
Imperative Languages II

Imperative Languages II

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Imperative Languages II

An Interactive File Editor

• File = list of records.

• Primary store holds currently edited file.

• Secondary store holds files indexed by their
names.

• User issues commands to operate on files
and records.

•Output log echoes input commands and re-
ports errors.

Wolfgang Schreiner 1

Imperative Languages II

Opened File

• Pair of record lists with “current”record.
ri−1 . . . r2r1 riri+1 . . . rlast

• newfile represents file with no records.

• copyin reads file from file system

r1r2 . . . rlast

• copyout writes file back to file system.
• forwards steps one record ahead.

ri−1 . . . r2r1 riri+1 . . . rlast ⇒
riri−1 . . . r2r1 ri+1 . . . rlast

• backwards steps one record back.
• insert places record behind current one.

ri . . . r2r1 r′ri+1 . . . rlast

• delete removes the current record.

Wolfgang Schreiner 2

Imperative Languages II

Valuation Functions

•C: Program-session → File-system
→ (Log × File-system)

Program-session takes a file system and produces a log

file and an updated file system.

• S: Command-sequence → Openfile
→ (Log × Openfile)

Command-sequence takes an open file and produces a

log and an updated file.

•C: Command → Openfile
→ (String × Openfile)

Command takes an open file and produces a log mes-

sage and an updated file.

Wolfgang Schreiner 3

Imperative Languages II

Error Messages

C[[delete]](newfile)
= let (k′, p′) = isempty(newfile) →

(“error: file is empty”, newfile)

[] (“”, delete(newfile))

in (“delete” concat k′, p′)
= let (k′, p′) = (“error: file is empty”, newfile)

in (“delete” concat k′, p′)
= (“delete” concat “error: file is empty”, newfile)

= (“delete error: file is empty”, newfile)

S[[C cr S]]

1. Evaluate C[[C]]p to obtain next log entry
l′ plus updated file p′.

2. Cons l′ to log list and pass p′ to S[[S]].

3. Evaluate S[[S]]p′ to obtain meaning of rest
of program i.e. rest of log output plus final
version of file.

Wolfgang Schreiner 4

Imperative Languages II

Collecting Log

P[[edit A cr moveback cr delete cr quit]]s0

= (“edit A” cons

fst(S[[moveback cr delete cr quit]]p0),

update([[A]],

copyout(snd(S[[moveback
cr delete cr quit]]p0), s0))

where p0 = copyin(access ([[A]], s0)))

= . . .

= (“edit A” cons “moveback error:

at front already”

cons fst(S[[delete cr quit]]p0),

update([[A]],

copyout(snd(S[[delete cr quit]]p0))))

= (“edit A moveback error:

at front already delete quit”,

update([[A]], copyout(p1), s0)

where p1 = delete(p0)

Wolfgang Schreiner 5

Imperative Languages II

Copyout function

Interactive text editor

copyout: Openfile → File⊥
copyout = λ(front, back). null front → back

[] copyout((tl front), ((hd front) cons back))

• Functional C, copyout = fix C.

•With i unfoldings, list pairs of length i− 1
can be appended.
• Codomain is lifted because least fixed point

semantics requires that codomain of any
recursively defined function be pointed.

ispointed(A → B) = ispointed(B)

min(A → B) = λa.min(B)

Wolfgang Schreiner 6

Imperative Languages II

A Dynamically Typed Language with
Input and Output

• Variable may take on values from different
data types.

• Run-time type checking required.

• Input and output included.

Introduction of “type tags”

Storable-value = Tr + Nat
Store = Id → Storable-value

Errvalue = Unit
Expressible-value =

Storable-value + Errvalue

Wolfgang Schreiner 7

Imperative Languages II

Valuation Functions

• State = Store × Input × Output
store, input and output buffers

• Post-State = OK + Err
OK = State, Err = State

successful evaluation or type error

•P: Program → Store → Input
→ Post-state⊥

Program takes input store and input buffer and returns

a new state

•C: Command → State
→ Post-state⊥

Command takes state and returns a new state.

• E: Expression → Store
→ Expressible-value

Expression takes store and returns a value.

Wolfgang Schreiner 8

Imperative Languages II

Composition of States

C[[C1; C2]] = C[[C1]] check-cmd C[[C2]]

Command = State → Post-state⊥
check-cmd: Command × Command → Command

h1 check-cmd h2 =

λa. let z = h1(a) in

cases z of

isOK(s, i, o) → h2(s, i, o)

isErr(s, i, o) → z

end

1. Give current state a to C[[C1]] producing
a post-state z = C[[C2]]a

′.
2. If z is a proper state a′ and if the state

component is OK, produce C[[C2]]a
′

3. If z is errnoneous, C[[C2]] is ignored and z
is the result.

Similar for check of expression results.

Wolfgang Schreiner 9

Imperative Languages II

Error Handling

• Algebra operations abort normal evaluation
when type error occurs.

Representation of low-level (e.g. hardware-level) fault

detection and branching mechanisms.

•Machine action: on fault, branch out of the
program.
• Semantics: on fault, branch out of function

expression
Propagation of type errors yields same result as machine

action.

