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Con’rribut loNs

A THEORETICAL BASIS

FOR THE REDUCTION OF

POLYNOMIALS TO CANONICAL FORMS

by

B, Buchberqger
llIniversitdt Linz

A-4045 LINZ,

Absfracf

We define a certain type of bases of poly-
nomial ideals whose usefulness stems from
the tact that a number of computability
problems in the theory of polynomial ideals
{e.qg. the problem of copstructing canonical
forms for polynomials) is reducible to the
construction of bases of this type. We
prove a characterization theorem for these
bases which immediately leads to an effec-
tive method for their construction.

Introduction
~in {1] we gave an algorithm for effectively

constructing a basis of the vector space
Klx;,...,x ]/otuhere ¢t is some ideal of
dimension "0 in the_polynomial ring
K{xypooenx o dn [2] we showed that the

sgme alqgorithm is correct in the case of
arbitrary dimension, too, and demonstrated
how it can be applied to solve a number of '
other computability and decidability pro-
blems in the theory of polynomial ideals.

Recently, M., Lauer, [41, has pointed out
that this algorithm, as a byproduct, yields
the solution to the problem of constructing
canonical forms for polynomtal expresslions
under side relations,

This problem has been raised at the EUROSAM
conference 1374, see C6 , where it has been
conjectured that, in general, for polynomiats
canonical forms do not exist.

Our algorithm proceeds by constructing a
new basis for a given ideal from whjch the
answer to the computability and decldab:lr-
ty problems may be easily read off,

In this paper we single out the characte-
ristic property of such bases by a defini-
tion that Is independent of the alqorithm
(see Definition 3.1)., In this definition we
use a new version of the concept ot M-reduc-
tion, which, in fact, was the original one
proposed by W, Grobner, 4] in 1964, (see
Dafinition 1.5). Farmally, this version is
more appealing than that used in [! and[Z].
However, it needs a totally new proof of

the main theorem on which the alqgorithm In

(1] and [2] is based,

Atter some preparations in sections 1 and 2,
we present this proof in section 3 (see 3.3
to 3.6). In one of the next issues of this

Bulletin we shall give a uniqueness theorem

~whishes to have more examples and

‘of rational

- wanted to think of the palynaomial

Austria

and some -further decidability results for
the bases defined in 3,|

in this paper we emphasize fthe technical
aspects of the proot. for the reader who
informal
we prepared a tuforial exposi-

intuitions,
see [3].

tion of the material,

1, Basic Definitions

Throughout the paper, K denotes an arbitrary
field. By Klx, (abbreviated K[] )
we denote the ring of all polynomials uver K
in n Indeterminates (n@N_). (N set of
natural numbers lncludlng zero, N_:= N-{0},)

yeaa,X

LRI

In the examples, K always will be the field
numbers .and for naming concrete

polynomials we use the usual notation. For
axample, by 3xv2 + 5x - 1 and
. 3

x'xz * SR Xy x.xzx we name certain

polynemials in K[x y] and K[x!,xz,x ] re-

spectively, Note, that these names are not
unique, For ipgstance, 3xy< + 5x -1 ;
-1 + S5x + 3xy , and O.x% . + Sxyz + S5x - 1

are names for +he same golynomial. Ordinarily,
also xy2 + 5x - + 2xy“ would be accepted
as a name for fhe same polynomial., 1f one
ring

to be the set of expressions of
ind, one had to porm these expres-—
(for instance,

Kx
the above
by some rule

pee ey X

‘sions
(R1) combine eaual terms
(R2) omit terms with zero coefficient
(R3) wuse a fixed order of terms),

One should carefully distinquish between the
twa meaninqs of the sian + in expressions
like this
(5x°_+ 3y) + (2xy +_1)
separator betfween
terms

separator befween
terms of the flrst
polynomial
sion for
addition of
fwo polynomials

by the suqgestive notations above,
Incorrect con-

théfwise,

one Is easily mistead to draw
clusions in reduction arquments for polyno-
mials. So, if doubts appear about the nature




jals one should sither take a set range when used with indices. Thus, f, is

of polynom -
for the structures admitted as a variable rangling over K n* On the ofher

of axioms

"polynomial rings over K in n indetermina- hand, .F, means the i-th component of the
tes" or choose 2 fixed mathematical model seaquence F,

rather than the ordinary "linguistic" one.

