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History and Basic Features of the
Critical-Pair/Completion Procedure

BRUNO BUCHBERGER

Johannes-Kepler-University, Department of Mathematics,
A4040 Linz, Austria

A synopsis of the critical-pair/completion approach for solving algorithmic problems in
theorem proving, finitely generated algebras and rewrite systems is given. The emphasis is on
tracing the main intuition behind the approach, which consists in considering “critical pairs”,
These are the “first possible” situations where “superpositions” may occur. Extensive
references to the original literature are provided. Some directions for future research are
outlined. The presentation is biased towards the development of the approach in algorithmic
polynomial ideal theory.

Introduction

The critical-pair/completion (CPC) approach is an algorithmic problem solving strategy
that combines two key ideas:

compietion and
the formation of critical pairs.

The CPC technique was independently initiated by three papers in the mid sixties in three
seemingly separate areas:

automated theorem proving
polynomial ideal theory and
solution of word problems in universal algebras.

In retrospect, however, it turns out that the key ideas of the CPC approach were
implicitly already around in the early forerunners.

In the 20 years since 1965 the CPC approach has found more and more useful
applications in various areas of algorithmic problem solving. In the most recent years
research on applications of the CPC technique has been particularly intensive and
successful.

Various technical questions for improving and analysing CPC algorithms and for
broadening the scope of applicability of the CPC approach have been and are studied by
an increasing research community: termination, strategies for selecting critical pairs,
criteria for omitting certain critical pairs, complexity of CPC computations. Various
implementations of CPC algorithms have been described in the literature, starting from the
early implementations in the mid sixtics and proceeding to sophisticated implementations
as parts of software systems for symbolic computation’

The main goal of this paper is to elaborate the basic ideas and major advances in CPC
rescarch by pointing to some key papers. We hope this will contribute to a further cross-
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fertilisation between the different areas involved in CPC research and applications.
Elaborating the basic ideas of the class of CPC algorithms may serve also as a case study
for the more general objective of establishing certain basic algorithm types in computer
science as a natural analogue to the concept of data types.

I apologise that my presentation is biased towards polynomial ideal theory both in the
application section and in the technical section. This is certainly due to my own
involvement in this root of CPC research and also due to my lack of expertise in the other
branches. However, this paper addresses the participants of a rewrite rules conference. I
therefore hope that polynomial ideal theory is that branch of CPC research that may
provide some information supplementary to the ordinary background of researchers
working in rewrite rule techniques and, hence, may be of some interest to the audience of
this conference.

Most probably the readers will not be satisfied with my tracing back the historical
roots of the CPC approach either: only during writing this survey I detected how difficult
it is to give fair and complete credit to the work of all the people who have been involved
in CPC research. Fortunately, there is a “bottom element” to the historical priority graph
in CPC research: it is well known that Euclid’s algorithm for polynomials is (an instance
of a) CPC algorithm. Recently, as a curiosity, it has been shown also that Euclid’s
algorithm for integers may be viewed as an instance of CPC algorithms, (se¢ Loos, 1981;
Buchberger, 1983). Thus, Euclid spares me the trouble of tracing priorities too
pedantically.

Key Ideas and Basic Structure of the CPC Approach
Typically, the CPC approach can be applied when one has:

a set T of (linguistic, algebraic, symbolic) objects
together with a binary “reduction” relation — on T that is generated by a set F of
(finitely) many “‘patterns” F
and one wants to solve “word problems” of the kind
“fors, te T:
is (5, t) in the reflexive, symmetric, transitive closure of —?7”
or problems that can be reduced to such problems.

SETS OF OBJECTS

Typical sets of objects are:

the set of clauses over an alphabet of function and predicate symbols,
the set of polynomials over a coefficient ring,

the set of equations between terms over an alphabet of function symbols,
the set of words over a finite alphabet of constants.

REDUCTION RELATIONS GENERATED BY PATTERNS

For generating “reduction” relations — from patterns one starts from a set F of finitely
many “patterns” (“basic reductions” or “rules”) (s,t) € Tx T of reductions that, by
definition, are assumed to be in —, i.c. one stipulates:

forall s,te T: if(s,t)e F thens—t. (pattern rule)
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(We write s — ¢t instead of (s, t) € —. For s and ¢ in a pattern (s, f) € F we sometimes say
“lefi-hand side” and “‘right-hand side of the pattern” respectively.)

In addition, one has an (infinite) set £ of “multipliers” (*‘substitutions”, “operators”)
that can be applied to objects of T and yield objects in T. (We write as for the application
of the substitution ¢ to the object s). Now, for the application of substitutions to both
sides of patterns one stipulates:

foralis,teT,o0¢eX: ifl(s,t)e F then as— at. (multiplier rule)

Thus, by applying all substitutions g, each of the patterns s — t in F generates a whole
“spectrum” {os — ot : ¢ € L} of reductions.

Finally, in the cases amenable to the CPC approach, one has a concept of “places” in
the objects of T and, correspondingly, a concept of “replacement” in objects. Let P be the
set of possible places in objects, let us write r/u for “the object located at place u in the
object " and let us write r[u — r] for “the object resulting from replacing the subobject
located at place u in r by the object . Then one stipulates

forallr,s,teT,6e€X, ueP:
if(s,0)e F and rju=as thenr—r[uear]. (replacement rule)

(This means that objects » can be reduced by replacing a subobject “of the form as” by at
whenever s — ¢ is a pattern in F.)

The relation — generated from a set F of patterns in the way described above, i.c. by
applying the pattern rule, substitution rule and replacement rule, will be called “the
reduction relation generated by F” (denoted by —). This notion is not meant to be a
serious mathematical “definition” on which the rest of the paper could be based in a
closed deductive presentation. The description given here, rather, is an attempt to extract
as many common features as possible from the various situations in which CPC
algorithms have been applied successfully. An axiomatic approach to CPC algorithms
exclusively based on the above three notions of patterns, multipliers and replacements
seems to be promising. However, this has not yet been achieved satisfactorily although
much progress has been made in general formulations of the CPC approach (see the
section on unifying approaches).

WORD PROBLEMS

In situations where one has a reduction relation —, generated by patterns, typically,
many algorithmic problems can be reduced to the following problem (the uniform word
problem for reductions relations generated by patterns in T):

for arbitrary s, t € T and (finite) F « T x T decide whether sep¥t.
(e* denotes the reflexive, symmetric, transitive closure of the binary relation =)

Examples of such problems are:

the problem of deciding whether the empty clause can be derived from a set of clauses,

the problem of constructing a vector space basis for the residue ring modulo a
multivariate polynomial ideal,

the problem of deciding whether a given equation can be derived from the axioms of a
given equational theory,

the reachability problem for reversible Petri nets,
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the problem of constructing direct implementations for abstract data types,

the problem of finding a generating set for the module of all syzygies of a polynomial
ideal,

the problem of solving algebraic systems of equations,

and many others (see the scction on applications).

FINITE TERMINATION

So far we have not yet discussed why we spoke about “reductions” when we introduced
the concept of relations generated by patterns. Actually, in algorithmic problem solving
one is only interested in those situations where by one “‘step” s =t the “complexity” or
“size” of s is “reduced”. Whatever the notion of complexity is, one of course would not
like to admit that the complexity can be reduced infinitely often. This means that one
normally is interested only in noetherian relations —. (A binary relation — on T is called
noetherian iff there is no infinite chain t, > t, 5 t; — ... . Sometimes these relations are
also said to have the finite termination property.) Thus, normally, when speaking about a
reduction relation generated by F we presuppose that the relation, in addition to being
generated by the process described above, is noetherian. On the other hand, it may
sometimes be reasonable to disregard the question of finite termination and still try to
apply the CPC approach.

SOLVING WORD PROBLEMS. CHURCH—ROSSER PROPERTY AND CONFLUENCE

Given a (reduction) relation — on T, it is clear that if s and t have “a common
successor” then s« *¢. In general, the converse does not hold. Noetherian relations — for
which the converse does hold have a decidabie word problem. We state these well known
and easy facts more formally (for proof details see, for example, Buchberger & Loos,
1982, p. 27).

Let — be a binary relation on T. As usual, the inverse and the reflexive-transitive closure
of — are denoted by « and —* respectively. Furthermore, for s, te T:

st (s and ¢ have a common successor). < (3r)(s =>*r «*1),

5 (s 1s in normal form): < not (I 1)(s — 1).

DEFINITION: — has the Church—Rosser property iff (Vs, (s o*t=>s1).

LemMA (Decidability of Church—Rosser relations): If — is noetherian and has the Church-
Rosser property then «* is decidable.
ProoF (Sketch): The following function § is a canonical simplifier for < *:
S(sy. = if s is in normal form then s eise S(Sel(s)),
where Sel is a “‘selector” function for —. Hence, we have the following decision algorithm:
se¥*t iff S(s) = 8.

(A function S defined by a recursion of the above type is called a normal form algorithm.
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A computable function Sel: T — T is called a selector function for — iff for all s € T that
are not in normal form; s — Sel(s).

A computable function S: T — T is called a canonical simplifier for an equivalence relation
~on Tiffforalls teT:

S(s) ~ s, (closure)
if s ~t then S(s) = $(1) (uniqueness).

Note that in the above proof we need the existence of a computable selector function and
the decidability of the predicate ““is in normal form™. We do not explicitly mention these
assumptions in the lemma in order not to distract the attention from the crucial points.
Actually, in practically interesting cases the validity of these two assumptions is no
problem.)

The proof tells us that, in the case of noetherian Church-Rosser relations -, for
deciding s «»* ¢ we only need to reduce s and ¢ iteratively by “applying” — until we arrive
at normal forms s’ and t'. Then s o*¢ iff s’ = ¢'.

