Arch. math. Logik 16 (1974), 85— 96.

ON CERTAIN DECOMPOSITIONS OF GODEL NUMBERINGS*

B. Buchberger, Innsbruck

Summary: We define certain decompositions of the functions that describe Godel
numberings of the partial recursive functions (Section 2). These decompositions
reflect the way in which concrete Gédel numberings may be obtained from the
known computability formalisms. We show that such decompositions exist for
all partial recursive functions (Section 3). It turns out that there is an intimate
connection between these decompositions and Blum's step counting functions
which yields a suggestive interpretation of Blum’s notion (Sectton 4). In terms of
these decompositions we, finally, give an exact formulation for a basic problem
in the theory of computability formalisms, which, on an intuitive level, would
read as follows: Find conditions on the expressive power of one step in a given
computability formalism such that all partial recursive functions can be represented
within that formalism. We derive two theorems which may be regarded as a first
step in a thorough study of this problem.

1. Notation

N ... set of the natural numbers including 0.

An “integer” is an element of N.

Universal and existential quantification is always over N. Also, by a “function”
we mean a function with arguments and values in N.

p.r.f.... partial recursive function(s).

A “recursive” function is a partial recursive, total function.

P,... set of all n-ary p.r.f.

R, ... set of all n-ary recursive functions.

If f,g denote functions, then fg(x) often stands for f{g(x)). Further, f“(x) is
defined as follows:

fOx)=x, f"*”(x)¥f"’(x) (for te N).

2. Definitions

Definition 1 (Rogers [11], Uspenskii [14]): A function ¥ € P, is said to describe
a Godel numbering (of the unary p.r.f) if for every fe P, there exists a ge R,

such that
(v,) (f G, x) = P(g(i), x)}.

* Eingegangen am 18. 12, 1971.

86 B. Buchberger

Definition 2: The operator P associates with any two unary functions f,g the
unary function [f, g]° that is defined by the following recursion:

x, il g(x}=0,
[f.g]°f(x), otherwise.

Informally speaking, [f,g]7(x) is evaluated by successive evaluation of f“(x)
(t=0,1,...) until, for some t, gf®(x)=0. If no such ¢ exists or a certain f*“Yx)
or gf*(x) necessary for the above evaluation process is not defined then [£, g]%(x)
is not defined either.

.0 - |

Definition3: r, f,k g determine a P-decomposition of f if r,f,keR,, geR,,
feP,, and

Vi, x) (f G, x)=r[£, k1Pg(i. x)) *.

Note that the recursiveness of r, f, k, g is essential in this definition.

3. The existence of P-decompositions

Theorem 1 : For every fe P, there exist 7, f, k,g such that r, f, k,g determine a
P-decomposition of f.

Proof - A much stronger result and a generalization for functions over arbitrary
sets A (using the notion of “Basic Recursive Function Theory”, Strong [13])
can be found in [2]. For obtaining Theorem 1 from Corollary 2.6 in [2] one only
has to find a recursive example of “associating functions™ (see, for instance, the
example at the end of Section 1 in [2]).

Theorem 1 can also be obtained from Kleene's normal form theorem by expressing
the p-operator by means of the P-operator, any pairing functions and the successor
function.

4. P-decompositions and Blum’s step counting functions

There is an intimate connection between P-decompositions and Blum’s wellknown
step counting functions (Theorem 2) which gives a suggestive interpretation to
Blum’s notion. We, first, recall Blum's definition:

Definition 4 (Blum [1]): Let ¥ € P, describe a G6del numbering. Then the func-
tions §, € P, (i=0, 1, ...) are called step counting functions (with respect to ¥) if
(S1) @(x) defined « P(i, x) defined
(S2) the function

M, x, m)= {0, otherwise
is recursive.

I We adopt the usual meaning of the sign “ =" both sides are defined and equal or both sides
are undefined.

On Certain Decompositions of Godel Numberings 87

Alternatively, we shall describe the same notion in terms of P-decompositions of ¥.

Definition5: Let ¥ € P, describe a Godel numbering. Then the functions &, e P,
(i=0,1,...) are called proper step counting functions (with respect to ¥)if

(PS) there exist g, ¥, k, y which determine a P-decomposition of ¥ such that
P(x) = (ut) (kP9(i, x) =0).

As is to be seen from the definition, proper step counting functions count the
number of applications of the function ¥ in the computation of the value ¥(i, x),
i.e. it counts the number of steps in a proper sense, if we conceive P to define the
behaviour of the “computability formalism” ¥, x during one elementary step
(compare also the remarks after Problem 1, Section 5).

