:

So f is invariant w.r.t. �

�

if

aX

1

+ bX

2

+ cX

3

= bX

1

+ aX

2

+ cX

3

;

aX

1

+ bX

2

+ cX

3

= cX

1

+ aX

2

+ bX

3

:

From these equations we obtain a = b = c: Note that f can be considered as a

polynomials in the variables X

1

;X

2

;X

3

so the scalar multiplies of X

1

+X

2

+X

3

are the symmetric polynomials of degree 1: In representation theoretic terms

we have computed the invariant subspace of the representation �

�

; whose di-

mension is 1: The Reynolds map R

�

�

(S

3

)

: f 7�!

P

�2S

3

�

�

(�)(f) is a pro-

jection on the invariant subspace hX

1

+X

2

+X

3

i of V

�

. The dimension of

this subspace is the number of occurrences of the trivial representation in the

decomposition of the representation �

�

: Since �

�

�

=

e� this dimension can be

calculated with characters, namely

dim(V

�

)

�

�

(S

3

)

=




�

triv

; �

e�

�

=

1

jS

3

j

X

�2S

3

�

e�

(�)

=

1

6

(3 + 1 + 1 + 1 + 0 + 0) = 1:

Now we treat Sym

2

V

�

and consider the representation Sym

2

e� on Sym

2

V

(instead of Sym

2

�

�

). Let fx

1

; x

2

; x

3

g be a basis of V;then a basis for the vec-

torspace Sym

2

V is given by B = fx

2

1

; x

1

x

2

; x

1

x

3

; x

2

2

; x

2

x

3

; x

2

3

g : The induced

representation Sym

2

e� of S

3

is given by

(12) 7�!

0

B

B

B

B

B

B

@

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

1

C

C

C

C

C

C

A

;

(123) 7�!

0

B

B

B

B

B

B

@

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1

C

C

C

C

C

C

A

:
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The vector (or polynomial) f = c

1

x

2

1

+ c

2

x

1

x

2

+ c

3

x

1

x

3

+ c

4

x

2

2

+ c

5

x

2

x

3

+ c

6

x

2

3

is symmetric if

Sym

2

e�((12)) �

b

f =

b

f ;

Sym

2

e�((123)) �

b

f =

b

f :

If we apply the Reynolds map R

Sym

2

e�(S

3

)

:

b

f 7�!

1

6

P

�2S

3

Sym

2

�

�

(�) �

b

f to all

monomials in B we obtain the set fx

2

1

+ x

2

2

+ x

2

3

; x

1

x

2

+ x

1

x

3

+ x

2

x

3

g which

is a basis for (Sym

2

V )

Sym

2

e�(S

3

)

. So we have

dim

�

(Sym

2

V

�

)

Sym

2

�

�

(S

3

)

�

=




�

triv

; �

Sym

2

e�

�

=

1

jS

3

j

X

�2S

3

�

Sym

2

e�

(�)

=

1

6

(6 + 2 + 2 + 2 + 0 + 0) = 2: 2

According to Sturmfels [43] the following problems are often called the

fundamental problems of invariant theory.

1. Find a set ff

1

; f

2

:::; f

m

g of generators for the invariant subring

K[x

1

; x

2

; :::; x

n

]

G

of K[x

1

; x

2

; :::; x

n

]:

2. Describe the algebraic relations among the generators ff

1

; f

2

:::; f

m

g

(syzygies).

3. Give an algorithm for rewriting an arbitrary invariant polynomial f 2

K[x

1

; x

2

; :::; x

n

]

G

in terms of ff

1

; f

2

:::; f

m

g :

4. Given a geometric property P: Find the corresponding invariants (or

covariants

1

) and vice versa. Is there an algorithm for this translation

from geometry to algebra.

We describe solutions for problem (1), (2) and (3). In Section 2.1 we

have solved problems (1),(2) and (3) for the group S

n

: For problem (4) we

describe a partial solution in Section 4.4

We extend problem (1) to K[x

1

; x

2

; :::; x

n

]

G

�

for a linear character � of G:

In the next section we prove certain �niteness statements forK[x

1

; x

2

; :::; x

n

]

G

and K[x

1

; x

2

; :::; x

n

]

G

�

: For all groups (�nite and in�nite) in this text the

invariant ring is �nitely generated. The general case is precisely Hilbert's

14'th problem, namely : Given G � GL(C

n

); is K[x

1

; x

2

; :::; x

n

]

G

�nitely

generated as a K�algebra. A famous result of Nagata provides a negative

answer, cf. [29]

1

We refer, e.g., to ch. 3 of Sturmfels [43] for a de�nition.
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Example 4 Let G = V

4

=

��

1 0

0 1

�

;

�

�1 0

0 1

�

;

�

1 0

0 �1

�

;

�

�1 0

0 �1

��

be a representation of Z

2

�Z

2

. A polynomial f 2 C[x

1

; x

2

] is invariant w.r.t.

G if

f(x

1

; x

2

) = f(�x

1

; x

2

) = f(x

1

;�x

2

) = f(�x

1

;�x

2

):

So we have

f(x

1

; x

2

) = f(�x

1

; x

2

),

X

i;j

a

i;j

x

i

1

x

j

2

=

X

i;j

a

i;j

(�x

1

)

i

x

j

2

=

X

i;j

(�1)

i

a

i;j

x

i

1

x

j

2

()

a

i;j

= (�1)

i

a

i;j

() a

i;j

= 0 for i odd.

With the same computation we obtain f(x

1

; x

2

) = f(x

1

;�x

2

) , a

i;j

=

(�1)

j

a

i;j

, j is odd. So x

1

and x

2

appear to an even power in f and

therefore f can be written as f(x

1

; x

2

) = g(x

2

1

; x

2

2

) for some g 2 C[y

1

; y

2

]:

Conversely each polynomial of this form is invariant w.r.t. V

4

so we have

C[x

1

; x

2

]

V

4

= C[x

2

1

; x

2

2

]:

Since x

2

1

and x

2

2

are algebraically independent, the Hilbert series of C[x

1

; x

2

]

V

4

can be computed with Lemma 1.4.3, namely

H(C[x

2

1

; x

2

2

]; t) =

1

(1� t

2

)

2

:

2.3 Three Finiteness Theorems

In his talk at the international mathematical congress 1900 Hilbert posed 21

problems. The fourteenth problem was concerned with invariant theory.

Is the ring of invariants always �nitely generated as a C � algebra ?

In general, the answer is negative, which was �rst shown by Nagata in

1959 (cf. [29]), where he presented a counterexample. But in the case of

linear reductive groups

2

over C, or �nite groups over �elds K with charac-

teristic 0 or p > 0; for a prime p; the invariant ring is �nitely generated as a

K�algebra. We restrict ourselves to �nite groups and present three di�erent

proofs for the �niteness of the invariant ring, each with individual advances

and disadvantages.

In this section we identify the group G with the image �(G) for a matrix

representation � : G! GL

n

(K):

2

For a de�nition we refer, e.g., to Derksen [12].
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2.3.1 Noether's General Approach

We present E. Noether's characteristic-free approach for �nite groups, cf.

Noether [31]. Let K be a �eld and G � GL

n

(K) be a �nite group.

Lemma 6 The ring K[x

1

; x

2

; :::; x

n

] is integral over K[x

1

; x

2

; :::; x

n

]

G

.

Proof. Let i 2 f1; 2; :::; ng and consider P

i

(t) =

Q

�2G

(� � x

i

� t): The

polynomial P

i

is contained in K[x

1

; x

2

; :::; x

n

][t] and obviously P

i

(x

i

) = 0: If

we let G act on the coe�cients of P

i

w.r.t. t; which we denote by p

ij

for

1 � j � degP

i

(t); we obtain � �P

i

(t) = P

i

(t) for all � 2 G: So the coe�cients

of P

i

are invariant w.r.t. G. Since each x

i

is integral over K[x

1

; x

2

; :::; x

n

]

G

the claim follows from Proposition 1.4.7.

Theorem 9 (Noether 1926) The invariant ring K[x

1

; x

2

; :::; x

n

]

G

is a �nitely

generated K�algebra.

Proof. Let A be the K�algebra, which is generated from the coe�cients of

the P

i

; i.e. A = K[p

ij

]: It is clear that K[x

1

; x

2

; :::; x

n

] is a �nitely generated

A� algebra (take x

1

; :::; x

n

) and from Lemma 2.3.6 and Proposition 1.4.8 it

follows that K[x

1

; x

2

; :::; x

n

] is also �nitely generated as an A�module. From

p

ij

2 K[x

1

; x

2

; :::; x

n

]

G

it follows that K[x

1

; x

2

; :::; x

n

]

G

is an A�submodule

of K[x

1

; x

2

; :::; x

n

]: Since A is the image of a Noetherian ring (take, for in-

stance, y

k

7! p

ij

) it follows from Proposition 1.3.4 (a) and (b) that A is

Noetherian and K[x

1

; x

2

; :::; x

n

] is a Noetherian A�module. Now Proposi-

tion 1.3.4 (c) implies that K[x

1

; x

2

; :::; x

n

]

G

is �nitely generated as an A�

module, and, since A is a �nitely generated K�algebra, K[x

1

; x

2

; :::; x

n

]

G

is

�nitely generated as a K�algebra.

Note that if f 2 K[x

1

; x

2

; :::; x

n

]

G

then each homogenous component of f

is contained inK[x

1

; x

2

; :::; x

n

]

G

: Therefore we can chose a set of homogenous

generators.

Corollary 3 There exists an hsop �

1

; �

2

; :::; �

n

for K[x

1

; x

2

; :::; x

n

]

G

:

Proof. From dimK[x

1

; x

2

; :::; x

n

] = n, Lemma 2.3.6 and Proposition 1.4.9

it follows that dimK[x

1

; x

2

; :::; x

n

]

G

= n: Hence Noether's Normalization

Lemma (Lemma 1.4.5) implies that there are n algebraically independent

elements �

1

; �

2

; :::; �

n

s.t. K[x

1

; x

2

; :::; x

n

]

G

is �nitely generated as a module

over K[�

1

; �

2

; :::; �

n

]:

The module in the above proof need not be free. The drawback of this

result is, that it is neither constructive nor gives a degree bound, also it holds

only for �nite groups.
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De�nition 35 Let �

1

; �

2

; :::; �

n

2 K[x

1

; x

2

; :::; x

n

]

G

be an hsop for K[x

1

; x

2

;

:::; x

n

]

G

and let �

1

; �

2

; :::; �

m

be a minimal generating set of K[x

1

; x

2

; :::; x

n

]

G

as a K[�

1

; �

2

; :::; �

n

]�module. The elements �

1

; �

2

; :::; �

n

are called primary

invariants and the elements �

1

; �

2

; :::; �

m

are called secondary invariants

of K[x

1

; x

2

; :::; x

n

]

G

: We call (deg �

1

;deg �

2

; :::;deg �

n

) the degrees of the hsop

�

1

; �

2

; :::; �

n

:

2.3.2 Noether's Degree Bound

The following theorem of E. Noether (cf. [30]) is constructive, but does not

hold over arbitrary �elds. Let K be a �eld and G � GL

n

(K) be a �nite

group. The restriction to the nonmodular case comes from the application

of the Reynolds operator.

Theorem 10 (Noether 1916) LetK be a �eld of char(K) > jGj! or char(K) =

0: Then K[x

1

; x

2

; :::; x

n

]

G

is generated as a K� algebra by at most

�

jGj+n

n

�

in-

variants of degree not exceeding jGj : In particular

K[x

1

; x

2

; :::; x

n

]

G

= K[R

G

(x

�

) : j�j � jGj]:

Proof. We follow the proof of Theorem 5 of � 3 of ch. 7 in Cox et. al.

[9]. Since R

G

is linear it su�ces to show that for all � 2 N

n

we can express

R

G

(x

�

) as a polynomial in the R

G

(x

�

) for j�j � jGj: Let k 2 N be �xed.

(x

1

+ x

2

+ :::+ x

n

)

k

=

X

j�j=k

a

�

x

�

(2.5)

If A

i

denotes the i�th row of A = (a

i;j

) 2 G then A

�1

�x

�

=

Q

n

i=1

(A

i

� x)

�

i

:

Let u

1

; u

2

; :::; u

n

be new variables and substitute u

i

A

i

�x for x

i

in (2:5). Then

we obtain

(u

1

A

1

x+u

2

A

2

x+:::+u

n

A

n

x)

k

=

X

j�j=k

a

�

n

Y

i=1

(A

i

�x)

�

i

u

�

=

X

j�j=k

a

�

(A

�1

�x

�

)u

�

:

Let U

A

= u

1

A

1

x+ u

2

A

2

x+ :::+ u

n

A

n

x. If we sum over G we get

S

k

: =

X

A2G

(U

A

)

k

=

X

A2G

X

j�j=k

a

�

(A

�1

� x)

�

u

�

(2.6)

=

X

j�j=k

X

A2G

a

�

(A

�1

� x)

�

u

�

(2.7)

= jGj

X

j�j=k

a

�

R

G

(x

�

)u

�

:
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Since S

k

is a power sum in the jGj quantities U

A

(for A 2 G) it is a symmetric

polynomial in U

A

for A 2 G. Hence it can be written as a polynomial in the

jGj power sums S

1

; :::; S

jGj

: So

S

k

= P

�

S

1

; :::; S

jGj

�

for some P 2 K[y

1

; y

2

; :::; y

jGj

]:

Substituting in (2:6) we obtain

jGj

X

j�j=k

a

�

R

G

(x

�

)u

�

= P

0

@

jGj

X

j�j=1

a

�

R

G

(x

�

)u

�

; :::; jGj

X

j�j=jGj

a

�

R

G

(x

�

)u

�

1

A

:

Expansion and coe�cient comparison yields the desired result.

De�nition 36 Let h

1

; h

2

; :::; h

m

be homogenous invariants s.t. K[h

1

; h

2

; :::; h

m

]

=K[x

1

; x

2

; :::; x

n

]

G

: Then h

1

; h

2

; :::; h

m

are called fundamental invariants

of K[x

1

; x

2

; :::; x

n

]

G

:

We have seen that for any �nite group G the invariant ring is �nitely

generated. Moreover, one can derive a simple algorithm for computing a

generating set of the invariant ring from the above Theorem.

Algorithm Invariants(G) :=

invariants := fg;

for all � 2 N

n

with j�j �

�

jGj+n

n

�

do

. invariants := invariants[

�

R

G

(x

�

)

	

;

end for;

The algorithm is not very practical which can be seen from the following

example.

Example 5 The invariant ring of the permutation representation of S

3

equals

K[x; y; z]

S

3

= K[x+ y + z; xy + xz + yz; xyz]: But if we compute the gener-

ators with the above algorithm, we obtain the following set with 22 elements

: {x + y + z; x y z; x

2

y

2

z

2

; x y + x z + y z; x

2

+ y

2

+ z

2

; x

2

y + x y

2

+ x

2

z +

y

2

z+x z

2

+y z

2

; x

2

y z+x y

2

z+x y z

2

; x

2

y

2

+x

2

z

2

+y

2

z

2

; x

2

y

2

z+x

2

y z

2

+

x y

2

z

2

; x

3

+ y

3

+ z

3

; x

3

y + x y

3

+ x

3

z + y

3

z + x z

3

+ y z

3

; x

3

y z + x y

3

z +

x y z

3

; x

3

y

2

+ x

2

y

3

+ x

3

z

2

+ y

3

z

2

+ x

2

z

3

+ y

2

z

3

; x

3

y

2

z + x

2

y

3

z + x

3

y z

2

+

x y

3

z

2

+x

2

y z

3

+x y

2

z

3

; x

3

y

3

+x

3

z

3

+ y

3

z

3

; x

4

+ y

4

+ z

4

; x

4

y+x y

4

+x

4

z+

y

4

z+ x z

4

+ y z

4

; x

4

y z+ x y

4

z+ x y z

4

; x

4

y

2

+x

2

y

4

+ x

4

z

2

+ y

4

z

2

+x

2

z

4

+

y

2

z

4

; x

5

+ y

5

+ z

5

; x

5

y + x y

5

+ x

5

z + y

5

z + x z

5

+ y z

5

; x

6

+ y

6

+ z

6

g.
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2.3.3 Hilbert's Approach.

In this Section we present Hilbert's Finiteness Theorem which is contained in

his landmark paper �Über die Theorie der Algebraischen Formen� in 1890,

where D. Hilbert proved that for reductive groups G � GL

n

(C) the ring

of invariants is �nitely generated as a C�algebra, cf. Hilbert [18]. There

he used nonconstructive methods, namely he introduced his Basis Theorem

as a Lemma (Theorem 3 in section 1.3). At this time this was a radical

new approach and P. Gordon, the �King of Invariants� exclaimed �Das ist

nicht Mathematik, das ist Theologie�. Hilbert responded three years later

with his paper �Über die Vollen Invariantensysteme�, cf. Hilbert [19], where

he presented a constructive proof. This paper is considerably deeper w.r.t.

construction and contains the Nullstellensatz, the Syzygy Theorem and the

Hilbert function. In his Ph.D. thesis H. Derksen was able to make the proof

of Hilbert's Finiteness Theorem from 1890 constructive, cf. Derksen [12].

Hilbert's Finiteness Theorem holds for all matrix groups which admit a pro-

jection map that satis�es the Reynolds properties. Note that such matrix

groups need not be �nite.

Theorem 11 (Hilbert 1890) Let K be a �eld and G � GL

n

(K) be a �nite

group s.t. char(K) - jGj : Then K[x

1

; x

2

; :::; x

n

]

G

is �nitely generated as a

K�algebra.

Proof. Let R =K[x

1

; x

2

; :::; x

n

] and R

G

+

be the set of homogenous elements

of R

G

of positive degree. Hilbert's basis Theorem implies that the ideal




R

G

+

�

�R can be generated by �nitely many homogenous invariant polynomi-

als h

1

; :::; h

k

:We claim that R

G

= K[h

1

; :::; h

k

]: It is clear that K[h

1

; :::; h

k

] �

R

G

: Now assume that this inclusion is strict and take f 2 R

G

nK[h

1

; :::; h

k

]

homogenous of minimal degree. Since f 2




R

G

+

�

we have f =

P

k

i=1

p

i

h

i

for some homogenous polynomials p

i

2 R with deg p

i

= deg f � deg h

i

(cf.

Lemma 1.4.4). The polynomial f is invariant and therefore

f = R

G

(f) =

k

X

i=1

R

G

(p

i

h

i

) =

k

X

i=1

R

G

(p

i

)h

i

:

From f =2 K[h

1

; :::; h

k

] we conclude that for some j the polynomials p

j

is

not a constant and R

G

(p

j

) 6= 0, so

deg p

j

= degR

G

(p

j

) < deg f;

but R

G

(p

j

) 2 R

G

; a contradiction to the minimality assumption.
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The above proof implies that any ideal basis of




R

G

+

�

, which consists of ho-

mogenous invariant polynomials, is also an algebra basis forK[x

1

; x

2

; :::; x

n

]

G

.

This property is very important for the intersection algorithm, presented in

Section 3.2.

2.4 Molien's Theorem

Let K be a �eld of characteristic 0; G be a �nite group and � : G! GL

n

(K)

be a faithful representation and V = K

n

. We are interested in the number of

linearly independent homogenous invariants of degree d 2 N; i.e., we want to

know the Hilbert series ofK[V ]

�(G)

and ofK[V ]

�(G)

�

for a linear character � of

G; which we denote with H

�(G)

and H

�(G)

�

respectively. So we are interested

in the formal power series

H

�(G)

�

(t) =

1

X

d=0

dim

K

(K[V ]

�(G)

�

)

d

� t

d

:

If char(K) = 0 we can proceed as follows. From the results in Section 2.2

we know that for a given representation � : G ! GL

n

(K) it is su�cient to

consider the equivalent representation e�(�) = �(�

�1

)

T

: We compute the di-

mension of the graded component (K[V ]

e�(G)

�

)

d

for each d 2 N with the aid of

representation theory. Note that dimSym

d

V =

�

n+d�1

d�1

�

=: N: We transform

the representation Sym

d

�

�

; which acts on the N�dimensional vectorspace

K[V ]

d

; to the representation Sym

d

e�; which acts on K

N

: The dimension of

(K[V ]

e�(G)

�

)

d

equals the dimension of the invariant subspace of the represen-

tation belonging to the character �: Hence

dim

K

(K[V ]

�(G)

�

)

d

=




�

Sym

d

e�

; �

�

:

Lemma 7 Let � 2 G and A = �(�) with eigenvalues �

1

; �

2

; :::; �

n

and as-

sume char(K) = 0:

(a) If A is of �nite order (i.e. A

k

= E for some k 2 N) then A can be

diagonalized, i.e. there exists T s.t. TAT

�1

= diag(�

1

; �

2

; :::; �

n

):.

(b) trace(A) =

P

n

i=1

�

i

:

(c) The eigenvalues of Sym

d

�(�) are the elements

Q

n

i=1

�

�

i

i

for all � 2 N

n

0

with j�j = d:

Proof. (a) Assume that A is not diagonalizable. Let l > 1 and B be a l� l

Jordan-block of the Jordan normal form of A with the eigenvalue � (of order

�) of A in the diagonal and B

i;i+1

= 1 for 1 � i � l � 1. Note that such a
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block exists, otherwise A would be a diagonal matrix. Since A

k

= I we have

� j k and B

k

= I; but

�

B

k

�

1;2

= k � �

k�1

; a contradiction.

(b) follows from (a) and the fact that trace is constant on conjugacy classes.

(c) W.l.o.g. we assume that A = diag(�

1

; �

2

; :::; �

n

): The

�

n+d�1

d�1

�

monomials

of degree d form a basis of Sym

d

(C

n

)

�

: If f =

Q

d

j=1

x

i

j

is a monomial, then

�

�

(�)(f) =

Q

d

j=1

�

i

j

x

i

j

=

Q

d

j=1

�

i

j

Q

d

j=1

x

i

j

. The claim follows from the

isomorphism

�

(cf. Proposition 2.2.11 (b)).

In the sequel we denote the identity matrix of GL

n

(K) with I and identify

G with �(G):

Theorem 12 (Molien 1897) Let � be a linear character of G:

(a) If char(K) = 0 then the Hilbert series of K[V ]

G

�

equals

H

G

�

(t) =

1

jGj

X

�2G

�(�)

det(I � t�)

:

(b) Assume char(K) = p > 0 for a prime p and p - jGj. Choose primitive

all jGj �roots of unity f�g in K and

n

e

�

o

in Q. Let �

k

1

�

; �

k

2

�

; :::; �

k

n

�

be the

eigenvalues of � 2 G and set

�

�

(t) =

n

Y

i=1

(1� t

e

�

k

i

�

):

Then the Hilbert series of K[V ]

G

equals

H

G

(t) =

1

jGj

X

�2G

�

�

(t):

The formulation of part (b) is due to Decker and Jong [11]. We present

a proof for �elds with characteristic 0. For the general case we refer, e.g., to

Smith [39].

Proof. We denote the eigenvalues of �(�) 2 G with �

�;1

; �

�;2

; :::; �

�;n

: From

Lemma 2.4.7 (c) it follows that

�

Sym

d

�

(�) =

X

d

1

+d

2

:::+d

n

=d

�

d

1

�;1

�

d

2

�;2

� ::: � �

d

n

�;n

:

From the previous discussion we obtain

H

G

�

(t) =

1

X

d=0




�

Sym

d

e�

; �

�

� t

d

=

1

X

d=0

1

jGj

X

�2G

�

Sym

d

e�

(�)�(�

�1

) � t

d
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=

1

X

d=0

1

jGj

X

�2G

�

Sym

d

�

(�

�1

)�(�

�1

) � t

d

=

1

X

d=0

1

jGj

X

�2G

X

d

1

+d

2

:::+d

n

=d

�

d

1

�;1

�

d

2

�;2

� ::: � �

d

n

�;n

�(�) � t

d

=

1

jGj

X

�2G

X

(d

1

;d

2

;:::;d

n

)2N

n

0

�

d

1

�;1

�

d

2

�;2

� ::: � �

d

n

�;n

�(�) � t

d

1

+d

2

:::+d

n

=

1

jGj

X

�2G

�(�)

1

(1� �

�;1

t)

�

1

(1� �

�;2

t)

� ::: �

1

(1� �

�;n

t)

=

1

jGj

X

�2G

�(�)

det(I � t�)

:

Example 6 We compute the Hilbert series of C[V ]

V

4

(cf. Example 2.2.4).