Of course, in general, it is not easily possible to determine whether a given relation —
has the Church-Rosser property since the condition in the definiens in general involves
tests for infinitely many pairs (s, r) each of which may give rise to infinitely many attempts
to find common successors for s and 1. The foliowing lemma gives an equivalent
formulation that presents an “easier” but still non-constructive test,

DEFINITION: — is confluent iff (Y r,t,5 € T)(s < *r >*t=s]1).

LeMMA (Reduction of the Church-Rosser property to confluence): — has the Church—Rosser
property iff — is confluent.

LemMa  (Alternative  formulation  of  confluence): — s confluent  iff
(Vr.s,te T(s<*ro%*r=s=1).

SOLVING THE WORD PROBLEM: THE IDEA OF COMPLETION
Stated in the context of confluence the idea of completion is straightforward:

-—Given a set F of patterns we try to find a set G such that
o =o* and
—¢ has the Church—Rosser property.
(By the lemma on the decidability of Church-Rosser relations, we then have a
decision algorithm for <&*.)

(A set of patterns having the property that — has the Church—Rosser property will
be called a completed set.)

—The lemma on the reduction of the Church-Rosser property to confluence (using the
alternative formulation for confluence) suggests the following procedure for finding a
suitable set G:
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“Algorithm™ (Completion of a set of patterns):

G =F
B: = {(s,): (Ar) (sg*r =+ 1)},
while B =0do

(s, t}: = an element in B
B :=B—{(s,t)}

if s #t then
analyse (s, t)
G =G u{s )

The completion proceeds by locating all situations (r, s, t) in which confluence is injured.
In these situations, as a remedy, s »¢ (or ¢t — ) is adjoined to the set of “patterns”
{dependent on the analysis whether adjoining s — ¢ or t — s leaves the finite termination
property untouched. If both possibilitics destroy the finite termination property then this
procedure must be terminated “with failure”.) It should be clear that adjoining these s — ¢
as patterns preserves the condition op* =og* and, if the algorithm terminated, —g;
would have the confluence (and, hence, the Church-Rosser) property (G has been
“completed’”). However, in general, B is an infinite set and, hence, the above construction
is not algorithmic.

The above completion procedure can be slightly improved by using Newman’s lemma
on local confluence.

DEFINITION: — 18 locally confluent iff YV r,s,t € T(s—r—>t=s|t).

LEMMA (Reduction of confluence to local confluence; (Newman, 1942)): Let — be
noetherian. Then — is confluent iff — is locally confluent.

ProOF: By noetherian induction. The lemma is due to Newman (1942). In is full generality
it has been proven by Huet (1977). The proof may also be found, for example, in
Buchberger & Loos (1982).

LeMMa (Alternative formulation of Newman's lemma): Let — be noetherian and S be a
normal form algorithm for —. Then

—is confluent iff (Vr,s,t € T)(s «r—t=5(s) = 8(1)).

Using the alternative formulation of Newman’s lemma it is clear that in the above
completion procedure the second statement can be replaced by

B:={(s,0): Ar, 8, ') «proxt,s=8()t =S())}.

Intuitively, using this B, “fewer” situations have to be checked than in the first
formulation of the completion procedure. However, in general, B is still an infinite set.

A further improvement of the completion construction is suggested by taking into
account that the reduction relations — “‘generated by patterns F” are built by
substitutions and then replacements. Intuitively, one may expect that a sound notion of
replacement has the following compatibility property with respect to reduction:

(Vr,s,teT,ue P)s—>t=>r[ues]—-rlu<r1]). (compatibility)
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(In fact, in some important cases, compatibility in this strong form is not available. This
raises technical difficulties!) In case compatibility holds it is clear that it suffices to
consider confluence on the “spectra” of the patterns rather than general confluence, i.c. in
the completion procedure the second statement can be replaced by

B: = {(s,1): (3r € spectrum (F), 5, t')(s" 57 —t,s=8(5),t =S},
where spectrum (F): = {o5: (3t){(s, 1) € F), 6 € X}.

Again, this definition of B is a step towards turning the completion procedure into a real
algorithm. It even gives us some hint how to exhaust B by generating finite subsets of B:
in one step one could consider those r in the spectrum (F) that are gencrated by a fixed
substitution @ from the left-hand sides of patterns in F. (The expert reader will note that
in this introduction we oversimplify the situation for the sake of bringing to light the key
ideas at the cost of details: actually one often has to consider r e spectrum (F) that are
subobjects in other » € spectrum (F).)

SOLVING THE WORD PROBLEM: THE IDEA OF CRITICAL PAIRS

The analysis given so far shows us that for completing F (and, hence, solving the word
problem for —) we should look at the “spectra” of the patterns s >t in F

s>

and locate objects r that can be conceived as the left-hand sides o,5 = 1 ;P of reductions in
two different spectra:

st P-4
o85> 0t T,p—= 1,9
028 = 0,4t TP = 1,4
08>0t (superposition diagram)
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In such situations we have for r: = 6;5 = 1;p
gl —r—=1;q

and we only need to check whether ${g;r) = S(1;g). From the suggestive superposition
diagram above the idea of critical pairs may come naturally to ones mind:

Instead of considering the (infinitely) many objects r that can be conceived as the left-
hand sides of reductions in two different spectra, does it suffice to consider the “first
possible” situations in which a “superposition™ happens and to remove a possible injury
of local confiuence in these situations? These situations are called the “critical
situations” and the pairs (o;t, 7;q) are called the “critical pairs™.

Differently stated: the idea of critical pairs is the desire to “come as quickly as possible
to a situation where something interesting can happen by the interaction (interference,
superposition) of two patterns”.

In fact, it turned out that this idea works in many interesting examples. From the
superposition diagram it should be clear that, as minimal requirements, for the idea to
work one needs

a notion of “the first possible superposition situation” for two patterns, ie. a
superposition situation from which all other superposition situations for these two
patterns can be generated by application of multipliers (substitutions).

More formally (but, again, not meant as a ‘‘definition™): given two “patterns” s —t and
p — g the two objects x, y form a critical pair for the two patterns if

there exist two substitutions ¢ and 7 such that
as =1p
for all substitutions ¢’, 7" for which ¢'s = 7'p
there exists a substitution y such that ¢'s = yos,
and x =¢t, y =19
(i.e. x and y result from applying the patterns s>t and p—q to a “first possible
superposition” of s and p.)

In more general situations, where we consider objects os that are subobjects of tp or
where the set of all superposition situations of two patterns are generated by more than
one generating situation, more than one critical pair can correspond to two patterns.

Combining the idea of completion with the idea of critical pairs, finaily, leads to the
following CPC algorithm schema.

Algorithm (Structure of critical-pair/completion algorithms):
G=F

B:= [ set of critical pairs of f/ and ¢
Ji4eG

while B # § do
(s, t): = an element in B
B:=B—{(s, 1)}
(s, ): = (S(s), S(t))
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if s #t then
analyse (s, )

B:=Bu {]) setof critical pairs of (s, 1) and (p, g)

(r.ateG

G:=Gu{(s, 1)}

Introducing critical pairs was the crucial advance in the development of the CPC
approach because in many typical application areas the sets of critical pairs (for the
finitely many f, g € G) are finite and, hence, the completion construction has a chance to
become a real algorithm. Still, the termination of CPC algorithms may remain a difficult
problem for three reasons. First, in the particular context where one wants to apply the
CPC approach, it may be difficult to establish a Noetherian ordering on the objects that
is compatible with reduction. Second, when analysing (s, ¢) it may turn out that the finite
termination property can not be guaranteed after augmenting G by (s, t). And third, in the
while-loop, B will be diminished and increased alternately and it is by no means trivial
that it ever becomes empty.

Note that the above structure of CPC algorithms does not reflect any of the more
subtle details of the approach, for example the strategy of keeping patterns in G reduced
with respect to all other patterns in G; see the section on strategies.

Three CPC Algorithms in the Mid Sixties

The CPC approach was introduced in three papers in the mid sixties in three different
areas that, at first sight, seem to be far apart:

universal theorem proving
polynomial ideal theory
word problems in universal algebras.

These three papers contained complete correctness proofs for the respective algorithms
and described computer implementations of the algorithms. We give a short review of
these three algorithms.

THE RESOLUTION PROCEDURE (Robinson, 1963, 1965)
The original problem

Given F, a set of clauses in first-order predicate logic.
Semi-decide whether F is unsatisfiable.

Robinson’s resolution algorithm needs some distortion in order that it can be viewed as a
CPC algorithm. However, it surely shows the two key ideas of the CPC approach:
completion and critical pairs.

Objects: The set T of clauses.

Patterns: The clauses in F. Each clause {L,.., Ly My, ..., M} can be viewed in
several ways as a “‘pattern” (s, t) depending on which of the positive literals L,, ..., L, or
negative literals M, .. ., M ; 1s taken as the “left-hand side” s. Note that, in the context of
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the resolution algorithm, clauses are the objects and the rules. We will have a similar
situation also in the context of polynomials (and general rings, see the section on
generalisations.)

Multipliers: The substitutions ¢ of first-order predicate logic can be viewed as the
multipliers. Each clause C = (s, t) generates a whole “spectrum” of clauses oC.

Replacements: A special case of resolution may be viewed as a replacement:
C = C[u « ot], if the literal L at “place” u is the negation of s, where (s, t) is a clause in
F, conceived as a “pattern”.

