%

T B o e S MDD

Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis
| [982-02-22-#

162

Computer Algebra

EURCCAL'83, European Computer Algebra Conference
London, England, March 1983

Edited by J. A, van Hulzen

SpringerVerlag
Berlin Heidelberg New York Tokyo




Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editor

J.A. van Hulzen

Twente University of Technology

Department of Computer Science

PO.Box 217, 7500 AE Enschede, The Netherlands

CR Subject Classifications (1982): I.1., J.2.

ISBN 3-540-12868-9 Springer-Verlag Berlin Heiéé_{_bér.g New York Tokyo
ISBN 0-387-12868-9 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-us€of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for ther than private use, a fee is

payable to “Verwertungsgesellschaft Wort”, Munich. 2
© by Springer-Verlag Berlin Heidelberg 1983 - g
Printed in Germany -
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210




|

e

e

Sp—

S S ————

PP

Pp—
e

A NOTE ON THE COMPLEXITY OF CONSTRUCTING
GRORNER-BASES
B.Buchberger
Mathematisches Institut

Universitdt Linz
A4040 LINZ, Austria

ABSTRACT

In the bivariate case, upper bounds for the degrees and the number of polynomials oc-
curing in Grobner-bases of polynomial ideals are given. In the case of the total de-
gree ordering of monomials, the upper bound for the degrees is linear in the maximal
degree of the polynomials in the given basis of the ideal. In the general case, the
upper bound for the degrees 1is quadratic. The upper bound for the number of polyno-
mials is linear in the minimal degree of the polynomials in the given basis. A1l the
bounds are shown to be tight. The relevance of these bounds for constructive polyno-
mial ideal theory is indicated.
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BACKGROUND AND MOTIVATION

The concept of Grobner-bases for polynomial ideals has been introduced implicitly in
/Buchberger 65, 70/ (where an algorithm for constructing such bases was established)
and explicitly in /Buchberger 76a/. Grobner-bases have since been treated in a number
of papers, see /Buchberger, Loos 82, Section 12/ for a fairly complete bibliography
and a brief introduction into the subject. We assume here that the reader is familiar
with the concept, motivation, algorithmic construction and application of Grobner-
bases. (Also /Buchberger 79/ seems to be suitable as an easy introduction).

In the multivariate case, little is known about the complexity of constructing
Grobner-bases (and of similar algorithms). In the univariate case, the Grobner-basis
algorithm specializes to Euclid's algorithm whose complexity has been extensively
studied (see /Loos 82/ for a survey). In the general case we have the complexity
results of /Hermann 26/ for the degrees of polynomials in her standard bases
(Hermann-bases, see also /Seidenberg 74/) and the recent results of /Cardoza, Lipton,
Meyer 76/ and /Mayr, Meyer 81/ on the intrinsic space complexity of solving the uni-
form word problem for commutative semigroups (which is a special case of deciding mem-
bership for polynomial ideals given by bases). These results indicate that the
construction of standard bases for polynomial ideals, intrinsically, is an exponential
problem (if n, the number of variables, enters the complexity considerations).

Still, for practical applications it is important to investigate the complexity of
constructing standard bases for fixed n > 2 and to establish bounds that are as tight
as possible (and to improve the algorithms). In this paper, we consider n = 2. The
Grobner-basis algorithm is of particular interest in this case for practical applica-
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tions, see /Guiver 82/ and /Sakata 81/. Also, tight bounds for the complexity (in par-
ticular for the degrees of the polynomials) of Gridbnerbases are interesting for a
theoretical reason: the connection between resultants and Grobner-bases is still not
very well understood. There were two attempts to combine the use of resultants and of
the reductions used in the Grobner-basis algorithm in order to improve computations:
/Schaller 79/ and /Pohst, Yun 81/. However, these computational considerations did not
add to an understanding of the fundamental connection between the two concepts.

