ALGORITHM 628
An Algorithm for Constructing Canonical
Bases of Polynomial Ideals

F. WINKLER, B. BUCHBERGER, F. LICHTENBERGER
Johannes Kepler Universitat

H. ROLLETSCHEK

Kent State University

Categories and Subject Descriptors: G.4 [Mathematics of Computing|: Mathematical Software;
1.1.1 [Algebraic Manipulation): Expressions and Their Representation; 1.1.2 [Algebraic Manip-
ulation]: Algorithms; J.2 [Computer Applications): Physical Sciences and Engineering

General Categories: None

Additional Key Words and Phrases: Church-Rosser property, computer algebra, Grébner bases,
polynomial ideals, simplification

1. THE PROBLEM OF CONSTRUCTING GROBNER BASES
FOR POLYNOMIAL IDEALS

The notion of Grébner bases for polynomial ideals, which is central to this paper,
is given by the following:

Definition. A finite set F of polynomials in K|[x,, . .., x,] is called a canonical
basis or Grobner basis (for the ideal generated by F) if and only if (GB) for
arbitrary polynomials f, g, € K[x3, . .., x.]:

if f—r g, f—r h, and g, h are irreducible médulo —p,theng=h.

Here, “f —r ¢” means that “f may be reduced to g modulo F” by applying a
certain reduction process that may be considered as a “generalized division.” For
the exact definition of this reduction relation and examples, we refer to (4] and
[6]. (GB) is equivalent to the assertion that —7 has the Church-Rosser property,
whose fundamental importance in rewrite systems is well known (see, e.g., {22]).

The problem of constructing Grobner bases for polynomial ideals is character-
1zed by the following:

Given a finite set F of polynomials in K[x,,..., x,],

Received December 1980; revised August 1984; accepted November 1984

Sponsored by the Austrian Research Fund under Grant No. 3877.

Authors’ addresses: F. Winkler, Department of Computer and Information Sciences, University of
Delaware, Newark DE 19711; B. Buchberger and F. Lichtenberger, Institut fiir Mathematik, Johannes
Kepler Universitat, A-4040 Linz, Austria; H. Rolletschek, Department of Mathematics, Kent State
University, Kent OH 44242,

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1985 ACM 0098-3500/85/0300-0066 $00.75

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985, Pages 66-78.

Algorithm 628 ¢ 67

find a finite set G of polynomials in K[xy, ..., x.}
such that

ideal (F) = ideal (G} and

G is a Grobner basis.

Here we assume that for any finite set of polynomials H, ideal(H) denotes the
ideal generated by the polynomials in H.

In (3], [4], [6], [9], [20], [22], [23], and [27]-[30] the relevance of the construc-
tion of Grobner bases for constructive polynomial ideal theory and computer
algebra has been explained in detail. Briefly summarizing, Grobner bases are
important because many decision and computation problems for polynomial
ideals may be solved easily for ideals given by a Grobner basis, whereas these
problems may be extremely difficult for ideals given by arbitrary bases. Among
these problems are the problem of deciding whether a given polynomial belongs
toa given ideal, the construction of a vector space basis for the residue class ring
modulo a given ideal, the question of whether a set of algebrdic equations has a
solution, the problem of deciding whether a given ideal is zero dimensional, the
computation of the elimination ideals for a given ideal, the reduction of polyno-
mials to canonical forms in the presence of polynomial side relations, and the
problem of deciding whether a given ideal is principal (see also the examples in
Section 3).