Critical pairs: By formal distortion, one basic step in the resolution algorithm can be
viewed as forming a critical pair: for two clauses (s, £) and (—p, ) in F (where the minus
sign stands for *“not™), conceived as patterns, “most general unifiers” ¢ and t are
determined such that s = tp. From os, in one reduction, one obtains ot and —1q.
(ot, —1q) could be added to F now. (No simplification by a “normal form aigorithm” § is
foreseen in the resolution procedure!) Instead, (ot + 7q) is added to F, where the plus sign
stands for “or”. ((at, —1q), formally, would not be a clause!). The notion of a most
general unifier and the unification algorithm that determines the most general unifier for
two expressions (if it exists), introduced in (Robinson, 1965) is an important concept that
has motivated a whole stream of research in symbolic computation.

Completion: Adding (ot +1q) to F is the completion step in the resolution procedure.

Completed sets: They do not play an explicit role in the context of resolution because in
the successful cases the procedure stops when the empty clause is generated and the set of
clauses G, generated until then, is not used further.

Remarks: It is interesting to note that, disregarding formal details, the key idea of
critical pairs seems to have been very clear in the intention of J. A. Robinson because
(Robinson, 1979, p. 292) he writes: “The idea that, instead of trying all instantiations over
the Herbrand Universe, one might predict which ones would produce a ‘winning
combination’ by using what we have called the Unification Algerithm, ...”. In a
colloquium lecture at ETH (Zirich, 1978) I proposed to consider the resolution
procedure as a CPC algorithm using the sketch given above. Meanwhile the concept of
the resolution procedure as a CPC algorithm has been worked out much more specifically
by J. Hsiang and others based on the Peterson—Stickel version of the Knuth-Bendix
algorithm, see the section on unifying approaches. We still think it would be worthwhile
to look for a unifying approach that is based on an axiomatisation of “‘multipliers” and
“replacement”. Also including “simplification by resolution” in the resolution procedure
seems to be promising (for simplification, only matching, not unification, is necessary; see
also the concept of “narrowing”™ in a later section). Of course, it should also be mentioned
that some details of the resolution procedure in its original form are far apart from the
general structure of CPC algorithms sketched in the preceding section. For example,
termination of the reduction process, orientation of rules, the Church-Rosser property
and local confluence do not play any expiicit role in the original resolution context. Also,
at first sight, the problem solved by the resolution procedure is not a word problem.
{(However, note that F is insatisfiable iff “the empty clause is reachabie from F by
resolution steps”).
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Introductory reading: (Robinson, 1979) is the authoritative presentation of the
resolution method.

AN ALGORITHM FOR POLYNOMIAL IDEALS (Buchberger, 1965)

The original problem

Given F, a finite set of multivariate polynomials over a field K.
Find a lincarly independent basis 4 and the multiplication table M for the associative
algebra K[x,, .. ., x,]/Ideal(F), where Ideal(F) is the ideal generated by F.

The algorithm presented in (Buchberger, 1965) has all the structural characteristics of a
CPC algorithm. Using this algorithm the above problem can be solved as follows:

1. Construct a completed set G using the algorithm.

2. A: = the set of (the residue classes of) all power products that are not multiples of
leading power products of polynomials in G.

3. The linear representation of the products u.v (u, v € B) can be obtained by reducing
u.v to normal form using —.

Objects: T: = K[x,, . . ., x,], the set of polynomials over the field K.

Patterns: The polynomials in F. In order to conceive a polynomial f as a *“pattern” we
present it in the form f = s—t, where s is the “leading power product” in f with respect
to a given linear ordering of the power products and ¢ comprises the remaining
monomials in f. (Without loss of generality we may assume that the coefficient of this
power product is 1. In the original paper we always took the “lexicographical ordering
graded by degrees” as a fixed ordering for the power products. Later it turned out that
the algerithm can be carried through for a whole class of orderings that can be
characterised by two easy and natural axioms.)

Multipliers: The monomials (coefficients times power products) serve as “muitipliers”.
The *“application” ¢ of a multiplier ¢ to a polynomial s is just the product of ¢ and s.

Replacements: The “places” of a polynomial are the power products. r[x « ] must be
interpreted as “the polynomial that results from replacing the monomial at place u in r by
the polynomial ¢”. r/u must be interpreted as ‘‘the monomial at place u in 7. The general
reductions generated by a set F of patterns, then, are reductions of the following form:

rorlue—ot], if(s,t)e F and r/u = os.

(A careful definition of the notion of a “polynomial” is crucial in this context. The
concept of a polynomial must not be confused with the concept of an arithmetical term.
For an exact definition see, for example (Buchberger & Loos, 1982, p. 16). As one of the
isomorphic models of the set of polynomials K[x,, . . ., x,] one can take the set {s:s is a
function from N," in K such that s is zero for almost all arguments}. In this model the
“places”, then, are just the tupels  in N,". We wish to emphasise these well known
distinctions because they sometimes still cause confusion and wrong “proofs” in papers
on CPC algorithms and simplification modulo ideals in polynomial rings.)

Critical pairs: With the above interpretation of “application of multipliers” and
“replacement” the definition of a critical pair can now be literally taken from the section
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on the key ideas: Given (s, t) and (p, q) € F the two polynomials x, y form a critical pair
for the two patterns if

there exist two multipliers ¢ and t such that
as=1p
for all multipliers o', 7’ for which ¢'s = 7'p
there exists a multiplier y such that ¢'s = yos
and x = ot, y = 14.

More explicitly, in order to find ¢ and 1, we only have to compute the least common
multiple m of s and p. o and 1, then, are just the monomials that satisfy ¢s =m and
Tt =m.

Completion: With the interpretations described above, the algorithm developed in
(Buchberger, 1965) introduced exactly the structure of the CPC algorithm schema shown
in the section on the key ideas. In the context of polynomials, adjoining (s, t) to G must be
realised by adjoining r: = s—t to G. As a “pattern”, r then splits into its leading power
product and the remaining monomials. The step “analyse” is not necessary in the context
of polynomials because — is noetherian for every G. The termination of the algorithm in
the general case has been shown in (Buchberger, 1970) by rediscovering Dickson’s lemma
{Dickson, 1913). The original correctness proof of the algorithm was inductive in nature
but not based on Newman’s lemma. It can be based on Newman'’s lemma, see (Bachmair
& Buchberger, 1980) for absorbing the set theoretical part of the underlying induction.
However, the crucial part of the proof, which consists of exploiting the power of the
critical pair construction, goes beyond Newman’s lemma and must also cope with certain
technical difficulties concerning the reduction process for polynomials.

Completed sets: The notion of a set G completed by the CPC algorithm was explicitly
introduced in (Buchberger, 1966) by stating its ideal theoretically characteristic property:
all polynomials in G can be reduced to zero by iteratively applying the reduction —y.
Later, in (Buchberger, 1976), we called these sets Grobner bases (for historical reasons, see
the section on early forerunners.)

Remarks: We derived the crucial intuition behind our 1965 algorithm from drawing
pictures showing the “spectra” of the leading power products of the polynomials in F in
the way shown in the section on the key ideas and analysing the “first points where
something interesting can happen”. These points are the least common multiples of the
leading power products. It is interesting to compare this with the intuition described by
Robinson for his resolution procedure. Instead of reducing both polynomials x and yin a
critical pair to normal form, in our algorithm, we reduce the difference x—y. If
h: = S(x—y) is not equal to zero then A is adjoined to G. Computationally, this is
slightly better because we need only one reduction to normal form instead of two.
Logically, in the context of polynomials over K, these two procedures are equivalent. In
(Buchberger, 1965) the difference x—y of the components x and y of the critical pair
corresponding to the polynomiais p and g is called the “S-polynomial” of s and p.

Introductory reading: (Buchberger, 1985) gives an easy introduction to the algorithm
for computing Grobner bases and its many applications.
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AN ALGORITHM FOR WORD PROBLEMS IN UNIVERSAL ALGEBRAS
(Knuth & Bendix, 1967)

The original problem (the word problem in universal algebras):

Given F, a finite set of identities described by pairs of first-order terms and two terms s
and t.

Decide whether the identity “s = ¢ can be derived from the identities in F.

Again, the algorithm presented in (Knuth & Bendix, 1967) for the solution of this
problem has all the structural characteristics of a CPC algorithm. Using this algorithm
the above probiem can be solved as follows:

1. Construct a completed set G using the algorithm.
2. (If the algorithm terminated successfully:)
“s =t is derivable from F (iff ’s = " derivable from G) iff S(s) is identical to S(z),
where S is a normal form algorithm for the reduction —.

Objects: T: = the set of first-order terms over a given alphabet of function symbols.

Patterns: Pairs (s, t) of terms (“identities™), where s > ¢ in some noetherian ordering >
of the terms. Term orderings suitable in this context must satisfy certain basic properties.

(Essentially, if a term p reduces to a term g, then g must be smalier than p in the
ordering.)

Multipliers: As in the resolution algorithm, the substitutions of terms for variables serve
as the “multipliers”.

Replacements: The “places” in a term are the places where the subterms occur. [ « t]
must be interpreted as “the term that results from replacing the subterm at place u in r by
the term ¢, r/u must be interpreted as “the term at place u in r”. The general reductions
generated by a set F of patterns, then, are reductions of the following form:

rorfu—ot], if(s,t)e F and r/u=os.

Critical pairs: With the above interpretation of “application of multipliers” and
“replacement” the definition of a critical pair could now be taken literally from the
section on the key ideas. However, in the context of first-order terms, one has to consider
also “superpositions” between terms and subterms of other terms and not only between

terms and other terms. Given two patterns (s, f) and (p, q) € F, the two terms x, y form a
critical pair for the two patterns if

there exist two substitutions ¢ and 7 and a place u such that
a(s/u) = tp,
for all substitutions ¢’, 7' for which ¢'(s/u) = ©'p
there exists a substitution y such that ¢' = yo
(and some technical conditions on variables hold),
and x = at, y = as[u < 1q].

