SR L NIy Py e ey
H 5 (LI B RN Lo ko
dubuﬁumﬂég

: JE T P R U VR SV VOO .
SRS NP NF e v N o

Lecture Notes in
Computer Science

Edited by G. Goos, Karlsruhe and J. Hartmanis, lthaca

5

| International Symposium
on Theoretical Programming

Edited by Andrei Ershov and Valery A. Nepomniaschy

d/‘ !9
.-:1-51&,

pITe
it
~ A 'l-;’
1) e

<
[iad
e
\\

At

!

j Lo ,ucf’
L

Springer-Verlag
Berlin - Heidelberg - New York 1974

i
T
!
i
i
{

T T Y e e s S, [R 4 e R I R e o A v 5

Proc.of the-Internat.Symp.on Theoretical Programming

(E.Ershov, V.A.Nepomniaschy ed.), Movosibirsk, 1972.

Lecture lotes in Computer Science, Springer, Vol.5, 152-171.
oo A s oo i e i S bt

Certain decompositions of Gddel Numbering and the Semantics of
Programzing Lﬂgguagee'.

B. Buchberger *)

Notation:

N ... set of natural numbers Including o.

Nk;n Nx...xN

k times
The whole treatment witl be over the natural numbers: Thus, by a func-
tion {predicate) we normelly mean an arlthmetical functlion (predicate).
Of course, all what follows could be done over arbitrary (effectively

given) denumorable domains using an appropriate version of recursive

function theory (ASSER 6o, SHOENFIELD 71 etc.).

A ... comlement of the set A.

Ac B means ACB and A # B.

1f f, g denote funcilons then we often wrlte fgix) for f{g{x)) and

M%) for f...t(x). In addition, £
St
+ times

f {x}:i= x,
(x}, (Ex} ... universal and exlstential guantification over N.
Let f be a function, ACN, We define f{A):= {y| (ExeA)(fix)=y}.

An analogous notaflon wilt be used for n-ary functlions.
IC| ... cardinality of the set C.

[C] = » ... C Is an Infinlte set.

P+ set of all n-ary partial recursive functions.

Rn ... set of al{ n-ary total recurslve functions,

#) Inst. f. Num. Mathematik und Elektronische Informationsverarbei-
tung, Universitdt Innsbruck, A6020 Innsbruck, Austria/Europe.

153

1. A certain type of universal functions and the semantics of universal

programming ianguages

Definttion 1.1:

T is a pairing function: &= 1 € Rz, T is 1~1, and «{(N,N} Is decldable.

Notation: Let v be a pairing function., By Ty Ty WE denote total recursive

functions for which
11T(X,IY) - X, -;21(x,y) =y,
z & t(N,N) » r{ritz),rz(z)) = 2.

Further, <x,y> stands for 1(x,y}, where t is an arbltrary

palring function that remains fixed throughout the fol lowing.

Definition t.2. (ROGERS 58, USPENSKI| 60):

¥ describes a Gddel numbering of the unary partial recursive functions

(in short: ¥ "is" a GSde! numbering) xrms

{GN1) I PZ'

{GNZ2) for all ' e F’2 there exists a ¢ € l’-lt such that

¥Yip',x) = ¥(o(p'),x).

Remarks: The relevance of G&dal numberings for a semantical theory of universal
programming languages has been pointed out Tn various papers (see, for in-
stance, SCHWENKEL 66; the oarliest investigation in this direction is dus

fo USPENEK! 1 58}, Briefly summarized, this relevace relles on the fotlowing

ohservations:

154

(L1) We could content ourseives with the knowledge we obtain on the se-
mantics of a prdgrammlng tanguage L by knowing the resul? i"!(|:>,:¢)
of the apﬁllcatlon of the program p to the data x for all p,x,
Ctherwise stated, we could coﬁceive the semantics of a programming

ianguige to be given by the correspondence

P re—t (xx}(L¥tp,x)},

where p ranges over all programs of the language L.
(L2} Tne result L!(p,x} should be effectively computable form p and x.

(s | (Ax)(LY(p,x))l pe N1} =P shouid hold for & unlversal ianguage L.