For Instance, 3 suitable model could be 1.3, Definition:

defined as follows: ]
Coef(t,f}) := Cogtfliclient of ferm T in f

The. polynomial ring in n indeterminates
over fhe field {K,+,.) is the sfructure Occlt,f) . g—>p Coef(t,f) # 0 (fterm + occurs

(K[ln,[~],[.]), where —n 11

n +he term that is maximal with
K[]n:‘(f1f=N — K- and respect to <T among the terms
{(i!""in)1{(il""in}#0} is - Hterm(f):= occuring In f, }f £ 0

finitel o o ;
: x%. .. i ¢ =0
and for f,0€K[]l , (i, i) ® N" prrXne

(f[o]g)(i1,...,in}:-f(i|,..,in)4g(li,..,in) {the head-term of f)

(0T e in Hcoef($) :» CoefHtermtf},f)
e :f(jﬁ,..,jn).g(kl,..,kni (the headfcoef_flcl_eq'i of f1}
(J‘,..,jn)e N
(k ,..,kﬂ)G.N“ ) Head(f) := Heoef () .Htarm(f) (the head of f)
J'1"‘1'(1"51'"'“in”(n'fn ' .
Rest(f) ;= § - Head(f) (the rest of f)

However, in order not to blow up the formal .
apparatus of this paper we give all defini- 1.4, NDefinitlon:
t+ions below relative to the familiar "lin- ‘ i“ i ] ]
quistic" model and encourage the crifical Mulfiple(xl¥...xnn.x|i...xnn) ! fed
reader Yo control that the dangerous ambli- )
guities pointed out above do not go Into T|2 _|1,.,.,In‘zjn

the definitions. : . j |
fx‘1...xnn s a multiple of xl“"xn")
1.1. Definiflon: )
e i i J, o
. i Lcm(xll...xnn,xtl...xnn) HR
.= 1 nli )
Ke> 1 |||,...,InﬂrN]7 . KMGX(F‘-JII

(set ot terms in n indeterminates) ot

Cmax (i, 0
n

; i (the least common multiple of two terms)
Degree(x1-1 e i]f...+i :

n
) L(F) := length (I.e. number of components)
(the degree of a ferm) in the seauence F
i i I J .
xyTooaxon <0 oxplo.oqh o & Mierm(t,F) i e
i i 1 J
Degreelx‘l...x?n)<Degree(x11...xnn) or \\// Fiio A.MulflpielfaH*erm‘Fi))
tDegree(xl‘...xnﬂl-Degree(x4l...xin) and 1£14L(F)
i\'jl""'ik’-'k"kn)jk'rl for some k (+ is an M=term with respect fo F)
with 18 k+1%n) -
(lexikographical ordering of terms) Normalf(f,F) : &—>

The ordering <¥ plays an essentlal role in

/h\ (Oce (4, f)——> =aMterm(t,F))
t+he reduction procedure defined below. ¥

(f 1s In normal form with respect to F).
1.2. Convention: e _

i 5.0 ition:
To simplify notation we restrict the use of 1.5 Lgiiﬂlllgﬂ_

certain variables i
i,j,%,1,m...varlables f6r natural numbers f F j | 9 ¢ ® ’
a,b,c,d ... variables for elements of K '

) : |&I&LOF),
¢,9,h ... variables for polynomials of K[]n F. # 0,
s, t variables for ferms in K<> o ‘ Otclt,f),
g ce n . : Multiplett,Hterm(F )],
F,G,H ... variables for finite, non-empty ) gvf-a.s.F;, where

sequences of polynomiale. : aECgZ:(fE ) and s Is such that

I+ Is undersfood that all fhese varfables . -T*s.H*arhllF )
(with the exeption of F,G,H) preserve their (f M-reduces to g wi#h respect to F in one

— T T
step .af nvolves t and F]).




1 1

f o> g 14— \\// f > q

F t,1 F,t,i
(f M-reduces to g wlth respect to
F in one step)

fo> g f——-)\/ \/ (f=hg s a=h.,
F ka N ho""’hk
/\ . oy
0gj<k 1 F !

(f M-reduces to g with respect to F)

f =» { g—=p f > g A Normalifilg,F)
2a

F F
(g is a normalform of f with respect
to F) ”—
foS8C 5 e—\/ (> hialg > h)
F h F F

(f and g have a common >-successor
with respect to F}. )

1.6. Convention;

If F is clear from the context we write
Mrerm(4), Normalf(f), fT:""' 5, >, SycC
instead of

Mterm($,F), Normalf(f,F), o' , ' o,

> sgcc F,+,i F F
, .
F™ F
t.7. Example:
Fi:= (xzx - 3x 2x2 + 5x,% =9%,%, = X,)
: 172 3 3 172 173 2"
2 2
Then, HTerm(F') = X%, errm(FzJ = X3,
4
H+erm(F3) = X Xq, M+erm(x2x3,F).
4 2 1
—3x2x3 + 3x1x2x3 * X X, . >y
,x2x3,2
15 2.2 2 !
5 XyXgX3 * XXXyt X X, . x2: .
*TyT273
15 2.2
—5 XyXpX3z * Ix, + X Xy s

and, therefore

4 2
-3x Xy * 3x1x.2x3 2 XX, >

2 F
l% xpxox5 9t xpx,
Further,
2x2x - 2x2 + 5 > —2x2 + 6X, * 5 >

172 3 3 3

F F

>' Sy x4 Bx, + 5 , and tTherefore
F 172 3

2 2 .. .
Zx‘xz - 2x3 + 5 -; 5x1x2 + 5xg 5

because Norma|f(5xix2 * 6x3 + 5,F),
Also

2 .
2x3 + 1Ox]x2 + 6x3 + 5 - EXIXZ * st + 5,

F
and therefors,
2 2 succ 2
Zx‘xz 2x5 + 5 g 2x3 + lelxz + 6x3 + 5,

1.8. Definition:

Spol(f,q) :=
Lcm(Hterm(f) ,Hterm(g))