In [2-6], [10], and [18] an algorithm for constructing Grobner bases for
polynomial ideals and gradually refined versions of this algorithm have been
developed. In this paper we present a FORTRAN implementation of this algo-
rithm for the case of polynomials over the rational number field (however, the
coefficient domain can easily be changed to any other field, as long as the user
provides programs for the basic arithmetical operations). In order to avoid
rewriting standard algorithms, we use the SAC-1 FORTRAN subroutines for
operations with integers of arbitrary length [14], which are based on the SAC-1
FORTRAN subroutines for list processing [13]. All identifiers of subroutines and
functions not explicitly declared in the program listing are from the SAC-1
system. All these portions of the SAC-1 system are supplied on the tape; that is,
the software supplied is self-contained, and so the user can ignore this fact if
desired. Qut of all the various computer algebra systems we chose the SAC system
because it is written in FORTRAN and therefore it is easily available on a great
variety of machines.

In the algorithm any ideal bas1s F is treated as a sequence rather than a set of
polynomials. Roughly, this algorithm has the following structure:

G F
B i, jl:1=i<j=< length of F}
whlle B not empty do :
|1, J}] := an element of B
B := B - {|I, J}] :
if Criterion(G, B, I, J)- then
h := 8- polynomlal(GI, Gs)
h = Normalform(h, G) ‘
if h # 0 then
G := (G, h)
B := BU [[i, length of G]:1 =< i < length of G}
G := Minocr({B)

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985,

68 .« F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

The specifications of the subroutines Criterion, S-polynomial, Normalform, and
Minor are given in the listing of the program. Roughly, Normalform reduces the
input polynomial with respect to the given basis, Criterion checks whether the
pair of indices] and J might possibly lead to a new basis polynomial, S-polynomial
computes a polynomial whose reduced form modulo G is a candidate for a new
basis polynomial, and Minor eliminates unnecessary portions of the result after
a Grobner basis has been computed.

2. COMPUTATIONAL EXPERIENCE

In the case of univariate polynomials Fi, . . . , Fr, of arbitrary degree the algorithm
specializes to Euclid’s algorithm. In the case of multivariate linear polynomials
the algorithm specializes to Gauss’ algorithm. Thus, the behavior of the algorithm
in these special cases is well known.

In the case of bivariate polynomials Fi, ..., Fn of arbitrary degree an upper
bound for the number of steps of the algorithm may be found in [8]. This bound
is3-(m+2 - (D +2))" where D is the maximum degree of the polynomials in
F,..., Fy. For the case of three variables it is shown in [33] and [34] that
(8D + 1) - 2¢ is an upper bound for the degrees of the polynomials which are
generated during the execution of the Grobner basis algorithm, where D is as
above and d denotes the minimum degree of the polynomials Fi, . .., Fn.

No reasonable theoretical upper bound for the time complexity of the algorithm
in the general case is known so far. The work of Cardoza et al. [11] shows that
the problem is intrinsically difficult: A special case of it, namely the uniform
word problem for commutative semigroups, is complete in exponential space
under log-space transformability. The ordering of the power products plays an
essential role in the complexity behavior of the algorithm [17]. For complexity
considerations under certain restrictions (generic case, homogeneity) we refer to
[21] and [25]. A number of test computations [32] have been performed.

The execution times of two typical examples are 12.16 seconds for the basis
with three polynomials in three variables given in [3] and 42 minutes for the
basis with six polynomials in six variables given in [30] (measurements for the
IBM 370/155).

Besides the implementation described in this paper, several other implemen-
tations of earlier versions of the algorithm have been carried out so far [2, 19,
28--30]). Our new implementation contains the refinements of the algorithm
derived in [6], [10], and [18]. In [20], [28-30], [35], and [36] the algorithm is
applied to various problems in algebraic geometry and computer algebra. In
particular, in [30] the algorithm has been successfully applied in solving a system
of algebraic equations for which no solution had been known (see [23]). Recently
Gebauer and Kredel [15] implemented the algorithm in the SAC-2 system and
successfully applied it to problems that had been unsolved so far.

In the next section we give some examples that show the reader how to use
the algorithm for effectively solving practical problems of the above kind. The
examples are sufficiently simple to allow description in this limited space and
yet show the versatility and broad applicability of the algorithm.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Algorithm 628 -« 69

3. SAMPLE APPLICATIONS

Example 1: Exact Solution of Systems of Algebraic Equations. Consider the
following system of algebraic equations:

4+ xy?—-24+1=0,
2r+ y22+31=0, (1)
—xZz+i+y:=0.