Recently, /Bayer 82/ has given an interesting approach to bringing the concepts
together: Euclid's algorithm, Gauss' algorithm and the Grobner-basis algorithm are
viewed as special procedures of computing certain determinants ("resultants") in the
univariate, linear multivariate, and general case, respectively. The present author
intends to give a more specific connection between the concepts along the same lines
in a future paper, by connecting one single matrix with a system of polynomials whose
“normal form" by elementary row and column transformation answers questions about the
solvability of the system and similar questions and whose transformation into normal
form can be viewed as an application of the Grobner-basis algorithm. The prac-
ticability of this approach heavily depends on the availability of (realistic) bounds
for the degrees of the polynomials in Grobner-bases. Essentially the same approach is
pursued in /Lazard 83/. =0

This paper extends a result given in /Buchberger 79/ (an upper bound for the degrees
of the polynomials in bivariate Grobner-bases) to-#ts "nearly" best possible form and
gives some new results. D. Lazard meanwhile was able to totally fill the gaps between
lower and upper bounds left open in this paper.-We.indicate his results in parenthe-
ses. The proofs of his results appear in /Lazard 83/, these proceedings. Still, we
think that our proof methods, which are totally distinct from the algebraic geometry
approach of Lazard, may present some interest in themselves and, furthermore, the com-
bination of the methods may yield some new insights. Also, our Theorem 1 holds for all
polynomials occurring during the execution of the .Grobner-basis algorithm whereas
Lazard's version, I think, can be asserted for thgffinal outcome of the algorithm

only. o

- R

NOTATION

Let K be an arbitrary field. By K[x,y] we denote the ring of bivariate polynomials
over K and by [x,y] the set of bivariate monomials. An ."admissible" ordering of the
monomials is a linear ordering € on [x,y] satisfying:

1<t (for all monomials t #.1) and

s€¢t ==> s.uft.u (for all monomials s, &, u).
For f € K[x,y], LC(f) and LM(f) denote the leading coefficient and the leading mono-
mial of f w.r.t. ¢ (if € is clear from the context), D(f) is the degree of f. For s, t
e [x,y], Ei(t) denotes the exponent of t at the i-th variable (i=1,2), and LCM(s,t) is
the least common multiple of s and t. We say that s divides t (t is a multiple of s)

iff E1(s) < EI(t) and E2(s) < E2(t). For F ¢ K[x,y], ID(F) is the ideal generated by
F, MAXD(F) = max {D(f) / f € F}, MIND(F) = min {D(*f) / f € F}. ID(F) is zero-
dimensional iff F, viewed as a system of a1gebraic7gquations, has only finitely many




139

golutions (see any text on algebraic geometry). G is a minimal Grdbner-basis for F iff
G is a Grobner-basis for F and deleting a polynomial in G destroys the property of
peing a Grobner-basis for F; a minimal Grobner-basis is reduced iff all the polyno-
mials in G are reduced w.r.t. the other polynomials in G (see /Buchberger 76b/).
gxamples: The "total degree" ordering and the "purely lexicographical” ordering are
dmissible orderings. {1,%,y,x2,xy,y2,x3,x2y,xy2,y3,...} and {1,x,x2,x3,...,
y,xy,XZy,....yz,xyz,xzyz,...} is the set [x,y] enumerated in the total degree and
purely lexicographic ordering, respectively. Let f:= 5x9y + 3xy2 - xy. Then LC(f) =
g, LM(f) = xBy, if we use the total degree ordering, and LC(f) = 3, LM(f) = xy2, if we
yse the purely lexicographical ordering. D(f) = 6. Let s:= x5y, t:= xyZ, then El(s) =
5, E2(s) = 1, LCM(s,t) = xoy2. s divides LCM(s,t), but s does not divide t.

RESULTS
—_—

Theorem 1: Let F be a finite set of polynomials in K[x,y]. Then all the polynomials h
occurring during the application of the Grobner-basis algorithm to the input F (using
total degree ordering of monomials), in particular the polynomials h in the final
Ggrobner-basis, satisfy

D(h) < 2.MAXD(F) (D. Lazard: D(h) < 2.MAXD(F)-1).
(By the "Grobner-basis algorithm" we mean the author's algorithm introduced in
/Buchberger 65/ in the version described in /Buchberger 79/, where an "overlap-lemma"
("Criterion 2" and "Criterion 3" in /Buchberger 79/) is used in order to detect
gituations in which certain "critical pairs" (S-polynomials) need not be considered in
the course of the algorithm.)

corollary 1: Let F be a finite set of polynomials in K[x,y] and G a minimal Grébner-
pasis for F w.r.t. the total degree ordering of monomials. Then
MAXD(G) < 2.MAXD(F) (-1).

corollary 2: Let F be a finite set of polynomials in K[x,y] such that ID(F) is zero-
dimensional and let G be a minimal reduced Grobner-basis for F w.r.t. an arbitrary

admissible ordering of monomials. Then
MAXD(G) < 4.MAXD(F)2 (D. Lazard: MAXD(G) < MAXD(F)Z,
condition on zero-dimensionality can

be dropped).

proposition 1: For every natural number d there is an F c K[x,y] with d = MAXD(F) such
that for all Grobner-bases for F (w.r.t. the total degree ordering of monomials)
MAXD(G) > 2d - 1.

