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Chapter 6

B. Buchberger

Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory

6.1. INTRODUCTION

Problems connected with ideals generated by finite sets /' of multivariate
polynomials occur, as mathematical subproblems, in various branches of
systems theory, see, for example, [6.1]. The method of Grobner bases is a
technique that provides algorithmic solutions to a variety of such
problems, for instance, exact solutions of F viewed as a system of
algebraic equations, computations in the residue class ring modulo the
ideal generated by F, decision about various properties of the ideal
generated by F, polynomiai solution of the linear homogeneous equation
with coefficients in F, word problems modulo ideals and in commutative
semigroups (reversible Petri nets), bijective enumeration of all poly-
nomial ideals over a given coefficient domain etc.

For many years, the work of G. Hermann [6.2] was the only algo-
rithmic method for tackling problems in polynomial ideal theory. Still,
her paper is a rich source. However, as pointed out in [6.3] and [6.4], the
solution of her main problem ‘is a multivariate polynomial fin the ideal
generated by F?”’ does not yet give a feasible solution to the “‘simplifica-
tion problem modulo an ideal” (i.e. the problem of finding unique
representatives in the residue classes modulo the ideal) and to the
problem of effectively computing in the residue class ring modulo an
ideal. '

The method of Grobner bases, as its central objective, solves the
simplification problem for polynomial ideals and, on this basis, gives easy
solutions to a large number of other algorithmic problems including
Hermann’s original membership problem. Also, when compared with
Hermann'’s algorithms, our algorithm that constructs Grobner bases is of
striking simplicity and, depending on the example considered, may get
through with intermediate computations using polynomials of relatively
low degree. On the other hand, as shown in [6.5] and [6.6], the decision of
polynomial ideal congruence intrinsically is a complex problem. In the
worst case, therefore, also the method of Grobner bases may lead to
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exploding computations. Much work is going on to analyze and predict
these phenomena and to extend the applicability of the method.

The method of Grébner bases was introduced 1965 by this author in
[6.7], [6.8] and, starting from 1976, was further refined, generalized,
applied and analyzed in a number of papers [6.91-{6.35]. The basic idea of
the method is the transformation of the given set of polynomials ¥ into a
certain standard form G, for which in [6.9] the author introduced the
name ‘Grobner bases’, because Prof. W. Grobner, the thesis advisor of
[6.7] stimulated the research on the subject by asking how a multipli-
cation table for the associative algebra, which is formed by the residue
ring modulo a polynomial ideal, can be constructed algorithimically and
by presenting a first sketch of an algorithm: He proposed to ‘complete’
the basis F by adjoining the differences of different representations of
power products (modulo the ideal). This, however, is no finite procedure.
It was the author’s main contribution to see and prove in [6.7],[6.8] that it
suffices to adjoin the differences of (the reduced forms of) certain ‘critical
pairs’ (or, equivalently, the reduced form of the ‘S-polynomials’ [6.7]),
which are finite in number.

In retrospect, it seems that the concept of ‘Grobner bases’ under the
name “‘standard bases” appeared already one year earlier (1964) in
Hironaka’s famous paper [6.36]. However, Hironaka only gave an in-
constructive existence proof for these bases, whereas in [6.7], together
with the concept of such bases, we also presented an algorithm for
constructing the bases and only this algorithm allows an algorithmic
solution to the various problems shortly mentioned above. An incon-
structive existence proof for Grobner bases may also be found in [6.37].
Hilbert’s basis theorem, then, follows as a corollary.

Later (1967) the two basic ideas of our method, critical pairs and
completion, where also proposed by Knuth and Bendix [6.38]in the more
general context of equations between first order terms. The Knuth-
Bendix algorithm now plays an important role in various branches of
computer science (abstract data type transformations, equational
theorem proving and applications in automated program verification).
Recently, the Knuth-Bendix algorithm and the author’s own algorithm
for constructing Grobner bases were brought together under a common
algorithm structure by R. Llopis de Trias [6.32] and, independently, by P.
Le Chenadec [6.39]; see also [6.3] for a general introduction to the
““critical-pair completion” algorithm type. On the other hand, the
improvements of the author’s algorithm were carried over to the Knuth-
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Bendix algorithm, see [6.40]. A lot of challenging questions remain to be
treated, which, in the near future, might also affect systems theory (for
example, decision methods for boolean algebra based on the critical-pair/
completion approach, see [6.41].)