The application of the algorithm (with respect to the lexicographical term
ordering) yields the equivalent system

1 1 13 75 171 133 15
12,84 = 5020 4,0 3 20" 9,299 19 =
z22+16z+4z+162 82+824? 0,
, 19,188 . 318 . 4197 , 251,555 , 481,837 ,
—— =2 = - z'= z
497 497 1988 1988 1988

, 1407741 297833
1988 - 904

9276 , 150 , 2111 , 61031 , 232833 ,
22+ 4077 "497% T1988° T 994 © t 1088 2

_ 170084 - 144407
497 994

In this system the variables are “separated”; that is, the elimination process has
been carried out in an effective manner by the algorithm. The numerical or
symbolic computation of the roots may now be achieved by known techniques
{see, e.g., [35]). From the Grébner basis with respect to the lexicographical term
ordering all the elimination ideals can be read off immediately. This elimination
property of Grobner bases stems from the fact that for a Grobner basis G (w.r.t.
the lexicographical term ordering)

ideal(G) N K|[x;, ...,x,] =ideal(GN K[x;,...,x,]) for 1=<i=<n

(2)

= 0.

(compare [30]).

For a more complex example we refer to [30], where a system of six algebraic
equations in six unknowns is solved by transforming them to a Grobner basis for
the corresponding polynomial ideal. The solution was needed by Matzat [23] for
constructing certain number fields having Galois group M;, over Q(v—11).

Example 2: Simplification of Radical Expressions. Simplification of symbolic
expressions is one of the fundamental issues in “symbolic and algebraic compu-
tation” (computer algebra). Simplification algorithms for radical expressions, for
instance, involve the construction of the residue class ring modulo polynomial
ideals (see [12]).

ACM Transactions on Mathematical Software, Vol. 11, Nq. 1, March 1985.

70 + F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

As an easy example consider the problem of rationalizing the denominator of

1
x+ 224 323"

This problem may be solved by considering the given expression as an element

in Q(x)[2%2, 3'/%], which is isomorphic to Q(x)[yy, ¥s)/ideal(y? — 2, y3 — 3), that

is, the polynomial ring in the two indeterminates y,, ¥, over the rational function

field Q(x) modulo the ideal generated by the polynomials y3 — 2 and y3 — 3.
The application of the algorithm yields the equivalent Grébner basis

that is, it is shown by the application of the algorithm that the given basis is
already a Grobner basis. (In fact, in this simple case this can be shown by the
theoretical criterion 4; see [10, p. 46], implemented as the subroutine CRIT4 in
the algorithm.)

In residue class rings modulo ideals generated by Grébner bases, arithmetic
can be carried out effectively because a linearly independent vector space basis
for these rings is readily available by taking the residue classes of the power
products in normal form (see [3]). In particular, inverses may be computed
effectively if they exist. We demonstrate this procedure for the above example:
The residue classes of

L o, ¥, ¥3 NYyi

form a vector space basis for Q(x)[y;, ¥2)/ideal(y? — 2, y3 — 3). In order to obtain
the inverse of x + 212 + 3%3, we merely have to solve the equation :

(x+y1+¥3) - (@1 + @y + azys + a1y + asyi + agyryd) = 1.

By using the reductions y? — 2, y§ — 3, this yields a linear system of equations
in the unknowns ay, . . . , as, whose solution is

a; = (x° — 4x% + 92% + 4x + 18)/d,
a; = (—x* + 427 + 18x — 4)/d,
as = (3x* + 18x + 27)/d,
a, = (-92° - 6)/d,
a5 = (—x* - 9x + 4)/d,
) as = (2x° — 4z — 9)/d,
where d = 2% — 6x* + 18x3 + 12x% + 108x + 73.