The substitutions ¢ and 7 form a most general unifier exactly in the same sense as in the

resolution algorithm. Actually, the same unification algorithm as in (Robinson, 1965)
was also proposed in (Knuth & Bendix, 1967).
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Completion: With the interpretations described above, the algorithm introduced in
(Knuth & Bendix, 1967) has exactly the structure of the CPC algorithm schema shown in
the section on the key ideas. The step “analyse” is crucial in the context of rewriting
terms: before adjoining (s, £) to G it must be analysed whether s>t or t > s or s is
incomparable with t. In the first two cases, (s, f) or (¢, s} is adjoined respectively. In the
third case the algorithm must be terminated “with failure”. In general, nothing interesting
can be said in this case. Termination of this algorithm can not be guaranteed in general.
In the cases when it terminates, the resulting set G of identities has the property that —g
is Church-Rosser. The original correctness proof of the algorithm was already based on a
version of Newman’s lemma. Again, the crucial part of the proof, which concerns the
power contained in the concept of critical pairs, goes beyond Newman’s lemma and must
also take account of the technicalities pertinent to first-order terms.

Completed sets: The notion of a “complete set” is explicitly introduced in (Knuth &
Bendix, 1967) by essentially defining: G is complete iff —; has the Church-Rosser

property.

Remarks: The algorithm and the correctness proof presented in (Knuth & Bendix,
1967), actually, is due to Knuth alone, whereas Bendix, a student of Knuth, did the
implementation as has been pointed out to me by D. Lankford. From the point of view of
heuristics, it is interesting to see that, in the original paper (Knuth & Bendix, 1967), the
authors do not mention the intuition of locating “‘the first possible superposition
situation” as the view underlying the notion of a critical pair. Instead, they apparently
arrived at the notion of a critical pair by a careful analysis of how local confluence can be
injured, ie. in which cases it is possible that, in a situation s «4r =, s and ¢ have no
common successor. It turns out that only one “critical case” remains, namely just the case
of a general superposition of “spectra”, which they found can be reduced to the case of a
“most general superposition”.

Introductory reading: Most probably Huet (1977) contains the best presentation of the
Knuth-Bendix algorithm.

Early Forerunners

The three papers mentioned in the preceding section had a number of early forerunners
that contained, more or less explicitly, the two key ideas of the CPC approach. In
retrospect, by the recent increased interest in the CPC method, more and more of these
forerunners are discovered. Of course, (Newman, 1942) is a basis for all considerations on
establishing the Church-Rosser property. However, in this section, I would like to
concentrate on forerunners that showed versions or initial ideas of the critical-pair concept
which, personally, I consider as the crucial part of the CPC approach. (Newman’s lemma
does not turn the infinite completion procedure into a finite algorithm, Rather, it only
may help to nicely organise correctness proofs. In fact, only one of the correctness proofs
of the three papers discussed in the last section, namely (Knuth & Bendix, 1967) was
based on Newman’s lemma. Also, the idea of critical pairs may be useful in situations
where the Church—Rosser property is not the main concern.)

FORERUNNERS OF THE RESOLUTION PROCEDURE

J. A. Robinson himself traces the idea of his resolution algorithm back to (Prawitz,
1960). In (Robinson, 1979, p. 292) he writes: “The idea that, instead of trying all
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instantiations over the Herbrand Universe, one might predict which ones would produce
a ‘winning combination’ by using what we have called the Unification Algorithm, turns
out to have been sitting there all these years, unnoticed, in Herbrand’s doctoral thesis
(Herbrand, 1930). (Prawitz, 1960), following ideas of (Kanger, 1957), was, as far as the
present author is aware, the first to describe this idea at length in print.” At a different
place, (Robinson, 1967), he writes: “The unification algorithm is essentially a cleaned-up
and simplified version of the process described somewhat obscurely in (Prawitz, 1960).
Recently it came to my attention that essentially the same procedure was found by the
late Emil Post and called by him the ‘LCM’ process, but was never published (see Davis,
1965).” For me this latter reference is particularly thrilling because in my own algorithm I
compute an LCM (without quotation marks) for obtaining a critical pair. Unification, of
course, is a crucial ingredient in the first-order resolution algorithm. However, I think it is
the combination of unification (looking for the “first possible”, the “most general”
interesting situation) and (propositional) resolution (reduction by cutting away the unified
parts) that makes Robinson’s algorithm a “critical pair” algorithm.

FORERUNNERS OF THE POLYNOMIAL TDEAL ALGORITHM

My own research on the polynomial ideal algorithm was stimulated by my thesis
advisor, Prof. W. Grobner (1899-1980). He encouraged me to work on the problem
described in the preceding section (finding multiplication tables for residue class rings),
which he presented in a seminar 1964 together with his own ideas on how to attack the
problem. In the terminology of the section on key ideas, his approach was as follows:
Consider all power products r and reduce them to normal form (1.e. compute s and ¢t such
that s¢*r—*1) in all possible ways using the polynomials in G. If s # ¢ then adjoin
s—t to G. Thus, he proposed a completion procedure. However, he did not yet see that
we can directly move to the “first possible” power products, where distinct reductions can
occur, 1.e. to the least common multiples of leading power products, and that it suffices to
consider only these particular power products. Also, he did not really present a general
correctness proof for his procedure. Still, he showed extremely sound intuition because he
recommended starting systematically from low power products in terms of degree. Thus,
he was very close to critical pais.

In (Buchberger, 1970) I quoted Grébner’s ideas as an “oral communication”. Strangely
enough, Grobner never told me that he had published his ideas already in 1950 (Grébner,
1950) with the following additional remark: “T have used this method for approximately 17
years in various cases including complicated ones and...”. Only by chance, in 1984,
during a stay in Halle (GDR) I learned from B. Renschuch, who had written a book in
the spirit of W. Grobner’s ideal theoretical approach to commutative algebra (Renschuch,
1976), about the existence of (Grobner, 1950). When I resumed work on the subject of
constructive methods for polynomial ideals in (Buchberger, 1976), in order to underline
Grébner’s crucial contribution to my 1965 algorithm, I called the completed sets obtained
by application of the algorithm “Grébner bases” and gave various characterisations for
them.

In fact, as pointed out in (Buchberger, 1965, 1970), in the case of univariate
polynomials and in the case of linear multivariate polynomials my 1965 algorithm
specialises to Euclid’s algorithm and Gauss’ algorithm respectively. Hence, these two
aigorithms may be viewed as very early forerunners.

Recently some authors, for example Bayer (1982), have also pointed out that essentially
the same notion as “Grobner bases” (i.e. the notion of bases with respect to which all
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elements in an ideal can be reduced to zero), in the context of formal power series, had
already been introduced in Hironaka's famous paper (Hironaka, 1964). Hironaka calis
these ideal bases “standard bases” and calls the corresponding reduction process
“division algorithm”. He proves that for every ideal basis F there exists a corresponding
standard basis. However, the proof is not constructive (it is essentially done by the
“Schreier-construction”, see (Bauer, 1981, p. 18)), i.e. it does not give an algorithm how
to obtain the standard basis corresponding to a given arbitrary basis F. In particular,
there is no indication of the idea of critical pairs in Hironaka’s paper. A short version of
such an inconstructive existence proof for Grobner bases, from which Hilbert’s basis
theorem can be obtained as a corollary, is also presented in (Buchberger, 1982).

FORERUNNERS OF THE KNUTH-BENDIX ALGORITHM

In (Knuth & Bendix, 1965), both very general and very special credit is given to
forerunners: “The formal development of this paper is primarily a precise statement of
what hundreds of mathematicians have been doing for many decades, so no great claims
of originality are intended for most of the concepts or methods used. . . .. The main new
contribution of this paper is intended to be an extension of some methods used by Trevor
Evans (Evans, 1951). We allow operators of arbitrary degree, and we make use of a well-
ordering of words which allows us to treat axioms such as the associative law.”
Consulting (Evans, 1951) one sees that the core of the method to which Knuth alludes
seems to be a procedure described in (Evans, 19514, p. 69) by which a “closed” set of
relations is produced from generators and relations of certain finitely generated algebras
in the presence of equational axioms. When preparing this lecture. I tried to find out
whether the procedure described in (Evans, 1951a), which surely has the character of a
“completion” procedure, also contains the concept of “critical pairs”. Frankly, T was not
able to decide, and I think that, in any case, Knuth showed a lot of ingenuity when
deriving the very general and clearly formulated procedure in (Knuth & Bendix, 1967)
from (Evans, 1951 or 1951a). See, however, the preface of (Lankford, 1975) and
(Lankford & Butler, 1984) for an appreciation of Evans’ work as a forerunner of (Knuth
& Bendix, 1967).

OTHER FORERUNNERS

In retrospect, it seems that several of the early algebraic algorithms had some flavor of
the CPC method, see, for example (Dehn, 1911), (Greenlinger, 1960), and also Gauss’
algorithm for presenting a symmetrical polynomial in terms of the elementary
symmetrical polynomials, as has been pointed out by Loos (1981).

Generalisations, Independent Developments and Unifying Approaches

GENERALISATIONS OF THE RESOLUTION PRINCIPLE

It is not the objective of this paper to review how the resolution method developed
since its invention in 1965. (For the various refinements of the method see the textbooks
on automated theorem proving, for example, (Chang & Lee, 1973), (Loveland, 1978),
(Robinson, 1979)). Here, we are exclusively interested in the CPC aspect of the resolution
method. In this respect, paramodulation as introduced by (Robinson & Wos, 1969) can
be viewed as a further inclusion of CPC ideas in resolution: for treating the equality sign,



Critical-Pair/Completion Procedure 19

instead of resolvents, paramodulants can be taken from two clauses. Roughly,
paramodulation can be viewed as allowing resolution and forming critical pairs in the
style of the Knuth-Bendix procedure at the same time. A step further in this direction was
the introduction of “narrowing” in (Fay, 1979). One narrowing step transforming term ¢
into term ¢’ consists of three substeps:

a subterm of ¢ is singled out that can be unified by a most general unifier ¢ with the left-
hand side of a rule,

in o(t) the subterm is replaced by the right-hand side of the rule (after application of o),

the resulting term is reduced to normal form using the rules of the rule system.

