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Abstract. Mathematics has a rich tradition in creating symbols and
notation that is soundly integrated into the syntax of the underlying
formal language and, at the same time, conveys the intuition behind the
concepts described by the symbols and notation. Continuing this idea,
in the Theorema system, with the new feature of logicographic symbols,
we now provide a means to invent arbitrary new symbols and notation.

In this paper we describe how logicographic symbols can be created,
declared, and afterwards used as a part of the formal language of The-
orema with an example. Also with logicographic symbols, formal proof
text automatically generated by Theorema provers can become easy to
read in a way that resembles telling a pictorial story about the mathe-
matical concepts involved.

1 Introduction

In automated theorem provers, it is very important not only to produce formal
proofs but also present proofs that can be easily understood by humans, see
[1,2]. One of the issues in facilitating human understanding of automatically
generated proofs is the automated generation of natural language explanatory
text as part of the proofs, see for example [3,4]. Also, in the Theorema system[5,
6], an coherent mathematical environment for proving, solving, and computing
implemented on top of Mathematica[7], we put a lot of emphasis on the natural
language aspect of proof presentation. This is achieved by, first, using natural
deduction calculi with special complex inference rules for the various special
areas of mathematics and, second, by producing standardized natural language
text blocks that are produced, in a post-processing step, with every application
of these inference rules.

In this paper we describe a new and additional feature of the Theorema, sys-
tem, first proposed in [8], that should improve the readability of formal texts, in
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particular proof texts, by allowing the user to introduce arbitrary new graphical
symbols (for functions and predicates) in two-dimensional notation with slots for
the parameters at arbitrary positions. We call these new symbols ”logicographic”
symbols: By the use of logicographic symbols, the formal structure of the lan-
guage is not really extended, i.e. text including logicographic symbols can be
viewed as just a notational variant of the Theorema language (a variant of pred-
icate logic), i.e. logicographic symbols are ”logical”. On the other hand, these
symbols are like little pictures (graphics) that support the intuition of the user
while he is reading the formal text, i.e. logicographic symbols are ”graphical”.

In fact, the idea of logicographic symbols, in some way, is as old as mathemat-
ics. For example, the symbol ">’ for greater” in ’a > b’ is a formal symbol (in
infix notation) and, at the same time in a simplified and standardized way, con-
veys the intuitive / graphic idea that the object denoted by ’a’ on the left-hand
side of the symbol is bigger than the object denoted by ’b’ on the right-hand
side. However, so far, inventing, designing and introducing new ”logicographic”
symbols was not easily possible in mathematical systems, not even in math-
ematical text processing systems let alone formal systems like Mathematica.
The new feature of logicographic symbols in Theorema is completely general
and highly flexible so that it opens a new dimension of designing formal math-
ematical texts. We believe that this may have a significant influence on how
mathematical research and teaching can be done in the future.

The results described in this paper are a part of the work carried out in the
frame of the PhD thesis[9] of the first author under the direction of the second
author.

2 Motivation

2.1 Theorema Formal Text

Knowledge in Theorema is described by so called Theorema formal text. The
Fig. 1 shows a part of the theory describing the correctness of the merge-sort
algorithm in the Theorema formal text language. Theorema formal text is of the
form hd[label, any[variables], statement]. The identifier ’hd’ indicates the kind
of the ’statement’, e.g. Definition, Lemma, Proposition, Theorem, Algorithm
etc. The ’label’ is used to refer to the statement afterwards. For example, in Fig.
1 by Algorithm[’mg”], one can refer to the definition of the function 'mg’. The
‘any[variables]’ expression indicates the free variables in the subsequent state-
ment. The ’statement’ part is the essential formal statement (in the Theorema
expression language, a variant of predicate logic).

In the Theorema built-in notation, ’()’, (z, X)’,) ¢ — X’, ’X < Y’ stand
for ’empty tuple’, ’a tuple with the first element 2 and a finite sequence X of
elements’, "tuple X with element x prepended’, ’the concatenation of tuple X and
tuple Y respectively. With the additional explanation in Fig. 2 (for the moment
ignore the leftmost column), the meaning of the above Theorema formal text
should be self-explanatory. For example, the definition of ’stmg’ describes the
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Fig. 1. Formalized Merge-Sort Theory

algorithm of merge-sort: If the length of the argument tuple X’ is less than or
equal to 1, then the result is *X’. Otherwise, ’X” splits into "Isp[X]’ and 'rsp[X]’,
then each of these tuples is sorted by a recursive call of ’stmg’ and, finally, the
two sorted parts are merged by 'mg’.