We have

H

V

4

(t) =

1

4

�

1

1� 2 t+ t

2

+

1

1 + 2 t+ t

2

+

1

1� t

2

+

1

1 � t

2

�

=

1

(1 � t

2

)

2

=

1

X

k=0

(k + 1)t

2k

= 1 + 2 t

2

+ 3 t

4

+ 4 t

6

+ 5 t

8

+ 6 t

10

+ 7 t

12

+ 8 t

14

+O(t

15

):

Since H

V

4

(t) = H(C[V ]

V

4

; t) we have found a generating set for the invariant

ring in Example 2.2.4.

Remark 2 For �nite groups G;G

0

� GL

n

(K) the property H

G

(t) = H

G

0

(t)

is not su�cient for G = G

0

: Furthermore H

G

(t) =

Q

n

i=1

1

1�t

d

i

for some

d

i

2 N does not imply that there exists an hsop of degree (d

1

; d

2

; :::; d

n

);

cf. Example 4.1.20.

2.5 The Invariant Ring is Cohen-Macaulay

In Section 2.3.1 we have seen that there exists an hsop �

1

; �

2

; :::; �

n

s.t.

K[x

1

; x

2

; :::; x

n

]

G

is a �nitely generated K[�

1

; �

2

; :::; �

n

]�module. In this sec-

tion we show that if char(K) - jGj then K[x

1

; x

2

; :::; x

n

]

G

is a �nitely gener-

ated free K[�

1

; �

2

; :::; �

n

] module, i.e., there exist homogenous �

1

; �

2

; :::; �

m

2

K[x

1

; x

2

; :::; x

n

]

G

s.t.

K[x

1

; x

2

; :::; x

n

]

G

=

m

M

i=1

�

i

K[�

1

; �

2

; :::; �

n

]:
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This is equivalent to the fact thatK[x

1

; x

2

; :::; x

n

]

G

is a Cohen-Macaulay ring.

For details on Cohen-Macaulay rings we refer to Eisenbud [13].

In the sequel let R be a K�algebra of Krull-dimension n which is gener-

ated by �nitely many homogenous elements.

De�nition 37 The K�algebra (or ring) R is Cohen-Macaulay i� there

exists an hsop �

1

; �

2

; :::; �

n

s.t. R is a �nitely generated, free K[�

1

; �

2

; :::; �

n

]�

module. Let �

1

; �

2

; :::; �

m

be a module basis for R: The decomposition

R =

m

M

i=1

�

i

K[�

1

; �

2

; :::; �

n

]

is called the Hironaka decomposition of R w.r.t. �

1

; �

2

; :::; �

n

:

Note that the Hironaka decomposition is by no means unique. This can

be seen, e.g., from Example 2.5.8.

De�nition 38 The elements �

1

; �

2

:::; �

k

2 R are called a regular sequence

in R i� h�

1

; �

2

:::; �

k

i ( R and �

i

is not a zerodivisor in R= h�

1

; �

2

; :::; �

i�1

i

for 1 � i � k:

We provide a di�erent characterization of the Cohen-Macaulay property.

Lemma 8 The algebra R is Cohen-Macaulay i� there exists an hsop �

1

; �

2

:::; �

n

which is also a regular sequence.

Proof. Assume that R is a free K[�

1

; �

2

:::; �

n

]�module with basis �

1

; :::; �

m

and that �

k

is a zerodivisor in R= h�

1

; �

2

:::; �

k�1

i : So there are elements

p

1

; :::; p

k�1

2 R and p

k

=2 h�

1

; �

2

:::; �

k�1

i s.t.

k�1

X

i=1

p

i

�

i

= p

�

�

k

: (2.8)

Since p

i

2 R for 1 � i � k we have p

i

=

P

m

j=1

�

j

q

(i)

j

for some q

(i)

j

2

K[�

1

; �

2

; :::; �

n

]: Furthermore there exists some j

0

2 f1; 2; :::;mg s.t. 0 6=

q

(k)

j

0

=2 h�

1

; �

2

:::; �

k�1

i (otherwise p

k

2 h�

1

; �

2

:::; �

k�1

i). Note that this implies

q

(k)

j

0

=2 K[�

1

; �

2

:::; �

k�1

]: Substitution in (2:8) yields

P

k

i=1

P

m

i

j=1

�

j

q

(i)

j

�

i

= 0:

Since R is a free module, we have

P

k�1

i=1

q

(i)

j

�

i

+ q

(k)

j

�

k

= 0 for 1 � j � k: But

for j

0

we have

k�1

X

i=1

q

(i)

j

0

�

i

| {z }

2K[�

1

;�

2

;:::;�

n

]

= q

(k)

j

0

�

k

| {z }

2K[�

k

;�

k+1

;:::;�

n

]

:
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which is a contradiction since �

i

is not contained in the right-hand side for

1 � i � k � 1: For the proof of the converse we refer to the proof of lemma

3.3 of Stanley [38].

We mention another characterization of Cohen-Macaulay algebras with-

out proof, because we do not make use of it.

Theorem 13 TheK�algebra R is Cohen-Macaulay i� for each hsop �

1

; �

2

:::;

�

n

R is a free K[�

1

; �

2

; :::; �

n

] module.

Proof. See, e.g., Sturmfels [43], Theorem 2.3.1. in ch. 2.

Corollary 4 The polynomial ring K[x

1

; x

2

; :::; x

n

] is Cohen-Macaulay.

Proof. Obviously the variables x

1

; x

2

; :::; x

n

are algebraically independent

and K[x

1

; x

2

; :::; x

n

] is a free K[x

1

; x

2

; :::; x

n

]�module with basis f1g:

Corollary 5 Let R be a Cohen-Macaulay algebra with Hironaka decomposi-

tion R =

L

m

i=1

�

i

K[�

1

; �

2

; :::; �

n

]. The Hilbert series of R equals

m

X

i=1

t

deg(�

i

)

�H(K[�

1

; �

2

; :::; �

n

]; t):

Proof. Follows from Lemma 1.4.3.

Lemma 9 Let R � S be �nitely generated K�algebras of Krull dimension

n; and � : S ! R be an R�linear projection. Then :

(a) IS \ R = I for each I �R:

(b) Each regular sequence �

1

; :::; �

n

of S with �

i

2 R for 1 � i � n is already

a regular sequence of R:

Proof. (a) Let x 2 I and s 2 S and suppose xs 2 R; then xs = �(xs) =

x � �(s) 2 I:

(b) Now let �

1

; �

2

; :::; �

n

be a regular sequence in S with �

i

2 R for 1 � i � n.

Assume that p

k

�

k

=

P

k�1

i=1

p

i

�

i

for some p

i

2 R; (1 � i � k): But then

p

k

�

k

2 h�

1

; �

2

:::; �

k�1

i� S; a contradiction.

The next theorem, which is the main result in this section, appeared

�rst in Hochster and Eagon [21] although apparently it has been part of the

�folklore� in commutative algebra since long.

Theorem 14 (Hochster, Eagon 1971). Let G � GL

n

(K) be a �nite group

and char(K) - jGj. Then the invariant ring K[x

1

; x

2

; :::; x

n

]

G

is Cohen-

Macaulay.
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Proof. It follows from the Noether Normalization Lemma (Theorem 1.4.5),

from Proposition 1.4.8 and from Proposition 1.4.7 (a) that there exists an

hsop �

1

; �

2

:::; �

n

of K[x

1

; x

2

; :::; x

n

]

G

s.t. K[x

1

; x

2

; :::; x

n

]

G

is integral over

K[�

1

; �

2

; :::; �

n

]: From Lemma 2.3.6 we know that K[x

1

; x

2

; :::; x

n

] is integral

over K[x

1

; x

2

; :::; x

n

]

G

; hence Proposition 1.4.7 implies that K[x

1

; x

2

; :::; x

n

]

is integral over K[�

1

; �

2

; :::; �

n

] and �

1

; �

2

:::; �

n

is an hsop for K[x

1

; x

2

; :::; x

n

]:

Since K[x

1

; x

2

; :::; x

n

] is Cohen-Macaulay, the elements �

1

; �

2

:::; �

n

are a reg-

ular sequence of K[x

1

; x

2

; :::; x

n

]; therefore it follows from Lemma 2.5.9 that

they are a regular sequence of K[x

1

; x

2

; :::; x

n

]

G

: Now Lemma 2.5.8 implies

that K[x

1

; x

2

; :::; x

n

]

G

is Cohen-Macaulay.

Remark 3 In general, Cohen-Macaulay rings R are de�ned to be rings with

depth(R) = dim(R); where depth(R) is the maximal integer m s.t. a regular

sequence f�

1

; �

2

:::; �

m

g exists. It is a basic fact in homological algebra that

depth(R) � dim(R); cf. Eisenbud [13]. This is precisely what we have done

in the proof of Lemma 2.5.8 for �nitely generated K�algebras, namely if we

have found an hsop f�

1

; �

2

:::; �

n

g s.t. R is a free K[�

1

; �

2

; :::; �

n

] module, than

we show that we have found a regular sequence of length n; hence depth(R) =

n = dim(R):

Example 7 Let G =

��

1 0

0 1

�

;

�

0 1

�1 0

�

;

�

�1 0

0 �1

�

;

�

0 �1

1 0

��

be a representation of the cyclic group of order 4.The Hilbert series equals

H(C[V ]

G

; t) =

1+t

2

(1�t

2

)(1�t

4

)

: Using the Invariants package (cf. Chapter 5)

we �nd the primary invariants �

1

= x

2

1

+ x

2

2

and �

1

= x

2

1

x

2

2

of minimal

degrees and the secondary invariants �

1

= 1 and �

2

= x

3

1

x

2

�x

1

x

3

2

: Hence the

corresponding Hironaka decomposition of C[x

1

; x

2

]

G

equals

C[x

1

; x

2

]

G

= C[�

1

; �

2

]� �

2

C[�

1

; �

2

]:

A di�erent hsop of degree (4; 4) is given in Example 3.1.10.

Once we have found primary invariants �

1

; �

2

; :::; �

n

we can compute the

rank of K[x

1

; x

2

; :::; x

n

]

G

as a K[�

1

; �

2

; :::; �

n

]�module and the degrees of the

secondary invariants.

Proposition 15 Let G � GL

n

(K) be a �nite group and d

1

; d

2

; :::; d

n

be the

degrees of a set of primary invariants for K[x

1

; x

2

; :::; x

n

]

G

: Then

(a) the number of secondary invariants equals

r =

d

1

d

2

:::d

n

jGj

;
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(b) the degrees (together with their multiplicities) of the secondary invariants

are the exponents of the generating function

H

G

(t) �

n

Y

i=1

�

1 � t

d

j

�

:

Proof. We follow the proof of proposition 2.3.6 in Sturmfels [43]. We

equate the formula for the Hilbert series of K[x

1

; x

2

; :::; x

n

]

G

from Corollary

2.5.5 with Molien's formula (Theorem 2.4.12)

1

jGj

X

�2G

1

det(I � t�)

=

m

X

i=1

t

deg(�

i

)

�

n

Y

j=1

1

(1� t

d

j

)

(2.9)

and multiply both sides with (1� t)

n

: We obtain

1

jGj

X

�2G

(1� t)

n

det(I � t�)

=

m

X

i=1

t

deg(�

i

)

�

Y

j=1

1

(1 + t+ t

2

+ :::+ t

d

j

�1

)

: (2.10)

We now consider the limit t! 1 in (2:10). All summands

(1�t)

n

det(I�t�)

of the left

hand side converge to 0 except

(1�t)

n

det(I�tI)

which converges to 1: Hence the left

hand side converges to

1

jGj

: The right hand side converges to

1

d

1

d

2

:::d

n

: Putting

this together we get

1

jGj

=

t

d

1

d

2

:::d

n

which proves (a). The proof of (b) follows from (2:9). .

Together with Moliens Theorem the above results lay the theoretical foun-

dation for the computation of invariant rings of a �nite groups G � GL

n

(K)

with char(K) - jGj ; which we will discuss in the next chapter.

Example 8 [The permutation representation of D

4

:]

We know from Section 2.1 that the symmetric polynomials �

1

= x

1

+ x

2

+

x

3

+x

4

; �

2

= x

1

x

2

+x

1

x

3

+x

1

x

4

+x

2

x

3

+x

2

x

4

+x

3

x

4

; �

3

= x

1

x

2

x

3

+x

1

x

2

x

4

+

x

1

x

3

x

4

+ x

2

x

3

x

4

; �

4

= x

1

x

2

x

3

x

4

are primary invariants for D

4

with degrees

(1; 2; 3; 4): From Proposition 2.5.15 we obtain the number and degrees of the

secondary invariants. There are 3 secondary invariants with generating func-

tion 1+ t

2

+ t

4

;and the Invariants package delivers �

1

= 1; �

2

= x

1

x

3

+x

2

x

4

and �

3

= x

2

1

x

2

3

+ x

2

2

x

2

4

: With R = C[�

1

; �

2

; �

3

; �

4

];we have the following Hi-

ronaka decomposition of the invariant ring

C[x

1

; x

2

; x

3

; x

4

]

D

4

= R� �

2

R� �

3

R
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Note that a set of minimal primary invariants has degree (1; 2; 2; 4): With the

Invariants package we �nd �

1

= x

1

+ x

2

+ x

3

+ x

4

; �

2

= x

1

x

3

+ x

2

x

4

; �

3

=

x

1

x

2

+x

2

x

3

+x

1

x

4

+x

3

x

4

and �

4

= x

1

x

2

x

3

x

4

: With these primary invariants

the generating function for the secondary invariants equals 1+t

3

; hence there

are only 2 secondary invariants of degree 0 and 3 left: We have e�

1

= 1 and

e�

2

= x

2

1

+ x

3

2

+ x

3

3

+ x

3

4

: As above we set R = C[�

1

; �

2

; �

3

; �

4

] and obtain the

following Hironaka decomposition

C[x

1

; x

2

; x

3

; x

4

]

D

4

= R � e�

2

R:

Let G � GL

n

(K) be a �nite group, assume char(K) - jGj and let

�

1

; �

2

; :::; �

n

and �

1

; �

2

; :::; �

m

be primary and secondary invariants ofK[x

1

; x

2

;

:::; x

n

]

G

respectively.. In order to compute in K[x

1

; x

2

; :::; x

n

]

G

it is su�cient

to know the representations of the elements �

i

�

j

for 1 � i � j � m; i.e. to

know the structure constants of the algebra K[x

1

; x

2

; :::; x

n

]

G

:

Example 9 We compute the structure table of the invariant ring K[x

1

; x

2

]

G

of Example 2.5.7:We have �

2

2

=

3

2

�

2

1

�

2

�

1

2

�

4

1

��

2

2

; hence we have the following

structure table :

� 1 �

2

1 1 �

2

�

2

�

2

3

2

�

2

1

�

2

�

1

2

�

4

1

� �

2

2

.



Chapter 3

Computing Invariant Rings

We present two di�erent paradigms for computing the invariant ring of a

�nite group G; namely the computation of the invariant ring as a �nitely

generated module over a subring and the computation of algebra generators

for the invariant ring. For the �rst paradigm several algorithms have been

proposed, see, for example, Sturmfels [43], Kemper [23], Kemper and Steel

[24] and Decker et. al. [10]. The algorithm of Kemper can also deal with the

case char(K) j jGj : They can be subsumed in the following schemes.

Scheme 1 :

1. Compute primary invariants �

1

; �

2

; :::; �

n

:

2. Compute module generators ofK[x

1

; x

2

; :::; x

n

]

G

as aK[�

1

; �

2

; :::; �

n

]�

module.

A description of this scheme can be found in Section 3.1. Also Kemper's

algorithm is implemented in the Invariants package (with the restriction

to the nonmodular case in step 2) described in the Appendix.

The second paradigm is based on computing a set of algebra generators

for the invariant ring. Examples are the algorithm of E. Noether (algorithm

Invariants in Section 2.3.2) for �nite groups in the nonmodular case and

the algorithm of H. Derksen for linear reductive groups G � GL

n

(C) (for

a de�nition of linearly reductive groups we refer, e.g., to Derksen [12]. We

note that any �nite group G � GL

n

(C) is linearly reductive).

Scheme 2 :

1. Compute algebra generators for K[x

1

; x

2

; :::; x

n

]

G

.

A discussion of Noether's algorithm can be found in Section 2.3.2.

Finally, we present a new method for computing the algebra basis of an

invariant ring for a �nite group G = h�

1

; �

2

; :::; �

k

i in the nonmodular case.

45
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Scheme 3 :

1. Compute algebra generators for K[x

1

; x

2

; :::; x

n

]

h�

i

i

:

2. Intersect all K[x

1

; x

2

; :::; x

n

]

h�

i

i

using the algebra generators.

For a description of step 1 we refer to Section 4.1 and for step 2 to Section

3.2.

3.1 Primary and Secondary Invariants

We present two di�erent approaches for the computation of primary invari-

ants which are due to E. Dade and G. Kemper, respectively. For the compu-

tation of secondary invariants we present a straightforward approach in the

non-modular case, and an algorithm from Kemper for the modular case.

For the computation of invariant rings of permutation groups we refer to

Göbel [15].

3.1.1 Primary Invariants

We present two di�erent algorithms to �nd an hsop �

1

; �

2

; :::; �

n

for the in-

variant ring K[x

1

; x

2

; :::; x

n

]

G

. It is clear (from Proposition 2.5.15) that the

degrees of an hsop �

1

; �

2

; :::; �

n

should be as small as possible. Following

Kemper we call an algorithm optimal if it computes an hsop of minimal

degree, i.e.

Q

n

i=1

deg �

i

is minimal. The �rst algorithm is due to E. Dade

and is one of the fastest, but has some restrictions on the ground �eld and

does in general not �nd an optimal hsop. The second algorithm is Kemper's

algorithm for computing an optimal hsop, which works in the non-modular

and modular case.

Our presentation is by no means exhaustive. Several other algorithms

are described in the literature. For the successive algorithm from Kemper

we refer to Kemper [22] or to Decker et. al. [10] for an improved version.

Various other algorithms are contained in Sturmfels [43].

Before we can describe the algorithms we need some technical results.

Lemma 10 Let �

1

; �

2

; :::; �

n

be homogenous elements of K[x

1

; x

2

; :::; x

n

] and

let K denote the algebraic closure of K: Then

dimK[x

1

; x

2

; :::; x

n

]= h�

1

; �

2

; :::; �

n

i = 0 () V

K

(�

1

; �

2

; :::; �

n

) = f0g

Proof. Let I = h�

1

; �

2

; :::; �

n

i be of dimension 0: Proposition 1.4.6 implies

thatK[x

1

; x

2

; :::; x

n

]=I is Artinian and that the varietyV = V

K

(�

1

; �

2

; :::; �

n

)

is �nite. Since the elements �

1

; �

2

; :::; �

n

are homogenous, for any p 2 V and



CHAPTER 3. COMPUTING INVARIANT RINGS 47

c 2 K the product c � p is also contained in V: But the �eld K is in�nite

(the algebraic closure of any �eld is in�nite), hence V = f0g: Conversely,

assume that V

K

(�

1

; �

2

; :::; �

n

) = f0g. Proposition 1.4.6 implies that the ring

K[x

1

; x

2

; :::; x

n

]= h�

1

; �

2

; :::; �

n

i is Artinian and therefore we have

dimK[x

1

; x

2

; :::; x

n

]= h�

1

; �

2

; :::; �

n

i = 0:

Lemma 11 Let �

1

; �

2

; :::; �

n

be homogenous elements of K[x

1

; x

2

; :::; x

n

]

G

:

Then

�

1

; �

2

; :::; �

n

is an hsop () dimK[x

1

; x

2

; :::; x

n

]= h�

1

; �

2

; :::; �

n

i = 0:

Furthermore each set  

1

;  

2

; :::;  

k

: of homogenous elements ofK[x

1

; x

2

; :::; x

n

]

G

can be extended to an hsop i� dimK[x

1

; x

2

; :::; x

n

]= h 

1

;  

2

; :::;  

k

i = n� k:

Proof. We denote K[x

1

; x

2

; :::; x

n

] by R, de�ne I = h�

1

; �

2

; :::; �

n

i for an

hsop �

1

; �

2

; :::; �

n

and let P � I be a minimal prime ideal over I, so R=P is

a �nitely generated K�algebra with no nilpotent elements. It follows from

Proposition 1.4.5 that dimR=P = dimR=I: Now Theorem 1.4.4 implies that

dimR=P equals the transcendence degree of R=P overK: Since P contains n

algebraically independent elements, the transcendence degree of R=P equals

0; hence dimR=I = 0:

Conversely, assume that dimR= h�

1

; �

2

; :::; �

n

i = 0: Since R= h�

1

; �

2

; :::; �

n

i is

Artinian, for each x

i

there exists a power k

i

s.t.




x

k

i

i

�

=




x

k

i

+1

i

�

: Let �

1

= 1

and �

2

; �

3

; :::; �

r

be homogenous elements of R

G

s.t. their images form a

K�vectorspace basis of R

G

= h�

1

; �

2

; :::; �

n

i

R

G

: We claim that �

1

; �

2

; :::; �

r

is

a generating set for the K[�

1

; �

2

; :::; �

n

]�module R

G

: We show via induc-

tion on the degree d for homogenous f 2 R

G

that f can be written in the

form

P

n

i=1

�

j

i

�

i

: For d = 0 there is nothing to prove. Now assume that

deg f > 0 and that f is not a K�linear combination of the �

i

's. Therefore

f 2 h�

1

; �

2

; :::; �

n

i

R

G

; i.e., f =

P

n

i=1

p

i

�

i

for some homogenous p

i

2 R

G

with

deg p

i

< d or p

i

= 0: Since p

i

2 K or p

i

=

P

n

j=1

�

k

j

�

j

by assumption, the

claim follows.

FromKrull's Principal Ideal Theorem (Theorem 1.4.6) it follows, that each el-

ement 

i

decrease the dimension ofR at most by 1; so dimK[V ]= h 

1

; :::;  

k

i =

n� k:

We can use the above results for the computation of an hsop in the

following way. Once we have found homogenous elements �

1

; �

2

; :::; �

k

of

K[x

1

; x

2

; :::; x

n

]

G

; we compute the dimension of the ideal h�

1

; �

2

; :::; �

k

i with

the aid of Gröbner bases. Then we apply Lemma 3.1.11 to check whether

�

1

; �

2

; :::; �

n

is an hsop. If dim h�

1

; �

2

; :::; �

n

i = 0 then �

1

; �

2

; :::; �

n

is an hsop

for R

G

: Otherwise we discard the elements �

1

; �

2

; :::; �

n

. Note that the above

results enable us to perform the ideal computations in K[x

1

; x

2

; :::; x

n

]:
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Dade's Algorithm

Originally described in Stanley [38] for �elds of characteristic 0: V. Reiner

and L. Smith have generalized the algorithm to groups G � GL

n

(K) over

a �eld K with jGj

n�1

< jKj ;cf. Reiner and Smith [32] or Smith [40]. This

algorithm is rather fast, but produces in general primary invariants of too

high degree, i.e. they do not form an optimal hsop. We set V = K

n

and

denote the orbit of f 2 K[V ] w.r.t. G with G(f) := f� � f j � 2 Gg:

Furthermore with span

K

(v

1

; v

2

; :::; v

k

) we denote the subspace of V which is

spanned by the elements v

1

; v

2

; :::; v

k

2 V:

Proposition 16 Let V = K

n

and G � GL

n

(K) be a �nite group. Suppose

that there exists a basis f

1

; f

2

; :::; f

n

2 V

�

s.t.

f

i+1

=2

[

�

1

;�

2

:::;�

i

2G

span

K

(�

1

� f

1

; �

2

� f

2

:::; �

i

� f

i

) for 1 � i � n� 1: (3.1)

Then the polynomials F

i

:=

Q

g2G(f

i

)

g for 1 � i � n form an hsop forK[V ]

G

:

Proof. We �rst show that F

i

2 K[V ]

G

for 1 � i � n: For � 2 G we

have � � G(f

i

) = f�� � f j � 2 Gg = G(f

i

); hence F

i

2 K[V ]

G

: We claim

that the variety V

K

(F

1

; F

2

; :::; F

n

) = f0g over the algebraic closure of K:

For each F

i

the variety V(F

i

) =

S

�2G

ker(� � f

i

): Since the linear forms

�

1

� f

1

; �

2

� f

2

:::; �

n

� f

n

are linearly independent for any �

1

; �

2

:::; �

i

2 G, the

intersection of their kernels equals f0g: Hence

V(F

1

; :::; F

n

) =

n

\

i=1

V(F

i

) =

n

\

i=1

[

�

i

2G

ker(�

i

� f

i

)

=

[

�

1

;�

2

:::;�

i

2G

n

\

i=1

ker(�

i

� f

i

) = f0g:

FromLemma 3.1.10 and Lemma3.1.11 it follows that the elementsF

1

; F

2

; :::; F

n

are an hsop in K[V ] and, since K[V ] is integral over K[V ]

G

; they are already

an hsop for K[V ]

G

:

We refer to (3:1) as the Dade condition. A basis f

1

; f

2

; :::; f

n

of V

�

which satis�es the Dade condition is called a Dade basis.