On the other hand, the functions @; of Definition 4 don’t possess, necessarily, such
an eagy interpretation which fits their name equally well. In fact, very abstract con-
structions or functions sets defined on the basis of quite different concepts may
satisfy (S 1) and (S 2), too (for instance, the functions @; defined by: @,(x)=m
if and only if the Turing machine with Gédel number 1 uses exactly m cells of the
tape when working on input x, see Blum [1]).

However, we shall show now that the two notions “step counting functions” and
“proper step counting functions” coincide. This means, especially, that every set
of step counting functions for a given Gédel numbering ¥ can be interpreted as,
in fact, counting the number of applications of ¥ (= “steps”) for a suitable P-decom-
position of ¥ determined by some g, ¥, «. 7.

Theorem 2 (Characterization Theorem for Blum’s step counting functions): Let
¥ e P, describe a Godel numbering and take ;€ P, (i=0,1,...). Then the &,
satisfy the axioms (S 1) and (S 2) if and only if they satisfy (PS).

Proof : “(PS)—(S 1) A (S 2)":
By assumption, ¥ has the following representation

?(i,x)=o[¥. k177, x).

where g, ¥, x,7 are recursive. For recursive ¥, k the application of P can be
expressed by the u-operator and primitive recursion:

[P, k17 (8) = B(2. (u1) (10,) = 0)),
0(50)=¢, 61+ 1)=FOE1).

where

Note that ¥(&)=6(¢, t). Hence,

®,(x) = (ut) (kP (i, x) = 0) defined « P(i, x) defined.
Further,

®,(x) =me (V1) (r <m—-k0(3(i. x), 1) £0) A k0(y(i, x), m) =0.

88 B. Buchberger

Since bounded universal quantification does not destroy recursiveness “Pix)=m"
is decidable.

“S1)A(S2)=(PS)": Let 6;€R;, 05,,03,. 033 € R be “pairing functions” for the
triples of integers, a; onto N, and ¢;=0; (8 (1=1,2,3). We define o, ¥, x,7 as
follows

a5(i, x,0),

lI_J(f) 0-3(61’ 629 63 + 1)]

k() =1—M(£,&5.83),
Q(é)_{q’(éufz)s if ‘pg,(‘fz)=és

0, otherwise.

7, x)

fl

First, it is clear that g, ¥, k, y are recursive (as for the recursiveness of g cf. Davis [6],
p. 64).
Further, we have to show
P(i, x) = [¥. k1" (i,),
and
&,(x) = (ut) (x ¥ 9(1, x)=0).

Case 1: ¥(i, x)defined. Then &;(x) is defined by (S 1), say @,(x)=T. Thus, M(i,x,t)=0
for t < T and M(i, x, T) = 1. Further, it is easy to see that

P y(i, x) = 05(i, x, 1) forallt

and
— 1, for t<T
{t) - =1 — M . =]
KO, x) =1 (x.0 {0, for t=T.
Now, _ _
o[F, k177G, x) = 0 P 9(i, x) = @as (i, x, T) =P (i,),
and

(1) (P9 905, x) = 0) = T = B,(x)..

Case 2: ¥(i, x) not defined. Then M(i, x,t)=0 and kP9 y(i, x)=1 for all ¢. Thus,
o[¥, k17 y(i, x) will be undefined, too. By (S {) ®,x) is undefined and so is

(1) (kP (i,) =O).

5. A basic problem

In this section we shall consider the following

Problem ! : Find necessary and sufficient conditions for g, ¥ keR, and yeR,
to determine a P-decomposition of a function ¥, which describes a Godel
numbering.

We briefly state the reasoning why we consider this problem to be basic in the
theory of computability formalisms (for a detailed exposition of the underlying

On Certain Decompositions of Godel Numberings 89

intuitive concept see [3]): it is a matter of tedious but straightforward notational
work to show that the wellknown historical computability formalisms (Turing
machines, Kleene’s formalism, Markov's formalism etc., including universal
programming languages) which gave rise to different concrete Godel numberings
of the p.r.f. are all given in the form [¥, x;}". Here, ¥y is an(intuitively)computable
total function which describes the behaviour of the formalism F during one step
and x is an (intuitively) computable, total function which decides whether a
given state during a computation in the formalism F is terminal. Though the
various formalisms start from quite distinct points of view what is to be regarded
as the elementary computational step and as a terminal situation (reflected by the
different structure of the ¥; and), the rule by which one comes from some
initial situation £ to an eventual terminal situation &' is the same with all formalisms:
“successively apply ¥r to ¢ until x, decides that the momentary situation is
terminal”. This is exactly what can be written

&= k:J7(&)

For programming languages, this general point of view yields exactly the Vienna
method for the definition of the semantics of programming languages (Lucas
et al. [8]).