In the present paper, a survey on the method of Grobner bases is given.
In Section 6.2, the concept of Grobner bases is defined and, in Section
6.3, the basic form of the algorithm for constructing Grobner bases is
described. In Section 6.4 an improved version of the algorithm is pre-
sented. The improvements are important for the practical feasibility of
the computations. In Section 6.5, the algorithm is applied to the simpli-
fication problem, the congruence problem and related problems in poly-
nomial ideal theory. In Section 6.6, the algorithm is applied to the exact
solution of systems of algebraic equations and related problems. In
Section 6.7, it is demonstrated that the S-polynomials have also a signi-
ficance as the generators of the module of solutions for linear homo-
geneous equations with polynomial coefficients and an algorithm for a
systematic solution of such equations is presented. Grobner bases for
polynomial ideals with integer coefficients are treated in Section 6.8.
Some other applications are summarized in Section 6.9. Finally, in
Section 6.10, some remarks about specializations, generalizations, imple-
mentations and the computational complexity of the algorithm are made.

The emphasis of this paper is on explicit formulation of algorithms (in
an easy notation) and on examples. With the exception of some sketches,
no proofs of the underlying theorems can be given. However, complete
references to the original publications are provided.

6.2. GROBNER BASES

Notation

K afield.

K[x,, ..., x,] ring of n-variate polynomials over K.

The following typed variables will be used:

f, & h, k, p, ¢ polynomialsin K[x,, . . ., x,].

F, G finite subsets of K[x,, . . ., x,].

s, t, u power products of the form xt . . . xin.

a, b, ¢, d elements in K.

i, j, [, m natural numbers.

Let F ={f,, . . ., f,}. By ‘Ideal(F)’ we will denote “the ideal generated

Nt
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by F”’ (i.e. the set

{ Y h-flheKlx,, .., x](=1,....m).

I<i<m
Furthermore, we will write ‘f =, g’ for “‘f is congruent to g modulo
Ideal(F)” (i.e. f-geldeal(F)).

Before one can define the notion of Grébner bases the notion of
‘reduction’ must be introduced. For this it is necessary to fix a total
odering <, of the power products x¥ . . . xir, for example, the ‘total
degree ordering’ (whichis 1 <, x <,y <;x* <;pxy <;y* <;x* <;x% <;
xy? <, y* <, ...in the case of two variables) or the ‘purely lexico-
graphical ordering’ (whichis 1 <,x <;x* <;x’ <. ..y <gxy <, Xy <,

. <, ¥y? <gxy* <,...in the case of two variables). In fact, any total
ordering is suitable, which at least has the following two properties:

(T1) 1<,t forall t=+1,
(T2) ifs<,t then su<;tu.

A total ordering satisfying (T1) and (T2) will be called ‘admissible’. For
the sequel, assume that an arbitrary <, has been fixed. With respect to
the chosen <, we use the following notation.

Notation

Coefficient(g, ?) the coefficient of tin g.

LeadingPowerProduct(f) the maximal power product (w.r.r. <;)
occurring with non-zero coefficient in f.

LeadingCoefficient(f) the coefficient of the LeadingPower-
Product(f).

DEFINITION 6.1[6.7], [6.8].
g — h (read: ‘g reduces to h modulo F) iff there exists feF, b and u such
that

g b and h=g—-b-u-f

g > b u (read: ‘g is reducible using f, b, w’) iff Coefficient(g, u -
LeadingPowerProduct(f)) # 0, b = Coefficient(g, u - LeadingPower-
Product(f))/LeadingCoefficient(f) °
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Hence, roughly, g reduces to h modulo F iff a monomial in g can be
deleted by the subtraction of an appropriate multiple b - u - f of a poly-
nomial fin Fyielding . Thus, the reduction may be viewed as one step in
a generalized division.

