A Note on the Automated
Generation of an Algorithm

Verification Method

BrunoBuchberger
Researchnstitutefor SymbolicComputation
Johanne&eplerUniversity,Linz, Austria
bruno.buchberger @jku.at

Acknowledgement: Sponsoredy FWF (OsterreichischeFondszur Férderungdet
WissenschaftlichenForschung; Austrian Science Foundation), project SFB 130z
("Theorema™) of the SFB013("NumericalandSymbolicScientific Computing™).

1 Abstract

A natural verification rule for proving that simple recursiveprogramssatisfy in-out
problem specificationsis automaticallygeneratedby the author’'slazy thinking algo
rithm synthesisnethod.

Keywords: algorithm schemesyerification of recursivealgorithms,lazy thinking
algorithmsynthesisfailure analysis;Theorema.

2 In—OutProblems

Throughoutthis paper, K is a theory (or "knowledge base"),i.e. a collection of
(predicatelogic) formulae.Let P be a binary predicateconstantoccurringin K andf &
unaryfunctionconstantThentheformula

(in-out v PIx, fx]]



is calledan"in—outspecificatiorof f*.

(Of course we could also considermultivariatefunctionsf. Also, we could restric
the inputsto thosesatisfyinga certaininput specification.However,we want to keej
the presentatioras simple as possibleand avoid technicalitieswhich do not contribute
to the essencef this paper.Also, in this paper,we do not considerthe questionof
termination but only the questionof partial correctnessWe could add terminatiol
considerationsout the emphasisof this paperis on the relation betweena genere
algorithm synthesismethodand a verification methodfor recursiveprograms,whick
we wantto presenwithout beingdistractedoy termination.)

If P andf are"given", i.e. someknowledgeon P andf is containedin K, thenthe
task of proving (in—out)is called "the verification of the correctnes®f f w.r.t. to the
problemP".

If Pis "given", i.e. someknowledgeon P is containedin K, thenfinding a defini-
tion of f (in termsof otherfunctionsin the knowledgebase)is calledthe "synthesiof g
function (in particular,analgorithm)for theproblemP".

Note thatmanyof the (algorithmic)problemsarein—outproblemsbut alsonotetha
there are many interesting(algorithmic) problemsthat are not in—outproblems.Fot
examplethe problemof sortingis atypicalin—outproblem:Provethat

Y (is-sortedversionx, f[x]]).
X

In contrastthe problemof "canonicalsimplification”
vV (x~f[x])
XVy (x~y = (f[x] = f[yD),

where '~' is typically an equivalence,is not an in—outproblem:i.e. we canna
formulatea predicateP suchthatthetwo formulaecanbewrittenin theform (in-out).

3 Simple Recursive Programs

Therecursiveprogramsvhich we consideiin this paperhavetheform

(reg

fix] = sx] & c[x]
= {h[X- flg1[x]], f[g2[x]]] « otherwise

wherec, s,g1,92,andh areknownauxiliary functions.



(Of coursewe could alsoconsiderthe casewhere insteadof the two recursivecalls
flg1[x]] andf[g2[x]], we haveonly onerecursivecall f[g[x]] or we havemorethantwa
recursivecalls.)

4 A Natural Verification Rule for Explicit Problems and
Simple Recursive Programs

[Popov 2004] observeghat, if we apply Scottinduction (definedin [DeBakker1969]
for proving thata function f definedby (rec) satisfies(in—out),one obtainsthe follow-
ing verificationrule:

In orderto provethat

Y P[x, f[X]]

it sufficesto provethat

¥ (cIx] = PIx, sIX]])

and

= C[X]
\{ ) Plo1x], y1] = P[x, h[x, y1, y2]]|.
M\ Plg2ix), y2)

It is clearthatthe aboveverificationrule for recursiveprogramscould alsobe guesse
directly (or stipulated axiomatically) from the intuitive understandingof functior
substitutionandtheiterationof recursivecalls.

The Automated Synthesis of the Verification Rule by Lazy
Thinking

Now, we want to show that the aboveverification rule can also be automatically(!)
synthesizedy applyingthe "lazy thinking" algorithm synthesiamethodintroducedin
[Buchberger2003],which demonstratethe powerof this method.

