
Proving and Solving in Computational Origami

Tetsuo Ida1  and Bruno Buchberger2

1 Department of Computer Science, University of Tsukuba
Tsukuba 305-8573, Japan

ida@cs.tsukuba.ac.jp

2 Research Institute for Symbolic Computation, Johannes Kepler University
Hagenberg A4232, Austria

Bruno.Buchberger@risc.uni-linz.ac.at

Abstract.

Origami (paper  folding)  has  a  long tradition  in  Japan's  culture  and education.
We  are  developing  a  computational  origami  system,  based  on  symbolic
computation system Mathematica, for performing and reasoning about origami
on  the  computer.  This  system  is  based  on  the  implementation  of  the  six
fundamental  origami folding steps  (origami axioms) formulated by Huzita.  In
this  paper,  we  show  how  our  system  performs  origami  folds  by  constraint
solving, visualizes each step of origami construction, and automatically proves
general  theorems  on  the  result  of  origami  construction  using  algebraic
methods.  We  illustrate  this  by  a  simple  example  of  trisecting  an  angle  by
origami.  The  trisection  of  an  angle  is  known to  be  impossible  by  means of  a
ruler  and  a  compass.  The  entire  process  of  computational  origami  shows
nontrivial  combination  of  symbolic  constraint  solving,  theorem  proving  and
graphical processing.



1 Introduction

Origami  is  a  Japanese  traditional  art  of  paper  folding.  The  word  origami  is  a
combined  word  coming  from  ori  (fold)  and  kami  (paper).  For  several  centuries,
origami  has  been  popular  among  Japanese  common  people  as  an  art,  as  a  playing
toy,  and  teaching  material  for  children.  Over  a  decade,  origami  is  also  receiving
wide  interest  among  mathematicians,  mathematics  educators  and  computer  scien-
tists, as well as origami artists, as origami poses interesting fundamental geometrical
questions.

We  are  proposing  computational  origami,  as  part  of  a  discipline  of  origami
science  (also  coined  origamics  by  Haga,  a  pioneer  in  Japanese  origami  research
[Haga 1999]).  We believe that the rigor of  paper folding and the beauty of origami
artworks enhance greatly when the paper folding is supported by a computer. In the
earlier  work  of  the  first  author  [Ida  2003],  computational  origami  performs  paper
folding  by  solving  both  symbolically  and  numerically  certain  geometrical  con-
straints, followed by the visualization of origami by computer graphics tools. In this
paper we extend the system for proving the correctness of the origami constructions,
as proposed in our previous paper [Buchberger 2003].

Origami  is  easy  to  practice.  Origami  is  made  even  easier  with  a  computer:  we
can construct an origami by calling a sequence of origami a folding function on the
Mathematica  Notebook  [Wolfram  2004]  or  by  the  interaction  with  our  system,
running  in  the  computing  server,  using  the  standard  web  browser.  The  constructed
final  result,  as  well  as  the  results  of  the  intermediate  steps,  can  be  visualized  and
manipulated.  Moreover,  in  cases  where  a  proof  is  needed,  the  system will  produce
the  proof  of  the  correctness  of  the  construction.  Namely,  for  a  given  sequence  of
origami construction steps and a given property, the system proves that the resulting
shape will satisfy the property (or disprove the property).

The  rest  of  this  paper  is  organized  as  follows.  In  section  2  we  explain  the
principles  of  origami  construction  developed  from  Huzita's  origami  axioms.   In
section  3  we  discuss  a  method for  trisecting an  angle  by  origami,  which  cannot  be
made using  the  traditional  ruler-and-compass  method.  The construction  is  followed
by  the  proof  of  the  correctness  of  the  construction  in  section  4.  In  section  5  we
summarize our contributions and point out some directions for future research.



2 Principles of Origami Construction

An origami is to be folded along a specified line on the origami called fold line.
The line segment of a fold line on the origami is called a crease, since the consecu-
tive operations  of  a  fold  and  an unfold  along the same fold  line makes a  crease on
the origami.  A fold line can be determined by the points it passes through or by the
points  (and/or  lines)  it  brings  together.  As  in  Euclidean  geometry,  by  specifying
points, lines and their configuration, we have the following six basic fold operations
called origami axioms of Huzita [Huzita 1989, Hull 1997].  It is known that Huzita's
origami axiom set is more powerful than the ruler-and-compass method in Euclidean
geometry  [Geretschlaeger 2002].  Origami can construct objects that are impossible
by the ruler-and-compass method [Chen 1966].   One of them is trisecting an angle,
which we will show in this paper, as an example of origami proving and solving.