Example 3: Reachability Problem for Reversible Petri nets. A reversible Petri
net consists of places and transitions, whose firing behavior is determined by a

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985,

Algorithm 628 -« 71

set of rules (see [11]). For instance,

18 a Petri net with places g, b, ¢, f, s and three transitions that may be described
by the rules

as — ccs,
bs — cs,
s—f,

where it is implicitly assumed that the “reverse” rules ccs — as, etc. are available
too.

Our algorithm may be applied in the following way for solving the reachability
problem for such Petri nets: Take the rules as a set F of polynomials in the
indeterminates a, b, ¢, f, s and construct the corresponding Grébner basis G,
Then, in the Petri net the marking a'v’c*f's™ is reachable from the marking
a“b’’c*f's™ if and only if their normal forms with respect to G are the same.

In our example,

F={as — ¢%, bs —cs, s — f}.

Application of the algorithm (with respect to the graduated lexicographical term
ordering) yields

G= 'S—f,Cf—bf, bzf_af}
a®bc’f?%s® is reachable from a®b%%s® because the normal forms of both markings

are a'f® (with respect to G), whereas cs? is not reachable from c’s because their
respective normal forms are distinct, namely bf* and of,

Example 4: Cubature Formulas for Multiple Integrals. A cubature formula of
degree d for a multiple integral operator [is an equality of the form
N

1() = 3 ¢-f=) + R(P),
i

where the points £ € R” are the “knots” and the ¢; € R are the “coefficients.”
R(f) is the “rest,” which should be zero for polynominals f'of degree less than d
(see [26] for an overview on cubature formulae of the above and also more general
types). Among the questions intensively studied in this theory within the last
decade are the specification of bounds for the number of knots and the generation
of cubature formulas with knots being roots of polynomials.

We cannot go into the details of these investigations here. For showing the
relevance of Grobner bases for the computational aspects of this theory, we quote

ACM T'ransactions on Mathematical Software, Vol. 11, No. 1, March 1985.

72 . F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

one of the typical results (Theorem of H. M. Méller; see [26, p. 225]):

Iff,..., /. are a canonical basis of a zero-dimensional polynomial ideal and
fir. .., [, are d-orthogonal with respect to I,

then there exists a (generalized) cubature formula for I of degree d (with the
common roots of fu, . . ., fs as knots).

The number of knots may be bounded by H(d; (fs,.-., f+)), the value of the
Hilbert function (see [24]).

From the theorem quoted we see that for the practical application of the theory
it is essential to have a computational procedure for

— checking whether the dimension of a polynomial ideal is zero,
— checking whether an ideal basis is canonical, and
_ determining the values of the Hilbert function.

For polynomials f,, ..., fs of special types these questions may be answered by
using theoretical results from polynomial ideal theory, for instance, M. Noether’s
theorem (or our Criterion 4 in the algorithm). For arbitrary polynomials these
questions can be effectively answered by using the algorithm under discussion.
Given F := {fs, ..., f,}, one can compute the corresponding Grobner basis G :=
(g1, - . . , &- A Grobner basis is always canonical (see [7]). The criterion for zero
dimensionality for Grébner bases is simply the appearance of power products of
the form x%, ..., x'» among the leading terms of ..., & The value of the
Hilbert function H(d; (&,..., &) for Grébner bases (with respect to the
graduated lexicographical term ordering) is the number of power products of
degree < d, which are in normal form with respect to G.

For instance, if

— o2 2 2
fi=2x5— %12 - %xh

fo = x1%3 + X1%2 — 2%,
fz = x3 — X3
the application of the algorithm yields
g =x1— %
g2 = x1%3 + X1 x2 — 2%3
g3 = XXz + 13 + 2%:%2 — 4X3
8 = xf — dxf — 3%
gs = 1123 + 633 + Tayxp — 1625 + 22,

g = x"é - 29x§ - 24x1%: + 64xy — 12x,.