Wolfgang Schreiner 10

Imperative Languages II

Altering the Properties of Stores

1. Store critical to evaluation of a phrase.

2. Only one copy of store exists during execu-
tion.

3. Store serves as means of communication
between phrases.

• Typical features of a store in sequential pro-
gramming languages.

•What happens if we relax each of these re-
strictions?

Wolfgang Schreiner 11

Imperative Languages II

Delayed Evaluation

How to rewrite a function application f (e)?

• Call-by-value simplification
– e evaluated before f is executed;

– Safe method if f is strict.

• Call-by-name simplification
– f executed with non-evaluated e;

– Safe method also if f is non-strict.

f: Nat⊥ → Nat⊥
f = λx. zero
f(⊥) = zero

E[[e]] = ⊥
f(E[[e]]) → ?

Simplification of argument may require infi-
nite number of steps!

Wolfgang Schreiner 12

Imperative Languages II

Non-strict Store Updates

May store operate on improper values?

• Store = Id → Nat⊥
Improper values may be stored.

• update: Id → Nat⊥ → Store → Store
– update = λi.λn.λs.[i 7→ n]s

– (update [[I]] (E[[E]]s) s) is defined even in the “loop for-

ever situation” E[[E]]s = ⊥.

– Unevaluated expressions may be stored in s.

• E[[E]]s needs not be evaluated until use.
– Delayed (lazy) evaluation.

– Value must be determined with respect to the store that

was active when [[E]] was saved.

Wolfgang Schreiner 13

Imperative Languages II

Example

begin
X := 0
Y := X+1
X := 4

return Y

K: Block → Store⊥ → Nat⊥
K[[begin C return E]] =

λs. E[[E]] (C[[C]]s)

K[[begin X:=0; Y:= X+1; X:=4 return Y]]s0

= E[[Y]] (C[[X:=0; Y:= X+1; X:=4]]s0)

= E[[Y]] (C[[Y:= X+1; X:=4]] (C[[X:=0]]s0))

= E[[Y]] (C[[Y:= X+1; X:=4]]

(update [[X]] (E[[0]]s0) s0))

= E[[Y]] (C[[Y:= X+1; X:=4]] s1)

s1 = (E[[0]]s0) needs not be simplified!

Wolfgang Schreiner 14

Imperative Languages II

Example

s2 = update [[Y]] (E[[X+1]]s1) s1
s3 = update [[X]] (E[[4]]s2) s2

E[[Y]] (C[[Y:= X+1; X:=4]] s1)

= E[[Y]]s3

= access [[Y]] s3

= E[[X+1]]s1

= E[[X]]s1 plus one

= (access [[X]] s1) plus one

= E[[0]]s0 plus one

= zero plus one

= one

• Evaluation E[[X]]s1 required.

•Old store s1 must be retained.

• E[[X]]s3 would be five!

Wolfgang Schreiner 15

Imperative Languages II

Non-Strict Command Execution

• Carry delayed evaluation up to level of com-
mands.

•Make C, E, and K non-strict in their store
arguments.

•Only those commands need to be evalu-
ated that have an effect on the output of
a program!

Wolfgang Schreiner 16

Imperative Languages II

Example

begin
X:=0;
diverge;
X:=2

return X+1

K[[begin X:=0; diverge; X:=2 return X+1]]s0

= E[[X+1]] (C[[X:=0; diverge X:=2]]s0)

= E[[X+1]] (C[[X:=2]](C[[diverge; X:=2]]s0))

= E[[X+1]](C[[X:=2]]s1)

= E[[X+1]](update [[X]] (E[[2]]s1) s1)

= E[[X+1]]([[[X]] 7→ (E[[2]]s1)]s1)

= E[[X]]([[[X]] 7→ (E[[2]]s1)]s1) plus one

= E[[2]]s1 plus one

= two plus one

= three

s1 = C[[X:=0; diverge]]s0 needs not be sim-
plified!

Wolfgang Schreiner 17

Imperative Languages II

Retaining Multiple Stores

E[[E1 + E2]] = λs.E[[E1]]s plus E[[E2]]s

• E uses store s in “read only” mode.

• No second store required for implementa-
tion.

E[[begin C return E]] =

λs. let s′ = C[[C]]s in E[[E]]s′

• Side effects in expression evaluation possi-
ble.

•Multiple stores required for implementa-
tion.

E[[E1 + E2]] = λs. let (v′, s′) = E[[E1]]s

(v′′, s′′) = E[[E2]]s
′

in (v′ plus v′′, s′′)
E[[begin C return E]] =

λs. let s′ = C[[C]]s in (E[[E]]s′, s′)

• Local updates remain in global store.

• Expression evaluation returns new store.

Wolfgang Schreiner 18

Imperative Languages II

Non-Communicating Commands

• Store facilitates the building up of side ef-
fects that lead to some final value.

• Command advances computation by read-
ing and modifying the values left in the
store by previous commands.

•Otherwise, communication breaks down
and language loses sequential flavor.

combine: D × D → D

Domain s ∈ Store = Id → D

C: Command → Store⊥ → Store⊥
C[[C1; C2]] = λs. join (C[[C1]]s) (C[[C2]]s)

join: Store⊥ → Store⊥ → Store⊥
join = λs1.λs2. (λi.s1(i) combine s2(i))

Parallel but non-interfering parallelism.

Wolfgang Schreiner 19