Proposition 17 Let V = K

n

and G � GL

n

(K) be a �nite group. If

jGj

n�1

< jKj then there exists a Dade basis for K[V ]

G

:
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Proof. Let f

1

; f

2

; :::; f

n

be linearly independent elements of V

�

: Note that

for 1 � i � n the cardinality of the subspace span

K

(�

1

� f

1

; �

2

� f

2

:::; �

i

� f

i

)

is jKj

i

and therefore the set

S

�

1

;�

2

:::;�

i

2G

span

K

(�

1

� f

1

; �

2

� f

2

:::; �

i

� f

i

) has

cardinality jGj

i

jKj

i

: If i = n � 1 we have jGj

n�1

jKj

n�1

< jKj

n

= jV

�

j ;

hence one can always �nd an element f

i+1

satisfying (3:1) :

Example 10 Let G =

��

1 0

0 1

�

;

�

0 1

�1 0

�

;

�

�1 0

0 �1

�

;

�

0 �1

1 0

��

be a complex representation of the cyclic group of order 4: We start with

f

1

= x and obtain

G(f

1

) = f�x; y;�y; xg;

so F

1

= x

2

y

2

: Now we must choose f

2

s.t. f

2

is not contained in span

C

(x)[

span

C

(y): A suitable choice is f

2

= x+ y. We get

G(f

2

) = f�x� y;�x+ y; x� y; x+ yg;

so F

2

= x

4

� 2x

2

y

2

+ y

4

: So we have found an hsop of degree (4; 4):From

Proposition 2.5.15 we conclude that the rank ofK[V ]

G

as aK[F1; F2]�module

equals 4 and the generating function for the secondary invariants is 1 + t

2

+

t

4

+ t

6

: But an optimal hsop has degree (2; 4) and the generating polynomial

equals 1 + t

4

; cf. Example 2.5.7.

Algorithm Invariants(G)

In : a �nite group G s.t.jGj

n�1

< jKj

Out : a Dade basis F

1

; :::; F

n

begin

B = fh0ig;

for i = 1 to n do

. select f

i

s.t. f

i

=2

S

b2B

b;

. F

i

:=

Q

g2G(f

i

)

g;

. B =

S

b2B

S

�2G

hb; � � f

i

i ;

end

end;

Kemper's Optimal Algorithm

This algorithm calculates always a minimal hsop for K[x

1

; x

2

; :::; x

n

]

G

and

was introduced in Kemper [23]. We follow closely the presentation in (loc.

cit.).

Theorem 15 (Kemper 1997) Let K be an in�nite �eld, R be a �nitely gen-

erated graded K�algebra with dimR = n and R

0

= K: Let d

1

; :::; d

k

be
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elements of N: The following two conditions are equivalent.

(a) There are homogenous elements f

1

; f

2

; :::; f

k

2 R with deg f

i

= d

i

for

1 � i � k; s.t.

dimR= hf

1

; f

2

; :::; f

k

i = n � k:

(b) For each M � f1; 2; :::; kg we have

dimR=




P

i2M

R

d

i

�

� n� jM j :

Proof. Let f

1

; f

2

; :::; f

k

2 R be homogenous with deg f

i

= d

i

for 1 � i � k

s.t. dimR= hf

1

; f

2

; :::; f

k

i = n � k: Assume that for some M � f1; 2; :::; kg

we have dimR=(

P

i2M

R

d

i

) > n � jM j : From the estimation

dimR= hf

i

j i 2Mi � dimR=




P

i2M

R

d

i

�

> n� jM j

and from the fact the dimension of R= hf

i

j i 2 f1; 2; :::; kgnMi is at least

k�jM j (compare Krull's Principal Ideal Theorem, Theorem 1.4.6), we obtain

dimR= hf

1

; f

2

; :::; f

k

i > n� jM j � (k � jM j) = n� k;

a contradiction.

We prove (b) ) (a) by induction on k: For k = 0 there is nothing to prove.

For M � f1; 2; :::; ng we write

dim

R

(M) := dimR=




P

i2M

R

d

i

�

Now let k > 0 and assume that for each M � f1; 2; :::; kg we have

dim

R

(M) � n� jM j :

For N � f1; 2; :::; k � 1g we de�ne the ideal P

N

in the following way. If

dim

R

(N) = n�jN j then P

N

denotes a minimal prime ideal properly contain-

ing




P

i2N

R

d

i

�

with dimR=P

N

= n � jN j : Otherwise we have dim

R

(N) <

n� jN j and we set P

N

= f0g: From the assumption we have dimR= hR

d

k

i < n

and therefore dimR=

D

P

i2N[fkg

R

d

i

E

� n� jN j � 1 < n � jN j : Hence R

d

k

is not contained in P

N

; so P

N

\ R

d

k

is a proper subspace of R

d

k

. Since K

is in�nite, there exists f

k

2 R

d

k

not contained in any of the ideals P

N

for

N � f1; 2; :::; k� 1g: Now let R = R= hf

k

i and note that dimR = n� 1. For

any N � f1; 2; :::; k � 1g we have

dimR=




P

i2N

R

d

i

+ f

k

�

= dimR=




P

i2N

R

d

i

�

� n� 1� jN j :

The induction hypotheses implies that there exist f

i

2 R

d

i

for 1 � i �

k � 1 s.t. dimR= hf

1

; f

2

; :::; f

k�1

i = n � k + 1: It follows from the inclusion

hf

1

; f

2

; :::; f

k�1

i �

D

P

k�1

i=1

R

d

i

E

that

dimR= hf

1

; f

2

; :::; f

k

i = dimR= hf

1

; f

2

; :::; f

k�1

i = n� 1 � (k � 1) = n� k:



CHAPTER 3. COMPUTING INVARIANT RINGS 51

Note that the implication (a) ) (b) still holds if the �eld K is �nite.

We obtain a corollary, which is very useful for the computation of primary

invariants.

Corollary 6 Let K be an in�nite �eld, R be a �nitely generated graded

K�algebra of Krull dimension n and let d 2 N: The following two con-

ditions are equivalent.

(a) There exist homogenous elements f

1

; f

2

; :::; f

k

2 R of degree d s.t.

dimR= hf

1

; f

2

; :::; f

k

i = n � k;

(b)

dimR= hR

d

i � n� k:

Proof. (a) ) (b) follows from the inclusion hf

1

; f

2

; :::; f

k

i � hR

d

i. For the

converse let d

1

= d

2

= ::: = d

k

= d: Then the claim follows immediately from

Theorem 3.1.15.

The important point of Kemper's Theorem is, that one can decide al-

gorithmically whether an hsop of a given degree exists, provided that the

dimension of ideals and bases for the homogenous components of R can be

computed, which is possible in the context of invariant theory. One drawback

is, that in order to check condition (b) one has to perform 2

k

Gröbner bases

computations in the worst case. The next proposition reduces the number of

Gröbner bases computations to the number of di�erent degrees d

i

:

Proposition 18 Let K be an in�nite �eld, R be a �nitely generated graded

K�algebra of Krull dimension n; and d

1

< d

2

< ::: < d

r

with r � n be natural

numbers. Assume that �

i

= n � dimR=

D

P

i

j=1

R

d

j

E

> 0 for 1 � i � r and

set k =

P

r

i=1

�

i

: Then the following conditions are equivalent.

(a) There exist a set of homogenous polynomials ff

1

; f

2

:::; f

k

g which contains

�

i

polynomials of degree d

i

; s.t.

dimR= hf

1

; f

2

; :::; f

k

i = n � k;

(b)

dimR > dimR=R

d

1

> dimR= hR

d

1

+R

d

2

i > ::: > dimR= h

P

r

i=1

R

d

i

i = n�k:

Proof. We prove both directions with induction on r and remark that for r =

0 there is nothing to prove. We start with (a)) (b): Let r > 0 and f

1

; f

2

:::; f

k
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be homogenous polynomials which satisfy (a) and let t =

P

r�1

i=1

�

i

: From the

hypothesis we know that dimR=




P

r�1

i=1

R

d

i

�

= dimR= hf

1

; f

2

; :::; f

t

i = n� t:

Since �

r

> 0 we have

dimR= hf

1

; f

2

; ; :::; f

t+�

r

i = n� t� �

r

< dimR=




P

r�1

i=1

R

d

i

�

;

hence dimR=




P

r�1

i=1

R

d

i

�

> dimR= h

P

r

i=1

R

d

i

i :

Let r > 0 and assume that (b) holds. We denote dimR=

D

P

i

j=1

R

d

j

E

by

dim

R

(i): From the hypothesis we know that there exist f

1

; f

2

; :::; f

k��

r

which

satisfy the degree requirements from (a) and that dimR= hf

1

; f

2

; :::; f

k��

r

i =

dim

R

(r� 1) It follows from the assumption dim

R

(r� 1) > dim

R

(r) and from

Corollary 3.1.6 that there exist �

r

polynomials f

k��

r�1

+1

; :::; f

�

r

2 R

d

r

s.t:

dimR= hf

1

; f

2

; :::; f

k

i = n� k:

The computation of the dimension of dimR=

D

P

i

j=1

R

d

j

E

for 1 � i �

r can be performed by the following subroutine, which we will describe

schematically.

Dimension (K[x

1

; x

2

; :::; x

n

]= hg

1

; :::; g

m

1

i ; hf

1

; :::; f

m

2

i)

In: The basis of a homogenous ideal I�K[x

1

; x

2

; :::; x

n

]= hg

1

; :::; g

m

1

i(each

f

i

is homogenous).

Out: The Krull dimension of I:

begin

B := GroebnerBasis(g

1

; :::; g

m

1

; f

1

; :::; f

k

; fx

1

; :::; x

n

g); // any ordering

h(t) := Hilbert polynomial of the ideal generated by B;

return(degh(t));

end;

Algorithms for the computation of the Hilbert polynomial can be found in

,e.g., Bayer and Stillman [1] or Bigatti et. al.[4]. An introduction to Hilbert

polynomials and a di�erent algorithm for the dimension can be found, e.g.,

in Cox et. al. [9], see also Becker and Weispfennig [3].

The enumeration of degree vectors plays a fundamental role and in our

implementation it requires three additional functions, namely InitDegree, Ad-

missibleQ, and NextDegree. These algorithms can be exchanged by others,

but must ful�ll the following speci�cation :
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InitDegree (G;K)

In: a �nite matrix group G � GL

n

(K); a �eld K;

Out : -

Initialization of the degree enumeration..

AdmissibleQ (d)

In: a degree vector d.

Out: True; i� there might exist primary invariants, False otherwise.

if char(K) - jGj and jGj j

Q

n

i=1

d

i

and there are enough invariants of

degree d

i

for 1 � i � n; then return(True);

else return(False);

end;

NextDegree (d)

In: a degree vector d.

Out: a degree vector d

0

satisfying

Q

n

i=1

d

i

�

Q

n

i=1

d

0

i

:

We now present Kemper's algorithm for computing primary invariants of

least degree. A rough description of the algorithm is as follows.

In the main loop the algorithm enumerates degree vectors in an increasing

way w.r.t. a multiplicative ordering (cf. the introduction of Section 3.1.1),

and checks if an hsop with the given degree vector might exist. In the non-

modular case simple criteria are the Hilbert series or the Cohen-Macaulay

property (check if there are enough invariants, if H

G

(t) times a polynomial

is a polynomial), then it uses condition (b) of Proposition 3.1.18. If all these

requirements are met, the algorithm TryDegrees is called. In the case of an

in�nite ground �eld, TryDegrees always returns an hsop. This is guaranteed

from Proposition 3.1.18. If the ground �eld is �nite, then an hsop might not

exist, and the algorithm does not leave the main loop.

Warning : The enumeration must deliver all possible degree vectors in the

correct order. Otherwise the algorithm does not produce a set of primary

invariants of least degree.
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Algorithm PrimaryInvariants(G;K)

In: a �nite matrix group G � GL

n

(K); a �eld K;

Out: A minimal hsop.

found := False;

dv = f0; 0; :::; 0g ;

InitDegree(G;K);

while found = False do

. dv := NextDegree(dv);

. if AdmissibleQ(dv) then begin

. d = Union(dv); // set-theoretic union

. i = 1; dimension = n; loop := True;

. while loop do

. dd = dimR=(

P

i

j=1

R

dj

);

. if dimension > dd then dimension = dd;

. else loop = False;

. if i < jdjthen i := i+ 1;

. else loop = False;

. end-while;

. if i = jdj then f�

1

; �

2

; :::; �

n

g :=TryDegrees(d; G);

. if f�

1

; �

2

; :::; �

n

g 6= f0; 0; :::; 0g then found := True;

. end-if ;

end-while;

return(f�

1

; �

2

; :::; �

n

g);

end;

If the �eld K is in�nite and we have found a degree vector, then we

�only� have to �nd the polynomials �

1

; �

2

; :::; �

n

: In the case that K is �nite,

the algorithm tries to �nd polynomials �

1

; �

2

; :::; �

n

: The algorithm performs

a loop over a �nite-dimensional K�vectorspace V: The idea of how one can

perform such a loop is due to Kemper (loc. cit.). Let b

1

; b

2

; :::; b

m

be a basis

of V: We distinguish the two cases:

Case 1 jKj = 1 : Take an injective map � : N

0

,!K and enumerate

the elements of N

n

0

w.r.t. to a total degree ordering. For any such

(k

1

; k

2

:::; k

n

) 2 N

n

0

consider the element

P

n

i=1

�(k

i

) � b

i

2 V:

Case 2 jKj = q < 1 : Take a bijection � : f0; 1; :::; q � 1g! K and enu-

merate the elements of f0; 1; :::; q� 1g

n

w.r.t. to a total degree order-

ing on N

n

0

; restricted on f0; 1; :::; q � 1g

n

: For any such (k

1

; :::; k

n

) 2

f0; 1; :::; q� 1g

n

consider the element

P

n

i=1

�(k

i

) � b

i

2 V:
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The algorithm below is a simpli�ed version of the algorithm TryDegrees

from Kemper (loc. cit.). The algorithm loops over a �nite-dimensional vec-

torspace V: If the ground �eld K is in�nite, termination is guaranteed from

Proposition 3.1.18, and, if jKj < 1; there are only �nitely many combina-

tions.

Algorithm TryDegrees( R;G; fd

1

; d

2

; :::; d

r

g; f�

1

; �

2

; :::; �

r

g)

In: a �nite matrix group G � GL

n

(K); a degree vector d; �

Out: A minimal hsop, if it exists, f0; 0; :::; 0g otherwise.

if m = 0 then return({});

for (�

1

; �

2

; :::; �

�

1

) 2 R

d

1

do

. k := 1;

. while dimR=

�

(�

1

; :::; �

�

1

) +

P

k

i=1

R

d

i

�

= n�

P

k

i=1

�

k

. and k � rdo

. k := k + 1;

. end;

. if k = r + 1 then

. R := R=(�

1

; �

2

; :::; �

�

1

);

. f�

�

1

+1

; �

�

1

+2

; ; :::; �

n

g :=

: T ryDegrees(R; fd

1

; d

2

; :::; d

r

g; f�

2

; �

3

; :::; �

r

g; G);

. end;

. if f�

�

1

+1

; :::; �

n

g 6= f0; :::; 0g then return(f�

1

; :::; �

�

1

; �

�

1

+1

; :::; �

n

g);

end;

return(f0; :::; 0g);

end;

The following example is taken from Rötteler [33] (example 4.3.2)

Example 11 Let G =

�

1

p

2

�

1 1

1 �1

�

;

�

1 0

0 i

��

: The group G is used

in Sloane [36] in order to compute the weight enumeration polynomial of

an error-correcting code, and also to show that a code with certain speci�c

properties does not exist. For details we refer to (loc. cit.). The order of G

equals 192 and from Molien's Theorem we obtain

H

G

(t) =

1

(1� t

8

)(1� t

24

)

:

The implementation of the algorithm PrimaryInvariants in the Invariants

package returns the following hsop :

�

1

= x

8

+ 14x

4

y

4

+ y

8

;

�

2

= x

24

�

1288x

20

y

4

3

+

7429x

16

y

8

3

+

7429x

8

y

16

3

�

1288x

4

y

20

3

+ y

24

:
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Since H(C[�

1

; �

2

]; t) = H

G

(t) the invariant ring equals C[x; y]

G

= C[�

1

; �

2

]:

3.1.2 Secondary Invariants

We present two algorithms, one for the non-modular and one for the modular

case, which is due to Kemper (cf. Kemper [22]). These algorithms take as an

input a set �

1

; �

2

; :::; �

n

of primary invariants, and compute a module basis

for the invariant ring overK[�

1

; �

2

; :::; �

n

]. A di�erent approach is the compu-

tation of the integral closure of K[�

1

; �

2

; :::; �

n

] in its �eld of fractions, which

equals the invariant ring K[V ]

G

: For the computation of the integral closure

we refer to Vasconcelos [44]. In the sequel we abbreviateK[x

1

; x

2

; :::; x

n

] with

K[V ] (cf. Section 2.2).

Nonmodular Case

Let K be a �eld and G � GL

n

(K) be a �nite group and s.t. char(K) - jGj :

From the Hilbert series H

G

(t) and the degrees of the primary invariants we

can immediately compute the rank r of K[V ]

G

as a K[�

1

; �

2

; :::; �

n

]�module

and the degrees of the secondary invariants, using Proposition 2.5.15. In the

sequel let �

1

; �

2

; :::; �

n

be primary invariants of G and r be the rank of K[V ]

G

as a K[�

1

; �

2

; :::; �

n

]�module and A =K[�

1

; :::; �

n

]:

The next two propositions are of technical nature and will be needed in

the algorithm.

Proposition 19 The elements �

1

; �

2

:::; �

r

2 K[V ]

G

are an A�module basis

forK[V ]

G

i� �

1

; �

2

; :::; �

r

are a basis ofK[V ]

G

=A

+

K[V ]

G

as aK�vectorspace.

Proof. Assume that �

1

; �

2

; :::; �

r

is a basis of K[V ]

G

and there exists a re-

lation

P

r

i=1

�

i

�

i

+

P

m

i=1

a

i

h

i

= 0 for some �

i

2 K; a

i

2 A

+

and h

i

2 K[V ]

G

:

Each h

i

can be written as h

i

=

P

r

j=1

�

j

p

(i)

j

; so

P

r

i=1

�

i

�

i

+

P

m

i=1

P

r

j=1

�

j

a

i

p

(i)

j

=

0; which would imply that K[V ]

G

is not a free module.

Conversely, we assume that the elements �

1

; �

2

; :::; �

m

are a K�vectorspace

basis of K[V ]

G

=A

+

K[V ]

G

. We show that M =

P

r

i=1

�

i

A = K[V ]

G

via in-

duction on the degree. Let f 2 K[V ]

G

be a homogenous element of degree

d > 0: The image of f in K[V ]

G

=A

+

K[V ]

G

equals

f =

r

X

i=1

�

i

�

i

+

m

X

i=1

a

i

h

i

for some �

i

2 K; a

i

2 A

+

and h

i

2 K[V ]

G

: Now deg(a

i

h

i

) = d, hence

deg(h

i

) < d, which implies h

i

2 M; hence each h

i

is of the form h

i

=

P

r

j=1

�

j

a

(i)

j

:
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Proposition 20 The elements �

1

; �

2

; :::; �

r

2 K[V ]

G

are a A�module basis

for K[V ]

G

i� their images are linearly independent in K[V ]= h�

1

; �

2

; :::; �

n

i

(w.r.t. K).

Proof. Let �

1

; �

2

; :::; �

r

be an A�module basis of K[V ]

G

: We claim that

the canonical map ' : K[V ]

G

=A

+

K[V ]

G

! K[V ]= h�

1

; :::; �

n

i is injective.

If '(p) = 0 for some p 2 K[V ]

G

=A

+

K[V ]

G

then p 2 h�

1

; :::; �

n

i ; so p =

P

n

i=1

h

i

�

i

for some h

i

2 K[V ]: Now p = R

G

(p) =

P

n

i=1

R

G

(h

i

)�

i

; hence

p 2 A

+

K[V ]

G

: This implies that the elements �

1

; �

2

; :::; �

m

are linearly in-

dependent. Conversely assume that �

1

; �

2

; :::; �

r

are linearly independent in

K[V ]= h�

1

; �

2

; :::; �

n

i : In particular they are linearly independent in the vec-

torspace K[V ]

G

=A

+

K[V ]

G

: But dim K[V ]

G

=A

+

K[V ]

G

= r; hence they form

a basis.

Proposition 21 Let B be an A�module basis ofK[V ]: Then the set R

G

(B) =

�

R

G

(b) j b 2 B

	

contains an A�module basis for K[V ]

G

:

Proof. It follows from the Reynolds properties, that R

G

is an A�module

homomorphism. But R

G

is also a projection.

Now we can state an algorithm for computing secondary invariants. Kem-

per and Steel [24] give a re�ned version of this algorithm, which computes a

subset of irreducible secondary invariants, where a secondary invariant is irre-

ducible if it cannot be written as a polynomial in the primary invariants and

the remaining secondary invariants. The set of primary invariants together

with the irreducible secondary invariants form a minimal set of fundamental

invariants. For details, see (loc. cit.).

Algorithm SecondaryInvariants(G; h�

1

; �

2

; :::; �

n

i)

In: The group G; an hsop �

1

; �

2

; :::; �

n

for K[V ]

G

:

Out:Secondary invariants f�

1

; �

2

:::; �

r

g of K[V ]

G

:

begin

p = H

G

(t) �

Q

n

i=1

(1 � t

deg�

i

); // p = 1 +

P

d

i=1

c

i

t

d

i

B = an A�module basis of K[V ];

�

1

= 1;

for i = 2 to d do

. select c

i

linearly independent elements �

i

j

of R

G

(B

d

i

);

end;

return(�

1

; �

2

; :::; �

r

);

end.