1

(L4) Given a description p' of a function & in some standard mathematicsi
notation, e. g. in some other programming language (that could be
esqualiy well characterized by some binary function ?'); a program p

for g in L shouid be effectively obtainable from p',.

1+ is clear that requirement (L2) s guaranteed by (GN1) and requirements
(L3) end {14} are simultaneously guaranteed by (GN2), Hence, If we accept
{L1) +the theory of Gddel numberings would just coincide with the semantical

theory of universal programming i{anguages.

However, what makes the concept of (L1} wunsatisfactory Is, first, the total

- absence of a notlon of "computation In the language L* (i. a. all Intermediate
stages botween input of data and output of the result remain unspecified’;

and second, the Impossibility of seperating the role which input/output

coding plays for the determination of the GSde! numbering associated with

a given languags. Thus, Rogers Isomorphism theorem (ROGERS 58) can be viewed

155

as telling that by sultable program coding every universal language can
dotermine every possible Gbdel numbering. The data Input/output coding

has a similarly severe Influenca. Our Definltion 1.4 is intended to give

a precise version of a semantical concept for unlversal programming languages
that takes Into account both the stepwise work of programs and the role

of Input/output. Deflnition 1.3 1s preparatory.

Deflinition 1.3: Let ¥, x€R. We say that ¥¥ Is obtalned by "conditloneg

1
iteration” from ¥ and x, If Y¥™(E) is dofined to be the first ¥ 11(£) in

(2 (

the sequence £, ¥(&), ¥27(E), ... for which «¥7’(¢) = 0. More formally,

E, if x(£) =0
(Ci) e - '
' v ¥(L) , otherwise.

Notation: We write [i,x]for the function which is obtained form ¥,k by

conditloned iteration,

Remarks: [¥,«](g) can be viewed, for instance, as defining the terminal
state which an (infinite) automaton with transition function ¥ and “termina=
tlon criterion" «, eventually, assumes when started in state § . Of course,

[¥,x)(g) may be undefined for certaln £ . Thus, [¥,x] € P, ftor ¥, € R, .

Definitlon 1.4: ¥,¢ define a universal automaton

(in short: ¥,k "are" unlversal) : <=

(wn ¥xe R,

(U2} thare exist peeRI and vy e R2 such that p{?,xy is a Gdde!

numbering,

156

Remarks: |n BUCHBERGER 72 we give & detailed exposition of the intuitive

reasons why we think that thls notion of "universai™ ¥, Is an adequate

precise substitute for the notlon of a universal programming language. We

briefly summarize the discussion glven there:

t.

The semantics of a programming language can be given by telting, first,
what is done during one "step" of a computatlon according to a program
of the language (1. e. by giving the successor nstate™ ¥(£) for every
possible state £ that may arise in 3 computation in the !anguage) and,
saéond, which states are "terminal"™ (+his Is the role of x). Of course,
¥ 2nd x should be total recursive. One “componant" of the state is the
program. By the Definitlon 1.4, it is not excluded that the program is
altered during the computatlion. Hence, this concept is wlde enough to

encompass, for instance, machine languages.

Of course, also functlons ¥ that are not defined In terms of two func-
tions ¥,x by the scheme (Cl) can be used to detine the semantics of
programming languages by giving the terminal “state" @tE) corresponding
to every possible inltlal state met In the computations of the lenguage
(ses, for Ingfance, the function apply [fn;x;a] for LISP in McCARTHY 62,
or the flow chart interpreter D(d) (o) in SCOTT 7). |

However, as long as the available hardware essentially functions in the
way given by the scheme (Cl), at some stage of the Implementation of a
language 1+s semantlcs must be glven by a functlon of the form [¥,x]

(comparae, however, Remark 4. In Section 3),

. Infact, a review of the relevant |iterature schows that most "programming

fanguages" (including the varlous computabllity formalisms of recursive

157

function theory) are (informaliy} given In the form [¥,«]. Thus, for
tnstance, the Vienna method {LUCAYLAUER/STIGLEITNER 68)

uses essontially this form. Also, our concept (even that given in
Definition 1.5 below) 1s still wide enough to embrace the concepts glven
in SOOTT 67.