1= Heoatlgl . Hterm(f) f
_ Lem{Hterm(f) ,Hterm(g))
Heoetf () . A¥erm(g) + g9

(the S-polynomial of f and g, i.e. a poly-
nomial which derives from f and g by a
spacial type of subtraction), where

i I

1 n ' I
EEERE I]-j1 i -]
———e m X

Iy In
Xy seaX

1 n

X
n

1 ceeXp , which is

considered to be defined only
In case i12j1,...,in2jn.

1.9. Example:

Let f:= 5xy - 3x, g:= 7y2 + 2x.,

Lecm(Hterm(f) ,Hterm(g)}) = Lcm(xy,yzi - xyz.
2 2
- x - xy .
Spoltf,g) = 7 . ;%- . f -5 . 7 - 9

=7 , ¢y . f -5, x .qg=

-21xy) - (35xy + 10x2) =

= —21xy - 102 .

- (35xy2

Notice, that by the procedure of forming
Spol(f,g) the highest term (in our example

xyz} disappears. The S-polynomials play a
central roje_in Theorem 3.3 and the algo-
rithms in [1] and [2].

1.10, Definition:

ldeal (F) :=

z= (h W Fieoiieh F [I=LF) AN, ...,h & K[}n}

1
(the ideal generated by F).

We now list some elementary facts about the
notions introduced so far, We shall make
constant and tacit use of these properties
in the proofs In Sectien 3.




2. Elementary properties of the baslc
nofions ‘

2.,1. Lemma:

(E1) Properties of <7
P i il i g

<T is a linear ordering on K<>n which Is

isomorphic to the ordering < on N,
x? .,xo corresponds to the zero element
in N, 1.e. x?...xﬁ T T .

(E?) Properties of Ocec, Hcoef, Hterm, Head,

Rest
L —

# F 0 =3 Occ(Hterm(f),f)

f = Head(f) + Rest(f)
Hcoaf(0) = 0, Hterm(0) = x?...x:, Head (0)=0,

Rest(0) = O

Normalf(f) ——» Normalf{Rest(f))

o [
# X{eo Xy

—3 Hterm(f)

Hterm(f) —————

7> Hterm(Rest(f)) .

(E3) Properties of >!

f o q ———ifﬂ 8]
f ->1 q —3 =0cc(t,q)
t,1
Hterm(f) # x?...x‘:, f o g ——
Hterm(1),1
—>3 Hterm(f) T> Hterm(g)
f ol g ——>» Hterm(f) Tz Hferm(g)

f ->I g,"IUCC(f,h)_’f"h"1 q+h
t,1

1 1

Rest(f) » q == f > Head(f} + q

1

Rest(f) » Rest(g), Head(f)=Headlg) —

—_— f ->.| o]

£ g, a f 0 —> a.*.f~>1 a.t.g9 .
(E4) Properties of -
P e ]

> s a quasi-ordering on K[} (i.e. It is
reflexive and transitive),.

f«>g/\ffg—"\/ £ h
h

f>qgan f #q—=>=Normalf(f)

-- 22

f > g ——» Hterm(f) T2 Hterm(g)

ANAREFA

f qQ

Rest(f) » q —> f = Head(f) + g
t> g —>a.t.f>a.t.g
—Mterm(Hterm(h}) A h > h' —>
—-)Heat_:l(h]=H_eadih'! A~ Rest(h) ©» Rest(h')

= Hterm(g) —>
—> Rest(f) > Rest(g)

f > g, Hterm(f)

(E5) Properfies of -» and ldeal
§f > q=—>f - geldeal (F)

F
f » q, fteldeal(F)——>q &ldeal(F)
F

(E6) Properties of » and Normalf

Normal f(0)

Norma | f(f) ————> f > §

L

Normalf(f) A f > g—>f = 9

"f >‘3~+———>Nnrmatf(g) .

(E7) Properties of Spol
P e T W

f,g€ Ideal_{F) —> Spollf,g) € ldeali(F)

/\ Spol (F,,F,) & Ideal (F)
&, jsL(F) .

(E8) Properties of 53“
SSCC is reflexive and symmetric

P4 g —s\1on .98
\ )

> g ——>f SYEC g

2.2, Proofs:

In general, the proots for these properties
are immediate.

/\\/ f >g : There is a straight-
f q A

forward algorithm that constructs g such that
f a‘g‘{or a glven #t:

P

successively ellminate M-ferms t from f by
executing a step of the form- f -> q

: Fo4,1
left, a normal

until no M=-terms are l.e.

form is reached.