Example 12 (The permutation representation of C

5

) An optimal hsop

has degree (1; 2; 2; 3; 5) so the generating function for the secondary invari-

ants equal 1 + 3t

3

+ 4t

4

+ 3t

5

+ t

8

: The invariants package delivers the
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following primary invariants for C[x

1

; x

2

; x

3

; x

4

; x

5

]

G

:

�

1

= x

1

+ x

2

+ x

3

+ x

4

+ x

5

;

�

2

= x

1

x

3

+ x

1

x

4

+ x

2

x

4

+ x

2

x

5

+ x

3

x

5

;

�

3

= x

1

x

2

+ x

2

x

3

+ x

3

x

4

+ x

1

x

5

+ x

4

x

5

;

�

4

= x

1

x

2

x

4

+ x

1

x

3

x

4

+ x

1

x

3

x

5

+ x

2

x

3

x

5

+ x

2

x

4

x

5

;

�

5

= x

1

x

2

x

3

x

4

x

5

:

and 12 secondary invariants :

f1; x

2

1

x

2

+ x

2

2

x

3

+ x

2

3

x

4

+ x

2

4

x

5

+ x

1

x

2

5

; x

2

1

x

3

+ x

2

2

x

4

+ x

1

x

2

4

+ x

2

3

x

5

+ x

2

x

2

5

;

x

3

1

+ x

3

2

+ x

3

3

+ x

3

4

+ x

3

5

; x

3

1

x

2

+ x

3

2

x

3

+ x

3

3

x

4

+ x

3

4

x

5

+ x

1

x

3

5

;

x

3

1

x

3

+ x

3

2

x

4

+ x

1

x

3

4

+ x

3

3

x

5

+ x

2

x

3

5

; x

1

x

3

3

+ x

3

1

x

4

+ x

2

x

3

4

+ x

3

2

x

5

+ x

3

x

3

5

;

x

4

1

+ x

4

2

+ x

4

3

+ x

4

4

+ x

4

5

; x

4

1

x

2

+ x

4

2

x

3

+ x

4

3

x

4

+ x

4

4

x

5

+ x

1

x

4

5

;

x

4

1

x

3

+ x

4

2

x

4

+ x

1

x

4

4

+ x

4

3

x

5

+ x

2

x

4

5

; x

1

x

4

3

+ x

4

1

x

4

+ x

2

x

4

4

+ x

4

2

x

5

+ x

3

x

4

5

;

x

8

1

+ x

8

2

+ x

8

3

+ x

8

4

+ x

8

5

g:

If we denote the secondary invariants with �

1

; �

2

; :::; �

12

;respectively, we ob-

tain the Hironaka decomposition

R

C

5

=

12

M

i=1

�

i

C[�

1

; �

2

; �

3

; �

4

; �

5

]:

If we had taken the symmetric polynomials as primary invariants then we

would have been forced to compute 25 secondary invariants w.r.t. the gener-

ating function 1 + t

2

+ 3t

3

+ 4t

4

+ 6t

5

+ 4t

6

+ 3t

7

+ t

8

+ t

10

:

Modular Case

We follow Kemper [22]. In this sectionK denotes a �nite �eld; G � GL

n

(K) a

�nite group and �

1

; �

2

; :::; �

n

primary invariants of G: Furthermore we assume

that char(K) j jGj : Set A = K[�

1

; �

2

; :::; �

n

] and let B be a generating set of

G: We reduce the problem to the non-modular case by choosing a subgroup

H � G s.t. char(K) - jHj : A good choice would be a p

0

�Sylow subgroup

with a prime p

0

6= p: Note that the trivial group f1

GL

n

(K)

g always ful�lls the

requirement. Then we compute an A�module basis fb

1

; b

2

; :::; b

r

g of K[V ]

H

with the algorithm SecondaryInvariants. Finally we impose G�invariance

conditions on the elements of K[V ]

H

, which leads us to a system of linear

equations. We have h 2 K[V ]

H

\K[V ]

G

= K[V ]

G

i� � � h = h for all � 2 G:

Let h =

P

r

i=1

b

i

(x)p

i

(�

1

; �

2

; :::; �

n

): Then � � h = h i�

r

X

i=1

(b

i

(x)� � � b

i

(x))p

i

(�

1

; �

2

; :::; �

n

) = 0:



CHAPTER 3. COMPUTING INVARIANT RINGS 59

So we solve the system of jBj linear equations over K[V ]

r

X

i=1

(b

i

(x)� � � b

i

(x))z

i

= 0; for � 2 B (3.2)

and intersect the solution module M with A

r

:

Proposition 22 With the notation from above let fc

1

; c

2

; :::; c

m

g be a basis

of M \ A

r

and set

�

k

=

r

X

i=1

b

i

� c

k;i

; for 1 � k � m:

Then �

1

; �

2

; :::; �

m

form a module basis of K[V ]

G

:

Proof. For 1 � k � m we have c

k;i

2 A and from (3:2) we obtain

P

r

i=1

b

i

(x)c

k;i

=

P

r

i=1

��b

i

(x)c

k;i

:Conversely, let f =

P

r

i=1

a

i

b

i

2 K[x

1

; x

2

; :::;

x

n

]

G

for some a

i

2 A: Since f

�

= f it follows from (3:2) that (a

1

; a

2

; :::; a

r

) 2

M \ A

r

; so (a

1

; a

2

; :::; a

r

) =

P

m

i=1

ea

i

c

i

for some ea

i

2 A and we have f =

P

r

i=1

ea

i

�

i

:

The computation of the basis fc

1

; c

2

; :::; c

m

g of M \A

r

can be done with

the following Lemma, which appears in Kemper (loc. cit.).

Lemma 12 (Kemper 1996) Let R = K[x

1

; x

2

; :::; x

n

];M =

P

m

i=1

R � b

i

� R

r

be a submodule, S =K[x

1

; :::; x

n

; t

1

; :::; t

n

] and T = K[t

1

; t

2

; :::; t

n

]. Set

f

M =

m

X

i=1

S � b

i

+

n

X

i=1

(t

i

� �

i

) � S

r

� S

r

and

f

M

T

=

f

M \ T

r

:

Then with � : T

r

! A

r

; t

i

7! �

j

; we have

�(

f

M

T

) =M \A

r

:

Proof. We denote t

1

; :::; t

n

with t and �

1

; :::; �

n

with �: Let � : R

r

! R

r

=M

be the canonical projection and  : S

r

! R

r

the induced homomorphism

from �: We claim that the kernel of the homomorphism  = � �  equals

f

M: For f =

P

m

i=1

s

i

(x; t) � b

i

+

P

n

i=1

(t

i

� �

i

) � s

0

i

2

f

M we obtain  (f) =

P

s

i=1

s

i

(x;�) � b

i

2 M; hence � �  (f) = 0: We show the other inclusion in

two steps. Firstly, let p be a monomial in T and e

i

be a basis element of
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S

r

: We show via induction on the degree d of p(t

1

; :::; t

n

) that (p(t

1

; :::; t

n

)�

p(�

1

; :::; �

n

)) � e

i

2

f

M: For d = 0 there is nothing to show. If d > 0 then

p(t

1

; :::; t

n

) = t

j

p

0

(t

1

; :::; t

n

) for some j and p

0

2 T with deg p

0

= d � 1: It

follows from the induction hypothesis that (p

0

(t

1

; :::; t

n

)� p

0

(�

1

; :::; �

n

)) � e

i

2

f

M: So

(p(t) � p(�)) � e

i

= (t

j

p

0

(t)� �

j

p

0

(�) + �

j

p

0

(t)� �

j

p

0

(t)) � e

i

= ((t

j

� �

j

) � p

0

(t) + �

j

� (p

0

(t)� p

0

(�))) � e

i

2

f

M:

Now a monomial s 2 S can be written as s = r(x)p(t), and we obtain

(r(x)p(t)� r(x)p(�)) � e

i

= r(x) � (p(t)� p(�)) � e

i

2

f

M:

So for each (s

1

; s

2

; :::; s

r

) 2 S

r

we have

(s

1

; :::; s

r

)� (s

1

j

t

j

=�

j

; s

2

j

t

j

=�

j

; :::; g

r

j

t

j

=�

j

) 2

f

M: (3.3)

If  (s

1

; s

2

; :::; s

r

) = 0; then (s

1

; s

2

; :::; s

r

) 2M; and it follows from (3:3) that

(s

1

j

t

j

=�

j

; s

2

j

t

j

=�

j

; :::; s

r

j

t

j

=�

j

) 2M �

f

M; which proves the claim.

Now we obtain ker( j

T

t
) = ker( ) \ T

r

=

f

M

T

; and we have

 (T

r

) = A

r

=(A

r

\M)

The the �rst homomorphism theorem implies that

T

r

=

f

M

T

�

=

A

r

=(A

r

\M);

which is an isomorphism induced by �; hence �(

f

M

T

) = A

r

\M:

The following algorithm for computing the intersection ofM and A

r

uses

Gröbner bases of modules, which were introduced by Möller and Mora [28],

who also extended the Buchberger algorithm to this case.
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Algorithm Module-Ring-Intersection(B;R)

In: module generators b

1

; :::; b

s

for M; algebra generators for A:

Out: Module generators c

1

; :::; c

m

2 A

r

for M \A

r

:

begin

S := K[x

1

; :::; x

n

; t

1

; :::; t

n

];

fe

1

; :::; e

r

g :=canonical basis of S

r

;

f

M := the module generated by b

i

; i 2 f1; :::; sg and (t

i

� �

i

) � e

j

; i 2

f1; :::; ng; j 2 f1; :::; rg;

�:= a term order on

f

M with x

i

greater than any monomial in the t

j

;

B := GroebnerBasis(

f

M; fx

1

; :::; x

n

; t

1

; :::; t

n

g;�);

B

T

:= B \ (K[t

1

; t

2

; :::; t

n

])

r

;

fc

1

; :::; c

m

g := �(B

T

);

return(fc

1

; :::; c

m

g);

end;

We can now present Kemper's algorithm for the computation of secondary

invariants.

Algorithm SecondaryInvariants(B; h�

1

; :::; �

n

i)

In: A generating set B of the group G; an hsop �

1

; :::; �

n

:

Out:Secondary invariants f�

1

; :::; �

m

g :

begin

let H � G s.t. char(K) - jHj; // default H := f1g

fb

1

; :::; b

s

g :=SecondaryInvariants(H; h�

1

; :::; �

n

i); // non-modular

LetM �K[x

1

; x

2

; :::; x

n

]

r

be the solution module of the following linear

system

r

X

i=1

(�

i

(x)� � � �

i

(x)) � z

i

= 0; for � 2 B;

This amounts to the calculation of a syzygy module;

fc

1

; :::; c

m

g := a basis of M \K[�

1

; :::; �

n

]

r

for i := 1 to m do �

i

:=

P

r

j=1

c

ij

� b

j

; end;

return(�

1

; :::; �

m

);

end.

Remark 4 For the computation of syzygy modules we refer, e.g., to Becker

and Weispfennig [3] or Winkler [47].
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3.2 Fundamental Invariants

In this section we present an new algorithm for computing the intersection

of invariant rings of �nite groups G

1

; G

2

� GL

n

(K) which are given in terms

of fundamental invariants in the nonmodular case. The result is a set of

fundamental invariants for the ring K[x

1

; x

2

; :::; x

n

]

G

1

\ K[x

1

; x

2

; :::; x

n

]

G

2

:

This leads to a new approach for computing the invariant ring of a �nite group

G = h�

1

; :::; �

k

i � GL

n

(K) in the nonmodular case. First one computes

fundamental invariants for the invariant rings K[x

1

; x

2

; :::; x

n

]

h�

i

i

for 1 � i �

k; which can be done for K = C with the algorithms from Section 4.1. Then

it is clear that the invariant ring equals

K[x

1

; x

2

; :::; x

n

]

G

=

k

\

i=1

K[x

1

; x

2

; :::; x

n

]

h�

i

i

: (3.4)

Also the algorithm can be used if the fundamental invariants of several in-

variant rings of some groups G

1

; G

2

; :::; G

k

are already known, and one wants

to compute the invariant ring of the group G = hG

1

[G

2

[ ::: [G

k

i.

3.2.1 The Intersection Algorithm

Let R = K[x

1

; x

2

; :::; x

n

]; G

1

; G

2

and G be �nite subgroups of GL

n

(K) s.t.

G = hG

1

[G

2

i ; where hG

1

[ G

2

i denotes the group generated by the el-

ements of G

1

and G

2

; and assume char(K) - jGj. Suppose that the two

invariant rings R

G

1

= K[f

1

; :::; f

m

1

] and R

G

2

= K[g

1

; :::; g

m

2

] are given in

terms of fundamental invariants. We present an algorithm which computes

the algebra basis fh

1

; h

2

; :::; h

m

g of the intersection of R

G

1

and R

G

2

, i.e.

R

G

1

\R

G

2

= K[h

1

; h

2

; :::; h

m

] = R

G

:

The restriction to the nonmodular case comes from the fact that the algo-

rithm is based on the proof of Hilbert's �niteness Theorem (Theorem 2.3.11)

and holds therefore only for a �eld K with char(K) - jGj : The following

theorem is the key to the algorithm.

Theorem 16 Let G � GL

n

(K) be a �nite group with subgroups G

1

and

G

2

s.t. G = hG

1

[G

2

i : Let




R

G

+

�

E R denote the ideal generated by all

homogenous elements of positive degree from R

G

. Let I = hf

1

; :::; f

m

1

i =

hg

1

; :::; g

m

2

i E R be a proper ideal in R for homogenous elements f

i

2 R

G

1

and g

j

2 R

G

2

;respectively, then

I �




R

G

+

�

=) I =




R

G

+

�

:
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Note : In general, I (




R

G

+

�

:

Proof. If G

1

= G

2

then G = G

1

and R

G

= R

G

1

: If I �




R

G

+

�

then I =




R

G

+

�

because




R

G

+

�

is the largest ideal which can be generated from the invariants

of positive degree. Therefore we may assume R

G

1

6= R

G

2

: We denote the

Reynolds operator of the groups G

k

by

�

k

for k = 1; 2 and of the group G

with

�

: Suppose I )




R

G

+

�

and let h 2 In




R

G

+

�

be a homogenous element

of minimal degree. Then, according to Lemma 1.4.4, we can write h in the

following form :

h =

m

1

X

i=1

p

i

f

i

for some homogenous polynomials p

i

with deg p

i

= deg h � deg f

i

: At least

one of the p

i

's is a nonzero constant, otherwise each f

i

is contained in




R

G

+

�

because of the minimality of h: W.l.o.g. we may assume h = f

1

: Since I is

also generated by g

1

; :::; g

m

2

we have

f

1

=

m

2

X

i=1

r

i

g

i

=

m

2

X

i=1

�

i

g

i

|{z}

=2<R

G

+

>

+

m

2

X

i=1

s

i

g

i

|{z}

2<R

G

+

>

:

for some homogenous polynomials r

i

with deg r

i

= deg f

1

�deg g

i

(cf. Lemma

1.4.4). Note that any g

i

with deg(g

j

) < deg(f

1

) is contained in




R

G

+

�

because

of the minimality of the degree of f

1

: It follows that all �

i

are contained in

K and at least one is nonzero. An application of the Reynolds operator to

f

1

yields f

�

2

1

=

P

m

2

i=1

�

i

g

i

+

P

m

2

i=1

s

�

2

i

g

i

and we have

f

1

� f

�

2

1

=

m

2

X

i=1

(s

i

� s

�

2

i

)g

i

2




R

G

+

�

;

so f

1

� f

�

2

1

mod




R

G

+

�

: Note that the ideal




R

G

+

�

is G� invariant.

Now choose generators G

1

= h�

1

:::; �

a

i and G

2

= h�

1

:::; �

b

i : We show via

induction on the length l of products of the elements from f�

1

:::; �

a

; �

1

; :::; �

b

g

that f

1

� 
 � f

1

� f

�

2

1

� 
 � f

�

2

1

mod




R

G

+

�

for all 
 2 G: The case l = 0 is

trivial. So assume that 
 2 G is a product of l � 1 elements from the set

f�

1

:::; �

a

; �

1

; :::; �

b

g and

f

1

� 
 � f

1

� f

�

2

1

� 
 � f

�

2

1

mod




R

G

+

�

: (+)

For 
�

j

we have 
�

j

� (f

1

�f

�

2

1

) = 
 �f

1

�
�

j

�f

�

2

1

; so 
�

j

�f

�

2

1

� 
 �f

1

and the

induction hypothesis implies that f

1

� 
�

j

� f

1

� 
�

j

� f

�

2

1

mod




R

G

+

�

: Also

for 
�

k

we have 
�

k

� (f

i

�f

�

2

i

) = 
�

k

�f

i

�
 �f

�

2

i

; so 
�

k

�f

i

� 
 �f

�

2

i

� 
 �f

i

:

Thus we have

f

�

1

=

1

jGj

X

�2G

� � f

1

�

1

jGj

X

�2G

f

1

mod




R

G

+

�

:
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Hence

f

1

� f

�

1

mod




R

G

+

�

:

The polynomial f

�

1

is contained in R

G

; in particular f

�

1

2




R

G

+

�

so f

1

� f

�

1

�

0mod




R

G

+

�

which implies f

1

2




R

G

+

�

; a contradiction.

It is su�cient to know an ideal basis for




R

G

+

�

containing only homoge-

nous elements, because the Reynolds images of the generators are a set of

fundamental invariants for G:

Lemma 13 Let hh

1

; h

2

; :::; h

m

i be a set of arbitrary homogenous generators

of the ideal




R

G

+

�

�R. Then R

G

= K[h

�

1

; h

�

2

; :::; h

�

m

]:

Proof. It is su�cient to show that each homogenous invariant of degree > 0

is contained in hh

�

1

; :::; h

�

m

i : Assume the converse and let h =

P

m

i=1

p

i

h 2

hh

1

; h

2

; :::; h

m

i n hh

�

1

; h

�

2

; :::; h

�

m

i be a homogenous invariant of minimal degree

for some p

i

2 K[x

1

; x

2

; :::; x

n

]. Note that for a homogenous f 2 R of with

deg(f) < deg(h) we have f 2 hh

1

; h

2

; :::; h

m

i , f 2 hh

�

1

; h

�

2

; :::; h

�

m

i : As

in the above proof we write h =

P

m

i=1

�

i

h

i

+

P

m

i=1

s

i

h

i

for �

i

2 K and

s

i

2 K[x

1

; x

2

; :::; x

n

] with s

i

= 0 or deg(s

i

) > 0: Now the minimality of h

implies that

P

m

i=1

s

i

h

i

2 hh

�

1

; h

�

2

; :::; h

�

m

i ; so

P

m

i=1

s

i

h

i

=

P

m

i=1

es

i

h

�

i

for some

es

i

: But h = h

�

=

P

m

i=1

�

i

h

�

i

+

P

m

i=1

s

i

h

�

i

; a contradiction. Hence the ideal

hh

�

1

; h

�

2

; :::; h

�

m

i contains all homogenous invariants of positive degree, and we

have hh

�

1

; h

�

2

; :::; h

�

m

i =




R

G

+

�

= hh

1

; h

2

; :::; h

m

i :

For a di�erent proof see Derksen [12] Lemma 2.2 of ch. 1.

We can now state the intersection algorithm. The algorithm computes

a basis for the ideal




R

G

+

�

and applies the Reynolds operator to each basis

element.

Algorithm Intersection(hf

1

; f

2

; :::; f

m

1

i ,hg

1

; g

2

; :::; g

m

2

i ; �)

In: Algebra generators f

1

; f

2

; :::; f

m

1

for R

G

1

and g

1

; g

2

; :::; g

m

2

for R

G

2

:

The Reynolds operator

�

for the group hG

1

[ G

2

i :

Out: Algebra generators h

1

; h

2

; :::; h

m

for R

hG

1

[G

2

i

:

begin

I

1

:= hf

1

; f

2

; :::; f

m

1

i ;

I

2

:= hg

1

; g

2

; :::; g

m

2

i ;

while I

1

6= I

2

do

. I := I

1

\ I

2

;

. I

1

:=




I \R

G

1

�

; == Intersection of I with the subring R

G

1

:

. I

2

:=




I \R

G

2

�

; == Intersection of I with the subring R

G

2

:

end;

return(I

�

1

); // Apply the Reynolds operator to each basis element.

end Intersection.
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For comparing two ideals and for the computation of their intersection we

refer to Cox et. al.. [9] and Becker and Weisspfennig [3]. The computation

of the intersection of an ideal with an invariant ring is described in section

2.6 of Sturmfels [43].

The termination and correctness of the algorithm follows from the next

two theorems.

Lemma 14 In each iteration of the while loop the ideal




R

G

+

�

is contained

in I

1

\ I

2

:

Proof. Follows from the inclusion of ideals hf

1

; f

2

; :::; f

m

1

i �




R

G

+

�

and

hg

1

; g

2

; :::; g

m

2

i �




R

G

+

�

and the equality R

G

= R

G

1

\R

G

2

:

Theorem 17 The algorithm Intersection terminates.

Proof. Consider the residue class ring R = R=




R

G

+

�

: Since R is zero-

dimensional it is Artinian, hence each strictly descending sequence

�

J

k

	

of

ideals must stabilize, i.e. J

N

= J

N+k

for some N 2 N and all k 2 N: Let J

n

be the intersection I

1

\ I

2

in the n�th iteration of the while loop and denote

the image of J

n

in R with J

n

: We obtain a strictly descending sequence of

ideals in R; hence after a �nite number of steps the sequence stabilizes. The

proof follows from the fact, that the ideals in R correspond uniquely to ideals

in R containing




R

G

+

�

.

Theorem 18 The algorithm Intersection is correct.

Proof. It follows from Theorem 3.2.17 that I

1

= I

2

after a �nite number

of iterations of the while loop. Now Lemma 3.2.14 implies that I

1

and I

2

satisfy the condition of Theorem 3.2.16. Let h

1

; h

2

; :::; h

m

2 R

G

1

be a set of

homogenous generators for the ideal I

1

; then we know from Lemma 3.2.13

that R

G

= K[h

�

1

; h

�

2

; :::; h

�

m

]:

Example 13 LetK = F

5

; �

1

=

�

1 2

3 4

�

; �

2

=

�

0 3

1 2

�

and G = h�

1

; �

2

i.

Note that jGj = 96: The subgroup h�

1

i has order 8 and R

h�

1

i

is generated by

the fundamental invariants

F

1

= fx

4

+ x

2

y

2

+ y

4

; x

3

y + 4x

2

y

2

+ 4xy

3

+ 3y

4

;

x

8

+ 2x

3

y

5

+ 4x

2

y

6

+ 3xy

7

+ 2y

8

; x

7

y + 2x

3

y

5

+ 2x

2

y

6

+ 2xy

7

+ 4y

8

g

The subgroup h�

2

i has order 4 and R

h�

2

i

is generated by the fundamental

invariants

F

2

= fx

2

+ 3xy + y

2

; x

3

+ 3xy

2

+ y

3

; x

4

+ 3x

2

y

2

+ 4xy

3

+ y

4

g
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The fundamental invariants F

1

and F

2

have been found with the implemen-

tation of Kemper's algorithms in the computer algebra system Magma (cf.

[6]). Now we call Intersection(F

1

; F

2

;R

G

) (from the Invariants package)

and obtain fundamental invariants for R

G

;namely

h

1

= 3x

12

+ x

11

y + 3x

10

y

2

+ x

8

y

4

+ 4x

7

y

5

+

2x

5

y

7

+ x

4

y

8

+ 2x

2

y

10

+ 3xy

11

+ 3y

12

;

h

2

= 2x

8

+ x

7

y + x

6

y

2

+ 2x

5

y

3

+ 3x

4

y

4

+ 4x

3

y

5

+ 4x

2

y

6

+ 3xy

7

+ 2y

8

:

Hence

F

5

[x; y]

G

= F

5

[h

1

; h

2

]:

3.2.2 Computation of Fundamental Invariants

From the observation (3:4) we can derive a simple algorithm for the computa-

tion of the fundamental invariants of the invariant ring of G = h�

1

; :::; �

k

i �

GL

n

(K) in the nonmodular case. An algorithm for the computation the fun-

damental invariants of a cyclic group h�i � GL

n

(C) can be found in section

4.1.

Algorithm InvariantRing(�

1

; :::; �

k

)

In: Generators �

1

; :::; �

k

for the �nite group G � GL

n

(K):

Out: Algebra generators h

1

; :::; h

m

for K[V ]

G

:

begin

Compute a generating set H for K[V ]

h�

1

i

;

for i := 2 to k do

. Compute a generating set B for K[V ]

h�

i

i

;

. Compute the Reynolds operator

�

for h�

1

; :::; �

i

i ;

. H :=Intersection(H;B;

�

);

end;

return(H);

We conclude with two examples.

Example 14 Let G

1

=

��

0 1

�1 0

��

; G

2

=

��

1 0

0 �1

��

and G =

hG

1

[ G

2

i be subgroups of GL

n

(C): Now C[V ]

G

1

= C[x

2

+ y

2

; x

4

+ y

4

; x

3

y�

x y

3

] and C[V ]

G

2

= C[x; y

2

]: Using the algorithm Intersection we obtain al-

gebra generators for C[x; y]

G

= C[x

2

+ y

2

;

1

2

(x

4

+ y

4

)]: In the last step of the

algorithm, the Reynolds operator is applied to the generators fy

4

; x

2

+ y

2

g of

the ideal




C[x; y]

G

+

�

:
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Example 15 Let �

1

=

0

@

0 1 0

�1 0 0

0 0 �1

1

A

and �

2

=

0

@

0 0 1

1 0 0

0 1 0

1

A

: From

Example 5.4.37 we obtain fundamental invariants for G

1

= h�

1

i ; namely

F

1

= fx

2

+ y

2

; z

2

; xyz; x

2

z � y

2

z; x

2

y

2

; x

3

y � xy

3

g:

Fundamental invariants for G

2

= h�

2

i can be easily computed, we take pri-

mary and secondary invariants (without 1) of G

2

; i.e.