EXAMPLE 6.1. Consider F: = {f,, f,, fs}, where
f1:=3x2y+2xy¥y+9x2+5x—3,
fy: = 2% —xy —y+ 6x* —2x* = 3x + 3,
fii = xy + x%y + 3x° + 2x%. ‘

The polynomials f,, f,, f; are ordered according to the purely lexico-
graphical ordering. The leading power products are x%y, x*y, x’y, respect-
ively, and the leading coefficients are 3, 2, and 1. Consider

g: = 5y + 2x*y + 5/2xy + 3/2y + 8x? + 3/2x — 9/2.
Modulo F, g reduces, for example, to

h: = 5y* + 7/6xy + 5/6y + 2x* — 11/6x — 5/2.
Namely,

g ;. fOr f = f, b: = 2/3, u: =1

because Coefficient(g, 1 - x2y) =2 # Oand b = Coefficient(g, 1 - x*y)/
LeadingCoefficient(f,),
and

h:g'—(z/?’)'l'fl'

DEFINITION 6.2.
h is in normal form (or reduced form) modulo F iff there is no A’ such that

h—.h'.
h is a normal form of g modulo F iff there is a sequence of reductions

g=ky—pk —pk,—p. . .—pk,=h

and A is in normal form modulo F.
An algorithm S is called a normal form algorithm (or simplifier) iff for all
Fandg:

S(F, g) is a normal form of g modulo F.
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LEMMA 6.1[6.7][6.9].
The following algorithm is a normal form algorithm:

ALGORITHM 6.1 (h: = NormalForm(F, g)).
h: =g
while exist feF, b, u such that h —;, , do choose feR, b, u such

that h —;, , and u - LeadingPowerProduct(f) is maximal
(w.r.t.<;)

h:=h-b-u-f ' L
The correctness of this algorithm should be clear. For the correctness, the
selection of the maximal product u - LeadingPowerProduct(f) is not

mandatory. However, this choice is of crucial importance for efficiency.
The termination of the algorithm is guaranteed by the following lemma.

'LEMMA 6.2 [6.7], [6.9]. For all F: —is a noetherian relation (i.e. there is
no infinite sequence k, =, k, =k, =5 . . .).

EXAMPLE 6.2. h in the Example 6.1 is in normal form modulo F: no power
product occurring in 4 is a multiple of the leading power product of one of
the polynomials in F. Thus, no reduction is possible. Another example:

xy =, — 2/3x%y — 1/3xy — 3x3 — 5/3x + x = :g,.
g, can be further reduced:
g~ 19y +2/9y — 3x* + 1/3x* + 19/9x — 2/3 = :g;.

g’ is in normal form modulo F. g/, hence, is a normal form of x*y modulo
F. Actually, g/, may be the result of applying the algorithm ‘NormalForm’
to x*y (depending on how the instruction ‘choose feF, such that . . .”in
the algorithm is implemented). In this example, a second reduction is
possible:

xby = 1/2xy + 1/2y — 3x* + x* + 3/2x — 3/2 = :g,.
g, is already in normal form modulo F.

From the example one sees that, in general, it is possible that, modulo
F, g, and g, are normal forms of a polynomial g, butg, = g,. Those sets F,
for which such a situation does not occur, play the crucial role for our
approach to an algorithmic solution of problems in polynomial ideal
theory:
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DEFINITION 6.3[6.7], [6.9]. Fis called a Grobner basis (or Grobner set) iff
forall g, h,, h,:

if 4, and h, are normal forms of g modulo Fthen h, = h,. °
It is the central theme of this paper to show that

(a) for those sets F that are Grobner bases, a number of important
algorithmic problems (that are formulated in terms of Ideal(F)) can be

solved elegantly and

(b) those sets F, which are not Grobner bases, can be transformed into
sets G, that are Grobner bases and generate the same ideal.

Most of the algorithmic applications of Grobner bases are based on the
following fundamental property of Grobner bases.

THEOREM 6.1[6.7],[6.9], [6.22] (Characterization Theorem for Grobner

bases). Let S be an arbitrary normal form algorithm. The following

properties are equivalent:

(GB1) Fis a Grobner basis.

(GB2) Forallf, g: f =, g iff S(F, f) = S(F, g). ®
(GB1) is also equivalent to:

(GB3) —has the ‘Church-Rosser’ property.

(GB3) links Grobner bases with analogous concepts for equations of first

order terms and the Knuth-Bendix algorithm. For details see [6.3].

