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Abstract. Proving is an activity that makes use of mathematical knowl-
edge. For a human, this knowledge - together with the know-how about
proving techniques - is accumulated over years of studying mathematics.
For a theorem proving assistant, the mathematical knowledge needed
in the proving process has to be provided beforehand. In this paper
we describe a user-friendly environment for building up a mathematical
knowledge base that can be accessed by an automated proving assistant.

1 Introduction

Whether it is done by a human or by an automated system, proving is a high-
level activity that heavily uses already defined concepts and proven facts. In
the case of a human prover, years spent on studying different fields of mathe-
matics decisively contribute in building up a kind of a mathematical knowledge
base. This contains axioms, theorems, proofs, etc. as well as proving techniques,
that the mathematician is using while reasoning about something, at times even
unaware of it.

In the field of Automated Theorem Proving a lot of research is done on
”teaching” the machine how to prove, by translating knowledge that is implicit
for a human mathematician (namely proving techniques and methods) to an
explicit form, that a machine can understand and use. Though this direction of
research is by no means exhausted, there is now an increased need of having
computer accessible mathematical knowledge bases.

In the last years significant steps were done in this direction and the impor-
tance of mathematical knowledge management was first underlined in 2001, at
the First International Workshop on Mathematical Knowledge Management. In
[2] are identified three main problems of the mathematical knowledge manage-
ment area, namely:

— retrieving mathematical knowledge;

— building up mathematical knowledge bases; and

— educating mathematicians to work efficiently with and improve the existing
knowledge bases.



Before we can speak about managing a mathematical knowledge base we first
have to have a mathematical knowledge base. At the moment, the largest such
base is Mizar [13]. Among other existing ones we mention here MBase [12], the
Formal Digital Library project [1], the NIST Digital Library of Mathematical
Functions [15], the libraries of the theorem provers Isabelle [10], PVS [18], IMPS
[9], Coq [7].

This paper presents an environment for editing and processing mathematical
documents, making them available for including them in a mathematical knowl-
edge base. Ultimately, we want to use the knowledge stored in such a knowledge
base in automated proving. The ideas that originated this work are due to the
second author, elaborating them and the implementation is done by the first
author. This work will also appear as part of [17].

The plan of the paper is as follows: In Section 2 we review the work that is
going on in the area of mathematical knowledge management and we give the
main idea of the design of our mathematical document editing environment. In
Section 3 we will describe how this is done in the frame of Theorema. We will
end with conclusions and remarks on future work in Section 4.

2 Towards Mathematical Document Parsing

When thinking of a mathematical knowledge base, most of us will, more or less,
have in mind a big collection of formulae (definitions, theorems, etc.) organized in
some hierarchical structure. Usually, this knowledge is to be found in specialized
books, which have the big disadvantage of presenting the information in a static
way. Searching in them can only be done syntactically and is time consuming.
An important step forward was done by using computers to electronically store
and search within mathematical documents.

As the Internet became one of the most handy and used tools for finding
information, it was a natural step to employ it for making mathematical knowl-
edge widely available. Still, for some time, mathematical formulae were displayed
only as graphics.

Using the MathML recommendation of W3C [19], it is now possible to dis-
play and communicate formulae. Being an application of XML, MathML benefits
of the existing tools that manipulate XML files. Though it does offer some se-
mantics of the symbols in the mathematical formulae, the set of these symbols
is too restricted when compared to those used by working mathematicians. To
ameliorate this situation projects like OpenMath [6] and OMDoc [11] emerged.
The OpenMath standard concentrates on representing mathematical objects to-
gether with their semantic meaning, allowing them to be exchanged between
computer programs, stored in databases, or published on the worldwide web. At
a first glance, one can view OpenMath as extending the MathML capabilities
by using ”content dictionaries” where mathematical symbols are defined syntac-
tically and semantically. OMDoc is an extension of OpenMath and MathML,
adding capabilities of describing the mathematical context of the used Open-
Math objects.



An important drawback of the standards mentioned above is that the coher-
ence of the different documents (e.g. content dictionaries) is not automatically
checked. This has to be done by a human, the task being rather difficult be-
cause the representation formats are not human oriented. This representation
confronts us with another issue, which we intend to address in this paper: pub-
lishing mathematics using these representations is not attractive for the everyday
mathematician. There is ongoing work to improve this state of facts, the latest
the authors are aware of being presented in [8].