The termination of this algorithm is guar-
anteed by the fact that in each step g de-
creases wifth respect. to the following
wellfounded ordering (for the notion of a
wel l-founded ordering and its role in ter-
mination proofs, ses [7] ,pp. 185):

g <P g' : ¢&—>MW(g) < W(g'), where

Wig) := > TP and Ne o is the

Occit,q)

order Isomorphism between (K<> ,<T) and
(N,<),

2,3, Remark:
One Js easily tempted to believe that

f .)' —3 f+h ->‘ g+h or that
9

f > g——>f+h-> g+h . However, this is not

the case and, in fact, this is one of the

major reasons why the theorems on reductions
of polynomials are relatively hard to prove.
Instead, we have the following lemma,

2,4, Lemma:

(R1) £ o' g fon 5§ gon
(R2) f-g o h =——s A ih e fr-gr,

N f',9' fo f', g q")
(R3) f-g » 0 =——> f"sgcc q .

2.5, Proof:

ad_(R1):
Assume f = g, i.e. g = f—a.;.FI whare
1,1
5 nc Coqf(f,f) and
Hcoe i
s. is such that
t = s.errm(F{).
Case_l: Coef(t,h) = 0.
In this case we have f+h >! g+h and

succ
v

therefore f+h g+h.

Coef(t,h) # O,
Coef(t,h) = -Coef(t,f) .

t+h and

In this case we have g+h 01
therefore f+h g g+h.
Coefl(t,h) # O,

Case_ll_b:
Coefl(t,h) # =-Coef(t,f).

In this case we define
Coeflt,f+h)

L 'Hcoe?ZFrl i
. _ Coef(t,g+h)
R i e L ICRLT IS

‘ I :
Since Occl(t,t+h) and Occl(t,g+h), we have

frh ! B and g+h ol Ao 14 s easy to chack

& succ

that A = h.. Thus, f+h “g g+h.
ad_{(R2):
Assume f-g ->1 h, i.e. h-f—g-a.s.Fi, where
gl Coef(t,f-q)
='—ﬁEEETT?T%— and s is
such that t = s.errm(Fi).
Case_l: Occ(t,f), mOcclt,g).
Choose fr' 1= f = a.s.Fi,
q' := g,
Case_l1: —Occlt,f), Occlt,q).
Choose: f' := f,
gq' = g - (-a}.s.Fi.
Case |I1l: Occ(f,f), Oceclt,qg),

(The case Caef(t,f) = Coef(t,g) # 0O is not

possible, because of Occl(+,f-g). By the

same reason also =10cc(t,f) A —10cc(t,g) is

not possiblel)

_ Coef(ft,f)
coe })

_ Coefit,g) .
Acosf(F,y * 5« "j

Choose: f' := f s . Fpy

We give a proof by Induction on the number

of a‘-steps necessary to M-reduce f-g to 0, .

Induction basis:

- -

f-qg = 0 (i.e. the M-reduction is possible
in zero steps),
succ

In this case f=g and therefore f "y 9.

For a fixed t&N:
. S S 1 . succ
f-q hg > hy > e > hy 0O —>f "¢

Choose f'-g' such that

hl = fl-g', f> f', g g' (use (R2)!) .
By induction hypothesis, f' sycc g', and

therefara f 5%‘C g.

-- 23 --




3, Grobner-bases and characterization

of Grébner-bases

3.1. Definiflion:

A sequence F of polynomials from K[]n is a
Gr8bner-basis (abbreviated G-basis(F))

(for ldeal (F))} : &—>

(617 /\ (g€ ldeal (F),Normalf(g,F) —3g=0)
. deal

(i.e, in ldeal(F) there is no polyno-
mial in normalform other than 0).

3.2, ExamEIe:

Let F ;= (xy-x,x2¢y). F is not a G-basis,

because -yz*y eldaal(F); 'Y2°Vfﬁ.

2

Normalfi-y“+y,F).

Let F'
This, too, can easlly be seen after applylng
the algorithm given In {2]. For the moment

notice fthat -1Normalf(-y2,Y,F|).
3.3, Theorem:

The following statements are eaquivalent:

(G1) F is a Grdbner-basis.

(62} Spol (F ,F ) > O .

i)
{<i,jsL(F)

(i.e. all the S-polynomials of poly-
nomials F1 and _FJ are M-reducible to 0)

(63) (h>hy Ah= hy=—3 h =h,)

h,h.',h2

(i.e. all the M-reductions of a glven
polynomial h lead to the same normal-
form).

3.4, Proof of Theorem 3.3:

(Gt) ——> (G2):
Assume (G111, 1.e.

(1 /\ (geldeal (F), Normalflg,F) —»g=0)
q

Take i,j such that 1gi,JsL(F). Then
(2) Spol(Fi,Fj)E {deai(F)

Let g be such that

(3) SpoI(F{,Fjl->;&

Then,

(4) gs&ideal(F).

