1485-09-00-#

[

! Osterreichische
’ ;%Artificial Intelligence-Tagung

Wien, September 1985

Herausgegeben von Harald Trost und Johannes Retti

Springer-Verlag Berlin Heidelberg New York Tokyo .

Herausgeber

Harald Trost

Universitdt Wien e .
Institut fur Medizinische Kybernetik und Artificial Intelligence

Freyung 6, A-1010 Wien, Osterreich

Johannes Retti
Siemens AG Osterreich »
Golinergasse 15, A-1030 Wien, Osterreich

Tagungsleitung: Johannes Retti
Programmkomitee:

Harald Trost Universitat Wien
Wolfgang Bibel TU Midnchen

Bruno Buchberger Universitat Linz

Ernst Buchberger Universitat Wien

Werner Horn Universitat Wien
Hermann Kaindl Siemens AG Wien

Peter Raulefs - Universitat Kaiserslautern
Ingeborg Steinacker VOEST-Alpine AG Linz
Robert Trappl Universitat Wien
Wolfgang Wahlster Universitat Saarbricken

Helmar Weseslindtner TU Wien

Diese Tagung wurde von der Siemens AG Osterreich sowie von
der Osterreichischen Studiengesellschaft fir Kybernetik
unterstitzt.

ISBN 3-540-15695-X Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15695-X Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically those of translation, reprinting, re-use of illustrations,
broadcasting, reproduction by photocopying machine or similar means, and storage in data
banks. Further, storage or utilization of the described programms on data processing
installations is forbidden without the written permission of the author. Under § 54 of the
German Copyright Law where copies are made for other than private use, a fee is payable to
“Verwertungsgesellschaft Wort”, Munich.

© by Springer-Verlag Berlin Heidelberg 1985
Prinied in Germany

Druck und Bindearbeiten: Weihert-Druck GmbH, Darmstadt
2145/3140-543210

I EETE———

The L-Language for the Parallel L-Machine
(A Parallel Architecture for Al Applications)

P. Hintenaus, B. Buchberger

Institut fir Mathematik
Johannes-Kepler-Universitat
MO040 Linz (Austria)

Abstract

The L-language, a language for programming parallel computer architectures especially
suited for symbolic computation, is presented. The main goal of the language design
is the explicit description of the interconnection structure of the system. Our
aproach allows even recursive descriptions of the interconnection topology. The
interconnection structures defined by L-programs can be realized on the parallel L-
machine developed in the CAMP-LINZ working group.

Introduction

In recent years an increasing interest concentrates on possible parallel machine
architectures for applications in artificial intelligence, in particular automated

theorem proving, parallel evaluation of logic programs, symbolic computation and
parallel organization of large knowledge bases. Parallel architectures for applica-
tions in these areas must meet objectives that are essentially different from the
design objectives prevalent in numerical parallel computation. In /BiBu &, Section
2/ a detailed analysis is given that derives the main design objectives for parallel

architectures suitable for applications in artificial intelligence: It is argued that

3 <uitable architecture should have a cellular homogeneous structure with asynchro-
nous cooperation of many tightly coupled processor modules and a means for flexible
interconnection topologies and synchronization strategies. The single modules and the
parallel architecture as a whole should be universal machines.

The L-network project pursued at the working group CAMP of the University of Linz
aims —at the realization of a parallel architecture that meets the design objectives
outlined above. The starting point of the project was the design and implementation
of an “L-module", a flexible building block for the formation of parallel architec-
tures ("L-networks") of arbitrary but fixed topology and arbitrary size (see /Bu 78/
and /Bu, Fe 78/). In the present state of the project a parallel architecture (the
"L-machine”) has been implemented that allows the creation of L-networks of arbitrary
topology at compile time and even at execution time (see /Bu 83, 8/: see also /Bi,
Bu 8/ and /As 85/ for two typical examples of applying the hardware components deve-
loped in the L-project for the realization of parallel inference machines and

parallel functional evaluation.)