An overview on narrowing with applications is contained in (Rety et al., 1985).

A more intimate amalgamation of the resolution method with the Knuth-Bendix
completion procedure was introduced by (Lankford, 1975, 1975a), inspired by (Slagle,
1974) who considered term simplifiers without referring to the Knuth-Bendix procedure.
Lankford proposed using the Knuth-Bendix procedure in connection with the resolution
method in order to complete the sets of equalities used in the resolution method. In
(Lankford & Ballantyne, 1979) it is shown that this leads to a refutation complete proof
procedure that goes beyond paramedulation, The ideas developed in this approach also
led to a recent interaction between resolution theorem proving and the Knuth-Bendix
type completion procedure developed by J. Hsiang and others, see the section on the
generalisations of the Knuth-Bendix procedure.

GENERALISATIONS OF THE CPC APPROACH FOR POLYNOMIAL RINGS

Lauer (1976) was the first to modify my 1965 algorithm to treat polynomial ideals with
integer coefficients. The case of integer coefficients needs a modification of the reduction
relation “s =" because, in one step, one cannot expect to be able to totally cancel a
power product in s since, in the multipliers, we only have integer coefficients available.
Instead of one type of S-polynomials (“critical pairs”), Lauer had to introduce two
different types, “S-polynomials” and “T-polynomials”. As the main result he proved that
a finite set F of multivariate polynomials with integer coefficients is a Grobner basis if the
S-polynomials and T-polynomials of the elements in F can be reduced to zero modulo F.
(I think that Lauer’s work is important since being able to construct Grobner bases for
integer polynomial ideals implies that the uniform word problem for finitely generated
rings can be solved.)

In this context it should be also mentioned that in 1976, based on the methods of
Szekeres (1952), R. Stokhamer gave an algorithm for constructing “canonical forms” of
multivariate integer polynomials modulo a given ideal F (see Stokhamer, 1975, 1976). A
polished version of Stokhamer’s work is also contained in (Lauer, 1976) and, in short
version, in (Lauer, 1976a). Stokhamer’s method is not a CPC method. It is still not
sufficiently worked out how his method compares with the CPC methods, see however
(Winkler, 1983, 1984).

A different generalisation of my algorithm was preposed in (Spear, 1977) and,
independently, in (Trinks, 1978). Their approach consists in defining a class of rings that
allow an algorithmic solution of the ideal membership and the syzygy problem
(construction of generators for the solution set of linear diophantine equations) and in
showing that if R belongs to this class then also R[x,, ..., x,] belongs to that class. The
proof is constructive and involves a generalisation of my 1965 algorithm. Instead of the
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original critical pairs, combinations of the multiples of all the elements in F have to be
taken whose leading monomials cancel. The approach of Spear (1977) was fully developed
in (Zacharias, 1978) and also in (Schaller, 1979). In (Schaller, 1979) the rings satisfying
the above effectiveness conditions are called ‘“‘simplification rings”. Since fields arc
simplification rings their approach yields my 1965 algorithm as a special case. Since Z is
also a simplification ring, they also achieve a constructive method for obtaining Grobner
bases over Z (and, hence, solving the basic algorithmic problems for integer polynomial
ideals).

Apparently independently of my own work, Bergman (1978) rediscovered essentially
the same algorithm, however, in a slightly more general form, namely for free associative
k-algebras k(X ), where X is a set (of indeterminates) and k is a commutative, associative
ring with 1. These algebras cover an impressively broad range. However, the approach is
not broad enough to encompass the case of integer polynomial ideals because (Bergman,
1978) only admits pure words in X as the left-hand sides of “patterns” in F. A
generalisation of my algorithm for the case of non-commutative polynomials has been
announced in (Mora, 1985a).

In an independent effort, Ballantyne & Lankford (1981) also rediscovered a special case
of my algorithm, namely the case when F contains only polynomials of the form p—ag,
where p and g are power products. These sets of polynomials may be viewed as the
relations describing finitely generated abelian semigroups. The algorithm then yields a
solution to the uniform word problem for finitely generated abelian semigroups. Although
the algorithm in (Baillantyne & Lankford, 1981) is a special case of mine, it is interesting
because it was the beginning of a merge of the two branches in CPC research stemming
from my 1965 algorithm and from the Knuth-Bendix algorithm, sce also the next
subsection.

Yet another generalisation was initiated by Bayer (1982) and further developed by
Mora & Moller (1983a) who consider K[x,, . . ., x,]-modules and ideals in these modules
instead of considering simply ideals in K[x,, ..., x,]. Early ideas in this direction were
also announced by Guiver (1982). Mora (1985) also treats local rings by the same
method. These generalisations produce important applications in algebraic geometry. A
special algorithm patterned after my 1965 algorithm but with different term ordering was
given for the computation of tangent cones (Mora, 1982).

Also working independently, Galligo became interested in standard bases for modules
over K[x,, .. .,x,]. After some earlier work, for example (Galligo, 1979), in which he did
not consider the construction of standard bases but only the division algorithm with
respect to standard bases, in (Galligo, 1984) he developed an algorithm for constructing
standard bases that, again, could be viewed as a CPC algorithm. The same idea was then
used in (Castro, 1984) for ideals of differential operators (sec also Galligo, 1985).

Recently, 1 pursued a new axiomatic approach to generalising the CPC method to
general rings, not only polynomial rings (see Buchberger, 1983a). As a byproduct, this
approach yields a CPC algorithm for Z[x,, .. ., x,] whose structure is identical with my
original algorithm for the case of field coefficients. It neither needs two different kinds of
S-polynomials as in (Lauer, 1976) nor does the axiomatisation involve the relatively
complicated conditions of the above simplification rings. Independently, arriving from
studying the interplay between the Knuth—Bendix algorithm and my algorithm, in (Kandri-
Rody & Kapur, 1984), for the special case of Z[x,,... x,], essentially the same
algorithm as in (Buchberger, 1983a) is developed and then generalised to the case of
R[x,, .. ..x,] for Euclidean coefficient rings R in (Kandri-Rody & Kapur, 19844).
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GENERALISATIONS OF THE KNUTH—BENDIX ALGORITHM

The main direction in generalising the Knuth-Bendix algorithm was to establish
procedures that can handle the case when some of the axioms in F destroy the finite
termination property of the reduction relation. The general approach pursued for
resolving this difficulty was to separate the set A of axioms into two groups of axioms, R
and E, and to consider the axioms in R as generators of a corresponding reduction
relation —, whereas the axioms E are considered to generate a congruence relation ~g 0N
the set of terms. The problem then is to develop algorithms that, essentially, operate on
the congruence classes of terms w.r1. ~ E rather than on the set of terms.

On the set theoretical level all these approaches are based on generalisations and
refinements of Newman’s lemma (Newman, 1942), which has been elegantly proven in
(Huet, 1977) based on earlier work in (Church & Rosser, 1936; Hindley, 1969, 1974; Aho
et al., 1972; Sethi, 1974; Lankford, 1975; Staples, 1975; see Huet, 1977, for a detailed
reference to these contributions). Recently, (Coquand & Huet, 1985) gave a machine-
checked proof of Newman’s lemma. In connection with working over equivalence classes,
various generalised versions of Newman'’s lemma have been proven, for example in (Huet,
1977). (A generalisation of Newman’s lemma of a totally different type, with a different
purpose, is developed in (Buchberger, 1983a).)

In the context of generalising the Knuth-Bendix method for congruence classes of
terms, E-unification (the generalisation of the original unification problem for
E-congruence classes) plays an essential role. (Two terms s and ¢ are E-unifiable iff there
exists a substitution ¢ such that s ~; t.) E-unification was initiated in (Plotkin, 1972). A
bibliography on E-unification is (Raulefs et al., 1979). Extensive bibliographies are also
contained in (Lankford, 1980) and (Fages, 1983). Most of the work on E-unification for
different sets of axioms E, (including Huet, 1976; Livesey & Siekmann, 1976; Makanin,
1977; Siekmann, 1978; Lankford, 1979; Fay, 1979) is reviewed in (Huet & Oppen, 1980).
Some recent papers on E-unification are (Sickmann & Szabo, 1982; Kirchner, 1984;
Jouannaud et al., 1983; Fages & Huet, 1983; Yellick, 1985; Fortenbacher, 1985; Tiden &
Arnborg, 1985). Because of its practical importance, the case of E consisting of axioms
expressing associativity and commutativity of function symbols was of central interest in
E-unification research. Stickel (1975, 1976, 1981) developed an algorithm for generating a
complete set of unifiers for the associative-commutative (AC) case and showed its partial
correctness. However, only recently F. Fages (Fages, 1983, 1984) was able to show its
total correctness by very subtle complexity measures for terms. This was one of the main
achievements in unification research. As a subproblem of the AC-unification problem the
solution of linear diophantine equations over the natural numbers appears. A crude
algorithm for this problem in (Stickel, 1975) is improved in (Huet, 1978).

For attacking the problem of establishing a generalisation of the Knuth-Bendix
method for quotient sets of terms modulo ~g, different approaches have been developed in
the literature. For the discussion of these approaches let us define

_’R/E:= NEO—-)RO I\JE,

i.e. =g is the reduction refation induced on the congruence classes modulo ~E.