(GB3) is not needed in this paper. The following lemma is helpful in

establishing this link.

LEMMA 6.3 [6.22], [6.30] (Connection between reduction and con-
gruence): For all F, f, g:
f=rg iff forg
(Here, <>} is the reflexive, symmetric, transitive closure of =, 1.€.
fer g iff there existsasequence

f:koefklé—)sz(—)F"'é_)ka:gs
where
ferg iff (f—rg or g§—¢f) o

(GB2) immediately shows that, for Grobner bases F, the decision
problem ‘f=.g Iis algorithmically decidable (uniformly in F). For
Grobner bases, other computability problems will have similarly easy
solutions: see Sections 5-9.
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6.3. ALGORITHMIC CONSTRUCTION OF GROBNER BASES

Before we give the algorithmic applications of Grobner bases we show
how it may be decided whether a given set F is a Grobner basis and how
Grobner bases may be constructed. For this the notion of an “S-poly-
nomial’ is fundamental:

DEFINITION 6.4 [6.7],[6.8], [6.9].

The ‘S-polynomial corresponding to f,, f,’ is

SPolynomial(f,, f,): = u, - fi = (eifey) - uy - fo

where ¢; = LeadingCoefficient(f)),

u, is such that s, - u; = the least common multiple of s,, s, and

s; = LeadingPowerProduct(f)) (i=1,2).

EXAMPLE 6.3. For f, f, as in Example 6.1, the SPolynomial(f,, f) is
2x%y + 5/2xy + 32y + 8x* + 3/2x — 9/2. L

Note that the least common multiple of s, and s, is the minimal power
product that is reducible both modulo f, and modulo f,. The algorithmic
criterion for Grobner bases is formulated in the following theorem, which
forms the core of the method:

THEOREM 6.2 (Buchberger [6.7], [6.8], [6.9], [6.22]; Algorithmic
Characterization of Grobner bases). Let S be an arbitrary normal form
algorithm. The following properties are equivalent:
(GB1) Fis a Grobner basis.
(GB4) For all f,, f,eF: S(F, SPolynomial(f,, f,)) = 0. °
(GB4), indeed, is a decision algorithm for the property ‘F'is a Grobner
basis’: one only has to consider the finitely many pairs f,, f, of poly-
nomials in F, compute the corresponding S-polynomials and see whether
they reduce to zero by application of the normal form algorithm S. In
addition, Theorem 6.2 is the basis for the central Algorithm 6.2 of this
paper for solving the following problem.

PROBLEM 6.1.
Given F.
Find G, such that Ideal(F) = Ideal(G) and G is a Grobner basis.
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ALGORITHM 6.2 (Buchberger [6.7], [6.8]) for Problem 6.1.
G.=F
B: = {f. fllf- [, € G fi # fo
while B + ( do
{f,, f.}: = apairin B

B =B {{f. i}
h . = SPolynomial(f,, f,)
h' : = NormalForm(G, h)
if h' # 0then
/ B: = BU {{g, h'}geG}
”"”/ G: = GU {h'}. e

o

The partial correctness of this algorithm, essentially, relies on
Theorem 6.2. The termination can be shown in two ways, see [6.8],
[6.17]. (Sketch of the first method [6.17]: One considers the sequence of
ideals Ideal(P,) C Ideal(P,) C . . . ,where P, is the set of leading power
products of polynomials in G, and G, is the value of G after G has been
extended for the i-th time. It is easy to see, that the inclusions in this
sequence are proper. Hence, by Hilbert’s theorem on ascending chains of
idealsin K[x,, . . ., x,], see [6.42], the sequence must be finite. Sketch of
the second method [6.8]: One uses Dickson’s lemma [6.43], which,
applied to the present situation, shows that a sequence ¢, t,, . . . of power
products with the property that, for all j, ¢, is not a multiple of any of its
predecessors, must be finite. Actually, if ¢,is the leading power product of
the i-th polynomial adjoined to G in the course of the algorithm (i = 1,2,
. . .), then the sequence ¢, t,, . . . has this property and, hence, must be
finite. This is the way, the termination of the algorithm was first proven in
[6.8], where Dickson’s lemma was reinvented. Hilbert’s basis theorem

can be obtained as a corollary in this approach, see [6.37].)

