4 Application: Intersection of Superellipsoids

Superellipsoids (Barr 1981) are surfaces in 3D space that have a compact implicit
representation as the set of points (z,y, z) such that

T\2/e 2/ez\ea /€1 2/er _ 1 —
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Superellipsoids are topologically equivalent to spheres. They can be consid-
ered as ellipsoids with axes a,b,c whose curvature in the z—,y—, z— directions is
distorted by the influence of the exponents €;,¢€;,€3. (The above equation is the
implicit equation for the case where the superellipsoid is in standard position with
its midpoint at the origin.) The exponents €, €3, €3 open an enormous flexibility for
adjusting the shape of superellipsoids in order to approximate real objects. Some
basic problems in geometric modeling, for example, the problem of deciding whether
a point is inside or outside an object can be easily solved for superellipsoids. Re-
cently, superellipsoids have been proposed for approximating parts of robots and
obstacles in order to test for collision. The collision detection problem of robots is
thereby reduced to an intersection test for superellipsoids.

Unfortunately, for general superellipsoids, no good intersection tests are known.
In this section we report on first attempts to apply Grobner bases for this question.
We restrict our attention to the case of a sphere (with midpoint (A4,B,C) and
radius R) and a superellipsoid (in standard position) whose exponents satisfy €, =
€; = €3 < 2 (a convex superellipsoid). In this case, the two objects intersect iff the
minimal distance between the midpoint of the sphere and the superellipsoid is less
or equal to the radius of the sphere. Using Lagrange factors, this approach leads
to the following system of equations for the coordinates (z,y, z) of the point on the
superellipsoid having minimal distance to (4, B,C):

(Equations for Minimal Distance)
(27 + (17" + () =1 =0
(z — A) + XL (5)D =0
(v - B) + 2L (fern =0
(= = 0) + M (D = o

If € is of the form 1/k (which is sufficiently general for practical purposes), this
(System for Minimal Distance) is an algebraic system. We consider a,b,¢,4,B,C
as parameters, i. e. we work over K(a,b,c,A,B,C)[z,y,z,]]. For computing the
Grobner bases, we use the lexical ordering defined by 2 <y < z < A. Fore =1
(which is, actually, the ellipsoid case) we get the Grébner basis

(Grébner Basis for Minimal Distance)

z® —p(z) =0
y—q(z)=0
z—r(z)=0
A —s(z) =0.

Here, p(z), g(z),7(z), s(z) are univariate polynomials in « of degree 5 with coef-
ficients that are rational expressions in the parameters a,b,c, 4, B,C. The equation
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for ) is not interesting for the problem at hand and may be dropped. The printout
of these rational expressions consumes approximately 2 pages. (Some simplification
by extracting common subexpressions would be possible.) Again, the Grébner basis
has all the advantageous features described in the inverse kinematics application.
Note in particular that, in this Grobner basis, the second, third and fourth equa-
tions are linear in the variables y, z, A, respectively. Therefore the Grobner basis
presents an explicit symbolic solution to the problem as soon as the solution value
for z is numerically determined from the first equation, which is univariate in z.

If we change € to 1/2, the resulting Grobner basis will again have the structure
displayed in (Grobner Basis for Minimal Distance). The only difference is that the
degree of the univariate polynomials p(z),g(z),r(z),s(z) will be 11. We conjecture
that the structure of the system will stay unchanged for arbitrary € of the form 1/k.

The problem with this approach is, again, computation time. While the Grobner
basis computation for € = 1 needs 15 minutes (on an IBM 4341 in the SAC-2
implementation of the Grobner bases method), the computation already needs 19
hours for € = 1/2. At the moment, this excludes practical applicability of the
method. However, one should take into account that the source of complexity seems
to be the extraneous extremal solutions that enter through the Lagrange factor
method. Actually, the first equation in the Grobner basis describes the z-coordinate
of all relative extremal points on the surface and not only the z-coordinates of the
minimal point. This raises the degree of the first polynomial and, hence, also of the
other polynomials. More systematic study is necessary. Furthermore, it seems to be
possible to guess and subsequently prove the general structure of the polynomials
p(z), q(z),r(z), s(z) from the Grobner bases computations for two or three different
€ values. This could make the Grobner basis computation superfluous in the future.
As with other symbolic computation methods, Grobner bases computations can be
applied on very different levels including the level of producing and supporting
mathematical conjectures.