F

2

= fx+ y + z; xy + xz + yz; xyz; x

2

y + xz

2

+ y

2

zg:

We set G = h�

1

; �

2

i and call Intersection(F

1

; F

2

;R

G

) and obtain

h

1

= x

2

+ y

2

+ z

2

;

h

2

= xyz;

h

3

= 2x

4

+ x

2

y

2

+ 2y

4

+ x

2

z

2

+ y

2

z

2

+ 2z

4

:

Since H

G

(t) = H(C[h

1

; h

2

; h

3

]; t) the result is correct.

It is an interesting question whether the algorithm Intersection can be

generalized to linear reductive groups. If so, it might be an alternative to

Derksen's algorithm.



Chapter 4

Selected Topics

In this chapter we deal with various aspects of invariant theory. In the �rst

section we present specialized algorithms for Abelian groups. In section 2

we study the induced action of the dual representation on the tensor and

exterior algebra. In section 3 we present Stanley's summation example and

in section 4 we how one can prove theorems in projective geometry with

invariant theory.

4.1 Abelian Groups

In this section we present a Gröbner bases free algorithm for the computation

of the invariant ring of a �nite Abelian group. For a di�erent approach (with

one Gröbner basis computation) we refer to Sturmfels [43], section 2.5.

Let G be a �nite abelian group and � be any n�dimensional faithful

representation of G: Since each irreducible representation of an abelian group

is one-dimensional (cf. Corollary 1.2.1), the matrices �(�) 2 GL

n

(C); � 2 G

can be diagonalized simultaneously and contain roots of unity in the diagonal.

This additional structure information can be used for the computation of the

invariant ring of �(G):

Convention : We only consider faithful representations. If G = Z

n

1

� :::�Z

n

k

and � : G! GL

n

(C) has non-trivial kernel H; then we consider the induced

representation �

0

: G=H ! GL

n

(C); gH 7! �(g): Since the roots of unity

play such an important role we need an abbreviation for them.

De�nition 39 For k 2 N we de�ne �

k

:= exp(2�i=k):

In the �rst two sections we study faithful representations of �nite cyclic

groups, which are generated by diagonal matrices, in section three we treat

68
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arbitrary �nite cyclic groups. In section four we show how one can com-

pute the invariant ring of arbitrary faithful representations � of �nite abelian

groups Z

n

1

� :::� Z

n

k

from the knowledge of �

jZ

n

j

for 1 � j � k:

None of the presented algorithms use Gröbner bases, but use only simple

ideas from linear algebra.

4.1.1 Cyclic Groups - Diagonal Form (1)

We start with the simplest non-trivial case, namely with irreducible repre-

sentations.

Proposition 23 For n 2 N the invariant ring of Z

n

w.r.t. any irreducible

representation � is simply the polynomial ring K[x

j�j

]; : where j�j denotes the

order of the group �(Z

n

):

In the sequel we study reducible (faithful) representations of G: We be-

gin with cyclic groups where all elements are diagonal matrices of the form

diag(�

d

1

; �

d

2

; :::; �

d

n

) for some d

1

; d

2

; :::; d

n

2 N

0

:

Example 16 Let G = f1;�1;�i; ig be the cyclic group of order 4. Consider

the representation �(i

k

) =

0

@

(�1)

k

0 0

0 (�1)

k

0

0 0 i

k

1

A

for k 2 f0; 1; 2; 3g.

A monomial x

a

y

b

z

c

is invariant w.r.t. �(G) if and only if �(i) � x

a

y

b

z

c

=

x

a

y

b

z

c

:It su�ces to look at the exponents of this equation, hence

(�x)

a

(�y)

b

(i � z)

c

= x

a

y

b

z

c

,

exp(

2�i

2

a) exp(

2�i

2

b) exp(

2�i

4

c) = 1,

exp(

�i

2

(2a+ 2b+ c)) = 1,

2a+ 2b+ c � 0mod 4:

Therefore we consider the solution set of the equations

2a+ 2b+ c = 4p for p 2 N

0

: (4.1)

For p = 1 we have the solutions (2; 0; 0); (0; 2; 0); (0; 0; 4); (1; 1; 0); (0; 1; 2) and

(1; 0; 2): From the �rst 3 solutions we obtain primary invariants x

2

; y

2

; z

4

(cf.

Lemma 3.1.10) and set R = C[x

2

; y

2

; z

4

]: From the remaining solutions we

obtain secondary invariants xy; xz

2

and yz

2

: In the case p = 2 we obtain the

solutions (0; 1; 6); (0; 2; 4); (0; 3; 2); (0; 4; 0); (1; 0; 6); (1; 1; 4); (1; 2; 2); (1; 3; 0);
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(2; 0; 4); (2; 1; 2); (2; 2; 0); (3; 0; 2); (3; 1; 0); (4; 0; 0): For each such solution (�

1

;

�

2

; �

3

) it holds that �

1

or �

2

� 2 or �

3

� 4: So each monomial x

�

1

y

�

2

z

�

3

can be expressed as a product of the primary and secondary invariants from

above. The Hilbert series of the ring obtained so far can be computed with

Proposition 2.5.5 and equals

H(R

M

xyR

M

xz

2

R

M

yz

2

; t) =

1 + t

2

+ 2t

3

(1� t

2

)

2

� (1� t

4

)

: (4.2)

It remains to show that there are no more secondary invariants left, which

can be done by comparing (4:2) with H

�(G)

(t). The Hilbert series H

�(G)

(t)

can be evaluated with Molien's Theorem (Theorem 2.4.12) equals (4:2).

We can generalize the observation from the preceding example. Let m 2

N and G = Z

m

with generator �; i.e. G = f�

i

j 0 � i � m� 1g : In the

sequel we consider faithful representations � : Z

m

! GL

n

(C) with �(�) =

0

B

B

B

@

�

d

1

0 : : : 0

.

.

. �

d

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : �

d

n

1

C

C

C

A

: We have lcm(d

1

; :::; d

n

) = j�(G)j = m: A monomial

Q

n

j=1

x

�

j

j

is invariant w.r.t. �(G) i�

�(�

�1

) �

n

Y

j=1

x

�

j

j

=

n

Y

j=1

(�

d

j

x

j

)

�

j

=

n

Y

j=1

(�

d

j

)

�

j

n

Y

j=1

x

�

j

j

=

n

Y

j=1

x

�

j

j

(4.3)

()

n

X

j=1

2�i �

�

j

d

j

= 2�i � p for some p 2 Z:

()

n

X

j=1

�

j

�m

d

j

= m � p for some p 2 Z: (4.4)

De�nition 40 In the context from above the equation

n

X

j=1

m

d

j

a

j

= m � p for some p 2 Z (4.5)

is called the characteristic equation of �(G) w.r.t. p:

We do not drop m from both sides of the equation because we want to

have equations over the positive integers:
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De�nition 41 Let n 2 N and �(G) =




diag(�

d

1

; �

d

2

; :::; �

d

n

)

�

for some

d

1

; :::d

n

2 N: We denote the order of �(G) with m: For p 2 N

0

we de-

note the set of solutions of the characteristic equation of �(G) w.r.t. p with

S

p

(�(G); (d

1

; :::d

n

)) := f(�

1

; :::; �

n

) 2 N

n

0

j

P

n

j=1

�

j

�m

d

j

:

= m � p; each �

j

< d

j

for 1 � j � ng; and we de�ne S(�(G); (d

1

; :::d

n

); t) :=

S

t

p=0

S

p

(�(G); (d

1

; :::d

n

)):

Furthermore we set S(�(G); (d

1

; :::d

n

)) :=

S

n�1

p=0

S

p

(�(G); (d

1

; :::d

n

); n� 1):

For a cyclic group, which is generated by a diagonal matrix of the above

kind, the invariant ring can be easily computed.

Theorem 19 Let n 2 N and �(G) =




diag(�

d

1

; �

d

2

; :::; �

d

n

)

�

for some d

1

; :::d

n

2 N: The primary invariants of �(G) are given by x

d

1

1

; :::; x

d

n

n

: A set of sec-

ondary invariants is given by the monomials

Q

n

j=1

x

�

j

j

with � 2 S(�(G); (d

1

; :::;

d

n

)):

Proof. The monomials x

d

1

1

; :::; x

d

n

n

are invariant w.r.t. �(G) and the set

of their common zeros equals f0g: Now Lemma 3.1.10 and Lemma 3.1.11

imply that they are primary invariants of �(G). We claim that there are no

secondary invariants missing. From (4:4) we know that a monomial

Q

n

j=1

x

�

j

j

is invariant i� � satis�es the characteristic equation for some p 2 N: Suppose

that

Q

n

j=1

x

�

j

j

is an invariant and �

k

� d

k

for some k. Now we set �

j

= �

j

and 


j

= 0 if �

j

< d

j

and �

j

= �

j

� d

j

and 


j

= d

j

otherwise, and obtain

Q

n

j=1

x

�

j

j

=

Q

n

j=1

x

�

j

j

Q

n

j=1

x




j

j

with �

k

< d

k

. The monomial

Q

n

j=1

x




j

j

is a

product of primary invariants which proves the claim. We substitute d

j

� 1

for a

j

in the left hand side of (4:5) and obtain the estimation

n

X

j=1

m

d

j

(d

j

� 1) < m � n:

Therefore the elements of S(�(G); (d

1

; :::d

n

)) correspond to degree vectors of

a set of secondary invariants.

Note that the number of equations to solve equals

$

n

X

j=1

1

d

j

(d

j

� 1)

%

< n: (4.6)

4.1.2 Cyclic Groups-Diagonal Form (2)

We extend the above theory to all representations of cyclic groups, which are

already diagonalized. Let G = h�i be a cyclic group of order m and � : G!
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GL

n

(C) be a faithful representation with �(�) =

0

B

B

B

@

�

k

1

d

1

0 : : : 0

.

.

. �

k

2

d

2

: : :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : �

k

n

d

n

1

C

C

C

A

for some d

1

; d

2

; :::d

n

; k

1

; k

2

; :::; k

n

2 N with gcd(k

j

; d

j

) = 1 for 1 � j � n:

It follows with the same calculation as in (4:3) that a monomial

Q

n

j=1

x

�

j

j

is

invariant w.r.t. �(G) i�

P

n

j=1

k

j

�

j

m

d

j

:

= s�m for some s 2 N: The characteristic

equation of �(G) w.r.t. p equals

n

X

j=1

k

j

�m

d

j

a

j

= m � p:

The following example shows that the estimation (4:6) is no longer valid,

so in general we have to solve more than n � 1 equations.

Example 17 Let G =




diag(�

2

5

; �

3

5

)

�

(and take � = id): The characteristic

equations of G w:r:t: p equals

2a+ 3b = 5 � p:

We have the solutions (1; 1) for p = 1; (2; 2) for p = 2; (3; 3) for p = 3 and

(4; 4) for p = 4: Hence the invariant ring K[x; y]

G

is generated as a K[x

5

; y

5

]

module by the monomials 1; xy; x

2

y

2

; x

3

y

3

; x

4

y

4

: But we were forced to solve

4 equations, not 1 as one would expect from (4:6).

For computational purposes it would be nice to reduce the problem of

�nding the solutions S(G; (d

1

; d

2

; : : : ; d

n

)) to a cyclic group from Section 4.1.1

because for such groups we have at most n�1 equations to solve. The above

example shows that this bound is not longer valid if we consider arbitrary

cyclic groups.

Theorem 20 Let G =




diag(�

k

1

d

1

; �

k

2

d

2

; :::; �

k

m

d

m

)

�

� GL

m

(C) be a cyclic group

of orderm s.t. gcd(k

j

; d

j

) = 1 for 1 � j � n and set G

0

=




diag(�

d

1

; �

d

2

; :::; �

d

m

)

�

:

The map

'

G

: S(G

0

)! S(G)

(�

1

; :::; �

m

) 7! (�

1

� k

�1

1

mod d

1

; :::; �

m

� k

�1

m

mod d

m

);

where the inverse of k

j

is taken in Z

d

j

; is a bijection.

Proof. Assume

P

n

j=1

1

d

j

�

j

= p for some p 2 N

0

: Then

P

n

j=1

k

j

d

j

(�

j

k

�1

j

) =

P

n

j=1

1

d

j

�

j

= p:
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Example 18 We consider the same group G =




diag(�

2

5

; �

3

5

)

�

as in Example

17. The characteristic equations of G

0

w:r:t: s equals

a+ b = 5 � s:

We have the solutions (1; 4); (2; 3); (3; 2) and (4; 1) for s = 1: From Theorem

4.1.19 we know that these are all solutions. We transform the solutions w.r.t.

the map '

G

and obtain (1; 1); (2; 2); (3; 3); (4; 4) as required.

4.1.3 Cyclic Groups-General Case

Let G be a cyclic group with generator � and �; �

0

: G! GL

n

(C) be faithful

equivalent representations of G s.t. �(�)

�

=

�

0

(�) = diag(�

k

1

d

1

; �

k

2

d

2

; :::; �

k

m

d

m

) for

some k;d 2 N

n

with gcd(k

i

; d

i

) = 1: Firstly we examine the eigenvectors of

the dual action �

�

on (C

n

)

�

: If v

�

2 (C

n

)

�

then v denotes the image of v

�

under the isomorphism

�

(cf. Section 2.2).

Proposition 24 For v

�

2 (C

n

)

�

and � 2 Cn f0g we have

�

�

(�)(v

�

) = �v

�

() �(�

�1

)

T

� bv = �bv:

Proof. From de�nition 2.2.31 we obtain

�

�

(�)(v

�

) = �v

�

() 8bw 2 C

n

:




bv; �(�

�1

) � bw

�

= h� � bv; bwi

() 8bw 2 C

n

:




�(�

�1

)

T

� bv; bw

�

= h�bv; bwi

() �(�

�1

)

T

� bv = �bv:

Let v

1

; v

2

; :::; v

n

be the eigenvectors of �(�)

T

with eigenvalues �

k

1

d

1

; �

k

2

d

2

; :::; �

k

m

d

m

respectively. From Proposition 4.1.24 and the above discussion we obtain

Sym

d

�

�

(�

�1

)(v

�

j

1

� v

�

j

2

� : : : � v

�

j

d

) =

d

Y

r=1

�

k

j

r

d

j

r

(v

�

j

1

� v

�

j

2

� : : : � v

�

j

d

): (4.7)

If we chose the basis x

1

; x

2

; :::; x

n

of (C

n

)

�

we can consider the elements of

Sym

d

(C

n

)

�

as homogenous polynomials of degree d in the variables x

1

; x

2

; :::; x

n

:

It follows from (4:7) that v

�

j

1

� v

�

j

2

� : : : � v

�

j

d

is invariant w.r.t. �(G) i�

P

d

r=1

k

j

r

�m

d

j

r

:

= m � p for some p 2 N: For the computation of the in vari-

ant ring K[V ]

�(G)

it su�ces to compute the eigenvectors of �(�)

T

and form

the products of them, considering the elements of S(G) as degree vectors.



CHAPTER 4. SELECTED TOPICS 74

Theorem 21 The polynomials

�

v

�

j

�

d

j

and

Q

n

j=1

�

v

�

j

�

�

j

,� 2 S(G); in the

variables x

1

; x

2

; :::; x

n

are primary and secondary invariants for �(G) respectively.:

Proof. Since v

1

; v

2

; :::; v

n

are linearly independent, the common zeros of the

linear forms v

�

1

; v

�

2

; :::; v

�

n

, considered as polynomials in x

1

; x

2

; :::; x

n

equal f0g:

The proof follows from the fact that for � 2 S(G) the products

Q

n

j=1

�

v

�

j

�

�

j

are linearly independent and the Hilbert series of K[V ]

�(G)

equals the Hilbert

series of K[V ]

�

0

(G)

:

A set of primary and secondary invariants of �(G) can be constructed

from the solution set S(�

0

(G)) and the eigenvectors of �(�)

T

:

Algorithm Invariants(h�i)

In : The generator � 2 GL

n

(C) of a cyclic group G:

Out : Primary invariants �

1

; �

2

; :::; �

n

and secondary invariants �

1

; �

2

; :::; �

r

:

begin

�

�

k

1

d

1

; �

k

2

d

2

; :::; �

k

m

d

m

�

:= the eigenvalues of �

�1

;

(v

1

; v

2

; :::; v

m

) := the eigenvectors of (�

�1

)

T

;

The eigenvectors are written w.r.t. the basis x

1

; x

2

; :::; x

n

:

for j := 1 to n do �

j

=

�

v

�

j

�

d

j

end;

m := 1;

for � 2 S(G) do

. �

m

=

Q

n

j=1

�

v

�

j

�

�

j

;

: m := m+ 1;

end;

return(f�

1

; �

2

; :::; �

n

g f�

1

; �

2

; :::; �

r

g);

end.

Example 19 Let � =

�

0 1

�1 0

�

and G = h�i be the cyclic group of order

4: The eigenvalues of � are i and �i. The corresponding eigenvectors of �

T

are bv

1

=

�

i

1

�

and bv

2

=

�

�i

1

�

: The primary invariants are

�

1

= (ix+ y)

4

= x

4

� 4ix

3

y � 6x

2

y

2

+ 4ixy

3

+ y

4

;

�

2

= (�ix+ y)

4

= x

4

+ 4ix

3

y � 6x

2

y

2

� 4ixy

3

+ y

4

:

The solution set S(G)equals f(0; 0); (1; 1); (2; 2); (3; 3)g: Hence secondary in-

variants are given by

�

1

= 1;

�

2

= (ix+ y)(�ix+ y);

�

3

= (ix+ y)

2

(�ix+ y)

2

;

�

4

= (ix+ y)

3

(�ix+ y)

3

:



CHAPTER 4. SELECTED TOPICS 75

We have the Hironaka decomposition

K[x; y]

G

=K[�

1

; �

2

]� �

2

K[�

1

; �

2

]� �

3

K[�

1

; �

2

]� �

4

K[�

1

; �

2

]:

4.1.4 Abelian Groups

We extend the results of the previous two sections to all faithful represen-

tations of �nite abelian groups. In the sequel let G = h�

1

; :::; �

t

i be a �nite

abelian group and � : G ! GL

n

(C) be a faithful representation and set

V = C

n

. Since G is abelian, there exists a matrix T s.t. T�(�)T

�1

is

a diagonal matrix for each � 2 G: Let �

0

(�) := T�(�)T

�1

with �

0

(�

j

) =

diag(�

k

(j)

1

d

(j)

1

; �

k

(j)

2

d

(j)

2

; :::; �

k

(j)

m

d

(j)

m

) be the corresponding representation of G:

Proposition 25 Let e

1

; e

2

; :::; e

n

be the canonical basis of V and let T be a

matrix, which diagonalizes �(G) simultaneously. Then, for 1 � j � n; T

�1

e

j

is an eigenvector for � 2 G:

Proof. From

T�

k

T

�1

� e

j

= � � e

j

for some eigenvalue of �

k

it follows that

�

k

(T

�1

� e

j

) = �(T

�1

� e

j

):

Hence T

�1

� e

j

is an eigenvector of �

k

with eigenvector �:

The main result is contained in the next theorem.

Theorem 22 Assume �

0

(�

r

) = diag(�

k

(r)

1

d

(r)

1

; �

k

(r)

2

d

(r)

2

; :::; �

k

(r)

m

d

(r)

m

) with gcd(k

(r)

l

; d

(r)

l

) =

1; and let m

l

= lcm(d

(1)

l

; :::; d

(t)

l

) for 1 � t � r. If d

(r)

l

= 1 then set

k

(r)

l

= 0: Set u

(r)

=

�

P

n

j=1

k

(r)

j

d

(r)

j

(m

j

� 1)

�

and S

(r)

= f'

(d

(r)

1

;:::d

(r)

n

)

(�) j � 2

S h�

r

i ; fm

1

;m

2

; :::;m

n

g ; u

(r)

g. Then with

M =

t

\

j=1

S

(j)

:

the monomials x

m

1

1

; x

m

2

2

; :::x

m

n

n

are primary invariants and

�

Q

n

l=1

x

�

j

l

j � 2M

	

is a set of secondary invariants for K[V ]

G

:

Proof. Follows using the same argumentation as in the proof of Theorem

4.1.19.

One could also compute the intersection of the invariant rings K[V ]

h�

j

i

with the algorithm Intersection in Section 3.2.
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Algorithm Invariants(h�

1

; :::; �

t

i ; T )

In : The generators �

j

2 GL

n

(C) of an abelian group G in diagonalized

form, a matrix T which diagonalizes �

k

:

Out : Primary invariants �

1

; :::; �

n

and secondary invariants �

1

; :::; �

r

of

K[V ]

G

:

begin

for j := 1 to n do v

�

j

= T

�1

� x

j

end // consider v

�

j

as polynomials in

x

1

; x

2

; :::; x

n

:

for j := 1 to n do m

j

:= lcm(d

(1)

l

; :::; d

(t)

n

); �

j

:=

�

v

�

j

�

m

j

end

M =

T

t

r=1

S

(r)

;

for � 2M do

. �

�

:=

Q

n

l=1

�

v

�

j

�

�

j

;

end;

return(f�

1

; :::; �

n

g ; f�

�

j � 2Mg);

end.

Example 20 Let G = hdiag(�1;�1; 1); diag(1; 1; i)i :We have m

1

= 2;m

2

=

2;m

3

= 4; so u

(1)

=

�

1

2

+

1

2

+ 0

�

= 1 and u

(2)

=

�

0 + 0 +

3

4

�

= 1:S

(1)

=

f(0; 0; 2); (1; 1; 0)g and S

(2)

= f(1; 1; 0)g: We obtain �

1

= x

2

1

; � = x

2

2

; � = x

4

3

as primary invariants and �

1

= 1; �

2

= x

1

x

2

as secondary invariants. Note

that the Hilbert series equals

H

G

(t) =

1 + t

2

(1 � t

2

)

2

(1� t

4

)

=

1

(1� t

2

)

3

but an hsop with degree (2; 2; 2) does not exist.

4.1.5 Fundamental Invariants

Let G be a �nite abelian group and � : G ! GL

n

(C) be a faithful rep-

resentation. We assume that the solution set M according to Theorem

4.1.22 of the preceding section has already been computed and we set F =

M [f(m

1

; 0:::); (0;m

2

; :::); :::; (0; :::; 0;m

n

)g:We call � 2 F irreducible i� �

cannot be written as the sum of two elements from F: Note that the primary

and the secondary invariants form a set of fundamental invariants.

Proposition 26 The set of all irreducible elements of F correspond to a set

of fundamental invariants.

Proof. Follows from the de�nition of fundamental invariants.

Example 21 In Example 4.1.19 the elements �

1

; �

2

; �

2

are fundamental in-

variants for G:
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We obtain the following algorithm for the computation of fundamental

invariants of a �nite abelian group G = h�

1

; :::; �

t

i � GL

n

(C):

Algorithm FundamentalInvariants(h�

1

; :::; �

t

i ; T )

In : The generators �

j

2 GL

n

(C) of an abelian group G in diagonalized

form, a matrix T which diagonalizes �

k

:

Out : Fundamental invariants h

1

; h

2

; :::; h

k

of K[V ]

G

:

begin

for j := 1 to n do v

�

j

= T

�1

� x

j

end // consider v

�

j

as polynomials in

x

1

; x

2

; :::; x

n

:

for j := 1 to n do m

j

:= lcm(d

(1)

l

; :::; d

(t)

n

); end

M =

T

t

r=1

S

(r)

;

F = the set of all irreducible � of M ; k := 1;

for � 2 F do

. h

k

:=

Q

n

l=1

�

v

�

j

�

�

j

;

. k := k + 1;

end;

return(fh

1

; h

2

; :::; h

k

g);

end.

