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Abstract

We present an algorithm for constructing 2 basis of the ideal of all polynomials,
which vanish at a preassianed set of points {yl....,ym} C Kn, K a field, The
alqorithm yields also Newton=type polynomials for pointwise interpolation. These
polynomials admit an immediate construction of interpolating polynomials and allow to
shorten the algorithm, it it is applied to an enlarged set {yl,...,yml} c Kb, mpdm.

Introduction

In the univariate case n=)], the polynomials vanishing at a preassiqned set of points
{v1,....ym}<:K“, K a field, are miltiples of a fixed one, since they-constitute an
jdeal and X{x] is a principal jdea) domain. For n¥1 the situation is more compli-
cated. The polynomials vanishing at {yl....,ym} constitute still an ideal 3, but s»n
polynomials f1,...,fs are required to present the elements of & as qyf1+. .. +asfs,
A1,-sesfs polynomials, and the way to find the ideal basis {fl.....fs} is no longer
as trivial as in the univariate case.

The knowledqe of a or at least of its elements up to a certain polynomial dearee is
required in some areas of mthematics: In miitivariate interpolation theory it faci-
_ litates answering questions of uniqueness and solvability in K[x;,...,xnllg, and
representations of errors, ¢.f. 6.Birkhoff [1]. In numerical integration theory
jdeals are used for the construction of cubature formulae, cf. H.M. Moller {5], H.de
Schmid [6]- And in approximation theory oh. Defert and J.P. Thiran [3] recentiy
showaed an algorithm for constructing polynomials of best approximation, where the
common zeros of the elements of a up to 2 fixed polynomial dedree are required.

Especially for applications in numerical integration C. Gunther {4] formulated an
alqorithm to find a {1inear) basis for the space of oolynomials in 2 of degree k, if

a contains o non-zero polynomial of degree Jess than k. Our goal is to gbtain all
polynomials of a, For this our aldorithm constructs an ideal basis [f1aee-ufi]} oOF 2
and, for reasons of application, the algorithm is constructed such that for any fea
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there are polynomials Q1,...,8] with £ = tg;fj and the degree of gjfj is not greater
than the degree of f, i=1,...,1.

In addition, polynomials q1,...,9q of moderate deqrees are constructed in the
algorithm satisfying

ajlys;) = 0, i=l,....0-1, ajlysy) = 1,

where (51,...,5p) denotes a permutation of (1,...,m). In the univariate case, these
are apart of normalization the Newton-polynomials '

1, x¥gya (xeysy)(x-¥sphyeres (x¥5y)eee (W5 )
Like the Newton-polynomials, Q),...,dn admit an immediate construction of 'a polyno-
mial, which interpolates a given function at ¥|,....¥m. and they are well suited for

an enlargement of the number of interpolating conditions.

1. Basic definitions

In the following, N denotes the set of positive integers, K an arbitrary field,
F 1= K[x],0004%y ] the ring of all polynomials over K 1n n indeterminates. Throughout
the paper, we fix n and K, The special polynomials x1 ...xn‘" are called monomials

[terms[.

1.1 Definition:
Degree (x1 aauXp “) ] 11+...+1n (dearee of a moromial).
' L' &7 11 Lo axgy?
{---» Degree (x1i N “)  Degree (x1 eeskp “)
or
(Deqree(ulil...xni") = Deqree(xljl...xnj“)
and 4y = d1,eee, ig* Jy» Tke1&igeq for some k with 1¢k+1<n)
{éraduated lexicographical ordering of monomials).

1.2 Convention:

Ye assume the monomials to be ordered by {r
92,00

ten {nsiah) = {1t 039y, ..., ineiv O},
4o dy ...

N osreeols g, .., always denote polynomials,
h,i,i,%k,1,m,... non-neqative inteqers,
F.G,... sets of polynomials, and
2 ... 30 ideal,
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1.3 Example:
For n=2 we have
1 = x1° xzo, $2 = xln xgl, {3 = xll xzo, = xlo xzz, 48 = x}l le, see «

1.4 Definition:
{0} if ka0,
B o

span{d1,..es 8 } if k0.
Hterm(f) := e+ if T € Fran\Fx (head-term of fe0).
Multiple (x1i1...xni", x;jl...xnj“) t {===) 11§15+, Tn2ip
(xlil...xni“ is a multiple of xljl...xnj“).

Degree (f) := Dearee (Hterm(f)) (degree of a nolynomial £20).
Degree (0} := -1.

1.5 Definition:

)
= (f1,000.f)) ¢ &-=-> 2 = | 21 Qifis Glaeers® eFl
i= ‘

{f1,...,f] constitute a basis of a).

* {f1seessf1¥ 1 ===} 2 = (f1,...,f]) and for all k and all f ¢ anFy there exist

1
Qlsese,®) € F such that f = £ gifj, a1f1,....mN € Fx
' i=1

(f1s++0,f] constitute a Grgbner-basis of a).