5 Application: Implicitization of Parametric Ob-
jects

As has been pointed out repeatedly, the automatic transition between implicit and
parametric representation of curves and surfaces is of fundamental importance in ge-
ometric modeling, see for example (Sederberg, Anderson 1984). The reason for this
is that the implicit and the parametric representation are appropriate for different
classes of problems. For example, for generating points along curves or surfaces, the
parametric representation is most convenient whereas, for deciding whether a given
point lies on a specific curve or surface, the implicit representation is most natural.
It is also well known that implicitization of parametric surfaces is of importance for
deriving a representation of the intersection curve of two surfaces. This problem has
a satisfactory solution in case one of the surfaces is expressed parametrically and
the other implicitly. In this case, the parameter representation z(s,t),y(s,t), z(s, t)
for the first surface can be substituted into the implicit equation f(z,y,z) of the
other surface. This results in the implicit representation f(z(s,t),y(s,?), z(s,t)) of
the intersection curve in parameter space.
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Actually, for some time, the problem of implicitization has been deemed un-
solvable in the CAD literature. (Sederberg, Anderson 1984), however, presented
a solution of the implicitization problem using resultants. The solution is spelled
out for surfaces in 3D and curves in 2D. In the general case of (n — 1)-dimensional
hypersurfaces, I guess, the method could yield implicit equations that introduce
non-trivial extraneous solutions, see also the remarks in (Arnon, Sederberg 1984).
In (Arnon, Sederberg 1984) it is shown how Grébner bases can be used for the
general implicitization problem of (n — 1)-dimensional hypersurfaces. The authors
sketch a correctness proof for the method that relies on (Algebraic Relations). In
this section, we review their method and generalize it to the most general case of hy-
persurfaces of arbitrary dimension in n-dimensional space. Still, much research will
be needed to assess the efficiencies of the methods and to determine their range of
practical applicability. Also some theoretical details are not yet completely covered
in the literature.

(General Implicitization Problem)
Given: pi,...,pm € K[z1,...,2,].
Find: fl)"',fkeK[yI""’ym]’

such that for all a;,...,am:

fl(al,...,am) == fk(al,...,am)z 0 iff
a; = pi(b1y---3bn)s. -y 8m = Pm(b1,...,b,) for some b,,...,b,.

The problem requires to construct k polynomials implicitly defining hypersur-
faces whose intersection is the hypersurface described by the parameter represen-
tation.

(Implicitization Algorithm)

{fla' . afk} = GB({yl — D1y sYm — pm}) N K[yl,' . ,ym]’
where GB has to be computed using the lexical ordering determined by

y1-<---<ym-<:c1-<---<wn.
Correctness Proof: Let g; < ... < g; be the polynomials in

GB({yl —Pisy:-sYm —pm}) - K[yla'“?ym]-

{y1 — P1y-- - sYm — Pm} and the Grobner basis {fi,..., fk,g1,--., 9} have the same
common zeros. If

filar, . am) == fi(ar,...,am) =0
then, by (Continuation of Partial Solutions), there exist (b,...,b,) such that
gl(al,...,am,bl,...,bn) = = gl(al,...,am,bl,...,bn) = 0.

Hence, also
aq —'pl(blv"')bn) = O,...,a1 —pl(bly"")bn) :O.

The converse is clear.

Example: Let us consider the 3D surface defined by the following parametric

representation
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(Parametric Representation)

z=rt
y = r.t?
z=r?