4. We would not like to dispense universal programming languages from being
capable of defining a G&del numbering for some suitable input/output
conventions. Thfs Is guaranteed by (U2). The restrliction laid onto ad-
missabie Input/output functions p,Y (nemely thelr recursiveness) seems
to be very wide. However, it Is difficuit to require addlfiohai properties
tor these functions without exciuding, perhaps, interesting cases pre-

maturely. An Important special case is singled out by the following

Definltion 1.5: ¥,k define a normal universal automaton

(In short: ¥,k "are" normel universaf!): <w=s

- Fee R,
(NU2) there exists 2 pairing functlon T and 2 ¥ € R,
' such that
kxlp,m # 0 = ¥x{p,n) = (p,¥(p,nN)
(NU3) there exist p,Y & R’ such that

Qp,x) (o7, (¥, x J(p,¥(x))) is a Gidal numbering.

Remarks: The above definition characterizes those "interpreters” (automata)
¥,x that do not change the progrem during execution time. Whether or not
an ln?erprefer changes the programs by execution also depends on how we

split the states £ In a program component p:=T|{£} and a working store compo-

158

penent n:-tztE). In order that some glven i,x doefine a normﬁl universal
autoraton (NUZ) requires that ¥ does not alter the program for some possible
sptitting of the states. Glven such a spiltting it Is natural to require
that input/output should refer to the working store component on!y; This

Is just what Is expressed in (NU3),

2. Propositions on the decomposltions of Gddel numberings given in the

Definitions 1.4 and 1.5,

tn this sectlion we state some theorems concernlng the decompositions of
G&del numberings that appear in the Definitions 1.4 and 1.5, Partiy, their
proofs are quite elaborate and will be given in detaill in BUCHBERGER/

ROIDER 72, if not stated otharwise.

First ist 1s good to know that every Gidel numbering has a decomposition

of the form glven in Definition 1.4:

Theorem 2.1: Every GBdel numbering ¥ can be written in the form
¥(p,x) = ptz[?,x]t(p,v(x}),
whore
¥1(p,8) = w{p,¥p, N

with suitable p,x,y & Rl,ﬁ,T & R,, T being a palring function.

Remarks: Theorem 2.1 1s a conseguence of Corollary 2.6 in BUCHBERGER 71,

where it Is shown that suitable p, x, v, ¥, 1 can be obtained by mere

s

substitution from arbitrary functions «o,s that satisfy

(STt (EeXallale,d) = ¢) ("ampty-storage assumption")

159

(512 <, fb=a ("companent-wise change
alols,a,c),b) = of storage™).

als,b),otherwise
(For ?} in addition to a, o, the successor function Is needed), Of
course, some versions of functions a, o appear frequently in recursive
function theory and studies on storage models. However, it Is noteworthy
that one can do without any further assumptions on a, o which appear
eisevhere {for instance "finite storage assumption” etc. in BEKIC/WALK 71,
or assumptions (3.9), (3.10) in McCARTHY/FAINER 67). Theorem 2.1 may
be viewad as a kind of normal form theorem which, for our purposes, is

more suitable than Kleene's.
Second, the following equivalence theorem gives an intimate connection
between Blum's complexity theory(BLUM 67) and the concept In Definition

1.4.

Theorem 2.7a: Let ¥ be a Gide) nunbering and

Yip,x) = ¢[¥,k Iy(p,x)
for certain p, ¥, KeR,, Y& R2 Define

(t)

¢lp,x)z= (uh) (¥ 'y(p,x) = 0),

then ¢ Is a step counflng function for ¥ In the sense of Btum, 1,e,

(S1) ¢(p,x} defined +=+ ¥{(p,x) defined

{52) ¢{p,x) = m is decidable,

160

Theorem 2.2b: (f ¥ is a G3de! numbering and ¢ a step counting function
for ¥ {i.e. (51), (52) hoid) then one can find p, ¥, xeR, and y €R,
such that '

Yip,x) -p[i,t]y(p,x}, and

¢{p,x) = (uf)(r?(?)y(p,x) = o).