The first approach is the one developed in (Lankford & Ballantyne, 1977a,b). It works
with the above induced reduction relation. The original notion of critical pairs of terms is
used for the representatives of the classes. This approach works for finite congruence
classes only, because in general the induced reduction relation is undecidable for infinite



22 B. Buchberger

congruence classes. However, the method tends to be quite inefficient also in the limited
case of finite congruence classes.

The other approaches may be viewed in one general framework by introducing one
more reduction relation R’ between —y and —y

SR © .
This general view has been worked out in (Jouannaud & Kirchner, 1984). R’ gives one

more degree of freedom in executing reductions and establishing Church-Rosser
theorems. Using R’, the following notions may be distinguished (recall A = E u R):

—y 18 R'-Church—Rosser (modulo E) iff
t1 ~, 2 implies
t1 =g ¥ t1, 12 =g ¥ 12" and 1’ ~¢ 12 (for some t1', 12),

-y 1s confluent (modulo E) iff
t o *tl, t o * 12 implies
tl = ¥tl', 12 5 *¥ 12, t1" ~; 12 (for some t1, £27),

-4 18 R'-local-confluent (medulo E) iff
t - t], t o512 implies
Lo e, 12 5 ¥ 12, t1 ~; 82" (for some t1', £2'),

—x. 18 coherent (modulo E) iff
t - " t1, t ~5t2 implies
11 = * 1l 12 =g 12, 11 ~¢ 12 (for some i1’ £2'),

—¢ 18 local-coherent (modulo E) iff
t op tl, t ~¢t2 implies
tl =g *tl', 12 =g T 12", t1" ~p 12" (for some t1', £2').

Now the most general Church—Rosser result, due to (Jouannaud & Kirchner, 1984), can
be formulated as follows:

—g 18 R’-local-confluent and —y. is local-coherent iff ™
- 18 R™-Church—Rosser.

The link between —y and —y is established by the following observation:

If — g is terminating, —. is confluent and coherent then
—x-normal-forms and - z-normal-forms coincide.

Hence, instead of working witch R/E, one may work with R’ on representatives in the
E-congruence classes. In retrospect, one now may view the different approaches as having
worked with different R

The approach initiated by Lankford & Ballantyne (1977¢) and, independently, by
Peterson & Stickel in a preliminary version of (Peterson & Stickel, 1981) uses R: = R, E
(i.e. matching modulo E) and a version of (*) that replaces coherence by compatibility
(which is stronger). This approach is restricted to iinear equations that possess a finite-
complete E-unification algorithm. The approach developed in (Huet, 1977) uses R": = R.
This approach is restricted to left-linear rules. (Pederson, 1984, 1985) use R: = R-E,
where E-equalities are allowed only in variable substitutions, but not at internal
occurrences of the rule to be applied. This permits to rewrite an instance of a left-hand
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side with multiple occurrences of a variable having different (but E-equal) values. Based
on (*), this approach has no theoretical restrictions. Jouannaud & Kirchner (1984) use
R": = Rl'u Rnl, E, where Rl contains only left-lincar rules and Rnl contains the other
rules. This approach is restricted to equational theories E with finite congruence classes
and finite-complete unification algorithm. In Kirchner’s thesis this approach is
generalised to using R = RIU Rnll, E U Rnl2<E. In all these approaches, then, it must
be shown that the left-hand side of (*) is implied by the confluence of critical pairs.

A CPC algorithm for the associative-commutative case is given in (Peterson & Stickel,
1981). This algorithm has been successfully applied to various axiom systems. A
drawback of the algorithm is: it may add new rules even when the initial set of rules
generates already a Church—Rosser reduction. Pederson (1984) gives an algorithm based
on this approach. However, now proof details are provided. Huet (1977) gives an
aigorithm for left-linear rules. Tt is faster than the others, but may diverge in examples
where the Peterson-Stickel algorithm would converge, because R as a rewrite relation is
not strong enough in some practical cases. On the other hand, Huet’s algorithm is a semi-
decision procedure for equality, which is not gnaranteed for the Peterson—Stickel
algorithm. Jouannaud & Kirchner (1984) give an algorithm that combines advantages of
Huet’s and Peterson—Stickel’s algorithm.

Other sources for improvements and generalisations of the above approaches (including
the case when —g is not terminating) are (Fages, 1983), (Padawitz, 1983), (Jouannaud
et al., 1983), (Perdrix, 1984), (Gobel, 1984).

Some research has also been carried out in generalising the Knuth-Bendix completion
procedure to conditional rewrite systems (i.e. equations preceded by conditions as
necessary, for example, for formulating certain of the field axioms). This research was
initiated by (Lankford, 1979a,c), see also (Brand et al., 1978). The first critical-pair result
in this area was proved in (Remy, 1982). A recent paper is (Kaplan, 1984), which contains
the references relevant for the Knuth-Bendix approach in conditional rewriting.

Recently, Lankford & Butler (1984), Ballantyne et al. (1984) and Butler & Lankford
(1984) seem to develop a different approach to completing systems involving AC-axioms
that resumes the early Evans approach of embedding and brings it together with the
methods in (Buchberger, 1983a) and (Kandri-Rody & Kapur, 1984, 1984a) of
constructing Grébner bases for integer polynomial ideals. A complete analysis of the
possible interactions between the approaches seems to be one of the most promising
future research topics. It is exciting to see that the research activities that started twenty
years ago from very different roots, finally, meet and merge: see also the next section.

THEOREM PROVING BY EQUATIONAL REWRITING AND POLYNCMIAL REDUCTION

The Peterson-Stickel methodology, by which complete sets of axioms can be derived
for a wide class of equational theories, gave rise to an interesting connection between
resolution theorem proving and the CPC procedures for term rewriting. Whereas in the
early approach of Lankford (1975, 1975a) the completion procedure for equational
axioms was embedded as a subalgorithm into the resolution procedure, in the recent
approach by Hsiang (1981, 1982; see also Hsiang & Dershowitz, 1983) the resolution
mechanism itself is described as a reduction with respect to an equational axioms system.
The same approach has also been considered by Fages (1983) and, recently, by Paul
(1985, 1985a). At the core of this method are complete axiom systems for boolean algebra.
The existence of such systems is by no means trivial since the straightforward approach by



24 B. Buchberger

prime implicants does not lead to unique normal forms for boolean terms. Hsiang (1982)
arrives at a complete system of axioms for boolean rings by using the “exclusive or”
instead of the usual “or”. Basically the canonical forms obtained are the Reed—Muller
forms (Reed, 1954; Mutler, 1954), although in these early papers no notion of term
rewriting was involved. (Implicitly these forms are also contained in Stone’s theorem on
the representation of boolean algebras and in the Venn diagrams.) Roughly, the
connection between the resolution method and equational rewriting is established by
proving theorems of the following type

A set C of clauses is unsatisfiable iff

the Peterson—Stickel completion procedure applied to the boolean algebra axiom
system together with an equational transcription of the clauses in C yields the equation
“1=10".

Kapur & Narendran (1985) propose a similar approach that use the algorithm developed
in (Buchberger, 1983a4) and (Kandri-Rody & Kapur, 1984) for the completion of
polynomial ideals over rings instead of the Peterson—Stickel algorithm.

In the above approach, equational rewriting is used for clausal theorem proving.
However, it is conjectured to apply to non-clausal theorem proving as well. In this
direction the recent work of Manna & Waldinger (1985) is of particular interest. They
provide a class of inference rules for the treatment of special relations in automated
deduction that are based on a general notion of polarity. The rules generalise the
paramodulation and E-resolution rules to an arbitrary binary relation. I conjecture that
the Manna & Waldinger (1985) approach and the above approach could eventually
merge, if one extended the above approach to non-clausal theorem proving and, at the
same time, views the rules in (Manna & Waldinger, 1985) as a very general critical-pair
formation.

UNIFYING THE KNUTH-BENDIX ALGORITHM WITH THE GROBNER BASIS APPROACH

Motivated by the structural similarity between the Knuth-Bendix algorithm and my
1965 algorithm for constructing Grobner bases, a number of people have tried to show
that, in fact, my algorithm can be viewed as a special case of the Knuth-Bendix
algorithm. Since my algorithm is concerned with operations in commutative fieids (or
rings) it is near at hand that embedding my algorithm in the Knuth-Bendix methodology
can only be achieved by considering the Peterson-Stickel generalisation with
AC-unification, Still, there is a crucial difficulty in the case of field coefficients because of
the fact that the field axioms are not pure equations. Also, there is an essential difference
between the variables used in first order term rewriting and the indeterminates in
polynomial rings. The latter obstacle can be handled by considering the indeterminates as
constants in the corresponding rewrite system. Starting from a rough sketch in (Loos,
1981) of how my algorithm could be embedded in the Peterson-Stickel procedure, the
following papers were concerned with filling in the details: (Kandri-Rody & Kapur, 1983;
Llopis de Trias, 1983; Le Chenadec, 1983). However, none of these papers could really
close all the gaps. For an analysis of the subtle deficiencies left open in these papers see
(Winkler, 1984), who also provided a construction of a completion procedure that
incorporates the Peterson—Stickel procedure and my 1965 algorithm as special cases. The
construction developed in (Winkler, 1984) distinguishes between reduction and
simplification steps. This is an idea borrowed from (Kandri-Rody & Kapur, 1984).
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Although such embeddings do not add to the computational efficiency of the
algorithms (the more general an algorithm is the more it must leave out potential
knowledge that can speed up the algorithm in the special case), they have some
theoretical value for obtaining a clear picture of what is essential in the constructions. For
practical purposes, however, it is of course much better to use the “least common
multiple” construction of the polynomial ideal algorithms than to use the whole
mechanism of AC-unification (and essentially arrive at the same end.) Embeddings,
however, can have the practical significance of making flexible implementations possible
that follow the software philosophy of polymorphic data types, see for example the new
SCRATCHPAD system (Jenks, 1984).

