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A CRITICAL-PAIR/COMPLETION ALGORITHM IN REDUCTION RINGS

B.Buchberger

Mathematisches Institut
Johannes Kepler Universitdt
MOAD LINZ, Austria

ABSTRACT

In 1965, the author introduced a “critical-pairfcompletion” algorithm that
starts from a finite set F of polynomials in K[xl,...,xn] (K a field) and produ-
ces a set G of polynomials such that the ideals generated by F and G are iden-
tical, but G is in a certain standard form (G is a "Grgbner-basis"), for which a
number of important decision and computability problems in polynomial ideal
theory can be solved elegantly. In this paper, it 1is shown how the critical-
pair/completion approach can be extended to general rings. One of the dif-
ficulties lies in the fact that, in general, the generators of an ideal in-a
ring do not naturally decompose intc a "head" and a "rest” (left-hand side and
right-hand side). Thus, the crucial notions of “reduction” and "critical pair"
must be formulated in a new way that does not depend on any “"rewrite" nature of
the generators. The solution of this problem is the starting point of the paper.
Furthermore, a set of reduction axioms is given, under which the correctness of
the algorithm can be proven and which are preserved when passing from a ring R
to the polynomial ring R|xj,...,,Xq]. Z|X},...,%,] is an important example of a
ring in which the critical-pair/completion approach is possible.
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[NTRODUCTION

In /Buchberger 65, 70/ the “critical-pair/completion" approach for solving
algorithmical problems in polynomial ideal theory was introduced: let F be a
(finite) set of polynomials in K[xl,...,xn] (K a field). In order to solve an
algorithmic problem for the idea)l Tldeal(F) generated by F, first transform F
into a certain canonical form G (which was called "Grogbner-basis" in /Buchberger
76/) such that Ideal(F) = Ideal(G) and then solve the problem for G.

Essentially, G is a "Grobner-basis" iff a certain reduction relation »; induced
by G on K[xl,...,xn] has the Church-Rosser property (see definition below). It
turns out that, in fact, a number of important algorithmic problems for polyno-
mials ideals Ideal(G) can be easily solved as soon as G is a Grobner-basis,
whereas they are extremely complex in general. (Examples: deciding congruence;
canonical simplification modulo polynomial "side relations”; computing the
multiplication table of the residue ¢lass ring modulo polynomial ideals; com-
putation of the elimination ideals of a polynomial ideal; selution of linear
diophantine equations in the polynomial ring; computation of the Hilbert
function; deciding the solvabiiity of systems of algebraic equations; etc.). Of
course, the intrinsic computational complexity of these problems can not be
annihilated by this approach either and, in fact, it reappears in the construc-
tion of the Grobner-bases. The advantage of the method, however, is that, as
soon as a Grobner-basis G for F has been constructed once and for all, quite
diverse algorithmic problems for Ideal(F) (=1deal(G)) can be solved easily.
Also, for a specific input F, the algorithm for constructing a Grobrer-basis for
F may stop quickly (for example, in the extreme case, when F is already a
Grobner-basis) and, then, gives us the legitimation to use the simple algorith-
mic methods available for Grobner-bases.

The two basic ideas in our 1965 algorithm for the construction of Grgbner-bases
are the consideration of "critical pairs" of polynomials in the basis F and the

successive "completion” of the basis by the differences of the reduced forms of
critical pairs. More concretely, the algorithm has the following overall struc-

ture

G:= F

while not all “critical pairs" of G are considered do
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(b1,bp) := a “critical pair" of G which has not yet been considered
(bl,bz) t= the reduced forms of by,b, w.r.t. G;
if by # by then “complete" G by by-b,.

1]

In the context of general first order terms instead of polynomials, the same two
ideas appeared later (1967) in the well known algorithm of /Knuth-Bendix 67/,
which now is widely uéeq in computer algebra and software technology, in par-
ticular in the manipulation of abstract data type. specifications. [n fact, the
critical-pair/ completion algorithm shown above can as well be read as the
Knuth-Bendix algarithm if the appropriate notion of "critical pair" is used and
“complete G by by-by" is replaced by “complete G by the equation by=bo".

In subsequent papers (1976, 1979, 1981, 1982, 1983) the present author has been
working on the improvement and the complexity analysis of the 1965 algorithm.
Starting from 1976, also quite a few other authors {R. Schrader, M. Lauer, W.
Trinks, D. Spear, M. Bergman, G. Zacharias, F. Winkler, S. Schaller, M. Pohst,
0. Yun, F. Mora, J. Guiver, D. Bayer, H. Moller, D. Lazard) worked on the
algorithm and gave varioué applications and generalizations. The special case of
the algorithm where all poiynomials in F have the form ty-t, (t; and ts power
products) was reinvented two times (in /Ballantyne, Lankford 81/ and in /Bauer
81/). In this case, the a]gorithm yields a decision procedure for finitely
generated commutative semigroups. A fairly complete bibliography on the
algorithm with further motivation and hints to appiications may be found in
/Buchberger, Loos 82/. Some very recén; papers on the algorithm are /Buchberger
83/, /Winkler, Buchberger 83/ and /LLopis 83/.

Various authors generalized the algorithm to Z[xl,...,xn] {/Lauer 76/) and to
R|X],..+,%y ], where R is a ring that satisfies certain axioms (/Trinks 77/,
/Spear 77/, [lacharias 79/, /Schaller 79/). Roughly, these axioms are:

8321-2

(R1) the decision problem "f e Ideal(F) ?" (f ¢ R, F € R) must have an
algorithmical solution and

(R2) a finite set of generators for the solutions of linear equations in R can
be found algorithmically.

In these papers it is also shown that, if R satisfies these axioms, then also

R[xl,...,xnj satisfies the axioms: if R satisfies the axioms then (a variant of)
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the above algorithm may be applied to sets F E_R[xl,...,xn] yielding Grabner
bases G for which the problems mentioned in (R1) and (R2) are seen to be.easily
solvable.

/Bergman 78/ is a generalization of the algorithm to the case of associative R-
algebras. However, the "left-hand sides" of the generators are supposed to be
pure power products. /Bauer 81/ shows also how the commutative semigroup case
can be viewed in a much broader perspective.

[n the present paper, we present a different generalization of the algorithm,
which in various respects is more satisfactory than the generalizations given so
far:

(1) The generalization works in general rings (satisfying certain axjoms (A)),
not only in polynomial rings.

(2) The algorithm preserves its extremely simple structure. A general con-
cept of “critical pair" specializes to a concrete computational step in the
various example domains. In particular, it specializes to the authors
algorithm 1in the case K[xl,...,xn], whereas in the generalizations reported
in the literature at the place where “critical pairs" have to be computed in
the 1965 algorithm, linear equations have to be solved, essentially.

{3) The formulation of the axioms {A) involves only the basic ring operations, a
noetherian order relation and variables over ring elements.

{4) The notion of ‘“reduction" is basic ({and not the notion of "ideal" or
"equation”).

(5) The construction of Grobner-bases in R[xl,...,xn} does not presuppose the
solution of equally hard algorithmical problems in R (as it is the case in
the generalizations cited above, see (R1) and (R2)).

(6) The properties (A), again, carry over from R to R[xl,...,xn]. However, the
proof of this fact does not involve the solvability of algorithmic problems
of the type (R1), (R2) either.

(7) The construction has various degrees of freedom: Given R, a wide variety of

different sets M of "multipliers", of different noetherian orderings » on R
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and of different notions of reduction "steps" can be chosen. fvery choice
leads to a correct algorithm., The particular choice can be made i~ deren-

dence or complexity considerations and other criteria.

(1)-(7) may be conceived as a first attempt to achieve a "constructive ring

theory"
algorithm" for enforcing the Church-Rosser property far reduction relations as

based on the notion of “reduction" with a "critical-pair/completion

the basic algorithmic tool.
8321-3
The specific difficulty = of this = objective is twofold:

(1) The notion of “reduction" and of "critical pair" in polynomial rings (and
also in the general framework of rewrite rules) presupposes the distinction
of a "head” and a "rest" ("left-hand side" and a “right-hand side") of the
generators (generating equations). In general rings, however, one has to
find a way to formulate the concepts of "reduction" and "critical pair"
without any appeal to an underlying "lTeft-right" structure of elements.

(2) The axioms (A), at the same time, should be strong and weak. Strong axioms
(A) make the correctness proof for the algorithm easier. Weak axioms extend
the class of rings, to which the apbroach is épplicable. In the proof of "R
satisfies (A) ==» R|xy,...,x,] satisfies (A)" strong axioms (A) would be
nice in the premise, whereas weak axioms (A) would be nice in the

conclusion!

(3) The definition of "critical pair", at the same time, should be strong and
week. A strong definition guarantees that only a few critical pairs remain.
Hopefully 1in a given ring R, only finitely many cirtical pairs should
remain because we aim at a critical-pair/completion algorithm which needs
to consider only finitely many critical pairs. A weak definition leaves us
with more critical pairs, which makes the proof of the correctness theorem
for the algorithm easier. Furthermore, the definition of "critical pair"
should be such that, in the special case K[xj,...,x,], it specializes
exactly to the author's 1965 concept.

Quite a few attempts were necessary in order to arrive at appropriate concepts
of “reduciblity" and "critical pair" and to get a feasible balance for the
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axioms (A). Finally, our notions of "reducibility" and “critical pair", in
addition to being appropriate, seem to be fairly natural. Still, most of our
axioms (A) seem to be naturai. Only (A5) (see below) can not be motivated
easily.