Roughly, this surface has the shape of a ship hull whose keel is the y-axis and
whose bug is the z-axis. Applying algorithm GB to {z — r.t,y — r.t%,z — r?} with
respect to the ordering z <y < z <t < r yields the following Grébner basis:

(Grobner Basis)

zt —y’.z
te —y
ty.z — a3
t2.z — z?
TY — z?
r.e —t.z
rt—=c

r? — 2z

The polynomial depending only on z,y, z is an implicit equation for the surface
defined by (Parameter Representation).

By close inspection one will detect that, actually, the implicit equation occur-
ring in the above (Grobner Basis) does not strictly meet the specification of the
(Implicitization Problem). The y-axis is a solution to the implicit equation whereas
it does not appear in the surface defined by the (Parameter Representation). This
is not a deficiency of the Grobner basis method but has to do with the particu-
lar (Parameter Representation) which, in some sense, is not “general enough” or,
stated differently, in the (Continuation of Partial Solutions) property, solutions at
infinity have to be taken into account. This question deserves some further detailed
study. (Sturmfels 1987) has already sketched some analysis of this phenomenon.
He proposes the following parameter presentation, which includes the y-axis and
whose implicit equation is again z* — y%.2.

(Parametric Representation)

T =1Uu.v
y=1v’
z=u4

This example was computed in 4 sec on an IBM AT in the author’s research
implementation of the Grobner basis method in the muMATH system. Other ex-
amples with more complicated coefficients and similar degree characteristics had
computing times in the range of several seconds. I guess that the examples occur-
ing in practice should be well tractible by the method.

Example: The method can also be used for rational parametric representations.
We consider the example of a circle in the plane.
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(Rational Parametric Representation)
2

__1—s
= 1482
_ 2.8
Y= 142

In the case of rational parametric representations, we first clear denominators.
In the example, the input to GB should therefore be {z+z.5?—1+ 5%, y+y.s*> —2.s}.
The result is, of course, =% + y? — 1.

6 Application: Inversion of Parametric Repre-
sentations

The inversion problem for parametric representations is defined as follows:

(Inversion Problem for Parametric Representations)
Given: pi1,...,pm € K[z1,...,z,) and
a point (ay,...,am) on the hypersurface
parametrically defined by pq,...,pm.
Find: {(b1y-..,bn) | a1 =pi(b1, ... bn)s ooy 8 = Pm(b1,- .., bn)}

This problem is closely connected with the (Implicitization Problem). In fact,
the (Inversion Problem) is just a special case of the general problem of solving
systems of polynomial equations, which is completely solved by the Grobner ba-
sis method based on the (Elimination Ideals) property or based on the (Minimal
Polynomial) property. For solving the (Inversion Problem), the general Grobner
bases solution method can be applied to the system {y; — p1(Z1,...sZn)s -+, Ym —
Pm(T1,-..,Zn)}, 1. €. we have the following algorithm.

(Inversion Algorithm for Parametric Representations)

G :=GB({y1 — Pi(Z1,---+Zn)s- -y Ym — Pm(Z1,...,2Zn)},
where GB has to be computed using the lexical ordering determined by

Y < <Yy <2 < < Ty

{f17'°' 7fk} =GN K[yi,- .. ,ym]-
(If, for some 1 <1 <k, fi(a,...,am) # 0, then “Input Error”.)
Substitute a; for y; in G and solve the system G, which is “triangularized”.

In fact, the steps necessary in this algorithm include the steps of the (Implici-
tization Algorithm). Therefore, when we apply the Grobner bases method to the
(Implicitization Problem), we automatically get also a solution for the (Inversion

Problem) and vice versa.

Example: We use again the example of Section 5.

(Parametric Representation)

r=rt
y = r.t?
2z = r?