. proposition 2: For every natural number d there is an F c K[x,y] with d = MAXD(F) such
. that for all Grobner-bases for F (w.r.t. the purely lexicographical ordering of
monomials)

MAXD(G) > d2-d+1 (D. Lazard: MAXD(G) > d2).

Theorem 2: Let F be a finite set of polynomials in K[x,y] and G a minimal Grébner-
basis for F w.r.t. an arbitrary admissible odering of monomials. Then
16§ < MIND(LM(F)) + 1.
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Proposition 3: For every natural number d there is an F c K[x,y] with d = MIND(LM(F))

such that for all Gribner-bases G for F (w.r.t. an arbitrary admissible ordering)
ja] >d+ 1.

Remarks:

The upper bound obtained in Theorem 1 should be compared with the following upper

bound for the degrees of polynomials for Hermann-bases H for F (see /Hermann 26/):
MAXD(H) < MAXD(F) + MAXD(F)2.

(The correction in /Seidenberg 74/ of Hermann's results indicates that Hermann's bound

should even read MAXD(F)4 in this case). The comparison gives some optimism that

Hermann's upper bounds can be improved essentially also in the case n>3.

Repeating the arguments in /Buchberger 79/, the following upper bound for the number
of steps (in the uniform cost measure) for constructing a Grobner-basis G for F may be

obtained from Theorem 1:
3/2 . (JF] + 2.(MAxD(F)+2)2 )4.

From the proof of Corollary 2 one sees, that for arbitrary (not necessarily reduced)

minimal Grobner-bases G for F one has
MAXD(LM(G)) < 4.MAXD(F)2.

/Schaller 79/ showed that, in the case of the purely lexicographical ordering, the
degrees of polynomials occurring in (the computation of) a Grobner-basis G for
bivariate F can be bounded by 2.MAXD(F)2. Proposition 2 shows that this bound can not
be improved essentially. Rather, the possibility of quadratic growth is essentially
connected with the purely lexicographic ordering. Thus, this ordering, though
indispensable for elimination purposes (see /Trinks 78/), computationally may have
disadvantages when compared with the total degree ordering (see Theorem 1).

REMARKS ABOUT THE PROOFS

The intuitions for the proofs of Theorem 1 and Tﬁeokem 2 can be obtained from a
geometrical representation of the bivariate monomials in the plane ( (xi,yj) is repre-
sented as the point with cartesian coordinates (i,j), see /Buchberger 79/) and a clear
understanding of the Grobner-basis algorithm, in particular the use of the
"overlap-lemma". The formal verification of the geometrical and algorithmic
intuitions, however, is tedious. In this paper we, therefore, give only a sketch of
the proofs. We even must omit the precise definition of some auxiliary notions and
rather rely on an intuitive understanding of some of the expressions used. All the
formal details are contained in the technical report /Buchberger 82/.

PROOF OF THEOREM 1

1. Observation: From /Buchberger 79/, /Buchberger, Winkler 79/ we know that all the

polynomials h occuring during the application of the Grobner-basis algorithm to the
input F (using total degree ordering) satisfy
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D(h) < M(F) + W(F), where
M(F):= max { D( LCM(LM(fq),LM(f2)) ) / f1. fp are "essential" w.r.t. F },
W(F):= min{ EL(LM(f)) / feF } + min{ E2(LM(f)) / feF }.

A pair of polynomials fy, fp in F is "essential” iff the consideration of its
"critical pair" (S-polynomial) can not be ruled out by the "overlap-lemma". W(F), the
"width" of F, is a measure for the "area left over" by LM(F) (:= {LM(f) / feF }.

2. Observation: A tedious formal proof shows that M(F) can be represented in the
following form
M(F) = max ( MC(F), MAXD(F) ), where
MC(F):= max { D(LCM(ty,tp)) /
t1, tp are leading monomials of polynomials in F,
t1, t2 lie on the "contour" of F and
no other such monomial lies "between" them }.