4.1.6 Relative Invariants

We want to compute the module of relative invariants of abelian groups w.r.t.

their characters. LetG = h�i be a cyclic group of ordermwith representation

� : G! GL

n

(C); s.t. �(�) = diag(�

d

1

; �

d

2

; :::; �

d

n

) and let � : G! Cnf0g be

a character of a one-dimensional representation of G: A monomial

Q

n

j=1

x

�

j

j

is a relative � invariant i�

�(�

�1

) �

n

Y

j=1

x

�

j

j

= �(�)

n

Y

j=1

x

�

j

j

: (4.8)

Let �(�) = �

s

m

; then (4:8) is satis�ed i�

n

X

j=1

�

j

m

d

j

= p �m+ s for some p 2 Z: (4.9)

We call this equation the characteristic s equation of G w.r.t. k: It follows

from the estimation

n

X

j=1

m

d

j

(d

j

� 1) < m � n < m � n+ s
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that it is enough to solve n � 1 such equations. In the sequel let � :

G ! GL

n

(C) be a representation s.t. �(�) = diag(�

k

1

d

1

; �

k

2

d

2

; :::; �

k

n

d

n

) with

gcd(k

j

; d

j

) = 1:

De�nition 42 For p 2 N

0

we denote the set of solutions of the charac-

teristic s equation of G w.r.t. p with S

p;s

(G; (d

1

; :::d

n

)) := f(�

1

; :::; �

n

) 2

N

n

0

j

P

n

j=1

�

j

�n

d

j

= m � p + s;each �

j

< d

j

for 1 � j � ng; and we de�ne

S

s

(G; (d

1

; :::d

n

); t) :=

S

t

p=0

S

p;s

(G; (d

1

; :::d

n

))

Proposition 27 Let �

0

be a representation of G s.t. �

0

(�) =




diag(�

d

1

; �

d

2

; :::; �

d

n

)

�

.

Then the set M = f

Q

n

j=1

x

�

j

j

j (�

1

; :::; �

n

) = '

G

(�

1

; :::; �

n

) for (�

1

; :::; �

n

) 2

S

s

(G; (d

1

; :::d

n

); n�1)g is a C[x

d

1

1

; x

d

2

2

; :::; x

d

n

n

]�module basis of C[x

1

; x

2

; :::; x

n

]

G

�

:

Proof. Follows with the same arguments as the proof of Theorem 4.1.19.

Example 22 Let G = f1; �; �

2

; �

3

g with representation �(�) = diag(�1; i;�i)

and character �(�) = i: Primary invariants of G are given by x

2

; y

4

and z

4

; so

we set R = C[x

2

; y

4

; z

4

]: We compute the R�module of relative � invariants:

So we have to solve the equations

2a

1

+ a

2

+ 3a

3

= 3;

2a

1

+ a

2

+ 3a

3

= 7;

2a

1

+ a

2

+ 3a

3

= 11:

The solutions are (0; 0; 1); (0; 3; 0); (1; 1; 0); (0; 1; 2); (1; 2; 1); (1; 3; 2); (1; 1; 3):

Hence

C[x; y; z]

G

�

= zR � y

3

R� xyR� yz

2

R � xy

2

zR � xy

3

z

2

R � xyz

3

R:

The generalization to abelian groups is analogous to Section 4.1.4.

4.2 A Glimpse of Noncommutative Invariant

Theory

So far we have considered the induced action of a �nite group G on the

symmetric powers of V

�

for a representation � : G! GL(V ): In this section

we investigate the induced action of G on the tensor and alternating powers

of V

�

for a complex vectorspace V of dimension n. In the �rst section we

consider the action of G on the tensor algebra. In the second subsection we

treat the exterior algebra.
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4.2.1 Invariants of the Tensor Algebra

Let G be a �nite group and � : G! GL

n

(C) be a faithful complex represen-

tation. For d 2 N we de�ne the d�th tensor power of �

�

by




d

�

�

(�)(v

�

1


 v

�

2


 :::
 v

�

n

) := �

�

(�)(v

�

1

)
 �

�

(�)(v

�

2

)
 :::
 �

�

(�)(v

�

n

):

We de�ne a group action analogously to Section 2.1, namely

� : G�


d

V

�

! 


d

V

�

;

� � (v

�

1


 v

�

2


 :::
 v

�

n

) : = �

�

(�)(v

�

1


 v

�

2


 :::
 v

�

n

):

De�nition 43 Let x

1

; x

2

; :::; x

n

be a basis of V

�

: We de�ne the �nitely gen-

erated noncommutative C�algebra C hV i as

C hV i :=

1

M

d=0




d

V

�

:

If we want to emphasize the selected basis, we denote C hV i by C hx

1

; x

2

; :::; x

n

i :

The elements of C hV i are called noncommutative polynomials. We set

C hV i

d

= 


d

V

�

: If f is of the form x

i

1


 x

i

2


 ::: 
 x

i

d

then f is called

a monomial of degree d: We abbreviate v 
 v 
 :::
 v

| {z }

d� times

with v

d

: The degree

vector of f is the degree vector of f considered as a commutative monomial.

If it is clear from the context we omit the word 'noncommutative'.

De�nition 44 Let G � GL

n

(C) be a �nite group and be � a linear character

of G:

C hx

1

; x

2

; :::; x

n

i

G

�

:= ff 2 C hx

1

; :::; x

n

i j � � f = �(�)f for all � 2 Gg :

The elements of C hx

1

; x

2

; :::; x

n

i

G

are called relative-� noncommutative

invariants w.r.t. G. We omit � if it is the trivial character.

Since noncommutativity destroys the symmetry among the 'variables'

x

1

; x

2

; :::; x

n

; we use an exponential generating function for the Hilbert series.

De�nition 45 The Hilbert series of C hV i

G

�

is the exponential power series

H(C hV i

G

�

; t) :=

1

X

d=0

dim

C

(C hV i

G

�

)

d

�

t

d

d!

:
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As in Chapter 2 we need some knowledge of the eigenvalues of the tensor

power.

Lemma 15 Let �

1

; :::; �

n

be the eigenvalues of �(�

�1

): Then the eigenvalues

of 


d

b�(�) are the elements

Q

n

j=1

�

�

j

j

for (�

1

; :::; �

n

) s.t.

P

n

j=1

�

j

= d with

multiplicity d! �

Q

n

j=1

1

�

j

!

:

Proof. From Lemma 2.4.7 we know that the eigenvalues are given by

Q

n

j=1

�

�

j

j

: The multiplicities follow from the permutation rule of elementary

combinatorics.

Theorem 23 Let G � GL

n

(C) be a �nite group and be � a linear character

of G. The Hilbert series of C hV i

G

�

is given by

H(C hV i

G

; t) =

1

jGj

X

�2G

�(�)

n

Y

i=1

exp(�

�;i

� t)

where �

�;i

denotes the i-th eigenvalue of � 2 G:

Proof. From the previous discussion we obtain

H(C hV i

G

; t) =

1

X

d=0




�




d

e�

; �

�

�

t

d

d!

=

1

X

d=0

1

jGj

X

�2G

�




d

e�

(�)�(�

�1

) �

t

d

d!

=

1

X

d=0

1

jGj

X

�2G

�




d

�

(�

�1

)�(�

�1

) �

t

d

d!

=

1

X

d=0

1

jGj

X

�2G

X

d

1

+d

2

:::+d

n

=d

n

Y

i=1

1

d

i

!

�

d

1

�;1

�

d

2

�;2

� ::: � �

d

n

�;n

�(�) � t

d

=

1

jGj

X

�2G

X

(d

1

;d

2

;:::;d

n

)2N

n

�(�)

n

Y

i=1

�

d

i

�;i

d

i

!

� t

d

1

+d

2

:::+d

n

=

1

jGj

X

�2G

�(�)

n

Y

i=1

exp(�

�;i

� t)

Example 23 Let G be the 3 dim. permutation representation of S

3

(cf. the

example in section 2.1). The Hilbert series of C hV i

G

is given by

H(C hV i

G

; t) =

1

6

�

2 + 3 e

t

+ e

3 t

�

:

If we expand H

G

(t) in a Taylor series we obtain

1+ t+2

t

2

2!

+5

t

3

3!

+14

t

4

4!

+41

t

5

5!

+122

t

6

6!

+365

t

7

7!

+1094

t

8

8!

+3281

t

9

9!

+O(t

10

):
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Figure 4.1:

De�nition 46 A subalgebra S of C hV i is �nitely generated i� there exists

a �nite set f

1

; :::; f

m

2 S; s.t. for each element f 2 S there exists a polynomial

p 2 C hy

1

; y

2

; :::; y

m

i s.t. f = p(f

1

; f

2

; :::; f

m

):

In the sequel we examine the problem whetherC hV i

G

is �nitely generated

as a C�algebra.

Example 24 Let G = hdiag(�1;�1)i : The commutative invariant ring of

G equals C[V ]

G

= C[x

2

1

; x

2

2

] � x

1

x

2

C[x

2

1

; x

2

2

]: The Hilbert series of C hV i

G

equals

1

2

(e

2t

+ e

�2t

) = cosh(2t); with Taylor expansion 1+4

t

2

2!

+16

t4

4!

+64

t

6

6!

+

256

t

8

8!

+1024

t

10

10!

+O(t

11

) The linearly independent noncommutative invariants

of G of degree 2 are x

1


 x

1

; x

2


 x

2

; x

1


 x

2

; x

2


 x

1

: We claim that C hV i

G

is generated by the noncommutative invariants of degree 2: As in the proof of

Noethers Finiteness Theorem (Theorem 2.3.10) is su�ces to show that each

monomial can be generated by the invariants of degree 2: Let f 2 C hV i

G

be

a monomial of degree d > 2; so f = x

i1


 x

i2


 f for some i

1

; i

2

2 f1; 2g and

f 2 C hV i

G

of degree d � 2: Since x

i1


 x

i2

is invariant, the claim follows

with induction on the degree.

Example 25 Let G = hdiag(I;�I)i : We have H(C hV i

G

; t) =

1

4

(2 + e

2t

+

e

�2t

); which Taylor expansion 1+2

t

2

2!

+8

t4

4!

+32

t

6

6!

+128

t

8

8!

+512

t

10

10!

+O(t

11

):

The solutions of the characteristic equation w.r.t. 1 are (4; 0); (1; 1); (0; 4):

We claim that the noncommutative invariant ring C hV i

G

is not �nitely gen-

erated. The monomial x

n

1

x

n+4

2

is a commutative invariant of G: We claim

that for n 2 N the noncommutative monomial

f

n

= x

3

2


 x

1


 x

2


 x

1


 x

2

:::x

1


 x

2

| {z }




n�times

x

2
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is an invariant, which cannot be written as a product of invariants of lower

degree. In �gure 4.1 a point with coordinates (a; b)corresponds to the com-

mutative monomial x

a

y

b

; and the points \ � " correspond to the commutative

invariants. We consider the monomial f

1

as a path in �gure 4.1. With

x

1

we denote a step to the right, while x

2

denotes a step to the left. The

path of f

1

is indicated with \ � ": Since f

1

meets (commutative) invariants

only at the beginning and at the end, there exists no invariant in between,

hence f

1

cannot be written as a product of invariants of smaller degrees. The

same holds for f

d

; since the noncommutative invariant monomials are just

permutations of commutative invariant monomials w.r.t. the position of the

variables x

1

; x

2

; :::; x

n

.

We can generalize the observation from the preceding examples.

Theorem 24 Let n � 2 and G � GL

n

(C) be a �nite abelian group. Then

C hV i

G

is �nitely generated as a noncommutative C�algebra i� there exists

� 2 C s.t. G = h� � Ii :

Proof. Let G = h� � Ii for some � 2 C and let d 2 N be minimal s.t.

�

d

= 1: The solutions of the characteristic equation

P

n

j=1

�

j

= d of G w.r.t.

1 form a hyperplane inN

n

: If f = x

i1


x

i

2


:::
x

i

m

2 C hV i

G

is an invariant

of degree m > d; then the degree vector of x

i1


 x

i

2


 :::
 x

i

d

satis�es the

characteristic equation of G w.r.t. 1: Hence, x

i

1


x

i

2


 :::
x

i

d

is an invariant

of degree d < m, and the claim follows from induction on d:

In order to show the converse we distinguish 2 base cases. In the �rst caseG =

��

1 0

0 �

k

d

��

with gcd(k; d) = 1 and d > 1: For any t 2 N the monomial

y 
 x

t


 y

d�1

cannot be written as a polynomial in the invariants of smaller

degree since y and y

d�1

are not invariant. In the second case we assume

that G =

��

�

k

1

d

1

0

0 �

k

2

d

2

��

for some d

j

; k

j

2 N with k

j

> 1; gcd(d

j

; k

j

) = 1

for j = 1; 2 and d

1

6= d

2

or d

1

= d

2

and k

1

6= kmodd

1

: Let (�

1

; �

2

) be the

greatest solution w.r.t. lexicographical order of the characteristic equation

of G w.r.t. 1 s.t. (�

1

; �

2

) < (d

1

; 0): Set

f

0

n

= x

d

2

�1

2


 x

�

1

1


 x

�

2

2


 x

�

1

1


 x

�

2

2


 :::
 x

�

1

1


 x

�

2

2

| {z }

n�times

:

We claim that the monomial

f

n

= f

0

n


 x

2
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is an invariant of degree n(�

1

+ �

2

) + d

2

which cannot be written as a poly-

nomial in the invariants of smaller degrees. The degree vector of f

n

equals

(n � �

1

; n � �

2

+ d

2

); hence f is an invariant of degree n(�

1

+ �

2

) + d

2

: Since

(�

1

; �

2

) and (0; d

2

) are solutions of the characteristic equation of G w.r.t. 1,

the elements (�

1

��

1

; �

2

��

2

) for �

j

< �

j

and (n ��

1

; n ��

2

+ d

2

� 1) are no

solutions of the characteristic equation w.r.t. 1. Hence for any n the mono-

mial f

0

n�1

is not invariant and, if we multiply from the right the monomials

x

1

and x

2

in such a way that we get f

n

we never obtain an invariant before

reaching f

n

: It is clear that we have considered all possible cases for 2 � 2

matrices.

Let G = h�

1

; �

2

; :::; �

k

i � GL

n

(C) be a �nite abelian group which is al-

ready in diagonal form and let m

l

denote the order of the roots of unity

(�

1

)

ll

; (�

k

)

ll

; :::; (�

k

)

ll

: W.l.o.g. assume that �

1

= diag(�

k

1

d

1

; �

k

1

d

1

; :::) with d

1

6=

d

2

or d

1

= d

2

and k

1

6= kmod d

1

: If we replace d

1

withm

1

and d

2

with m

2

and

take � as the lexicographic largest solution of all characteristic equations of

h�

j

i w.r.t. 1; then f

n

is an invariant of degree n(�

1

+�

2

)+m

2

which cannot

be written as a polynomial in the invariants of smaller degree.

4.2.2 Invariants of the Exterior Algebra

We proceed in a similar way. Let G be a �nite group and � : G ! GL

n

(C)

be a complex representation. For d 2 N we de�ne the d�th exterior power

of �

�

by

^

d

�

�

(�)(v

�

1

^ v

�

2

^ ::: ^ v

�

n

) := �

�

(�)(v

�

1

) ^ �

�

(�)(v

�

2

) ^ ::: ^ �

�

(�)(v

�

n

):

We de�ne a group action analogous to chapter 2, section 1, namely

� : G� ^

d

V

�

! ^

d

V

�

;

� � (v

�

1

^ v

�

2

^ ::: ^ v

�

n

) : = �

�

(�) (v

�

1

^ v

�

2

^ :::^ v

�

n

)

De�nition 47 Let x

1

; x

2

; :::; x

n

be a basis of V

�

: We de�ne the �nitely gen-

erated C�algebra C

alt

hV i as

C

alt

hV i :=

1

M

d=0

^

d

V

�

:

The elements of C

alt

hV i are called skewsymmetric polynomials. We set

C

alt

hV i

d

= ^

d

V

�

: If we want to emphasize the selected basis, we denote

C

alt

hV i by C

alt

hx

1

; :::; x

n

i :
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De�nition 48 Let G � GL

n

(C) be a �nite group and be � a linear character

of G:

C

alt

�

hV i

G

:=

�

f 2 C

alt

hV i j � � f = �(�)f for all � 2 G

	

:

The elements of C

alt

hV i are called relative-� skewsymmetric invari-

ants.We omit � if it is the trivial character. The Hilbert series of C

alt

hV i

G

is the power series

H(C

alt

�

hV i

G

�

; t) :=

1

X

d=0

dim

C

(C

alt

�

hV i

G

)

d

� t

d

:

Note that the algebra C

alt

hV i is a complex vectorspace of dimension 2

n

,

therefore the invariant ring C

alt

hV i

G

is always �nitely generated.

Lemma 16 Let �

1

; �

2

; :::; �

n

be the eigenvalues of �(�

�1

) and d � n: The

eigenvalues of ^

d

�(�) are given by

Q

d

j=1

�

i

j

for 1 � i

1

< ::: < i

d

� n:

Proof. Follows from Lemma 2.4.7 and from the fact that v ^ v = 0 for any

v 2 V:

Theorem 25 Let G � GL

n

(C) be a �nite group. The Hilbert series of

C

alt

hV i

G

equals

H(C

alt

hV i

G

; t) =

1

jGj

X

�2G

det(1 + �t)�(�):

Proof.

H(C

alt

hV i

G

; t) =

1

X

d=0




�

^

d

e�

; �

�

� t

d

=

1

X

d=0

1

jGj

X

�2G

�

^

d

e�

(�)�(�

�1

) � t

d

=

n

X

d=0

1

jGj

X

�2G

�(�)

X

1�i

1

<:::<i

d

�n

d

Y

j=1

�

�;i

j

t

d

=

1

jGj

X

�2G

det(1 + � � t)�(�):

.

Example 26 Let G be the 3�dimensional permutation representation of S

3

(cf. Example 4.2.23). The Hilbert series of C

alt

hV i

G

equals

H(C

alt

hV i

G

; t) = 1 + t:

A basis of C

alt

hV i

G

as a vectorspace is given by 1; x

1

+ x

2

+ x

3

:
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Example 27 Let � =

�

0 1

�1 0

�

and G = h�i : The Hilbert series of

C

alt

hV i

G

equals 1 + t

2

; and a basis of C

alt

hV i

G

is given by 1 and x

1

^ x

2

:

Note that �

�1

� x

1

^ x

2

= �x

2

^ x

1

= x

1

^ x

2

:

Example 28 Let G = hdiag(i; i)i : We have H(C

alt

hV i

G

; t) = 1; hence

C

alt

hV i

G

= C:

4.3 Stanley's Summation Example

We follow the presentation of Stanley [38]. Let g 2 N; and de�ne �

g

:=

exp(2�i=g): We set

S(g) :=

g

X

k=1

1

�

�

1 � �

k

g

�

�

2

:

This is essentially the sum asked for in Hemperly [17]. Before we show how

a closed form of S(g) can be computed using invariant theory, we consider

an example.

Example 29 For g = 4 we obtain S(4) =

P

4

k=1

1

j

1�i

k

j

2

=

5

4

:

Since

S(g) =

g

X

k=1

1

(1 � �

k

g

)(1 � �

�k

g

)

we consider the sum

F (g; t) =

1

g

g

X

k=1

1

(1� �

k

g

� t)(1� �

�k

g

� t)

which is the Hilbert series of the group G =

��

�

g

0

0 �

�1

g

��

. Then we have

S(g) = lim

t!1

�

g �H

G

(t)�

1

(1 � t)

2

�

: (4.10)

We need some additional information about H

G

(t) to evaluate the above

limit. With the results of Section 4.1 we can compute the invariant ring of

G; namely

C[x; y]

G

=

g�1

M

k=0

x

k

y

k

�C[x

g

; y

g

]:
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From Proposition 2.5.15 we know that the Hilbert series of C[x; y]

G

equals

H

G

(t) =

g�1

X

k=0

t

2k

(1� t

g

)

2

:

Now we can evaluate (4:10), namely

S(g) = lim

t!1

 

g �

g�1

X

k=0

t

2k

(1 � t

g

)

2

�

1

(1� t)

2

!

=

g

2

� 1

12

:

For g = 4 we obtain

4

2

�1

12

=

5

4

; as expected.

We can generalize the above sum and consider

S

n

(g) :=

g

X

k=1

1

�

�

1� �

k

g

�

�

2n

:

Then the corresponding group G is generated by the matrix M; which is

de�ned as follows : Let � =

�

�

g

0

0 �

�1

g

�

; then M := diag(�; :::; �

| {z }

n�times

): E.g.

S

2

(g) = (g

2

� 1)(g

2

+ 11)=2

4

� 3

2

� 5;

S

3

(g) = (g

2

� 1)(2g

4

+ 23g

2

+ 191)=2

6

� 3

3

� 5 � 7;

cf. Stanley [38] for more details.

Generalization to Characters. We extend Stanley's approach to sums

of the form

S(g) :=

g

X

k=1

�

k

g

�

�

1 � �

k

g

�

�

2

:

With �(�

k

g

) = �

k

g

; we can proceed as above, and consider

F

�

(g; t) =

1

g

g

X

k=1

�(�

k

g

)

(1 � �

k

g

� t)(1� �

�k

g

� t)

which is the Hilbert series of the group G =

��

�

g

0

0 �

�1

g

��

w.r.t. the

character �: i.e. H

G

�

(t) = F

�

(g; t): Hence

S(g) = lim

t!1

�

g �H

G

�

(t)�

1

(1 � t)

2

�

:
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With the results of Section 4.1.4 we can compute the module of relative �

invariants of G; namely

C[x; y]

G

�

=

g�2

M

k=0

x

k+1

y

k

�C[x

g

; y

g

]� y

g�1

�C[x

g

; y

g

]:

So the Hilbert series equals

H

G

�

(t) =

�

P

g�2

k=0

t

2k+1

+ t

g�1

�

(1� t

g

)

2

:

Hence we have

S(g) = lim

t!1

 

g �

�

P

g�2

k=0

t

2k+1

+ t

g�1

�

(1� t

g

)

2

�

1

(1� t)

2

!

=

1

12

�

g

2

� 6g + 5

�

:

Remark 5 By the same token one can �nd a closed form for the sum

S(g) =

g

X

k=1

�

c�k

g

�

�

1 � �

k

g

�

�

2

for c 2 N. The corresponding character is �(�

c�k

g

) = �

c�k

g

:

4.4 Theorem Proving in Projective Geome-

try

Basically there are two di�erent kinds of methods for proving geometric the-

orems, namely coordinate dependent and coordinate independent methods.

The article of D. Wang [45] provides a very good overview. We show how

one can use invariant theory for proving theorems in projective geometry in

a coordinate-free manner.

Invariant theory should not only be seen as a special case of represen-

tation and ring theory, as we have done it in the �rst three chapters, it

should also be seen under the point of view of the �Erlanger Programm�

of F. Klein (cf. Klein [26]). In this paradigm a geometric property is a

property which is invariant under the corresponding transformation group.

A polynomial in the coordinates corresponds to a geometric property if it

is invariant under the action of the transformation group belonging to the
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geometry on the coordinates. Therefore invariant theory describes precisely

the geometric properties which can be expressed by polynomials. It also pro-

vides a coordinate free notation for geometric facts which will lead us to the

Grassmann-Cayley algebra. The Grassmann Cayley algebra can be seen as a

systematic translation table for geometric facts given in synthetic form into

algebraic expressions. According to Sturmfels (in the preface of the reprint

Hilbert [20]), a nineteenth-century mathematician would consider invariant

theory as the bridge between algebra and geometry.

We will introduce the Grassmann-Cayley algebra as a tool for describing

suitable facts and theorems in projective geometry. There are two operations

in the Grassmann-Cayley algebra, namely the join, denoted by \_ " and the

meet, denoted by \^": Under a suitable geometric fact we understand a fact

which can be expressed in the Grassmann-Cayley algebra. So we have the

following diagram:

Admissible Geometric fact (theorem)

#

Grassmann-Cayley algebra

#

Bracket algebra

#

Polynomials

In section 1 we introduce the bracket algebra and the straightening algo-

rithm, a necessary technical tool, then in section 2 we present the Grassmann

Cayley algebra with the join and the meet. Finally, in section 3 we demon-

strate the use of the Grassmann Cayley for geometry theorem proving.