From now on, the presentation will be- "bottom-up": Section 1. presents the
general definition of "reduction" and “critical pairs", which is applicable to
arbitrary rings. Section 2. introduces axioms for rings, 1in which the
critical-pair/completion algorithm can be correctly executed. For the moment,
such rings will be called "reduction rings". In Section 3., the central theorem

and its proof is presented: for checking the Church-Rosser property of the
reduction relations in reduction rings, the consideration of the critical pairs
is sufficient. Based on this thecrem, the general critical-pair/completion
algorithm for reduction rings is formulated. In Section 4., it is shown that, if
R is a reduction ring, then also RLxl,...,xn] is a reduction ring. In Section
5., the example of the ring Z is considered . It turns out, that our algorithm
specializes to Euclid's algorithm {in fact, to a whole spectrum of Euclidean
algorithms, which seems to be very satisfactory from an aesthetical, historical
and systematical point of view). In Section 6., the particular exampie of
Z|X),+x+,%Xy | is considered in more detail. The reader who is interested in this
example only, after having read the definition of the reduction relation +; in
Section 1., can immediately pass to the description of the algorithm in Section
3. and the explanation of the subalgorithms in Sections 5. and 6. He, then,
should be able to compute Grobner-bases for ideals in Z[xy,...,x,] and to
program the algorithm for this domain. In section 7., Z, and Zm[xl,...,xn] is

considered.

83214
1. REDUCTION AND CRITICICAL PAIRS

Let R be a commutative ring with 1 (possibly with zero divisors), ¢ a noetherian
(partial) order relation on R and M ¢ R (set of "multipliers"). (Typed

variables: a,b,c,d,e for elements in R; C,D for subsets of R; 1,m for elements
in M; 1,3,k,n for natural numbers, ¢ is noetherian means that there are no infi-

nite sequences aj*aydagd... )
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Nefinition: a b iff a -mc¢ =b for some m and
a)b
(read: "a reduces to b modulo ¢").

Definition: a + b iff a +. b for some c ¢ C
(read: "a reduces to b modulo C").

(For reduction relations -, the following additional notation is used: +« is the

. . * x . L. .
inverse relation to ». =~, +¥, +", = are the symmetric, transitive, reflexive-

transitive, and reflexive-symmetric-transitive closure of =+, respectively.

Furthermore:

a -« iff a »b for some b

(read: "a is reducible (w.r.t. =+)"}.

a iff a+h fernob (i.e. not a -)
(read: “a is irreducible" or "a is in normal form"}.
a v b iff a-+" d«< b for some d

(read: "a and b have a common successor").

a - {(€¢d) b iff for some €seesa€p.
a=ep -~ €) -~ ep - ...~ e, | - eg=b and
€0,€1,...,8, ¢ d

(read: "a and b can be connected below d").

The notation is used quite flexibly: for example, "a » d « b" is an abbreviation
for "a » dandd « b"; "«

etc. ).

a +. " is an abbreviation for "a ». and a +52 :

C 1 C2 C 1

.

Definition: a is a common reducible for €y and ¢y iff fcl a 'cz

3
Definition: ¢y & ¢ iff a is a common reducible for ¢; and ¢, and

for no my,mp:
a-mycy +C1 a +C2 a-maCa and

(a-mlcl a-mlcl-mzcz or

+
€2
a-m2c2 +c1 d-m2C2-m1C] )
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(read: "a is a non-trivial common reducible for c; and c,").

(It will become clear in Section 3. why, in the above situation, the reducibi-
lity of a is called "non-trivial“. Roughly, “"trivial" common reducibilities pre-
sent no problem in establishing the Church-Rosser property for the reducibility

relations considered, The “diagram”

€1 c2

b]_:"- a - mlcl a - m2c2 =!b2

can always be "closed"

a
€1 ¢/// \\\’ 2
by by
v

in the case of a “trivial” reducibility.)

8321-5
a

a a
Definition: ¢y & ¢, iff ¢y 4 cp and forno a'€a: c; 8 ¢
(read: "a is a minimal non-trivial common reducible for ¢; and

czu)‘

(It will turn out that the minimal non-trivial common reducibles play the cru-
cial role in establishing the Church-Rosser property: the "critical pairs", to
which the minimal non-trivia1 common reducibles can be reduced, are the only
pairs of elements where the Church-Rosser property might be injured).
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Definition: by, by, form a critical pair for C1.Cp w.r.t.a iff

a
€1 8 ¢ and bl +

€1
Although the reduction s+ looks very much as “one directed step” in the ideal
theoretical congruence Z¢, in general, it is not true that “C* = . (We use the
notation:
a b iff a=b+ I dy.cj for some n, djeR, c;eC -
1<j<n
(read: "a is congruent b modulo (the ideal generated by) C"). )

However, under very weak additional assumptions (see M(5) and (A2) below), “C* =
zc can be derived and, of course, this is what is needed in order that knowledge
about the reduction relations (in particular, - the knowledge about the
Church-Rosser property) can be used for an algorithmic solution to ideal theore-
tical problems.

2. REDUCTION RINGS

Definition: A commutative ring R with 1 {possibly with zero divisors) together
with a noetherian (partial) order relation £ on R and
a set Mc R (set of "multipliers")

constitute a reduction ring iff the following axioms are satisfied:

Axioms for multipliers:

{M0) 0 not in M

(M1) 1 eM

(M2) ifmeM then -m e M

(M3) if m, my e M then my.my ¢ M

(M) if m ¢ M then m is not a zero divisor

(M5) if a b then there exist n, m; e M, ¢; e C such that

a =b+ Im]-.ci
1<i<n

(In the case of rings without zero divisors, sometimes M may be taken equal to

R-{0}. Of course, in this case, the axioms (M) are trivially satisfied. However,
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the consideration of M # R provides an additional degree of freedom. For
example, in the case of polynomial rings over fields, by taking M:= set of mono-
mials, we obtain the original reduction relation in /Buchberger 65, 70, 76/. In
the presence of zero divisors, the availability of sets M # R is crucial, )
(M1),(M2} could be replaced by (M1') - 1 & M, because then 1= (-1).(-1) e M
by {Ml') and (M3), and, if m e M, then -m = (-1).m e M again by (MLl') and (M3).

Axioms for the reduction relation:

(in the case when no zero divisors are in R):

(AL} if a + 0O then a3 O
(A2) if a - b then a +d v, b +d
(A3}  if a ve b then m.a “c m.b
(M) if by <- @ ». by then by -C*((&) bs
a
(AS)  if ¢y 8 o then there exist a‘€a and m such that
i AL

1A €3 and
for all c: (if a'+c€a' then a+m.cfa)
8321-6
In the case when zero divisors are present the axioms (A2) and (M) must be
formulated in the following way:
(A2) if a +c a-m'.c then there exist 1i,mj such that
a+dsa+d- 1+ ..o atd- lic - .o e =

=3 -m.c+d-mec .- me o« o d-mic+d-mcea-mctd

Cove c

and
It oo+l =m +m + .., +m
(M} if a -mc « a *c @ -macC
then there exist 1; such that

a - mc = a-mc - Ic mC e
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ser mca -mec - 11c - ... - 1yc =a - myc,

a -mc¢ - he, oo ,@3-mc - e - ... - Hcoda, and
m1+11+...+1k'=.m2

In the proofs we will nat prosuppose that R contains no zero divisor. We will,
therefore, work with the second version of (A2) and (M ). In rings without zero
divisors we only have to check whether the first version of (A2), (M) is
satisfied because, then, the second version is satisfied also.

{These axioms connect the ring Qpérations with reduction. Note that no appeal is
made to the solution of “higher" algorithmic problems in R, as was the case
with (R1), (R2). Stronger forms of the axioms, which naturally might come to ones
mind, do not even hold in the original example of polynomial rings. For example,
(A2) can not be replaced by: if a +. b then atd +. btd.)

Axioms of effectiveness:

Addition, multiplication, reduction and the formation of critical pairs must be
effectively possible in R (as will be explained in more detail in Section 3.
after the presentation of the critical-pair/completion algorithm).

Axioms of terminatijon:
(T) There exists no infinite sequence of subsets D, D,,.., of R such that
Red(Dy) ¢ Red(Do) ¢ ...
(where "c" is strict set inclusion, and Red(D):= { a[ arg } ).
a . . - .
(T2) For all ¢y, ¢p: { a 1 } is finite.
(These axioms will gquarantee the termination of the general

critical-pair/completicn algorithm. )

Some more remarks about the axioms:
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1.

Note that the axioms, essentially, are formulated in terms of the arith-
metical operations in the ring and the reduction relation +.. No appeal to
the notion of an ideal is made. Actually, the whole investigation described
in this paper could be carried out without any appeal to ideals at all ((M5)
could be canceled), i.e., finally, what one gets is always a decision proce-
dure for (—-)c.
theory then we must try to establish {--¥. ==, which can be dore by using
(M5).

Only, if we want that our investigation is relevant for ideal

8321-7
(M5) is equivalent to

(M5') for all a there exist mi €M, n e N such that

a=2mi
1<i<n

(Proof: Assume (MS). Censider C:= {1} and an arbitrary a. Then a 3 O.
Hence, by (M5), a = 0 + ] mjc; for certain mj e M, ¢; € C, i.e.
1<i<n
a =7 (m.1) = | m.

Conversely, assume (M5'). If a =. b, then a = b + } dj.cj for
1<i<n

certain d; e R, ¢; e C. By (M5'), each of the d; can be repre-

sented in the form:

d.i = Z mi,j'
1<j<n;

Hence, a = b + J (J m j)ej = b+ 1 (m; j €i), which is a
id i,J
representation of the form required in (MS5).)

(M5') shows more clearly the power of (M5). For example, in the case of poly-

nomial rings, (M5) = (M5') displays the fact that every polynomial can be
built up from monomials. (Compare the notion of a “graded ring"!}.
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[t should also be noted that the stronger versions of {AZ2), (M) are only
needed for carrying the axioms from R to R[xl,...,xnj but not for the praof
of the main theorem, ‘

. By the generalized Newman-Lemma (see below), (Ad) is equivalent to

(M) +- has the Church-Rossen property.