Origami Axioms

Huzita's origami axioms are described in term of  fold operations as follows:

(O1) Given two points, we can make a fold along the crease passing through them.

(O2) Given two points, we can make a fold  to bring one of the points onto the 
other. 

(O3) Given two lines, we can make a fold to superpose the two lines.

(O4) Given a point P and a line m,  we can make a fold along the crease that  is 
perpendicular to m  and passing  through P .

(O5) Given two points P and Q and a line m, either we can make a fold along the 
crease that passes through Q, such that the fold superposes P and m, or we can 
determine that the fold is impossible. 

(O6) Given two points P and Q and two lines m and n,  either we can make a fold 
along the crease, such that the fold superposes P and m, and Q and n, 
simultaneously, or we can determine that the fold is impossible.

Algorithmically,  these  axioms  suggest  two  operations;  finding  crease(s)  and
folding the origami along the crease.  The former amounts to solving equations that
describe  the  constraints  of  geometrical  objects.  It  can  be  shown  easily  that  finding
the  creases  is  reduced  to  solving  geometrical  constraints  (maximum  3rd  degree
polynomial system).



OFold (Origami Fold Function)

The fold operations of origami based on the origami axioms can be implemented
by  a  single  function  OFold  whose  specification  is  given  below.   Function  OFold
needs several points (depending on the axioms)  to compute the crease, to determine
the face to be moved, and to determine the direction of the fold (mountain or valley).
The convention below is that a single capital letter denotes a point and XY denotes a
line segment from point X to point Y.   Note that the types of the arguments and the
keywords can discriminate  the operations to be performed unambiguously.HO1L OFold@X, Along Ø PQDHO2L OFold@P, QDHO3L OFold@AB, CDDHO4L OFold@X, AlongPerpendicular Ø 8P, AB<DHO5L OFold@P, AB, Through Ø Q,DHO6L OFold@P, AB, Q, CDD

OFold[X, AlongØ PQ] in (O1) directs the system to make a fold along the crease
PQ.   All  the  faces  containing  the  values  (the  coordinate  of  the  point  X)  are  to  be
moved.  In  all  the  case  we  have  hidden  optional  parameters  which  tell  the  system
which  faces  of  the  origami  should  be  moved  (with  Move  keyword)  and  which
directions (mountain or valley).  In the case of (O2) , Move  Ø P is implicit,  and in
the cases of (O5) and (O6) Move  Ø P is implicit if  with P we can specify the faces
to be moved.  Further details are omitted here, as the above specification is sufficient
to understand the origami construction in section 3,

3 Trisecting an angle

We  give  an  example  of   trisecting  an  angle.  This  example  shows  a  non-trivial
use  of  Axiom  (O6).  The  method  of  construction  is  due  to  H.  Abe  as  described  in
[Geretschläger 2002, Fushimi 1980].   In the following we will explain the construc-
tion of trisecting a given angle using our computational origami system.

First,  we  define  a  square  origami  paper,  whose  corners  are  designated  by  the
points A, B, C and D. The size may be arbitrary, but for our example, let us fix it to



be  10  by  10.  All  the  operations  are  performed  by  Mathematica  function  calls.
Optional parameters can be specified by "keyword Ø value".

NewOrigami@Square@10, MarkPoints Ø 8"A", "B", "C", "D"<D,
FigureCaption Ø "Step "D;

D C

BA

Step 1

We then introduce  an  arbitrary  point,  say E at  the  coordinate  (2,  10),  assuming
that point A is at (0, 0).  

PutPoint@8"E", Point@2, 10D<D;
ED C

BA

Step 2



Our problem is  to  trisect an angle —EAB. The method consists  of  the following
seven steps (steps 3-9) of folds and unfolds.

Step  3:  We  make  a  fold  to  bring  point  A  to  D,  to  obtain  the  perpendicular
bisector of segment AD.  This is the application of (O2). The points F and G, which
will be  the terminal points of the crease,  are automatically generated by the system.

OFold@A, DD;
E BA

G F

Step 3

Step 4: We unfold the origami and obtain the crease FG. 

Unfold@D;
ED C

BA

G F

Step 4



Steps 5 and 6: Likewise we obtain the crease HI.