Suppose we want to determine the parameter values defining the point (2,2,4)
on the surface. Application of GB yields
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(Grobner Basis)

zt — 2.z
t.e —y
ty.z — a3
2.z —z?
ry — z?
r.e —t.z
rt —c

r? — 2z

The first polynomial is the implicit equation, which can be used to check whether
(2,2,4) is, in fact, on the surface: 2 —22.4 = 0. Substituting (2,2,4) in the second,
third, and fourth polynomial of the Grobner basis (and making all polynomials
monic) yields the system

(Grobner Basis After First Substitution)

t—1
t—1
2 —1

This system of univariate polynomials, by the property (Continuation of Partial
Solutions) must always have a common zero that can be determined by forming
the greatest common divisor, g := t — 1, of the three polynomials and solving for ¢.
This leads to t = 1.

Substituting (2,2,4,1) in the fifth, ...,eights polynomial of the Grébner basis
(and making all polynomials monic) yields the system

r—2
r—2
r—2
r2 — 4

Again, this system of univariate polynomials, by the property (Continuation of
Partial Solutions) must have a common zero that can be determined by forming
the greatest common divisor, h := r — 2, of the four polynomials and solving for r.
This leads to » = 2.

Actually, it has been shown recently in (Kalkbrener 1987) and, independently, in
(Gianni 1987) that the computation of greatest common divisors is not necessary in
the above procedure. Rather, as can be verified in the above example, for each of the
univariate systems the first non-zero polynomial will always be the greatest common
divisor of the system. This is a drastic simplification of the general procedure for
solving arbitrary systems of polynomial equations by the Grobner bases method.

7 Application: Detection of Singularities

In tracing implicitly given planar curves, numerical methods work well except when
tracing curves through singular points, see (Hofmann 1987). (Hofmann 1987a) has
pointed out that Gbner bases yield an immediate approach to detect all singular
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points of implicitly given planar curves. The singular points of a planar curve given
by f(z,y) = 0 are exactly the points (a,b) that are common zeros of f, f,, and f,.
Hence, the problem of determining the set S of singular points of a planar curve f
can be treated by the following algorithm.

(Algorithm for Detection of Singularities)

G := GB({f, f=, fy}), where f., f, are the partial derivatives of f w. r.
t. ¢ and y respectively and GB has to be computed w. r. t. a lexical
ordering of z,y.

S := set of common zeros of G determined by the successive substitution
method.

Example: Let us consider the following planar curve

Y

This curve has 9 singular points. We detect them by applying GB to {f, fz, fy },
where

(Four Circle Curve)
fr=(@+y -1z -1 +¢" - (= +1)° +y* - 1)(2* + (y - 1)* - 1),

Application of GB, using the lexical ordering determined by z > y, yields

(Grébner Basis for Four Circle Curve)

v°.p(),

z.y.p(y),

z? — y*.q(y),

where  p(y) ==y — 3y~ 1y’ — v —3
g(y) = 2858y4 — 8§3y3 3?2592 + 823y 4 8

One sees that, for any solution y of the first polynomial in the Grobner basis,
the second polynomial vanishes identically whereas the third equation yields at
most two different values for . Proceeding by the general substitution method for
Grobner bases, we obtain the following singular points:

(-1,1),(1,1),

(- 1/2,7/3 /2),(1/2,\/5/2),
(- f 3/2,1/2),(v/3/2,1/2),
(0’ b

(-1

2a "\/‘/2) (1/27 "\/5/2)’
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In accordance with the picture, we obtained five different values for y and,
altogether, nine singular points. The computation took 78 sec in the author’s
muMATH Grobner bases package on an Apollo workstation emulation of an IBM
AT.