G:=|g,..., 8] i 2 canonical basis; ideal(gy, . .., g6}(= ideal(f,, f2, fs)) is zero
dimensional because 1%, 23 and x3 appear among the leading terms of g1, . .- 8s-
The power products that are in normal form with respect to G are

L

X1, X2, jlh
2

X1X2, Xa.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Aigorithm 628 + 73

Hence
H(0;G) =1,
HQA; G) =4,
H2,G)=HB3;G)=-.. = 8.

(Thus the “order” ho(G) of G, i.e., the vector space dimension of R[x;, x., x3)
modulo ideal(f,, f2, fs), is 6.)

Example 5: Analysis of Algebraic Varieties. The Lasker-Noether representa-
tion theorem (see, e.g., [16]) for polynomial ideals I generated by polynomials
fis-.os fs € K[xy, ..., x,] is a means for analyzing the algebraic variety formed
by the common roots of f,, . . . , f,. Essentially, it yields the irreducible components
of the variety and the multiplicity of the roots. The fundamental notions in this
theory are those of the prime ideals and primary ideals associated with I, If I is
zero dimensional, by a theorem of van der Waerden (see 31, p. 146]), the primary
ideal g corresponding to a prime ideal p associated with I may be computed by

g = (1, p*),

where p is the least natural number, such that p* C (I, p**!} (= the “exponent”
of p).

This procedure as it stands is not yet computationally effective because the
containment p* C (I, p**') cannot be checked effectively, in general. Our algo-
rithm, however, yields a solution for this subproblem: The basis of (I, p**') is
transformed to an equivalent Grobner basis G. For Grobner bases, the problem
‘f € ideal(G)” (the so-called “Hauptproblem” of polynomial ideal theory) may be
decided by '

f € ideal(G) if and only if f—¢ 0.

For Grébner bases, f —¢ 0 may be decided by reducing £ to a normal form f’ with
respect to G and checking whether f’ = 0,

The generation of prime ideals associated with I may be effected by computing
common roots of fi, . .., f,, a task for which our algorithm is relevant again (see
Example 1).

On the basis of the above ideas, Schrader [28] implemented the van der
Waerden procedure. One of his examples is

fr = xtyt 4+ 55 — x2y4 _ x4y2 + 36 = ¥+ 2x2y2 _
h=x"y* —day' — 2%y + §x® + 2y ~ 1,
fo=x'" + 3y — &'y — da'y - y* + 2.

(The variety of this system is the center of a Lissajou curve.) The correspond-
ing Grobner basis with respect to the graduated lexicographic term ordering

ACM Transactions on Mathematical Software, Vol, 11, No. 1, March 1985.

74 « F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

has the form

g1 =x'y — 1%+ y' — 2Hy? + xf,

gz = x%y' — 2% — 2%y + 22",

g = xy° = x%y = 2xy° + 2z%,

ge=y"— 2 —y' + 4,

g =x" = Jay' + 2%’ — 3x° + 2" — &,

8o =2y + 3y + 2% = xly — y° + &%y
This shows that ideal(f,, f;, f2) is zero dimensional, the residue class ring having
vector space dimension 24. One solution of the system is (0, 0), ideal(x, y)
therefore is a prime ideal associated with ideal(f,, f», f»). Its exponent p may be

computed by the van der Waerden procedure based on our algorithm yielding
p = 8. Hence, {0, 0) has multiplicity 8.

4. FORMAT OF THE PARAMETERS FOR THE FORTRAN
SUBROUTINE GROEB

The name of the FORTRAN subroutine that implements the algorithm is
GROEB. Corresponding to the problem specification in Section 1, the subroutine
GROEB has three parameters: F and G for the input and output sequences of
polynomials, respectively, and N for the number of variables.