OFold@A, GD;
Unfold@D;

ED C

BA

I H

Step 5

ED C

G F

BA

I H

Step 6

Step 7: This step is the crucial step of  the construction. We apply (O6).  We try
to  superpose  G   and  the  line   that  is  the  extension  of   the  segments  AE,  and  to
superpose  A and the line  that is the extension of  the segment HI, simultaneously.
There are three possible fold lines to realize this superposition. The system responds
with  the  query  of  "Specify  the  line  number"  together  with  the  lines  on  the  origami
image.

OFold@G, AE, A, HID;
Which line(1,2,3)?



Specify the line number.

ED C

G F

BA

I H

Step 7

1

2

3

Step  8:  We  reply  to  the  query  by  the  call  of  OFold[AlongØ3,MoveØ  A,  ...],
which tells the system that we choose the line number 3. This gives the fold line that
we  are  primarily  interested  in.   However,  readers  can  easily  see  that  the  other  two
fold lines are also solutions (which trisect different angles).

OFold@Along Ø 3, Move Ø A, MarkCrease Ø FalseD;
ED C

F

H

B

A

I

G

Step 8

Step 9: We will copy  the points A and I on the other face that is below the face
that A and I are on, and unfold the origami. The copied points appear as L and J (the
names are automatically generated).



CopyPoint@8A, I<D; Unfold@D;
ED C

J
F

L H

B

G

A

I

Step 9

Step 10: Now we see that the segments AJ and AL trisect the angle  —EAB.

ShowOrigamiSegment@888A, E<<, 88A, J<<, 88A, L<<<D;
ED C

J
F

L H

B

G

A

I

Step 10

Although  it  is  not  obvious  to  see  that  equational  solving  is  performed,  our
system solves a set of polynomial equations, up to the third degree, at each step. In
the case of steps 7 and 8, the system solves a cubic equation. This explains why we
have (at most) 3 possible fold lines at step 7.



4 Proof of the correctness of the trisection method

We now prove the following theorem with our system.

Theorem: The origami construction in section 3 trisects an angle.

In this  simple example, the correctness  of  the trisection could be easily verified
either  by  geometric  reasoning  or  by  a  sequence  of  simplification steps  of  the  alge-
braic equations representing geometric constrains. However, for proceeding towards
a  general  (and  completely  automatic)  proving  method  for  origami  theorems,  we
formulate the proving steps in a more general setting.  We prove the above theorem
by showing that

 −EAB /3= −JAB/2 = −LAB.

A general proof procedure is as follows:

I We  first  translate  the  above  question  into  the  algebraic  form.  This  is
done after we fix the coordinate system (in our case the Cartesian system).

II We already observed that each folding steps are formulated in Axioms
(O1)-(O6).  The geometric properties that hold for each origami axiom are
easily  extracted  in  terms  of  polynomial  constraints,  once  the  representa-
tions of lines and points are fixed. 

III We  use  Gröbner  bases  method.  We  collect  all  the  premise  equalities
C = 8c1, ..., cn<  (obtained  at  step  II)  and  the  conclusion  equalities
D = 8d1, ..., dm< (obtained at step I)  .  Let M  be the boolean combinations
of  the  equalities  of  the  form  Ÿ Hc1 fl ... fl cnL fi Hd1 fl ... fl dmL ,  i.e.  C fl D .
We prove " M  by refutation. The decision algorithm, roughly, proceeds as
follows:

é Bring M  into  conjunctive  normal  form and distribute  "  over  the
conjunctive parts. Treat each of the parts 

"
a,b,c,...

 P

separately. Note that P is now a disjunction 



E1 = 0 fi ... fi Ek = 0 fi N1 ∫ 0 fi ... fi Nl ∫ 0

of equalities and negations of equalities.

é Then

"
a,b,c,...

 HE1 = 0 fi ... fi Ek = 0 fi N1 ∫ 0 fi ... fi Nl ∫ 0L
is transformed into

Ÿ $
a,b,c,...

 HE1 ∫ 0 fl ... fl Ek ∫ 0 fl N1 = 0 fl ... fl Nl = 0L
and further into

Ÿ $
a,b,c,...,x1,…,xk

 HE1 x1 - 1 = 0 fl ... fl Ek  xk - 1 = 0 fl N1 = 0 fl ... fl Nl = 0L
with new variables x1, …, xk  ("Rabinovich trick").