EXAMPLE 6.4. Starting from the set F of Example 6.1, we first choose, for
instance, the pair f,, f, and calculate

SPolynomial(f,, f,) =
2x%y + 5/2xy + 3/2y + 8x* + 3/2x — 9/2.
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Reduction of this polynomial to a reduced form yields
7/6xy + 5/6y + 2x* — 11/6x — 5/2.

We adjoin this polynomial to G in the form
fio = xy + 5/7y + 12/7x* — 11/7x — 15/7,

where we normalized the leading coefficient to 1. (This normalization is
not mandatory. However, as a matter of computational experience, it
may result in drastic savings in computations over the rationals.
Theoretically, this phenomenon is not yet well understood. Investiga-
tions of the kind done for Euclid’s algorithm should be worthwhile, see
[6.44] for a survey on these questions.)

Now we choose, for example, the pair f, and f;:

SPolynomial(f,, f,) = 1-f, — 3/1) - x - f, =
—1/7xy + y — 36/7x* + 96/7x* + 80/7x — 3.

Reduction of this polynomial, by subtraction of —(1/7) - f, (and normal-
ization), yields the new polynomial.

fio =y — 14/3x* + 38/3x* + 61/6x — 3.

Furthermore, SPolynomial(f,, f,) = 1 - f, — (1/1) - x - f;. By subtract-
ing (5/7) - f, and normalization we obtain

fii = x* — 2% — 15/4x* — 5/4x. .

Finally, the reduction of SPolynomial(f,, f,) = x - f, — (3/1) - 1 f;
leads to

fir = x* — 5/2x* — 5/2x.
The reduction of the S-polynomials of all the remaining pairs yields

zero and, hence, no further polynomials need to be adjoined to the basis.
For example,

SPolynomial(f,, f,) = 1/2x* — 5/4x* — 5/4x
reduces to zero by subtraction of 1/2 f.. Hence, a Grobner basis corres-
ponding to F'is

G:={f,..., [

DEFINITION 6.5 [6.10]. F is a reduced Grébner basis iff F is a Grobner
basis and for all feF: f is in normal form modulo F — {f} and
LeadingCoefficient(f) = 1.
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EXAMPLE 6.5. G in Example 6.4 is not a reduced Grobner basis: For
example, f, reduces to zero modulo {f,, . . ., f,}. By successively reducing
all polynomials of a Grobner basis modulo all the other polynomials in
the basis and normalizing the leading coefficients to 1, one always can
transform a Grobner basis into a reduced Grobner basis for the same
ideal. We do not give a formal description of this procedure, because it
will be automatically included in the improved version of the algorithm
below. In the example, also f,, f,, f,, and f, reduced to zero and f; reduces
to

fii=y+x*—32x — 3.
Hence, the reduced Grobner basis corresponding to F'is

G':={f,, £} ={y + x* — 3/2x — 3,x* — 5/2x* — 5/2x}.

THEOREM 6.3 (Buchberger [6.10]: Uniqueness of reduced Grobner
bases). If Ideal(F) = Ideal(F’) and F and F’ are both reduced Grobner
bases then F = F'.

DEFINITION 6.6. Let GB be the function that associates with every Fa G
such that Ideal(F) = Ideal(G) and G is a reduced Grobner basis. °

By what was formulated in Theorems 6.2, 6.3, Algorithm 6.2 and the
remarks in Example 6.5 we, finally, obtain the following main theorem,
which summarizes the basic algorithmic knowledge about Grobner bases.

MAIN THEOREM 6.4 (Buchberger 1965, 1970, 1976).

G B is an algorithmic function that satisfies for all F, G:
(SGB1) Ideal(F) = Ideal(GB(F)),

(SGB2) if Ideal(F) = Ideal(G) then GB(F) = GB(G),
(SGB3) GB(F) is a reduced Grobner basis.

6.4. AN IMPROVED VERSION OF THE ALGORITHM

For the tractability of practical examples it is crucial to improve the
algorithm. There are three main possibilities for achieving a compu-
tational speed-up:

(1) The order of selection of pairs {f,, f,} for which the S-polynomials
are formed, though logically insignificant, has a crucial influence on the
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complexity of the algorithm. As a general rule, pairs whose least common
multiple of the leading power products is minimal with respect to the
ordering <, should be treated first. This, in connection with (2), may
drastically reduce the computation time.