In this paper we give details of the syntactical realization and implementation of
the L-language, a high level language that allows to program the L-machine in a
natural and easy way and to fully exploit the features offered by the underlying
parallel hardware. The essential two features of the L-language are:

- In addition to the constructs of ordinary high level languages it incorporates

the special instructions available on the L-modules (namely the “sensor bit"
instructions and the h0pen7c|ose" instructions -for opening and closing certain

interconnection buses between L-modules).-

_ It also allows to define L-network structures i.e. the topology of the intercon-
nection between the L-modules. In particular, topologies with variable size para-
ﬁEEEFE"can be defined in this language (by recursion and iteration over the size
parameters!) The potential of recursive and iterative definition of parallel net-
work structures with variable size parameters is a feature that has not yet been
jncluded in other languages and, hence, is the major original contribution of the
L-language.

e L-language has been introduced in /Bu 8 /. The present paper reports on an
angoing implementation of the L-language, which forms the core of a diploma thesis of
s first author under the supervision of the second author. In order to make the

er as self-contained as possible we start with a short review of the basic con-
pts of the L-project.

Short Review of the L-Project

L-Module is a module of the following structure:

D1 Dn

.............

Cl Cm

1 m

a microprocessor + private memory + some additional special circuitry.

a "shared" memory + some additional special circuitry.

1,..,Cm: bus switches with an additional "open/close" facility. (The
corresponding m bus branches are called “processor paths".)

1,..,Dn: bus switches with a "sensor bit" ®. (The corresponding n bus branches

are called "memory paths".)

In addition to the normal instruction set of a microprocessor, the component A can
execute the following eight types of special instructions:

“open j", "close j" (for opening and closing switch Cj)
"set, (reset, load) local sensor j"
“set (reset, read) non-local sensor j".

The meaning of these instructions and the operation of the L-module are explained in
detail in /Bu 83/. Arbitrarily many L-modules can be combined to form "L-networks"
of arbitrary (but fixed) regular (or irregular) structure, by connecting a memory
path of one module to a processor path of another.

As an example of a typical computation in an L-network we recall a solution of the
tautology problem for boolean expressions on an L-network of binary tree topology
(for details see /Bu, Fe 8/):

122

I B S I

In each processor the following L-program has to be loaded and executed:

WHILE NOT SM3{2} DO END:

IF na{l} =0

THEN ya{l} := eval(ta{l})

ELSE
ta{2} := subst(ta{l}, , TRUE): na{2} := nafl} -1
ta{3} := subst(taf{l}, , FALSE) na{3} := na{l} -1
sPaf2} := TRUE SP3{3] = TRUE
WHILE SPa OR SP3{3 O END:
ya{l} := } AND ya{3

END

SMa{2} := FALSE

A reference to a variable followed by a 3 and a number enclosed in braces means that
this variable is located in a shared memory and is accessible via the processor path
adressed by this number. SP3{i} and SM3{i} refer to the sensor bit that is located on
the i'th processor path and i'th memory path respectively.

eval(t) is a procedure returning the truth value of the variable free boolean
expression t. subst(t,n,b) returns the expression that results when the n'th variable
of the expression t is replaced by the boolean value b,

n L-modules with n processor paths and n memory paths can be used to realize the
"full graph" interconnection topology. In principle, this topology could be used to
embed every other topology in a flexible and dynamical way. However, this arrangement
would need n**2 switches of type C and D and n**2 connection buses between the
switches. By a geometrical transformation that does not change the logical and physi-
cal properties of the device this arrangement can be replaced by the following cross-
bar configuration that does not need any interconnection buses (the details of this

transformation are explained in /Bu 83/). A prototype of this crossbar arrangement
with n=8 is in operation since November 1984. Note that exactly the same components
A, B, C, D can be used for realizing special L-networks and the crossbar arrangement.

123

uP
A Cl . (2 C3
- " o —_—

10 2D 3D
uP . . :
A Cl . §C2 .1C3 .

2D 2D 2D
uP : : :

A Cl . jC2 . §C3 .
3D 3D 3D
Mem.| Mem. Mem.
B B B

e dotted lines are the connections of the processors to the sensor bits in the com-
onents D, which the processors can access.

