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Abstract

In /2/ a certain type of bases ("Gribner-
Bases") for polynomial ideals has

been introduced whose usefulness stems
from the fact that a number of important
computability problems in the theory

of polynomial ideals are reducible

to the construction of bases of this

type, The key to an algerithmic construction

of Griébner-bases is a characterization-
theorem for Gribner-bases whose proof
in /2/is rather complex.

In this paper a simplified proof is
given., The simplification is based

on two new lemmas that are of some
interest in themselves. The first
lemma characterizes the congruence
relation modulo a polynomial ideal .
as the reflexive-transitive closure

of a particular reduction relation
{"M-reduction") used in the definition
of Grobner-bases.and its inverse.

The second lemma is a lemma on general
reduction relations, which allows

to guarantee the Church-Rosser property
under very weak assumptions.

Gribner-bases for polynomial ideals
are defined as follows:

Definition:

R sequence F of polynomials from
K[xl,...,xn] is called a

Gréibner-basis (for the ideal generated
by F) iff

{(Gl) geXdeal(F) => g >, 0.

F
>p is a certain reduction relation
defined on K[xl,...,xn] that depends

on F. For the detailed definition
of cp and for the definition of all

auxiliary notions as well as for the
motivation for dealing with Griébner-
bases see /2/ and /3/.
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The following characterization theorem
provides an algorithmic test for the
property of being a Grdbner-basis

and allows an algorithmic construction
of Grobner-bases & that gdnerate the
same polynomial ideal as a given basis
F, see /1/. In fact, the Knuth-Bendix
algorithm and the extended Knuth-Bendix
algorithm /6/ and the above algorithms
have a very similar structure {see
also section 4.).

Characterization Thecrem /2/:

The following statements are equivalent:

{Gl) F is a Grbbner-basis
{G2) for 1<i<jglength of P:
the S-polynomial of F, and Fj > 0
(G3) (h » E&,h > Ea) => h1=h2.
El means that h1 is in normalform

with respect to the reduction relation

>, The notation » instead of >p is

used whenever F is.clear from the
context.

It should be mentioned that, in /2/,
(G1l) has been presented in the eguivalent
form

geldeal (F) => g=0

{see (G6) in /2/), and that (G3) is
equivalent to:

(G3') (h » hl,h > hz) =>
=>\\v/’(hl > g,hz > g)
9
(the Church-Rogser property for »).

s

The equivalence of (G3) and {G3')

is a general result on noetherian
relations, see /5/. In fact, various
other equivalent formulations of (Gl)
and (G3) may be proven easily.



In /2/ a complex proof is necessary

for obtaining ({G2) => (G3)) and an

easier, but still tedious, proof establishes
{({G3) => (G1)). ((Gl) => (G2)) is
immediate.

The above-mentioned algorithms are
based on (G2), which only requires
to reduce the "S-polynomials™ of F,

and Fj.(a certain type of "least common
multiple” of F, and Fj) for finitely

many index pairs (i,3) in order to

test a given .F for being a Gribner-
basis. The complexity of the algorithms
may be drastically decreased, /3/,

by exploiting the following refinement
of the characterization theorem:

Theorem /7/:

(Gl) is equivalent to

(68) for all 1<i<j<1ength of F there
exists a sequence i= ul,uz,...,uk J

H{i,3}
and for all pairs (u ,un+1)(1§n<k):

the S-polynomial of F,
Fu >0, Un
n+l
This means that it suffices to test
whether all pairs (i,j) may be 1nterconnec—
ted by certain "chains” of indices
Upreaw,uy such that the corresponding

S-polynomials SP(Fu Fy
..,SP(Fu

such that H(ul,...,uk)gM

and

Yreo

} reduce“to O.

1t is clear that ((G2) => (G8)). Thus,
the interesting implications are
((G8} => (G3)} and ((63) => {(Gl})).

In Sections 2 and 3 simplified proofs

of ((G3) => (Gl}) and ((G8) => (G3)),

respectively, are given.
2:.Proof of {(G3)_=2_(Gl))

This proof is based on the following
new lemma:

Lemma 1:
Let F be an arbitrary sequence of
polynomials (not necessarily a Gridbner-
basis), then F =p g <=>"f vyv g.

F

Here =g is the congruence relation
modulo the ideal generated by ¥, i.e.
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L{F)

<=> f=g+ I
i=1
for certain polynomizls

hl""'hL(F)
{L(F)...length of F}.

f =p 9 ¢ hi.Fi

wv denotes the reflexive~transitive
F

closure of the reduction relation
*p and its inverse, i.e.