With the definitions above, the correctness of merge-sort can be formalized
as follows:

Proposition["Correctness of Merge Sort",any[A],istv[stmg[A],A]]

This proposition states that for any tuple ’A’, after application of the algorithm
'sorted by merging’, the resulting tuple ’stmg[A]’ is a sorted version of ’A’. It
will be possible to prove this theorem automatically by one of the Theorema
provers.

2.2 Logicographic Symbols

Of course, one could be happy with the above formal text in Fig. 1 from a
strictly formal point of view. However, it is difficult to grasp the intuition behind
in the formal way. So we will now demonstrate how, by the introduction of
new ”logicographic” symbols in two-dimensional notation, the above formulae
become easier to understand.

Fig. 2 shows a possible choice of logicographic symbols for the merge-sort
theory. Of course the user has complete freedom in designing new symbols for
the various notions. With these logicographic symbols, the knowledge base of
Fig. 1 can now be written in the way shown in Fig. 3. The expressions are repre-
sented in a nested 2-dimensional syntax with dark gray and light gray coloring
for indicating the syntactical structure. (The users can change the coloring by
writing an appropriate Mathematica function).

Note that the Theorema formal texts in Fig. 3 can be evaluated exactly
like the expressions in Fig. 1, i.e. they still represent formal expressions of the
Theorema language but, at the same time, they convey the intuition behind the
formulae in a, hopefully, appealing way.



Isp[X]  left split of X
rsp[X]  right split of X

L

¥ mg[X,Y] the result of merging two tuples X and Y
% stmg[X] the result of sorting X by merging

ipm[X,Y] X is a permuted version of Y

ist[X] X is a sorted tuple

St B Ll 4

istv[X,Y] X is a sorted version of Y

Fig. 2. Logicographic Symbols for the Merge-Sort Theory

3 Working with Logicographic Symbols

3.1 Declaring Logicographic Symbols

In order to tell the system the way to display certain expressions, the "Logico-
graphicNotation’ declaration is used. For example, for the function symbol 'mg’:

LogicographicNotation["merge",any[X,Y],

mg[X,Y](X " and " Y "merged")= E%];

In the declaration above, the entire drawing with two ”slots” for the two possible
arguments "X’, 'Y’ constitutes the new symbol for ‘'mg’. The label "merge” can
be used to refer to this logicographic declaration afterwards by Logicographic-
Notation["merge”]. The expression ’any[X, Y]’ means that X, Y’ are treated
as variables in the declaration. The annotation (X ” and ” Y ”merged”)’ indi-
cates a suggestion for human readers, how to read texts containing these sym-
bols. Alternatively, this annotation can be used for making proofs automatically
pronounced by a voice synthesis system. This feature will be described in the
forthcoming PhD thesis[9] by the first author.

The ’LogicographicNotation’ can be nested. Namely, one can compose large
notation from several smaller constituents. For example, one could compose
logicographic notation with label ”Merge Sort”, by enumerating various con-
stituent notation in the following way:

LogicographicNotation["Merge Sort",
LogicographicNotation["perm"]
LogicographicNotation["sorted"] 1;
LogicographicNotation["split"]
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Fig. 3. Formalized Merge-Sort Theory with Logicographic Symbols

3.2 Using Logicographic Symbols

Since logicographic symbols can be evaluated and they are just a different way of
writing the corresponding Theorema (function or predicate) constants, they can
be used in all contexts in which function and predicate constants appear in The-
orema (e.g. in Definition]...], Prove]...], etc.) Namely, when formulae containing
logicographic symbols are evaluated, this causes the same effect as executing the
formula with all logicographic symbols replaced by their internal constants. As
we saw in Fig. 3, we can compose arbitrary knowledgebases using logicographic
symbols.

Executing ’LogicographicNotation’ declarations does not yet activate their
usage. In order to make these declarations effective, one must apply the function
"UseNotation’ to the notation object obtained by ’LogicographicNotation[label] .
For example, in order to activate the logicographic symbol of 'mg’, the following
command must be executed:

UseNotation[LogicographicNotation["merge"]]

Once the logicographic symbol is activated by ’UseNotation’,
expressions in ordinary Theorema syntax are displayed with
the corresponding logicographic symbols. For example, entering
'mg[A,mg[B,C]]’ now produces the expression appearing right to this
text.