Still, T think that a totally different approach based on an axiomatisation of the notion
of patterns, multipliers and replacements should be tried sometime, not for obtaining
good algorithms but out of structural interest. In this respect (Bauer, 1981) is an
outstanding paper that developed much of the CPC approach from an axiomatisation of
the concept of “substitution”.

OTHER CPC APPROACHES

Loos (1981) gives some examples of algorithms that could be conceived as CPC
algorithms, for example, the collection algorithm in computational group theory
(McDonald, 1976). There is also a major research activity in confluent Thue systems, see
Book (1982, 19824, 1985). However, it seems that in this context the tool of critical pairs
is not in the centre of interest (see, however, Nivat, 1971). Also, the unification algorithm
used as a subalgorithm in resolution theorem proving and in the Knuth-Bendix
procedure could be viewed as a CPC algorithm.

Applications

APPLICATIONS OF THE RESOLUTION METHOD

Since universal theorem proving theoretically provides the mechanisation of
mathematics, the application of the resolution method would be universal. In practice,
however, there are some reservations whether universal theorem proving will ever play an
important role in mathematical discovery. Special theorem provers for particular
decidable theories, as for example the quantifier elimination method in (Collins, 1975)
seem to be more promising for eventual impact on mathematical research. Rather, I guess
that most people will agree that universal theorem proving has had its biggest practical
impact by providing a method for constructing terms that establish answers to existential
theorems. Starting from early (1965) efforts using resolution theorem proving in
“*question answering” and “program deduction”—see Chang & Lee (1973) for a review—
this development now becomes of central importance in the logic programming
movement (Kowalski, 1979). A fair assessment of the ubiquitious applications of
resolution theorem proving is beyond the expertise of the present author.

APPLICATIONS OF THE GROBNER BASES METHOD

A review of applications of the Grobner basis method is given in Buchberger (1985).
We summarise the most important achievements.
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APPLICATIONS FOR PROPERTIES OF IDEALS

After having transformed an arbitrary polynomial ideal basis F to a corresponding
Groébner basis G, a number of important algorithmic problems can be easily solved:
f € Ideal(F) can be decided by reducing f to normal form modulo G. Actually, the
normal form algorithm with respect to G is a canonical simplifier for ideal congruence. As
a special case, the uniform word problem for commutative semigroups (reachability
problem for reversible Petri nets) can be solved. Furthermore, the structure of the residue
class ring modulo Ideal(F) is fully available: a vector space basis and the complete
multiplication table for the residue class ring can be found by the method sketched in the
section on the mid sixties algorithms. An easy test on the leading power products of the
polynomials in the Grobner basis G shows whether the ideal has (topological) dimension
zero or has higher dimension. Inverses of elements in the residue class rings can be
calculated if they exist. (This has applications in radical simplification.) Furthermore, it is
easy to compute the Hilbert function of an ideal when a Grobner basis is known. The
above applications are contained in the original paper (Buchberger, 1965). Schrader
(1976) has shown how to apply Grobner bases for supporting primary decomposition
computations for polynomial ideals. Kandri-Rody (1984) has shown how, for Grébner
bases, the maximality and primality of polynomial ideals can be tested. He also gave a
method for determining the radical and the dimension of an ideal. Gianni & Trager
(1985) have given methods for factorisation and gecd computations for multivariate
polynomials using Grébner bases. Mora & Moller (1983) have given a better algorithm
for computing the Hilbert-function bases on Grobner bases. Mora (1982) gives a CPC
algorithm for computing the tangent cone of a polynomial ideal. Molier (1976) and
Moller & Buchberger (1982) apply Grobner bases to construct certain desirable auxiliary
formulae for designing multivariate numerical integration formulae. Wolf (1985) shows
how systems of differential equations can be transformed algebraically to Grobner basis
form in order to facilitate subsequent numerical solution. Wu (1978), for geometrical
theorem proving, considers polynomial sets that are close to the characteristic sets
considered in (Kandri-Rody, 1984). Characteristic sets can be obtained easily from
Grobner bases. Geometrical theorem proving using Grobner bases is considered in
(Kutzler & Stifter, 1985). Robbiano & Valla (1983) consider the application of Grobner
bases to the set-theoretic complete intersection problem for curves in p*.

The algorithm in (Buchberger, 1983a) and (Kandri-Rody & Kapur, 1984, 1984a),
besides allowing solution of the membership and canonical simplification problem for
polynomial ideals over the integers, also yields a solution for the uniform word problem
for finitely presented commutative rings. (The defining relations can be viewed as
polynomials with integer coefficients.) Since Grdbner bases are unique (Buchberger, 1976;
Kandri-Rody & Kapur, 1984) one can construct bijective enumerations of all polynomial
ideals over Z. This may lead to a classification of all possible residue class rings. A
compilation of results on word problem for various finitely presented structures based on
the Grobner bases approach is given in (Kandri-Rody et al., 1985). In this paper also
some complexity results for the respective algorithms are given.

APPLICATION FOR THE EXACT SOLUTION OF POLYNOMIAL EQUATIONS

Having a Grébner basis G corresponding to a set F of multivariate polynomials
(equations) one can effectively determine univariate polynomials p(x; with minimal
degree in the ideal such that the set of zeros of G(F) is contained in the combinations of
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zeros of the p; (Buchberger, 1970). This method has been improved in (Boge et al., 1985)
by combining it with factorisation. A different method based on Grébner basis has been
introduced in (Trinks, 1978). Trinks observed that if Grobner bases are computed with
respect to the “purely lexicographical term ordering” then they automatically turn out to
have their variables “separated”. Thus, the system of equations can be solved by
successive computation of the components of the zeros. Stated differently, a Grébner
bases G w.r.t. the purely lexicographical ordering allows reading off of all the elimination
ideals directly from the elements in G.

APPLICATION FOR COMPUTATION OF SYZYGIES

Spear (1977) and (Zacharias (1978) first observed that the S-polynomials (critical pairs)
of the elements of a Grobner bases essentially form a generating set for the module of all
syzygies of a polynomial ideal, ie. linear diophantine equations with polynomial
coefficients can be solved effectively by considering S-polynomials. This method is easily
extended to compute the whole chain of syzygy modules of a polynomial ideal (the “free
resolution”), see Bayer (1982) and Mora & Maller (1983a). Méller (1985) has applied the
method to Taylor resolution.

APPLICATIONS OF THE KNUTH—BENDIX TYPE ALGORITHMS

The original and main application of the Knuth-Bendix algorithm and the algorithms
derived from it are the completion of equational axiom systems for solving the word
problems for the respective equational theories, i.e. the problem to decide, for given terms
s and ¢, whether “s = t” can be derived in the theory by equational reasoning. (It also
should be stated here that by the correctness proof for the Knuth- Bendix procedure given
in (Huet, 1981) the procedure, under certain conditions, yields at least a semidecision
procedure for “s =" even if it does not terminate). Through the years, by different
variants of the procedure, an impressive list of axiom systems have been compieted. Such
lists have been published several times in the literature. Thus, in the present paper, we
only point to these reviews: (Knuth & Bendix, 1967; Lankford, 19795, 1980; Hullot, 1980:;
Butler & Lankford, 1980; Le Chenadec, 1983; Jouannaud & Kirchner, 1984). As pointed
out earlier, recently a particular interest evolved in completing boolean algebra (Hsiang,
1982; Fages, 1983; Paul, 1985). For some more examples see (Pederson, 1984).

For some important axiom systems—lattices and modular lattices, Heyting algebras,
Lie algebras, fields—no complete systems are known.

Special completion methods have been derived for solving word problems for finitely
generated groups, see (Biicken, 1979, 19794) and (Richter & Kemmenich, 1980, and also
(Le Chenadec, 1983, 1985). The word problem for a finitely presented group may be
solved by deciding whether or not a given word is equal to the unit element. This idea
leads to the notion of limited confluence (which is useful also in boolean algebras, see the
work of Paul (1985) on the confluence of valid formulae). Dehn’s algorithm (Dehn, 1911)
for small cancellation groups is a well known algorithm that follows this idea. This
algorithm may be viewed as a rewriting system computed by completion limited to
superpositions between a finite group presentation and the complete sets of rules for free
groups. The connection between Dehn’s algorithm and completion algorithms was
proved in Biicken’s thesis and further analysed by Le Chenadec. Bauer (1981) analyses
connections between rewrite rules and standard combinatorial techniques (free, direct,
semi-direct and amalgamated products etc.) and gives a complexity hierarchy. Le
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Chenadec gives complete systems for several families of classical groups (Coxeter, -
polyhedral, surface groups etc.) See also (Lankford et al., 1983) for the case of finitely
presented abelian groups.

Choppy & Johnen (1985) give applications of completed rule sets for deciding
properties of Petri nets. (In the case of reversible Petri nets the reachability property is
known to be easily decidable using the method of Grébner bases, see (Buchberger,
1985)).

Particular practical interest in completed axiom systems developed from progress in the
use of abstract data types. For practical computation in the direct implementation of
algebraically specified abstract data types the decidability of the corresponding word
problem for terms is a prerequisite, see for example (Gerhart et al., 1980; Lichtenberger,
1980). The Knuth-Bendix completion method provides a general tool for producing
decision algorithms. Research on this application was pursued, for example, by Musser
(1977, 1978, 1978a), Goguen et al. (1982), Musser & Kapur (1982) and Jouannaud
(1983).