The operator P seems to describe the kind of recursion which is most “natural”
to human brain and “therefore” appears on the meta level of the definitions for the
notion “computability”, which , essentially, are definitions of the notion “recursion”
on some object level.

Given some computability formalism F, ie. given ¥, and «;, one can use it to
define an effective list of all (unary) p.r.f. by means of some (intuitively) computable,
total input/output functions y and ¢. It the formalism is “strong” enough and y
and g are suitably chosen then

P(i, x) = o[Fr. k517 (i, %)

will describe a Godel numbering.

Thus, Godel numberings until now have been given by constructing a P-decomposi-
tion of a function that describes the numbering, On the other hand, by Theorem 1
we know that every function that describes a Gdel numbering has a P-decomposi-
tion. Thus, Problem 1 may be conceived as a reasonable, precise substitute for
the vague question: what are the necessary and sufficient properties of a com-
putability formalism and input/output function to provide an effective list of the
p.r.f. The most interesting part of the problem seems to be conditions on ¥ since
this would give insight into the necessary and sufficient power of the “instruction
list” of the formalism in order that the formalism be as “strong” as the standard
formalisms.

In the literature, only very spacial versions of Problem 1 have been considered
until now. Thus, in [4] and [5] Davis gave a necessary condition (namely the
completeness of the set {&|[¥),, kp]°(¢) defined}) for the transition function ¥,,

90 B. Buchberger

and the termination criterion «,, of a Turing machine M which is satisfied if
there are recursive input/output functions y and g such that

0[P, a1 (0, %)
describes a Godel numbering.
Recently, Nepomniashy [10] gave some necessary and some sufficient conditions
for the function f and the predicate p such that
(i, x) = o[£ 1] (i, x)

describes a numbering of the p.r.f. Here, P£'7, k; are the transition function and the
termination criterion of some variant of Ershov’s formalism (operator algorithms,
see [7]). ¥{'? depends in some way on the “primitives” f, p such that Ershov’s
formalism, in effect, gives a whole class of computability formalisms. y and g are
fixed.

Tt is the aim of the present note to start a systematic study of the general Problem 1
without any restrictive assumptions about the functions g, ¥, k,y beyond assuming
them to be recursive.We, first, concentrate on the function 7.

Theorem 3: Let ¥ e R, be such that there is a recursively enumerable sequence
COa 515 (51 EN) Wlth

(C1) (Wit t){t F1— POUE)* P

(C2) (Vikty, 1) (i k=P E)+ PI(E)

(C3) M:={PO)|i,te N} isdecidable.

Thenonecanfindk, ¢ € R, and y € R, such thatg, ¥ k,ydeterminea P-decomposi-
tion of a function ¥ which describes a Godel numbering.

Proof: Take some ¥ that describes a Godel numbering. Let @€ P, (i=0,1,...)
be step counting functions with respect to ¥, a;, 0, ,, 02, some recursive pairing
functions for the pairs of integers, and fe R, such that & =B (i=0,1,...)
We define
y(i, x}= fayli, x),
V(é) = (HZ) (q—jazl(nﬁa2 2(2) = é)’ 1[ﬁ eM .
0, otherwise,

(&) =0, ¥(0),

a(&)=0,,v(%),
@) n()=07, <),
(3) (&)= 0,,2(2),

0, if £eMnA(r(E),d()=1(),

K(£)=

1, otherwise,

P(n(). a(¢). if x(§)=0,

0, otherwise.

5 o6)= {

On Certain Decompositions of Gédel Numberings 9N

7V, T,0, 7,0, K, ¢ are recursive. For y this is obvious. By the definition of M and
(C3) v is pr. and total, hence recursive. Thus, 7,u, 1, § are recursive, too. « is
recursive because of (C 3) and (S 2). Now, g is p.r. and total because of the definition
of k, i.e. g is recursive.

We want to prove

(Y1, x) (P(0, x) = o[#, k3", x)).
Case 1: 'P(i, x) defined. By (S 1) we, then, know

(6) ®,(x)=T forsome TeN, and
(7) ®,(x)+t for <T.
We show
(8) kPG, x)=1 for t<T, and
(9) kP Dy, x)=0.
For this we notice that for e M
&= P 40)
for certain t,j € N, which, by (C 1) and (C 2), are uniquely determined, such that
(10) a(é)=7,
(11) (&)=t.