. The motivation for (A5) will become clear in the proof of the main theorem.
Roughly, (A5) guarantees that in every “"non-trivial" situation

Y\

we can find a “"non-trivial” situation
3!
ol \ e
"below" a such that if the second diagram can be closed

oy \

NV,

then this closure can be "lifted" to the level of a by the multiplication of
all intermediate paints by a suitable constant multipte m.

3. CHURCH-ROSSER PROPERTY AND GRUBNER BASES

The following definition is standard:

» has the Church-Rosser property iff for all a,b: (if a -*b then a+" b).

The importance of the Church-Rosser property for reduction retations stems from

the following well known fact:

If + has the Church-Rasser property then
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x

a - b iff S(a) = $(b)
{where $ is an arbitrary function (a "canonical simplifier") satisfying:
. S{a) = a, if a
S{b), if a» and b is some element such that a+b}.
8321-8

This means that, for Church-Rosser relations »,"a ~* b* can be decided by simply
comparing S{a) and S(b). (A review of known results on Church-Rosser relations
may be found, for example, in /Buchberger, Loos 82/). In the case of those
rings, in which ”C* = = holds, one hence has an easy decision procedure for the
ideal theoretic congruence =; as soon as it is known that the reduction relation
+c has the Church-Rosser property. (In fact, as was pointed out in the introduc-
tion, also a number of other algorithmic ideal theoretical problems can then be

solved easily).

Unfortunately, for an arbitrary (finite) C, in general -7 is not Church-Rosser.
The critical-pair/completion approach sketched in the introduction now suggests
to “complete” C by suitable elements (derived from critical pairs) without
changing the ideal until a set D is reached, whose coressponding reduction rela-
tion + is Church-Rosser. The feasibility of this approach in the general con-
text of this paper is established by the following theorem.

Presupposition: From now on presuppose that R, ¢, M constitute a reduction ring.

Main Theorem: »- has the Church-Rosser property iff

a

for all ¢y, ¢y e C and @ such that ¢; A ¢

there exists a critical pair by, by for c), ¢y w.r.t.a such that
bl -C*((a) bz.

(Note that the condition formulated in this theorem 1is even weaker than
announced in the rough sketch of the method: we do not require all critical
pairs to have a common successor and, alse, we do not iasist on the existence of

comuon successors but only require that by, b, may be connected "below" a).

Using this theorem, the following algorithm can be shown to carrectly solve the
following probiem.

Problem: Given: A finite set C c R.
Find: A finite set D £ R such that

83-21.0 / page 14



* *

“c = = and
»p has the Church-Rosser property.

Algorithm:

D:=C
a
B:= { ([Cl,Cz},a)!Cl,Cz e C, cp A Co }

while B #¢ do

({cl,cz},a) = one triple out of B

B =B - { ([Cl,Cz},a) }

{by.by) = two elements such that by e @ e, by
(

by,bp) 1= (sD(bl),sb(bg))

if by # by then

C bl-bz

a
B:=Bu { ({c,;'},a)] c'eD, ca ¢'}
B:;= D u {c},

(Here, Sp is a “"simplifier" for +p of fhe kind described above. The “algorithm"
is effective in the precise sense of algorithm theory provided that the basic
operations appearing in the instruéfiQns of the algorfthm can be effectively
executed in the ring considered. This means that, in addifion to the axioms (M),
(A), and (T) one must stipulate for reduction rings that the ring operations,
the determinatjon of a “b such that a #y b, in case a +p", ahd the determination
of all "a such that ¢ gé‘;z" are effgctive operations. Stated differently, the
above algorithm is an algorithm “relative" to the effectiveness of the opera-
tions mentioned ébove. A reasonable §tipulatinn for making reduction effective
would be: one requires that ' 7

(E1) € is decidable on R,
(E2) there exists an algorithm A such that for all a,c:

a + == a A (a,c).c § a,
A (a,c) e M,
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‘a »." is then also decidable, assuming that M is a decidable subset of R.
8321-9
Due to the following lemma the above problem can also be stated in the following

form,
Lemma: -~ = =,

Problem: Given: A finite set C ¢ R.
Find: A finite set D ¢ R such that
¢ = Ip and
+p has the Church-Rosser property.

Summarizing, this means that, for an ideal generated by an arbitrary set C, the
above algorithm constructs a new basis D for the same ideal such that +p has the
Church-Rosser property and, hence, an easy decision procedure for the congruence
%¢ = Zp is available ( namely, a s b iff Sp(a) = Sp(b) ). Extending the ter-
minology introduced in /Buchberger 76/, sets D, whose correspending reduction

relation sy is Church-Rosser, will be called Grobner bases.

Proof of the lemma:

If a -« b then a 3 b: easy! (Iterate: if a »c b then a =z b ).

*

If a I b then a “C b:

Proceed by induction on nin a =b + § m;c; (where the m;, by (M5), can

1)
1<ic¢n

be chosen in M and the ¢i are in C). The case n=0 is clear. Case nz0:

(1) (ind. hyp.)
* *
nn *cn b+ ] myc; “C b.

1<i<n 1<ign-1 1<i<n-1

a=b+ ) omc; = b+ ] micy +mc

(1) is a special instance of the following general law in reduction rings:
d *c* d+m.c. (Proof: Case m.c=0 trivial, In case m.c#0, m.c »_ 0

and, hence, by (A2) d#m.c +C* d+0 = d.)

C
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Proof of the theorem:

The proof can be structured by the following “generalized Newman-Lemma™, which
seems to be the strongest form of a Newman-type lemma known so far, i.e. it
singles out a very weak condition under which the Church-Rosser property of
reduction relations can be guaranteed. The author introduced this lemma and its
proof in /Winkler, Buchberger 83/, where it is used for a different purpose.

Generalized Newman-Lemma: Let + and ? be binary relations on a set T,?

noetherian and » ¢ ». Then + has the Church-Rosser property iff
for all a,by,by e T:

if by «a +»by then by «'((a) b,

For proving the theorem, we take arbitrary a,b;,by e R, ¢y,cp € C and assume
(1} b Ty ? T by.

According to the generalized Newman-Lemma it suffices to show

(2) by = (€a) by,

For notational convenience, ~+ etc, will be used instead of +c etc. in this
proof. Also, the axjoms (M) about the multipliers will be used tacitly.

Epépiifor some my,Mp: a-mMyCy-MyCy *cy a-myc,y ‘¢ a *co a-MaCo:
In this case (where a is a "trivial common reducible" for ¢ and ¢s)

(M) (3) (M)
* * *
Dl "cl ((a) a-mjc) - (€a) d-MaC o -cz ((a) bZ'
8321-10
(3) needs some more details: a *c) a-mjc; implies a-mocy +c1* a-mjcy-myCy, by

(A2). Now, a-mjc, "¢, a-mc)-mycy by case assumption. Hence, (3) holds.

Lase: for some my,mp: a-mycy -« a -

< a-mycy ’cl a-mpCp-mycy: analogous.

2
Remaining Case: In this case ¢ Ad ¢, holds (this is the "non-trivial” case: a
is a "non-trivial common recucible" for ¢; and cy). Using (A5), choose an a'{a
and an m sych that

Gy Ef <y and

- foroa't oL tfoa'+vc £ g then atm.¢ £ a.



By the assumption of the theorem, cne can choose by', bz' such that

(6) Dby' e 2 ", bp' and

(7) byt ~Tlga') by

Let my,mp be such that

(8) by'= a‘-mlcl,‘b2'= a'-mocy,,

Because of (7) one can choose ep,...,e, Such that

(9) by'=eg ~ep =ep - ... - e_] - gy and

(10} en,...,8 € a'.

Now, let fgsere fy be such that

(11) &j = a'+f; (for 1=0,..,,k),

(10),(11), and (5}, then, imply

(12) a+m.f; < a (for i=0,...,k).

Furthermore, using (A3), from {9) one gets

(13) meg ~mey - ... = me,

and, using (A2},

(18) (a-m.a'}+m.eq o {a-m.a')+m.e; ol (a-m.a')+m.e,.
Now, by (11),
(15) (a-m.a')+m.e; = atm.f; (for i=0,...,k}.

By (8), (9), and (11),

(16) a+m.fy = a-m.my.cq, atm.f = a-m.my.co.

Hence, by (12),(14),(15), and (16), one finally obtains
(17) a-m.my.c, ~¥(¢a) a-m.my.Cy.

Because of (12) and (16}, one glso has

(18) & >, a-mmp.cy, a = a-m.my.cCo.

Hence, one is allowed to use (M).obtaining

(19) by «Cl*(<a) a-m.ml.cl,ri?- a-m.my.cp ~C2*(§a) bs.
(17) together with (19) yields (2).

summary of proof:
One has to "close" a in order to obtain a
C 1 [ 2 C 1 C 2
*
by b by - (4a) by

By (A5) and the assumption of the theorem one can find a'€a, m,ny,My such that

83-21.0 / page 18



can be closed: a' X
Cl/’ ¢z
!
w *
Dl' - ((a')Dz'

N a l
\
/ |
! ‘\:2
bl! bz'

=a-m1c1 =a-m2c2

and the closed triangle can be "lifted” to the level of a by an appropriate

muitiplication with m and an addition of a-m,a' yielding

Cl C2

blu “*(<a) b2u
=3 -mmlcl =3 -mm2c2

Finally using (M), the desired interconnection between by and by can be

established:

by =, (€a) by" -*(¢a) b, »cz*((a) b,

Partial Correctness of the Algorithm:

The partial correctness of the qlgorithm can be proven by the method of induc-

tive assertions. The inductive assertion for the while-loop is:

:C = ED,

a
if ({cy,cph,a) e B then ¢y,cp eD, ¢y &

a
if cp,cp €8, ¢; & cp, and {{cq,co},a) not in 8

then for some by, by: by +C1 a +C2 by and by "D*((a) bZ'
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Knowing the theorem, the other details of the correctness proof are easy.