Graphically,

Yy T o

y <+ O- jl:
y -+

i 4
T T

+ i 5
T Bl L

X x2 x3

In this picture we see the leading monomials xby, x4y2 x3y4, x2y5 x7y3, x5y4 of a
set F of polynomials. Only the first four of these monomials lie on the "contour". The
least common multiples of neighbouring monomials on the contour are marked by a black
square. From every point corresponding to a leading monomial two lines are drawn (one
upwards and one to the right) embracing the area corresponding to monomials which are
multiples of the given monomial. MC(F) would be 8 in this example. (Formally, we call

a finite set T c [x,y] a "contour" iff there are no s, t € T such that s # t and s
divides t.)

3. Observation: One now proves M(F) + W(F) < 2.MAXD(F). Essentially, the represen-

tation of M(F) given above and the definition of W(F) involve only the leading mono-
mials of F. Also MAXD(F) = MAXD(LM(F)) (in the total degree ordering!). The proof of
M(F) + W(F) < 2.MAXD(F), therefore, can be carried out by establishing some lemmas on
sets of bivariate monomials whose correctness and proof can easily be guessed from the
geometrical interpretation. In more detail, we distinguish the cases MC(F) < MAXD(F)
and MC(F) » MAXD(F).

In the first case we have
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' (1)

M(F) + W(F) = MAXD(F) +W(F) < MAXD(F) + MAXD(F) = 2.MAXD(F).
For (1) we need a lemma showing that, for arbitrary sets T of monomials, the width
W(T) is < the maximal degree MAXD(T). The proof of this lemma is easy.

In the second case we have
(2) (3)

M(F) + W(F) = MC(F) + W(F) = MC(F) + WC(F) < 2.MAXDC(F) < 2.MAXD(F).
Here, WC(F) is the "width" of the set of leading monomials on the contour of LM(F) and
MAXDC(F) is the maximal degree of these monomials. For (2) we need a lemma showing
that the width of a set of monomials is determined by the monomials on the contour.
The proof of this lemma is easy. For (3) we need a lemma showing that for contours T

MC(T) + WC(T) < 2.MAXD(T)
The proof of this lemma is a little more complicated, although still easy (draw a
picture!)

PROOF OF COROLLARY 1

One minimal Grobner-basis G for F w.r.t. the total degree ordering may be obtained by,
first, computing a Grobner-basis H for F (applying the Grobner-basis algorithm to F)
and then canceling polynomials in H whose leading monomials are multiples of other
polynomials in H (see /Buchberger 76b/). By Theorem 1 we have MAXD(H) < 2.MAXD(F)-1
and, hence, MAXD(G) < MAXD(H) < 2.MAXD(F)-1. Furthermore, for arbitrary minimal
Grobner-bases G', G" for F: LM(G') = LM(G") (see /Buchberger 76b/) and, therefore
MAXD(G') = MAXD(G"). Hence, MAXD(G) < 2.MAXD(F)-1 for arbitrary minimal Grobner-bases
G for F.

PROOF OF COROLLARY 2

The residue class ring V:= K[x,y]/ID(F) ijs a vector space. If G is a Grobner-basis for
F w.r.t. an arbitrary admissible ordering R of monomials, then

Bp:= { C(t) ¢ [x,y] / t is in normal form w.r.t. G (relative to R) },
where C(t) denotes the residue class of t w.r.t. ID(F), is a linearly independent
basis for V (see /Buchberger 65, 70/). In case F is zero-dimensional, V has finite
vector space dimension. Every linearly independent basis for V, then, has the same
number of elements. In particular, all sets Bp (for the different admissible orderings
R) have the same number of elements. Now, let G be a minimal Grobner-basis for F
w.r.t. the total degree ordering Ry and let F be zero-dimensional. By Corollary 1,
(1) MAXD(G) < 2.MAXD(F) =: d.
Among the polynomials of G there must be two polynomials p and q such that M(p) = xk
and LM(q) = y! (otherwise Brg would be infinite, see /Buchberger 70/). Because of (1)
we have '
(2) k, 1 <d.
The elements of BRO’ therefore, can only consist of such C(t), where t satisfies El(t)
4 k, E2(t) € 1. Hence,
(3) I Brg | < k.1 < d2.
Now we know that | Bp | =|Bpy| for arbitrary admissible orderings R and therefore
(8) I Br i < 4.MAXD(F)2. ‘
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Assume now that G is a minimal reduced Grobner-basis for F w.r.t. an arbitrary
admissible ordering R and assume, furthermore, that geG is such that e:= D(g) >
4.MAXD(F)2. Let s be a monomial occuring in g such that D(s)=e and i1 = El(s), io =
Ez(s), i.e. e = i] + i2. Then for all monomials t#s dividing s, t must be in Bp
(otherwise g would not be part of a minimal reduced Grobner-basis). There are
(1141).(ip+1)-1 = (i1+1).(e-i1+1)-1 = ij.(e-i1)+e > e ? 4.MAXD(F)2, such monomials,
i.e. by (4), there are more than | Bp | such monomials, a contradiction!