F and G are linear lists of polynomials. A polynomial is a linear list of terms
{power products). Each term is a list of three elements

exp, num, den,

where

exp = a linear list of exponents (each exponent being a SAC-1 atom),
num = the numerator of the coefficient of the term (num is a SAC-1 infinite
precision integer),
the denominator of the coefficient of the term (den is a SAC-1 infinite
precision integer).

den

For example, the sequence F of the two polynomials (over Q[x, x2])
Fy = 2,23 — 3x,25 + 2x,,
For=x%—1x,
has to be represented as the list
(((Q, 2), (1), (1)),
((1, 1), (- 3), (2)),
(1, 0, (2), W)Y,
(2, 0), (1), (1)),
(0, 1), (- 1), AM).

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Algorithm 628 - 75

The user must guarantee that the terms of each polynomial in F are ordered in
decreasing order according to the linear term ordering used in the algorithm.
Every “admissible” linear ordering in the sense of [30], [16, Definition (1.1)] may
be used. In the present implementation we provide the subroutines for handling
the admissible orderings used in the examples of Section 3, namely the “graduated
lexicographical ordering” of [3] and the normal lexicographical ordering used in
[30] (see also Section 5). Only one of the two subroutines LINORD may be
linked to the program at a time.

5, POSSIBLE MODIFICATIONS OF THE PROGRAM

The structured design of GROEB and its subroutines makes it easy to modify
the program with respect to the following features:

(1) change of the term ordering,
(2) change of the underlying field,
(3) change of the criterion,

(4) packing of exponents,

(5) defining the available space.

The modification may be carried out by suitable replacements of a few subroutines
(see commentaries),

6. MAIN PROGRAM FOR SAMPLE CALCULATIONS

In order to test the subroutine GROEB on a specific installation, we include a
main program that produces sample output for a number of input sequences F of
polynomials and shows how the subroutine GROEB has to be embedded into the
SAC-1 system.

The structure of the main program is as follows:

(1) Initiate the SAC-1 system.

(2) Read a sequence F of polynomials of N variables until N is set to 0.
(3) Compute a Grobner basis G for F by applying the subroutine GROEB.
(4) Print the resulting basis G.

(5) goto 2.

We apply the main program to the following sequences of polynomials:
First sequence:

Fy = x% - xy,

Fo=xy*+xy+y.

This sequence has to be presented to the main program in the following format
(b denoting a blank):

b2 number of variables

b2 number of polynomials

b2 number of terms in the polynomial F,

+1 numerator of the coefficient of x%y (the sign is obligatory)
+1 denominator of the coefficient of x%y

bb2bb1 exponents of x%y (each exponent covers three positions)
-1 coefficient of xy

+1

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985,

76 + F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

bbibbl exponents of xy

b3 number of terms in the polynomial F,
+1
+1 representation of xy®
bb 1bb2
+1

+1 representation of xy
bbibb1
+1

+1 representation of y(= x%")
bb0bb1

For this input sequence the main program (with the graduated lexicographic
term ordering) will produce the following output:

Glzxy—y,
G2=y2+2y.

Given a second sequence (see Example 4 in Section 3),

— 2 1.2 2
1. =2 —3Y éx:

Fyi=x2 + xy - 22,
Fy=x" -y,
the program will return the Grobner basis
G =x%%*—y,
G: = xz + xy - 2z,
Gy=yz + y2 + 2xy — 42,
Gi=2" -1y,
Gs
Gs

xy? + 6y + Txy — 162 + 2y,
y3 — 29y% — 24xy + 64z — 12y.

7. IMPLEMENTATION OF THE ALGORITHM

As already stated in the previous section, our algorithm relies on the SAC-1
system for list processing and integer arithmetic (handling “arbitrarily” long
integers). Thus the according SAC-1 subsystems [13, 14] have to be implemented
first together with the SAC-1 basic system. Once this is done, the user may start
submitting a main program (e.g., the one provided on the distribution tape)
together with GROEB and its subroutines.

The program is completely self-contained, unless the word size on the host
computer is less than 32 bits. In this case the value of the variables BETA and
THETA in the main program should be decreased (but THETA should always
be the greatest power of 10, which is less than BETA).