8 Application: Geometrical Theorem Proving

Automated Geometrical Theorem Proving is intriguing in two ways. First, it is a
playground for developing and studying new algorithmic techniques for automated
mathematics and, second, it becomes more and more important for advanced geo-
metric modeling, which requires to check plausibility and consistency of inaccurate
and numerically distorted geometrical objects and to derive and restore their consis-
tent shape, see for example (Kapur 1987). Apart from older approaches to geomet-
rical theorem proving based on heuristics, recently there have been developed three
systematic approaches based on three different algorithmic methods in computer
algebra, namely Collins’ cylindrical algebraic decomposition method (Collins 1975),
Wu'’s method of characteristic sets (Wu 1978) and the Grobner basis method. (Kut-
zler 1987) compares the three methods. The use of Grébner bases for automated
geometrical theorem proving has been independently introduced by B. Kutzler and
D. Kapur, see for example (Kutzler, Stifter 1986) and (Kapur 1986). In this section
we give an outline of the main idea how Grobner bases can be used for proving
geometrical theorems. We start with an example of a geometrical theorem. For
simplicity, we present Kapur’s approach, Kutzler’s approach is slightly different.

Example: Apollonios’ Circle Theorem.

The altitude pedal of the hypotenuse of a right-angled triangle and the midpoints
of the three sides of the triangle lie on a circle.

B(0,y,)

F(yssYe)
G(0,y, ) 4775

c(0,0
(0.0) A(y1.0)
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After introducing coordinates, a possible algebraic formulation of this problem
is as follows:

(Hypotheses)
hii= 2ys—y; =0 (E is midpoint of C 4),
hy:= 2ys—y; =0 (F is midpoint of AB, 1st coordinate),
hs:= 2ys —y, =0 (F is midpoint of AB, 2nd coordinate),
hy := 2ys — y2 (G is midpoint of BC),
hs := (y7r —y3)® + 3 — (yr — va)’—
—(ys —ys)> =0 (length EM = length F M),
he := (yr —y3)* + 95 — (¥s — ¥6)’—
-y2=0 (length EM = length GM),
hr:= (Yo —¥1)y2 + ¥1%10 =0 (H lies on AB),
hg := —y1ys + Y2y10 =0 (CH is perpendicular to AB).
(Conclusion)
ci= (yr—vs) + 95— (y7—¥)’—
—(ys —¥10)2 =0 (length EM = length HM).

To prove the theorem means to show that

for all a;,...,a10 € R:
if hl(al,...,am):0,...,h8(a1,...,a10)=0,
then c(a;,...,a10) =0.

All expressions h; and ¢ occurring in this proposition are polynomial expres-
sions. If one replaces R by C, the proposition, by definition, is just the proposition
“c € Radical({hi,...,hs})”. However, by (Radical Membership), arbitrary radical
membership questions “c € Radical({h1,...,hm})?” can be decided by deciding
“1 € GB({h1,---shm,z.c —1})?”, where z must be a new indeterminate.

This method is totally general and automatic for all geometrical theorems whose
hypothesis and conclusions are polynomial equations. In fact, it is also eflicient.
Hundreds of non-trivial theorems have been proven by this approach, most of them
in only several seconds of computing time, see (Kutzler, Stifter 1986), (Kapur 1986)
and (Kutzler 1987) for extensive statistics.

Two remarks are appropriate. First, replacing R by C slightly distorts the
problem. Of course, if a geometrical theorem holds over C then it also holds over
R. The reverse is not true in general. It turns out, however, that the geometrical
theorems occuring in the mathematical literature are generally true over C. Still,
one must bear in mind that, if a negative answer is produced by this method for a
given proposition, this does not necessarily mean that the proposition is false over
R. It is false over C, it could be still true over R.

Second, most geometrical theorems are only true for the “general” case. It may
well happen that they are false for “degenerate” situations, for examples, when
circles have zero radius, angles become zero, lines become parallel etc. Geomet-
ric theorem proving based on the Grébner bases method can handle degenerate
situations automatically in a very strong sense.