So by (1), (4) and (3), g=0, i.8.

(5) Gpoi(Fi,Fj) > 0,

{Note that we constantly use the "elemen-
tary properties" compiled in Lemma 2.1.)

-

1= (xy-x,x2+y,-y2¢yl. F' is a G-basis.

3.5, Proof of Theorem 3.3,

(G2) —(G3) =
Sketch: '

Use induction on the headterms of h with
respect to the orderlng <7V,

Lemma 2,4, wlll play a central role.
Compare also the graphical summary of fThe
proof in [3].

Detalls:

Jnngron_bg;ls: Hterm(h) = x?...xo .

n

S Assume h > by, ho> hy

tHTerm(Fi)-x?...x: A F'IO).

1812L(F)

Then h1-0, hz-n, ive. h1=h2.

Il ﬁ\\\yfddﬂ (Hterm(F. =x2 ... x% AF #0) .

28927.1. i 1 n i
1gigL(F)

Then Normalf{h), and therefore h,=h, hz-h,

i.e. h1'h2.

Induction hypothesis: For some fixed t
+ ™ xo...xo:
1° n

() /\ (Hterm(h) <T + —»

h
— /\ (h > h,ah '>nl"1q—-'n-)h|'h2)).
h,,h
1’2
Consider now an h with
o~
(2) Hterm(h)=t,

S~ (F[{OA MuITIpIe(H?erm(h),HfBrm(Fi))).

1sigl(F)
Assume

h We have

(3) he> hy , ho> hy

(4) he> hy b hy and therefore

(5} Head(h) = Head(h1) = Head(hzl,

(6) Rest(h) = Res?(hl), Restth)l > Resf(hz)
(7) Hterm(Rest(h}) <T Hterm{h}=t

(8) Normalf(Resf(h1)), Normaif(Resf(hZ)).

From (6) and (8)

(9) Rest(h) > Re§f(ﬁl), Rest(h) = Rg;*}hzl.
Thus, from {7} and (9) by induction hypo-
thesis

(10) Res?(h,) = Resflhz).
Finally, from (5) and (10}
(11 hl-hz,_q.s.d.

~_ (F‘iO/\Mu|+Iple(Htermfh),errm(Ff))).

1<1SL(F)

Assume that 1smsL(F),
~ (kK| 11,0, /7N i sUR)

12k, k'sm 15ksm




and
(1z) Fy fO'ﬁMulflple(H*erm(h),errthi.))
k k
for 1sksem
and

(13) Fl¥0«quu4tiple(H?erm(h),errm(Fi})
for i*,[il""'im}'

Take g‘,gz,h such that

(14) Rest(h) = A4

(15) Head(h) °1 - 9y
errm(h),fl

(16) gz*g1 > hy From (14)-(16) we obfalin
(17) h > h .
-

(e /N th> h,—>h,sf),

We show

wherefrom

"2
(19) /N (h> hyah > ho—>h =hy)
hy.h :
1eh2

follows., Thus, let us assume
{20) h > 3J .

h is M-reduced to h, by an M-re-
ductlon of the following kind:

h = Head(h)+Rest(h) >

> Head(h)+g] .

Hterm(h), i,

e ————

1 [
g ’gl .> h2 r
where

(21) Rest(h} = gi
N |

t22) Head(h) > gé
H*rerm(h),i1

(23) gb+g] > hy-

For showing that In every case of this
type hth we show: somewhat more, namely:

fDP all p’gtgil*el"'ifpa tf

(24) Hterm(g) <T Hterm(h)
(25) Head(h)  »' a}
Hterm(h),il
(26) g=f_, /N f SRR S
Osg<p a q*
then Csucc
(27) gi*g v géffp -
Because If we have proven this we may pro-
ceed as follows: Assume (21) to (23) for
some g, gé and h,.

Consider an M-reductlon that reduces gi to
normalform, i.e. ftake p€N, fo;...,fp such

that
AN

(28) gi = £ e q

(29) Normaif(fp). _
Then on +t+he one hand for some h3

(30) h = Head(h)+Rest(h) > Head(h)+qg] =

« Head(n)+f_ ' Head(n)ef o' L.

1
oo > 'Head (h)+# ! 9yef > hy .
Hterm(h), 1, P~

fo q+1 and'

On the other hand

(31) h = Head(h)+Rest(h)} >
> Head(h)+g] - > gétg{.> hy
: errm(h),i! ~

By (21), (28) and (29)

32) Rest(h) > f

( L
and therefore, by induction hypothesis (1)
and (14)

(33) f = 9y .
By (15) and (22),

) oo

(34) g, 95 -
By (i16), (30), (33}, (34) and Inductiaon
hypotheslis (1) ‘

(35) h} f h .,

Now set g:-g{..Then (24) holds because of
(21), (25) holds because of (22) and (26)
because of (28).