Roughly, the lazy thinking synthesisnethodsuggestso try a scheméor f, e.g.the
recursivescheme

f1x] = six] e cx]
b _{h[X: flg1x]], f[g2[x]]] « otherwise

andto attempta proof of

v Px, f[x]]



by anyproof methodwhatsoever.

The proof will most probablyfail becausenothingis known aboutthe ingredien
functionsc, s, g1, g2,andh. Thenoneapply a "requirementgenerating'algorithmtha
generatesequirementdor the ingredientfunctionswhich leadsto a synthesigroblen
for the ingredientfunctions,and so on until we arrive at requirementgor auxiliary
functionsthatcanbefulfilled by functionsalreadyavailablein theknowledgebase.

The current requirementsgeneratingalgorithm proposedin [Buchberger2003
consistsof thefollowing rule:

Generalization Rule: If the failing proof situation consistsof the temporar
assumption(s)

A
andthetemporarygoal

G

containingthe Skolemconstant(s)"arbitrary but fixed" constantsx0 and, maybe
containingtermsthatstartwith the functionsymbolf, thendo thefollowing: Replacan
A and G different terms starting with f by different new variablesy1, y2, etc. anc
replacex0 by a newvariablex yielding, say,formulaeA’ andG’. Thentherequiremer
is

v o (A’ G).
Xyly2,...

Special Case: If in A and G, thereare no termsstartingwith f thenx0 hasto be

replacedby anewvariablex yielding A’ andG’ andtherequirements just.

YA =G
X
Let usnow apply this synthesisnethodto the aboverecursiveschemelet usapply

Noetherianinduction w.r.t. to some Noetherianrelation > on the given domain, for
which

v (_‘ oix] > glx] < x)

g2x] < x
holds.

Thenwe obtainthefollowing proof attempt:

We takexO arbitrarybut fixed andassumesinductionhypothesis



XYXO PIx, f[x]].

We wantto prove
P[x0, f[x0]].
Now, we havetwo cases:

Casec[x0]: In this case,by the recursivepresentatiorof f, we haveto
prove

P[x0, s[x0]].

Here the proof is stuck.By the requirementgyenerationalgorithm, we
obtaintherequirement

¥ (c[x] = P, six]].

Case-c[x0]: In this case by the recursivepresentatiorof f, we haveto
prove
P[x0, h[x0, f[g1[x0]], f[g2[x0]1]].
Now, by theinductionhypothesis,

Plg1[x0], f[g1[x011],
Plg2[x0], f[g2[x0]]].

Here the proof is stuck.By the requirementgyenerationalgorithm, we
obtaintherequirement

- C[X]
v Plg1lx], y1] = P[x, h[x, y1, y2]]|.

Y2 { prg2x, y2I

Hence,we seethat we obtain,completelyautomatically the following verificatior
rule for recursivealgorithmsof the form (rec) andin—outproblemspecificationsyhict
is exactlytherulein [Popov2004]:

In orderto provethat

v P[x, f[x]]

it sufficesto provethat

¥ (c[X] = P[x, s{X]])

and



= C[X]
\{ ) Pla1x], y1] = P[x, h[x, y1, y2]]{.
Y Plg2ixl, y2)

References

[Buchberge2003]

B. BuchbergerAlgorithm InventionandVerification by Lazy Thinking.

In: D. Petcu,V. Negru,D. Zaharie,T. Jebelear{eds),Proceeding®f SYNASC 2003 (Symbolic
and Numeric Algorithms for Scientific Computing, Timisoara, Romania,October1-4, 2003)
Mirton Publishing ISBN 973-661-104-3, pp. 2-26.

[Popov2004]

N. Popov. Verification of SimpleRecursivePrograms.

Manuscript,RISC (Researchnstitute for Symbolic Computation) JohanneXepler University
January2004.

[DeBakker1969]

J.W. DeBakkerandD. Scott.A Theoryof Programs.
IBM SeminarVienna,Austria,unpublishedhotes,1969.