Now, we take & = ¥y(i, x) € M. Using (2), (3), (10), (11), we have
n)=1i, d)=x, t()=t.
Hence, by (6), (7) and (4) we, finally, obtain (8} and (9). From (5), (8) and (9) we get
eL?, k1790, x) = 0 P 9(i, x) = ¥(i, x).
Case 2: ¥(i, x) not defined, i.e.
(VO (@,(x) *1).
By a computation analoguous to that in case 1 we get
(V) (kP9 90, x) = 1).
Hence, [¥, x]7y(i, x) and ¢[P, x}¥ (i, x) not defined.

Example 1: We take the Turing formalism (for notation see Davis [6]). Let ¢
be the (Gddel number of a) state that consists of the Turing machine

p::={q9oBRqy,q,BRy,,...,q;BRq;},

the square number 0, the internal configuration g,, and the tape inscription B
(“blank™). The ¢&; are (intuitively) enumerable and, hence, after a Godelization of

92 B. Buchberger

the states will be recursively enumerable. It is clear that the effect of the com-
putation started from the “states” ¢&; is the same for all i: remain in the internal
configuration g, and move steadily to the right, i.e. #¥(&,) consists of the program
p;, the square number ¢, the internal configuration g,, the tape inscription BB...B
(t+1 times “blank™). It is easily seen that (C1)—(C 3) are satisfied. Similar
“programs” may be written for the other computability formalisms. Always,
{(C 1) — (C 3) are very easy to check.

Theorem 4 If g, ¥, x, y determines a P-decomposition of a function y that describes
a Godel numbering then there exists an infinite sequence &, £, ...(€; € N)such that

C1) (Vist,)+t P+ Py,
(C2) (Viok 1y, 1) (i k- PUNE) £ PUD(E)).

Proof: Theorem 4 will be a consequence of the following

Lemma5: Let ¢, ¥, «,y determine a P-decomposition of a function ¥eP,.
If there is a f € R, such that

(C4) (Vi,0) (xP9(B(), 0) +0)

(C5) (Yp)(EAD)(xF(p.0)=0)) v
3ty 1)t F 1,4 @m}’@a 0= i’-“z)y(p, 0)) v
(3 i Ly, t2) (@(h) '))(P, 0) = !I_’(tzj'y(ﬁ(i)’ 0)) ’

then the property “¥(p, 0) defined” is decidable.

Proof: We assert that the following algorithm is a decision procedure for the
property “¥(p, 0) defined”.

1: vi=0;, W.=V.=40,

20 Wi= Wu{¥y(p,0)};
Vi= VU{F5(B0y,(4),0)};

31 U x¥P™My(p, 0)=0then answer “¥(p, 0) defined” and stop; else go to 4;

4: 1 PY9(p,0)=F“"9(p, 0) for some v <v then answer “¥(p,0) undefined”
and stop; else go to 5;

5: If WnV %6 then answer “¥(p, 0) undefined” and stop; else go to 6;

6. vi=v+1; goto2

Instead of a detailed formal proof of the assertion we give the idea: (C 5) guarantees
that for every p the sequence S:= { ¥ y(p,0)|t € N} contains a terminal “state” or
a “cycle” orhas some element in common with one of the sequences
8;:={PYy(B(i),0)|te N}. Exactly in the last two cases ¥ (p, 0} will be undefined [in
the third case this is because of (C 4)] provided that the first possibility is excluded.
The algorithm systematically generates the sequences S and §;. This is effectively
possible because of the recursiveness of 8. After finitely many steps the algorithm

On Certain Decompositions of Godel Numberings 93

must detect one of the three cases because of (C 5). Some precaution is necessary in
the proof to make clear that the algorithm will not detect a cycle in S or an over-
lapping with one of the sequences S; and, thus, answer “¥ (p, 0) undefined” in the
case where for some ¢ x P y(p, 0)= 0 also.

Proof of Theorem 4 (continued): Now, let g, P, x, y determine a P-decomposition
of ¥ where ¥ describes a Gddel numbering and assume the conclusion of Theo-
rem 4 to be false, ie. let X:={£;,...,¢;} be a (“maximal”) set for which

(C1) Vit)(ESjat 1, POE)FPR(E)),
(C2) (Vikty,) (i kSj i k- POE) + PIE)),
and such that for arbitrary £e N

(12) Bty 1) (1, F 15 A PO = FR(E) v
(i, 1, 1) (i S j A POOE) = Pe(E)).