1. In situations where the degenerate situations can be described in the form -
d(zy,...,T,) # 0, d a polynomial, one can again use a new indeterminate to
transform the question into an ideal (and, hence, Grébner basis) membership
question. Namely,

Vz((h(z) = 0 A s(z) # 0) = c(2) = 0)
is equivalent to
Jz,u,v((h(z) = 0 Au.s(z) =1 Av.e(z) =1)

is equivalent to

1 € GB(h,u.s —1,v.c — 1).

Using this wellknown transformation technique one can actually show that
the Grobner basis method yields a decision algorithm for the following gen-
eral class of formulae:

(quantifiers)(arbitrary boolean combination of polynomial equations)

where either all the quantifiers must be existential or they must be universal,
and the formulae must be closed, i. e. no free variables may occur.

2. The Grobner bases approach to geometrical theorem proving can also be
modified in such a way that, in case a proposition does not hold in general, the
method automatically produces a set of polynomials describing the degenerate
cases in which the proposition may be false. Roughly, this can be done, for
example, by analyzing the denominators of the coefficients that are produced
when Grobner bases are computed over rational function coefficient fields.
Quite some research has been devoted to this question, see (Kutzler 1986)
and (Kapur 1986).

9 Application: Primary Decomposition

A polynomial ideal is “decomposable” iff it can be represented as the non-trivial
intersection of two other polynomial ideals. Geometrically, this corresponds to a
representation of the algebraic manifold (set of zeros) of the ideal as the non-trival
union of two algebraic manifolds. It is well known in polynomial ideal theory that
every polynomial ideal can be decomposed into finitely many ideals that can not
be decomposed further (“irreducible components”) and that this decomposition is
essentially unique. This is the content of the famous Lasker-Noether decomposition
theorem, see for example (Van der Waerden 1953). However, the proof of this
theorem is non-constructive, i. e. no general algorithmic method is provided that
would find, for a polynomial ideal given by a finite basis F, the finite bases for its
irreducible components.

In more detail, the primary decomposition of a polynomial ideal (algebraic man-
ifold) I (algebraic manifold) not only gives its irreducible parts (the corresponding
“prime ideals”) P; but also information about the “multiplicity” of these irreducible
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parts. This information is contained in the “primary ideals” Q; corresponding to
the prime ideals. Each prime ideal and its corresponding primary ideal implicitly
describe the same irreducible algebraic manifold. However, the prime ideal and a
corresponding primary ideal may be different. In this case, the primary ideal tells
us “how often” the irreducible manifold defined by the prime ideal occurs in the
algebraic manifold defined by the given ideal I. Summarizing, the algorithmic ver-
sion of the primary decomposition problem has the following specification (where
we use Z(F) for “set of common zeros of F”):

(Primary Decomposition Problem)

Given: F.
Find: G;, H; such that
the Ideal(G;) are primary,
the Ideal(H;) are the prime ideals corresponding to Ideal(G;),
Ideal(F') = N; Ideal(G;),
(i- e. Z(F) = U; Z(Gi)), and

some minimality conditions are satisfied.

Note that the problem depends on the underlying coefficient field. For example,
z? + 1 is irreducible over R but reducible over C.

Recently the problem of algorithmic primary decomposition has been completely
solved using Grobner bases. Still, the algorithm for the most general case is not yet
implemented in a software system. Complete implementations may be expected for
the very near future. A number of papers, of different generality and level of detail,
contributed to the recent progress in this area: (Kandri-Rody 1984), (Lazard 1985),
(Gianni, Trager, Zacharias 1985), (Kredel 1987).

An exact formulation of the problem and a detailed description of the algorithms,
which are quite involved, is beyond the scope of this paper. It should be clear
that automatic decomposition of algebraic manifolds (e. g. intersection curves of
3D objects) should be of utmost importance for geometrical modeling where the
global analysis of finitely represented objects, as opposed to a mere local numerical
evaluation, is more and more desirable in advanced applications. All the algorithms
invented for the solution of the primary decomposition problem heavily rely on the
basic properties of Grobner bases as compiled in Theorem 2.5.1 and Theorem 2.5.2,
notably on the properties (Elimination Ideals), (Ideal Membership) and properties
derived from these properties as, for example, (Intersection Ideal).