Remarks: it ls easy to check Theorem 2.2a. For the proof of Theorem 2.2b

choose
Y(p,x):* <p,x,0>,

¥(<p,x,t>}:= <p,x,t+1>,

o, If ¢#(p,x) = ¢,

x{<p,x,t>):=
1, otherwise,

¥ip,x), If &(p,x) =+,
pl<p,x,$>):=

o, otherwise,

Here < > is the notation for a palring function which, In -addition, is
onto. Subsequently, these functions p, ?, x, vy will serve as an inter-

esting example.

By Theorem 2,23 we can use all the information given in Blum's theory

to investigate universai ¥, «x, By Theorem 2.2b we can conclude that the
intuitive concept of a computation according to some program (and, hence,
of the semantlcs of programming languages), which lies behind Bium's
complexity theory, is just the same as that which has been made pfeclse

in Definition 1.4. This 1s yet another reason for maintaining the ade-
quacy of this definition. '

161

Mcxt, we shall give somo propositions on the "possible” p, x, v In

Detinition 1.4. First, a characterization of the pussible y:

Theorem 2.3: Lat v € RZ'

There exist o, ¥, x €R, such that (ap,) (p[¥,c]ylp,x}) Is a Gode!

numbering <> there exists an f &R, such that (p,x){y(f{p),x}) is 1~1,

1
Ramarks: The intultlve meaning of this theorem is that "possible” in-

put functions v, though not -1 everywhere, turn out to be 1-1 at least
on an effectively constructible "cylinder®. The proof of " =" would be

stightly easier 1f one knew that evary ?'EPI can be written in the form
¥ - p[?,x]

tor suitable p, ¥, xGRI. However one can show
Theorem 2.4: {¥" | ¢ . p{¥,x] for some o, ¥, xeRll < P‘.

Remark: This theoorem also tells us that we should not expect that every
¥* which might define a progremming language In the manner described in
Remark 2. (after Definition 1.4) can Immedlately be given In the form
[¥,x]. Some Input (and output, see Theorem 2.7) will be necessary, In

genaral.

Theorem 2.3 st1l| admitts a wide class of possible input functions. One
might suspect that vy already could do "most of tha computational work".
However, Theorem 2.2a and the theorems of Blum's complexity theory (for

instance the compression theorem} tell us that however complex (total re-

162

cursival) input functions may be, the number of applicatlons of ¥
ounted by the ¢ of Theorem 2.2a) may be arbitrarily large for certaln
computations. In this respect the fol loulﬁg theorem might be of some

Interest, too.

Theorem 2.5: Let {Ap,x)(p [¥,cJy(p,x)) be a Gide! numbering, where

p, ¥, xéER,, Y&R,. Then wa can find a pairing function 1, such that
i p 9

oT¥,xdytp,x) = pi¥,ckp,x).,

Remark: Whenever i’, x are uvnivarsal, then by this theorem they are so
with respect to an Input function t that defines the inltial states of
the computations such that the program and data involved can uniquely
be reconstructed from the initial state. Thus, prior to the "execution”
the infgrmaﬂon contalned in the program has not yet been used to alter

the data and vice versa.

Theorem 2.6: Let pERl'
There exist ¥, x€R,, YER, such that (ap,x)(p[¥,xJylp,x)) Is a Gddel num-

bering <= o Is onto and |{ € [(EE"Y(p(ETY = p(E) & E'<E }}] = =

Remarks: This is a chaxacterization theorem fdr the posslble cutput
functions ©. |n BUCHBERGER 72 we have shown that these o must not be 1-1,
that every p of "large oscitlation” Is sultable, and furthermore that

Thaere exist sultable p which are not of large osciilaﬂorfh The condi-

*) o is of large oscillation (<= (y,z)}(Ex){x * z & p{x) = y). The total

recursive functions of large osclllation are exactly the possible T, {or 12)

for paring functions . In MARKOV 47 it is shown that these functions are
Just the functicns suitable as "output" functions in Kieena's normal form
theorem,

[AP

163

tion in the theorem defines a class of functions which "lies between"

tha class of 1-1 functions and these of)large osc¢iliation,
Theorem 2.7: { ¥¥| v* =« [¥,x]y for some ¥, keR,, YeRzl G Py
Remark: Compare Theorem 2.4.