Notation : By P(C

d

) we denote the d � 1 dim. projective space over C

d

:

For the sake of simplicity we only treat the case, where the ground-�eld is

C.

We follow the presentation in Sturmfels [43] and refer to (loc. cit.) for

all proofs.

4.4.1 Bracket Algebra

Let X = (x

ij

) be a generic n�d matrix and C[x

ij

] be the ring of polynomials

on X: The matrix X is a con�guration of n vectors in C

d

or of n points in

P(C

d

):We let the group SL

d

(C) act onX via right multiplication and denote

the action by \ � ": Which polynomials correspond to geometric properties

in the spirit of F. Klein's �Erlanger Programm�, i.e. properties that are

invariant under the action \ � " of SL

d

(C) ?
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De�nition 49 Let �(n; d) := f[�

1

; :::; �

d

] : 1 � �

1

< �

2

< ::: < �

d

� ng:

We abbreviate [�

1

; :::; �

d

] with [�]: The map �

n;d

: C[�(n; d)]! C[x

ij

];

[�] 7! det

0

B

B

B

@

x

�

1

1

x

�

1

2

: : : x

�

1

d

x

�

2

1

x

�

2

2

: : : x

�

2

d

.

.

.

.

.

.

.

.

.

.

.

.

x

�

d

1

x

�

d

2

: : : x

�

d

d

1

C

C

C

A

is called the generic coordinatization: The bracket ring B

n;d

� C[x

ij

] is

the ring generated by all d� d minors of X:

Example 30 Let X =

0

B

B

B

@

x

11

x

12

x

13

x

21

x

22

x

23

.

.

.

.

.

.

.

.

.

x

61

x

62

x

63

1

C

C

C

A

be a con�guration of 6 points in

P

2

:Then

�

6;3

([1; 4; 6]) = x

11

x

42

x

63

� x

11

x

62

x

43

� x

41

x

12

x

63

+ x

41

x

62

x

13

+ x

61

x

12

x

43

�x

61

x

42

x

13

vanishes i� the points 1; 4; 6 are collinear.

Note that the image of �

n;d

coincides with B

n;d

; and, since the map �

n;d

is in general not injective, we have B

n;d

' C[�(n; d)]=I

n;d

;where I

n;d

denotes

the kernel of �

n;d

. The ideal I

n;d

is called the ideal of syzygies. In order to

compute in B

n;d

we need an algorithm for normal-form computation modulo

I

n;d

; i.e. we need Gröbner bases !

Straightening Algorithm

This algorithm from A. Young is an important tool in representation theory.

It provides the computation of a Gröbner basis for I

n;d

in a purely combi-

natorial way. We use lexicographic order on brackets, i.e. [�] � [�] i� [�]

is lexicographic smaller than [�]: E.g: [1; 2; 3] � [1; 2; 4]: We denote the in-

duced degree-reverse-lexicographic order on C[�(n; d)] also by � and call it

the tableaux order :

De�nition 50 Let [�

(1)

]; :::; [�

(k)

] 2 C[�(n; d)] s.t. [�

(1)

] � ::: � [�

(k)

]. We

write the monomial T = [�

(1)

] � ::: � [�

(k)

] as follows

T =

2

6

6

6

4

�

(1)

1

�

(1)

2

: : : �

(1)

d

�

(2)

1

�

(2)

2

: : : �

(2)

d

.

.

.

.

.

.

.

.

.

.

.

.

�

(k)

1

�

(k)

2

: : : �

(k)

d

3

7

7

7

5
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The tableau T is standard i� all columns of T are sorted.

Let [�

(1)

] = [1 2 3]; [�

(2)

] = [1 4 5]; [�

(3)

] = [2 3 4] and [�

(4)

] = [3 5 6] be

monomials. Then the tableau [�

(1)

][�

(3)

][�

(4)

] is standard while [�

(1)

][�

(2)

][�

(3)

]

is a non-standard tableau.

De�nition 51 For � 2 �(n; d) we de�ne the complement of � to be the

unique tuple �

�

2 �(n; n � d) s.t. � [ �

�

= f1; 2; :::; ng (where we consider

the tuples as sets).

De�nition 52 Let s 2 f1; 2; :::; dg; � 2 �(n; s � 1); � 2 �(n; d + 1) and


 2 �(n; d� s): The van der Waerden syzygy

[[�

:

� 
]] :=

X

�2�(d+1;s)

sign(�; �

�

) � [�

1

:::�

s�1

�

�

�

1

:::�

�

�

d+1�s

] � [�

�

1

:::�

�

s




1

:::


s

]:

(4.11)

It is called a straightening syzygy :, �

s�1

< �

s+1

and �

s

< 


1

:

Example 31 Let n = 6,d = 3 and s = 2: Therefore � 2 �(6; 1); � 2

�(6; 4),
 2 �(6; 1): Let � = [1]; � = [2 3 4 5] and 
 = [6]; hence we ob-

tain a straightening syzygy. The sum in 4.11 is taken over the set �(4; 2) =

f[1 2]; [1 3]; [1 4]; [2 3]; [2 4]; [3 4]g: The corresponding van der Waerden syzygy

equals

[[1

:

2

:

3

:

4

:

5

6]] = [1 4 5][2 3 6] � [1 3 5][2 4 6] + [1 3 4][2 5 6] � [1 2 5][3 4 6]

+[1 2 4][3 5 6] � [1 2 3][4 5 6]:

The underlined tableau is the non-standard one.

Theorem 26 The set S

n;d

of all straightening syzygies is a Gröbner basis

for I

n;d

:

We present the �rst part of the proof of the following corollary because

it provides useful information for the computation of S

n;d

: For a complete

proof we refer to Sturmfels and White [42].

Corollary 7 The standard tableaux form a C�vector-space basis for the

bracket ring B

n;d

:

Proof. (First part). It is su�cient to show that each bracket polynomial

is congruent to a linear combination of standard tableaux modulo I

n;d

: Let

k 2 N and T = [�

1

][�

2

]::::[�

k

] be a non-standard tableau. Since there are
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only �nitely many tableaux smaller than T we can use induction and assume

that T is the smallest tableau which is not contained in the span of the

standard tableaux. There exist i 2 f2; :::; kg and s 2 f2; :::; dg s.t.�

i�1

s

> �

i

s

:

Let � = [�

i�1

1

�

i�1

2

::: �

i�1

s�1

]; � = [�

i

1

�

i

2

::: �

i

s

�

i�1

s

::: �

i�1

d

] and 
 = [�

i

s+1

::: �

i

d

]:

Then the initial tableau of [[�

:

� 
]] = [�

i�1

][�

i

] and the polynomial F = T �

[�

1

]:::[�

i�2

][�

i+1

]:::[�

k

][[�

:

� 
]] is congruent to T modulo I

n;d

: Since F � T ,

F can be written as a linear combinations of standard tableaux. We omit

the proof that the set of standard tableaux is linearly independent.

With �; � and 
 as in the above proof we have

LT ([[�

:

� 
]]) = [�

i�1

1

�

i�1

2

::: �

i�1

s�1

| {z }

�

�

i�1

s

::: �

i�1

d

| {z }

�

s+1:::d+1

][�

i

1

�

i

2

::: �

i

s

| {z }

�

1:::s

�

i

s+1

::: �

i

d

| {z }




]:

Thus we get the two conditions �

s�1

< �

s+1

and �

s

< 


1

that are satis�ed by

straightening syzygies. Note that s > 1 since there cannot be a non-standard

tableau with a violation of the ordering in the �rst column. Since [�

i�1

] <

[�

i

] we can derive another condition which is important for computational

purposes. We have �

i�1

j

� �

i

j

for 1 � j � s � 1 and there exists a j

�

2

f1; 2; :::; s� 1g s.t. �

i�1

j

�

< �

i

j

�

: We call a 3-tupel (�; �; 
) of brackets which

satis�es all these three conditions a straightening tupel.

Corollary 8 Let M

n;d

= f[[�

:

� 
]] : (�; �; 
) is a straightening tupel w.r.t.

n and dg: For n; d 2 N with n � d we have

M

n;d

= S

n;d

:

Proof. The setM

n;d

contains all possible non-standard quadratic tableaux.

Note that in general this Gröbner basis is not reduced.

De�nition 53 The normal form reduction w.r.t. S

n;d

is called the straight-

ening algorithm.

Example 32 Let n = 4 and d = 2: In this case the ideal I

n;d

is principal.

For s = 1 we have � 2 �(4; 0); � 2 �(4; 3),
 2 �(4; 1) and for s = 2 we

have � 2 �(4; 1); � 2 �(4; 3) and 
 2 �(4; 0): Without any conditions on the

brackets �; � and 
 we would have to compute 32 van der Waerden syzygies

but only one is non-trivial (i.e. nonzero). Taking only the �rst two conditions

into account we were forced to compute 22 van der Waerden syzygies with

the same result as above. If we apply all conditions we have to compute

only one van der Waerden syzygy, which turns out to be the non-trivial one,

namely [[1

:

2

:

3

:

4

]] = [1 4][2 3] � [1 3][2 4] + [1 2][3 4]: The underlined tableau is

non-standard.
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Now we consider the invariant subring C[x

ij

]

SL

d

(C)

= ff 2 C[x

ij

] j f =

f � � for all � 2 SL

d

(C)g w.r.t. the induced action of SL

d

(C) on C[x

ij

]:

Theorem 27 (First Fundamental Theorem of Invariant Theory)

C[x

ij

]

SL

d

(C)

= C[�(n; d)]=I

n;d

= B

n;d

:

From the above theorem we see that precisely the bracket polynomials

correspond to geometric properties.

4.4.2 The Grassmann-Cayley Algebra

Originally it was developed by H. Grassmann as a calculus for linear varieties.

It is an invariant algebraic formalism for expressing statements in synthetic

projective geometry. We will show how one can prove and guess theorems of

projective geometry using the Grassmann-Cayley algebra. For more details

we refer to Zaddach [50].

De�nition 54 Let V be a d�dimensional C�vectorspace.

�(V ) :=

d

M

k=0

�

k

(V );

where �

k

(V ) denotes the k-fold exterior product of V . We denote the exterior

product (the �join�) by \ _ " instead of \ ^ ": In the sequel the symbol \ ^ "

will be used for the �meet�. This notation has geometric reasons and will

become clear later.

Let fe

1

; :::; e

d

g be a basis of V: Then the set fe

j

1

_ :::_ e

j

k

j 1 � j

1

< ::: <

j

d

� dg is a basis for �

k

(V ):

De�nition 55 Let a

1

; :::; a

k

2 V; a

l

=

P

d

j=1

a

lj

e

j

: The join of a

1

; :::; a

k

equals

a

1

_ ::: _ a

k

=

X

1�j

1

<:::<j

d

�k

�

�

�

�

�

�

�

�

�

a

1j

1

a

1j

2

: : : a

1j

k

a

2j

1

: : : : : : a

2j

k

.

.

.

.

.

.

.

.

.

.

.

.

a

kj

1

a

kj

2

: : : a

kj

k

�

�

�

�

�

�

�

�

�

e

j

1

_ ::: _ e

j

d

:

An element A 2 �

k

(V ) is an extensor of step k: The extensor A of step

k is decomposable if it can be written in the form a

1

_ ::: _ a

k

for some

a

1

; :::; a

k

2 V: Furthermore A = span

C

fa

1

; :::; a

k

g:
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Grassmann called the join the �Progressive Product�. The important

property of the join is contained in the next theorem.

Theorem 28 Let A = a

1

_ ::: _ a

k

; B = b

1

_ ::: _ b

j

be two extensors. Then

the extensor A_B is non-zero i� fa

1

; :::; a

k

; b

1

; :::; b

j

g is linearly independent.

Then we also have A+B = A _B = spanfa

1

; :::; a

k

; b

1

; :::; b

j

g:

The decomposable non-zero elements of �

k

(V ) correspond to k�dimensional

subspaces of V . Let A denote such an element and consider the subspace

A

�

= fw 2 V : A_w = 0g: All elements of A are contained in A

�

: If w is not

contained in A then the set fa

1

; :::; a

k

; wg is linearly independent and from

Theorem 4.4.28 we derive that A _ w 6= 0: So we have A

�

= A:

De�nition 56 Let A = a

1

_ :::_ a

j

and B = b

1

_ :::_ b

k

be two extensors of

step j and k with j + k � d: The join of A and B is

A ^ B =

X

�2Sh�S

j

sign(�)[a

�(1)

a

�(2)

::: a

�(d�k)

b

1

::: b

k

] � a

�(d�k+1)

_ � � � _ a

�(j)

with Sh = f� 2 S

j

: �(1) < �(2) < ::: < �(d � k) and �(d � k + 1) <

�(d � k + 2) < ::: < �(j)g: These permutations are called shu�es. A useful

notation for signed sums over shu�es is the dotted notation. One puts dots

over the shu�ed vectors, with the summation and sign implicit. So the meet

of A and B is equal to

A ^ B = [

�

a

1

�

a

2

:::

�

a

d�k

b

1

::: b

k

]�

�

a

d�k+1

_ � � � _

�

a

j

:

Grassmann called the meet the Regressive Product. It corresponds to

intersection of subspaces provided that they span the whole space V .

Theorem 29 Let A = a

1

_ ::: _ a

j

and B = b

1

_ ::: _ b

k

be two extensors.

Then A ^B is an extensor and A ^ B 6= 0 i� A +B = V . Furthermore we

have A ^ B = A \ B and A ^B = (�1)

(d�k)(d�j)

B ^A:

Example 33 Let a

1

; a

2

; b

1

; b

2

2 P(C

3

) be distinct points (and not coordi-

nates).We have j = k = 2 with j + k � 3 and Sh = S

2

:

(a

1

_ a

2

) ^ (b

1

_ b

2

) =

X

�2S

2

sign(�)[a

�(1)

b

1

b

2

] � a

�(2)

=

= [a

1

b

1

b

2

] � a

2

� [a

2

b

1

b

2

] � a

1

:
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De�nition 57 The algebra (�(V );_;^) is the Grassmann-Cayley alge-

bra of V: An element of (�(V );_;^) involving only _ and ^ is called a

simple Grassmann-Cayley expression.

Remark 6 For proving theorems we are interested in Grassmann-Cayley ex-

pressions of step 0 or d; where d is the dimension of the vector-space V:

If a Grassmann-Cayley expression C(a; b; :::) has step k; 0 < k < d; then

C(a; b; :::) = 0 is equivalent to the following universal quanti�ed statement of

step d :

8x

1

; :::; x

d�k

2 V : C(a; b; :::)_ x

1

:::_ x

d�k

= 0: (4.12)

It is su�cient to take x

1

; :::; x

d�k

from a basis of V; so (4:12) is equivalent to

a �nite conjunction of bracket statements.

Algorithm GCtoBrackets(C(a; b:::))

Input : Grassmann-Cayley expression C(a; b:::) of step 0:

Output : bracket polynomial for C(a; b; :::):

1. Replace each occurrence of a subexpression (a

1

_:::_a

j

)^(b

1

_:::_b

k

)

in C by [

�

a

1

; :::;

�

a

d�k

; b

1

; :::; b

k

]

�

a

d�k+1

_:::_

�

a

j

:

2. Simplify using associativity of _ and ^; write C(a; b; :::) as linear

combinations of simple Grassmann-Cayley expressions.

3. Extract bracket factors from each expression. For the remaining

factors return to step 1.

It is time to apply these techniques in a concrete example.

Example 34 Let V = P(C

3

): Consider the points a = (1; 0; 0); d = (0; 1; 0)

and let v

1

= (1; 2; 3) and v

2

= (2; 1; 3): We de�ne b = a+ v

1

= (2; 2; 3),c =

a + 2 � v

1

= (3; 4; 6) and e = d + 3 � v

2

= (6; 4; 9): Note that b = d + v

2

:

We want to express the fact that b is the intersection point of ac and de

(or,equivalently, that b lies both on ac and de; cf. the next section): We get

the following Grassmann Cayley expression :

((a _ c) ^ (d _ e)) _ b = 0:

Step 1 of GCtoBrackets yields

([c d e]a� [a d e]c) _ b:

With step 2 we get

[c d e]a _ b� [a d e]c _ b:
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The bracket [cde] evaluates to �9 and [ade]evaluates to 9: We have

a _ b =

�

�

�

�

1 0

2 2

�

�

�

�

e

1

_ e

2

+

�

�

�

�

1 0

2 3

�

�

�

�

e

1

_ e

3

+

�

�

�

�

0 0

2 3

�

�

�

�

e

2

_ e

3

=

2 � e

1

_ e

2

+ 3 � e

1

_ e

3

and

c _ b = �2 � e

1

_ e

2

+�3 � e

1

_ e

3

so

�9 � a _ b� (9 � c _ b) = 0:

Applications of the Grassmann-Cayley Algebra

We can transform a Grassmann-Cayley expression in a bracket polynomial

(algorithmically) which expresses a property. Since bracket polynomials are

invariant w.r.t. SL

d

(C) they express a geometric property (according to F.

Klein). We have the diagram :

(1) Suitable Geometric fact (theorem)

#

(2) Grassmann-Cayley algebra

#

(3) Bracket algebra

#

(4) Polynomials

The translation (1) $ (2) is done by hand, (3) ! (4) is obvious (ap-

ply �

n;d

). The translation (4) ! (3) is the statement of Theorem 4.4.27,

(2) ! (3) is done by the algorithm GCtoBrackets. The remaining transla-

tion (3) ! (2) is the only di�cult one and is called Cayley factorization.

Here an algorithm exists only for a special case (the multilinear one), see

White [46]

Cayley Factorization Problem : Find an algorithm which satis�es the

following speci�cation.

Input : A homogenous bracket polynomial P (a; b; :::):

Output : A tableau T of minimal degree s.t. P �T = C for some simple

Grassmann Cayley expression C(a; b; :::):

We demonstrate this by two applications from Sturmfels [43] in the pro-

jective plane P(C

2

): From Theorem 4.4.28 and from Theorem 4.4.29 we ob-

tain the following translations of geometric facts into the Grassmann Cayley

algebra. For a; b 2 P(C

2

) we denote the line through a and b with ab:
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Translation Let a; b; c; d be distinct points in P(C

2

): The line ab is repre-

sented by a _ b: The intersection point of the lines ab and cd is repre-

sented by (a _ b) ^ (c _ d) :

Conditions Let a; b; c; d be points in P(C

2

): The points a; b; c are collinear

i� a_b_c = 0: The point c is contained in the line ab i� (a _ b)^c = 0:

The points a; b are equal i� a _ b = 0:

In the sequel we abbreviate a _ b with ab:

Example 35 Let a; b; c; d; e; f be distinct points in P(C

3

):

The lines ab; cd and ef are concurrent

#

(a _ b) ^ (c _ d) ^ (e _ f) = 0

#

[a b e][d c f ]� [a b f ][d c e] = 0

#

a

1

b

2

e

3

c

1

d

2

f

3

+ a

1

b

2

e

3

d

1

c

2

f

3

+ ::: = 0

Without Cayley factorization we can use the following scheme for proving

theorems in projective geometry.

Proof Scheme :

� Express all conditions in Grassmann Cayley expressions C

1

; :::; C

k

:

� Transform C

1

; :::; C

k

into bracket polynomials P

1

; :::; P

k

in normal

form.

� Compare P

i

with P

j

; if necessary, �nd non-degenerate conditions.

Theorem 30 (Desargues). The following 2 conditions are equivalent :

(a) The corresponding sides of 2 (non-degenerated) triangles meet in collinear

points.

(b) The lines spanned by the corresponding vertices are concurrent.

Proof. Let a; b; c and d; e; f denote the two non-degenerate triangles. We

express part (a) in terms of the Grassmann-Cayley algebra and obtain

((a _ b) ^ (d _ e)) _ ((b _ c) ^ (e _ f))) _ ((a _ c) ^ (d _ f)) :

With the algorithm GCtoBrackets we transform the above expression into a

bracket polynomial. Step 1 yields

([ade]b� [bde]a)_ ([bef ]c� [cef ]b) _ ([adf ]c� [cdf ]a):
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Expansion gives

([ade]b_[bef ]c�[ade]b_[cef ]b�[bde]a_[bef ]c+[bde]a_[cef ]b)_([adf ]c�[cdf ]a) =

([ade][bef ]b_c�[ade][cef ]b_b�[bde][bef ]a_c+[bde][cef ]a_b)_([adf ]c�[cdf ]a) =

[ade][bef ][adf ]b_ c _ c� [bde][bef ][adf ]a_ c _ c+ [bde][cef ][adf ]a_ b _ c�

[ade][bef ][cdf ]b_ c _ a� [bde][bef ][cdf ]a_ c _ a+ [bde][cef ][cdf ]a_ b _ a:

FromTheorem 4.4.28 we know that b_c_c = a_c_c = a_c_a = a_b_a = 0:

For the remaining 2 extensors we have a _ b _ c = [abc]e

1

_ e

2

_ e

3

and

b _ c _ a = [bca]e

1

_ e

2

_ e

3

: Since we have identi�ed e

1

_ e

2

_ e

3

with 1 we

obtain

[bde][cef ][adf ][abc]� [ade][bef ][cdf ][bca]: (4.13)

The application of the straightening algorithm to (4:13) yields

[abc][abc][def ][def ]� [abc][abe][cdf ][def ] (a)

�[abc][acb][bef ][def ] + [abc][ace][bdf ][def ]: (4.14)

For part (b) we proceed as above obtain the Grassmann-Cayley expression

(a _ d) ^ (b _ e) ^ (c _ f)

which transforms in the bracket polynomial

[acf ][bde]� [abe][cdf ]

with normal form

[ace][bdf ]� [acd][bef ]� [abe][cdf ]� [abc][def ]: (b)

At the moment we have (4:14) 6= (4:15) ; so there is something missing. Note

the monomial [abc][def ] vanishes i� one (or both) triangles are degenerated,

which we have excluded by assumption.. We have

[ace][bdf ]� [acd][bef ]� [abe][cdf ]� [abc][def ] = 0

()

[abc][def ] ([ace][bdf ]� [acd][bef ]� [abe][cdf ]� [abc][def ]) = 0

()

[abc][abc][def ][def ]� [abc][abe][cdf ][def ]� [abc][acb][bef ][def ]

+ [abc][ace][bdf ][def ] = 0

which is the same as

(a_b^d_e)_(b_c^e_f)_(a_c^d_f) = 0 () (a _ d)^(b _ e)^(c _ f) = 0:
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If a Cayley factorization were available, then bracket polynomial (4:14)

could be rewritten as

[abc][def ] � ((a _ d) ^ (b _ e) ^ (c _ f)) :

We would get the condition (b) from the theorem and the degenerate con-

dition from the algorithm: This means that with a Cayley factorization one

could construct new theorems in the following way :

Theorem Construction :

� Starting from a con�guration of points a; b; :::, construct a Grassmann

Cayley expression C(a; b; :::) for the condition.

� Transform C(a; b; :::) with the GCtoBrackets and the straightening

algorithm in a bracket polynomial P which is in normal form.

� Apply Cayley factorization to P .

Example 36 Discovering and proving geometric theorems :

Let a; b; c; d; e; f 2 P(C

3

): Under which �geometric� condition lie a; b; c; d; e; f

on a common quadric ? A quadric

P

i+j+k=2

v

ijk

x

i

y

j

z

k

is determined by the

coe�cients v

ijk

: So we can reformulate our problem as follows. Find a syn-

thetic interpretation or construction for the algebraic condition :

9(v

200

; v

020

; v

002

; v

110

; v

101

; v

011

) 2 C

6

nf0g :

v

200

a

2

1

+ v

020

a

2

2

+ v

002

a

2

3

+ v

110

a

1

a

2

+ v

101

a

1

a

3

+ v

011

a

2

a

3

= 0;

.

.