The main ingredient in building a mathematical knowledge base are the doc-
uments with mathematical content, that a user types into the computer. This
is, usually, a time consuming activity that is not always eased by the document
editing environment. In the ideal case, the human user does nothing else than
typing her ideas and formulae in a user-friendly environment that allows easy
formula editing, like Maple or Mathematica. A program will take, then, this doc-
ument and process it, extracting all the information of interest, organizing it,
correlating it with (eventual) existing documents, translating it into a form that
is understood by the theorem provers, maybe even correcting eventual typos. As
this is at the moment not yet possible, we may try to come as close as possible
to such a mathematical authoring environment. For this, we have to ask the user
to accept the current limitations of the existing computer programs and follow
some well thought-out guidelines for writing the documents.

The main goal of the mathematical document editing environment we pro-
pose is to let the author concentrate on writing. We want to reduce the task
of semantically annotating the document the user is working on to a minimum
necessary. In order to fruitfully process the finished document we restrict the
author to use a certain style for it. Most importantly, the user should:

A. separate text from mathematical formulae; and
B. group the formulae under certain headers (Definitions, Theorems, Proposi-
tions, etc.).

When a document respects the A. and B. requirements, a purpose specific
document parser is able to

— identify the mathematical content from the rest of the document,

— correctly identify the mathematical knowledge types of the formulae, and

— store the identified knowledge in a form that is usable for other automated
activities, e.g. proving.

We envision that advanced tools will take the output of such a dedicated
document parser and extract more information from it, like singling out the
defined concepts and their properties, generate new knowledge, etc.

3 Environment Description

The main phases that a document goes through, from the moment a user decides
to write it (i.e. type it into the computer), to the point where the document



becomes part of a knowledge base, are: a) writing the document following some
guidelines; b) verifying (parsing) the document; and c) inserting the document
into the knowledge base. In the following, we discuss how each of these actions
is performed in the environment proposed.

The implementation of our ideas is done in the frame of Mathematica and
Theorema. The Theorema system is designed to assist a mathematician in all
of the phases of her work (see [2,3]). It is built on top of the computer algebra
system Mathematica [20]. As a mathematical editing environment, Mathematica
offers a very good front end support by giving the possibility of combining text,
mathematical expressions, graphics, code in the same document, called note-
book. Another feature of Mathematica that is used by the Theorema system
and is relevant for our environment is that Mathematica permits programming
syntax for new symbols.

We note here, that all formal knowledge in the documents written using this
environment are predicate logic formulae so that their semantics can be fully
explained within the document. For this reason, translating the output of the
document parser to a format like OMDoc or MathML can be done relatively
easy ([17]). The reverse translation is not always possible because the content of
MathML, OMDoc documents are not fully in predicate logic.

Theorema already provides constructors for writing, using, and composing
mathematical basic knowledge Definition, Proposition, Theory, etc.). How-
ever, there were few attempts for building up a mathematical knowledge library
in a systematic way, a library that can be browsed, extended and used for prov-
ing or teaching. The environment we are about to describe is intended to im-
prove this. With this purpose in mind, we have designed a special Mathematica
stylesheet and implemented a set of functions for processing the notebooks that
are making use of this stylesheet. We will refer to this environment as the ”theory
development environment”.

Belonging to the theory development environment is a Theorema palette
(similar to a toolbar), named ”Library Utilities”, that can be opened by calling
OpenLibraryUtilities[ |, after the Theorema system is loaded. The function-
ality of the buttons on this palette will gradually be explained in the following
subsections.

3.1 Writing the Document

To write a document that is to be included in a mathematical knowledge base, the
author has to use a certain type of stylesheet for it. This will ease the annotation
part of the work put in writing. The document type we ask to be used employs
the stylesheet facilities of Mathematica. A Mathematica stylesheet is a special
kind of notebook that defines a set of styles which are allowed to be used in
another notebook ([20] Section 2.10). As mentioned before, we have defined a
special stylesheet that allows annotating the document a user is working on,
without her explicit awareness. The annotation is done while writing and is not
semantic: it only marks cells and groups of cells in the notebook. This style sheet
will facilitate the parsing of the finished document.



The simplest way to open a new document with the specific stylesheet is to
use the ’Open a Template’ button on the ”Library Utilities” palette. What we
obtain is a document like in Figure 1. (The figure also presents the ”Library
Utilities” palette). The users that are acquainted with the Mathematica front
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end can also proceed differently, by opening a new notebook and choosing the
"TheoremaTheory’ stylesheet for it. We will continue our description with the
assumption that the user pressed the suggested button on the palette and has
now opened a notebook like in Figure 1, which we will call ”the theory notebook”
from now on.