Theorem 2.8: Let '“Rl'
There exist p, ?ERI. YQRZ such that (ip,x){p{¥,xJy(p,x)) is a G&del

numbering <=2 J{ € | k(E) =0 } = |{ &€ | x(g) £ 0} = =,
Remerk: This gives a characterization of the possible k.

Hext we examine the functions y which might occur In Definition 1.5.

Theorem 2.9: Let p, ¥, x, yeR YER_, v be a pairing function,

1’ 2

kt(p,n) # o — ¥1(p,n) = <{p,¥(p,n)), and
(Xp.x)(prz{‘i,x]r(p,y(x)}) be a G&de! mnumbering, then y Is 1-% and

!Y'N)l! = m,

Remarks: By Thecrem 2.3 one might suspact that y can be onto. Howover,
this 1s excluded by the above theorem which even shows that Inflnitely
many states of the working store must be'praeserved for computation only®,
They cannot be met by the input function (in perfect correspondence to

our experience wlth concrete languages).

164

Theorem 2.10: Let Y€ R, bo such that v s 1-1, [YINT! = « and y(N)

is decidable, Then y may possibly occur in decompositions of the form

given in (NU3),

Remarks: We have not been able +o prove Theorem 2,10 without the
assumption "yv(N) decldable™. Nor was [t possible to derive "y(N) docid-

able” as a nacessary condition fn Theorem 2.9.

We stlil don't have a nlice characterization of the possiblia p In Defini-

tion 1.5,

We next concentrate on the possible ¥, Thé study of the ¥ desarves our
spocla| Interest since, Intultively, a progrémm!ng languagé is most
striklingly characterized by its ¥. However, the characterization we can
present stilt suffars from a nonsymmetry (detalls of the proof and a

discussion of the result appeared in BUCHBERGER 72):

Theorem 2,11: i, Kk yniversal == thaere exists an infin]fe sequanca

EO’ El,

I F-11; EIEN) such that

(+,)) (

i _t,)
(Ei)f'f

(€£.)).
&

1,
. . 2
(¥1) Gt U F vt Ft, ¥

Remarks: Condition (¥1) tells +hat If ¥, x are universal then ¥ must
contain Infinitely many "tracks™ that don't run into a "cycle" and

don't "meat" each othear.

Theorem 2,12: Let ¥ be such that for some f&R

1

(+,3 +,)

(F1%) itptpU d vt Aty ¥ Ve s 8 2 e,

165

(D

(¥2) f(I) | +,ieN } 1s decidable.

Then ono can find p, :(—R', yeRz such that (Ap,x)(p[?,x]y{p,x)) is

a Gddal numbering.

Remark: In addition to the necessary condition (¥1) we noed some assump=
tlon on the effective constructisbtiity of the "fracks" to obtain suf-

ficient conditions for "unjversal™ ¥,

Until now we looked to tho possible p, ¥, x, v separately. What would
of course be most Interesting Is the interplay of ¥ and x for unlversal

¥, x. We give some necessary conditions. For this we introduce the fol~-

fowing

Definition 2.1: Let EI,EZQN.

¥,x (t,) (+,)

v+ (Et, 4. 0(F ! (€,) = ¥ 2

1*%2 (£} &

2

(1 <1‘i)(x?(ﬂ(51) £o)a

=(1)
{1 <f2)(:Y (52) £ 0)),
¥ -
Remark: n{f Is an equlvalence relation on N.{Even for universal ¥, «
it may happen that this relation Is decldabie, see example after Theorem

2.2).

Notatlon:
{€]... cquivalence class of & with respect +5 5. In the notation (£] we

don't make any reference to the ¥, x used any more since, In . the

166

folldulng, no confusion will arise. Also, we +rust that the two~
fold use of the brackets in [£] and [¥,x] will not trouble the

reader.

[N]... sat of all equivaience classes with respect to R

Remarks: All [£]are recursively enumerable. There are oxamples {see
example after Theorem 2.2) where zt1 [£]are even recursive. {N] dgi-

vides into three disjoint subsets:

(N =ENJUEN TLEN D where

[NJ:s ((€] TCEEN(E'e[£] & E") = 0},

INJie ([ET] [EDEON I8 et e [e3at Ao s T 0w - g0),
N, = tN] =[N J-IND, T,

[N_'J consists.of all [£] that contain terminal states §', [Nc] conslsts

of all [£] that contaln "cycles” and [N_tollects the remaining (3.
Although one's experience with the usual programming languages might
not sugaust it, there are examples of unlversal Y, « where {Nc] =@

{soe example aftter Theorem 2.2).