We define
X = {§|ZjeX INE] (Vr)(r_Z_t—m'I_""(C)#O),
X, i=X-X,,

(8 i & eXyvis,
T el @y,) (P9, 0) = P2E) A (VD) (k POy(p, 0) £ 0)}, otherwise,
p, if P=4,

)= {(up)(pe P), otherwise,

where 7 is such that ¥(p, 0) is undefined, i.e. (V1) (x ¥ y(p, 0) % 0).

B e Ry, since f is constant except for finitely many arguments. We shall show that §
satisfies (C4) and (C).

(C 4): Either F; = §, then (i) = p, hence, by the definition of p, (Vt) (x #y((i), 0) + 0),
or P+, hence fi(i) € P, and therefore by the definition of P,(v1) (x ¥ y(8(i), 0) 0).
(C5): Assume for some pe N

(13) (Ve) (x ¥9y(p, 0) % 0),

(14) (Vey, t) (t, # 13- P 9(p, 0) + F2y(p, 0)),
(15) (¥i, £1,) (P 9(p, 0) & F29(B(i), 0)).
We shall show

(16) (Vi £y, 1) (1 <> P9(p, 0) £ PU2(£)).

Take, first, ¢,eX,, then (Vi,,t,)(P")y(p,0)+ ¥¥2(£)), because otherwise
(31) («¥”y(p, 0) = 0), which contradicts (13). If, on the other hand, ¢, X,, then
3y, 1) (P*9(p, 0y =F2(£)) would imply pe P, hence (3s,,s,) (P y(p,0)
= P2 9(p(3), 0)), which contradicts (15). Thus, under the assumptions (13—(15),
(16) is proven. {14) together with (16) is a contradiction to (12), hence (C 5).

94 B. Buchberger

However, (C 4) and (C 5) true would make “F(p, 0) defined” a decidable property
{by Lemma 5). This contradicts Rice’s Theorem (Rogers [12]). Thus, we have to
reject (12), i.e. the conclusion of Theorem 4 is true.

Remark: Though, from the examples, there is much evidence to conjecture that in
Theorem 4 suitable £; can always be effectively enumerated and that (C 3) is also
a necessary condition, we were not able to prove this under the very general
assumptions on P-decompositions,

In any case, Theorem 4 may serve as a useful tool for showing that some comput-
ability formalism does not possess the necessary power to compute all p.r.f. even
if one admits very powerful input/output functions.

There are many equivalent forms of the condition (C 1) A (C 2} A (C 3) which more
readily show that the intuitive meaning of this condition is: % must have the power
of steadily altering one “component” of the “state” while not changing some other.
Maybe, that it is some interesting insight into the essence of “computation” that
this very general principle under the very general assumptions for P-decomposi-
tions is sufficient and (at least in its non-effective version) necessary for a P-decom-
position to determine a function ¥ that describes a Godel numbering.

From the experience with programming languages one might conjecture that
a ¥ which, together with some g, k, y determines a P-decomposition of a ¥ that
describes a Godel numbering must “allow cycles”, L.e.

(aca tls tz) (tl :1: tl A ‘I_’“”(f) = @(12)(6)) .

However, this is not necessarily so, as can be seen by inspection of the special ¥
constructed in the proof of Theorem 2, second part.

Finally, we give some propositions which are of minor interest. They deal with
the possible output functions g. The first of them shows that we can’t get by
without any g.

Proposition6: If o, ¥, x,y determine a P-decomposition of a function ¥ that
describes a Godel numbering then ¢ can’t be { — 1.

Proof: Assume ¢ to be 1—1 and take i, x such that ¥(i, x) is undefined, ie.
(V) (x PPy(, x) £ 0). Let g7(i, x)=r. Since &=1y(i,x) is the only ¢ such that
o(&)=r, but k(£)=+0, there can’t be any i, x" such that ¥(i',x)=r. This is, of
course, impossible.

From a paper by Markov [9] on the possible “output™ functions in Kleene’s
normal form theorem (Davis [6], p.63) and from the concrete examples one
might conjecture that with P-decompositions, too, the possible output functions
are exactly those of large oscillation. This is only partly true (Proposition 7 and
Example 2).

Proposition 7: If ¢, is of large oscillation, then one can find ¥, x,y such that
g51, ¥, k, 7 determine a P-decomposition of a function ¥, where ¥ describes a
Godel numbering.