: Rough Sketch of the L-Language

An “L-program" written in the "L-lanquage" /Bu 84/ consists of the description of the
programs residing in the L-modules of an L-network and the description of the topo-
logy of the L-network. Significant extensions to ordinary programming languages are
necessary in order to make such descriptions possible.

s that
r path
ted on

The nucleus of the implementation of the L-language described here is a small subset
of MODULA-2 /Wi 82/. Programs written in the nucleus language are meant to reside in
the private memory of a component A and are executed under the control of the pro-
cessor in the component. In the following we call these programs PROCESSes.
Variables declared local to these PROCESSes are placed in the private memories.
es can be combined to L-programs that describe the topology of an L-network

yolean
~iable

e the

ed to and the PROCESSes residing in the L-modules of the L-network.

jement ‘ :

n the In order to place a variable in all shared memories it has to be declared at the
)hysi- outermost part of an L-program. A reference to a shared variable is made by giving
:ross- the name of the variable followed (in braces) by the names of all those paths that
Tthis should be used for this reference. The actual open and close instructions are
jement generated by the compiler. The sensor bits are referenced by using the identifiers SP
mnents and SM for access via a processor path (called PPATH) or a memory path (called
ment. MPATH). We start with an example of an elementary PROCESS.

PROCESS P1 (pl, p2: PPATH: ml, m2: MPATH):
VAR p, q: ’ '

124
BEGIN
;6&é program text using, for example,
via{pl} := vla{p2} IF SM3{ml} THEN:

END:

This part of an L-program describes a PROCESS with two processor paths named pl and
p2 and two memory paths ml and m2. This PROCESS will be assigned to an L-Module in 3
later part of the L-program. The component A of this L-module will contain the
program VAR..BEGIN.....END in its private memory. The same information may also be
expressed in the following graphical notation of the L-language:

It should then be immediately clear what is meant by the following graphical notation
of an L-program NW:

44 4 d
NW
mij m mi m
php p
mi m mJ mZ
1
P4 P4 PR p4
0

Here, four L-modules are combined in order to form a more complicated L-network
having three programs Pl, P2, P3 stored in the private memories of four L-modules and
realizing a particular interconnection schema between the L-moduTes. Some of the

paths provide interconnections to the "outside" of the L-network.

NW with processor paths r,s,t,u and memory paths a,b,c,d, again, can be used as a
building block in hierarchically more complicated L-networks. The L-network NW in
syntactically more conventional "linear" notation reads:

PROGRAM example:

126

eclération of shared variables (see below)

ss P1(pl,p2:PPATH: ml,m2:MPATH):
P2(pl,p2:PPATH: ml,m2:MPATH):
:sS P3(pl,p2:PPATH: ml,m2:MPATH):

il RK
) -i v
T NW(VAR a,b,c,d: MPATH: VAR r,s,t,u: PPATH):
s0 pll, pl2, p21, p22: PPATH: m22, m31, m32, ml: MPATH:
(pll,p12,a,b): P2(p21,p22,c,m22):
(r,s.m31,m32): P1(t,u,m1,d):
NNECT pll TO m31: CONNECT pl2 TO m1l:
NNECT p12 TO m32: CONNECT p22 T0 m22
SIN
ati “actual network invocation (see below).
ROCESS is assigned to an L-module by giving its name in the NETWORK part of an L-
jgram (at invocation time according to the specification in the SUBNETs). The
pes in the parameter list following the name of the process are used for
jerencing the paths of the special PROCESS-processor pair. SUBNETs serve as a
lection of L-modules which will be used as building blocks for more complicated L-
works. SUBNETs can be used recursively in order to create networks of a regular
ucture. For example, the tree of the previous example can be defined as follows
ssume we have a PROCESS P(f:MPATH:1,r:PPATH):):
NET Tree (VAR f: MPATH: n: INTEGER):
AR r,1:PPATH: s1,s2:MPATH:
EGIN
F n=1 THEN
P(f,r,1) f
T(n)
P
T
P(f,r.l): f
Treeﬁsl,n-l): T(n)
Tree(s2,n-1): P
CONNECT r TO sl:
CONNECT 1 TO s2:] Ir
} f | f
n-1) (n-1)
twork
s and
! the
¢ Design Objectives, Restrictions and Design Decisions for a Concrete Implementation
as = of the L-Language
W

concept that provides the natural environ-

ment for describing parallel algorithms on arbitrary L-networks and it does not
~ depend on a particular syntactical notation. Our goal when implementing one special
version of the L-language is to create a simple tool for programming the pilot reali-