Py i= {f e g3 Dearee (f) <k}

We define inductively Gg(a) := Gp := 0, and if an f 2 exists with
(i} Hterm{f) = &

(#1) £ - & € Fx

{iii) For all1 q e Gy = Gg_1(a) : 7 Muitiple {4 Hterm{q})

then G := Gy(a) := Gy ju {f} and else Gk :» Gefa) := G-t
{Grdbner-basis-generators).

1f (6}i50 is a set of Gribner-basis-gqenerators, then
CC( {651:k0): €---> for all q & &\fx, there exists f e Gxy:
Multiple (Hterm{a), Hterm(f)) (Chain-condition of order k, for {G;]).
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2. Elementary properties

2.1 Lemma:
(E1) Property of &7
o €Té ===2 4j.4) <Ték-0.
(E2) Property of Multiple
Multiple (Hterm(fi),Hterm(f2)) ---» there exists q ¢ F such that
Hterm{f] - af32) {THterm(fl).
(E3) Connection of Py and Fy

Tn
k= () =2 By = ke

(£4) Property of Gribner-basis

a ideal —--} there exist f1,....f| €2 such that a = «f1,...,f1).
(ES) Property of Grigbner-basis-generators

If {64} are Grobner-basis-qenerators for a, then for k>l and for all £ e anFy

1
there exist @],...,9] ¢F such that f = I qify, a1f15---.MF1 € Fg,
ial
where {f],....f1} = G.
{£6) Chain-conditian
CC(Gi},ko) —=-» 60 S 81 +ue G Bkg = SkgHl = Gxgsz = »or > 2% Lk

2.2 Proofs:

In general the proofs for these properties are immediate.

Ad_{E4): The existence of a Gribner-basis follows from the fact, that the ring
X[1],.00,%y ] is noetherian. A constructive proof is qiven by B. Buchberqer (2].

a_(£5): Induction on k. Evidently {E5) holds for k=1, let f ¢ an Fy with

“tern(f) = ¢ . By normalization f-¢ € Fyx_1.

Case 1: G = G,_j. Then there exists fy ¢ Gy.y such that Multiple (&, Hterm{f32)).
“ence, by (E2) there exists q ¢ F such that af e Fy and f-afz € Fy.1.

ov, f-af; € a, The induction hypothesis applied to f-qfy yields finally the required
tearesentation for f, -

e 2 Gy a 6.1 u{fy}- Then f-f) ca nFy_1, and the induction hypothesis applied
to f-f) yields the assertion.

‘-".‘ I8): 2y the chain condition, we have especially:
* M1 kkg and for all q ¢ anFy there exists f ¢ G such that
“iitiole (Hterm(q), Hterm(f)).

T g 1 i .
30*l> Sp+2,... do not contain more elements than 8.
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3. Description of the algorithm

Let pOints Y1,.-..¥m € K" be given.

3.1 Problem:

Construct a Grgbner-basis ‘f1,...,f1) tor the ideal
a={f eF; f{yy) = -oe = flym) = 0}

and find a permutation (51,¢-2sSm) OF (1,...,m)'and m polynomials G1,...,0m with
ailys;) =0, 1 = 1eeeni=l,
Qi(Ysi) =1,

3,2 Algorithm:
STEP 0 (The constant polynomials):
s = 15 4y i@ 433 23 i® (41(v1)s--ortilvm)}s
Tp:=1; hgt= 1511 = 05
STEP 1 (Preparation of the first loop}:
hy := 0; k 325§ =15
STEP 2 (Eliminatian):
z 1= ({y1)see-stklym)s
o=y
for 1 = 1(1)12 do beain
z := 224017243
f = f-z(si)qi end;
STEP 3 (f into the basis or into fa1,eeesm )
If z#o0 then begin
12 1= 12#1; 815 3® min {i; 2(ids0}

21y = zlz(s‘z); ay i® flz(s]z);
hy := hy + 1 end
else beain
17 = 1yl f11 ;= f end;
STEP 4 (Termination test):
Ifk=¢ +n) then beqin
if hy » 0 then ao to FINALLY
else beain
§ 1= J#15 hy i 0 end end ;
STEP 5 {From Fy to Fys1):
k = k+l;
for i = 1{1)11 do
if Multiple (k. H term{f;)) then go to STEP &;
0 to STEP 2;
FINALLY: 1 1= 135 mg := i3 kg 3= k3 mp o= 125
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3,3 Meaning of the symbols used in the algorithm:

k: index of the space fy, which is actually analyzed
11: number of polynomials i in Fy

12: number of polynomials g in Fj

ji= Dearee( ) ‘

hj: number of polynomials g e Fi with Negree (95 =i
f: polynomial with H coeff(f} = &

z:= (f{¥1),eeeaf(¥m))

23:= (ag{¥1)ss0s.0i(ym))

2(i}: the i-th component of z

1: total number of polynomials f

mo: upper bound for max {Degree {f;); i=1,...,1}

my: total number of polynemials gy

3.4 Theorem:

(P1}: The alaorithm terminates.