£ vwv g : <=> .there are polynomials
F hl""'hk such that
E=h1,g=hk and for
1gi<k

hy »p hyyy or
h1+1 g hi'
We again use = and vvv instead of =g

and vvv , resp., if F is clear from
F

the context.

Lemma 1 so far has escaped our attention,
although it turns out to be an easy
conseguence of property ({(R1l} in /2/.
Lemma 1 establishes an easy connection
between those formulations of the

concept of Grobner-basis using the
ideal-theoretic notion of congruence

and those using the notion of M-reduction.
The reader iz advised to carefully
examine the definition of the relation
>p in order to see, why the lemma

is non-trivial.

Proof of Lemma 1:

<=1 Immediate from the definitions
(see (ES) in f2/).
=>3 We show by induction on m that
it ;
=g+ ots F,
f=g jil a:| tJ F;
(al,...,ameR;tl....,tm terms)
implies

£ vvv g.

From this {£ = g => £ vvv g} may be
concluded because if f = g, then
m
f=g+ I a,.t..F,
- i.
jer 43y

for certain ayse--,8p €K and terms
1,...,t
It is clear that

m=1l: Let f=g+a1.tl.Fi .

1 1
al.tl.Fil 27 0
{subtract al.tl.Fil from al.tl.Filz



this is an admissible ol-étep!).
Then, by property (Rl) of Lemma 2.4.
in /2/,
o succ
f-g+a1.t1.1’il v

{i.e. £ and g have a common Successor),

g+0=g

suce

Of course f g is a special case

of £ vvv g.
: m
m>l: Let f=g+ £ a..t..F, =
e 33Ty
=g+ay .t,.F, +
RS
+ I a;.t;.F. .
Coge2 31
Then by induction hypothesis:

f vev g+a1.t1.Fi1
and, as in the case m=1,
succ
g+a,.t,.F, g
1771774y AV

and therefore £ vvv 4¢.

The proof of ((G3) => (Gl)) is easy

‘now. Assume (G3). Then
geldeal(F) =>g= 0 =
=> (from (G3')) g s%§c
=> (0 is in normalform!} g=0.

> g v 0 =>
0

=>

(g vwv £ => g SUCC ¢ js a wellknown

conszequence of the Church-Rosser property
(G3")).

We note that a direct proof of ((Gl) =>
=> (G3)) without the intermediate
(G2) is easy, too:

h > Ei'h > E& => E& = h=h
=3 hl—h2 0 =>
=> (from (Gl}) hl-h2 > 0 =>

=> (hy~h, is in normalform!)
hl—h2=0
=> h1=h2'
Similarly, using Lemma 1, many variants

of (Gl) and (G3) can easily be proven
equivalent. Thus the attention is

lead to the central peint of the character-

ization theorem asserting that the
algorithmic properties (G2) and (GB)
resp. are sufficient criteria for
Grobner-bases.

Fanommmy.

;é=g£gg£=g£=ééggl::;=iggil

In order to make the presentation

more readable and to single out the
essential points of the simplification
a.simplified proof of ((G2) => (G3)}

is presented first. Of course, logically,
this proof will be superseded by the
subsequent procf of ((G8) => (G3}).

The essential simplification in the

proof of ((G2) => (G3)) congists in

the application of a general lemma

on noetherian reduction relations

{see for instance /5/) showing that

a certain "local" Church-Rosser property
implies the global Church-Rosser property.

Analogously, a new lemma on arbitrary
reduction relations, showing that

the Church-Rosser property may be
asserted under weaker assumptions,
allows a simplification in the structure
of the proof of ((GB) => (G3)). In
essence, the new general lemma arises
from the lemma in /5/ by a refinement
analogous to that by which condition
(G8) arises from (G2). Thus, the results
presented in this section may also

be viewed as a means of exploiting

the refined method developed in /7/and
/3/ for polynomial reductions for

the case of arbitrary noetherian reduction
relations. This method could prove
useful, for instance, in various term
algebras in which the Knuth-Bendix
algorithm is applied.