(2) Each time a new polynomial is adjoined to the basis, all the other
polynomials may be reduced using also the new polynomial. Thereby,
many polynomials in G may be deleted again. Such reductions may
initiate a whole cascade of reductions and cancellations. Also, if this
procedure is carried out systematically in the course of the algorithm, the
final result of the algorithm automatically is a reduced Grobner basis. The
reduction of the polynomials modulo the other polynomials in the basis
should also be performed at the beginning of the algorithm.

(3) Whereas (1) and (2) are strategies that need no new theoretical
foundation, the following approach is based on a refined theoretical
result [6.19], which has proven useful also in the general context of
‘critical-pair/completion’ algorithms, in particular for the Knuth-Bendix
algorithm: The most expensive operations in the algorithm are the reduc-
tions of the 4’ modulo G in the while-loop. We developed a ‘criterion’
that, roughly, allows to detect that certain S-polynomials & can be
reduced to zero, without actually carrying out the reduction. This can
result in drastic savings. Using this criterion, in favourable situations,
only 0(/) S-polynomials must be considered instead of 0(/*), where /is the
number of polynomials in the basis. (Of course, in general, / is dynamic-
ally changing and, therefore, the effect of the criterion is very hard to
assess, theoretically).

Strategy 1. was already used in [6.7], [6.8]. Also, the correctness of the
reduction and cancellation technique sketched in (2) was already shown
in [6.7], [6.8]. The criterion described in (3) was introduced and proven
correct in [6.19], details of the correctness proof may be found in [6.20].

Before we give the details of the improved version of the algorithm
based on (1)—(3) we present a rough sketch:

In addition to G and B, we use two sets R and P. R contains poly-
nomials of G, which can be reduced modulo the other polynomials of G.
As long as R is non-empty, we reduce the polynomials in R and store the
resulting reduced polynomials in P. Only when R is empty, we adjoin the
reduced polynomials in P to G and determine the new pairs in B for which
the S-polynomials have to be considered. If an S-polynomial for a pair in
B is reduced with a non-zero result #’, A’ is put into P and, again,
polynomials in G are sought that are reducible with respect to A’. Such
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polynomials are put into R and we continue with the systematic reduction
of R. We now give the details.

PROBLEM 6.2.
Given: F.
Find: G, such that Ideal(F) = Ideal(G) and G is a reduced Grobner

basis.

ALGORITHM 6.3 (Buchberger [6.19]) for Problem 6.2.
R:=F,P.=0;G:=0;B: =0 ‘
Reduce All (R, P, G, B); New Basis (P, G, B)
while B # 0 do
{f,, f.}: = apair in Bwhose LCM(LP(f), LP(f,)) is minimal
w.r.t. <r
B: = B — {{f,, £,}}
if (not Criterionl(f,, f,, G, B) and
not Criterion2(f,, f,)) then
h: = NormalForm(G, SPolynomial(f,, f,))
if h # 0 then
G, = {geG|LP(h) < ,LP(g)}
R: =G, P: =1{h}; G: = G — G,
B: = B — {{f,, f,}lf.€G, or f,eG,}
ReduceAll(R, P, G, B); NewBasis(P, G, B).
Subalgorithm Reduce All (transient : R, P, G, B):

while R #+ 0 do
h: = anelementin R; R: = R — {h};
h: = NormalForm(G U P, h)
ifh # 0then
G,: = {geG|LP(h) <, LP(g)}
P,: = {peP|LP(h) <, LP(p)}
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G:=G- G,
P:=P-P,

R:=RUG,UP,

B : = B — {{f,, f,}eBlf,eG, or f,eG}

P : =P U{h}
Subalgorithm New Basis (transient : P, G, B):
G:=GUP

B: = B U {{g, pligeG, peP. g # p;
H:=G;K: =0
while H #+ ¢ do
h: = anelementin H; H: = H — {h}
k: = NormalForm(G — {h}, h); K: = K U {k}
G: = K.
Subalgorithm Criterion1(f,, f,, G, B): < there exists a peG such that
L#Fpp+h
LP(P) <, LCM(LP(f,), LP({,)),
{f,, p} notin B and {p, f,} notin B.
Subalgorithm Criterion2(f,, f,): ©
LCM(LP(f)), LP(f,)) = LP(f,) - LP(f,).