So by (27) for some {
(36) gi+a! > R ,
2 ] P~
(37) g%*f > R
el ~—
From (30) and (37) by the induction hypothe-
sls (1) and (35) we obtain

(38) R = hj = h .,

Thus, by (23), (36}, induction hypothesis (1)
and (38) we, flnally, obtain

(39) h, = f = h .

So let us show that from (24)-(26) we may
infer (27), This 1s shown by induction on p.

Then gi+g = gé*fp, l.e. (27) is trivially
true,
Induction_hypothesis_for_p: For p:=p and

arbitrary g,gé,fo,...,fa: if (24)-(26) are
satisfied then (27) is also true.

pere Assume (24)-(26).

By induction hypothesis on p we have

(40) qj+q syce

Furthermore, of course, we have

an foo gy and, by (28) and (26),

(42) errm(gé*f;) <T Hterm(h},

fo,...,f

T -
gz+fp .

From (41) and Lemma 2.4, (R1) we get
v.e. SUCC 4.

43) gz4fp v 92+fp"

From (40) and (43) we have

(44) g£+g > 'i", gi*fs .>j~ and

.

y ! - P o f-
(55) gz+fp >R 93 fP‘i
Now, by (42), (44), (45) and the induction
hypothesis (1)

'?”Eﬂ_ for some K, h.

(46) R = A .

25 —-




So, finally, we have
suce
(47) gé‘g v gé¢f5;‘ -
Case_Il_b: h is M-reduced to h, by an M-re-

duction of the following kind:

h = Head(h) + Rest(h) >
> Head(h)+g{ N : gé‘*g{ '>_h2
HTerm(h),:k_
(2<ksm), where
(48) Rest(h) > gi .
(49) Head(h) > at'

H1‘ef‘m(h),lk

(50) gé'+g{->Jh .

For showing that h2=ﬁ consider the following '
M-reduction

h = Head(h) + Rest(h) =

1

. 1 . 1 1

’ Headlhl+gi Hter;(h) i 92791 >‘n3’
»

Head(h) ->

1
(51) 9y
Hterm(h),i|

f .

(52) g} + 9] > hs.
From Case |la we know that
(53) h3 = h.
We now show that

e . SYCL.
(54) g' + 9] v a; * g} .
For this purpose we observe that

: X [ - ] ' = [ . [ -

(55) 93" + 9y = (o3 + 9j) = g;' - aj
Hcoef(h} . Hterm(h) .
Hcoef(F. ) " Hterm(F. J

"k "

= (Head(h}~-

Hcoef(h)
Hcoaf(FI

_ Hterm(h)
}  H¥erm(F, )
1 "

Y ReosTir ),(Hcoef(Fi ).
" K

- (Head(h)-

Hcoef(h)
Hcoéf(F}

I
Htermth) F _
‘errmiF} [
1 1
Hterm(h) .
Heoef (F, ). roechoper F ) -
1 ]k K
Hcoef(h)
Hcoef(Fi ).Hcoef (F
1
Hterm(h)
'Lcm(errm(Fj ),Hféfm(Fi I
1 k
Lem(Hterm(F; ), Hterm(F, 1))
1 Tk F. -

Hterm(F ., ) i
i 1

l.(chef(F. ).
i

ik k

' Hterm(h)
H°°e*[Fi,)'Lcm(H+erm(Fi“);H+erm(Fi'1)'
1 K

Lcm(errm(Fl ),errm(Fi ))
: 1 K

P =
ik

' Hférm(F} )
k

Hcoef(h)
Hcoef(F, ) .Hcoef(F, ) *
E | i
i k
Htermth) -
- LcmefErm(Fi ),errm(F-i Yy ¢
1 k

SpoI(Fi SEL )
o'k
Now, from the assumption (62) we know

(56) Spol(F. ,F. } » O .,
17 'k

Therefore

A57) (Qé| + g{i - (gé + gyl >0

and from this, by Lemma 2.4, (R3) we get (54),

i.e.

> B ! 1.
(58) g4’ = g; > bos 9y * 9] >Aﬁ~for some f.
By the induction: hypothesis (1)} and (52),
(533, (58) we get
(59) f = h ,

and again by the induction hypothesis (1)

and (50), (58), (59) we get
(60) h, = f = h, g.e.d.
3.6, Proof of Theorem 3,3.

(G3) ——3(G1):

Sketch:

We show that every g € ldeal(F) may be M-re-
duced to 0. Hence, there cannot exist a g#0
in ldeal(F) that is in normalform.

The proof is carried out by induction (with
respect to <T) on terms that are maximal
among the terms in h1.F|,h2.F2.....h'.FI

needed to represent some polynomial
qgeldeal (F) by g'ht'Fl""'hl'Fl CI=L(F)),

De?alys:

Let 1:=L(F).
Assume (G3), We shall show that

() /\/\: l.s/J;\l (h =0V F =0v

v errmth}.Fj) <T t)} and

g-h*.F’*...+h‘.F}————} g > 0).