é Now,  our  question  becomes  a  question  on  the  solvability  of  a
system of polynomial equations, which can be decided by computing
the reduced  Gröbner  basis  of  {E1 x1 - 1, ... Ek xk - 1, N1, ... , Nm }.
Namely,  one  of  the  fundamental  theorems  of  Gröbner  bases  theory
tells us that this Gröbner basis will be 81<  iff the system is unsolvable
(i.e. has no common zeros) [Buchberger 1970].

The  proof  steps  would  require  laborious  work  of  symbolic  manipulation.   We
have developed a system for  finding geometrical constraints  generated in each step
of  the  origami  fold  and  for  performing  the  above  transformations  completely
automatically. 

The  following  piece  of  programs  will  do  all  the  necessary  transformations  and
the proof as mentioned above. 

Let  us  first  view  the  configurations  of  the  points  on  the  completely  unfolded
paper.  

ShowProofSupport@D



A1 B1

J5

N6

L6
K5

G2
O6 F2

E1D1
B2

H3I3

The  subscript  k  on  each  point  indicates  that  the  positions  are  determined  at
origami folding step k.

4.1 Preparing for proof

We first gather necessary geometric constraints that will become the premise of the 
theorem to be proved.

props = GatherProperty@D;
We then fix the coordinate system to be Cartesian by calling  function 
CoordinateMapping, which return a mapping table cmap.

cmap = CoordinateMapping@props,
InitialShape Ø SquareP@8Point@0, 0D, r<, 8"A", "B", "C", "D"<DD;

The premise is  generated from  the geometric constraints stored in the variable 
props using the coordinate mapping table cmap.

premise = ToAlgebraic@props, cmapD;
Let us now turn to defining the conclusion polynomials

Let g = —EAB,  b= —JAB and  a = —KAB.  Our conclusion  is  b = 2a  fl g = 3a

Since function tangent restricted to  (0, p/2) is bijective ,   we will prove tan[b] =
tan[2a] fl tan[g] = tan[3a].  We compute them by:



tang = E1 ê. Point@x_, y_, ___D ß y ê x

tanb = J6 ê. Point@x_, y_, ___D ß y ê x

tana = L6 ê. Point@x_, y_, ___D ß y êx

Using the well-known elementary trigonometric formulas, we have:

tan3a = SimplifyA 3 Tan@xD - Tan@xD3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - 3 Tan@xD2 ê. Tan@xD Ø tanaE

tan2a = SimplifyA 2 Tan@xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Tan@xD2 ê. Tan@xD Ø tanaE

The  conclusion  polynomial  set  is  {Numerator[Together[tang-tan3a]]=0,
Numerator[Together[tanb-tan2a]]=0},  which  can  be  translated  to  algebraic  form as
follows.   The variables  were  automatically generated when the coordinate  mapping
table was constructed.

concl = ToAlgebraic@8Numerator@Together@tanb - tan2aDD, Numerator@Together@tang - tan3aDD<D8-3 x102 x3 y10 + x3 y103 + x103 y3 - 3 x10 y102 y3,
-2 x10 x9 y10 + x102 y9 - y102 y9<

4.2 Sending all the data to theorem prover Theorema

We have also developed a simple interface to Theorema which is running  on a 
remote server (conceptually, it can be in the same computer as the computational 
origami system is running).

We first create the link with Theorema with the port 50000 at the machine whose IP 
address is 192.168.11.2 (in this illustration).  Appropriate arrangements on the 
remote server side running Theorema are necessary.  This arrangements are not 
shown in this paper.

thma = LinkCreate@"50000ü192.168.11.2", LinkProtocol Ø "TCPIP" D ;

We then send data stored in the variables premise and concl via the link thma and 
wait for the proof to come from Theorema.

SendTheoremaFormula@thma, premise, concl, "TrisectingAngle"D;
Once the proof text arrived, we save it in the file TrisectingAngleProof.nb.

NotebookSave@LinkRead@thmaD, "TrisectingAngleProof.nb"D;



Finally we close the link.

LinkClose@thmaD;
4.3 The Proof

The proof text is stored in file TrisectingAngleProof.nb.  Since it takes too much
space  to  reproduce  the  machine  generated  (albeit  readable)  text  output,  we  only
show the highlights of the proof.  The omitted formulas are marked as  "...".