Abbreviations

LP(g) the leading power product of g,
LCM(s, t) the least common multiple of s and ¢,
s <)t t is a multiple of s.

The correctness of this improved version of the algorithm is based on

the following lemma and theorem.

LEMMA 6.4 [6.7], [6.8]. For arbitrary F, f,, f,:
If LP(f,) - LP(f,) = LCM(LP(f,), LP(f,)), then SPolynomial (fir )

can always be reduced to zero modulo F.
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THEOREM 6.5 (Buchberger 1979 [6.19]; detection of unnecessary reduc-
tions of S-polynomials). Let S be an arbitrary normal form algorithm.
The following properties are equivalent:

(GB1) Fis a Grobner basis.

(GB5) For all f, geF there exist h, h,, . . ., h,eF'such that
f - h17 8 = hk?
LCM(LP(h)), . . ., LP(h) <, LCM(LP(f), LP(g)),
S(F, SPolynomial(k,, h,, ,)) = 0(for1 <i < k). °

Lemma 6.4 guarantees that we need not consider the S-polynomial of
two polynomials f, and f,, whose leading power products satisty the
condition stated in the lemma (Criterion2). The iteration of Criterion1 in
Algorithm 6.3 guarantees that, upon termination of the algorithm, con-
dition (GB5) is satisfied for G and, hence, G is a Grobner basis.

EXAMPLE 6.6. Let F: = {f,, f,, f,}, where
fio=Xyz —x2?,  fy=xy - xyz,  fyi = a0yt - 2

The total degree ordering of power products is used in this example: first
order by total degree and, within a given degree, order lexicographically.
We took an example with a particularly simple structure of the poly-
nomials in order to make the reduction process simple and to emphasize
the crucial point: the difference of the crude version of the algorithm and
the improved version, which is reflected in the pairs of polynomials
{f,, f.}, for which the S-polynomials have to be considered.

A trace of the crude form of the algorithm could be as follows (if the
selection strategy 1. for pairs of polynomials is used: in the trace, we write

1

leads to the polynomial f,):
fos fs = fio = XPyz = 2%,
foo fa= [0 = x2* — x2%,
fos fs = fot = y2° = 2,
fs i =0,
fs fo = fo2 = xyz* — x2%,
fofi—=fi =28 — xX*2%,-

fi» f; — fi for indicating that the reduction of the S-polynomial of f; and f;
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fos f: =0,
fs =0,
fes =0,
fos fo = for = X2 — x2%,
for fs = 0.

The S-polynomials of all the other pairs are reduced to zero. All
together one has to reduce (9.8)/2 = 36 S-polynomials.

In the improved algorithm, first, by ReduceAll, f,, f,, f, are reduced
with respect to each other. In this example, this reduction process leaves
the original basis unchanged. Then, by NewBasis, f,, f,, f, are putinto G.
Simultaneously the set of pairs B for which the S-polynomial have to be
considered is generated. The first pair, again, is

fZ’ ﬁi - f4’
In this phase, again a call to ReduceAll is made. It is detected that,
modulo {f,, f;, f,}, f, can be reduced to f;, hence, f, can be deleted from G
and, correspondingly, the pairs {f,, f,} and {f,, f,} can be deleted from B.
By NewBasis, f, and f, are adjoined to G and B is updated. The consider-
ation of the next pair in B yields

for fi = fe

ReduceAll has no effect in this case. Thus, f; is adjoined to the basis
immediately and B is updated. The consideration of the next pair {f,, f,}
in B can be skipped by application of Criterionl: LP(f,) = xy*z divides
LCM(LP(f,), LP(f,) = x*y*z and {f;, f,} and {f,, f,} are not in B any
more, because they already were considered. The consideration of the
next pairs in B yields

f;")’ f6—>f77
fo fr = fo

with the corresponding updating of G and B (no reductions and cancel-
lations of polynomials in G are possible!). The S-polynomials of the next
pairs reduce to zero

fo f: 70,
fss f: = 0.




