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Imperative Languages II

An Interactive File Editor

• File = list of records.

• Primary store holds currently edited file.

• Secondary store holds files indexed by their
names.

• User issues commands to operate on files
and records.

•Output log echoes input commands and re-
ports errors.
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Imperative Languages II

Opened File

• Pair of record lists with “current”record.
ri−1 . . . r2r1 riri+1 . . . rlast

• newfile represents file with no records.

• copyin reads file from file system

r1r2 . . . rlast

• copyout writes file back to file system.
• forwards steps one record ahead.

ri−1 . . . r2r1 riri+1 . . . rlast ⇒
riri−1 . . . r2r1 ri+1 . . . rlast

• backwards steps one record back.
• insert places record behind current one.

ri . . . r2r1 r′ri+1 . . . rlast

• delete removes the current record.
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Valuation Functions

•C: Program-session → File-system
→ (Log × File-system)

Program-session takes a file system and produces a log

file and an updated file system.

• S: Command-sequence → Openfile
→ (Log × Openfile)

Command-sequence takes an open file and produces a

log and an updated file.

•C: Command → Openfile
→ (String × Openfile)

Command takes an open file and produces a log mes-

sage and an updated file.
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Error Messages

C[[delete]](newfile)
= let (k′, p′) = isempty(newfile) →

(“error: file is empty”, newfile)

[] (“”, delete(newfile))

in (“delete” concat k′, p′)
= let (k′, p′) = (“error: file is empty”, newfile)

in (“delete” concat k′, p′)
= (“delete” concat “error: file is empty”, newfile)

= (“delete error: file is empty”, newfile)

S[[C cr S]]

1. Evaluate C[[C]]p to obtain next log entry
l′ plus updated file p′.

2. Cons l′ to log list and pass p′ to S[[S]].

3. Evaluate S[[S]]p′ to obtain meaning of rest
of program i.e. rest of log output plus final
version of file.
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Collecting Log

P[[edit A cr moveback cr delete cr quit]]s0

= (“edit A” cons

fst(S[[moveback cr delete cr quit]]p0),

update([[A]],

copyout( snd(S[[moveback
cr delete cr quit]]p0), s0))

where p0 = copyin(access ( [[A]], s0)))

= . . .

= (“edit A” cons “moveback error:

at front already”

cons fst(S[[delete cr quit]]p0),

update([[A]],

copyout(snd(S[[delete cr quit]]p0))))

= (“edit A moveback error:

at front already delete quit”,

update([[A]], copyout(p1), s0)

where p1 = delete(p0)
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Copyout function

Interactive text editor

copyout: Openfile → File⊥
copyout = λ(front, back). null front → back

[] copyout((tl front), ((hd front) cons back))

• Functional C, copyout = fix C.

•With i unfoldings, list pairs of length i− 1
can be appended.
• Codomain is lifted because least fixed point

semantics requires that codomain of any
recursively defined function be pointed.

ispointed(A → B) = ispointed(B)

min(A → B) = λa.min(B)
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A Dynamically Typed Language with
Input and Output

• Variable may take on values from different
data types.

• Run-time type checking required.

• Input and output included.

Introduction of “type tags”

Storable-value = Tr + Nat
Store = Id → Storable-value

Errvalue = Unit
Expressible-value =

Storable-value + Errvalue
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Valuation Functions

• State = Store × Input × Output
store, input and output buffers

• Post-State = OK + Err
OK = State, Err = State

successful evaluation or type error

•P: Program → Store → Input
→ Post-state⊥

Program takes input store and input buffer and returns

a new state

•C: Command → State
→ Post-state⊥

Command takes state and returns a new state.

• E: Expression → Store
→ Expressible-value

Expression takes store and returns a value.
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Composition of States

C[[C1; C2]] = C[[C1]] check-cmd C[[C2]]

Command = State → Post-state⊥
check-cmd: Command × Command → Command

h1 check-cmd h2 =

λa. let z = h1(a) in

cases z of

isOK(s, i, o) → h2(s, i, o)

isErr(s, i, o) → z

end

1. Give current state a to C[[C1]] producing
a post-state z = C[[C2]]a

′.
2. If z is a proper state a′ and if the state

component is OK, produce C[[C2]]a
′

3. If z is errnoneous, C[[C2]] is ignored and z
is the result.

Similar for check of expression results.
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Error Handling

• Algebra operations abort normal evaluation
when type error occurs.

Representation of low-level (e.g. hardware-level) fault

detection and branching mechanisms.

•Machine action: on fault, branch out of the
program.
• Semantics: on fault, branch out of function

expression
Propagation of type errors yields same result as machine

action.
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Altering the Properties of Stores

1. Store critical to evaluation of a phrase.

2. Only one copy of store exists during execu-
tion.

3. Store serves as means of communication
between phrases.

• Typical features of a store in sequential pro-
gramming languages.