An exciting application was developed by Musser (1980), Huet & Hullot (1580),
Goguen (1980) and others: “inductionless induction”. The method consists of showing
the validity of an equation e in the “initial model” of a set E of equations by applying the
Knuth-Bendix completion algorithm to E U {e}. (Under certain conditions) ¢ is valid in
the initial model iff the algorithm stops without generating an inconsistency (1 = 0).
Thus, this method allows us to automatically prove sentences that normally would
require invention of an induction hypothesis for an inductive proof. The original method
is due to Musser with extensions by Goguen. They require that the user axiomatises
equality. The method by Huet & Hullot does not require this but presupposes that the set
of function symbols is partitioned into constructors (completely free operators) and other
operators. An extension of the method that works under very weak assumptions is
announced by Jouannaud & Kounalis. Finally, the application of equational completion
for simulating clausal theorem proving may be viewed as a step in the same direction but
more general in nature. The respective contributions were reviewed in the section on
generalisations.

Technicalities

TERMINATION

Termination of Grébner bases algorithms. Reduction of polynomials is always
noetherian. Thus, the termination problem in Grébner basis algorithms is mainly the
problem of terminating completion. For my 1965 algorithm the termination proof for the
general case is given in (Buchberger, 1970), where Dickson’s lemma has been
rediscovered. Essentially Dickson’s lemma is also sufficient for showing termination of
other Grobner basis algorithms. A very elegant proof of Dickson’s lemma, based on
abstract properties of products of ordered set, has recently been given by Cousineau
(1984).

LemMa (Dickson, 1983): A sequence of n-tuples ey, e,, ... of non-negative integers, such
that in e; at least one component is greater than in e; when i < j, is finite.

A different termination proof for my algorithm can be given by applying Hilbert’s basis
theorem, see (Bergman, 1978). Alternatively, Dickson’s lemma and the concept of a
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- Grobner basis can be taken as primitives and Hilbert’s basis theorem, then, is a corollary,
see (Buchberger, 1982). The equivalence of Dickson’s lemma and Hilbert’s basis theorem,
together with other interesting results, were also proven in (Butler & Lankford, 1984).
Kollreider (1978) and Robbiano (1985) characterised the term orderings that are
admissible for the Grébner basis approach.

Termination of Knuth—Bendix type algorithms. In this context, the crucial problem is
the invention of noetherian term orderings that are compatible with the reduction. Several
methods have been developed: well-founded mapping, increasing interpretation,
simplification ordering, recursive path ordering, homomorphic interpretation etc. The
literature on this topic, including (Kruskal, 1960; Nash-Williams, 1963; Manna & Ness,
1970; Dershowitz, 1979a,b; Dershowitz & Manna, 1979; Plaisted, 1978, 1978a; Lankford,
1979b; Kamin & Lévy, 1980 and others) is reviewed in (Huet & Oppen, 1980). Recent
contributions to termination orderings are (Jeanrond, 1980; Lescanne, 1981; Dershowitz,
1982; Jouannaud et al., 1982; Jouannaud & Lescanne, 1982; Munoz, 1983; Plaisted, 1983;
Lescanne, 1984; Jouannaud & Munoz, 1984; Bachmair & Plaisted, 1985).

Huet & Lankford (1978) show that the uniform halting problem for rewrite systems is
undecidable.,

STRATEGIES

Strategies for the resolution method. The sequence in which resolvents are built and
other techniques play a crucial role for improving the efficiency of the resolution method.
This was an extensive field for research; see the textbooks on resolution theorem proving
mentioned above. The work of Hsiang sketched above may also be seen in this context.
His N-strategy can be viewed as a combination of parts of several strategies used in
resolution theorem proving. In the context of this paper the strategies used in resolution
theorem proving are interesting because, by the similarities between the CPC algorithms,
it might be worthwhile to study possibilities for carrying some of the strategies from the
resolution method over to, say, the Knuth-Bendix type algorithms. This idea has been
pursued to a certain extent in (Kiichlin, 1982).

Strategies for Knuth-Bendix and Grobner bases algorithms. Already in (Buchberger,
1965) and in (Knuth-Bendix, 1967) it was suggested to keep the systems of patterns
developing in the course of the algorithm mutually reduced. The organisation of this
strategy is a non-trivial task. Huet (1981) gave a complete proof for the correctness of the
Knuth-Bendix algorithm when incorporating successive reduction of rules. In the case of
Grobner bases algorithms, in addition, it is suggested to consider first critical pairs with
overlapping power products of low degree. The reasons for this are explained in some
detail in (Buchberger, 1979).

CRITERIA FOR OMITTING CERTAIN CRITICAL PAIRS

In (Buchberger, 1979) it was shown that certain critical pairs need not be considered in
the CPC algorithm because it can be predicted that they are reducible to the same normal
form. The theoretical reason for this can be based on a generalised Newman lemma that
has been formulated in full generality in (Buchberger, 1983a). I included its proof in
(Winkler & Buchberger, 1983). Roughly, the lemma says that for guaranteeing local
confluence it suffices that each critical pair can be connected “below” its common
ancestor. Recently, it has been shown that essentially the same criterion can be applied to
Knuth-Bendix type algorithms (Winkler & Buchberger, 1983; Winkler, 1985; Kiichlin,
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1985). The approach of speeding up CPC algorithms by criteria of the above type is based
on additional mathematical insight rather than on heuristics.

COMPLEXITY

Relatively littie is known on the complexity of CPC algorithms.

Complexity of Grébner bases algorithms. A first (very coarse) complexity analysis for the
case of two variables was already given in (Buchberger, 1965). A realistic analysis for this
case can be found in (Buchberger, 1983) and for the trivariate case in (Winkler, 1984,
1984a). In the bivariate case the maximal degree of the Grobner basis corresponding to a
given basis is a linear function of the maximal degree of the input polynomials. A similar
bound is derived in (Lazard, 1983) and in (Giusti, 1985). Lazard showed that a linear
bound also holds in the general case of arbitrarily many variables if some special
properties of the ideal are presupposed. Similar results are contained in (Bayer, 1982).
Moller & Mora {1984) give some more bounds on the degrees. Intrinsically, the problem
of computing Grobner bases is difficult. Cardoza et al. (1976) and Mayr & Meyer (1981)
showed that the uniform membership problem for polynomial ideals is essentially
exponentially space complete. This is supported by the investigation in (Huynh, 1984) for
some special classes. The practical relevance of these results is a matter of point of view,
(Applications of CPC algorithms often are in the “sweep coherence” (Goad, 1980)
context). However, practical experiences show that, in fact, Grobner bases computations
are complex. Polynomials in six variables of degree, say, three mark the size of problems
that are at the border of practical feasibility.

Complexity of Knuth—Bendix computations. The only compiexity result I am aware of is
(Bauer & Otto, 1984), where it is shown that complete rewrite systems may have an
arbitrarily complex word problem.

IMPLEMENTATIONS

Implementations of the resolution method. A review on the many implementations of the
resolution method is beyond the expertise of the present author. See the textbooks on
automated theorem proving.

Implementations of Grobner basis algorithms. Special implementations have been
undertaken several times: (Buchberger, 1965; Schrader, 1976; Zacharias, 1978; Winkler,
1978; Schaller, 1979). A very flexible and user-friendly implementation is described in
(Boge et al., 1985). This implementation is in the SAC-2 computer algebra system (Collins
& Loos, 1980). At present, implementations are also available in all other major
computer aigebra systems, for example, MACSYMA (Pavelle & Wang, 1985), REDUCE
(Hearn, 1984), NEW SCRATCHPAD (Jenks, 1984, muMATH (Stoutemyer, 1985).

Implementations of Knuth-Bendix type algorithms. The first implementation was in
(Knuth & Bendix, 1967). Other implementations in “‘rewrite rule laboratories” are
described in (Hullot, 1980; Stickel, 1981; Kiichlin, 1982a; Lescanne, 1983; Kirchner &
Kirchner, 1983; Kapur & Sivakumar, 1983; Le Chenadec, 1983; Forgaard & Guttag,
1984: Thomas, 1984; Dick, 1985; Hussmann, 1985; Musser, 19804} in the framework of
AFFIRM and (Futatsugi et al., 1985) in the framework of OBJ. Fages (1985) is a manual
on the (Hullot, 1980) completion system developed at INRIA. A symposium on
implementations of the Knuth-Bendix algorithm has been held recently (Guttag et al.,
1984). Stickel’s implementation is now available on LISP machines and seems to be the
fastest implementation for full CA. Hullot’s system, the KB system, is well documented



Critical-Pair/Completion Procedure 31

and easily available (in MacLISP, FranzLISP, ZetaLISP etc.). The REVE system
(Lescanne, 1983; Forgaard & Guttag, 1984; Kirchner & Kirchner, 1983, 1985) provides
semi-automated termination proofs.

Note added September 1986: Meanwhile a number of additional papers on the critical-
pair/completion approach have been published. Many of them are contained in the recent
issues of the Journal of Symbolic Computation or will be included in forthcoming issues.
Some of them are contained in the Proceedings of the ACM 1986 Symposium on
Symbolic and Algebraic Computation (Bruce W. Char, ed.), available from ACM.
Recently Le Chenadec’s thesis appeared in book form (Le Chenadec, 1986). It emphasises
the study of particular finitely presented algebras but contains also a survey of the critical-
pair completion approach and an elaborate list of references.

J. Dick, F. Fages, J. Hsiang, G. Huet, J.-P. Jouannaud, S. Kaplan, P, Le Chenadec, and D.
Musser gave valuable comments on various parts of the paper. J. Dick did a careful proof reading.
My best thanks to all of them. This work was supported by a grant from SIEMENS Munich (Dr H.
Schwartzel).
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