.

v

200

f

2

1

+ v

020

f

2

2

+ v

002

f

2

3

+ v

110

f

1

f

2

+ v

101

f

1

f

3

+ v

011

f

2

f

3

= 0:

Our goal is to compute a simple Grassmann-Cayley expression . In the �rst

step we eliminate the coe�cients v

ijk

.

det

0

B

B

B

@

a

2

1

a

2

2

a

2

3

a

1

a

2

a

1

a

3

a

2

a

3

b

2

1

b

2

1

b

2

1

b

1

b

2

b

1

b

3

b

2

b

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f

2

1

f

2

1

f

2

1

f

1

f

2

f

1

f

3

f

2

f

3

1

C

C

C

A

= 0: (4.15)

The resulting polynomial has degree 12 and 720 monomials and is invariant

w.r.t. SL

d

(C): It follows from Theorem 27 that it can be written as a bracket

polynomial. Using the straightening algorithm we �nd that (4:15) is equivalent

to

[abc][ade][bdf ][cef ] + [abd][ace][bcf ][def ] = 0: (4.16)
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Now we have to �nd a simple Grassmann-Cayley expression C(a; b; c; d; e; f),

whose expansion equals (4:16) : In our example Cayley factorization yields (in

a non-algorithmic way !) :

((a _ b) ^ (d _ e)) _ ((b _ c) ^ (e _ f)) _ ((c _ d) ^ (f _ a)) = 0:

This Grassmann Cayley expression is equivalent to the following synthetic

statement :

The intersection points ab \ de; bc \ ef; cd \ fa are collinear:

This is precisely the contents of Pascal's Theorem.

4.4.3 The GCAlg Package

GCAlg is a Mathematica package for the bracket and Grassmann Cayley

algebra. It provides algorithms for the construction of Grassmann Cayley

expressions, for the transformation of Grassmann Cayley expressions into

bracket polynomials, and for the manipulation of bracket polynomials, e.g.

the straightening algorithm. It can be used for proving theorems of projective

geometry with the proof scheme of section 4.4.2.No Cayley factorization is

implemented.

Bracket Algebra

Data Types

BracketT[i

1

,i

2

,...]

Represents the bracket monomial [i

1

i

2

...]:

BracketPolynomialT

Denotes the fact that a polynomial in BracketT can be used. Not imple-

mented.

Algorithms

BPrint[B_BracketPolynomialT]

> returns the bracket polynomial. In order to print

a bracket polynomial B in an compound statement, use Print[BPrint[B]];

Bracket[fi

1

; i

2

; :::g]

Constructs the bracket [i

1

i

2

...]:

Bracket[B BracketPolynomialT]

Sorts the brackets of B, i.e. [2 1 3] is transformed to �[1 2 3]:

Phi[n; d][B_BracketPolynomialT,x]

Application of the generic coordinatization map �

n;d

(B);

cf. de�nition 4.4.49. x is a variable.
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StraighteningSyzygies[n; d]

> a list of all straightening syzygies w.r.t. n and d:

VdWSyz[n][�_BracketT, �_BracketT, 
_BracketT]

Computes the corresponding van der Waerden syzygy, cf. de�nition

Grassmann Cayley Algebra

Data Types

ExtT[i

1

,i

2

,...,i

k

]

Represents the extensor i

1

_ i

2

_ :::_ i

k

: of step k:

JoinT[A,B]:

Denotes the join of the simple Grassmann Cayley expressions A and B:

MeetT[A,B]:

Denotes the meet of the simple Grassmann Cayley expressions A and B:

Algorithms

GCPrint[A]

> returns the Grassmann Cayley expression A. In order to print

A in an compound statement, use Print[GCPrint[A]];

Extensor[i

1

,i

2

,...,i

k

]

The exteonsor formed from the points i

1

,i

2

,...,i

k

:

JoinGC[A,B]

The join of of the simple Grassmann Cayley expressions A and B:

Meet[A,B]

The meet of of the simple Grassmann Cayley expressions A and B:

GCtoBrackets[d][A]

Transforms the simple Grassmann Cayley expression gc to a bracket

polynomial. The entries in the brackets are the integers occuring in gc:

4.4.4 A Semi-automatic Proof of the Theorem of De-

sargues

We show how one can prove the Theorem of Desargues with the Mathematica

package GCAlg. Compare the proof below with the proof of the Theorem in

section 4.4.2 (Theorem 4.4.30).

We load the package and de�ne the 6 points (labelled as 1; 2; 3; 4; 5; 6):

<<GCAlg.m

a = Extensor[1];

b = Extensor[2];

c = Extensor[3];

d = Extensor[4];
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e = Extensor[5];

f = Extensor[6];

We form the corresponding lines.

ab = JoinGC[a,b];

ac = JoinGC[a,c];

bc = JoinGC[b,c];

de = JoinGC[d,e];

df = JoinGC[d,f];

ef = JoinGC[e,f];

Now we compute the intersection points.

p

1

= Meet[ab,de]; GCPrint[p

1

]

(1 _ 2)^ (4 _ 5)

p

2

= Meet[ac,df]; GCPrint[p

2

]

(1 _ 3)^ (4 _ 6)

p

3

= Meet[bc,ef]; GCPrint[p

3

]

(2 _ 3)^ (5 _ 6)

We now formulate the condition C

1

that p

1

;p

2

;p

3

are collinear (condition

(a) in Theorem 4.4.30).

tc

1

= JoinGC[p

1

,p

2

];

C

1

= JoinGC[tc

1

,p

3

]; GCPrint[C

1

]

(1 _ 2)^ (4 _ 5) _ (1 _ 3)^ (4 _ 6) _ (2 _ 3)^ (5 _ 6)

We transform C

1

in a bracket polynomial.

bp

1

= Bracket[GCtoBrackets[3][C

1

]; BPrint[bp

1

]

[1 2 3] [1 4 5] [2 5 6] [3 4 6] [1 2 3] [1 4 6] [2 4 5] [3 5 6]

We compute a Gröbner bases and apply the straightening algorithm to

bp

1

:

gb = StraighteningSyzygies[6,3];

vars = Brackets[6,3];

B

1

= Straighten[gb][bp

1

;vars]; BPrint[B

1

]

- [1 2 3] [1 3 5] [2 4 6] [4 5 6] + [1 2 3] [1 3 4] [2 5 6] [4 5 6] + [1 2 3] [1

2 5] [3 4 6] [4 5 6] + [1 2 3]

2

[4 5 6]

2

Now we formulate the condition that the lines spanned by the correspond-

ing vertices are concurrent.

ad = JoinGC[a,d];

be = JoinGC[b,e];

cf = JoinGC[c,f];

de = JoinGC[d, e];

df = JoinGC[d, f];

ef = JoinGC[e, f];

tc

2

= Meet[ad,be];

C

2

= Meet[tc

2

,cf]; GCPrint[C

2

]
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((1 _ 4) ^ (2 _ 5))^(3 _ 6)

We transform C

2

in a bracket polynomial.

bp

2

= Bracket[GCtoBrackets[3][C

2

]; BPrint[bp

2

]

[1 3 6] [2 4 5] - [1 2 5] [3 4 6]

We apply the straightening algorithm to bp

2

:

B

2

= Straighten[gb][bp

2

;vars]; BPrint[B

2

]

[1 3 5] [2 4 6] - [1 3 4] [2 5 6] - [1 2 5] [3 4 6] - [1 2 3] [4 5 6]

We construct the factor F and check if B

1

equals F*B

2

:

F = Bracket[{1,2,3}] * Bracket[{4,5,6}];

B

1

== Expand[F * B

2

]

True

4.4.5 Grassmannians

In section 1 we have constructed a Gröbner basis for I

n;d

in a purely combina-

torial way, but we mention that there is a rich geometry associated with I

n;d

:

The variety of the ideal I

n;d

is called the Grassmann variety or Grassmannian

G

n;d

which corresponds to the set of k�dimensional subspaces of C

n

: We

brie�y describe the �rst non-trivial Grassmannian, which turns out to be

G

4;2

: As we will see a point on G

4;2

corresponds to a decomposable extensor

of step two (this generalizes to all Grassmannians G

n;d

, i.e. the points corre-

spond to decomposable extensors of step d). The vector space �

2

C

4

has di-

mension six and a basis is given by fe

1

_e

2

; e

1

_e

3

; e

1

_e

4

; e

2

_e

3

; e

2

_e

4

; e

3

_e

4

g

provided that fe

1

; :::; e

4

g is a basis of C

4

: Let a; b 2 C

4

; then a _ b 6= 0 i�

the subspaces (lines) generated by a and b have only the trivial intersection,

namely the zero vector. It is then clear that they represent a line in P(C

4

):

If we multiply a and b by (di�erent) non-zero scalars we get back the same

line, so a_ b should be the �same� as � � a_ b: According to de�nition of the

join, a _ b has coordinates (x

1

; x

2

; :::; x

6

); namely

x

1

= a

1

b

2

� a

2

b

1

;

x

2

= a

1

b

3

� a

3

b

1

;

x

3

= a

1

b

4

� a

4

b

1

;

x

4

= a

2

b

3

� a

3

b

2

;

x

5

= a

2

b

4

� a

4

b

2

;

x

6

= a

3

b

4

� a

4

b

3

:

This is exactly the condition which an extensor x 2 �

2

C

4

has to ful�ll if it is

simple. Since multiplication by scalars does not a�ect points in a projective

space we construct a map from the set of lines in P(C

4

) into P(�

2

C

4

).

 : flines in P(C

4

)g �! P(�

2

C

4

);
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(a; b) 7�! a _ b:

The map  is called the Plücker embedding. The above equations can

also be seen as a parameterization of the projective variety G

4;2

in P(�

2

C

4

):

We compute a Gröbner basis G for by G

4;2

by implicitation and obtain

G = [x

1

x

6

� x

2

x

5

+ x

3

x

4

]:

The monomial x

1

x

6

corresponds to the bracket [12][34];�x

2

x

5

corresponds to

�[13][24] and x

3

x

4

corresponds to [14][23]. This is exactly the Gröbner basis

for I

4;2

in C[�(4; 2)] produced by the straightening algorithm as we have

seen in Example 4.4.32. The straightening algorithm uses the additional

structure information of the ideal I

n;d

for constructing a Gröbner basis in a

purely combinatorial way.



Chapter 5

My Invariants Package

This Mathematica package provides an environment for computing examples

in invariant theory of �nite groups. It provides basic tools for working with

�nite matrix groups, polynomials and contains implementations of Kemper's

optimal algorithm and the intersection algorithm. Almost all examples in

this thesis have been computed with this package.

Limitations :

� The �eld K can be a �nite extension of Q or a �eld with p elements

for a prime p:

� The order of the matrix groups should not be too large (> 1000).

� Roots of unity can cause restrictions in practical computations (due

to Mathematica).

� The algorithm SecondaryInvariants is only implemented in the

nonmodular case.

5.1 Variables and Trace

VARIABLES

Stores a set of variables. If an algorithm from below is called without

variables, then it will use VARIABLES.

Profile[AlgName]

Shows a pro�le of the running time for the algorithm AlgName.

See the description below for the algorithms, which provide this feature.

Reset[AlgName]

Before Profile[AlgName] is used, Reset[AlgName] must be called to

reset the counters.

SetVariables[{x

1

; x

2

; :::; x

n

g]

Assigns {x

1

; x

2

; :::; x

n

g to VARIABLES.

104
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ShowTrace[AlgName]

Enables/Disables the trace for the algorithm AlgName.

See the description below for the algorithms, which provide this feature.

5.2 Data Types

Matrix Groups :

MatrixGroupT[{M

1

;M

2

; :::;M

k

g; p; finite]

Represents the matrix group with the elements {M

1

;M

2

; :::;M

k

g � GL

n

(K).

p is the characteristic of the �eld K: Note that this is already a group.

MatrixGroupT[GenT[G

1

;G

2

; :::;G

k

]; p; finite]

Represents the matrix group which is generated by .the matrices G

1

;G

2

; :::;G

k

2

GL

n

(K):.

p is the characteristic of the �eld K.

5.3 Algorithms

Invariant Theory :

DegSecInvars[G_MatrixGroupT,{�

1

; �

2

; :::; �

n

g,{x

1

; x

2

; :::; x

n

g :{},t_Symbol]

> the polynomial H

G

(t)=H(K[�

1

; �

2

; :::; �

n

]; t).

The generating function for the secondary invariants of G: The coe�cient

of t

d

equals the number of linearly independent secondary

invariants of degree d:

DegSecInvars[hs_,{�

1

; �

2

; :::; �

n

g,{x

1

; x

2

; :::; x

n

g:{},t_Symbol]

> the polynomial hs=H(K[�

1

; �

2

; :::; �

n

]; t).

hs is the Hilbert series of the invariant ring with primary invariants

{�

1

; �

2

; :::; �

n

g:

HilbertSeries[G_MatrixGroupT,t_Symbol]

> the Hilbert series H

G

(t):

The characteristic of K is 0 or relative prime to jGj :

HilbertSeries[G_MatrixGroupT,�,t_Symbol]

> the Hilbert series H

G

�

(t):

Only for characteristic(K) = 0:

HilbertSeries[G_MatrixGroupT,t_Symbol,NC]

> the Hilbert series of the noncommutative invariant ringK hx

1

; x

2

; :::; x

n

i

G

:

Only for characteristic(K) = 0:

HilbertSeries[G_MatrixGroupT,t_Symbol,ALT]

> the Hilbert series of the noncommutative invariant ringK

alt

hx

1

; x

2

; :::; x

n

i

G

:

Only for characteristic(K) = 0:



CHAPTER 5. MY INVARIANTS PACKAGE 106

HomogenousInvariants[G_MatrixGroupT,d_Integer,vars_List]

> a basis of the K�vectorspace

�

K[x

1

; x

2

; :::; x

n

]

G

�

d

:

If G contains an element list, then the Reynolds operator is applied (non-

modular case). If G is represented by generators the algorithm does not

use the Reynolds operator. This is recommended for matrix groups with

more than 50 elements (and mandatory in the modular case).

HomogenousInvariants[R_,d_Integer,vars_List]

> a basis of the K�vectorspace

�

K[x

1

; x

2

; :::; x

n

]

G

�

d

:

R is the Reynolds operator of G:

HomogenousInvariants[G_MatrixGroupT,d_Integer,vars_List]

> a basis of the K�vectorspace

�

K[x

1

; x

2

; :::; x

n

]

G

�

d

:

If G contains an element list, then the Reynolds operator is applied (non-

modular case). If G is represented by generators the algorithm does not

use the Reynolds operator. This is recommended for matrix groups with

more than 50 elements (and mandatory in the modular case).

Invariants[G_MatrixGroupT,{x

1

; x

2

; :::; x

n

g:{}]

> ff

1

; f

2

; :::; f

m

g

A set of fundamental invariants for the ring K[x

1

; x

2

; :::; x

n

]

G

:

Works only in the nonmodular case. This is an implementation of

Noether's algorithm.

InvReset

Resets the timer to zero.

InvRingIntersection[{f

1

,f

2

,...,f

m

1

},{g

1

,g

2

,...,g

m

2

},{x

1

; x

2

; :::; x

n

g]

> fh

1

; h

2

; :::; h

r

g

Fundamental invariants for the ringK[x

1

; x

2

; :::; x

n

]

G

1

\K[x

1

; x

2

; :::; x

n

]

G

2

{f

1

,f

2

,...,f

m

1

} and {g

1

,g

2

,...,g

m

2

} are fundamental invariants of

K[x

1

; x

2

; :::; x

n

]

G

1

and K[x

1

; x

2

; :::; x

n

]

G

2

respectively.

Works only in the nonmodular case.

NumSecInvars[G_MatrixGroupT,{�

1

; �

2

; :::; �

n

g,{x

1

; x

2

; :::; x

n

g:{}]

> the rank of K[x

1

; x

2

; :::; x

n

]

G

as a K[�

1

; �

2

; :::; �

n

]�module.

Works only in the nonmodular case.

PrimaryInvariants[G_MatrixGroupT,{x

1

; x

2

; :::; x

n

g:{}]

> {�

1

; �

2

; :::; �

n

g

A set of minimal primary invariants for the group G.

PrimaryInvariants[G_MatrixGroupT,hs,t,order,{x

1

; x

2

; :::; x

n

g:{}]

> {�

1

; �

2

; :::; �

n

g

G is a �nite matrix group, hs is the Hilbert series H

G

(t) and order= jGj :

A set of minimal primary invariants for the group G.

PrimaryInvariants[G_PermGroupT,{x

1

; x

2

; :::; x

n

g:{}]

> {�

1

; �

2

; :::; �

n

g

The elementary symmetric polynomials. Requires the PermGroup.m
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package, cf. Bayer [2].

ReynoldsOperator[G_MatrixGroupT][F,{x

1

; x

2

; :::; x

n

g:{}]

> R

G

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g: Works only in the nonmodular case.

ReynoldsOperator[G_MatrixGroupT][F,�;{x

1

; x

2

; :::; x

n

g:{}]

> R

G

�

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g:Works only in the nonmodular case.

RF[rList_List,F,{x

1

; x

2

; :::; x

n

g:{}]

> R

G

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g;rList is a list of rules for R

G

:

Works only in the nonmodular case.

RFM[G_MatrixGroupT,F,{x

1

; x

2

; :::; x

n

g:{}]

>

1

LC(R

G

(F))

�R

G

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g: Works only in the nonmodular case.

RFM[G_MatrixGroupT]

> (F,{x

1

; x

2

; :::; x

n

g) 7�!RFM[G_MatrixGroupT,F,{x

1

; x

2

; :::; x

n

g]

RFM[rList_List,F,{x

1

; x

2

; :::; x

n

g:{}]

>

1

LC(R

G

(F))

�R

G

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g: rList is a list of rules for R

G

:

Works only in the nonmodular case.

RFM[G_MatrixGroupT,�][F,{x

1

; x

2

; :::; x

n

g:{}]

>

1

LC(R

G

�

(F))

�R

G

�

(F)

F is a polynomial in {x

1

; x

2

; :::; x

n

g:

Works only in the nonmodular case.

Rules[G_MatrixGroupT,{x

1

; x

2

; :::; x

n

g:{}]

> {r

1

,r

2

,...,r

m

}

A set of rules for the action of the group on K[x

1

; x

2

; :::; x

n

]:

Rules[G_MatrixGroupT,�,{x

1

; x

2

; :::; x

n

g:{}]

> {r

1

,r

2

,...,r

m

}

A set of rules for the action of the group on K[x

1

; x

2

; :::; x

n

] w.r.t.

the character �:

SecondaryInvariants[G_MatrixGroupT,{�

1

; �

2

; :::; �

n

g;{x

1

; x

2

; :::; x

n

g:{}]

> {�

1

; �

2

; :::; �

r

g

A module basis for K[x

1

; x

2

; :::; x

n

]

G

as a K[�

1

; �

2

; :::; �

n

]�module.

Works only in the nonmodular case.

TotalDegree[F,{x

1

; x

2

; :::; x

n

g:{}]

> the total degree of F as a polynomial in {x

1

; x

2

; :::; x

n

g:

Matrices :

Add[m1_List, m2_List]

> diag(m1,m2)
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Del[M_List, i_Integer, j_Integer]

deletes the i-th row and j-th column of M.

ToMatrix[perm_List]

> the permutation matrix of the permutation perm in list representation.

trace[M_List]

>

P

n

i=1

M

i;i

The trace of M.

Matrix Groups :

Act[M,F,{x

1

; x

2

; :::; x

n

g]

> F(M

�1

{x

1

; x

2

; :::; x

n

g)

The action of the matrix M on the polynomial F.

Characterisitc[G_MatrixGroupT]

> the characteristic of the �eld K of G � GL

n

(K):

Conj[MatrixGroupT[g_GenT, finite],M_List]

> conjugates each generator with M.

Degree[G_MatrixGroupT]

> n i� G � GL

n

(K):

Element[G_MatrixGroupT][i_Integer]

> the i-th element of G.

Elements[MatrixGroupT[{M

1

;M

2

; :::;M

k

g,ord,finite]]

> {M

1

;M

2

; :::;M

k

g

Enumerate[G_MatrixGroupT,F:id]

> fF[�] : � 2 Gg i� G contains a list of all elements.

> Nil otherwise.

TypeOfRep[MatrixGroupT[elem_List, ord_, finite]]

rtype1 : G contains an element list.

rtype3 : G contians only a generating set.

Generators[G_MatrixGroupT]

> {G

1

;G

2

; :::;G

k

g i� G contains a list of generators

> Nil otherwise.

MatrixGroup[gens_List,generate_:True]

> G

The linear group generated by {G

1

;G

2

; :::;G

k

g:

<generate == True>

G contains a list of all elements

<generate == False>

G contains a list of the generators.

MatrixGroup[PG_PermGroupT]

> G

The corresponding matrix group G to the permutation group PG

Map[F,G_MatrixGroupT]
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Maps the function F to all elements of G. G must contain a list of all

elements.

Orbit[G_MatrixGroupT,p_,Action_]

> fAction[�; p] : � 2 Gg

Order[G_MatrixGroupT

> jGj

Print[G_MatrixGroupT]

Prints the group G:

Transform[MatrixGroupT[elem_List, ord_, finite], set_, Action_]

Partitions

Taken from Skiena [35].

Partitions[n_Integer]

> all partitions of n

Partitions[n_Integer,maxpart_Integer]

> all partitions of n where all summands are �maxpart.

NextPartition[p_List]

ReducedPartitions[n_Integer]

ReducedPartitions[part_List] ]

Polynomials :

DegVec[M_,{x

1

; x

2

; :::; x

n

g]

> the degree vector of the monomial M:

HeadTerm[f_,{x

1

; x

2

; :::; x

n

g,ordering:PTotal]

> the head term of the polynomial f:

PTotal is the total degree ordering and PLex the lexicographic ordering.

Monomials[{x

1

; x

2

; :::; x

n

g:{},d_Integer]

> a set of all monomials in x

1

; x

2

; :::; x

n

with degree d

PLex[l1_List,l2_List]

> True if l1 is lexicographical smaller or equal than l2. False otherwise.

PolyToFun[f_,{x

1

; x

2

; :::; x

n

g]

> Transforms the polynomial f in a Mathematica function with n para-

meters x

1

; x

2

; :::; x

n

.

SymmPoly[{x

1

; x

2

; :::; x

n

g]

> The elementary symmetric polynomials in the variables x

1

; x

2

; :::; x

n

:

5.4 A small Demo

Example 37 We compute the Hironaka decomposition of G =

*

0

@

0 1 0

�1 0 0

0 0 �1

1

A

+

:

G has order 4.
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m = {{0,1,0},{-1,0,0},{0,0,-1}};

G = MatrixGroup[{m}];

Print[G]

Order 4 , characteristic 0

0

@

1 0 0

0 1 0

0 0 0

1

A

;

0

@

0 1 0

�1 0 0

0 0 �1

1

A

;

0

@

0 �1 0

1 0 0

0 0 1

1

A

;

0

@

�1 0 0

0 �1 0

0 0 1

1

A

hs = HilbertSeries[G,t];

�1+t�t

2

�t

3

(�1+t)

3

(1+t)

2

(1+t

2

)

Series[hs,{t,0,10}]

1 + 2t

2

+ 2t

3

+ 5t

4

+ 4t

5

+ 8t

6

+ 8t

7

+ 13t

8

+ 12t

9

+ 18t

10

+O(t)

11

{p

1

,p

2

,p

3

} = PrimaryInvariants[G,{x,y,z}]

fx

2

+ y

2

; z

2

; x

2

y

2

g

SetVariables[{x,y,z}];

NumSecInvars[G,{p

1

,p

2

,p

3

}]

4

DegSecInvars[hs,{p

1

,p

2

,p

3

},t]

1 + 2t

3

+ t

4

gb = GroebnerBasis[{p

1

,p

2

,p

3

},{x,y,z}];

{s

2

;s

3

g = HomogenousInvariants[G,3]

fxyz; x

2

z � y

2

zg

hom4 = HomogenousInvariants[G,4]

fx

2

y

2

; x

3

y � xy

3

; x

4

+ y

4

; z

4

; x

2

z

2

+ y

2

z

2

g

Map[PolynomialReduce[#,gb,{x,y,z}][[2]] &,hom4]

f0;�2xy

3

; 0; 0; 0g

s

4

= hom4[[2]];

Let R = C[p

1

; p

2

; p

3

]. We have obtained the Hironaka decomposition

C[x; y; z]

G

= R � s

2

R � s

3

R� s

4

R:
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