Termination of the Alqorithm:

The termination proof for the algorithm uses the axioms (Tl) and (72). (T2)
guarantees that the block within the while-loop is always left after finitely
many steps. Furthermore, one can prove:

(1) Let D; be the value of the variable D after the if-statement in the
while-loop has been executed for the i-th time {(Dg = C). Then

RE‘d(Do) C REd(Dl) C REd(Dz) c ...

Knowing (1), it is clear that the while-loop can be executed only a finite
number of times: Either the if-statement is executed only finitely many times,
hence 0 stabilizes and B will get exhausted, or the if-statement is executed
infinitely many times and hence, by (1), a sequence Red(Dy) ¢ Red(D;) c Red(D,)

¢ ... would exist in contradiction to (T72).

Proof of (1): Surely, Dy ¢ Dj,y and therefore Red(D;) ¢ Red(D;,,) for i=0,1,...
One has to show that Red(D;)#Red(Dj,1). Let by, b, be the elements constructed
in the algorithm before the if-statement is entered for the (i+l)-th time. One
knows

(2) by and by are irreducible with respect to D; and

(3) by # by.

One can show:

(4) at least one of by, by is reducible with respect to 0541
and, hence, Red(D;) and Red(D;,,) can not be equal. For proving (4}, the
following law halding in arbitrary reduction rings may be applied:

(5) if azb then a **a-b b.

{Proof: azb implies a-b +3-p 0. From this, by (A2), one gets a *ia-b b.)
Applying {5) to (3) yields

(6) by "5 L,
Lase by=d=by: not possible because of (3).

d **bl—bz bo  for some d,
Lase by#d: In this case there is a d' such that by *bl-bz d' **bl'b2 d. Hence,

b1+0i+1 because by-bp e Djy4.
Lase by#d: Analegous: b2+“1+1'
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8321-12

4. POLYNOMIAL REDUCTION RINGS

In the foliowing, the typed variables f,p,q,r are used for polynomials and the

typed variables s,t,u for n-variate power products (special polynomials of the
i
1

1
form x; <X M. Let ¥1 be an arbitrary total ordering on the power products

satisfying

(PP1} for all s#l: 1 &ys
(PP2) for all s,t,u: if s §7t then s.u £y t.y

C(p,t) will denote the coefficient of the polynomial p at the power product t,
H(p,t) and L{p,t) denote polynomials such that

p = H(p,t) + Clp,t).t + L(p,t)
and

for all s <7 t: C(H{p,t),s) =0,
for all s >y t: C(L(p,t),s) = 0,

H(p,t) and L(p,t) are called the “higher" and the "lower" part of p relative
to t (w.r.t.€r). LC(p), LP(t), LM(t) and R{p) are the "leading coefficient",
the "leading power product”, the "leading monomial" and the "rest" of p
(w.r.t.€r) in the usual sense. Hence,

p = LM(p)} + R(p),
LM(p} = LC(p).LP(p).

Theorem: If R, M, € constitute a reduction ring

then R[xi,...,xn], M{x1,...,x,}, &€ constitute a reduction ring, where

R[xl,...,xn]: set of polynomials with coefficients in R,
M{x{,...,xpti= {m.s| meM, s is a power product },
p €€ g iff there is a t such that

Hip,t) = H{g,t),

C{p,t) € C(q,t).
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Remark: Of course, one also could formulate the theorem, first, for the tran-
sition from R to R[x] and then obtain the above theorem by iteration, However,
the direct transition from R to RLxl,...,xn} opens the possibility to use a big
variety of different orderings £y and, hence, orderings €€ as an additional
degree of freedom, which may prove useful for the algorithmic aspects pursued in
this paper. The iteration of the transition from R to R[x] implies that,
finally, the power products in R[xl,...,xn] would be ordered according to the
“purely lexicographical™ ordering,

Proof: The proof of this theorem is quite tedious:

Proof that €€ is a noetherian partial ordering: It is easy to show that ¢¢ is a
partial ordering. It is well known that (PPl) and (PP2) imply -that (7 is
noetherian, see for example /Buchberger 80/. From this and the assumption that <
is noetherian it can be proven that ¢ is noetherian. Similar proofs are con-
tained in /Lauer 76/, /Trinks 78/, /Zacharias 78/, /Schaller 79/ and other
papers. In order toc make this paper self-contained, the details of the proof
are given,

We first show that {¢ is transitive. let p ¢¢ q €€ r. We have to show p €< r.
Let t and t' be such that

[}
r

)
")+ Clr,tt )t + L(r,t'),
) = H(r,t'), C(q,t') € C(r,t').

Case t >»t': In this case,
Hip,t) = H(q,t) = H(r,t),
C{p,t) € C(a,t) <C(r,t), i.e. C(p,t) € C(r,t).
Hence, p ¢£ r.

8321-13
Case t €€ t': In this case,
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Hip,t') = H(g,t') = H(r,t'},

C(p’t.) C(q)t') ‘ C(r?t!)'
Hence, p €¢ r.

We next show that £¢ is irreflexive: Assume p £{p, then C(p,t) ¢ C(p,t} for
some t. This contradicts the fact that € is irreflexive. :

We now show that €4, restricted to M{xl,...,xn}, is noetherian. Note that for
a.s, bt e M{xy,...,x,}, a, b #0: ‘

(1) a.s €€ bt €= (s¢rtors=tanda<b).

We use noetherian induction on &t in the foT]owing statement.
For all s:
there is no infinite sequence ajt; ¥ apty, »» ... with ty = s.

Let s be arbitrary, but fixed and assume that -
at ) aztz ”» ...
is an infinite sequence with t; = s,

Case ty = tp = ...: In this case, by(l),

al?dz)... .

in contradiction to the fact that { is noetherian.
Case ty = ty = ... =t; # tj4) for some i: In this case

ti ¥y tys) (because tj {1 tyyy, by(1), wauld imply
aiti 46 ajuptiv)e

Now, aj,1ti41 ¥ d5.0t542 ?» ... would be an infinite

sequence with tj,) €7 s. This contradicts the induction

hypothesis. ' ,

We now show that ¢£, on R[xl,...;xﬁ] is noetherian. We use noetherian induction
on €<, restricted to M{xy,...,xp}. In the following statement:
For all a,s: |
there is no infinite sequence Py N e ..
with M(p;) = a.s.
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Case LM(py) = WM{pp) = ...: In this case
R(pp) »» Ripp) 2 ...

is an infinite sequence with LM(R(pl)) << LM(pl) = a.s. This contradicts
the induction hypothesis. '

Case LM(DI) = LM(pz) = ,.. = LM(Di) # LM(P1+1)

Subcase LP(p;) <7 LP(pj41): not possible because, in this case, p;
would be {(¢ Pi+1s

Subcase LP(p;) = LP(pj4q): In this case
LC(pj) » LC(pj47) and hence, by(l},
LM(pT) » LM(D1+1).

Subcase LP{p;) ¥y LP(pj4+1): In this case, again by(l),
LM(pi) » LM(pi+l).

In both subcases

Pi+l »» Pit2 ¥ ...
would be an infinite sequence with
LM(pj4+p) €8 LM(p;) = WM(py) = a.s
in contradiction to the induction hypothesis.

8321-14
Proof of (MO),...,{M): Easy. For (M5) note that, by (M5') in R, al) elements

aeR can be represented in the form a = [ my_ [, more detail, let p =z q, where

Lxl,..., n]
p = ! aj.ty.fy for certain a; e R, t; power products, fj ¢ F, n e N.
1<i<n

.
l'Dlﬁ

By(M5'), each of the a; may be represented in the form a; = } mi i
1(j(k1
where m; jE M. Hence

p=ag+ UIm jhtify = q+ [ (my jti)fy.
ij i,
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This is a representation of the form required in {(M5) for R[xj,....x,], because
all the fl'l.i ,jt'i [ M{xl,...,xn}.
Proof of (Al): Clear.

Proof of (A2), (A3), (M ): A1l these proof are based on the fact that

(RED) p »¢ p - mu.f iff (C(p,t) - m.LC(f) € C(p,t), where t = u.LP(f)).
Proof of (RED), ==: If the condition on the right-hand side is fulfilled, then
clearly p - mu.f = H{p,t) + (C(p,t) - m.LC{f)).t + L(p,t) - mu.R(f) << p,

i.e. P ¢ p - mu.f according to the definition of »¢.

Proof of (RED}, ==: If p +¢ p-m.u.f then p - mu.f ££ p.

Define t:= u.LP(f). Then
p - mu.f =H{p,t) + Clp,t).t + L(p,t) - mu.LC(F).LP(f) - m.u.R{f) =

= H(p,t) + {C(p,t) - mLC(f)).t + L{p,t) - m.u.R(f).
One has to show
(1) Clp,t) - m.LC(f) ¢ C(p.t).

C{p,t) - m.LC(f) » C{p,t) is not possible because otherwise p - m,u.f would
be ¥ p.

C{p,t) - m.LC(f) = C(p,t) is not possible because otherwise m.LC(f) = 0, i.e.
m would be a zero dijvisor (LC{f) # 0 since f # 0:

f =0 would imply p - miu.f = p instead of
p-muf £ p!)

C(p,t) -m.LC{f) incomparable with C(p,t) is not possible either because,
otherwise, p - m.u.f would be incomparable with p.

Hence, (1) is the only remaining possibility.
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Proof of (A2): Assume p +¢ p = m'.u.f and let r be arbitrary, but fixed. One

has to construct MpyeeeaMyy Ulyees,ly, Nlaeeenlys Viseos,V
such that

Y

(1) p+r P A r-muf o orrptro-mufo- .. - myu, f =

=p-muf +r - nvif - ... - nyvyf F oeen *F
¢ p-muf +r - nvif «gp - m'uf +r

and

(2) muy + ... +mu, = m'y + VL +eee + vy

Let t:= u.LP{f). From the assumption we get
p - m'uf = H(p,t) + (C(p,t) - m".LC(f)).t + L{p,t) - m'uR(f).
and, by (RED),
8321-15
(3) C{p,t) - mLC(f) € C(p,t).