The L-language is a very general language

126

zation of the L-machine described in /Bu 83, 8 /. Because of its nice syntactical
structure we chose MODULA-2 /Wi 82/ as the major guideline for the design of the
grammar for the nucleus language. To keep the compiler simple the grammar is LL-1. Of
corse we are interested in the possibility to use our compiler on prototypes with
different microprocessors. Thus, we decided to generate intermediate code which will
be interpreted on the actual machine. Since the present version of the compiler
should only serve as an experimental tool we only implement INTEGER, BOOLEAN and
ARRAYs of INTEGER and BOOLEAN as data types. However, for describing interconnection
environments between L-modules that are changing before and during computation, SETs
and ARRAYs of MPATHs and PPATHs are realized in addition. Our major emphasis lies on
the NETWORK part in order to be able to experiment with various arrangements of pro-
cessors. This feature of the language is the one that goes far beyond the possibili-

ties of ordinary programming languages.

Our prototype compiler is developed in MODULA-2 on a Vicki microcomuter operating
MSDOS V2,11. The intermediate code we generate is for a stack machine, augmented with
instructions for operating the sensorbits and the switches to the shared memories.
The adressing of the sensor bits and switches is done using translation tables simi-
lar to those the NS32000 architecture /NSC 83/ uses for reference to external
objects, i.e. the physical addresses are stored in an array whose indices are the

logical addresses.

The whole compiler operates on the host computer. The translation tables are
constructed in the last pass of the L-compiler, which executes the network invoca-
tion. The resulting images are downloaded onto the physical processors of the proto-
type machine where the processes described in the program are executed.

Syntax of the Concrete Realization of the L-Language

An L-program has the following structure:
PROGRAM program name :

CONST constant declarations
SHARED VAR declaration of shared variables
Process declarations

NETWORK

VAR declaration of variables used in the network invocation
Subnet declarations

BEGIN
network invocation
END.

A constant declaration has the following form:
identifier = constant expression :
where constant expression is a well formed infix expression yielding a constant

value.

The declaration of the shared variables has the syntactical form of a variable
declaration (see below). However, only variables of the types INTEGER, BOOLEAN and
ARRAY OF INTEGER or BOOLEAN may occur,

The syntactical form of variable declarations is: Variables are declared by giving
their names followed by a colon and the type of the variables. Simple types are
INTEGER, BOOLEAN, MPATH, PPATH. The other possible types are ARRAYs of all simple
types and SETs OF PATHs. However the following restrictions must be respected:

tant

able
and

ving

are
mple
ted:

127

- SETs OF PATHs may only be used inside processes.
-- PATHs and ARRAYs of PATHs are allowed in the network part and in the

parameter 1ist of a PROCESS only.

Process declarations have the following form:
PROCESS process name (parameter. list) =

CONST constant declarations
VAR variable declarations
procedure declarations

BEGIN
process body
END;

The parameter list contains the variables that will assume a value in the NETWORK
jnvocation of the L-program. Constants and variables declared inside a PROCESS are
only known inside this PROCESS. These variables will reside in the private memory. .

Procedure declarations are like in MODULA-2 with the exception that nested procedure
declarations are prohibited. The following control structures are available:

IF..THEN. .ELSIF..THEN...... ELSE..END
WHILE..DO. .END

REPEAT..UNTIL..
LOOP..END (an infinite loop, which can be left by an EXIT statement).