Prove:

(Formula (TrisectingAngle): (1))
"

a5,a6,a7,a8,b5,b6,b7,b8,c5,c6,c7,c8,r,x1,x10,x2,x3,x4,x5,x6,x7,x8,x9,y1,y10,y2,y3,y4,y5,y6,y7,y8,y9,h1,h2,h3,h4,h5,m1,m2, m3,m4HHc8 = 0L Ï Ha5 * r = 0L Ï Hc5 + 1ÅÅÅÅ2 * b5 * r = 0L Ï H-1 * r + x4 = 0L Ï Hx5 = 0L ÏH-1 * r + x7 = 0L Ï Hx8 = 0L Ï Hb5 * Hr + H-1L * x1L + a5 * y1 = 0L ÏHc5 + 1ÅÅÅÅ2 * a5 * Hr + x1L + 1ÅÅÅÅ2 * b5 * y1 = 0L Ï H-1 * b7 * x10 + a7 * y10 = 0L ÏHc7 + 1ÅÅÅÅ2 * a7 * x10 + 1ÅÅÅÅ2 * b7 * y10 = 0L Ï Hb6 * Hr + H-1L * x2L + a6 * y2 = 0L ÏHc6 + 1ÅÅÅÅ2 * a6 * Hr + x2L + 1ÅÅÅÅ2 * b6 * y2 = 0L Ï Hc8 + a8 * x3 + b8 * y3 = 0L ÏHc5 + a5 * x4 + b5 * y4 = 0L Ï H-1 * b6 * x5 + a6 * y5 = 0L ÏHc5 + a5 * x5 + b5 * y5 = 0L Ï Hc6 + 1ÅÅÅÅ2 * a6 * x5 + 1ÅÅÅÅ2 * b6 * y5 = 0L ÏHb7 * Hx5 + H-1L * x6L + a7 * H-1 * y5 + y6L = 0L ÏHc7 + 1ÅÅÅÅ2 * a7 * Hx5 + x6L + 1ÅÅÅÅ2 * b7 * Hy5 + y6L = 0L Ï Hc6 + a6 * x7 + b6 * y7 = 0L ÏHc6 + a6 * x8 + b6 * y8 = 0L Ï Hb7 * Hx8 + H-1L * x9L + a7 * H-1 * y8 + y9L = 0L ÏHc7 + 1ÅÅÅÅ2 * a7 * Hx8 + x9L + 1ÅÅÅÅ2 * b7 * Hy8 + y9L = 0L Ï H-1 + r * h1 = 0L ÏH-1 + Ha52 + b52L * h2 = 0L Ï H-1 + Ha62 + b62L * h3 = 0L ÏH-1 + Ha72 + b72L * h4 = 0L Ï H-1 + Ha82 + b82L * h5 = 0L ÏHc8 + a8 * m1 + b8 * m2 = 0L Ï Hb7 * Hx5 + H-1L * m1L + a7 * H-1 * y5 + m2L = 0L ÏHc7 + 1ÅÅÅÅ2 * a7 * Hx5 + m1L + 1ÅÅÅÅ2 * b7 * Hy5 + m2L = 0L Ï H-1 * b7 * m3 + a7 * m4 = 0L ÏHc6 + a6 * m3 + b6 * m4 = 0L Ï Hc7 + 1ÅÅÅÅ2 * a7 * m3 + 1ÅÅÅÅ2 * b7 * m4 = 0L flH-3 * x102 * x3 * y10 + x3 * y103 + x103 * y3 + H-3L * x10 * y102 * y3 = 0L ÏH-2 * x10 * x9 * y10 + x102 * y9 + H-1L * y102 * y9 = 0LL

,

with no assumptions.
Proved.
The Theorem is proved by the Groebner Bases method.      

      The formula in the scope of the universal quantifier is transformed into an equivalent 
formula that is a conjunction of disjunctions of equalities and negated equalities. The 
universal quantifier can then be distributed over the individual parts of the conjunction. By 
this, we obtain:
Independent proof problems:



(Formula (TrisectingAngle): (1).1)
"

a5,a6,a7,a8,b5,b6,b7,b8,c5,c6,c7,c8,r,x1,x10,x2,x3,x4,x5,x6,x7,x8,x9,y1,y10,y2,y3,y4,y5,y6,y7,y8,y9,h1,h2,h3,h4,h5,m1,m2,m3,m4
 HH-2 * x10 * x9 * y10 + x102 * y9 + H- y102 * y9L = 0L Í c8 ∫ 0 Í x5 ∫ 0 Í x8 ∫ 0 Í