The theory notebook is divided into two parts: header and content.

The header part of the theory notebook contains a title and a code, an author,
a description and a reference section.



The code cell contains a short string of characters that is associated with the
notebook and its content. The user is not compelled to type in a code, though
she may prefer one that is a kind of compression of the document’s title. When
no code is given, one will be generated when the document is verified (Subsection
3.2). The code of the document will, later, uniquely identify it (and its content)
among other documents in the theory library.

The author section is a text cell where the author of the document will put
her name and the date the file was created.

The description section is reserved for, as its name says, describing in a few
sentences, informally, what the content of the document is. The author can add
here more information about the mathematical insights that a human reader
may expect to get when reading the document.

In the reference section the author can add pointers to books, web addresses,
etc. from where the document content was gathered or where more information
can be obtained. The author is free to add other information as well, leaving to
her common sense that it is relevant for this section.

Only the document title is mandatory to be present in a theory notebook.

The content part of the document is where the actual formulae of the the-
ory are to be typed in. The basic kinds of mathematical knowledge recognized
are axioms, definitions, propositions, lemmata, theorems, corollaries, algorithms.
The template document provides, for each of them, headings which, based on
the stylesheet’s definitions, will mark the formulae underneath them as axioms,
definitions, etc. For making it easy to recognize the mathematical expressions
we require that the formulae are typed in input cells. This does not put any
burden on the authors, since it is the default cell type that will be considered
as soon as one starts typing inside a Mathematica notebook. As an example, if
a formula is considered to be a proposition it should be appear under a heading
with the style ” Proposition”. Though it contributes to clarity, it is not necessary
that the word ”proposition” appears in the text of the heading. The cell style of
the heading has already the information that the formulae that will occur below
this header will be propositions. The user can modify the header’s text to better
reflect the meaning of the formulae underneath it. The author is not restricted
to only one section for a knowledge type. (see Figure 2).

If the author wishes to attach labels to formulae this can be easily done by
adding a tag to the cell where they occur. Labels are Mathematica strings and, in
the document, will appear in a smaller font just above the formula cell. Tagging
cells is a feature of the Mathematica front end (see [20] section 2.11.9). It is also
possible to give labels to groups of formulae by tagging the heading under which
they are written. Labels can be used to indicate that the theory being written
uses (formulae and/or parts of) other theories. For example, if the author wishes
to indicate that the definitions of tuples found in the theory document with the
code "BU-Expl:Tuples”, are assumed in the document being written, he or she
has to use Include[”BU-Expl:Tuples.3”], where "BU-Expl:Tuples.3” is the label
attached to the set of definition formulae. The Include] ... ] directives can be
placed anywhere in the content part of the mathematical document.
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Fig. 2. Propositions in a theory notebook.

Labels also give the author the possibility to group formulae into smaller
theories, composing them hierarchically if wished. An example of how this can
be done is shown in Figure 3. The cells that contain the theory definitions must be
under a header with the style ” Theory” (provided by the used stylesheet) so that
the document verifier can treat them correspondingly. As a final remark to this
subsection we mention that the user can add anywhere in the document textual
information that helps a human reader understand the presented knowledge.

3.2 Consistent Parsing of Documents

Starting the parsing process is done by pressing the "Process Documents’ button
on the ”Library Utilities” palette. The stylesheet used for writing the document
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helps identifying within it the information that is of interest for further process-
ing.

The first step in parsing the document is to check wether the theory notebook
has a title and a code. If the title is missing the parsing process stops with an
error message. If the code is not present in the theory notebook, the parser will
compute one by taking the first letters of the words appearing in the title, and
will add it in the notebook. The parser will check then the theory code against
a list of existing theory codes that it has extracted from the knowledge library.
If there is a name clash an error message is returned and the process stops. The
author has to correct this problem.

Next, the document parser will generate labels for each of the formulae cells
and for their headings. The generation takes into account the theory code and
numeric counters. These labels will uniquely identify the formulae among all the
formulae in the knowledge base. When a formula already has a user-given label,
the verifier will not generate a label for it, but it will add the theory code in
front of it. Figures 2 and 3 present parts of a verified theory notebook.