The logicographic presentation can be used for displaying formal proofs. Note
that the above logicographic symbols may appear with various different argu-
ment terms at different places within the text. One can control which expres-
sions should be displayed with logicographic symbols by specifying the option




"Notation’ in the option ’ShowOptions’ of the Theorema 'Prove’ command. For
example,

Prove [Proposition["Correctness of Merge Sort"],
using -> Theory["Merge Sort"], by -> CourseOfValueProver,
ShowOptions->{Notation->LogicographicNotation["Merge Sort"]}]

In the appendix, a sketch of this proof is displayed, which should demonstrate the
positive effect of logicographic symbols on making proofs easier to understand.

3.3 Typing Logicographic Symbols

Of course, for the practical usage of logicographic symbols, it is very important
that typing such symbols becomes easy for the user. In Mathematica, symbols
that are not available on the keyboard can either be input by using input aliases
or palettes. We extended these facilities by making it possible to input arbitrary
logicographic symbols (declared by the user as explained above) by either input
aliases or palettes.

The input aliases facility is a shortcut of typing some special symbols. Ex-
tending this facility of Mathematica, for example, typed text "ESC mg ESC’
changes into the corresponding logicographic symbol. (Here ESC means the es-
cape key.)

A palette is a window containing buttons, and if one presses one
of the buttons in the palette, the expression written on the button
appears in the current cursor position. For example, for ’left split’
and ’right split’, the palette in the right of this text is produced, and jj
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from this time on, if one presses one of the buttons in the palette, the
corresponding logicographic symbols, together with argument slots,
appears in the current cursor position.

3.4 Creating New Logicographic Symbols

In the Theorema system we will provide various ways by which a user can eas-
ily design and create new logicographic symbols of arbitrary complexity using
the graphical tools of Mathematica, photos, hand-made drawings etc. We im-
plemented and experimented with a couple of prototypes for this purpose. A
detailed description of the software-technology behind these approaches will be
given in [9].

4 TImplementation of Logicographic Symbols

The implementation of logicographic symbols needs the facility to convert an rep-
resentation with logicographic symbols into the corresponding internal expres-
sion and an internal expression into the corresponding representation with logico-
graphic symbols. This implementation feature is based on the Mathematica
functions 'MakeExpression’ and "MakeBoxes’.



In Mathematica all two-dimensional graphical representations are stored
in boxes format that keeps information on the graphical appearance. From
an expression in the boxes format, 'MakeExpression’ makes the correspond-
ing internal expression and conversely from an internal expression ’MakeBoxes’
makes the corresponding expression in the boxes format. For example, the rep-
resentation ’ [ zdxz’ is stored in the boxes format as '/RowBox[” [”, RowBox["x”,
RowBox[”d”, ”x”]]]’ which can be transformed into the corresponding internal
expression "Integrate[x,x]’ by "MakeBoxes’. Conversely, by "MakeExpression’ the
internal expression ’Integrate[x,x]’ can be transformed into the corresponding
boxes format expression. For more details, see [7].

Activating logicographic symbols appropriately modifies these "MakeExpres-
sion’ and "MakeBoxes’ functions such that the system does also the treatment
of slots, coloring etc.

5 Remarks

5.1 Related Work

In 1879, Frege introduced 2-dimensional notation for logical formulae [10]. Frege’s
notation, however, shows only the syntactical structure of formula, whereas
logicographic symbols try to convey the intuitive semantics behind the logical
constants.

In the TEX system[11] one can create new characters by the METAFONT[12]
system and compose them by using macros in a very flexible way. However,
TEX is a typesetting system and it is for printing. In contrast, in the Theorema
system, formulae containing logicographic symbols can be evaluated and, more
importantly, can be also used in the process of proving, solving, and computing.
The logicographic symbols, together with explicitly specified slots for arguments,
strictly respect the predicate logic syntax for terms and atomic formulae.

As a forerunner, Jason Harris already implemented a system similar to ours
called 'notation package’ (http://library.wolfram. com/packages/notation),
which comes with Mathematica. By the notation package, one can create new
notation having specified slots for arguments by using the existing Mathematica
characters. However, for the implementation of our general concept of logico-
graphic symbols, which needs an unlimited arsenal of possible symbols for cap-
turing intuitive semantics, we needed implementation techniques that give more
control on the design, shape, arity, and slot positions.