-1 + r * h1 ∫ 0 Í -1 + a52 * h2 + b52 * h2 ∫ 0 Í -1 + a62 * h3 + b62 * h3 ∫ 0 Í
-1 + a72 * h4 + b72 * h4 ∫ 0 Í -1 + a82 * h5 + b82 * h5 ∫ 0 Í c5 + 1ÅÅÅÅ2 * b5 * r ∫ 0 ÍH-rL + x4 ∫ 0 Í H-rL + x7 ∫ 0 Í b5 * r + H-b5 * x1L + a5 * y1 ∫ 0 Í
b6 * r + H-b6 * x2L + a6 * y2 ∫ 0 Í b7 * x5 + H-b7 * x6L + H-a7 * y5L + a7 * y6 ∫ 0 Í
b7 * x5 + H-a7 * y5L + H-b7 * m1L + a7 * m2 ∫ 0 Í
b7 * x8 + H-b7 * x9L + H-a7 * y8L + a7 * y9 ∫ 0 Í H-b6 * x5L + a6 * y5 ∫ 0 ÍH-b7 * x10L + a7 * y10 ∫ 0 Í H-b7 * m3L + a7 * m4 ∫ 0 Í c5 + a5 * x4 + b5 * y4 ∫ 0 Í
c5 + a5 * x5 + b5 * y5 ∫ 0 Í c5 + 1ÅÅÅÅ2 * a5 * r + 1ÅÅÅÅ2 * a5 * x1 + 1ÅÅÅÅ2 * b5 * y1 ∫ 0 Í
c6 + a6 * x7 + b6 * y7 ∫ 0 Í c6 + a6 * x8 + b6 * y8 ∫ 0 Í c6 + a6 * m3 + b6 * m4 ∫ 0 Í
c6 + 1ÅÅÅÅ2 * a6 * x5 + 1ÅÅÅÅ2 * b6 * y5 ∫ 0 Í c6 + 1ÅÅÅÅ2 * a6 * r + 1ÅÅÅÅ2 * a6 * x2 + 1ÅÅÅÅ2 * b6 * y2 ∫ 0 Í
c7 + 1ÅÅÅÅ2 * a7 * x10 + 1ÅÅÅÅ2 * b7 * y10 ∫ 0 Í c7 + 1ÅÅÅÅ2 * a7 * m3 + 1ÅÅÅÅ2 * b7 * m4 ∫ 0 Í
c7 + 1ÅÅÅÅ2 * a7 * x5 + 1ÅÅÅÅ2 * a7 * x6 + 1ÅÅÅÅ2 * b7 * y5 + 1ÅÅÅÅ2 * b7 * y6 ∫ 0 Í
c7 + 1ÅÅÅÅ2 * a7 * x5 + 1ÅÅÅÅ2 * b7 * y5 + 1ÅÅÅÅ2 * a7 * m1 + 1ÅÅÅÅ2 * b7 * m2 ∫ 0 Í
c7 + 1ÅÅÅÅ2 * a7 * x8 + 1ÅÅÅÅ2 * a7 * x9 + 1ÅÅÅÅ2 * b7 * y8 + 1ÅÅÅÅ2 * b7 * y9 ∫ 0 Í
c8 + a8 * x3 + b8 * y3 ∫ 0 Í c8 + a8 * m1 + b8 * m2 ∫ 0 Í a5 * r ∫ 0L

 

(Formula (TrisectingAngle): (1).2) : ...
We now prove the above individual problems separately:
Proof of (Formula (TrisectingAngle): (1).1): ...
This proof problem has the following structure:

(Formula (TrisectingAngle): (1).1.structure) : ...

(Formula (TrisectingAngle): (1).1.structure) is equivalent to

(Formula (TrisectingAngle): (1).1.implication) : ...
(Formula (TrisectingAngle): (1).1.implication) is equivalent to

(Formula (TrisectingAngle): (1).1.not-exists) : ...
By introducing the slack variable(s)
{x}
(Formula (TrisectingAngle): (1).1.not-exists) is transformed into the equivalent formula

(Formula (TrisectingAngle): (1).1.not-exists-slack) : ...
Hence, we see that the proof problem is transformed into the question on whether or not a 
system of polynomial equations has a solution or not. This question can be answered by 
checking whether or not the (reduced) Groebner basis of
....
is exactly {1}.                  