In order to run the program on a machine with 16-bit integer variables the
variable BETA should be set to 2**14 and the variable THETA to 10**4,

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985,

Algorithm 628 « 77

REFERENCES

1.

2.

10.

11

12.

13.

14.

15.

16.

17

18.

19.

20.

21.

22,

23.

BACHMAIR, L., AND BUCHBERGER, B. A simplified proof of the characterization theorem for
Grobner-bases. ACM SIGSAM Bull. 14/4, {1980), 29-34.

BUCHBERGER, B. Ein Algorithmus zum Auffinden der Basisclemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. Ph.D. dissertation, Universitat Innsbruck, In-
nsbruck, Austria, 1965.

. BUCHBERGER, B. Ein algorithmisches Kriterium fir die Losbarkeit eines algebraischen Glei-

chungssystems. Aequ. Math. 4 (1970), 374-383.

. BUCHBERGER, B, A theoretical basis for the reduction of polynomials to canonical forms. ACM

SIGSAM Bull. 10/3 (1976), 19-29.

. BUCHBERGER, B. Some properties of Grébner-bases for polynomial ideals. ACM SIGSAM Bull.

10/4 (1976), 19-24.

. BUCHBERGER, B. A criterion for detecting unnecessary reductions in the construction of

Grobner-bases. In Proceedings of EUROSAM 79, Lecture Notes in Computer Science, vol. 72.
Springer-Verlag, Berlin, Heidelberg, New York, 1979, pp. 3-21.

. BUCHBERGER, B. H-bases and Gribner-bases for polynomial ideals. Tech. Report CAMP 81-

2.0, Institut fiir Mathematik, Univ. of Linz, Linz, Austria (1981).

. BUCHBERGER, B. A Note on the complexity of constructing Grébner-bases. In Proceedings of

the European Computer Algebra Conference (EUROCAL ’83), Lecture Notes in Computer Science,
vol. 162. Springer-Verlag, Berlin, Heidelberg, New York, 1983, pp. 137-145.

. BUCHBERGER, B. Grobner bases: An algorithmic method in polynomial ideal theory. In Recent

Trends in Multidimensional Systems Theory, N. K. Bose, Ed. Reidel, Hingham, Mass., 1985,
BucCHBERGER, B., AND WINKLER, F. Miscellaneous results on the construction of Gribner-
bases for polynomial ideals. Tech. Rep. 137, Institut fir Mathematik, Univ. of Linz, Linz, Austria
(1979).

CaRDOzA, E., LIPTON, R., AND MEYER, A. R. Exponential space complete problems for Petri
nets and commutative semigroups: Preliminary report. In Proceedings of the 8th Annual ACM
Symposium on Theory of Computing. ACM, New York, 1976, pp. 50-54.

Cavingss, B. F., AND FATEMAN, R. J. Simplification of radical expressions. In Proceedings of
the 1976 ACM Symposium on Symbolic and Algebraic Computation (Yorktown Heights, N.Y.,
R.D. Jenks, ed. ACM, New York, 1976, pp. 329-338.

CoLLiNg, G. E. The SAC-1 list processing system. Tech. Rep. 129, Computer Science Dept.,
Univ, of Wisconsin—Madison, 1971.

CoLLINS, G. E. The SAC-1 integer arithmetic system. Tech. Rep. 156, Computer Science Dept.,
Univ. of Wisconsin—Madison, 1971.

GEBAUER, R., AND KREDEL, H. An algorithm for constructing canonical bases (Groebner-bases)
of polynomial ideals. Tech. Rep., Institute for Applied Mathematics, Univ. of Heidelberg,
Heidelberg, W. Germany (1984}.