Now,
p+ro=Hp,t) +H(r,t) + (Clp,t) + C{r,t)).t + Lip,t) + L(r,t),

p -m'uf +r =H(p,t) + H{r,t) + (C{p,t) - m"'.LC(f) + C(r,t)).t +
+ L{p,t) - m'uR(f) + L(r,t).

Because of (3) one has C(p,t) *LC(f) C{p,t) - m'.LC(f). Hence, by (A2) in R,

there are My yeeesMy, Ny,...,ny such that

My v
(#) Clp,t) + Clrst) =g(gy Clp,t) + Cryt) = mpLC() »g(f) «ov *1(f)
21e(f) Clpat) + C(r,t) - m.LC(F) - ... - m.LC(f) =
= Clpt) + C{r,t) - m'.LC(F) - npuLC(F) = ... - Ay LC(F) «c(f)

LC(f) +-- “LC(f) Clp,t) + C(r,t) - m".LC(F) - nl.LC(f) “LC(f)

“Lo(f) Clp,t) + Clr,t) - m'.LC(F).
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and
(S)y m + ... #m =m' +np + ... +D

y -

Define now:

Then clearly (2) holds. For proving (1), note that
(6) p+r - muyf - ... - myuyf =
H(p,t) + H(r,t) +
+ {C(p,t) + C{r,t) - m.LC(f) - ... - my. LC(F}).t +
+ L{p,t) + L(r,t) - muR(f) - ... - mjuiR(F).
By {4) one, hence, has

Prrospp+r-muif e spp+r-muf- ... myeuy o

Similarly,

p-muf +roapp -miuf +r - ngvf ap L. o
+p -muf +r - napvf -, - nyvyf.
Finally, by (5},
ptr-muf - ... - mu,f =
=p-muf +r -nvyf - ... - nyvyf.

Thus, (1) is proven.
Proof of {A3}: Assume p +¢ q. Let m' and v be arbitrary, but fixed. One has
to show

(1) m'vp ~¢ m'vq.
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Let m,u be such that g= p - muf, Then by (RED)

C{p,t) - mLC(f) < C(p,t), where

tr= u.LP(f).
q = H(p,t) + (C{p,t) - mLC(f)).t + L(p,t) - muR(f).
Hence,

(2) C(p,t) “Le(f) Clp,t) - mLC(f).

Now

m'vp = m'vH(p,t} + m'.C{p,t}.vt + m'vL(p,t),

u

m'vg = m'vH(p,t) + (m'.C(p,t) ~ m'm.Le(f)).vt + m'vL{p,t) - m'mvuR(f),

u

m'vg = m'v(p - muf) = m'vp - m'mvuf,
mimvu e Mi{xy,...,x, ],
m'vH(p,t) = H{m'vp,vt),

m'.C{p,t) “LC(f) m'.C(p,t) - m".m.LC{f) (by (2) and (A3) in R).

Hence, by (RED}, one has (1).
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Proof of (M): Assume p - myuyf «¢ p +¢ p - mpupf. We have to show that there
exXist 1y,ueu, Ty, V1sees,Vy Such that

(1) p - mlulf “f

p - mlulf - 11v1f ~f

p - mlulf - ]1V1f = eee T ]kaf =p - m2U2f,

{2) p

mupf - Tpvpf - oo = Tvyf €€ p o {for § o= 1,...,k),

J
(3) mlul + 11u1 + ... * ]ka = mzqz
By (RED}),

(5} C{p,ty) - my.LC(f) § C(p,tp), where

(6) tl = Ul.LP(f), tz = UZ.LP(f).
Let qq:= p - muyf,
q2:= p - mzuzf.

Lase t) 27 ty: In this case
(7) Claz,ty) = Clp,ty).
Consider now

(8) gp':= qp - muyf.

Then, by (3),
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(9) C(QQ,‘CI) - m.LC(f) < C(qz,tl).
Hence, by (8) and (RED),
(10) gy~ q5'.

From p +¢ g5, q; = p - muqf, (8) and (A2), which we have already proven for

R{X1,.-4.%,], one obtains:
th 3 ] ) 1 1 i 1 1
ere exist mp',oooom’, upt,.a g, nl‘,...,ny s V1 aeeeaVy such that

1 - > -
( 1) p mlulf fP mlu}tml.ullf TR

P - muf o -mptug'fo- L - m'u, 'f o=

S e | |

=p - mzuéf - m1u1f - ﬂl‘Vl'f = eee - "yIVy‘f +¥ Dj;:;izi:ji;::fiilzi::;::E::EL:L
Cf eee tf P ompupf - mpugfo-nptvyf e MVL[_%;%“:W,_(VY,_%
A
+fp-m2Uf-muf4_p_muf’ /
2t - muat e p - maugl,
m U]_' + ... +mx'Ux' =m2U2+n1'v1- + ... +nylvy|.
. 2 -
Hence, : | - .
=f"("i 7.' ‘ )
TR L v = f s
{(12) P - mlulf “f oees "F ‘ ” i |
\ b - on! S= Ul W=
-fp‘mlulf—mllul'f_ -y ‘f-—’f\t~ ity T .
o VHE; Y = ) —'ny “T

P \W{ Murf M 2 e s MUyt 4

.- “f3p_fég;§kf - mupf - mtugtt - s - my e ot
v

1 i
+ny Vyf+ +n1 v1 f“"f
V??f,y—__;ﬁﬂ \"-f () :
-5 p -/mlulf - mptuptfo- - mlu o
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+ nyIVylf LTI o nl'vl'f =p - m2U2f,

where, by {11), all the intermediate polynomials are ¢¢ p.

This means that (1), (2), (3) are satisfied by taking as
11,¥14+00u1,vg the following objects

mllyull:’-‘:mx|)uxl; 'nylpvyl:"'n'nllsvll; _m],ul'
Lase ty €y t,: analogous,
Case ty = ty: (i.e. up = up): in this case, by (4),(5)

8321-16a

(13) b5 “LC(f) C{p,t) *Lc(f) D2, where
(18) by:= Clp,t) - my_Lc(f) (i=1,2) and
(18) t:= ty (=tp).
By (M) in R, there exist 11se0,1g Such that

(16) by = C(p,t) - m.LC(f) =1¢(f)

Clp,t) - ml.LC(f)’—‘il.LC(f) “LC(F)

Clp,t)

ml.LC(f)

1
—
=
.
e
s
—
—
~—
]
.
.
1
—
Fay
.
s
[}
—_
—
~—
n

= C{p,t) - mpLC(f) = by
(17) Clp,t) - mp.LC(f) - 11.Lp(f) e - li.LC(f) € Clp,t) (For § = 1,... k)
and |
(18) my + 1y + ... + 1 = my. Let u:= up. From (16),(17),(18) it follows that

(19) p - ml.u.f ~f
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pe
]

ml.u.f - ll.u.f ~f

p-mpuf - duf - - Tpoulf o=

p - m.u.f,
(20) p - mp.u.f - ouof ~ o0 - 1j.u.f 4 p, (for j=1,...,k),
(21) mu + lju + ...+ leu = Moy,

i.e. (1),(2),(3) are again satisfied.

8321-17

Having established property (RED), the properties {A2), (A3), (M) can be
"Tifted" from R to R{xl,...,xn] in a manner which is more or less straightfor-
ward, One should note at this point that this is in sharp contrast to the proce-
dures reported in the literature so far, which need to apply the
critical-pair/completion algorithm itself ({in Rlxl""'*n]) in order to "lift"
the axioms of the type (R1), (R2) from R to R|X),...,%q ]

Proof of {A5): This proof is based on the following two properties:

(CR1) f; Ap fy iff there do not -exist t;, t, such that t; # t, and
LP(f,} divides ty, Clp.ty) *LC(fl)'
LP(f,) divides ty, C(p,to) *LC(f,)
but there exists a t such that
LP(fy) divides t,
LP(f,) divides t and

Le(fy) oClPat) Le(ry)

(cR2) 1 & f,  iff  p = LC(p).LCM(LP(F,),LP(f,)) and

LC(f) L) e

(f,).
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Here, LCM(t;,t,) denotes the least common multiple of t;, tj).

Proof of (CR1), "==p":
Assume

and assume, furthermore, that there exist t;,t, with

(6)  Clp,to) "LC(f,):

(The case t) {1 t, is analogous). We show that there exist mj,uj,mp,up such
that

(7) p - m.up.fy +f1 p *f, P - My.ug.fa +f1
+fl p - Mo.us.fy - ml.ul.fl,
which contradicts (1). Let my,mp be such that
(8} Cp,ty) - m.LC(fy) 4 C(p,ty),
(9) Clp,tp) = my.LC(fy) € Clp,ty)
(such mj,my exist by (4),(6)) and let uj,up be such that

(10)  LP(f)).uy = ty,
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(11)  LP(fy).up = t,
(use (3),(5%)). Then, using (RED) and

8321-18
{12} C(D,tl) = C(p-mz.uz.fz,tl),

(7) follows.

On the other hand, by (1) and the fact that there do not exist t;#t, satis-
fying (3) - (6), one knows that there exists my,mp,uy,up such that

(13) p +f1 p - m.uy.fy,

(14) p *f, p - my.up.fy,

(16)  C(p,t) LC(fy)>

(1) Clpat) ng(r,)» where

(17) t = ul.LP(fl) = uz.LP(fz).

We show that

(18) rc(fy) oC0Pst) Le(fy).

Assume that for some ml‘,mz'

(19)  C{p,t) - m'.LC(fy) LC(F)) Cip,t) *LC(Fp)
Clp,t) - my'.LC(f)) *Le(fy)
Clp,t) - my' LC(fy) - my'.LC(fy).