For bringing this important research to the attention of the geometric modeling
community we present a simple example showing the kind of information obtainable
from a primary decomposition.

Example: Primary Decomposition of Cylinder/Sphere Intersection.
Let us consider the intersection of a cylinder with radius r; whose axis coincides
with the zs-axis and a sphere with radius r, and midpoint at the origin. The

intersection curve consists of the common zeros of the following two polynomials:

.2 2 2 2 2 2 2
F:={z] +o; —r{,z] + T +a; — 13}
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Depending on whether r; < ry, 7y = 75, or 7; > 75, the primary decomposition
algorithm, over R, yields the following representation of Ideal(F') as the intersection

of primary ideals:

Case r; < 73y
Ideal(F') = Ideal(z; + 7, :cg + :nf — rf)ﬂ Ideal(z3 — r,:z:g + 2 — rf),
where r := |/rZ — ri.
The two primary components are, in fact, prime.
Case ry = ry:
Ideal(F) = Ideal(z2,z2 + z? — r?).
The ideal is already primary with corresponding prime ideal
Ideal(z3,z2 + 22 — r?).
Case r; > 7y
Ideal(F) = Ideal(z? — ri + r? 22 + 22 — ).
The ideal is already primary and identical to the corresponding
prime ideal.

In geometrical terms, the above outcome of the primary decomposition algo-
rithm gives us the following information:

Case r; < ry: The manifold decomposes in two irreducible components, namely,
two horizontal circles of radius 7, with midpoints (0,0,+r). The multiplicity of
these circles is one (the primary ideals are identical to their corresponding prime

ideals).

Case 7; = ry: The manifold does not decompose. It consists of the horizontal
circle with radius r; with midpoint (0,0,0). However, this circle has to be “counted
twice” because, in the primary ideal, there appears the term z3 whereas in the
prime ideal, which defines the “shape” (i. e. point set) of the manifold, z; appears
only linearly. This corresponds to the geometrical intuition that the intersection
curve results from merging, in the limit, the two horizontal circles of case r; < 7,.

Case 71 > ry: The manifold does not decompose (over R!). In fact it has no real
points. In contrast to the case r; = 75, the manifold has multiplicity one because
the primary ideal coincides with the prime ideal.

10 Conclusions

The Grobner bases method provides an algorithmic approach to many problems in
polynomial ideal theory. We tried to provide some first evidence that the method
could be a valuable tool for the progressing needs of geometrical engineering (geo-
metric modeling, image processing, robotics, CAD etc.).

Further research should concentrate on two areas:

e The theoretical problems (for example, solutions at infinity in paremtric repre-
sentations) occuring in the application of the method to geometrical problems
must be completely studied.
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parts. This information is contained in the “primary ideals” @; corresponding to
the prime ideals. Each prime ideal and its corresponding primary ideal implicitly
describe the same irreducible algebraic manifold. However, the prime ideal and a
corresponding primary ideal may be different. In this case, the primary ideal tells
us “how often” the irreducible manifold defined by the prime ideal occurs in the
algebraic manifold defined by the given ideal I. Summarizing, the algorithmic ver-
sion of the primary decomposition problem has the following specification (where
we use Z(F) for “set of common zeros of F”):

(Primary Decomposition Problem)

Given: F.
Find: G;, H; such that
the Ideal(G;) are primary,
the Ideal(H;) are the prime ideals corresponding to Ideal(G;),
Ideal(F') = N; Ideal(G;),
(i. e. Z(F) = U; Z(G:)), and

some minimality conditions are satisfied.

Note that the problem depends on the underlying coefficient field. For example,
z? + 1 is irreducible over R but reducible over C.