Detinltion 2.2: Let [X] C[N].

A function f Is [X] ~generating :<==>[XJ= { [f(1)] | i&N }.

Remarks: For ¥, k& R, there exist f,, f & R, such that f, is [N J}qgen-

erating and f_ is [Nc]-generaﬂng.

167

Theorem 2.13: Let ¥, x be universal. Then

(¥,x1) thare does not exist a recursive [N_J-generating function

(¥,x2) for all n;
thero oxist infinitely many distinct equivalence classes

[on, fﬁl], ees In [Nf] such that

GEE) Erele, Ta n«nt?“’czi)e [e, D).

Remarks: (¥,x1) s casily deduced from Rice's Theorem (see, for instance,
ROGERS 67), (¥,x2) needs simple results of Blum's complaxity theory
which, by Thoorem 2.2, are avaliabie for our tnvestigation. Intuitively
(¥,£2) says that ¥ must contain enough "tracks" of every length that

lead to a terminal state.
We have a strong feeling that for ¥, rE:R‘ the conditions (¥,k1) and
{an effective varsion of) (¥,:2) are also sufficient for guarantesing

the universality of . ¥, «x. However, we have not been able to prove this.

Finatly, we want to give an Interesting result on the reducibil ity of

universality to normatl universality.

Theorem 2,14: Let f be [N,J-generating and ¥, x unlversal. Then one can

find p, YEF% and an f-pairing function 7 such that

(ip,x)(prz[?,th&p.vtx})) Is a Godel numbering, and

Yiip,m) = v(p,¥(p,n)) for ¥(p,n) := T, ¥1(p,n).

168

Remarks: By an f-pairing functlon we mean 2 1-1, binary, f-recursive
functlion T for which T(N,N) is f~recursive. Thus, Theﬁrem 2.14 says
that the states of a "unlverss! automaton" ¥, x can aiways be decomposed
In such a way that one c0mponenf‘(whlch piays the role of the "program™)
is not altered during executlon. Unfortunately, Theorem 2.4 Is not con-
structive in that tha T obtained depends on the non-recursive f (see

Téhorem 2.13). It s open whether one couid find 2 construct.ve version

of this thecrem.

3. Future problems

A further Investigation on the foplcs glven In This note will center

around the foliowing probiems:

1. A further detalled study of universal ¥, x, especially of the questions
‘eft opon by the Theorems 2Z.11 - 2.14. Construction of simple examples

of universal ¥, «x.

2. An exact doflnltlon of the concepts "compilation", “simulation",
"dapendence of syntax on semantics” etc. in torms of the concept of an

automaton based on the recursion scheme (Cl).

3. Study of the whole hierarchy of possible notions of universal func-
tions between tha genera! notion of a Gddel numbering and our notion of
univorsal ¥, x and such notions which may be obtained by further special-

izing our notlon.

169

4, Study of automata whose basic actlon principle is a ﬁora comp | ica=-
ted recursion schome than (Cl), e.g. such that they could “dirsctly”
funcfion.accordlhg to 3 definltion tike that of “apply" in McCARTHY 62.
Such automata would have o conslst of infinitely many unlversal §ufo-
mata. Thus the cellular automata in CODD 68 would probabty not suffice.
Also Glimore's “computer with a LISP-|ike machine lenguage™ is not
such an automaton. However, a detailed examination of Gilmore's work
reveals that hls computer essentlaily functions still according to

our recursion scheme (Cl).

5. Recently it has been pointed out (MOSCHOVAKIS 71, FENSTAD 72) that
generalized recursive function theories should Include notions !ike
Mcomputation™, "length of computation", "subcomputations”, "computa~
tional steps™ otc. as primitive notions. We think that a better under-
standing of the power contalned in one step of an ordinary computabi-
tity formallsm (roflected by the power of ¥ in our terminology) could

help In roasonsbly axiomatizing these notions.