On Certain Decompositions of Gidel Numberings 95

Proof: 1f o,, € Ry is of large oscillation (i.e. (Vy, z) (3x) (x >z A 6, ,(x) = y)) then
one can find 6,, € Ry, 0, € R; such that a,. g, ,, 6, , are pairing functions (following
Markov [9]). Take some ¢, ¥k, ¥ which determine a P-decomposition of a
function ¥ that describes a G6del numbering. Then ¥, x, 7, defined by

vl x)=0,(e"7' (0, x), '3, x)),
V() =0,(0' ¥ 0,5(8), ¥',,9),

_ 0, if «'0y,(6)=0,
Ke)= {1, otherwise ,

are such that (i, x)=a, , [P, k177, x).

Example 2: We give an example of functions ¢', ¥ i,y which determine a
P-decomposition of a function ¥ that describes a Gédel numbering, where ¢’
is not of large oscillation, Let some g, ¥, x, y determine a P-decomposition of ¥.
Assume ¥ to describe a Godel numbering. We define

F(5) = {Y’(é), if x(¢)*0,
(un) (x(m) =0 A o(n) =p(&)), otherwise,

k&), if x(&)=*0,
K'(€)= 41, i k(&) =0AEF(un) (xn) =0 A o(n) =0(),
0, otherwise,

e(d), if «'(§)=0,

0, otherwise.

¢'()= {

It is easy to show that g/, ¥, ', y determine a P-decomposition of the same ¥.
However, for r >0, ¢'(£) =r holds exactly for one ¢ which shows that ¢’ is not of
large oscillation.

6. Conclusions

We hope that we have been able to give an idea how a detailed study of P-decom-
positions of Godel numberings could add to our insight into the essence of
computability formalisms (programming languages, computer concepts).

A better understanding of the power contained in one step of a computability
formalism should also help in further axiomatizations of recursive function
theory. Our notion of “step” is approximately on the same level of abstraction as
Blum's notion.

In a further study of P-decompositions it would be especially interesting to find
a simple two-place relation K such that: K(¥,) if and only if there exist g, y such
that o, ¥, ,y determine a P-decomposition of some Gédel numbering ¥. The
isolation of ¥ in our Theorem 3 is not quite natural since presenting a com-
putability formalism means giving % and «. Thus, x can not be chosen freely
any more.

96 B. Buchberger

REFERENCES

[1] Blum, M.: A machine-independent theory of the complexity of recursive functions.
Journal of the ACM 14/2, 1967.
[2] Buchberger, B.: Associating functions and the operator of conditioned iteration (Russian).
Communications of the JINR-Dubna, P5-5788, 1971 (english translation: Bericht
Nr. 71-1. Institut f. num. Math., Univ. Innsbruck).
[3] Buchberger, B.: A basic problem in theory of programming languages. Bericht Nr. 72-1.
Institut fiir num. Math., Univ. Innsbruck, 1972.
[4] Davis, M.: A note on universal Turing machines. In: Automata Studies (Shannon,
McCarthy ed.). Princeton University Press, 1956.
[5] Davis, M.: The definition of universal Turing machine. Proceedings of the AMS 8,
pp. 11251126, 1957.
[6] Davis, M.: Computability and unsolvability. McGraw Hill, 1958,
[7] Ershov, A. P.: Operator algorithms 1. Problemy kibernetiki 3, 1960.
[8] Lucas, P., Lauer, P., Stigleitner, H.: Method and notation for the formal definition of
programming languages. IBM Laboratory Vienna. Technical Report TR 25.087, 1968.
[9] Markov, A. A.: On the representation of recursive functions (Russian). Doklady akademii
nauk SSSR, n.s., vol. 58, p. 1891—1892, 1947.
[10] Nepomniashy, V. A.: Conditions for the algorithmic completeness of the systems of
operations. In: Proceedings of the IFIP Congress 71. Ljubljana, 1971.
[11] Rogers, H. Jr.: Gédel numberings of partial recursive functions. The journal of symbolic
logic 23/3, 1958.
[12] Rogers, H. Jr.: Theory of recursive functions and effective computability. McGraw Hill,
1967.
[13] Strong, H. R.: Algebraically generalized recursive function theory. IBM journal of
research and development 12/6, 1968.
[14] Uspenskii, V. A.: Lectures on computable functions (Russian). Gos. izdat. fiz.-mat. lit.,
Moscow, 1960 (French translation: V. A. Ouspenski, Legons sur les fonctions calculables,
Hermann, Paris, 1966).