{The case where

Clo,t) - m".LC(f) ~ic(r,)

83-21.0 / page 3



Clp,t) - my'.LC(fy) - my' . LC(fa) is simi]arf)
Then, using'(RED),
420). g -.mytiuy.fy “f) p o

; - mz'-“é-%z *f)

p - mz'.ué.fz - mptaug.fy,

which contradicts (1).

Proof of (CR1), "§==":
We first show that

1 + .

(1) f1 p *fz

By the assumption of (CR}) on the right-hand side there exist t,uj,up such that

(2)  LP(fy).u = t,

(3)  LP(Fp).up

U

t, and that there exist myj,mp such that

(4)  C{p,t) Le(fy) Clp,t) - m;,}c(fl)’
(5)  clp.t) qc(fé) Clp,t) - mp.LC(f).
(2) - (%), however, imply tha; |
(6) p o> P - Mup.fy,
(7) p *f, P - M.uz.fa
8321-19

Assume now that there exist my',u;',mp',up' such that

8 -mptoup L f
(8)  p-mploup’fyoep P ooy,
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p-m'ius'.fy *f) p-mpliupt.fy = mptiuyt.fy
(The case that
p-mtiupt.fy *f, p-mtaup'afp-m'iup'.fy is similarly ruled out.)
Define
(9) ty:= ui'.LP(fy)  (i=1,2).
Case t; 7 to: By (RED), we have

(10) Clp,ty") +Lc(fi) Clp,ty') - my'.LC(f;) (i=1,2). This contradicts the
right-hand side of (CR1).

Case t; {; t,: analogous.
Case t; = ty: In this case we have
(11) t=ty=t,, because otherwise we again would have a contradiction to the

right-hand side of (CRl). From (8) it then follows by (RED)
t hat

(12)  Clp,t) - my'.LC(F) “LC(fy) C(p,t) *LC(f,)
Clp,t) - mp'.LC(f5) LC(fy)
Clp,t) - my'.LC(fy) - my ' LC(Fy).
This contradicts to

(13)  Le(fy) aCPat) Le(ry).

Proof of (CR2), "==»":

Assume
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(1) fy P f,
Because of (CR1) one can chogsg t,up,ug such that
(2)  tP(fylouy = ¢, (i=1,2),
(3)  te(ry) A0 1e(ry),
and there doesn't exist a t{ #tand i e {1,2} such that
(4) LP(fi) divides t' and
(5) Clp,t") LC(fy)e
Case (H(p,t) #0 or L(p,t) # 0): In this case
(8) p':=C{p,t).t K p
and, still,
(9)  f, &P f,
(by (2) - (5) and {CR1)). (8) and {9) contradict (1).

‘ 8321-20
Case H(p,t) = L(p,t) =0, t = u.LCM(LP(fy}, LP(f5)), u # 1: In this case

(10) p':= C(p,t).LCM(LP(fl, LP(fz)) “p-= C(p,t).t.
(From (PP1) and (PP2) it follows that “

(PP3) (v divides t and v # t) == v (s t.)
Furthermore,

(1) £ & fy

because of (CR1),(3) and
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(12)  LP(fy) divides LCM(LP{f}), LP(f;)) (i=1,2),

and the fact that there can not exist two distinct ty,tp with
Clp'yty) # 0 (i=1,2). (10) and (11) contradict (1).

Lase H(p,t} = L(p,t) =0, t = LCM(LP(fl), LP
(

f2))s
and not LC(fy) AF t)

(

Ps LC{f5):

By (3) and the case assumption, one can choose an a ¢ C{p,t) such that
(13)  LC(fy) A% LC(fy).

Consider

(14)  p':= a.LCM{LP(fy), LP(f,)).

Then

(16) p' €t p

and

(171) £, 2 1,

because of (CR1), (13), (12) and the fact that there can not exist
two distinct tl,tz with C(pl,ti) #0 (131,2).

&, v, where a and v are such that

el
1]

-
L]

LCM{LP(f1), LP(f,)),

LC(fy) 42 LC{f5).

roof of (CRZ), "¢==":
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Assume

(1 p = a.LCM{LP{f), LP(fp)), where a is such that
(2) LC(fy) 4% LC(fy).

By (CR1) it follows that

(3)  f) &P fo.

Assume now that there exists a p' such that

@) p'&p

and also

(5) f1 oP f.

(6) vi= LCM(LP(fl), LP{f5)).
8321-21
,v) #0: This case is not possible, because in this case one would

Case H(p

have
(7) p' ¥ p, a contradiction to {(4}.
Case H(p',v) =0, b:=C(p',v) #0, b # a: In this case, because of (4),
(8) b ¢ a.
By (5), (6) and (CR1}, it follows that
(9)  LC(f)) a® LC(f,).
(8) and (9) contra&ict (2).

Case H(p',v) =0, b:=C(p',v) =a, L{p,v) #O:
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This case is not possible, because in this case one would have
(10) p' »» p, a contradictien to (4).
Case H(p',v) =0, b:=C(p’,v) = a, L(p,v) =0: In this case

(11) p' =p, a contradiction to (4).

Case H(p',v) =0, b:=C(p',v) = 0: In this case

By (5) and (CR1) there exists a t that occurs in p' such that

(13)  LP(f;) divides t (i=1,2),

(14) V_ST t.
(Compare (PP3)!}., This contradicts
(15) t €7 v.

((15) is valid, because C{p',t) +Lc(f1), hence, C(p',t) # 0, and because of the
case assumption).

Thus (4) and (5) always lead to a contradiction. Together with (3) this
establishes

Proof of {A5) using (CR1) and (CR2):

Assume
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(1) fy &P fo.
One has to construct p',m,u such that
() p' %&b,
(3) & fas
4) for aﬁl q:
p' +q&¢ p' == p + mu.q < p.
From {1}, using (CRl), it follows that there exists a t such that
{5)  LP(f;) divide t (i=1,2),
(6) LC(fy) Alpst) LC(fy), and not exist t' and i e {1,2} such that
8321-22
(1)t e, |
(8)  LP(fy) divides t',
(9)  C(p,t") LC(F5)
Let
(10)  wvi= LCM(LP(f{), LP(f5)).
By (A5) in R and (6) one can choose an a' and an m' such that
(11) a' ¢ Clp,t),
(12)  LC(f)) @ LC(fy),

(13) for all c: a' +c £ a' ==> C(p,t) + m'.c € C(p,t).

Define

83-21.0 / page 41



(15} m:=m',
{16) u such that v.u = t.
Then from (CR2), (14), (12), (10), one obtains (3).
Furthermore p¥ C(p,t).t +L(p,t} »
» Cp,t).t.
Case v €y t:

{PP3) (11)
Cp,t).t 3 C{p,t).v » a'.v = p'.

1]
ot

Case v

(11)
Clp,t).t 2> a'.v = p'.

Hence, in any case, one obtains {2).

Assume now

(17}  p' +q 4% p'.

Then

(18) H(q,v) =0 (otherwise, p' + q would be » p').

Furthermore,

(19)  C{p' +q,v) =a' + C{q,v) ¢ a'.

{Case a' + C{g,v) » a': not possible, because in this case p' + g would
be ¥ p'.

i

Case a

+ C{q,v} = a', L{g,v) # 0: not possible, because in this case, again
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p' + q would be »» p'. (Note that L{p',v)=0{}.

Case a' + C(q,v) = a', L{q,v) = 0; not possible, pecause in this case

p' +q would be =p’.

Case a' + C{q,v) incomparable with a': not possible, because in this case,
p' + q would be incomparable with p'.)

From (19) and (13) one obtains
(20  C{p,t) + m'.C(q,v) £ C(p,ﬁ)
and, hence,
p+mu.q=Hp+mu.g,t)+Cp+mu.qg,t).t +L{p+mugq,t) =

(15),(16),(18) ' (20)
= H{p,t) + (C{p,t) + m'.C(q,v])).t + L(p,t) + m'.u.L(q,v) €€ p.
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Proof of the axioms of effectiveness: The effectiveness of addition and
multiplication, of course, easily carries over from R to R[xl,,_,,xn]_ (RED) and

(CR2) show that reduction and formation of critical pairs are effective in
R[X],..0 Xy ] if they are effective in R. In particular, (El), (E2) are satisfied
in R[xy,...,x,] if they are satisfied in R.

Proof of (Tl): This proof, again is tedious. The techniques involved, however,
are similar to those used in showing that ) is noetherian.

Assume that Fy, F,, ... is a sequence of subsets of R[xl,...;xn] (with F; # ¢
w.1.0.9.) such that

(1) Red(F,) & Red(F,) € ...
(where "e" is strict set inclusion). Recall that, for Fe R[xl,...,xn]
(2) Red(F) := {p € R|xpseeesxpy]]p o 1.
Note also that for arbitrary p,f:
(3) p »¢ €==2 p LM(F)
(Use (RED)!). Furthermore, define for F ¢ RIX{,0en,%,]
(4) LM(F) = {M(f) ] f e F}.
Define now inductively sequences b1, by, ... and ty, tz, ouu LY
(5) byt arbitrary in LM{Fy),
and for i>l:
(6) bj41ti+1 = LM(f), where
f e Fj4q such that

p +¢ for some p with
p € REG(F]+1)—REd(F1 ).
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{Such a p exists and, hence, also such an f can be chosen).
For this sequence byty, bptp, ... the following holds:
{7) Red( {b |J<1} € Red( (bt |J<1+1}) (for i=1,2,...).

((7) holds because the p in (6} is in Red({bjtjl j<i+1}) but not in Red({b;t;})
for a j<i: Otherwise, by (3), p would be in Red(Fj) and, hence, in Red(Fy).)

We now show that the sequence byt;, bstp, ... and, hence, the sequence Fy, Fj,
. is finite.

We prove this by assuming that bjty, bot,, ... is infinite and constructing an
infinite sequence tTl' t12, ... such that for all j,i with j{i

(8) ty, does not divide tj ..
] 1

However, by the Lemma of /Dickson 1910/ (see also /Buchberger 70/), an infinite
sequence tll' t]2, ... satisfying (8) can not exist.