Now, the document parser will check whether the theories and/or part of
theories that are referred to via Include[ ... ] commands exist in the mathe-
matical theory library. It will also check whether these theories, at their turn,



include (parts of) other theories and that this chain of inclusions does not lead
to cycles. If there is a loop detected the process stops with an error message and
the user has to correct this matter.

The document parser will also add a content section in the header part of
the document. This section is a compressed image of the content part of the
document, with hyperlinks to formulae in it. Additionally, hyperlinks to the
included theories are created.

Lastly, the parsing procedure will apply Theorema’s input parsing routines
on the mathematical formulae that occur in the document. Each of the formulae
will be read, parsed and, based on the annotations carried out by the stylesheet
used, the proper Theorema constructs will be created for it. Theorema theory
constructs are created for the user defined theories (if any). Furthermore at this
stage, Theorema theory constructs collecting the formulae underneath the main
headers of the theory notebook are created for each of the headers.

A Mathematica package file, that contains the Theorema constructs for the
document being parsed, is created. Loading this package will make all the for-
mulae that were introduced in the theory notebook available in the Theorema
system. They can be used in the proving process.

In later developments of the environment, the annotations made via the
stylesheet used for editing the document may play an important role in attaching
a semantical meaning to the formulae in the document by triggering further,
knowledge-type specific analysis of the logical formulae.

3.3 Inserting the Verified Document into the Library

The document parsing process described above can be performed several times.
When no errors occurred, the theory document can be inserted into the theory
library. This is done by pressing the ’Insert into Library’ button on the ”Library
Utilities” palette.

The verified documents will be copied into the theory library location, to-
gether with the created Mathematica package. At the same time, an entry about
the theory notebook is made in a special theory index file. The theory index file
is keeping record of each theory notebook that is part of the theory library.
This includes the theory code, information on where the file and its correspond-
ing Mathematica package are stored, and theories on which the inserted one
depends.

From the moment the document is inserted into the theory library its content
is available for inclusion, via Include] ... ] commands, in other documents that
the author intends to write.

The functionality of the ’Library Contents’ button on the ” Library Utilities”
palette is the following: based on the entries stored in the theory index file,
it will dynamically construct and present the user a notebook with a list of
theories already existing in the knowledge library. The list has hyperlinks to
the notebooks where the theories are introduced. The user is also provided with
commands that help her inquire the content of a theory. She can ask, for example,



which are the axioms of a theory with a specific code. The system will return a
list of labels of the axioms that are present in the respective theory.

4 Concluding Remarks and Future Work

We have presented an environment for editing documents with mathematical
content, parsing and including them into a mathematical knowledge library.
This environment is designed such that the users can concentrate on writing
their ideas, requiring only that they use a certain stylesheet for their documents.
A document that uses this stylesheet can be automatically processed in order to
extract its mathematical content and store it in a format that can be used for
browsing, proving, etc. For example, we could apply the tools described in [16]
for obtaining derived knowledge.

There are features that are missing in our environment and are subject to
future work. Among them we mention the plan to improve the routine that
extracts the mathematical content from the theory notebook and inserts it into
the theory library. For example, automatically identifying the defined symbols in
the document should be possible. Also, we did not yet thoroughly consider how
searching for notions and concepts can be done best in such a theory library.
Another issue is how to manage modifications that the user might perform to
the documents that are already included in the theory library.

The theory library that is built using the described environment comprises
both the documents written by the authors and the processed files obtained
from them. The reason for this is that a human reader will want to read and
inspect the former, while an automated theorem prover will use the latter. The
format of the processed documents is understood by the Theorema system, in
the sense that we can apply the various reasoners of Theorema to this knowledge
(for proving, simplifying, etc).

Applying stylesheets to documents with mathematical contents has already
been used before, though with a different scope than ours. For example, in [14]
automatically generated stylesheets are used for displaying the mathematical
knowledge in different forms.

In our view, logical manipulation of mathematical knowledge (i.e. mathe-
matical theory exploration) does not yet get sufficient attention in the area of
mathematical knowledge management. In Theorema, however, this is the main
focus. By logical manipulation of mathematical knowledge we mean:

— invention of concepts;

— invention and verification of propositions;

— invention of problems;

— invention and verification of algorithms;

— storage of mathematical knowledge (concepts, propositions, problems, algo-
rithms) for later easy retrieval by logical analysis.

In [4] it is described how all this can be organized in exploration cycles
according to a ”four thread model”.
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