PROOF OF PROPOSITION 1

For d>3 take

F := {_gzﬁ’l-xd, 1@ } (the leading monomials are underlined).
The Grobner-basis algorithm yields

G':= { xyd-loxd, yd, xdy, x2d-1 3,
G' is a minimal Grobner-basis for F, MAXD(G') = 2d-1. If G is some other Grobner-basis
for F, then LM(G) must contain all the underlined leading monomials in G' (see
/Buchberger 76/). Hence, MAXD(G) > MAXD(G') > 2d-1 for arbitrary Grobner-basis G for
F. (For d<2 it is easy to construct suitable examples F).

PROOF OF PROPOSITION 2

We take Lazard's example

F := {.z?-x, lyxd 1.
The Grobner-basis algorithm yields G':= { y-xd, 592-x }. G' is a minimal Grobner-basis
for F, MAXD(G') = t2. By the same argument as above MAXD(G) > MAXD(G') > d2 for all
other Grobner-bases G for F.

PROOF OF THEOREM 2

(1) The basic structure of the proof is:

(2) (3) (4)
16y =  JWMG)§ <  MIND(LM(G))+1 < MIND(LM(F))+1
+ ) +
G is minimal LM(G) is G is a Grobner-
a contour basis for F
(2) For minimal Grobner-bases G we know (see /Buchberger 76b/):
91, 92 € G, 91 # g2 == LM(q) * WM(g2).

(3) In a minimal Grobner-basis G, LM(G) is a contour (see /Buchberger 76b/).
We need the following
Lemma: Let Mc [x,y], tg € M. Then: M is a contour == [ M| < D(tg)+1.
Using this Temma, we immediately obtain j LM(G) | < MIND(LM(G))+1.

(4) Since G is a Grobner-basis, for all feF there is a geG such that LM(g) divides
LM(f) (otherwise some feF could not be reduced to 0 modulo G). Let fg be such that
D(LM(fp)) = MIND(LM(F)) and gg such that LM(gg) divides LM(fgp). Then
MIND(LM(G)) < D(LM(gg)) < D(LM(fg)) = MIND(LM(F)).

Again, the proof is reduced to the proof of a lemma on certain sets of monomials, see
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(3). Using the definitions
My:i= {teM EL(t) € EX(tg), E2(t) » E2(ty) ),
Mg1:= { teMj EL(t) » El(tg), E2(t) € Ea(tg) 1.

it is clear that M is the disjoint union of My,, {tg}, and M,1. Hence,
M = Imgi+ T +img -

Now,

(1) fMyy < El(tg) and

(2) M i< Ez(to).

From (1), (2) we get
IMj < El(tg) + 1 + E2(tg) = D(tg) + 1.

(1), (2) are easy, see /RBuchberger 82/.

(Remark: The proof method used here is not applicable for n>3. For example, starting
from tg:= x2yz we can define arbitrarily large contours M with tg e M:

M:= { x2yz, xt, xt-1z, ..., xzt-1, 2t } (t>4)
is a contour with t+2 elements.)

PROOF OF PROPOSITION 3

Take

F:= { xd, xd-1y ..., xyd‘l, yd }.
F is a minimal Grobner-basis (w.r.t. every admissible ordering). For any other
Grobner-basis G for F we have LM(F) c LM(G) (see /Buchberger 76b/). Hence,

16 > @ | > fiMF) | = JFi = d+l.
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