Define now, first, a function S by

(9) S(i) := some j*i such that t;|tj, if such a j exists,
i otherwise

We show:
(10) For all i there exists a k such that
i€ S(i) € S2(i) ¢ ... ¢ SK(i) and

not exists j » SK({i) such that
tSk('i) | tj.

(Notation: SK(i) = S(S{...5(i)...)}, S°(i) = i.)
k times

Assume (10) to be false. Then one would have the infinite sequence

(11) i € S(i) € S2(i) € ...
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It then also would be true that
(12) Red(b1) -4 REd(b]’bS(i)) (4 Red(bl’bS(l)'bSZ('l)) € .uay

which contradicts (Tt) in R. ({12) is true, because if, for some k,
Red(bi-""bsk(i)) = Red(bj,...,bsk'fl(i)) then

Red(bsk“'l(j)) < Red(b,- yene ,bsk(”).
Hence,
(13) Red(bsk+1(1)tsk+1(i)) < REd(biti""»bSk(i)tSi(i))’

because t; ]t5k+1(i), ey tSk(i) ltsk+1(1) by construction of S, (13) contra-
dicts to (7).)

Let now the function N be defined as follows
(14) N(i) := SK(i), where k is such that the condition in (10) is satisfied.
By (10) N is a total function. One now can define

(15) 1) := N(1),
]1+1 = N(11-+1).

[t is clear that 1) ¢ 1, & 13 & ..., because N(i) > i. Furthermore, (8} is
satisfied because, for j¢i,

ij = N(x} for some natural number x,
141,

J
and hence, by (14) and (10},
t]j does not divide t]i'

Proof of (T2): (72) in R[xj,...,x,] follows immediately from (CR2) and (T2) in
R.
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8321-24
5. EXAMPLE: 1

If we consider R:= Z, an example of suitable € and M are

¢ -1414¢-2¢2¢%...

M o= 7-{0}.
¢ is a notherian total ordering, (MO} - (M1} and (Al) are easily proven.
Proof of (A2): If a ». b, then b = a - mc ¢ & for some m and b+d = ard-mc.

Case at+d = b+d : not possible, because in this case a = b, a centradiction to
b ¢ a.

Lase a+d € b+d : in this case b+d +. a+d,
Case a+d > b+d : in this case a+d - b+d.
Hence, in every case atd *c* b+d.
Proof of {A3): similar, Use (M3).

Proof of (M): similar. The totality of ¢ makes these proofs easy.

Let now C € Z. We define:

(D1) LCR(C) := ming{a| for all ceC: a ». }
(read: "the least common reducible of C"),

One can now show for ¢y, ¢p, a e L:

(L1) LCR({c}) = fc]/ 2, if ¢ is even,
~Qc}+ )72, if c is odd.

(L2) LCR({cy,cp}) = maxg(LCR(cy),LCR(cp)).

83-21.0 / page 47



(L4) arc §a, adb =2 b + S(a,b).c ¢ b
(Here S{a,b) := l, if a and b have the same sign,
-1, otherwise )

(L%) a + == a + LCR({c}).
These properties can be shown by.a (tedious) case analysis, However, the proofs

are easily seen if one viSuaTizes the meaning of & and of a *. b in the
following picture:

-3 -2 -1 0 1 2 3

Proof of (A5): If cl._g? Cp then a +., a +c2. Hence, by (L5) and (L2),
a > LCR(cy,co). MNow take a' := LCR{cy,cp) and m := S{a,a'). Then, by (L4}, for
all c:

a'+c € a' ==y atme € a.

a
Of course, €y 4 Cp by (L3).

00f of the axioms of effectivehess: (E1} is clear. For A(a,c) in (E2) take

( ,C)

For practical purposes, it is better to define A{a,c) to be the result of itera-
tively subtracting S{a,c).c until this is not possible any more (this
corresponds to a modifjed “division"). However, e emphas1ze that this is only
one possibility in a who}e spectrum of poss1ble reduction processes all proven
correct by our theorem.

Proof of (T1): Note that
Red(c) = {a]a }-{amja >|c|/2}u{a<0|a<-|c|/2}

Hence, the complement of Red(D) (DeZ) contains only finitely many numbers.

d
Proof of (T2): By (L3) and (L2) the number a such that ¢y A" ¢, can be computed
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by an (easy) algorithm.

Let us consider the example D := C := {12,16,20}. The first step in the applica-

tion of the algorithm could be
(cp,cp) = (12,16)
a =LCR(cy,cp) =8
by = 4, by = -8
b1, by are in normai form w.r.t. C
by-by must be adjoined to the basis D.
A next step could be: :
(cy.cp) := (16,20)
a LCR(cy,cp) = 10
by = -6, by = -10
SD(bl) = -2, SD(bz) s =2
No new element has to be adjoined to D.

Actually, all elements # 4 in D can be reduced by 4. So {4} is the "reduced
Grobner basis" corresponding to C, i.e. the algorithm for computing the Grdbner
basis, of course, computes the GCD of the elements in C. Furthermore, Euclid's
algorithm s just one of the whole spéctrum of possible realizations of our
algorithm over Z. '
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8321-25

6. EXAMPLE: 7|xy,...x,]

The example of Z[xl,...,xn] will be considered in detail. As 1in the general
case, also in this example the algorithm of Section 3. yields ideal bases for
which ideal congruence can be decided by reduction and, furthermore, the Grobner
bases constructed are "invariants" in the sense that the ideals generated by C;,
Cp are equal iff the Grobner bases constructed for Cy, Cp are equal. (The latter
statement is true {f, after the construction of the GrObner bases according to
the algorithm in Section 3., every polynomial in the Griobner basis is reduced to
normal form with respect to the other polynomials in the basis., This is totally
analogous to the situation in K|xj,...,x], see /Buchberger 76a/.) The problem
of deciding congruence and of constructing invariants for ideals in Z[xl,...,xn]
has a long and interesting hfstory involving work of /Kronecker, Hensel 01/,
/Szekeres 52, 65, 75/, /Redei 56/, /Trotter 69, 78/, /Simmons 70/, /Hurd 70/,
/Richman 74/, [Lauer 76/, /Trinks 77/, /Zacharias 78/, /Sims 78/, /Schaller 79/,
/Ayoub 8l/. For some of the details of the history, see /Ayoub 81/. The first
general solution of both problems, based on the critical-pair completion
approach, but needing two different versions of '"critical pairs" at the same
time, was given in /Lauer 76/. Other solutions based on the
critical-pair/completion approach using (Rl), (R2) were given in /Trinks 77/,
/Zacharias 78/, [Schaller 79/. The first general solution based on a different
approach was given in fAyoub B81/. Our solution seems to be much more concise
than the solutions given so far.

In order to get the specialization of the general critical-pair completion
algorithm of Section 3. for Z{xy,...,x,], according to (RED), (CR1) and (CR2),
one has to fix a suitable M, ¢ and <y, and to give effective ngcedures for
finding b if a»: (aeZ, CcZ) and for finding (all) a such that ¢y &4 ¢y (¢, Cp
e Z). One possible choice has been described in Section 5.

Consider now the following set F:= {f;,f,,f3} of polynomials (the same example
is considered in /Ayoub 81/):

fy:= 3x2y+2xy+y+9x2+5x-3
for= 2x3y—xy-y+6x3-2x2-3x+3
fy:i= x3y+x2y+3x3+2x2.
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We fix. the “purely lexicographical” ordering for the bivariate power products: 1
SR I SRR ST O

{T (T X (T‘Xz (T X3 (T ene (T Y (T Xy ‘T XZYI(T. X
y2 {T": Then, LP(f1)=x2y, 'LP(f2)=LP(f3)=x3y, The‘fpplynomial x3y may be

X2

reduced by f, in the following way (compare (RED)):

Take a:=1, p;=x3y, m:=1, u:=1,’
Hence, x3y74f2 -x3y+xy+y76x§f2x2+3x-3 = g

g may be further reduced modulo fy:

3

Take ar=1, t:=xvy, mi=-1, u:=l.

Hence, g »fa x2y+xy+y—3x3+4x2+3x-3 =:9',

3

g' is irreducible with respect to F. The polynomial x°y may also be reduced by

f3:

Take a:=1, t:=x3y, m:=1, u:=l,

3

HEnCE, X~y +f3 _x2y_3x3_2x2 =: h‘

Also h is irreducible with respect to F, i.e. we have the following situation
; * .3 * :
SF F XY %F by, g'eh,
which shows that s+ does not possess the Church-Rosser property.

In order to “complete* F by the critical-pair/completion algorithm one has to
consider “critical pairs" of polyndmials in F (in any 6rder). For example, ane
can start with f,, f3, and compute (all) p such that fy EP f3. This can be done
by (CR2): LC(f,)=2, LC{fy)=1, hence by (2) above ~LC(p)=LCR(2,1) = 1.
Furthermore, LCM(LP(fZ),LP(f3)) ='x3y. Thus, p=x3y. One reduction step of x3y
modulo f, and fq yields (the "critical pair") g and h, respectively. (Actually,
in Z|x],...,x5], there exists only one critical pair for a given pair of
polynomials). Further reduction of g and h to normal faorms modulo F yields g'
and h, respectively. g'#h and, hence, '

fg:= 9'=h = 2xZy+xy+y+6x2+3x-3

must be adjoined to the basis., Similarly, one now has to censider the next cri-
tical pair, for example, the one corresponding to fy, fy: p=—2x2y. Reduction of
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p modulo f; and f, yields xCy+2xy+y+9x2+5x-3 and xy+y+6x2+3x-3, respectively.

2 2

Redyction to normal forms yields -x“y+xy+3x“+2x (using f;) and xy+y+6x2+3x-3.

Thus, the difference of these two polynomials must be adjoined to the basis:
fgi= -xzy—y-3x2—x+3.