In order to make the presentation
selfcontained the following notations
and results are resumed from /5/. i

Let M be an arbitrary set and -+ a
reduction relation on M. = depotes
the transitive closure of , —+ denotes
the transitive-reflexive closure of — .
Definitions
- is noetherian iff there is
no infinite sequence Xy~ X, ... X ..
+ + n
G {x) 1= {zeM|x -z}, *
XFY <=3/ (X >2Z2ay -2},

x :Z.. : <=> xz—r*yn—.( NS y—z)
{(y is in —~Enorma1form).
Definition:
-+ is CR (Church-Rosser) i <===>

:<n=>//\4x3mx:z=>yvzh

X, YeZ
Definition:
-+ is locally CR : <===>
r d===> /\(x-’y,x-oz => yVz).

X,¥/2




Lemma 2, /5/:

A noetherian reduction relation is
CR iff it is locally CR.

In the sequel the following elementary
properties of polynomial M-reduction
are used (Proofs may be found in /2/).
(E1) f Htéfi(f) g, Aterm(f) > Hterm(h)

a> f+h »1 g+h.

(€2) go' n, /\ (Coef (t, £) £0=>t >Hterm(g))
-t
=> f+g91 £+h.
{E3) fog => a.t.fra.t.g (aeK,t a
term).
(E4) f>1 g => £+h SICE geh.
(E5) f-g > 0 => s%fc g.
(E6) - » is a noetherian reduction

relation.

then follows from Lemma 2 and (E6).

Detailg:

Assume (G2), i.e.

(i) — SP{F,F:)>0.
1<i<j<h(F) J

We shall show that

(1) /\(g »>? g8 51 b o> g SUSS ),
f,9,h
Let f,g9,h,t,s,i,j be such that
sxs 1 1
(iii) £ t?i g, £ s?j h.

Without loss of generality we may
assume sg.t. We distinguish the cases
s<Tt and §=t.

Case l: s< t

There are polynomials fl,fz,gl,h1
such that f=fl+a.t+f2 and

(iv) /f\ (Coef(t',f1)¥0 = t'>t),
tl
(v) tT>Hterm(f2),

. 1l
{(vi) a.t Efi 9y
1
2 575 M-
From (vi), ({(vii),

easily deduce

{vii) £ h

{El} .and (E2) we

(viii)g=fl+gl+f2,

©(ix)  h=fy+a.t+h;.
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Furthermere (vi), (El), (E2) yield
1 ‘
(x) h 23 fl+g1+h1.
(viil) and {E4) imply
' suce
(xi) g-flfg1+t2 v f1+g]+h1.
Thus, from (x) and (xi)
suce
{xii) ¢q v h.
Case _2; s=t

- 2

Then g and h are such that

Coef(t, £} t

(xiii) 9=f”ncoef(si)'ﬂterm(rii'Fi'

_¢ Coef(t, £} t |
(xiv) h=tf Hcoef(Fj)'Hterm(ﬁ;T‘Fj'

Let the term t' be such that
(xv) t=t'.Lcm(Hterm(Fi),Hﬂerm(Fj)).

succ
v

In order to show g h we observe

that
Coef (t,f)

Hcoef(Fi).Hcoef(FS)'
.(Hcoef(Fi}-Hte[;( .)'Fj'
j

t =
-Hcoef (Fj)' m.Fi) =

_ Coef (t,f)
- Hooef (F;) .Heoef (F.)

J
.SP(Fj,Fi).

(xvi) g-h

..

From {i},{xvi), and (E3) we| deduce
{(xvii) g-h > 0.

(E5), then, yields the assertion {(xii).

We now present the above-mentioned
refinement of Lemma 2.

Definition:

Let -+ be a reduction relation on M.
- is locally pseudo-CR iff

/\ (x+y,x22 => \/ (Y=ullun=zr

X,¥,2 Upoess sy

/\ (x "+ukrlilk v uk'l-]l.”)'

1gk<n

Lemma 3:

A noetherian reduction relation is
CR iff it is locally pseudo+CR.

-

=>3 trivial.

<=3 . Assume — is a noetherian reduction
relation and is locally pseudo-
CR, i.e.




< D)\ (xey,xez = \\\\v”//(y.ul'un-z' Details:

resspll

X,¥,2 + u
INAX= MUy Vl“kx‘-l)”‘3 Assume (G8), i.e.

l<k<n
We show ) * . (i) . (isul,un=j,
(i1) {y z(x*x.x-3~=> y=z). 1gi<jgL(F) 1gugseesiu <L(F)

s
{a variant of the CR property). Hr(ul,....u )guﬂr(i:j)'
We give a proof by noetherian induction: n
. SP(F, ,F, ) > 0).
Induction hypothesis: for a fixed HeM: i<k<n k k+l
* *