Acknowl edgement: Most of the material in Section 2. was obtained by

a constant and most pleasing coliaboration with Dr.B.Rolder (Unly.inns-

bruck). To him | want to express my sincere gratitude,

170

References:

ASSER 60, G.Asser, Rekurslive Wortfunktlonon, Zeitschrift fiir mathena-
tische Logik und Grundlagen der Mathematik 6, pp.258-278.

BEKIE/WALK 71, H.Bekl&, K.Walk, Formalization of storage properties,
in: Symposium on Semantics of Algorithmlc Languages (E.Engeler ed.},
Springer Lecture No-res.lsﬁ, 1971,

BLUM 67, M.Blum, A machine-independent theory of the complexity of
recursive functions, J.ACM 14/2, 1967. .

BUCHBERGER 7§, B.Buchberger, Associating functions and the operator
of conditionad iteration (Russian), Communications of the JINR
Dubna, P5-5788, (Engtish transiation: Bericht Nr.71-1, Inst.f.num.
Math., Univ.lnnsbruck, 1971).

BUCHBERGER 72, B.Buchberger, A basic problem In the theory of program-
ming languages, Bericht Nr.72-1, Inst.f.num.Math., Univ.|nnsbruck,
1972,

BUCHBERGER/RO1DER 72, B.Buchberger, B.Roider, A study on universal
functions, Bericht Nr.72-5, Inst.f.num.Math., Univ.innsbruck,

1o zppear.

CO0D 68, E.F.Codd, Cellular automata, Academic Press, 1968.

FENSTAD 72, J.E.Fenstad, On axioms for computation theorlies, Lecture
given at the conference on ma*hemaf!;al logle, Oberwolfach, Germany,
April 1972,

GILMORE 67, P.C.Gllmore, An abstract computer with a LISP-like
machine language, in: Computer Programming and Formal Systems

(P.Breffort/D.Hirschberg ed.), North-Holland, 1967.

LFA

LUCAS/LAUER/STIGLEI TNER 68, P.Lucas, P.Laver, H.Stigleitner, Method
and notation for the formal deflinitlon of programming languages,
TR 25.087, 1BM Laboratory Yienna, 1968,

McCARTHY 62, J.McCarthy, LISP 1.5 programmar's manuat, MIT Press, 1962,

McCARTHY/PAINTER 67, J.McCarthy, J.Painter, Correctness of s comp!lier
for arithmetic expressiens, Proc.of Symp.in Applied Math. 19 W.T.
Schwartz ed.), Amer.Mafﬁ.Soc., op. 3341,

MARKOY 47, A.A.Markov, On the representation of recursive functions -
(Russian), Ooklady Ak.Nauk SSSR, n.s.58, pp.1891-1892,

MOSCHOVAKIS 71, Axioms for computation theories = first draft, in:
Logic Colloquium '69 (R.0.Gandy, C.M.E.Yates ed.), North-Holfand,
1971,

ROGERS 58, H.Rogers, Jr., Gédel numberings of partial recursive func-
tions, J.Symbolic Logic 23/3, pp.331-341, 1958,

ROGERS 67, H.Rogers, Jr., Theory of recursive functions and effective
computabllity, McGraw-Hill 1967.

SCHWENKEL 66, f.Schwankel, Semantische Theorle der Programmiersprachen,
Dissertation, Univ.Tiibingen, Bermany, 1966,

SCOTT 67, D.Scott, Soms definitional suggestions for automata theory,
J.Comp.System Sci. 1, pp.187-212, 1957. |

SCOTT 71, D.Scott, ‘i‘he tattice of fiow diagrams, In: Symposium on
Semantics of Algorithmic Languages (E.Engeler ed.), Springer Lecture
Notes 188, 1971,

SHOENFIELD 71, J.R.Shoentlsld, Degees of unsolvabiiity, North-Holland/
Amarican Elsevlier, 1971,

USPENSKI | 56, V.A.Uspenskili, Computabie operators and the notlon of
program {Russian), Uspahi Mat.Nauk 11/4, pp.i72-176.

USPENSKI! €2, V.A.Uspenskil, Lectures on computable fun::ﬂons {Russian),

Gos. lzd, Flz.Mat,Lit., Moscow, 1960,