Shared variables are acessed by giving their name followed by an 3 character and a
set expression giving all the paths that should be used for this reference. Set
expressions are either some path names enclosed in set brackets or the name of a SET

OF PPATH.

Declaration of variables used in the network invocation: Every type besides SET OF
PATHs 1s allowed for these declarations. The syntactical form 1is the same as
described above.

A SUBNET is a collection of PROCESSes with some internal connections and some PATHs
to the outer world. They serve as a building block for more complicated structures.
The structure of a subnet declaration is as follows:

SUBNET subnet name (parameter list):

CONST constant declarations
VAR variable declarations

BEGIN
subnet body
END:

The parameter list serves as a means to connect a subnet to the outer world. If the
value of a parameter in a subnet is changed and this should effect the value of the
actual parameter in the calling network invocation then the formal parameter must be

preceeded by the keyword VAR.

The variable declaration inside a subnet follows the same rules as that for the net-

. work invocation. However these variables are only existing as long as the SUBNET is

active. In case of recursive invocation of SUBNETs, for each invocation a new set of
these variables is used.

‘The subnet body and the network invocation are constructed using

128

IF..THEN..ELSIF..THEN....ELSE..END
WHILE. .DO..END

REPEAT. .UNTIL..

LOOP. .END

. The crucial point in the construction of networks is the creation of PROCESS pro-
cessor pairs. This is done by giving the process name followed by a parameterlist,
K These actual parameters serve as names for the paths of this particular PROCESS pro-
‘. cessor pair. Via the CONNECT statement a PPATH is connected T0 an MPATH. This is done
by modifying the code of the associated processes in such a way that the desired con-

nection is established (see below.)

The network is built up starting at the first line of the network invocation,
Subsequent statements of the network invocation (including subnet calls) are exeCut;
until the end is reached. The output of this procedure will be the loadable code for

all the physical processors of the L-machine.

Programming Example

| Programming examples from the Al and symbolic computation areas are given in ¢
papers listed as references. In this paper we only want to clarify the essentj
features of the parallel L-language. Therefore we choose an example whose prob]
specification does not need any specific prerequisites and still shows the use of the
language features that are characteristic for the L-language. k

& The problem:
' Given an array bar[0:800] we want to calculate the mean value
L bar[1] := (bar[i+1] + bar[i-1]) / 2 (for i:= 1,....799).

This process will be jterated, say, hundred times. (As an interpretation,
one could think about a bar of metal with some “temperature distribution" at
the beginning whose temperature distribution is sought after a certain

i

H

§

|

b

i)

{ & amount of time.)

§ b, A straightforward parallel algorithm for this problem:
|

We split the array inte segments and use a_processor for each such segment.

' ! Before a processor can start to compute all the mean values the first and
151 the last value of the bar must be exchanged with those of the right and left
i neighbours in the following way:
Il";i : 4 ¥ 4 +
e CIT 1T 1T 1xiY} o1 111 CL 11111
. + + 4 ¥
i o
% . j.e. the elements at the margins of contiguous segments must be stored
i . twice.

(In the program below an auxiliary array h will be used in order to store
the new array during each jteration. After execution of one iteration the

| : content of h is stored into bar.)

The network structure:

% ‘ A network of the following structure is set up in the L-machine:

i

in the

. ot
sentia i
problem -
of the. o

n,
at
in

2

129

pred pred | pred

succ - succ
S ’ sl

succ

(The splitting of the array into segments,

tically in a preprocessor.
this preprocessing step an
number of 8 processors (segments)).

e L-

‘PROGRAM Temperature:

- SHARED VAR ,
bar: ARRAY [0..100] OF INTEGER:

-« PROCESS PartOfBaE(pred: MPATH: succ: PPATH: pos: INTEGER):
(* pos specifies the number of a particular processor in the linear

arrangement of processors.*)

VAR i, j: INTEGER:

h: ARRAY[1..99] OF INTEGER:

BEGIN
FOR j:=1 TO 100 DO (* iterations *)
IF pos>0 THEN SP a{pred}:=TRUE: WHILE SP 3{pred} DO END END:
IF pos <7 THEN
WHILE NOT SM a{succ} DO END:
bar a{succ}[0] := bar a{MYSELF}[99]; (* exchange data *)
bar a{MYSELF} 100; = bar 3{succ}[l]:
SM 3{succ} := FALSE
END:
FOR i:=1 T0O 99 DO
(* compute mean values *)
h[i] := (bar a{MYSELF}[i-1] + bar 3{MYSELF}[i+1]) DIV 2
END:
FOR i:=1 TO 99 DO bar a{MYSELF}[i] := h[i] END
END
END:

NETWORK
VAR p: MPATH: s, sl: PPATH: i: INTEGER:

BEGIN
(* create a‘linear arrangement of processors *)

PartOfBar (p, s, 0): (* create first processor *)
FOR i :=1T07 DO

PartOfBar (p, sl, i):

CONNECT s TO p;

s := sl

of course, could be done automa-
For brevity, in the program below we do not show
d formulate the program for the case of a fixed

rogram (description of the processes in the processors + description of
B network structure):

130

- END
END.

i : (Some language specifications can be made more precise in this ‘example:
+ The names of sensor bits are handled as boolean variables.’

i + Each L-module has a memory path MYSELF and also a processor path MYSELF that

‘? are interconnected with each other.

+ A subnet invocation as, for example, PartOfBar(s,nl,i) assigns concrete phy-
sical paths to the path variables in the parameter list, for example to
s,nl. Hence, PartOfBar(s,nl,i) overrides the assignment of s effected by
PartOfBar(s,n,0) or the assignment of s effected by a previous
PartOfBar(s,nl,i).) ,

Conclusions

The language implementation desribed in this papér is in progress. The first two pha-
ses (scanner and parser) of the compiler are completed, the code generation is near
i) to completion. The interpreter for the network invocations has been designed. The
L implementation of the interpreter is in progress. The main purpose of having a
e concrete realization of the L-language is to have a practical means for easy experi-
Lk mentation with various network topologies. The know-how obtained from these experi-
ﬁ? ments will be crucial for the isolation of special classes of topologies that are
e particularly suitable for certain classes of AI applications. The mathematical
design and analysis of parallel symbolic algorithms for L-networks and the com-
parative study of other parallel architectures is currently pursued in various ph. d.
and diploma theses in the frame of the L-project. References to the literature on
various other parallel architecture projects may be found in /Bi, Bu 8/.

Acknowledgement

This work was supported by SIEMENS AG.

References

As 85
Aspetsberger, K., 85: Towards Parallel Machines for Artificial Intelegence:

Realisation of the Alice Architecture by L-Components, this conference.

‘@i ' Bu 78
i Buchberger, B., 78: Computer-Trees and Their Programming. Proc. 4th Coll. "Trees
in Algebra and Programming", Univ. Lille, Feb. 16-18, 1978, pp. 1-18.

Bu, Fe 78
Buchberger B., Fegerl J., 78: A Universal Module for the Hardware-Implementation

of Recursion. Univ. Linz, Inst. f. Mathematik, Report Nr. 106,

Bu 83
Buchberger, B., 83: Components for Restructurable Multi-Micro-Processor Systems

of Arbitrary Topology. Proc. of MIMI 83 (Lugano), Acta Press Anaheim, pp. 67-71.

Bu 8
Buchberger, B., 8 : The Present State. of the L-Networks Project.

Proc. of MIMI 8 (Bari), Acta Press Anaheim, pp. 178-181.

Bi, Bu & ,
Bibel W., Buchberger B., 8 : Towards a Connection Machine for Logical

Inference. (Invited talk, Int. Symp. on Fifth Generation and Super Computers,

Rotterdam, December 84)
To appear in: Future Generations Computer Systems, North Holland.

ple:
les.
that

phy- -

1by
ious

ice:
‘ees
ion
ems
71.

ct.

cal
rs,

52:
h,

- 83:

131
'N., 82: Programming in Modula-2. Springer-Verlag, Berlin Heidelberg New

al Semiconductor Corporation, 83: NS16000 Instruction Set Reference"