From this it follows that
/\ (g eldeal (F) ——3g » 0)
9

wherefraom immediate,

(G1) is
induction on *t.
x9. 0 .0x2 .

1 n

} <T +

(1) we use
T =
In this case HTerm(hj.FJ

ble, i.e. the only possiblility remaining in
this_case Is that g has a representation
a -'E hj'F with Ch ﬂ?vFj=0),

i<j<r J] fe<jey

i.e. q=0, and‘+herefore g > 0.

For shawing

Indyc+iOp_basis:

is not possi-



[nduction hypnfhesls' For some fixed ft:
(2) _ "~ ¢\ (hj=0wF =0
hysseeshynd [ENES
wvHterm(h .Fji <T 1)
9 * Ez:f:'h..F.-——-wag > 0) .
i<jst

We shall show

(3) ///“\\\ /A\(h=0vﬂ

hyvevesh [+9 1<J$|
. HTerm(h F L) <T 1)
v it = ,
g = h .F.—'-+ g > 0),
. 1<j! J7d
by showing that for all m,ll,...,i »
hiseseshysge if "
I
(4) 1smst, 11,510, (jhAk—>i -
12jsm 1<j,kEm J
(5) //\\\ (h, FOAF, FOA Hterm(h .F,  )=1)
isjsm J i J J
(6) ,f”\“\\ (h =0 vF =0 v
T (1, yo '
rete m vaerm(hi,Fi) <T 1)
(1) o = Z h,
Isjsi J
then
(8) g 0 .
We show this by Induction on m,
Inductlion_basis: m=1:
In this case we have
(9) g = by F, o 2 hyof !
R PP o,
J;‘l1
> Resthy VF w2 hLF g
+,f| 1 1 jfi'
Since (by(5))
(10) h. FOAF, #0 AHterm(h, ,F. ) = +
0 h RN
we have
(11) Resf(hi )BO‘Verrm(Resf(h' ).Fi ) <T ¢+
1 1 1
(Note that this Is true also in case

t = x?...xg.l

From (6) and
tion hypothesis (2)
that g » g' = 0 and,

(11) we see ?héf the Induc-
is applicable to q' so
therefore g = 0,
mem (m21)

if (4)=(7)

For atll

and all i ey
! I E) ’ m

: },...,hi,g:
is satisfied then g » 0.

that for some '1""’15*"

l,//ZN\\\‘lsi <, L0
Jtk

£iy)

T<jzm+i J i J J

(14) _—" T~ (h,=0vF =0v

Fi)-?)

This yields the followina representation of
(I7)a = h, WF v b Fo s E:E: hJ.Fj =

i 2 2 J=1

jﬂi].iz
= Head(h,6 ).F +

o .

+ (Head(h, )+a.Hterm(h, )).FI + gt
'2 '2 2

where

{(18) q' := Rest(h

Ty ) 2 s

- a.H+erm(hI
o=l
J#il,i2

a' has a representation that satisfies the
requirements (4)-(7) of the induction hypo-
thesis far some m<m or even satisfies the

premise in (2). So

(19) a'» 0.

By (16), (17)

(20) gq-q' = b.s.Spol(Fi ’FI ).

1 2
Mow trom (G3) we can deduce

(z1) Spol(F ,F.) > 0.
121, js! J

To show this ftake i,j with

exists an R such that

12i,jgt. There

(22) fleff
: Lcm(errm(Fi),H+erm(FJl) i
= chef(FJJ. errm(Fi) : .Fia
1 : .
> Spo!(Fi,F.)'> h
J ~A

LcmiH+erm(Fi1,H+ermcFi)),j

=27 ==

9

. vaermthi.F[) <Y 1)
(15) g = E h . F, .
IESES] I
Define
Hcoef(h, ).Hcoef(F,. )&Hcoef(hI ) .Hcoeft(F, )
. 'f II- 2 |2
ar= -
Hcoef (F, )
'2
Hcoef(hi )
b:= and
Hcoef(Fi )
: 2
"= i ‘ +
8 Cem(Aterm(F, ) Aferm(f, 1)
: 1 "2
It is easy to check that
(16) . Head(h ).F, +(Head(hi }+a.Hterm(h. 1),
. i
1 1 2 2
.Ff -_b.s.SpaHFi .Fi ).
2 1 2



On the other hand,
(23) f!eff *l
Lcm(HTerm(Fi),errm(Fj)],i

So because of (G3)

(24) § = 0O

such that (21) may be seen from (22).
From (21) '
(25) g - g'=> 0,

and, hence, using‘Lemma 2.4.,, (R3}

(26) g “¥°° q*.

and (20) we have

Assume

(27) g > ﬁg g' = jL

for some R. Then

(28) h = O

by (19) and (G3}, so by (27)

(29) g = 0. LI
In the next proposifion we list some easy

consequences of Theorem 3.3, which give
some further characterizations of G-bases.