Recently the problem of algorithmic primary decomposition has been completely
solved using Grobner bases. Still, the algorithm for the most general case is not yet
implemented in a software system. Complete implementations may be expected for
the very near future. A number of papers, of different generality and level of detail,
contributed to the recent progress in this area: (Kandri-Rody 1984), (Lazard 1985),
(Gianni, Trager, Zacharias 1985), (Kredel 1987).

An exact formulation of the problem and a detailed description of the algorithms,
which are quite involved, is beyond the scope of this paper. It should be clear
that automatic decomposition of algebraic manifolds (e. g. intersection curves of
3D objects) should be of utmost importance for geometrical modeling where the
global analysis of finitely represented objects, as opposed to a mere local numerical
evaluation, is more and more desirable in advanced applications. All the algorithms
invented for the solution of the primary decomposition problem heavily rely on the
basic properties of Grobner bases as compiled in Theorem 2.5.1 and Theorem 2.5.2,
notably on the properties (Elimination Ideals), (Ideal Membership) and properties
derived from these properties as, for example, (Intersection Ideal).

For bringing this important research to the attention of the geometric modeling
community we present a simple example showing the kind of information obtainable

from a primary decomposition.

Example: Primary Decomposition of Cylinder/Sphere Intersection.
Let us consider the intersection of a cylinder with radius r; whose axis coincides
with the zs-axis and a sphere with radius r, and midpoint at the origin. The

intersection curve consists of the common zeros of the following two polynomials:

L r.2 2 2 2 2 2 2
F = {z] +z; — 7], 2] +zo + Ty — T3}
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Depending on whether r; < ry, 7y = 75, or 7; > 75, the primary decomposition
algorithm, over R, yields the following representation of Ideal(F') as the intersection

of primary ideals:

Case r; < ry:
Ideal(F) = Ideal(z3 + r,z2 + 22 — r?)N Ideal(z3 — 7,23 + «? — r?),
where r := |/r — r2.
The two primary components are, in fact, prime.
Case 7y = 7y:
Ideal(F) = Ideal(z2,z3 + 3 —r?).
The ideal is already primary with corresponding prime ideal
Ideal(z3,z2 + 3 — r?).
Case r; > 7y
Ideal(F) = Ideal(z? —r} 4 r2 22 + 22 — r?).
The ideal is already primary and identical to the corresponding
prime ideal.

In geometrical terms, the above outcome of the primary decomposition algo-
rithm gives us the following information:

Case r; < ry: The manifold decomposes in two irreducible components, namely,
two horizontal circles of radius r, with midpoints (0,0,+7). The multiplicity of
these circles is one (the primary ideals are identical to their corresponding prime

ideals).

Case r; = r3: The manifold does not decompose. It consists of the horizontal
circle with radius r; with midpoint (0,0,0). However, this circle has to be “counted
twice” because, in the primary ideal, there appears the term z3 whereas in the
prime ideal, which defines the “shape” (i. e. point set) of the manifold, 3 appears
only linearly. This corresponds to the geometrical intuition that the intersection
curve results from merging, in the limit, the two horizontal circles of case r; < 7,.

Case 7y > 73: The manifold does not decompose (over R!). In fact it has no real
points. In contrast to the case r; = r,, the manifold has multiplicity one because
the primary ideal coincides with the prime ideal.

10 Conclusions

The Grobner bases method provides an algorithmic approach to many problems in
polynomial ideal theory. We tried to provide some first evidence that the method
could be a valuable tool for the progressing needs of geometrical engineering (geo-
metric modeling, image processing, robotics, CAD etc.).

Further research should concentrate on two areas:

e The theoretical problems (for example, solutions at infinity in paremtric repre-
sentations) occuring in the application of the method to geometrical problems
must be completely studied.




e The computational behavior of the method must be improved by obtaining
new mathematical results that could hold in the special situations (e. g. kine-
matics of certain robot classes) in which the method is applied.

Research on efficiency aspects and on geometrical applications of the Grobner
basis method is only at the beginning.
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