GROBNER, W. Moderne Algebraische Geometrie. Springer-Verlag, Wien-Innsbruck, 1949,
KOLLREIDER, C. Polynomial reduction: The influence of the ordering of terms on a reduction
algorithm. Tech. Rep. 124, Institut fiir Mathematik, Univ. of Linz, Linz, Austria (1978).
KOLLREIDER, C., AND BUCHBERGER, B. An improved algorithmic construction of Grébner-
bases. ACM SIGSAM Bull. 12/2 (1978), 27-36.

Laver, M. Kanonische Reprisentanten fir die Restklassen nach einem Polynomideal.
Diplomarbeit, Institut fir Informatik, Univ. Kaiserslautern, Kaiserslautern, W. Germany (1976).
LAUER, M. Canonical representatives for residue classes of a polynomial ideal. In Proceedings
of the ACM Symposium on Symbolic and Algebraic Computation (Yorktown Heights, N.Y.) ACM,
New York, 1976, pp. 339-345.

Lazarp, D. Grébner bases, Gaussian elimination and resolution of systems of algebraic equa-
tions. In Proceedings of the European Computer Algebra Conference (EUROCAL ’83) (London),
4. A. van Hulzen, Ed., 146-156 (1983).

Loos, R. Toward a formal implementation of computer algebra. In Proceedings of the EURO-
SAM '74, ACM SIGSAM Bull. 8/3 (1974), 9-16.

Matzat, B. H. Konstruktion von Zahlkorpern mit der Galoisgruppe M;, iber Q(v-11).
Manuscr. Math. 27 (1979), 103-111.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

78

24.

25.

26.

27.

28,

29.

30.

31.
32.

33.

34.

35.

36.

« F. Winkler, B. Buchberger, F. Lichtenberger, and H. Rolletschek

MOLLER, H. M. Mehrdimensionale Hermite-Interpolation und numerische Integration. Math.
Z. 148 (1976), 107-118.

MOLLER, H. M., AND MoRaA, F. Upper and lower bounds for the degree of Groebner bases. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation (EURGSAM
'84) (Cambridge, England), pp. 172-183 (1984).

MysovsKikH, L. P. The approximation of multiple integrals by using interpolatory cubature
formulae. In Quentitative Approximation, R. A. De Vore and K. Scherer, Eds. Academic Press,
New York, (1980), pp. 217-243.

SCHALLER, S. C. Algorithmic aspects of polynomial residue class rings. Ph.D. dissertation,
Tech. Rep. 370, Computer Science Dept., Univ. of Wisconsin—Madison, 1979.

SCHRADER, R. Zur konstruktiven Idealtheorie. Diplomarbeit, Institut fir Mathematik, Univ.
Karlsruhe, Karlsruhe, W, Germany, 1976.

SPEAR, D. A. A constructive approach to commutative ring theory. In Proceedings of the 1977
MACSYMA User's Conference (1977), pp. 369-376.

Trinks, W. Uber B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lésen. J.
Number Theory 10 (1978), 475-488.

VAN DER WAERDEN, B. L. Algebra II. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
WINKLER, F. Implementierung eines Algorithmus zur Konstruktion von Grobner-Basen. Diplo-
marbeit, Institut fiir Mathematik, Univ. of Linz, Linz, Austria (1978).

WINKLER, F. On the complexity of the Grobner-bases algorithm over K{x, y, z]. In Proceedings
of the International Symposium on Symbolic and Algebraic Computation (EUROSAM '84) (Cam-
bridge, England), pp. 184-194 (1984).

WINKLER, F. The Church-Rosser property in computer algebra and special theorem proving:
An investigation of critical-pair/completion algorithms. Ph.D. dissertation, Institut fir Mathe-
matik, Univ. Linz, Linz, Austria (1984).

Yun, D.Y.Y. On algorithms for solving systems of polynomial equations. ACM SIGSAM Bull,
No. 27 (1973).

ZACHARIAS, G. Generalized Grébner bases in commutative polynomial rings. B.S. thesis, Mas-
sachusetts Institute of Technology (1978).

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