3.7. Proeosi?ion:

The following statements are equivalent:

(G1) F is a Grdbner-basis,

(G4) (g &ldeal (F), g->JL-——+h-O!
%;?e. atl normalforms of polynomials
in ldeal(F) are zero)

(65) /\{geldeal(F)t-——?/\(g > p——>h=0))
(?,e. polynomials arehin Ideal(F) iff
all normalforms of them are zero)

(G6) /\(ge-!deaI{F)t—-—)go 0)

(?.e. polynomials are in ideal (F) iff

they are M=-reducible to zero)

(G7) /\(Spol(F ,F ) > g —>q=0)
T<i,jsL(F) g J
(i.e. all normalforms of all S-poly-
nomials of Fi and Fj are zerol,

3,.8. Proof:

(GI) ——>(G4):

From g€ ldeal (F) and g ™ h we infer

h €ldeal (F) and Nermalf(h). Thus by (G})
h=0.

(G4) —> (G5):

n__y". From g &ldeal(F) and g = h follows
: h=0 by (G4). '
" g—": Assume /h\ tg » h—> h=0).

Take some K such that.g > f (at
least one such R can always be con-
structed by fhe algorithm in 2.2.).

Then R=0,1.e. g > 0 and, tharefore
qg& ldeal (F).
(G5) =——3(G6):

"_3": Take an f such that g > R Then R=0
by (G5), Thus, g = 0.

" ": Immediate,.

*————-—
(G6) —» (G1):

Assume g @ ldeal(F), Mormalf(g), Then g -> O
by (G6) and, therefare, g=0.

(G1) —> (GT7):
By (62) and (G3)
(G7) —> (G1}:
Take some § such thaft Spol(Fi,Fj) > §. Then
§=0 by (G7). Thus, Spol(Fi,FJl-> 0, (G},
then, (62)

in Theorem 3.3.

follows by in Theorem 3.3,

4, Conclusions:

(G?) of Theorem 3.3 is the kay to an effec-
tive method for constructing Grébner-bases

for an ldeal generated by a basis F: in one
step produce the §-polynomial of Fl and Fj

and M-reduce this polynomial, |f It Is M=re-
duced to O proceed to fthe next camblination
of indices i,j. |f not augment the basis by
the result of the M-reduction. A detailed
description of this method together with a
terminatlon proof is given in [2 .

This algorithm has been programad several
times, see [1] and [8]. No theoretical

‘bounds on the number of steps_are known so

far, except in the case kK[x,y], where we

know how to determine a bound far the highest
degree of the_terms appearing during the algo-
rithm, see [1]. However, we think that one
chould first concentrate more on establishlng
criterions in fthe style of S1 and S2 in [21,
which reduce the complexity of the algorithm
rather than trying fo obtain complexity esti-
mations for crude versions of the algorithm,.
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Editor’s Note

You may want to memorize the next
column before reading Korpela's paper.

The first 13 pages of this issue were
prepared by the Conference Chairman
Dr. James Griesmer. Thanks to him. The
unexpected number of contributions to the
conference is one reason for the size of
48 pages of this issue. The other reason
is that I did not insist on retyping the
ANALITIK contribution on ACM model paper
because of the number of different alpha-
bets (e.g.Cyrillic) involved. Sinée the
former issue had only 32 pages I hope .
the size of this issue can be justified.
We have a backlog of some 30 more ab-
stracts and two contributions, 11 pages
each. One from Marseille on symbolic
integration via predicate logic,

Nevertheless I would like to
encourage more Eontributions to the
discussion section, to the problem
section, more class room notes, more
news on personal items and systems.

Please note also the change of my

address on the first inside cover.
R. Loos

(Page 43 continued)

"BHIOOJHHTE" execute, do
"BLYHCTHTE" compute, evaluate
";EE" “where
"EEA¢HH" graph
"IENHTE" divide
"ﬁEP?EPEHHHPOBATB" differentiate
DINE for

"nov until

" IPOBU" fractions
"ECIIH" if
"3AT'OJIOBKA™ heading
"3ANHCATB" write
"EEEHEHHE" . value

"y - and

"HATH™, "HTTH" go

H‘MPI" or

"MHAUE" . else
"HHTEI'PHUPOBATL" integrate
"KoHEL" end '
"JIEBAS" left

"MACCHB" array
"MACHITALR" scale

"EE:* to, go to
"HASBATE" define

"HE" not
"OOHCAHHE" description, definition
"QEHCTHTB" clean
"[ONOKHTE " place, assign
"[TPABAA" right
"[IPUMEHHTE" apply
"TIPHBECTH" simplify
"TIPOEET" : blank
"NPOLELYPA" procedure
"[IYCTB" - let
"PASPANHPCTB" capacity, number of digits
"CPABHHTB" compare
"CTEPETH" erase
"cTon" stop

"EEEOHA" line
"TAGJIHIA" . table

'"Eg" _ then

"GOPMAT" format, line breadth
"YACTE" part, side
"gycan' number

iyl step

"gﬁpml" ~ screen
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