Übungsblatt 8

für den 26/11/2019

Beispiel 21 Man visualisiere mit dem Programm http://www.falstad.com/vector/ das Verhalten der Lösungen $y: \mathbb{R} \to \mathbb{R}^2$ der Gleichung

$$\forall t : f'(t) = A f(t)$$

für verschiedene 2×2 Matrizen A (positive / negative / komplexe Eigenwerte, doppelte Eigenwerte, Eigenwerte mit Realteil 0). Unter user-defined field in der Setup-Leiste kann eine beliebige Funktion eigegebene werden, daher insbesondere auch eine beliebige lineare Funktion. Interessant ist auch die Funktion streamlines im Floor-Menü, die die Lösungskurven zeichnet.

Beispiel 22 a) Zeigen Sie für $k \in \mathbb{N}, K \subset \mathbb{R}^k$ kompakt und $F: K \to K$ stetig differenzierbar, dass F Lipschitz-stetig ist.

- b) Finden Sie eine Lipschitz-stetige Funktion, die nicht überall differenzierbar ist.
- c) Ist $F:[0,\infty)\to\mathbb{R},\ x\mapsto\sqrt{x}$ Lipschitz-stetig?

Beispiel 23 a) Betrachte die Differenzialgleichung

$$\forall t \in T : t \ f'(t) - 3f(t) = 0. \tag{1}$$

Für welche Mengen $T\subseteq\mathbb{R}$ lässt sich in Gleichung (1) der Satz von Picard-Lindelöf anwenden?

- b) Zeige, dass sowohl $f_1(t) = c_1 t^3$ als auch $f_2(t) = c_2 |t|^3$ für beliebige $c_1, c_2 \in \mathbb{R}$ Lösungen von (1) sind. Gibt es weitere Lösungen?
- c) Zeigen Sie, dass für $T\subset\mathbb{R}$ kompakt und eine auf T definierte lineare Differentialgleichung höherer Ordnung

$$\forall t \in T : f^{(k)}(t) = a_{k-1}(t) f^{(k-1)}(t) + \dots + a_1(t) f'(t) + a_0(t) f(t) + g(t)$$

mit stetigen Funktionen $a_i, g: T \to \mathbb{R}$ zu jeden Anfangswerten $(f(t_0), \dots, f^{(k-1)}(t_0)) = (x_0, \dots, x_{k-1}) \in \mathbb{R}^k$ mit $t_0 \in T$ eine eindeutige Lösung besitzt.