•What happens if we relax each of these re-
strictions?
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Delayed Evaluation

How to rewrite a function application f (e)?

• Call-by-value simplification
– e evaluated before f is executed;

– Safe method if f is strict.

• Call-by-name simplification
– f executed with non-evaluated e;

– Safe method also if f is non-strict.

f: Nat⊥ → Nat⊥
f = λx. zero
f(⊥) = zero

E[[e]] = ⊥
f(E[[e]]) → ?

Simplification of argument may require infi-
nite number of steps!
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Non-strict Store Updates

May store operate on improper values?

• Store = Id → Nat⊥
Improper values may be stored.

• update: Id → Nat⊥ → Store → Store
– update = λi.λn.λs.[i 7→ n]s

– (update [[I]] (E[[E]]s) s) is defined even in the “loop for-

ever situation” E[[E]]s = ⊥.

– Unevaluated expressions may be stored in s.

• E[[E]]s needs not be evaluated until use.
– Delayed (lazy) evaluation.

– Value must be determined with respect to the store that

was active when [[E]] was saved.
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Example

begin
X := 0
Y := X+1
X := 4

return Y

K: Block → Store⊥ → Nat⊥
K[[begin C return E]] =

λs. E[[E]] (C[[C]]s)

K[[begin X:=0; Y:= X+1; X:=4 return Y]]s0

= E[[Y]] (C[[X:=0; Y:= X+1; X:=4]]s0)

= E[[Y]] (C[[Y:= X+1; X:=4]] (C[[X:=0]]s0))

= E[[Y]] (C[[Y:= X+1; X:=4]]

(update [[X]] (E[[0]]s0) s0))

= E[[Y]] (C[[Y:= X+1; X:=4]] s1)

s1 = (E[[0]]s0) needs not be simplified!

Wolfgang Schreiner 14



Imperative Languages II

Example

s2 = update [[Y]] (E[[X+1]]s1) s1
s3 = update [[X]] (E[[4]]s2) s2

E[[Y]] (C[[Y:= X+1; X:=4]] s1)

= E[[Y]]s3

= access [[Y]] s3

= E[[X+1]]s1

= E[[X]]s1 plus one

= (access [[X]] s1) plus one

= E[[0]]s0 plus one

= zero plus one

= one

• Evaluation E[[X]]s1 required.

•Old store s1 must be retained.

• E[[X]]s3 would be five!
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Non-Strict Command Execution

• Carry delayed evaluation up to level of com-
mands.

•Make C, E, and K non-strict in their store
arguments.

•Only those commands need to be evalu-
ated that have an effect on the output of
a program!
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Example

begin
X:=0;
diverge;
X:=2

return X+1

K[[begin X:=0; diverge; X:=2 return X+1]]s0

= E[[X+1]] (C[[X:=0; diverge X:=2]]s0)

= E[[X+1]] (C[[X:=2]](C[[diverge; X:=2]]s0))

= E[[X+1]](C[[X:=2]]s1)

= E[[X+1]](update [[X]] (E[[2]]s1) s1)

= E[[X+1]]([ [[X]] 7→ (E[[2]]s1) ]s1)

= E[[X]]([ [[X]] 7→ (E[[2]]s1) ]s1) plus one

= E[[2]]s1 plus one

= two plus one

= three

s1 = C[[X:=0; diverge]]s0 needs not be sim-
plified!
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Retaining Multiple Stores

E[[E1 + E2]] = λs.E[[E1]]s plus E[[E2]]s

• E uses store s in “read only” mode.

• No second store required for implementa-
tion.

E[[begin C return E]] =

λs. let s′ = C[[C]]s in E[[E]]s′

• Side effects in expression evaluation possi-
ble.

•Multiple stores required for implementa-
tion.

E[[E1 + E2]] = λs. let (v′, s′) = E[[E1]]s

(v′′, s′′) = E[[E2]]s
′

in (v′ plus v′′, s′′)
E[[begin C return E]] =

λs. let s′ = C[[C]]s in (E[[E]]s′, s′)

• Local updates remain in global store.

• Expression evaluation returns new store.
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Non-Communicating Commands

• Store facilitates the building up of side ef-
fects that lead to some final value.

• Command advances computation by read-
ing and modifying the values left in the
store by previous commands.

•Otherwise, communication breaks down
and language loses sequential flavor.

combine: D × D → D

Domain s ∈ Store = Id → D

C: Command → Store⊥ → Store⊥
C[[C1; C2]] = λs. join (C[[C1]]s) (C[[C2]]s)

join: Store⊥ → Store⊥ → Store⊥
join = λs1.λs2. (λi.s1(i) combine s2(i))

Parallel but non-interfering parallelism.
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