5.2 Importance of Design

The design of logicographic symbols is very important, because carelessly de-
signed logicographic symbols might mislead us. This phenomenon happens, for
example, in a situation that logicographic symbols are so concrete that the graph-
ics do not capture all cases. Note that the logicographic symbols shown in this



paper, however, do not fall into this case, because they do not lose their gener-
ality at all, e.g. like ’'a > b’. On the other hand, although too concreate graphics
are not general enough, they often give us intuition in an appealing way.

We are currently undertaking extensive case studies for inventing and de-
signing logicographic symbols in various areas of mathematics. By this, we hope
that we will be able to find reasonable didactic guide lines that may help the
user of our system in designing logicographic symbols. Also, we are working on a
logicographic symbols library from which the users can create their own symbols
more easily, e.g. by combining them[13].

5.3 Future Work

Besides in Theorema, texts with logicographic symbols can be shown in other
systems, e.g. in ITEX with METAFONT or HTML with Java applets. Making
such converters from Theorema to other systems is possible future work.

It will be an important practical future task to carry out systematic didactical
experiments on the influence of using logicographic symbols for the presentation
of formal mathematical texts. While we did not yet carry out such experiments
using our implementation of logicographic symbols in Theorema, we should,
however, mention the fact that the idea for the logicographic symbols technique
evolved in the many years in which the second author was conducting his reg-
ular ”Thinking, Speaking, Writing” course for PhD students. In the frame of
this course, particular attention is given to practical proof training in predicate
logic, and logicographic symbols were extensively used. The experience is that,
in fact, logicographic symbols can drastically improve the ease of understanding
formal derivations in comparison to presenting the same text with just ordinary
identifiers.

6 Conclusion

Future systems for formal mathematics must combine various functionalities
within the same logic and software technological frame:

— traditional functionality of math software systems like M athematica,
— automated theorem proving tools,
— tools for knowledge management and attractive presentation of formal text.

Theorema, is designed to integrate all these functionalities coherently. The fa-
cility of logicographic symbols is a contribution to the third functionality. Logico-
graphic symbols convey graphical intuitive ideas behind the concepts used and,
at the same time, they are completely formal as a part of the underlying formal
language. We think that, with logicographic symbols, we can reach a new level
of clarity in formal mathematics. We implemented and are currently trying out
logicographic symbols in the frame of our Theorema system. However, of course,
the concept could be integrated into any other system for formal mathematics.



Philosophically, it is interesting to note that, in historically old languages,
keeping syntactical structure and meaning as closely together as possible was felt
to be quite important. For example, in the Chinese and Japanese Kanji system,
characters convey the graphical-intuitive meaning of the concepts they denote.
(This is true, at least, if we consider the historical evolution of these charac-
ters. In every-day reading practice, though, it seems that native Chinese and
Japanese readers do not any more view the semantics into the characters.) Also,
in the ancient Vedic literature, the composition of words was conscientiously
done following the composition of the corresponding semantics. For the purifica-
tion of formal languages, notably in the past century, a clear distinction between
syntax and semantics was, however, of utmost of importance. The approach of
logicographic symbols, seen in this context, is an attempt at reconciling the two
directions in the history of language development: By the technique of logico-
graphic symbols, we conserve the distinction between syntax and semantics for
formal purity and mathematical correctness of proving as a thinking discipline
and, at the same time, we conserve the close connection between syntax and
semantics for ease of understanding.
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Prove:

We use course of value induction on A.
Let now Ao be arbitrary but fixed and
assume

(ind-hyp) v

and show

(3

We prove (G) by case distinction using
(Algorithm: stmg).
Case |Ag|<1: We have to prove

By (Definition: istv), we have to prove

o
BB

These are true, because (properties of
sorted tuples) and (reflexivity of perm).

Case |Ao|£1: We have to prove

Proof of the Correctness of Merge-Sort

%ﬂ
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By (Definition: istv), we have to prove

And hence, by (Definition: istv) we also
know
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We prove (G1): By (Lemma: mg) and
(K1),

We prove (G2): We know (Cl) by
(Lemma:mg2), (C2) by (properties of per-
mutation), (C3) by (properties of split- | Hence, by (C1), (C2), (C3) and (transitiv-
ting), ity of permutation), (G2) is proved.