(P2): The sets G :~ {fisi ¢ {I,...,1},f; € Fx] constitute a set of Gribner-basis-
generators for a, satisfying a chain condition of order kg.

(P3): a = &Fq,.eu,fi). )

(P4): m=my.

{P5): qi(ysi)sl, qi(ysj)ao for j=1,...,i-1; i=l,...,m.

{P6): Deqree(q)) < Degree{qs) < ... < Degree(gy) = mg-l.

1.9 Proofs:

In the alqorithm hg+hy+...+h; denotes, how many components of 2 at least can be
reduced to 0 in the next STEP2. This yields
hp + ... +hy <m,

Ad_(P1):-The algorithm terminates not later than for k = (m:'), because assuming
L fj:") and hj > 1 for j=0,...,m, we obtain
M+..thgom+1ldm,

A contradiction, and hence there is a metn
kg e £ (M, (M) Leeed ™)} such that kg = { ° 0.
{(n)(n) {77} su 0= ).t

M) gy construction (6k Jx 3o constitutes a set of Gribrer-basis-denerators.
v, L = . £l
et 0 for kg = On ) implies Degree {(qj) #mg for 21l i ¢ t,e..,m}

. sSuivalently,
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Degree {4;) = mp ---2 there exists fj e Fy such that Hterm f5 = ¢, fi = 6kC 2
or
there exists fj € Fi.1 such that Muttipte {4k, Hterm(fi)).
Now let f ¢ FvFy,. Because of Fyq = Pmg We have Dearee (f) > mg.
Therefore there exists & such that Degree () = mg, Multiple (tterm(f),dx), k<ko.
Combining with the implication for Dearee (¢) « mp, ve obtain:
There exists fj e Gy such that Multiple {Hterm(f), Hterm{f;)}, k<kg, or there exists
. - &
fi € Bg-1 such that Multiple (4, Hterm{fi)), k <kp.

Using the transitivity of Multiple, the latter alternative gives:
There exists f; e Gy.1 such that Multiple (Hterm(f), Hterm{f;)).

This conclusion holds true especially for f sa\ | 0" Thus (G Jx»0 satisfies the
chain-condition of order kg.

Ad_(P3): (P2) and (E6) imply (P3).

Ad_(P4) and {P5): Obviously Newton polynomials a;* exist satisfying 6i*(vs;) = 1 and
ai*lysg) = 0 drlyeensicly del,ue0m,

Assume mpém. Then gi* e Fy  for some i. e

Using {E2) and the chain condition of order kg, we obtain inductively:
For all i ¢ [1,...,n} there exist qip----ﬂi] e F and an hj e Fyxq such that

1
,q‘lt = h-i + iEl q-ijfj,

where hj contains only terms that are not mitiple of any Hterm{f;) and

hilyg) = gi*(yk). Hence we may assume hj = q-i*, but hy ¢ f“n for i=1,...,m, contra-
dicting a;* ¢ Fig for some i. Thus, we have (P4). (PS) halds by construction of
Oseeeslmys

Ad_(P6): By construction Hterm{as} £ Hterm{gjs1), hence there exists

i € {1,e0.,m=1} such that Degree (gi) < Degree {9541)-

The algorithm terminates if and only if for a i e N no headterm of degree j leads to
a polynomial gj in STEP3, whereas for any i1 € 3, §1 e N such a headterm exists. This
gives Degree (qy) =mg - 1.

&, Concluding remarks

7 At some passages in the algorithm, properties of the graduated lexicographical
ordering are used implicitly. Analyzing these passages, we found that apart of the
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termination criterion only properties (E1) and 41 = ,10 0 of the ordering were
required. Using any other ordering of the monomials, which satisfies (E1) and
01 = x10 oo %30, e.q. the lexicoaraphical ordering

xi'! ... " £ :qjl vee x,,‘f"': L~~~} there exists a k<n such that

11 = J1seee, Tgap = fko1, iy € Jies
“only" an appropriate termination criterion must be found. The remaining steps of the
alqorithm stay unchanged,

vae Xp

For termination our alqorithm uses an a-posteriori-criterion {hj = 0 and k = (k"'"))
and in the proofs 3.5 we showed the a-priori-criterion k < (m:") for the

termination. These bounds are the only sharp bounds for n=l. For ndl various examples
exist to show their sharpress. Dependent on m and the deqrees of f1s0+.,f] other a-
posteriori-criteriz for termination can be found at least for n=2. Their derivation
requires some auxiliary results from ideal theory and are omitted in this paper.
Finally, we mention that the set-up realized in the above algorithm should be useful

for obtaining (Gribner-)bases also in other situations where ideals are “given" by
properties and not by bases.,
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