Similarly, the consideration of the critical pair of f4 and fg leads to
fgi= =xy+y-x-3,

The consideration of the critical pair of f5 and fg leads to
fy:= 2y+2x2-3x-6.

Finally, the consideration of the critical pair of fg and f; leads to

f8:= 2x3-5x2-5x,

The consideration of all the other critical pairs leads to identical normal
forms. Hence, G:= {f1,...,fg} is a Grobner basis corresponding to F, i.e. F and
G generate the same ideal in Z|xj,...,x,] and »; has the Church-Rosser property.
Reduction of all the f; modulo G-{f;} leaves us with G':= {fg',fy,fg}, where

fg'i= -xy-y-2x2+2x+3.

Summarizing, the algorithm produced G' such that f and G' generate the same
jdeal, +;' has the Church-Rosser property {hence, Sg' decides the congruence EF)
and, given the ideal generated by F, G' is uniquely determined.

8321-26
7. EXAMPLE: 7,

The proof that Z,, with suitable € and M, is a reduction ring was given by H.
Rolletschek and will be published in a separate report /Rolletschek/. For the
sake of completeness, H. Rolletschek allowed me to include his proof in the pre-
sent report. The case of zZ, (and, hence, ZZ[xl,...,le) is interesting because,
for z non-prime, Z, contains zero divisors.
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Z, is in the congruence class ring. mod z in the domain I of rational integers.
First we have.to define the set M of multipliers and the partial order-relaticn
appropriately. We will denote this ordering by €' rather than < to distinguish
it clearly fram the standard -ordering < for integers.

We put M:= [m ¢ ZZI m # 0 and m is not a zerodivisor in Zz}. 1t is easy to see
that the conditions (MO) - {M5) are satisfied. (MO), (M1}, (M2) and (M) are
trivial. As for (M3), it is a well-known fact that a product of non-zero-divi-
sors in an arbitrary ring is again a non-zero-divisor. Finally, (MS) follows
from the fact that every element f of Z, has the representation 1 + 1 + ... + 1

L |

f

Then, if a 2 b, by definition there exist n, d; ¢ Z, - {0}, c; € C such that

a=b+2d1ci = b"’z z 1.C1.
1<ign 1<icn 1<j<d;

Since 1 € M, axiom (M5) follows.

Next we have to define the order reltation €'. Surprisingly, it turns out that
the simplest possible ordering is appropriate. For a e Z let la] be the

congruence class of a mod Z. Then we define ' by
03¢ [1] € ... € [z-1].

Before we show that the axioms (Al} - (AS) are satisfied, Qe introduce some more
notation. for a e Z, iet a¥ € Zﬁbe the smallest nonnegatjve representative of
a, that is, a = [a7], 0 < a" € z. For x,y ¢ Z, x|y means that x is a divisor
of y. GCD(x,y) is the greatest common divisor of x and y, and for a prime

number p, vp(x) is the largest v such thdt'p“l X.
(Al): Trivial.

(A3): Assume a +. b, that is, b =a -m.c, m eM, D ' a.
Then mb

ma

mg - mmlc,

1]

mb - (-mmy)c,
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(AS):

and by (M2), (M3), mm; and -Mm; are elements of M, This implies either
ma +. mb or mb ». ma, depending on whether ma or mb is larger. The case
ma = mb is impossible for, since m is not a zero-divisor, it would imply
a =b,

Assume ¢; A% co. Trivially, there exists an element a' such that a' §' a
and ¢ ;f' Cy. We have to show that there exists an m ¢ M such that for
all ¢

a' +¢c ' a' == a+mc{' a.
This holds for m=1:

a' v at = vy vy 2= at Le ¢ a.

For (A2) and (M) we need two auxiliary results, The first concerns division in
the congruence class ring mod z.

Lemma 1: Consider the congruential egquation

let d

xazb modz (1).

= CD{a,z), d' = z/d.

a) (1) has at least one solution x, if and only if d] GCO(b,z).

b) If {1) has a solution x, then the set of all such solutions forms exactly

one congruence class mod d',

c) If b =d, then the solution set from b) is a relatively prime congruence
class, that is, every solution x satisfies GCD(x,d') = 1.

8321-27

Proof: a) and b) are well-known number-theoretic facts, see, for instance,

/Hasse &4/, section 4.3,

: Let x be a solution of (1), b=d, and assume x and d' contains a common
prime divisor p. If vp(a)_l vp(z), then vp(d) = up(z), hence vp(d') = Q,
contrary to our assumption pfd'. If up(a) ¢ vp(z), then our assumption
p|x implies vy(d) ¥ vp(a), since d = xa - kz for some k ¢ Z; this is
again a contradiction,
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From Lemma 1 we derive

* *

Lemma 2: Let u,v €Z,, u? v, u v mod d = &D{c*,z). Then u *e V.

Proof:

Now we

(A2}:

By Lemma 1 3}, there exists anm' e Z s,t. d = m'c” mod z. Let Mg be one
such m', By b}, c) the set of all such m' forms one congruence class
mod d' = z/d, and GCD(mg,d') = 1. By 'the Chinese remainder theorem

there exists an element my e Z s.t.
m =my mod d',
my =1 mod p for every prime p such that p[ z, but p doesn't divide d',

Then GCD(my,z) = 1, and d = mlc* mod z. Let m = {my}. Then m ¢ M and
|[d] = mc. This gives the desired reduction :

U+ U -~ MmE = U - [d] U - 2.[d] P el +V,

I

since v' = u" - 1d for some 1 e L.

can proof axiomg (A2} and (M):

Let a ». a - mc for some m e M and let b:=a-mc. Without loss of genera-
ity let a + d b +d Then b  za" -mc” mod z, hence a* zb" mod t =
GCD(c™,z), and (a + d)* = (b + d)* mod t.

By Lemma 2,‘a ¥'d > b + d, hence'b +d is the‘desired common successar
of a +dand b + d. Generally, if f is a common chcessor of @ + d and

b + d modulo c:.
a+dra+d-ljcra+rd-T ¢ - 15¢ + ...
k.

+a+d-{11-c=f,
i=1

b+d+a+d-m+a+d-m - m1c .. *
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*a+d-m - Jmc=f,
i=1

then the following additional condition is reguired for (A2):

can be guaranteed by an appropriate choice of MpseeesMye {2) implies

in our case:

8321-28

Hence, by Lemma 1b) m o+ ) mi* = 0 mod t' = z2/t. (3)
i=1

But m; is determined by ml*c = d mod z, hence, again by Lemmma 1b), we
may replace my by my + gt' for an arbitrary g ¢ Z,. It follows from (3),
that one such choice guarantees

J
* ) * Fa 28 6':62_

P
|
1

let by .« a ». by, and without loss of generality, bl‘)' by. Then it
follows exactly as in the proof of (A2), that b *c* by; we only have
to note that

a ' by - d, a > by - 2d, ... , @' by + d.
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CeoPALSER S . 7 £8321;29
9. EXAMPLE: Fields K and KIXgaeesxp]

Fields K can be viewed as (trivial) reduction rings (with all C € K being
Gribner- bases) by defining

M oi=K-{0},

a b.:(==) a=0, bz0
{ is a noetherian partial(!)} ordering. It ié straight forward te see that
(M0),...,(M5),(A1),...(A5) are satisfied. Furthermore, ¢ is decidable and

a
d * ==} a--—c{a,
c .

a
hence A(a,c) := — can be taken in (E2).
o
Finally,

(1) 8 #D e X == Red(D) = K-{0}
and
(2) ¢; & Cp €= a, ¢y, cp # 0,

From (1) it follows that (T1) trivially is satisfied. (2) shows that, for given
: a
C1» € # 0, there may be infinitely many a such that C) & Cp, namely all aek.

In Ki{xy,...,x, ], by (CR2), one therefore has

fl A fa €= p=a,LCM(LP(f) LP(F2))

However, it es easy to see that it suffices to guarantee

bl ~* (‘p) b2

for by ¢+ Pg »f, by
(where Po:=LCM(LP(f),LP(f;)) )

in order to guarantee
*
bl - ((p) bz

for bl f;li- p -sz b2
for arbitrary p=a.LCM(LP(f;),LP(f,).
1 2
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This shows that in the case of K[xl,...,xn] the general algorithm developed in
this paper specializes to our original 1965 algorithm.

CONCLUSIONS

We have shown that an axiomatic approach to a constructive ring theory baséd on the
notion of reduction and on a critical-pair/completion 1is possikle. The general
¢ritical-pair completion algorithm presented in this paper specializes to our 1965
algorithm in K[xl,...,xn] (K a field) (which, again, specializes to Euclid's algo-
rithm in K|x] and to GauB' algorithm in the case of linear polynomials in
KLxl,...,xn]), it specializes to (a whole spectrum) of Euclidean algorithms in Z and
it yields an elegant algorithm for deciding congruence and related problems in

Z[X]suensXp ]

The major weakness of this paper is that, at the present stage of the investiga-
tions, only a few other examples of rings satisfying the axioms are known. Ffurther
research is necessary in order to clarify whether a sufficiently wide class of rings
satisfies the axioms or whether a further attempt at weakening the axioms must be
made, Both tasks are challenging: The first task leads t¢ the investigation of new
properties of rings that so far have not received any attention. The second task
requires to develop new ideas for the proof of the main theorem in Section 3. and
will clarify the insight, which properties of rings lie "really" at the basis of the
critical-pair/completion approach,
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Added July 1983 :

In a personal communication, D, Lankford pointed out to me that the solution of
the simplification problem modulo ideals in Z[xl,...,xn], which is a special
case in our approach, subsumes also the uniform word probiem for finitely

generated dommutative rings (xl,...,xn ... generators). See also:

G. Butler, D. Lankford:
Dickson's Lemma, Hilbert's Basis Theorem and Applications to Completion in
Commutative Noetherian Rings.
Dept. of Math. and Stat., Louisiana, Tech. Univ., Rustom, LA 71272,