Hence, we compute the Groebner basis for the following polynomial list:



9-1 + H-2L x10 x9 y10 x + x102 y9 x + H-1L y102 y9 x, c8, x5, x8, -1 + r h1,
-1 + a52 h2 + b52 h2, -1 + a62 h3 + b62 h3, -1 + a72 h4 + b72 h4, -1 + a82 h5 + b82 h5,
c5 + b5 rÅÅÅÅÅÅÅÅÅ2 , -r + x4, -r + x7, b5 r + H-1L b5 x1 + a5 y1, b6 r + H-1L b6 x2 + a6 y2,
b7 x5 + H-1L b7 x6 + H-1L a7 y5 + a7 y6, b7 x5 + H-1L a7 y5 + H-1L b7 m1 + a7 m2,
b7 x8 + H-1L b7 x9 + H-1L a7 y8 + a7 y9, -b6 x5 + a6 y5, -b7 x10 + a7 y10,
-b7 m3 + a7 m4, c5 + a5 x4 + b5 y4, c5 + a5 x5 + b5 y5, c5 + a5 rÅÅÅÅÅÅÅÅÅ2 + a5 x1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b5 y1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c6 + a6 x7 + b6 y7, c6 + a6 x8 + b6 y8, c6 + a6 m3 + b6 m4, c6 + a6 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b6 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c6 + a6 rÅÅÅÅÅÅÅÅÅ2 + a6 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b6 y2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 x10ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y10ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 m3ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 m4ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c7 + a7 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 x6ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y6ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 m1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c7 + a7 x8ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 x9ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y8ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y9ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c8 + a8 x3 + b8 y3, c8 + a8 m1 + b8 m2, a5 r=
The Groebner basis:81<
Hence, (Formula (TrisectingAngle): (1).1) is proved.

Proof of (Formula (TrisectingAngle): (1).2): ...
This proof problem has the following structure:

(Formula (TrisectingAngle): (1).2.structure) : ...
(Formula (TrisectingAngle): (1).2.structure) is equivalent to

(Formula (TrisectingAngle): (1).2.implication) : ...
(Formula (TrisectingAngle): (1).2.implication) is equivalent to

(Formula (TrisectingAngle): (1).2.not-exists) : ...
By introducing the slack variable(s)
{x1}
(Formula (TrisectingAngle): (1).2.not-exists) is transformed into the equivalent formula

(Formula (TrisectingAngle): (1).2.not-exists-slack) : ...
Hence, we see that the proof problem is transformed into the question on whether or not a 
system of polynomial equations has a solution or not. This question can be answered by 
checking whether or not the (reduced) Groebner basis of
...
is exactly {1}.                  

Hence, we compute the Groebner basis for the following polynomial list:



9-1 + H-3L x102 x3 y10 x1 + x3 y103 x1 + x103 y3 x1 + H-3L x10 y102 y3 x1, c8, x5,
x8, -1 + r h1, -1 + a52 h2 + b52 h2, -1 + a62 h3 + b62 h3, -1 + a72 h4 + b72 h4,
-1 + a82 h5 + b82 h5, c5 + b5 rÅÅÅÅÅÅÅÅÅ2 , -r + x4, -r + x7, b5 r + H-1L b5 x1 + a5 y1,
b6 r + H-1L b6 x2 + a6 y2, b7 x5 + H-1L b7 x6 + H-1L a7 y5 + a7 y6,
b7 x5 + H-1L a7 y5 + H-1L b7 m1 + a7 m2, b7 x8 + H-1L b7 x9 + H-1L a7 y8 + a7 y9,
-b6 x5 + a6 y5, -b7 x10 + a7 y10, -b7 m3 + a7 m4, c5 + a5 x4 + b5 y4,
c5 + a5 x5 + b5 y5, c5 + a5 rÅÅÅÅÅÅÅÅÅ2 + a5 x1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b5 y1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c6 + a6 x7 + b6 y7, c6 + a6 x8 + b6 y8,

c6 + a6 m3 + b6 m4, c6 + a6 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b6 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c6 + a6 rÅÅÅÅÅÅÅÅÅ2 + a6 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b6 y2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 x10ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y10ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c7 + a7 m3ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 m4ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 x6ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y6ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c7 + a7 x5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y5ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 m1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ,

c7 + a7 x8ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + a7 x9ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y8ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + b7 y9ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 , c8 + a8 x3 + b8 y3, c8 + a8 m1 + b8 m2, a5 r=
The Groebner basis:81<
Hence, (Formula (TrisectingAngle): (1).2) is proved.