(iii) ,//:;j> N\ xty,xds o> yu). We shall show

X7 (x) y,z h .-
We shall show: {11) //«\\(f alh,f »1 q =>

. f,g,h

SONVANNT IR PR e

Yiz .-

’ £ oo f  {g=f £ =h
Let y,z be such that T ey T Ry e TR

*

~ .
(v} X-y,x-z, . /\(f >1lf £y 5%‘,“: £, .
- 1gk<n e " k+1
We distinguish the following cases:-
Let f,g,h,t,s5 be sgch that

1 1

Case 2: x4y, x2z. (iii) £ >y g, £ g2 b
Then there exist Yyr2y such that Without loss of generality we may
" * assume sg.t. We distinguish again
(vi) xsy; -y, ) the cases
- *
{vii) X4z~ 2. s=t and s<Tt.
By applying (i) to Q,yl,zl we get Case 1: S<pt.
Uys-..,u, such that Analogous to Case 1 {n the proof of
. A+ ((G2) => (G3)).
{viii) ¥y=uy rup=zq, (x— ur
: 1gk<n Case_2: s=t.
‘ Uy V).
We can write f in the fellowing form:
Now let Vyr-+«sV _; be such that f=f}_+a.t+f2 with
* * -
{ix} ;ﬁ::;(uk—'tkyuk+l"’t§). {iv) 4:\ (Coef(t‘,fl)*o => t'T>t),
Then =~ . {(v)  tp>Bterm(f,).
(x) ul_.YIul-"il'
et N * Without loss of generality we may
(x1) /\(uk-'v v gy assume i<j,
1<k<n - At Take suitable Yys-..,u, such that
* * (i) is valid.
(xii) uh-'vn_l,un-'i: We know from (i) that HF(ul""'un’§M
From (x), (xi), {xii) and induction 5MHF(i,j). Therefore
hypothesis (iii)} we obtain {using o
(viii)) (xifi) y=v T SV 4 °Z, which {vi) //A\\t is a multiple of HF(uk).
concludes the proot. I<k<n
Thus, by aefiniti?n of M-reduction
Broof of ((G8) =>_ (G3)) by applying {vii) a.t>" g = a.t-
1<k<n M Uk
Lemma_3: =" :
a t F
Sketch: We show that if > satisfies Hcoef(Fuk) Hterm(Fuk} Y -
(G8) then » is locally pseudo-
CR. The assertion then follows From (v), (El), (iv), (E2) ,we may conclude
from Lemma 3 and (E6). (viii) f=fl+a.t+f2 >7 f14g +fy.
1ck<n Uk

Now let fuk:=f1+guk+f2, lgkgn.
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We know from (i}, (lii)’ (vii) and (viii):

g= f ,f =h, | u
Y1 Yn lgkgn K

We shall show
(ix) N\E, ¢, .
1gk<n 'k k+1

An easy calculation shows (see also
the above proof of ((G2) => {G3})

NN g,

x) 1gk<n by ,t, Yk+1 uk'(fl+g“k+1+f2)-
"%y, M) "0, O,
=bk.tk.SP(Fuk,Fuk+1).

Therefore by (E3) and (i)

{xi) //f\\ £, ~f, 0.

1ck<n +1 k

Thus, by (E5), we obtain (ix) which
completes the proof.

Loos /8/ conjectures that the algorithm
in /1/ based on (G2} (not the refinement
in /3/ based on (G8}) may be viewed

as a special case of the Knuth-Bendix
algorithm by a suitable interpretation
of the notion of term in the Knuth-
Bendix algorithm. We remark that (G2)
may be replaced by

i suecc _Jj
gi,j v 91 i
1 Epliuh)
Hcoef(F1 * (i) “tif
l HF(i j)
Hccef(Fj) H (3) j

{(G2')
1¢i<jSL(F)

where

9}, +=Rp1s3)

o] jeHp(i,9)

(see /4/)}. This means that the check,
whether the difference of g; 3 and

- r
gJ . {=S=-polynomial of Fi and F )

1,]
miy be replaced by the check, whether

i,j and g have a common Successor.

+]
This observation and the deduction

of both the Knuth-Bendix criterion

and our {G2') from the same Lemnma

2 (compare the presentation in /5/)
shows that the conjecture is reasonable.

It should be also noted that property
{E5) (={R3) in /2/) can be eliminated
from the proof of ((G2'} => (G3)),

such that (E4) (=(Rl) in /2/) seems

to be the property of »° that is central
to the above proofs. This gives some
hints how to characterize those domains
to which our own algorithm may be
generalized.
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