Since all of the individual subtheorems are proved, the original formula is proved.
á

5 Conclusion

We have shown the computer origami construction  with  the example of  trisect-
ing  an  angle.  Our  computational  origami  system  not  only  does  the   simulation  of
origami  folds  [Ida  2003],  but  also  proves  the  correctness  of  the  construction  by
accessing   the  implementation  of  the  Gröbner  bases  algorithm  [Buchberger  1970]
and  the implementation of  the above decision algorithm in Theorema  [Buchberger
2000]. The premise polynomial set is not optimal since it contains extra geometrical
constraints  unnecessary  for  proving  the  theorem.   We  are  currently  working  to
minimize the premise polynomial set.

As a next step of our research we plan to study origami solving problem, which
asks for finding a sequence of origami steps that will lead to an origami object with
a desired property. However, it is clear that this problem is analogous to the problem
of  finding  geometric  objects  with  desired  properties  using  only  a  ruler  and  a  com-
pass. Note, however, that the two problems - origami construction and the ruler-and-
compass  construction  -  are  not  equivalent.  As  we  have  seen,  the  trisection  of  an
angle  is  possible  by  origami  but  not  by  the  ruler-and-compass  method.  For  further
development of origami construction,  in analogy to the ruler-and-compass construc-
tion  problem,  Galois  theory  suggests  itself  as  the  main  approach  to  solving  the
origami construction problem.



References

[Buchberger  1970]  Buchberger  B.,.  Ein  algorithmisches  Kriterium  für  die  Lösbarkeit  eines
algebraischen Gleichungssystems (An Algorithmical Criterion for the Solvability of Algebraic
Systems  of  Equations).  Aequationes  mathematicae  4/3,  1970,  pp.  374-383.  (English  transla-
tion in: Buchberger, B., and Winkler, F. (eds.), Gröbner Bases and Applications, Proceedings
of the International  Conference "33 Years of Groebner Bases", 1998, RISC, Austria, London
Mathematical  Society  Lecture  Note  Series,  Vol.  251,  Cambridge University  Press,  1998,  pp.
535 -545).

[Buchberger  2000]  Buchberger,  B.,  Dupre,  C.,  Jebelean,  T.,  Kriftner,  F.,  Nakagawa,  K.,
Vasaru,  D.,  Windsteiger,  W.,  The  Theorema  Project:  A  Progress  Report,  In:  Symbolic
Computation  and  Automated  Reasoning  (Proceedings  of  CALCULEMUS 2000,  Symposium
on  the  Integration  of  Symbolic  Computation  and  Mechanized  Reasoning,  August  6-7,  2000,
St. Andrews, Scotland),  Kerber, M. and Kohlhase, M. (eds.),  A.K. Peters, Natick, Massachu-
setts, pp. 98-113.

[Buchberger  2003]  Buchberger,  B.  and  Ida,  T.,  Origami  Theorem  Proving,  SFB  Scientific
Computing Technical Report 2003-23-Oct, Johannes Kepler University RISC, 2003.

[Chen  1966]  Chen,  T.  L.,  Proof  of  the  impossibility  of  trisecting  an  angle  with  Euclidean
tools, Mathematics Magazine Vol. 39, pp. 239-241, 1966.

[Fushimi 1980] Fushimi, K., Science of Origami, a supplement to Saiensu, Oct. 1980, p. 8 (in
Japanese).

[Geretschläger  2002]  Geretschläger,  R.,  Geometric  Constructions  in  Origami  (in  Japanese,
translation by Hidetoshi Fukagawa), Morikita Publishing Co., 2002.

[Haga 1999]  Haga, K., Origamics Part I: Fold a Square Piece of Paper and Make Geometrical
Figures (in Japanese), Nihon Hyoronsha, 1999.

[Hull  1997]  Hull,  T.,   Origami  and  Geometric  Constructions,  available  online  at
http://web.merrimack.edu/~thull/geoconst.html, 1997.

[Huzita 1989] Huzita,  H.,  Axiomatic Development of Origami Geometry,  Proceedings of the
First International Meeting of Origami Science and Technology, pp. 143-158, 1989.

[Ida  2003]  Ida,  T.,  Marin,  M.  and  Takahashi,  H.,  Constraint  Functional  Logic  Programming
for  Origami  Construction,  Proceedings  of  the  First  Asian  Symposium  on  Programming
Languages  and  Systems  (APLAS2003),  Lecture  Notes  in  Computer  Science,  Vol.  2895,  pp
73-88, 2003.

[Wolfram 2003]  Wolfram, S., The Mathematica Book, 5th ed., Wolfram Media, 2003.


